e LIEGE université m/ e
b Library '

https://lib.uliege.be https://matheo.uliege.be

Master thesis : Discrete Element Simulation of Ice Particle Interaction: Migration
to GPU Computing and Subsequent Validation

Auteur : Bristy, Kaniz Fatema

Promoteur(s) : 14964

Faculté : Faculté des Sciences appliquées

Dipldme : Master : ingénieur civil mécanicien, a finalité spécialisée en "Advanced Ship Design"
Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/16560

Avertissement a l'attention des usagers :

Tous les documents placés en accés ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément
aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), I'utilisateur du site peut lire, télécharger,
copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les
indexer, s'en servir de données pour un logiciel, ou s'en servir a toute autre fin Iégale (ou prévue par la réglementation
relative au droit d'auteur). Toute utilisation du document a des fins commerciales est strictement interdite.

Par ailleurs, I'utilisateur s'engage a respecter les droits moraux de l'auteur, principalement le droit a l'intégrité de I'oeuvre
et le droit de paternité et ce dans toute utilisation que I'utilisateur entreprend. Ainsi, a titre d'exemple, lorsqu'il reproduira
un document par extrait ou dans son intégralité, |'utilisateur citera de maniere compléte les sources telles que
mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du
document ou son résume) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

NANTES université

CENTRALE v LIEGE

. - i - S 0 L E N T Zachodniopomorski
ot UnlveI'SItat UNIVERSITY Um’wersy_tet
Rostock /" Traditio et Innovatio ,Ca m Technologiczny
POLITECNICA SOUTHAMPTOMN UNIVERSITA D'F_C'l.l STUDI Woizctegiic

T DI GENOVA
R With the support of the
LN Erasmus+ Programme
* ek

of the European Union

Discrete Element Simulation of Ice Particle
Interaction: Migration to GPU Computing and
Subsequent Validation

Submitted on 27" August 2022

By

BRISTY Kaniz Fatema | 5-7 Esp. de la Pierre Percée | 44300 Nantes |
Kaniz-Fatema-.Bristy@eleves.ec-nantes.fr

Student ID No.: 210603Q

First Reviewer: Second Reviewer:
Pierre FERRANT Félicien BONNEFOY
Professor at Lecturer at

Ecole Centrale de Nantes Ecole Centrale de Nantes
1, rue de la noé 1, rue de la noé

44321, Nantes 44321, Nantes

France France

EMship+))
g k\Y

mailto:Kaniz-Fatema-.Bristy@eleves.ec-nantes.fr

Kaniz Fatema Bristy

Table of Contents

TaDIE OF CONLENES ...t bbbt b et e e e s i
LIS OF FIGUIES ..ottt ettt et e s et e et e e ne e sbeenaeeneenneenbe s \Y
o3 (0] 1)1 SRR P PSP PRRPPRRN v
N o111 - Tod PRSP vi
ACKNOWIBAGMENL......c.iiiee ettt et e e re e te e e e s reenbeaneesnes vii
Declaration of AUTNOISNIP ..o viii
R 01 oo [3Tox 1 o] [USSP PR PR PRRRR 1
IR R O 1T T SRR 1
1.2 IMIOTIVALION. ...ceitiitiiiete et bbbttt b bbb e s 2
1.3 ODJEOIIVE ...t 2
1.4 CoNtent DESCIIPLIONcvviiieie ettt ettt re et e e esreenreenneenes 3
2 Theories and MethodOIOgYccoiiiiiiiiiieieier s 4
220 A (o= 4 o o 1= RSSO 4
2.2 BraSN ICE ..o e anes 5
2.3 Discrete EIemMent MEthOdooviiiiiiiieiee e 5
2.4 Introduction t0 CPU and GPUcccoviiiiieiecie e 6
2.5 CPU and GPU AICIITECIUIEccueiiiiieiiiieieie ettt 6
2.6 CUDA ...ttt et ae e reera et e s 7
2.7 VISUAI PIOTIEI ..o bbb 7
3 Discrete Element Method Implementation............c.cooeiiiiiiiiniiieee e 8
3.1 1ce PartiCle INTEraCtiONcveieiei e et 8
3.2 Program FIOWcoiiiiiiiieee ettt bbb 9
3.3 Introducing CUDA fOr DEM..........coiiiiiiiece et 9
4 1CE RIAQGE GENEIATIONiitiieiiiiciieee ettt bbbt 11
4.1 Natural Creation PrOCESSccveiiieiiiiieiteeitesee s ste et e e e te e sre e s reesreeaesraesreeeeenes 11
4.2 Ice Ridge in ice MOdel DASIN........ccoiiiiiiiiiiee e 11
4.3 Numerical Ridge Simulation in in-house Software............c.ccccocveieiieiieeie e 12
4.4 Performance analysis for serial computation (CPU)ccccceiviiiiiinininiiiceen 13
5 Brash 108 GENEIALIONc.ecieiiiiiie ettt 14
5.1 NAtural Creation PrOCESScoerverieriireeieiesie ettt sttt sbesb b be e e ee e 14
5.2 Brash Ice in ice MOdel DASIN........cccciiiiiiiiieie e 14
5.3 Brash ice Simulation in in-house SOFtWAreccoviveviiiiiieiice e 15
5.4 Performance analysis for serial computation (CPU)ccccccoviviiiiveiieiecce e, 16
6 Implementation OF CUDA ..ot bbb 17
6.1 DefinNiNg KEIMEIS.......oi i 17
6.2 Parallel DISCretiZatioN..........cceiverieiiieiieie ettt sre e nnees 17
TG T 1110 (=)o o PRSPPI 18
6.4 BIOCK SizeS and Grit SIZES.......cccoviiieiieiiiiese et sre e nnees 18
6.5 Memory declaration and alloCationcccoviiiiiiii i 19
6.6 SNArEA MEMOIY ..ottt bbbt 20
6.7 SYNCRIONIZALIONccviiiiii e 20
6.8 OCCUPANCY ...ttt b et b ettt ettt e b ennenneas 21
6.9 NViIdia Visual Profiler ... 21
7 IMPIEMENTATION ISSUEScovieiiiieite ittt bbbt 22
7.1 Lack of INtercOMMUNICALION.......ccuiiiiiieieiie ettt 22
7.2 Redefining the original FUNCLIONccoviiiiiiiieeee e 22
7.3 Defining NEW KEIMEIScuiiiiiiei e e 23

Kaniz Fatema Bristy

7.4 Debugging diffiCUIIESeoveieei e 24
7.5 GraphiCal QULPULoiiiiiice e 24
7.6 CUDA FOrtran COMPIIEEooiieiiie sttt sttt sae e nneas 24

8 RESUIT ANAIYSIS. ...ttt nre s 25
8.1 Validation Of PerfOrmManCe..........cccviieiieii i 25
8.1.1 Ice channel fOrmMAatioNcccuiiiiieiiiie e 25
8.1.2 Geometrical CharaCteriStiCSccccuuiirrieriirerieie st 26

8.2 Validation of performance considering computational timeccccccooceviveiviinnnnn, 27
It R o g o1= 3 o [0 T USSR 27
8.2.2 FOrDrash ICE ..cuiiiecie e 27

8.3 Performance analysis for Different Element NUMDErcccccoevviveieieniece e, 28
8.3.1 1CE ridge GENEIALIONcueiviiiitieti ettt 28
8.3.2 Brash ice fFOrmationccccoiiiiiiiiiiie e 29

8.4 Performance analysis for Different number of BIOCKScccoviiiiiiiciciiic, 30
8.5 Time consumption for Data Migration...........ccccceeveiieiiiiie i 31
8.5.1 1Ce ridge gENEIALIONc.eeueiiiiisii et 31
8.5.2 Brash iCe generationccccveiiiiiii ittt 31

ST I 1S 0 [o SRRSO 32
9.1 When CPU a better CROICE.cciiiiiiieieieie et 32
9.2 When CUDA is WOrth implementingcccceoeiiieneninieeee e 33
L0 FULUIE SCOPES ..veeiuveieiiiee ittt ettt et e ettt e e e sa e e et e e sa e e e nbb e e e bb e e e nbn e e e nbeeennes 34
I A) o [155] o] USSR 35
RETEIBNCES ...ttt bbbttt b e Rt bbb bbb Re et 36
N 0] 611 Lo | PSSPV T PP PR PR 38
Appendix 01: Parameters to generate Ice ridge in the in-house software..............ccccoveueeane. 38
Appendix 02: Parameters to generate Brash ice in the in-house softwareccceevneee. 38
Appendix 03: Profile visualization (Brash ICe)cccccveviviiiicii i 39
Appendix 04: Profile visualization (ICe RIAgE)........cccooiriiiiiiiiiiiecee e 42
Appendix 05: Computer SPeCIfiCatiONc.ooviiiiie i 43

Kaniz Fatema Bristy

List of Figures

Figure 1 Vessel navigating through iCe [3]cccvevveiiiiieiiee e 1
Figure 2 Content dESCITPTIONc.viieieieieeeie ettt 3
Figure 3 Cross-section Of @ rdge[10]......ccviiiiiiiie e 4
Figure 4 Cross-section of a brash ice channel[11] ..., 5
Figure 5 Example of DEM Simlulation pinciple (Collision of two spheres)[12]c.cc....... 5
Figure 6 Memory architecture CPU VS GPUI[8]........cccoiiiiiiiiiiiiiieeeeee e 6
Figure 7 Example of serial computation (CPU) vs parallel computation (GPU)....................... 7
Figure 8 One-dimensional collision of non-spherical particles[15]cccccoveiiiiiiiiiiicneen, 8
Figure 9 Contact shapes and proportionality relations of forces for particle—particle and

PANTICIE—TINELLS] ..ottt 8
Figure 10 Ice particle CONTACIS[15]ciieiieeieiieie ettt are s 9
Figure 11 Program FIOWCRAIT. ..o 10
Figure 12 Ice Ridge creation in NAtUIrE[L16]ccceiveieiieiieie e 11
Figure 13 Ice Ridge preparation Procedure[16]ccoerereririniiiiieeneese e 12
Figure 14 Steps for creating a Ice ridge in the existing softwareccccoceveveeveicieecen, 13
Figure 15 Brash Ice SImulation in CPUcccoiiiiiiiiie e 13
Figure 16 Formation process of brash ice when ship passes through the channel[18] 14
Figure 17 Brash Ice channel in NatUre[16]ccccoveieiiiiieie e 14
Figure 18 Brash Ice prepapration procedure]16]cccoocevierieiieiiieie e 15
Figure 19 Steps for creating Brash Ice in the existing SOftware............cccoceeerinieninnicienn 15
Figure 20 Brash Ice Simulation in CPUcccccoiiiiii i 16
Figure 21 Example of serial discretization vs parallel discretization[8]c.ccocovvviiirenne. 17
Figure 22 Grid Hierarchy of Thread BIOCKS[19].......cccoiiiiiiiiieceece e 18
Figure 23 Processing flow and memory defination on CUDA GPU[20].........ccccvvvrivrvinenne. 19
Figure 24 Example of data allocation in deVICeccceveeiiiic i 19
Figure 25 Example of Shared memory[8].........ccoouiiiiiiiiiiiiee e 20
Figure 26 Example of simple data Syncronization[21]........cccccceveeveiieiieieccceece e 20
Figure 27 Data sharing mechanism CPU VS GPU...........cccoiiiiiiiniiieicee e 22
Figure 28 Sample of redefining the call function for CPU to GPUccccovevveiiiic e, 23
Figure 29 Example of defining new funCtion[22] ..ot 23
Figure 30 Floating up performance for Ice ridge CPU(on left) vs GPU (on right).................. 25
Figure 31 Floating up performance for brash ice CPU(on left) vs GPU (on right) 26
Figure 32 Geometrical characteristics of Ice ridge (CPU vS GPU)cccooiiiiieeve e 26
Figure 33 Dimension of Brash ice particle (CPU VS GPU)..........ccooviriininiieneneeeeeeeee 26
Figure 34 Computational time for Ice ridge (CPU VS GPU)cccceiviiiieiiiecc e 27
Figure 35 Computational time for Brash Ice (CPU VS GPU)........cccccooiiininiienineceeeeens 28
Figure 36 Performance Analysis for I1Ce rdgecccvevieiiieiie i 28
Figure 37 Performance analysis for Brash IC€ ...t 29
Figure 38 Performance based on different block size (87 elem).........ccccoovvviiiiiiiiciicieec, 30
Figure 39 Performance based on deferent Block Size (44 elem)........cccooeveiiininiinieniicicn, 30
Figure 40 Time consumption for Data migration (ICe ridge)cccceevveiieiiieniie i 31
Figure 41 Consumption for Data migration (Brash ICe)c.cevuviririineninenineceeeeees 31
Figure 42 Number of element 44, Number of BIOCK 16...........ccccoeviiiiiiiiiiiiiccc e 39
Figure 43 Number of element 44, Number of bIOCK 128ccocoveiiiiiiieieccceee e 40
Figure 44 Number of element 351, Number of block 128ccoooieiiii 41
Figure 45 Number of element 359, Number of block 128 ..o 42

https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494508
https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494526
https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494536
https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494537
https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494538
https://d.docs.live.net/6ef0f2b019e4e557/Desktop/Thesis%20Final%20V3.docx#_Toc112494539

FEM
DEM
CPU
GPU
CUDA
API

Kaniz Fatema Bristy
Acronyms

Finite Element Method

Discrete Element Method

Central processing unit

Graphics processing unit

Compute Unified Device Architecture
Application programming interface

Kaniz Fatema Bristy

Abstract

A numerical simulation code using Discrete Element Method has been developed by HSVA,
which can generate brash ice and ice ridges as well as analyse ship navigation through ice
channels. The current version is simulating the problem in model scale for ease of validation.
This thesis aims to enhance the software's capabilities, reduce the computational time, and to
enhance performance and capabilities by modifying internal source code.

To improve the performance GPU programming has been introduced. GPU programming
extension CUDA, developed by NVIDIA, has led to numerous advances in computing over the
last few years. The CUDA API makes it relatively easy for users to access the graphics card
hardware, which allows users to perform parallel computations with thousands of CUDA cores.

The following report investigates the methodology and advantages of using the CUDA API for
DEM computations. In order to achieve this, existing CPU code had to be rewritten for the
GPU. Both implementations show significant improvements with regard to iteration time, and
performance depending on of GPU architecture.

Additionally, it has been demonstrated that the GPU can be sped up by simply varying certain
parameters, which boosts the code's performance overall. Another investigation dives into the
overhead associated with programming memory intensive scripts to the GPU and shows what
effect this has on the total calculation times for the application. Further a more complex Ice-
Structure interaction algorithm can improve the quality of results.

In this case a different number of simulations is done varying the element number to find out
the dependency of the elements to the computational time. Eventually, several tests were

conducted for different types of brash ice and Ice ridge channels to see how the software would
react.

Keywords: DEM, GPU, CUDA, Time consumption

Vi

Kaniz Fatema Bristy

Acknowledgment

Working in Hamburgische Schiffbau-Versuchsanstalt GmbH (HSVA) has been a unique
experience for me during the past six months.

| would like to thank my thesis supervisor, Quentin Hisette for giving me this opportunity. As
a professional, he was the most humane, tolerant, and kind person | have ever met. | will always
be grateful to him for his help and valuable inputs while learning Fortran and Implimentation
of CUDA.

I would like to thank every professor | have had for the past two years, both at the University
of Liege and at Ecole Centrale de Nantes, and especially professor RIGO Philippe for believing
in me and guiding me at every step of my master journey.

I would also like to thank my colleagues, my friends for sharing their thoughts, knowledge and
support.

The last, but certainly not the least. | dedicate this to my family. The lighthouse that guides me

through an ocean of doubts and fears. It would be impossible for me to conduct this humble
work without you, and | dedicate it to you.

France, 27" August 2022
Kaniz Fatema Bristy

vii

Kaniz Fatema Bristy

Declaration of Authorship

| declare that this thesis and the work presented in it are my own and have been generated by
me as the result of my own original research.

Where | have consulted the published work of others, this is always clearly attributed.

Where | have quoted from the work of others, the source is always given. Apart from such
quotations, this thesis is entirely my own work.

| have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, | have made clear exactly
what was done by others and what I have contributed myself.

This thesis has no material that has been submitted previously, in whole or in part, for the award
of any other academic degree or diploma.

| cede copyright of the thesis in favour of the University of Ecole Centrale De Nantes, France.

Date: 27" August 2022 Signature:

@ Oﬁéﬂm r@«zu%

Signer ID: LUQFPJHEDY...

viii

Introduction Kaniz Fatema Bristy

L Chapter 1

1 Introduction

1.1 Overview

The surface of the sea ice is not continuous and uniform as it varies dramatically over time.
Most of the sea ice in the polar region can be classified as deformed ice (i.e., hummocks, broken
ice, ice ridges, etc.) or uniformed ice (mostly level ice). Studies show that the shipping activity
in the polar region will increase by 50% within the coming few decades [1]. However, the
unpredictable, harsh environment remains the main obstacle for artic engineers.

Most sea ice in polar regions can be generalized into two types, (a) level ice that exists as a
continuous form and (b) broken ice that consists of discontinuous ice blocks. In addition to
breaking level ice, polar ships can interact with broken ice in many different scenarios. Brash
ice accumulates in ice channels, sliding ice pieces form when continuous ice breaks, and
unconsolidated ice ridges appear and evolve as natural processes compress ice floes [2]. In
arctic regions, ice ridges and brash ices are essential features that add to the overall forces acting
on a vessel. Therefore, there is much interest in research and development of this issue.

Fiure 1 Vessel navigating through ice [3]

The current industries are more likely to perform model tests to get more precise results
regarding the ship's performance in such a sensitive environment. However, the problem with
the model test is that it can be done after the overall design, which is more likely to be called
design validation and expensive. An early-stage estimation of ice resistance can help the
engineers to reduce the operating cost and to develop a more effective design. This report only
focuses on forming Improving performance of the in-house software (IceDEM) which is being
used in HSVA to perform simulation regarding ice generation.

While developing a simulation tool is more likely to implement a CPU version as it is easier to
program and debug as well as cost effective. In 2003, two research groups independently
discovered that GPU-based approaches to solving general linear algebra problems on GPUs ran

Page | 1

Introduction Kaniz Fatema Bristy

faster than on CPUs[4],[5]. Moreover, Nvidia's CUDA, allows programmers to underlying
graphical concepts in favour of more common high-performance computing concepts [6].

Running a sequentially executed code developed following DEM is devastatingly slow for
larger number of elements. In order to fully utilize the available computational resources, this
thesis aimed to convert the in-house developed CPU-based program to run on the GPU with the
help of CUDA, a parallel computing platform [6].

1.2 Motivation

The discrete element method (DEM) is the most widely used numerical approach for microscale
modelling.

In DEM calculations, an increasing number of discrete objects, combined with small time steps
imposed by an explicit calculation scheme, leads to an increased degree of computational
complexity, resulting in long simulation times. One of the easiest ways to cope with this
problem is to parallelize the computations. The relative simplicity of this approach stems from
the nature of the DEM method [7].

Initially, the parallelization strategies in open-source or commercial DEM software packages
focused only on the central processing units (CPU) implementation. During the last decade, the
increased capabilities and computational power of graphics cards spurred a transition to where
more and more computations are transferred to the GPU [8]. Parallel processing is the main
advantage of GPU architecture, which allows large amounts of calculations to be performed
simultaneously.

One of the challenges related to the DEM simulations on the GPU is the efficient utilization of
available computing resources. During the calculations on GPU, the CPU remains idle, and
powerful multi-core processors are not used. Computing efficiency can be improved by using
CPU-GPU cooperative computing techniques [7].

The benefits of multi-GPU processing are numerous from an investment perspective. With
multiple GPUs, running different cases with millions of particles costs much less than buying
an equivalent CPU-based machine. GPU-based machines also consume less energy and can be
upgraded more easily by adding more cards or buying new ones [9].

1.3 Objective

The aim is to further improvement of the capabilities of the existing in-house software, focusing
on the performance of and abilities by the changes of internal source code and verifying it with
the model performance data.

Aside from modifying software, the thesis focuses on gaining a general understanding of GPU
computing and the CUDA implementation for the Fortran programming language. As part of
its initial focus, the existing DEM software generates only brash ice channels and ice ridges.
After initialization, the whole data has been allocated and GPU cooperative computing
techniques are used to perform the time integration loop in GPU.

Later, GPU computation performance will be compared with CPU computation to verify and
validate its effectiveness.

Introduction Kaniz Fatema Bristy

1.4 Content Description

This thesis work is divided into five different parts. A theoretical overview of ice ridge and
brash ice generation is discussed in the beginning. The HSVA ice tank was used as a testing
environment for comparing model results to the actual environment.

Later the same work was done with the in-house CPU-based software (IceDEM). Though the
program provides many accurate results, it takes much time to produce one output. To avoid
this complication, CUDA has been introduced, which has been discussed in the fourth part of
the thesis. The overall performance has been discussed to show the difference between the
results obtained from these procedures. Furthermore, possible improvement to the program has
been discussed.

> Overview of DEM and the In-house software

» Theoretical knowlege of ice ridge and brash ice
generarion

» Theretical discussion GPU programming

o

» Ice ridge generation
» Brash Ice channel preparation

1

N

» Run Simulation in CPU to generate ice ridge and

Brash ice
i i

» Implementation of CUDA for Time intigration
loop
» Run Simulation in GPU generate ice Ridge and

Brash ice
i

» Compare the obtained results from all these tests

» Complucations and possible errors to obtain
incorrect results

» Future scope to develop the Code for ship
performance simulation

Figure 2 Content description

Theories and Methodology Kaniz Fatema Bristy

L Chapter 2

2 Theories and Methodology

This chapter discusses the theory and implementation of different types of ice formations. The
initial simulation tool in development at HSVA was introduced in terms of its functionalities,
capabilities, algorithm description, boundary condition, and set up to generate more realistic
brash ice channels and Ice ridges.

Later a summary of relevant theory behind the CUDA framework, including GPU memory
architecture, will be presented. Additionally, the theory presented is motivated by the
implementation strategy of the code, in addition to outlining the key components of the CUDA
framework and parallelism in general.

2.1 lce ridge

The term 'ice ridge' refers to a line or wall of broken ice that forms between relatively large ice
floes due to pressure. The age and process of sea ice ridge formation determine their size,
strength, and shape.

Depending on their age and formation process, sea ice ridges can be found in many different
sizes, strengths, and shapes. In terms of the ice area, the percentage covered by sea ice ridges is
small, but their mass can be one-third. Ice-going vessels face many challenges when they
encounter these ridges.

Air Consolidated layer?
I ' 11
I
Water
Keel
Ice rubble

Figure 3 Cross-section of a ridge[10]

Pressure ice ridges are formed when ice floes collide or when level ice is stressed. These stresses
arise from various external factors, such as currents, wind drag, and thermal expansion. When
stresses exceed a certain level of strength, the ice cover breaks, crushes, and bends. As a result,
several discrete ice blocks appear between two ice floes or edges of the level ice cover. The
above picture represents the overview of ice ridges and their principal parts.

Page | 4

Theories and methodology Kaniz Fatema Bristy

2.2 Brash Ice

The term 'brash ice' refers to an accumulation of floating ice fragments that are not wider than
2m. When the icebreaker ship navigates through the level ice, it forms a channel filled with
broken ice pieces. If more ships pass through this channel, the pieces of ice are broken further
and further, and the broken ice blocks are pushed down by the passing hull.

WATER LEVEL
LEVELICE

h -
Figure 4 Cross-section of a brash ice channel[11]

Ice-class ships without ice-breaking ability follow the same route and break the previously
broken ice pieces into even smaller pieces. Due to ship navigation and repeated traffic, ice
pieces take shape similar to a sphere because of the rounding off the edges by colliding with
passing ships.

2.3 Discrete Element Method

"The discrete element method is a numerical method for computing the motion and effect of a
large number of small particles."

Individual particles are numerically represented, with the definition of the properties of the
particles (location, size, shape, material, initial velocity) and the domain (dimensions,
gravitational fields). Movement occurs over a short period and causes some particles to collide
with others or the domain boundaries.

L.Loop

Hertz: F,, ~ 5%k

* *
Vi V. Cundall & Strack (1979): F,, ~ 5k Vi<V Y <V,

overlap &
Figure 5 Example of DEM Simlulation pinciple (Collision of two spheres)[12]

Behavior of these particles are analyzed in Lagrangian Frame by classical rigid body dynamics

under interaction forces of contact plasticity, friction, hydrostatic, electrostatic, magnetic,
gravitational etc.

Page | 5

Theories and methodology Kaniz Fatema Bristy

A contact model determines how much reaction force each particle experiences due to
collisions. Gravity and hydrostatic forces also exert influence. Summarizing the total force on
each particle, and adding external forces, is then done. (Figure 5) Each particle's motion
parameters (acceleration, velocity, displacement) are determined using Newton's laws of
motion.

2.4 Introduction to CPU and GPU

In order to understand CUDA and its implementation, the reader needs a basic understanding
of the memory architecture of a normal CPU and GPU. Therefore, this first section aims to
provide sufficient background information to facilitate a good understanding of the
implementation.

A CPU (central processing unit) consists of just a few cores with lots of cache memory that can
handle a few threads of software at once, while GPU computing makes use of a graphics
processor as a co-processor to accelerate CPUs for use in general-purpose scientific and
engineering applications.

GPUs accelerate CPU-based applications by offloading some of the compute-intensive and
time-consuming portions of the code, while the CPU still handles the rest of the simulation. As
a result, the application runs faster since it is using the GPU's massive parallel processing power.

2.5 CPU and GPU Architecture

CPU and GPU have separate physical locations as well as their own memory locations. The
CPU and the GPU cannot convey implicit information, so particular data must be transferred
explicitly from the CPU to the GPU or vice versa.

A CPU consists of four to eight CPU cores, while the GPU consists of hundreds of smaller
cores. Together, they operate to crunch through the data in the application. This massively
parallel architecture is what gives the GPU its high computational performance. Several GPU-
accelerated applications provide an easy way to access high-performance computing (HPC).

In order to pass data to the GPU, the programmer will need two copies of the data. There will
be one copy on the host side (CPU), which will be configured in some predefined process, and
one copy that will be allocated and transferred to the GPU.

I
[T oo | 4 I
a —o —

' ' DRAM
Chipset

Drives Global(L1)
Cache

l—-
Local(L2) Shared
‘ Cache Memary

]

<

Figure 6 Memory architecture CPU vs GPU[8]

DRAM

[

/

Figure 6 shows a schematic view of the memory architecture for the host (on the left) and the
device (on the right). The GPU consists of multiple streaming multiprocessors (SM), which are
the fundamental building blocks of every GPU. A large number of SMs will generally, simply
put, create a more powerful GPU.

Page | 6

Theories and methodology Kaniz Fatema Bristy

Inside an SM, there are a certain number of cores. Inside the cores, the coding instructions take
place. Hence, having access to many SMs opens up more cores and thereby more places to
execute code. Parallelization is thus limited by the number of SMs.

Data from the host is transferred to the GPU through global dynamic random-access memory
(DRAM). Recently accessed data requested from an SM passes through two fast access caches.
Firstly, the global L1 cache, followed by the local L2 cache. The L1 cache is shared with the
whole device, and the L2 cache is local to each SM [8].

As the data reaches the registers or the cores of the GPU, it can either be used for computations
or placed in shared memory. By placing the data in shared memory, one can ensure that the data
is always accessible with minimal latency.

2.6 CUDA

CUDA is a parallel computing platform and programming model for graphics processing units
(GPUs). The NVIDIA® CUDA® Toolkit provides a development environment for creating
high-performance GPU-accelerated applications.

CUDA supports four fundamental abstractions: cooperating threads organized into thread
groups, shared memory and barrier synchronization within thread groups, and coordinated
independent thread groups tagged into a grid. A CUDA programmer must divide the program
into coarse grain blocks so that they can be executed in parallel. Each block is partitioned into
fine-grain threads, which can cooperate using shared memory and barrier synchronization. A
properly designed CUDA program will run on any GPU that supports CUDA, regardless of the
number of processor cores available.

real :: x(n), y(n), a real :: x(:), v(:), a
n = size(x) n = size(x)
do i=1,n
y(i)=y(i)+a*x (1) i = blockDim%x * (blockIdx%x - 1) + threadIdx%x
end do if (i <= n) y(i) = y(i) + a*x(i)

Figure 7 Example of serial computation (CPU) vs parallel computation (GPU)

In mid-2009, PGI and NVIDIA cooperated to develop CUDA Fortran. CUDA Fortran includes
a Fortran 2003 compiler and toolchain for programming NVIDIA GPUs using Fortran. The
simple example above shows how a standard Fortran program can be accelerated using CUDA.

2.7 Visual Profiler

NVIDIA Visual Profiler provides tools for visualizing and optimizing application performance.
In the Visual Profiler, the application's CPU and GPU activity is displayed as a timeline, which
makes it easier to identify possible performance improvements. Additionally, the Visual
Profiler analyses the application to identify potential performance bottlenecks and directs the
coder on how to resolve them [13].

Page | 7

DEM Implementation Kaniz Fatema Bristy

L Chapter 3

3 Discrete Element Method Implementation

The DEM is intrinsically advantageous in ice load calculations since it can describe discrete ice
structures on macro and micro scales and reasonably model brash ice during ice-vessel or ice-
ice interactions. In the Discrete Element Method, the domain is represented by a discontinuous
Lagrange treatment of discrete particles which match actual particle sizes and preferably their
shapes. The computational focus lies in the detection of particle collisions and the calculation
of contact forces.

3.1 Ice Particle interaction

The numerical calculation of discrete element method models is divided into three steps
according to Cundall and Strack. Figure 8 shows the processes within the loop of a discrete
element method [14].

e contact calculation between particles

e integrating the equations of motion

e transition to the next time step.

Two tasks are involved in the contact calculation for the Discrete Elements Method. A contact
model calculates the contact forces according to the contact finding and contact force
calculation. In case of brash ice simulation, the use of spheres simplifies the process of
determining contact or overlap between the particles described above. While defining ice ridges,

polyhedral particles have to be used.
Time
Figure 8 One-dimensional collision of non-spherical particles[15]

To calculate the forces acting on the spheres, all spheres in contact must be identified, and the
forces acting on the spheres must be calculated after the spheres are found. The external forces
are composed of drag, buoyancy, and gravity forces [14].

Space

Figure 9 Contact shapes and proportionality relations of forces for particle—particle and particle-line[15]

Page | 8

DEM Implementation Kaniz Fatema Bristy

The above figure represents the interaction between two ice particles. From elasticity theory it
is known that the elastic force acting between rectangular (‘linear’), spherical (‘Hertzian”) and
wedge-shaped contacts should vary with the deformation 6 (or the depth of the overlap in our
discrete element approach) as %, %2 and &2, respectively.

(a) (b)

Figure 10 Ice particle contacts[15]

The above figure represents the (a) DEM principle for rectangular particle where Particle length
with centroids at Ci-1, Ci, Ci+1. (b) Variables for the force computation for two interacting
polygons where the force point P is the centroid of the overlap polygon; Si, S» are the
intersection points of the outlines of the polygons; and r1, r2 are the connecting vectors between
the centres of mass Ci, C; of the two polygons.

The equations of motion must be integrated twice to determine the position and velocity of the
particles for the next step. The explicit Euler method or the predictor-corrector method are used
for the numerical integration of the equation of motion.

3.2 Program Flow

The proposed algorithm of DEM modified for consideration of ship and ridge interaction and
implemented into developed software is outlined in Figure 11.

The flow chart shows that the main integration loop requires the data for neighbouring particles.
After predicting the overlap values, the total force can be obtained. However, finding the contact
data for neighbour particles requires a large-scale simulation which takes much time to obtain
some results. So, this part is implemented using CUDA.

Initialization needs to run only once and which is outside the time integration loop. So, it does
not require a high-performance computer. So, this part is still kept to run for the CPU.

3.3 Introducing CUDA for DEM

The DEM method was implemented using Fortran and Compute Unified Device Architecture
(CUDA) developed by NVIDIA. The GPU program was formulated using a single-program
multiple data (SPMD) technique, where the same program is executed by multiple threads
simultaneously. Due to the discrete nature of the particle methods, GPU threads are assigned to
each particle. As a result, neighbour searching, force calculation and time integration of the
equation of motion can be carried out independently for each particle using different GPU
kernel functions.

For efficient use of the GPU memory, parameters that remain the same during simulation, such
as material properties, are stored in the constant memory (a type of read-only memory on the

Page | 9

DEM Implementation Kaniz Fatema Bristy

GPU with fast data fetching) while other particle-related information, including positions,
velocities, forces and contact histories, are stored in the global memory on the GPU.

Following figure shows the flow chart of the algorithm that runs on a single GPU. The whole
program can be divided into two major parts: initialization (Done on CPU) and Main time
increment loop (Done in GPU) calculation.

Program Start

2 N

' Data Initialization A

: — [Graphical output: Initialized simulation J
. .

[Flow Field Conversion
Calculation l—*[Graphical & Numerical output: Flow field J

i.n CPU [Bouncy Calculation L
g o

; [Graphical output: Buoyancy Calculation]

& Propulsion input N

R A LI .

./ ﬁ Predictor \
S \
. — :
Update Elements i

|
i
|

[Update Bounding Boxes J

L Calculation
[Update Neighborhood List] in GPU

[Compute Overlap Geometry J

[Compute Force & Torque]

I

Compute Buoyancy

Main Loop: Time increment

[Graphical output & Data Output J

—
s -

Data Transfer from GPU to CPU

l-‘ Graphical output, Acceleration
& Velocity Output
Program End

Figure 11 Program Flowchart

Page | 10

Ice Ridge Generation

L Chapter 4

4 lIce Ridge Generation

4.1 Natural creation process

Kaniz Fatema Bristy

A pressure ice ridge is formed when ice floes rub against one another under pressure or when
level ice is stressed against it. These stresses arise from various external factors, such as
currents, wind drag, and thermal expansion. When stresses exceed a certain level of strength,

ice cover breaks, crushes, and bends.

Young ice ratting

compression ndge

rafting .,er'd\ng

e —— s i
P — e T U r—‘
= e
= —W;ﬁ:
— \I;
Second-year ice cegradation
il T s
—
=S
Second-year ice riaging consolidation

Multi-year ice nummocks

‘A
Nl ———
-

A T

Figure 12 Ice Ridge creation in nature[16]

4.2 Ice Ridge in ice model basin

Ice ridges are broken ice walls forced up by shear or pressure. Firstly, a parental level ice sheet
with pre-defined ice properties is prepared according to HSVA’s standard procedure for
preparing an ice ridge in the ice tank. Then the ridges are prepared so that a section of the level
ice sheet is cut into narrow strips. Ridges prepared according to HSVA’s standard procedure in
the ice tank consist of a sail, a keel, and a consolidated layer and typically show a trapezoidal

or triangular cross-section shape.

Page | 11

Ice Ridge Generation Kaniz Fatema Bristy

Afterward, the entire ice sheet, including the strips, is cut free from the side walls of the tank
and pushed against the resting ice sheet utilizing the carriage’s pushing board. During the ridge
formation, the beam is successively moved forward. The resulting ridge has a pre-defined mass
and geometry and is embedded in level ice. The ridge has a typical natural underwater profile.

72 m
<

vy

64 m

A

l 6.2 m
& »
— ¢ B
7]
)
=
=
8 Main
— . LIS VR At s s I), _._._._._._._._-._._._Y B
] carriage
=
=
a2
| Y
\' N —
Ly\' =
D 38-39 mm ¢
[=]

Crushed ice movement

T TR, o FAAr AR eT.
19.8 m

SIlm

\A 4

Figure 13 Ice Ridge preparation Procedure[16]

The standard procedure at HSVA is to build the ridge at low air temperatures to use the heat
flow for consolidation, i.e., ridge fragments freeze to the level ice sheet pushed on top of the
ridge keel portion.

4.3 Numerical Ridge Simulation in in-house software

The ice ridge creation in the software does not follow the same principles as the natural form
described in Figure 12 or in the model basin described in Figure 13. The program creates an
ice ridge according to the specifications of the ridge profile introduced by the user, which
contains the ridge's geometry and the rubble ice's mechanical properties.

Initially, the program places polyhedrons under the surface of the water to modify ice particles.
The particles float up to the free surface by the buoyancy force, and two crossed bars move
towards each other and push the ice particles. ldeally, the length should not be too long to
influence the boundaries; however, it should not be too short either. The simulation is done
within a reasonable time [17].

The typical input parameters to run the following ice ridge formation has been mentioned in
Appendix 01: Parameters to generate Ice ridge in the in-house software

Page | 12

Ice Ridge Generation Kaniz Fatema Bristy

Figure 14 Steps for creating a Ice ridge in the existing software

4.4 Performance analysis for serial computation (CPU)

Some results have been obtained using the existing in-house software implemented entirely on
the CPU. The time required to run the whole simulation has been discussed below.

Ice Ridge Complete Simulation

g
2 353 M
>
Z [
= 176
£ g D
LUl
0 1000 2000 3000 4000 5000 6000

Time[m]
® Ice Ridge Complete Simulation

Figure 15 Brash Ice Simulation in CPU

The graph clearly shows that the program can do simulations in minutes or hours with more
minor elements. Nevertheless, with a higher number of elements, it takes several days to
complete the ice generation, which is much less effective. It takes even much more time
compare to the brash ice simulation

So, to solve this problem, CUDA was introduced into the existing coding, as discussed in the
following sections.

Page | 13

Brash Ice Generation Kaniz Fatema Bristy

L Chapter 5

5 Brash Ice Generation

5.1 Natural creation process

When one large piece of ice falls off another, brash is generated and can cover large amounts
of the sea. From frequent ship passages, brash ice forms in harbours and ship channels, and the
resulting freezing—breaking cycles create unique ice formations. The brash ice accumulation
over the winter season results from meteorological, thermodynamical, and mechanical
processes [18].

o)

VB

1
1
|

1) n—»

2) »4—»
BICh

: : —éoOob_.ﬁJO\:l%gT
u us g-SRuD; :SRF|

3) i
BICh

4)

§WR

—Pp!
BICh

Figure 16 Formation process of brash ice when ship passes through the channel[18]

Figure 17 Brash Ice channel in nature[16]

5.2 Brash Ice in ice model basin

Firstly, a parental level ice sheet with pre-defined ice properties is prepared according to
HSVA'’s standard procedure for preparing a brash ice channel in the ice tank. Afterward, at a
room temperature of around -2°C, an ice channel with straight edges is cut into the ice sheet.
After that, the ice stripe between the two cuts is manually broken up into relatively small ice
pieces using special ice chisels [17].

To achieve the most realistic appearance of the brash ice channel, sections where the ice pieces
remain in a regular pattern, are carefully stirred. Once the first test run is completed, the ice
pieces are rearranged in the channel and compacted to perform a second test run with thicker
brash ice.

Page | 14

Brash Ice Generation Kaniz Fatema Bristy

Figure 18 Brash Ice prepapration procedure[16]

5.3 Brash ice Simulation in in-house software

The brash ice creation in the software does not follow the same principles as the natural form
described in Figure 17 or in the model basin described in Figure 18. The program creates a
brash ice channel according to the specifications of the ridge profile introduced by the user.

The spheres model is used for the ice particles. The particles float up to the free surface by the
buoyancy force. This way, the code generates spheres below the waterline with a random
diameter and a random velocity.

Figure 19 Steps for creating Brash Ice in the existing software

Page | 15

Brash Ice Generation Kaniz Fatema Bristy

5.4 Performance analysis for serial computation (CPU)

Some results have been obtained using the existing in-house software implemented entirely on
the CPU. The time required to run the whole simulation has been discussed below.

Brash Ice Complete Simulation

—

c

§42834 (e
ﬁ gg37 D

S 1741 B

g 3

S 351

g

> 0 500 1000 1500 2000

Time[m]
m Brash Ice Complete Simulation

Figure 20 Brash Ice Simulation in CPU
The Figure 20 Brash Ice Simulation in CPUclearly shows that the program can do simulations
in minutes or hours with more minor elements. Nevertheless, with a higher number of elements,
it takes several days to complete the ice generation, which is much less effective.

The typical input parameters to run the following ice ridge formation has been mentioned in
Appendix 02: Parameters to generate Brash ice in the in-house software

So, to solve this problem, CUDA was introduced into the existing coding, as discussed in the
following sections.

Page | 16

Implementation of CUDA Kaniz Fatema Bristy

L Chapter 6

6 Implementation of CUDA

With CUDA, applications can run on hundreds of parallel processing elements and manage
thousands of threads simultaneously. CUDA is designed to work with programming languages
such as Fortran. This accessibility makes it easier for specialists in parallel programming to use
GPU resources.

In this chapter, the implementation of CUDA in the in-house software has been discussed
broadly. For instance, only the whole-time integration loop is transferred from CPU to GPU
with the help of CUDA.

6.1 Defining Kernels

Implementing code on the GPU must be done inside special functions, typically called kernels.
Compilers need extra specifiers to distinguish between regular functions and GPU kernels [8].

Based on the Fortran code, it is observed that the kernels are void-typed, and they return
nothing. The typical workflow in void-type functions is to modify the result directly in the
memory. In order to achieve this, the function must pass in an array with memory allocated for
the result as an argument.

Kernel <<< BlockslnGrid, ThreadPerBlock >>> (Inputl, Input2,----)

Calling the kernel from the central part of the program will also appear differently than regular
functions. To determine which resources are needed, the parallel discretization parameters must
be specified when calling the kernel.

6.2 Parallel Discretization

In general, running code on a CPU is done serially, which means that a particular process is
performed in sequence concerning the data. In serial discretization of a simulation problem, the
domain can be divided into cells and perform calculations for each cell in series.

Serial Discretization Parallel Discretization

00000000
JO0ogoogd
00000000
JO0ogoogd
00000000
00000000
JO0000000
00000000

m
x
[«}])
3
=3
D
o
S
w
D
=.
=2
=
w
(@]
=
D
=
N
QD
=
o
S
<
w
ke
D
=
=R
o |
=
w
o
=
@D
=
N
QD
=
o
=]
—
o
eed

Figure 21

Page | 17

Implementation of CUDA Kaniz Fatema Bristy

The discretization process involves two steps for parallel computing. As seen in the figure, the
domain is divided into several blocks. The blocks contain threads that perform the calculations,
similar to the serial case.

6.3 Indexing

The indexing for a parallel discretization is two-layered. An index identifies each block, and
within each block, the threads are indexed locally by their position. Thread indices are not
unique, but the combination of thread index and block index results in a suitable location in the
total domain.

Global Index = Thread Index + Block Index * Block Size J

Getting the global location of each thread requires some index mapping. The thread and block
indices are hidden struct objects which every thread can uniquely access. For example, if the
domain is two-dimensional, as in this case, the struct-objects, thread index, block index, and
block size have an x and a y component.

In case of implementation in the in-house source code, only one-dimensional domain has been
used throughout the coding.

6.4 Block Sizes and Grid Sizes

A logical question at this point might be how to be able to decide or determine the best size of
the blocks. As it turns out, determining the optimal block size is not a straightforward process.
It is both hardware and problem dependent. The general guidelines are a maximum of 1024
threads per block, i.e., 32x32, in two dimensions, and a block size evenly divisible by 32.

blockldx.x = 2

BlocK (2,1) {b]ocudx.y-l

Thread (2,1,0) . o | blockDim.x == 5
blockDim.y == 4
threadldry =1 blockDim z =3

threadldx.z == 0

Figure 22 Grid Hierarchy of Thread Blocks[19]

It is the block size we care most about for optimization. However, to launch one thread per cell,
one must create the correct number of blocks to cover the domain entirely. The set of all blocks
in the domain is generally called a grid. The grid size is obtained by dividing the total domain
size by the block size in each coordinate direction. Since this needs to be an integer, we cannot
round down and thereby risk missing cells. We, therefore, ceil the divisions.

Page | 18

Implementation of CUDA Kaniz Fatema Bristy

Grid Size = Ceil (Domain Size/Block Size)

However, this might lead to the kernel launching threads outside the domain, i.e., in unspecified
memory. At the beginning of the kernel, one needs to add a conditional to ensure none of those
threads are accessed.

6.5 Memory declaration and allocation

Memory management on a CUDA device is similar to how it is done in CPU programming. one
needs to allocate memory space on the host, transfer the data to the device using the built-in
API, retrieve the data (transfer the data back to the host), and finally free the allocated memory.

Host
Memory 1 CkPU

Copy processing data

- l Copy the result I
Device

Memory

GPU
(GeForce 8800)

.
Execute parallel
in each core

Processing flow
on CUDA

Figure 23 Processing flow and memory defination on CUDA GPU[20]

One needs to allocate memory on both host (CPU) and device (GPU) before transferring data
between host and device. One can copy the kernel's input (a, b, ¢, d) from the host to the device
by allocating the space in the device. Allocating space to copy the result from the device to the
host can also be done later. A CUDA application manages the device space memory through
calls to the CUDA runtime, including device memory allocation, deallocation, and data transfer
between the host and device memory. Once memory space is allocated, it needs to transfer data
back to GPU global memory from the device.

Call allocate_data
Subroutine allocate_data (a, b, ¢, d)
1! Define allocable
double precision, device, allocatable :: a (:,:), b(:,:)
double precision, device, allocatable :: c¢(:,:), d(:,:)
!f Allocate data to the device
allocate (a (3, element))
allocate (a (3, element))
allocate (a (3, element))
allocate (a (3, element))

end Subroutine

Figure 24 Example of data allocation in device

Page | 19

Implementation of CUDA Kaniz Fatema Bristy

6.6 Shared memory

The shared memory is a user-managed memory allocation, unlike the caches, which are system-
managed allocations based on recently accessed data, which means that the user has complete
control of what and how data is stored.

Shared memory is used for memory optimization in many general parallelization cases with the
same size as the block. Generally, the optimization revolves around avoiding latency from
global memory calls if some values are to be used multiple times in a kernel [8].

L))
00 JLAL N A
— Slaaem
Sie of shared SEiE
ize of shared memory D D D D D
LU 500
VIO DID
| Fully extended shared memory size

Size of a block

Figure 25 Example of Shared memory[8]

In order to solve the intercommunication problem, one can expand the shared memory to cover
an area larger than the block size. The expanded area will cover cells in neighbouring blocks,
which means that every thread in the current block will have access to its neighbours.

6.7 Synchronization

An important concept when working with shared memory is synchronization, or more
particularly, synchronization of threads within a block. The synchronization acts as a barrier,
stopping the threads until every thread in that block has reached that point. If several threads
are running through code in parallel and this process is writing to shared memory (just like the
previous code snippet), not every thread might be in sync at a given location in the code. If a
thread tries to access shared memory for a cell for which another thread has not yet finished its
calculation, this can cause a memory conflict.

Syntactically, there is no easy way to create a global synchronization. Only the blocks of the
threads are valid for synchronization.

Host Device
I Kernel Launch

Computation
Return

Kernel Launch
Computation

Return

W

Return

| Rowm

Figure 26 Example of simple data Syncronization[21]

Computation

Page | 20

Implementation of CUDA Kaniz Fatema Bristy

6.8 Occupancy

For the maximal performance of the GPU, one needs to maximize the occupancy. GPU usage
varies based on the number of SMs used, or how parallelized the code becomes during
execution. The code could, for example, run on one SM, which would cause low occupancy, or
it could utilize every SM, which should significantly enhance the performance. Utilization of
the SM is determined by the size of the blocks.

If the parallel discretization consists of very few blocks, then the code will only load a few of
the SMs. By introducing many blocks with significant sizes, the GPU can maximize
parallelization.

6.9 Nuvidia Visual profiler

NVIDIA profiling tools are used for optimizing the performance of CUDA applications. Profile
data is collected by default over the entire application run.

The Visual Profiler can collect a trace of the CUDA function calls made by an application. The
Visual Profiler displays a timeline of the application's activity on both the CPU and GPU to
identify opportunities for performance improvement. In addition, the Visual Profiler will
analyze the complete application to detect potential performance bottlenecks and direct the
coder on how to take action to eliminate or reduce those bottlenecks. The Visual Profiler does
not require application changes; however, by making some simple modifications and additions,
one can significantly increase its usability and effectiveness.

In addition to the guided analysis results, one will see a timeline for the application showing the

CPU and GPU activity that occurred as the application was executed. Several examples of the
profiler has been shown in the annex-01

Page | 21

Implementation Issues Kaniz Fatema Bristy

L Chapter 7

7 Implementation Issues

CUDA is a parallel programming language. By reducing the time and cost of full-scale
computation, ship designers can optimize vessel performance. A rewrite or targeting for GPU
computations is not always the best way to improve overall performance.

While re-writing the Time integration into parallelized code, several costly and non-evident
bugs were introduced by accident. The following section will discuss some of these problems,
why we believe they occurred and how they were fixed.

7.1 Lack of intercommunication

In parallel kernels, the only possible communication between threads is within a thread block.
If there is no intercommunication among cells, performing computations on one cell results in
problems for neighbouring cells. The figure illustrates how a lack of intercommunication can
cause big problems. As a result, cells on block boundaries cannot access all of their neighbours.
In a DEM program, the use of the neighbouring cells is particularly significant.

Serial Communication Parallelized Communication

—~—0

..... T

Figure 27 Data sharing mechanism CPU vs GPU

One of the ways to resolve this problem is to use a resource called shared memory, which can
uniquely store a certain amount of data inside each block.

7.2 Redefining the original Function

Initially (for CPU), the code was split into several files for improved structure and readability,
where each kernel got its file. A long-term issue was to allocate the data to GPU and to define
the shared memory size in a way that was adaptive to each kernel. This issue is because, in
Fortran, the shared memory size must either explicitly be defined earlier or remain constant.
So, the variables need to be defined globally, a scope of them being treated as constants.

Page | 22

Implementation Issues Kaniz Fatema Bristy

Call Contact_Force_CPU (option, timestep, elem_numb)

&

Call Contact_Force_GPU (option, timestep, elem_Numb, force, torque, &
& co-efficient, constants, propeller_flow, viscous, &

& Damping, mass, inertia, om, flow_field, wall, structure)

Figure 28 Sample of redefining the call function for CPU to GPU

However, in GPU, it is necessary to redefine each function used in the separate file to ensure it
receives all the data it needs. To define the shared memory's size in an adaptive way, every
kernel needs to be in a file where the block size was created in the global scope. Unfortunately,
this was accomplished by adding all kernels to the main Fortran file, which severely harms the
code's readability.

The example shows the difference between an old and new function definition and how it needs
to be redefined after transferring data for GPU calculation.

7.3 Defining new kernels

Kernels cannot handle arrays with only parts passed into them. Some coefficients were collected
into a typical three-dimensional array where the third dimension separated the coefficients. For
some kernels, only a few of the coefficients were needed; in those cases, they were passed in
individually by accessing the third dimension. Due to this process, the script became
increasingly slow for large domains.

It is observed that the reason for this is that accessing the variable like inbuild basic Fortran
functions (i.e., Cross product, normalization vector) are unable to access by CUDA. So, it was
necessary to regenerate the entire array for the device and access the coefficient from within the
kernel to solve the issue (i.e., a memory location). At the same time, these new functions cannot
perform analysis for complex equations. Instead, those functions can only work with more exact
values, making the work more time-consuming.

Main program Module + functions

program tsunami
use mod diff
Declare data
Initialize height
don=1, nm
Solve for height -
Write output to screen
end do
end program tsunami

module mod diff
Declare data
contains

function diff(h)]

em-:l- :function diff

end module mod_diff

Figure 29 Example of defining new function[22]
Passing large arrays into a kernel one time does not result in a performance hit since they are

passed in by reference. Nevertheless, defining the kernel for each type of array and allocating
the memory repeatedly can slow down the computational time.

Page | 23

Implementation Issues Kaniz Fatema Bristy

7.4 Debugging difficulties

Another aspect in determining whether a parallel implementation will be worth the time and
effort is the debugging difficulties associated with writing kernels. A kernel cannot write to an
output file or to the console. To write an output file or display anything on the console, the data
first needs to be transfer from the device to the host (CPU) and then written by the CPU.

Although it is easy to implement the general workflow, debugging intermediate computations
with a CUDA kernel is notoriously tricky. Serial code allows breakpoints slowly step over lines
to check for unexpected events. A kernel does not support this type of debugging. In order to
access intermediate results computed within a kernel, the programmer must find other creative
ways.

One effective way in this project was to write intermediate results to one input arguments of the
Kernel and terminate the kernel early.

7.5 Graphical output

Another issue encountered during the implementation of CUDA is the GPU processor's inability
to provide the graphical output of the parallel calculations made in the GPU. Getting the
analysis's complete visualization requires transferring all video output data back to the CPU and
generating output files (i.e., .vtk file). The re-assigning process is also time-consuming,
affecting the software's overall performance.

7.6 CUDA Fortran compiler

C++, Fortran, and Open ACC directives are all supported by the NVIDIA HPC SDK compilers
for HPC modelling and simulation applications. With support for NVIDIA GPUs and Arm,
Open POWER, or x86-64 CPUs running Linux, the HPC SDK provides the tools one needs to
build NVIDIA GPU-accelerated HPC applications [23].

It is excellent and works flawlessly on Linux without any hassle. Even the installation process
is easier for the PGI CUDA Fortran compiler, which was the HPC-SDK predecessor (for CUDA
Fortran, at least). However, the HPC-SDK package is not available for Windows. The free
(community edition) versions of the PGI compiler used to have downloadable versions for
Windows and C programming language [24].

Unfortunately, writing the whole codebase in C is not an option. Fortran paired with C or CUDA
Fortran, and the move to Linux workspace is the choice.

Page | 24

Result Analysis Kaniz Fatema Bristy

L Chapter 8

8 Result Analysis

This chapter represents the validation of the results that have been obtained after implementing
CUDA. To do so the CPU and GPU simulation results compared to the tank test results.
Therefore, the main results of interest are the average iteration times compared between the
GPU and CPU. Two separate cases (Brash ice and ice ridge creation) are taken to obtain the
average iteration time.

Though it takes considerable time to complete each simulation of brash ice and ice ridge in both
CPU and GPU, a fair comparison is taken by considering 15-20 iterations for both serial and
parallel implementation. In the first section of the result, brash ice simulation performs
successfully in both CPU and GPU. In other sections of the result, only the initial iteration has
been considered for further analysis. However, the main parallel and serial implementation
patterns are still very evident. Later, the result obtained from CUDA code is compared with
tank test data and CPU to check the correct implementation of CUDA code conversion.

However, the target result is not obtained from the CUDA analysis. The possible reason behind
this failure in result has been discussed in each section.

The computer specification used for the analysis is discussed in the Appendix 05: Computer
Specification.

8.1 Validation of performance

8.1.1 Ice channel formation

In this section, the performance of the software before and after implementing CUDA are
compared. The performance obtain in both scenerio stays similar. On observing the graphical
output (Figure 30), it is clear that it has been showing similar technique to generate brash ice or
ice ridge in both cases. The file is obtained for both sceneiro of before implemention and after
implemenetion of CUDA to the software. In both cases, floating-up techniques is used to
generate an ice channel.

Figure 30 Floating up performance for Ice ridge CPU(on left) vs GPU (on right)

Page | 25

Result Analysis Kaniz Fatema Bristy

Figure 31 Floating up performance for brash ice CPU(on left) vs GPU (on right)

8.1.2 Geometrical Characteristics

Initially, only 10-15 iterations are analyzed.The comparision of brash ice radius or ice-ridge
geometrical characteristics (wall, area, thickness, length) at initial stage shows similar
characteristics for both CPU and GPU.

Characteristic of Ice ridge geometrical characteristics

2.00E-01
1.50E-01
peg
1.00E-01
< @ Q@
£ so00e02 | O g o Qo .
Q> X O g (@ig:T g 0-9-Q
0.00E+00 o o’ﬁa“" o 8'@—' 8 8 8 8
0 T ‘o 10 15 20°@ 25
-5.00E-02 o 2 A » .
6} (6] e o
-1.00E-01
Iteration Number
------ @ WItA of Ice ridge CPU O wltA of Ice ridge GPU
Figure 32 Geometrical characteristics of Ice ridge (CPU vs GPU)
Dimension of Brash Ice particle
3.50E-02
3.00E-02
° e ..
2.50E-02 : I FA -)
v o. o-© @
S 2.00E-02 — — o
S 1coron | ®g i e o go SO0 il e
e L .o ie el @ @
1.00E-02 @ () (5]
° . 8
5.00E-03 P
0.00E+00
0 5 10 15 20 25
Iteration Number
------ @ Brash ice radius CPU O~ Brash Ice radius GPU

Figure 33 Dimension of Brash ice particle (CPU vs GPU)

Page | 26

Result Analysis Kaniz Fatema Bristy

8.2 Validation of performance considering computational time
8.2.1 For ice ridge

From the Figure 34 it can be seen that, all the values obtained for CPU and GPU show the same
trend of increase with the increase of element number. So, it can be said that the performance
obtained from both implementations gives similar values.

But it is clear that computation time required to run the simulation in GPU is 2 times more than
the time required for CPU. The software shows better performance compared to the results
obtained for brash ice generation. But it can also observe that the time required to run the
simulation is fully dependent on the element number. With the increase of element number, the
computation time increases and it’s the same case for the CPU as well.

Computational time for Ice Ridge (CPU vs GPU)

0.90
0.80

. ¢ ‘ 0.70
d | 0.60
0.50

0.8 ; :
0.40
: _— ‘ 0.30
: e | 0.20
: - i 0.10
— 0.00

359 711 888

94

Time GPU [s]
_oee
R, N M O
Time [s]

o O O
o N B O

Element Number
mmm |ce Ridge GPU (B-128) = Ice Ridge GPU (B-16) Ice Ridge CPU

Figure 34 Computational time for Ice ridge (CPU vs GPU)

Changes in Block size for computation didn’t affect much in the iteration time for small number
of iterations. Though higher iteration may show some significant difference in the computation
time.

8.2.2 For brash ice

Figure 35 represents the time required to form brash ice channel obtained for CPU and GPU
show the same trend of increase with the increament of element number. So, it can be said that
the performance obtained from both implementations gives similar values.

From the Figure 35, time required to run the simulation in GPU is 100 times more than the time
required for CPU. But it can also observe that the time required to run the simulation is fully
depended on the element number. With the increase of element number, the computation time
increases and it’s the same case for the CPU as well.

Changes in Block size for computation didn’t affect much in the iteration time for small number

of iterations. Though higher iteration may show some significant difference in the
computational time.

Page | 27

Result Analysis Kaniz Fatema Bristy

Computational time for Brash Ice (CPU vs GPU)

1.6

L4 0.019

' 0.017
2 0.015 &
2 2
% 038 0.013 &
.qg" 0.6 0.011 .‘é
F o4 0.009 F

0.2 - 0.007

0 -_— 0.005

101 351 694 877
Element Number

mmm Brash ice GPU (B-128) mmmm Brash Ice GPU (B-16) ====Brash Ice CPU

Figure 35 Computational time for Brash Ice (CPU vs GPU)

8.3 Performance analysis for Different Element Number

Figure 36 and Figure 37 shows that the average time of integration for both brash ice and ice
ridge formation. To obtain the quired time for each iteration, the initial element number has
been considered So that the simulation can be performed for exact number of elements for
CPU and GPU each time.

8.3.1 Ice ridge generation

Two different points can be found in Figure 36. Firstly, with the higher element number, the
performance ratio for contact detection is increased significantly. Also, around 99% of the
whole calculation time is dedicated to find the contact detection between the particles.

Performance Analysis for Ice Ridge

99.70% 0202

888

5 711 99.70%

o]

e

>

Z 359

&

=

2 17
o4
75% 80% 85% 90% 95% 100%

Performance

m Contact Detection ~ mModule Corrector = Update Particle

Figure 36 Performance Analysis for Ice ridge

Page | 28

Result Analysis Kaniz Fatema Bristy

Secondly, for the lower number of elements, the module corrector and update particle also pay
a significant amount of time for the iteration, which is not visible for higher element numbers.

To find out the overall performance, Nvidia Visual Profiler has been used. Details of the
performance are described in Appendix 04: Profile visualization (Ice Ridge)
8.3.2 Brash ice formation

Two different points can be found in the above performance graph (Figure 36). Firstly, with the
higher element number, the performance ratio for contact detection is increased significantly.
For higher element numbers, around 99% of the whole calculation time is dedicated to finding
the contact detection between the particles which is similar for ice ridge creation.

Performance Analysis for Brash Ice

877 99.80% 005

- 99.70%

o)

£

5

< 99.40%

5

E]

o 181 88.90% 10.90%
80% 85% 90% 95% 100%

Performance
m Contact Detection ~ ® Module Corrector ® Update Particle

Figure 37 Performance analysis for Brash Ice
Secondly, for the lower number of elements, the module corrector also pays a significant

amount of time for the iteration, which is not visible for higher element numbers. However,
the brash ice generation update particle did not require many contributions to the simulation.

Page | 29

Result Analysis Kaniz Fatema Bristy
8.4 Performance analysis for Different number of Blocks

Performance based on different Block size(87 Elements)

256 83.60% 15.70% s
128 87.20% 12.00% o
N
w -
X 64 88.10% 11.20% o
=]
m n
32 88.50% 10.70% o
16 92.40% 7.00% it
5% 80% 85% 90% 95% 100%
Performance

m Contact Detection ~ ® Module Corrector — ® Update Particle = Force Calculation

Figure 38 Performance based on different block size (87 elem)

Figure 38 and Figure 39 is the visual representation where performance based on the number
of blocks are observed . Brash ice and Ice ridge show similar characteristics, so here only brash
ice generation condition has been considered.

Figure 38 represents that contact detection caused much more time for the small block size for
higher element numbers. It also represents that contact detection takes a lower time to compute
within the case of block number, but the corrector takes around 15% of the total computational
time.

Performance Based different Block size(44 Elements)

256 74.10% 23.70% 3066
128 76.50% 21.10% 378
(5]
N
n n
x 64 79.90% 17.70% (Vi za
S
m -
32 79.80% 17.40% 07
16 84.40% 13.20%0%; &
0% 20% 40% 60% 80% 100%
Performance

m Contact detection = Module Corrector = Update Particle Force Calculation

Figure 39 Performance based on deferent Block size (44 elem)

Figure 39 shows the small number of elements can show better performance with increased
block size. It also represents that contact detection takes a lower time to compute within the
case of block number, but the corrector takes around 23% of the total computational. Other
factors do not make many contributions to the overall computation.

Page | 30

Result Analysis Kaniz Fatema Bristy

8.5 Time consumption for Data Migration

In this section the time consumption to data transfer from CPU to GPU has been discussed.
To get the appropriate values regarding Data migration, Nvidia visual profiler has been used.
For the detailed idea please refer to Appendix 03: Profile visualization (Brash Ice)Appendix
04: Profile visualization (Ice Ridge)

8.5.1 Ice ridge generation

In Figure 40 the time consumption for data transformation compared to the total
computational time has been discussed. Comparing to the total computation time, data
migration takes a substantial amount of time when the element number is minor. As the
number of elements increases, the time spent on data transfer decreases. So, it can be said that
GPU performs better with a higher number of elements.

Time consumption for Data Migration(lce Ridge)
1400
1200
1000
800
600
400

200
0 — — - — — _—

101 181 351 694 877
Element Number

m Computation Time ® Data Migration ® Memory Copy

Time [s]

Figure 40 Time consumption for Data migration (lce ridge)

8.5.2 Brash ice generation

In the case of brash ice generation, similar characteristics can be seen in the data transformation
it can be observed in the previous section. Using a higher element number the effect of data
transfer on the whole computation time reduces, as shown in the following figure.

Time consumption for Data migration (Brash Ice)

1400
1200
1000
800
600
400

200 .
0 — — — . [

101 181 351 694 877
Element Number

Time [s]

® Computation Time ® Data Migration = Memory Copy

Figure 41 Consumption for Data migration (Brash Ice)

Page | 31

Discussion Kaniz Fatema Bristy

L Chapter 9

9 Discussion

In general, discussing the results of this project will mainly cover two areas. First, a short
investigation; while it will be better to code only on CPU or not based on their benefits and
disadvantages, it can be a better choice as it is much easier to debug the overall program.

The second part involves a few major implementation problems while it was faced during
CUDA implementation. Moreover, to come in a decision that will be a better choice than CPU
or not.

9.1 When CPU a better choice

A CPU is flexible and resilient, and it can handle a variety of tasks other than graphics
processing. The CPU can multitask across multiple activities in the computer because of its
serial processing capabilities. For the same reason, a strong CPU can provide more speed for
typical computer use than a GPU. In specific situations, the CPU will outperform the GPU. For
example, the CPU is significantly faster when handling several systems (random access
memory, mid-range computational operations, managing an operating system).

CPU works perfectly fine when there is no need for parallel implementation, and the simulation
is done for only a smaller number of elements. In such a case, it does not require any time to
transfer and allocate data which takes much longer while implementing the calculation in GPU.
In Performance analysis for serial computation (CPU) and Performance analysis for serial
computation (CPU) also, we have observed similar results as it takes only minutes to complete
the simulation for 351 elements, whereas it takes days to complete the 42834 elements.

Local cache memory in CPUs enables them to handle a more significant number of linear
instructions and, therefore, more complex computations. So, it can work efficiently without
requiring data allocation and definition separately. It improves the overall capability of the CPU
for the simulation of smaller element numbers.

CPUs cannot handle parallel processing like GPUs, so large tasks requiring thousands or
millions of identical operations will clog the CPU's processing capacity. In that case, it is
observed that neighbouring calculation, which requires parallel implementation, does not work
so effectively as it requires multi-core processing.

Page | 32

Discussion Kaniz Fatema Bristy

9.2 When CUDA is worth implementing

The primary difficulty in having high-performance GPU code is that one has a ton of cores, and
one wants them to all be utilized to their full potency as much as possible. Problems with
irregular memory access patterns or not having high arithmetic intensity make this problematic:
Either the coder need to spend a long-time for communicating results , or for fetching stuff from
memory. Of course, the potential for concurrency in code is critical to its ability to be
implemented well on GPU.

Considering the same idea when we tried to implement simple examples in one of the parts of
the main calculation, like updating the bounding box, which is a straightforward algorithm and
done only once during the initialization, it makes the whole computation time higher than the
usual one. The CPU transfers data to the GPU and then back to the CPU at the end of the
computation, which consumes the most significant amount of time. So, it is not efficient when
one needs to transfer data between CPU to GPU. These simple cases can be ignored to
implement in CUDA.

The benefit of GPU programming vs. CPU programming is that one can gain massive speedup
for some highly parallelizable problems. If the whole simulation is run several times and has
many elements, then it is always a better choice to switch to parallel implementation. From
Time consumption for Data Migration, it is also noticed that transferring data between CPU to
GPU is much less than the time required for implementation for a higher number of iterations.
So, it makes sense to switch to GPU for more significant numbers of elements.

Page | 33

Future Scopes Kaniz Fatema Bristy

Chapter 1 O

10 Future Scopes

This chapter aims to focus on the future possibilities for the calculation that could have been
done to improve the software's execution time.

The basic coding shows that the neighbour detection algorithm is implemented in the way of a
serial computation algorithm. Even if it is asked to run this part of the code in a divide, it runs
serially in a single thread. It is assumed that this is why CUDA implementation could not
improve the overall performance. Changing this algorithm into a parallel computation algorithm
could solve the overall performance of the software.

Another basic idea could be implementing the full software in a parallel implementation system.
Right now, only the time integration loop is working in GPU, where initialization is working in
CPU, which could be the possible solution to improve the performance.

Due to lack of time, it was impossible to run the whole simulation considering the ship or model
passing through the channel. The code can improve further to simulate for any model test to
check the capabilities of the structure.

As it has been discussed earlier, CPU remains idle while the GPU is performing the whole-time
integration simulation. It affects the overall performance of the software. So, while GPU is
working on calculating neighbours or detecting force, at the same time, the CPU can also
perform more minor calculations without affecting the simulation running in GPU. Finally, a
CPU-GPU combined implementation can be used to overcome this problem.

Page | 34

Conclusion Kaniz Fatema Bristy

11

Chapter

11 Conclusion

This chapter discusses the conclusion we have obtained by analyzing the results above. Firstly,
the subroutine running only once during initialization should be done in CPU as it will not affect
much in improving the performance. It does not affect if serial computation or parallelization
is introduced.

Another factor has been noticed that around 99% of the computation time for a more significant
element number is to find the neighbor detection, which makes the GPU performance very low.
It can also be possible to run this calculation on the CPU. It can be possible to improve the
overall performance of the whole software.

In some cases of the Time integration loop, there is no requirement for parallel implementation.
Introducing them with parallelization will require more time to implement in the coding.
However, in some consideration, it will not affect the overall performance of the software.

Data Allocation plays a vital role during the whole simulation. Data allocation can be done at
the beginning of the process rather than in each kernel. From section7, it can be seen that in
some iteration cases, the data allocation time can be similar to the simulation execution time.
In this GPU version of coding, we have already introduced a separate kernel for data allocation,
which was implemented at the beginning of the coding, which changes the execution time much
more.

One last conclusion can draw that, block definition plays a vital role during simulation. It can
be seen that, smaller block size means it takes much more thread to complete the simulation or
can be a problem in memory allocation. We have also seen that for this particular case, a block
size of 128 seems to be the optimum size for maximum performance for this simulation over
several GPUs. This particular block size is enough to run the whole simulation without showing
any memory allocation problem.

Page | 35

Referrences Kaniz Fatema Bristy

References

[1] “European Federation for Transport and Environment AISBL.” [Online]. Available:
https://www.transportenvironment.org/challenges/ships/arctic/

[2] L.H. Fang Li, “A Review of Computational Simulation Methods for a ShipAdvancing in
Broken Ice,” Jan. 2022, [Online]. Available:
https://www.researchgate.net/publication/358139815 A Review_of Computational_Si
mulation_Methods_for_a_Ship_Advancing_in_Broken_Ice

[3] C. Jallal, “Ice navigation: the expert’s view,” Dec. 03, 2020. [Online]. Available:
https://www.rivieramm.com/news-content-hub/news-content-hub/ice-navigation-the-
expertrsquos-view-62159

[4] Jens Kriiger, Riidiger Westermann, “Linear algebra operators for GPU implementation
of numerical algorithms,” Jul. 2003, [Online]. Available:
https://dl.acm.org/doi/10.1145/882262.882363

[5] Jeff Bolz, lan Farmer, Eitan Grinspun, Peter Schroder, “Sparse matrix solvers on the
GPU: conjugate gradients and multigrid,” Jul. 2003, [Online]. Available:
https://dl.acm.org/doi/10.1145/882262.882364

[6] Du, Peng; Weber, Rick; Luszczek, Piotr; Tomov, Stanimire; Peterson, Gregory;
Dongarra, Jack (2012), “From CUDA to OpenCL: Towards a performance-portable
solution for multi-platform GPU programming,” Aug. 2012, [Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0167819111001335?via%3Dihub

[7] Vasyl Skorych,Maksym Dosta, “Parallel CPU-GPU computing technique for discrete
element method,” Jan. 24, 2022. [Online]. Available:
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.6839

[8] David Andersson,Robert Ranman,Shisheer Shetty,Frowin Winkes, “GPU Accelerated
CFD Using CUDA.” 2022.

[9] ROCKY, “More GPUs = faster processing with Rocky DEM 4.5, Aug. 2021, [Online].
Available: https://rocky.esss.co/blog/multi-gpu/

[10] Hayland, K V; Jenson, A; Liferov, P; Heinonen, J; Evers, K-U; Lgset, S; Maattdnen, M,
Physical Modeling of First-Year Ice Ridges - Part I: Production, Consolidation and
Physical Properties. 2001. [Online]. Available: https://trid.trb.org/view/1391804

[11] P. Greisman, “‘Brash Ice Behavior’, United States Coast Guard, Research and
Development Center, Groton, Conneticut,” 1981, [Online]. Available:
https://www.researchgate.net/publication/349058266_Simulation_of Brash_lce_Behavi
or_in_the_Gulf_of Bothnia_Using_Smoothed_Particle_Hydrodynamics_Formulation

[12] “Simulation-Based Engineering Lab: High-Performance Computing for Applications in
Engineering,.” 2011. [Online]. Available:
http://sbel.wisc.edu/Courses/ME964/2011/Lectures/lecture0224.pdf

[13] NVIDIA, “Profiler User’s Guide.” Aug. 03, 2022. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[14] Jonas Behnen, “Numerical Simulation of Ship Performance in Brash Ice - Assessment of
the Mechanical Behaviour in the Numerical Model with the Mechanical Behaviour of
Brash Ice in Nature.” Oct. 2019.

[15] J. C. Hans-Georg Matuttis, Understanding the Discrete Element Method: Simulation of
non spherical particles for granular and multi body systems. 2014.

[16] The Hamburg Ship Model Basin, “HSV A Model Ice Preparation and Property
Determination.”

[17] HSVA, “Discrete Element Simulation of Ships Navigating Through Brash Ice Channels
and Ice Ridges Instruction Manual.”

Page | 36

Referrences Kaniz Fatema Bristy

[18] Vasiola Zhaka, Robert Bridges, Kaj Riska, Andrzej Cwirzen, “A review of level ice and
brash ice growth models,” Dec. 2021, [Online]. Available:
https://www.researchgate.net/publication/357253691 A_review_of level ice_and_brash
_ice_growth_models

[19] Noureddine Ait Ali, Soufiane Hamida, Bouchaib Cherradi, Yasser Lamalem, Ahmed EI
Abbassi, “A Computational Performance Study of Unsupervised Data Clustering
Algorithms on GPU.”

[20] Rick van der Zwet, “Exploratory research on embedding CUDA code into hetrogeneous
MP-SOC achitectures programmed with the Daedalus framework.” Sep. 2011.

[21] Stackoverflow, “Does _ syncthreads() synchronize all threads in the grid?,” Mar. 06,
2013. https://stackoverflow.com/questions/15240432/does-syncthreads-synchronize-all-
threads-in-the-grid

[22] MEAP, “Organizing your Fortran code using modules.” [Online]. Available:
https://livebook.manning.com/book/modern-fortran/chapter-4/v-13/7

[23] “A Comprehensive Suite of Compilers, Libraries and Tools for HPC.”
https://developer.nvidia.com/hpc-sdk

[24] “Is there a free CUDA Fortran compiler for Windows.”
https://www.reddit.com/r/CUDA/comments/nw9owb/is_there_a_free_cuda_fortran_com
piler_for_windows/

Page | 37

Appendix Kaniz Fatema Bristy

Appendix
Appendix 01: Parameters to generate Ice ridge in the in-house software
Ridge width 1.20m 1.20m 1.20m
Ridge keel width 0.0m 0.0m 0.0m
Ridge keel height 0.3m 0.3m 0.3m
Ridge length 2.5 1.00 m 0.5
Void fracture 55% 55% 55%
RubbleLength 0.1m 0.1m 0.1m
RubbleWidth 0.1m 0.1m 0.1m
Rubble thickness 0.04m 0.04m 0.04 m
Ice density 867 kg/m?3 867 kg/m?3 867 kg/m?3
Ice Young’s modulus 1.0x10%Pa 1.0x10°Pa 1.0x10°Pa
Ice Poisson’s ratio 0.3 0.3 0.3
Cohesion coefficient 0.0001 0.0001 0.0001
Viscous damping coefficient 2 2 2
Normal damping force coefficient 0.2 0.2 0.2
Tangential dissipation force coefficient 0.2 0.2 0.2
Ice friction coefficient 1 1 1
frac 0.2 0.2 0.2

Appendix 02: Parameters to generate Brash ice in the in-house software

ChannelWidth 20m 20m 20m 1.0m
ChannelLength 0.1m 0.5m 25m 0.05m
ChannelPorosity 0.35m 0.35m 0.35m 0.35m
Brash ice -Thickness 0.075m 0.075m 0.075m 0.075m
Brash ice -DistType 2 2 2 2
Brash ice -DistParamOne -4.0942 -4.0942 -4.0942 -4.0942
Brash ice -DistParamTwo 0.287041 0.287041 0.287041 0.287041
Brash ice -MaxInitSpeed 0.5 0.5 0.5 0.5
Ice density 867 kg/m® 867 kg/m® 867 kg/m3 867 kg/m?
Ice Young’s modulus 1.0x10°Pa 1.0x10°Pa 1.0x10°Pa 1.0x 10°Pa
Ice Poisson’s ratio 0.3 0.3 0.3 0.3
Cohesion coefficient 0.0001 0.0001 0.0001 0.0001
Viscous damping coefficient 1.0 1.0 1.0 1.0
Normal damping force coefficient 0.2 0.2 0.2 0.2
Tangential dissipation force coefficient 0.2 0.2 0.2 0.2
Ice friction coefficient 1.0 1.0 1.0 1.0
frac 0.2 0.2 0.2 0.2

Page | 38

Kaniz Fatema Bristy

Appendix

(Brash Ice)

lization

ISua

Profile vi

Appendix 03

J0[|2Wepn2

nefaq 4

sweans -
~ulpunegaiepdn epiued pow %00 A
~dWo33010J]383U0) 30 pow % 1o AL 4
up Rswawm AR 16T %z0 A
ugTIRsWwaWM ApTI6d T %ED A
~sapnedziepdn apied pow%so A
“ndGiopipaid-uoopaud pow s A

= Bjuawubisseadioy a0y pow %90 A

“ndbioypaiied” 103pald POW % ZEL A 4

~auale|myex inoqybru pow %t v8 A 4
andwo) [
(Ho1q) AdowaW AL -
(qoiH) Adowaw A -
(vana) 1 e3u0)
(QodH) uonesbiw exeq A -
(Ho1q) uoneiBily e3eq . -
faowaw paiiun =
202y ejsaL[0] =
syjned abed ndd AL -
Kiowa pauiun |
peayiany m_.____ho_n_ =
1dY 13n1g
1dV awnuny -
TLESBTOS LT eIyl [
~sU- €00 18 -7 0-DI6L L' LA WIQR)], Ss300Md [=

ssE0 €0

5570 $70 ss1o 10 5500

5 04

Figure 42 Number of element 44, Number of block 16

Page | 39

Kaniz Fatema Bristy

Appendix

— _
.

JneRa -

sweans
“ndbsaxoqbuipunogaiepdn apied pow a0'0 A -
~“ndBuoneIndwed330)1281U03 3210 Pow %10 A 4
UpTIRsWaWNI " ASpTIBdT %70 AL
ug ieswawn Aep 16d 9e0 A+
“ndBiojpipaid Lodpaid pow %50 L 4
“ndbIusWUbISSeanI0) 33I0) poW 9%9°0 L

“ndbsa)iedziepdnTanied PoW %90 A 4

“ndbiojpesod”modpasd pow g, Lz L o
“ndbsinogyBiaus)e|naje) Inogybiau pow %5'9.L A -
andwo) =
(Ho1q) Addwaw . -
(aoiH) Adowaw 1. 4
(vand) | ma3u0) |
(qoaH) uonesBiw exeq A 4
(Ho1q) uoneibiw exe@ A 4
fows payiun [
2024 EsaL[0] (=
s)neq abed Ndd & 4
flowaw payiun [
peayisaQ Bujiyold -
1dV 13Auq
IdV 3wnuny
96088£0V2y PERIYL]
"6L) L€ IP- 0L SU- €00 18 P- ¥ 0-DD6L L LA WIQI, 5582014 [

$570 S510 5500

s g

Figure 43 Number of element 44, Number of block 128

Page | 40

Kaniz Fatema Bristy

Appendix

13U POW 13U poW 13U poud | “Isu pow

13U POW “UI3U POW 13U POW “UISU POW UISU PO | Ulsu pouwl

““haepnd “UAadepnd “UAadepnd | UA’QEPND “UAsdepnd “UAldepnd “tAsdepnd ARgEPND “TASgEpna UAsadepnd

13U pow
~19u_pouw |

Jnejea -
sweans -
“ndBsaxoqbuipunogalepdn apiped pow %00 L -
“ndbuoneindwoianioioelucy 200 pow e o L o
up Jeswewnd Aep 16d %00 L -
ugTIEswaWn ASpTI6d T %00 ML
~“ndbiopipaid 1iodpaidpow 9,00 L -
~ndBjuswublssesnio) @310 pow 9,0'0 L -
“ndbsajaiyiedsiepdn apiyied pow 9,00 L
~“ndb1o3pa110d 1iodpaid pow 9,570 L
“ndbsinogybizuale|njexinogybiauTpow %66 L -
a1ndwo) =
(Ho1q) Adowaw 1. 4
(goiH) Adowaw A
(wand) L ax=quod -]
(QoiH) uoneibiw e1eq L 4
(Ho1q) uoneabiw e1eg L. 4
fiowsw pauyiun =]
202 1531 [0] =
syjned abed ndd A -
faowsp paiiun =]
peaysang Gunijoid -
IdV 12Auqg 4
IV awnuny -
80055158 PealyL |
(8L£12) .£1p- 0L Su-(000000000d335)"0000YSeIE,, SS3D01d [=]

sg 552

s5¢

Figure 44 Number of element 351, Number of block 128

Page | 41

Kaniz Fatema Bristy

Appendix

(Ice Ridge)

lization

ISua

Profile vi

Appendix 04

-

JneRq -
SWeans =
“ndbsaxogbuipunogeiepdn aiped pow %00 J o
~“ndbuolieyndwo33310419EIU0Y 3010 poWw %0'0 AL o
Uy IRswawn AP I6d T %00 A
ug Ieswawny ASpTI6d 900 A
“ndBioyzipaidoopaid pow %00 L.
~ndbusWwubIssea10) 3310 pow %00 L
“ndfsapniedajepdnTapiped pow gL 4
“ndBiojzesiod” woopaid pow %e Ll L
ndBsinogybiauaie|njes Jnogybiau”pow 9,898 J. -
2andwod =
(Ho1a) Adowaw L. 4
(goiH) Adowaw A
(wand) L xsquod -]
(QoiH) uonesbiw elea A
(Ho1q) uoneibiw e3eg A\ 4
Kiowaw payiun =]
202 g1saL [o] (=
sJned abed Ndd A 4
Riowaw payiun -]
peayianQ Bunyold 4
Id% Janug o
IdV awnuny -
PBSEVYLOLY PRAIYL |

"Z6) WE1P- 0L 5U- £00 1Y P- L 0-DD6L’ L' LATWI@3D],, 553001 []

s'| S5L0 S50

$570 sq

Figure 45 Number of element 359, Number of block 128

Page | 42

Appendix

Appendix 05: Computer Specification

admingcfd-template:-% n
Display all 118 possibilities? (y or n)
admin@cfd-template:-% nv

Kaniz Fatema Bristy

nv-nsight-cu nvcpuid nvidia-cuda-mps-control nvidia-smi nvsize
nv-nsight-cu-cli nvcudainit nvidia-cuda-mps-server nvidia-xconfig nvunzip
nvaccelerror nvdecode nvidia-debugdump nvlc nvvp
nvaccelinfo nvdisasm nvidia-detector nvlink nvzip
nvc nvextract nvidia-modprobe nVprepro

nvec++ nvfortran nvidia-persistenced nvprof

nvco nvidia-bug-report.sh nvidia-settings nvprung

admingcfd-template:-% nvaccel

nvaccelerror nvaccelinfo

admin@gcfd-template:-% nvaccelinfo --help

unknown argument ignored: --help

CUDA Driver Version: 11828

NVRM version: NVIDIA UNIX x86_64 Kernel Module 468.32.83 Sun Dec 27 19:80:34 UTC 2828
Device Number: 2]

Device Name: Tesla K2@c

Device Rewision Number: 3.5

Global Memory Size: 4974313472

Number of Multiprocessors: 13

Concurrent Copy and Execution: Yes

Total Constant Memory: 65536

Total Shared Memory per Block: 49152

Registers per Block: 65536

Warp Size: 32

Maximum Threads per Block: 1824

Maximum Block Dimensions: 1824, 1824, 64

Maximum Grid Dimensions: 2147483647 x 65535 x 65535

Maximum Memory Pitch: 21474836478

Texture Alignment: 512B

Clock Rate: 785 MHz

Execution Timeout: No

Integrated Device: No

Can Map Host Memory: Yes

Compute Mode: default

Concurrent Kernels: Yes

ECC Enabled: fes

Memory Clock Rate: 2608 MHz

Memory Bus Width: 320 bits

L2 Cache Size: 13160720 bytes

Max Threads Per SMP: 2848

Async Engines: 2

Unified Addressing: Yes

Managed Memory: Yes

Concurrent Managed Memory: No

Default Target: cc3s

admin@gcfd-template:-% nvaccelinfo --help

Page | 43

