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Abstract

In simulation-driven designs (SDD), the design optimization is frequently performed
by standard Design of Experiment (DOE) or by using deterministic optimization
strategies. This requires many designs to be tested depending upon the number of
design variables present in the parametric model. This method is often too time-
consuming or too expensive, mostly due to the complexity of industrial applications.
Often high computational resources are required to determine the objective function.
In this thesis, the idea is to present different methods for the faster turn-around times
of SDD and apply it to the design and optimization of planing hull. The objective
for the optimization is to minimize the overall resistance for the hull. The motion
and forces acting on the hull are determined by Computational Fluid Dynamics
(CFD), using Simcenter STAR-CCM+, the results of which are validated against
experimental data. The difficulties of numerical modelling of planing hull includes
the mesh deformation due to the large motion of the hull and the challenge of possible
numerical ventilation due to inappropriate mesh near the boundary. The former is
overcome by using a dynamic overset grid and the latter by using VOF-Slip velocity
method. A thorough grid dependency study was undertaken in order to identify
the best compromise between simulation time and accuracy. A fully parametric
model was built in process integration and design optimization (PIDO) environment
CAESES, and the design optimization is carried out by connecting it to the CFD
solver in batch mode. The complete process of design optimization is automated
to test several designs. The number of designs to be tested are vastly reduced
by dimensionality reduction of the design space using Karhunen-Loeve Expansion
(KLE), a dedicated Principal Component Analysis (PCA). The tested designs are
used to train and employ a Surrogate Model, which produces optimized design
variants based on the previous designs data. The comparison of different strategies
against the conventional SDD method is shown, for the time required to get an
optimized design along with the subsequent quality of obtained result. It is presented
that by using AI-based optimization strategies and appropriate CFD simulation
settings, the method of SDD can be made faster by a considerable amount of time.

Keywords: Simulation-driven Design (SDD); Parametric Modeling ; Parameter Re-
duction ; Karhunen-Loeve expansion (KLE) ; Computational Fluid Dynamics ; Plan-
ing Hull ; High-Speed Craft ; Volume of Fluid (VOF) ; Machine Learning
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Chapter 1

Introduction

Simulation-Driven designs (SDD) is the term often used in literature to describe the
design optimization of a product by using several simulations. More often, designers
create a digital-twin of the product and try to reduce the associate cost related to
either operations or manufacturing of the desired product. The optimization process
on the one hand can give a well working optimized product. On the other hand, the
creation of digital-twin and the subsequent cost of several simulations can be very
high and can sometimes overshadow the gain acquired through optimization. It can
also vary with the application of the product, mass production vs personalized design
and life cycle of the product. In all of these cases, the optimization is limited by the
available computational resources. Carefully choosing the optimization strategies,
objective functions and high-fidelity simulation strategies with the combination of
data-driven methods can significantly improve the turn-around time of SDD. The
idea of this thesis is to extend the previously carried out work in the area of SDD
(as described in later section) to the marine application of High-Speed planing boat.

The application part of this work is related to free surface hydrodynamics problem
of planing hull. Significant portion of the marine and ship design optimization are
devoted to studying full displacement hulls because of their large applications and
usage. Displacement ships are categorized with low Froude Number (Fr < 0.3-0.4).
Most of the container and cruise ships lies in this range and thus research were car-
ried out using Computational-Fluid Dynamics and tank testing to optimize this type
of problem for better energy efficiency. However, for applications where high speed
is desirable (Fr > 0.8-1) such as, pilot boats, naval and war ships. The optimiza-
tion studies are limited for planing vessels due to the complexity of resolving flow
around them, which involves high motions and turbulence. Having said that, with
the current technological advancement in the field of CFD and high-performance
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computing. The computational modeling and thus optimization of high-speed ves-
sels by testing several designs can be made possible.

Figure 1: Process Flow Diagram for SDD of Planing Hull

The current work is dedicated to accurately modeling such type of Dynamic Fluid
Body Interaction (DFBI) problem with Computational-Fluid Dynamics (CFD) code
Simcenter STAR-CCM+. For this purpose, fully parametric model of the hull is built
in Process Integration and Design Optimization (PIDO) environment, CAESES. Af-
ter that, a software connection by means of Java-Script and extended macros was
built between the two software to carry out different optimization runs in batch
mode. Before carrying out the optimization run, the CFD setup was validated
against the data obtained through the tank tests carried out in Technische Uni-
versität Berlin. For the optimization, different deterministic, stochastic and data-
driven models are used. Subsequent potential of design improvement with respect to
speeding-up the turn-around time is shown. Figure 1 highlights the process workflow
for this work, the complete methodology and obtained useful results are presented
and discussed in the later chapters.

1.1 Literature Review
In Computer Aided Design (CAD) and optimization, parametric modeling is the
process of defining a CAD geometry with a few but interlinked variables, called de-
sign variables. For any parametric model, the success of the optimization depends
on the quality of the parametric model, Harries 2015. In the optimization run, the
design variables are thus varied and the effect of them on the objective function is
calculated. Parametric modeling can be categorized in two groups, fully-parametric
modeling (FPM) and partially-parametric modeling (PPM). In FPM, the entire ge-
ometry is built from scratch with the output as a CAD model governed completely

2
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by input design variables. While in PPM, only the changes from an existing CAD
model called baseline, is introduced using some parameters or design variables. Dif-
ferent types of partial parametric modeling techniques are Free-form Deformation
(FFD), Radial Basis Functions (RBF), Mesh Morphing and many others are avail-
able. Thorough discussions for these models are given in Harries, Abt, and Brenner
2019.

The application of the Radial Basic Functions (RBF) approach for the design opti-
mization of a Catamaran is presented by Harries and Uharek 2021. RBF funtions
allows defining so called sources and targets on the baseline geometry. These can be
surfaces, points or curves defining the existing features on the baseline and intended
new shape. The paper suggests the use of dimensionality reduction techniques such
as Principal Component Analysis (PCA) to reduce the degree of freedoms. Since
the reduction of design space comes at the cost of variability loss, the application of
PCA to the given problem should be treated with care.

Various techniques and methods to study Simulation-Driven designs by means of
fully or partially parametric models and Computational Fluid Dynamics has been
studied in the last few decades. Specific applications and potential of it in the
maritime industry is given by Zadow et al. 2019, in which the holistic ship design
approach for the RoPAX ferry is presented. The work highlights the use of response
surfaces for optimization, also called as Surrogate Models which are helpful and effi-
cient at the early design stage of the vessel. Harries and Abt 2019a also discusses the
Process Integration and Desing Optimization (PIDO) environment software CAE-
SES, on the application of HOLISHIP project. The workflow and approach using
the integration of various computational tools can increase the turn-around time
and reduces the time required to set-up the optimization manually in after each
run.

Hasubek and Harries 2017 has shown the SDD for the Sailing Yacht and Motor
Boat. Different flow analysis tools utilizing potential flow and RANSE methods
were tested and potential for improvement was shown. It was highlighted that the
reduction of resistance by 7% can be achieved at the design speed, by using a well-
defined parametric model and appropriate flow simulation techniques. Similar work
is given in Albert et al. 2016 , where the optimization using high-fidelity simulations
is carried out and the use of cloud based computations to increase the turn-around
time of the optimization process is suggested.

Harries and Abt 2019b have proposed the solutions for more and faster SDD by
means of advanced parametric modeling, massive parameter reduction or Karhunen-

3
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Loéve Expansion (KLE), and parametric-adjoint simulations. The proposed solu-
tions were applied on a duct for minimizing pressure loss across it, the potential of
improvement in terms of pressure loss reduction and faster optimization time was
shown. The extension of the given methods efficiently, using data-driven algorithms
for the application on a more complex problem like flow optimization of high-speed
planing hull is the context of this thesis.

Figure 2: High Speed Planing Boat in working condition (https://mboat.eu/planing-
hull/)

The characteristics of hydrodynamic design of planing hulls is given by Savitsky
1964. It is one of the early work carried out in this domain. Savitsky presented
empirical correlations useful for the determining lift, drag , wetted area and other
parameters describing the performance of the vessel. The input for these relations
are related to motion characteristics of the vessel such as, speed, trim angle, deadrise
angle, and loading. These methods have proven to be useful for decades and are
still in use at the early design stage but do not provide flexibility and adaptability
to different modern designs.

The underlying principles and design methodology of the planing craft has been
studied by various authors. Bertram 2012 presented the difference of planing hulls
as compared to displacement hulls. In displacement hulls, the phenomenon is the
direct application of Archimedes principle. In contrast for planing hulls, where the
dynamic lift is generated by the action of fluid on the lower surfaces of the hull.
For this example, parallels can be drawn with the inclined plate moving across fluid
domain and the action of the fluid on it. Roshan et al. 2020 discusses about the
Tunneled planing hull in calm water. It is shown that the tunneled planing hull is a
special design of high-speed craft, which can reduce the frictional resistance of the
hull and thus making it possible for the hull to achieve higher velocities.
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High-speed planing crafts are designed for achieving high speed and thus they are
usually lightly loaded with less draft. However, in some cases it may be needed
to employ larger loads as compared to the design conditions. The effect of this
condition on the operational performance on the planing hard-chine hulls is studied
by means of numerical computations by Wheeler, Matveev, et al. 2021.

Difficulties in designing high-speed planing boats are determining the correct swim-
ming conditions such as trim and rise of the vessel. These conditions directly affects
the frictional resistance and propulsion power of the planing hull. Numerical model-
ing of this type of turbulent flow with large body motions requires very fine temporal
and spatial resolution. Otherwise, mesh deformation near the body boundaries and
numerical ventilation can occur. These phenomenon can influence the quality of the
numerical results and thus increasing errors. Large errors can be avoided by using
Dynamic Overset grid along with using VOF-Slip Velocity method as suggested in
Wheeler, Ryan, et al. 2021.

Kim et al. 2013 carried out a test for performance improvement of planing hulls.
Three designs were tested experimentally in calm water and in rough water sea
states, for both resistance and seekeeping characteristics as objective function. The
obtained results indicated that the best design for minimum propulsive power does
not necessarily have to be the best design for see-keeping as well. In contrast, it
can also go in two opposite directions for these two objective functions. Hence, the
objective function should be chosen by considering the respective requirements for
the vessel to be designed.

1.2 Motivation and Objectives
In previous section, the carried out work in the domain of Simulation-Driven Designs
and Planing Hull designs is highlighted. Even though, both problems have been
addressed by various authors separately. There is little to no knowledge of the
combination of two, that is formal design and optimization procedure for such high-
fidelity and complex CFD problem of planing hull.

The work presented here is part of the AutoPlan European Project. In this work,
the idea is to perform the optimization of a planing hull. The optimization process
here, to get the best design from simulations can be termed as Simulation-Driven
designs. The optimization process follows formal Design of Experiment (DOE) and
Exploitation involving various optimization techniques.

First, fully parametric model for the proposed design was made. The parametric
model is termed as Baseline in the given context. Using the proposed loading condi-
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tions and displacement of the vessel initial draft was then calculated. Given loading
conditions also gives the current location of center of gravity, in each direction.

Secondly, 3D dynamic fluid body interaction problem of simulating high-speed plan-
ing hull was studied using Numerical computations. The output results were then
verified and validated against the tank tests data. The numerical CFD model is
then simplified for lower computational time by performing formal simplifications
(removing appendages etc.) and by using advanced numerical techniques.

For such problem, large dynamic motions of trim and rise are the deriving phe-
nomenon in determining the planing hull resistance. Therefore, as compared to
displacement hulls for which resistance tests are mostly used both in CFD and tank
tests. For high-speed boats, it is shown that the effect of propeller should be con-
sidered in the numerical computations to accurately predict equilibrium conditions.

Finally, the combination of above two setups was made using Java Script and CAE-
SES (Process Integration and Design Optimization) PIDO environment. Formal
Design of Experiment (DOE) and exploitation was carried out. The complete pro-
cedure of the design and optimization is automated in batch mode. HPC Cluster is
used to perform computations by means of Linux based batch scripting. Obtained
results highlights the potential of improvement with respect to the baseline design.

Design of Experiment (DOE) refers to taking random samples uniformly distributed
around the parameter space to realize the potential of gain for optimization. While
exploitation as the name suggests, is to use different optimization techniques and
find a good minimum of objective function. As for 3D parametric model with various
features, such as the example of planing hull. It requires the use of several design
variables that eventually requires a larger sample size to explore the parameter space.
Dimensionality Reduction of parameter space (PCA) is applied in the given context.

In the present work, the main motivation is to show the potential of improvement
in the design and optimization turn-around time by means of using various CFD
and optimization techniques, involving data-driven surrogate models. The objective
function is the propeller thrust at the ship self-propulsion point and minimization
of this objective function is the scope of this thesis.

This work pave the way for faster turn-around time of SDD for complex problems,
requiring hundreds of hours of computational resources. The proposed methods and
workflow can be applied to not only the design of planing hulls, but the process can
be extended for faster design optimization of any high-fidelity problem that requires
larger computational resources.
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Chapter 2

Theoretical Background

This chapter discusses about different theoretical concepts that are used in the
context of this thesis. It includes, principle of planing boat working, various nu-
merical techniques used for efficient CFD modeling of planing craft in Simcenter
STAR-CCM+. Furthermore, various theoerical remarks related to dimensionality
reduction, optimization, data-driven surrogate models, are also some of the concepts
introduced in this chapter.

2.1 Principle of High-Speed Planing Craft
As explained previously, for planing hulls the effect of dynamic lift balances the
weight of the vessel which then comes out of water decreasing wetted surface area.
This allows the boat to achieve higher speeds with relatively less coefficient of fric-
tional resistance. However, to achieve this dynamic lift planing hulls uses different
geometrical features which are dedicated to create this dynamic lift. These geomet-
rical features and the working principle in terms of action of fluid on the bottom of
hull is presented here.

2.1.1 Geometrical Features

For any conventional or displacement hull model, some of the geometrical character-
istics remains fixed due to design constraints. These are typically the length, beam
and design draft of the vessel. Although with these parameters fixed, designers of-
ten able to manipulate the other free variables to produce an optimized design with
around 3-4 % reduction in the resistance (highlighted by different authors). With
that being said, for the planing hulls there are some design components which dic-
tates the planing characteristics and thus required power of the vessel. In this work,
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these design variables are included in the parametric model as explained in later
section. Here, some of these parameters and their effect on the vessel performance
is shown.

Deadrise Angle:

Deadrise angle refers to the angle of V-section as seen from the front view in Figure
3. It is the driving factor for determining the generated lift for planing vessels.
In displacement hulls, larger deadrise angles are often used as it provides better
wave-piercing capabilities which dictates the sea-keeping capabilities of the vessel.
As compared to planing hulls, which are flat-bottom rather than V-shape. The
flat-bottom type vessels generates more dynamic lift from the action of fluid on the
bottom of the hull, thus guiding the vessel out of the water and in to the planing
regime. The generation of lift and the phenomenon of vessel coming out of the water
can be seen in Figure 3.

As said above, to generate more dynamic lift it is desirable for the planing vessels
to have smaller deadrise angles (flat-bottom). However, the decrease in the deadrise
angles are often limited depending on the sea states in which the vessel has to
sail. Very small deadrise angles can have good planing characteristics but can have
undesirable sea-keeping characteristics. Therefore, a compromise should be made in
between the two while designing planing hulls.

((a)) Deadrise Angle ((b)) Effect of Deadrise Angle

Figure 3: Deadrise Angle and its effect

Spray Rails:

Spray rails are located along with chine and they link bottom surface of the vessel
with the deck. Most important feature of spray rails is to direct the fluid in the
right direction and thus creating lift to make the hull rise. Re-direction of fluid
downwards and backwards after the action on the vessel can be seen in Figure 3.
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Figure 4 highlights the spray rails for the current baseline design. For some planing
hulls, there can be additional spray rails at the bottom part to redirect the flow or
to decrease the wetted surface area. The additional spray rails are out of the scope
of this work.

Figure 4: Spray Rails in Planing Boat

Keel line Depth:

For any vessel, keel line depth and its shape around bow part helps in determining
its ability to move forward against the fluid. Planing vessels are mostly operated
with less draft and thus large portion of bow remains out of water. Changing the
convexity of keel line at the water line and beneath it, influence the bow shape and
thus the performance of the planing hull. Figure 5 shows the employed keel line and
bow shape for the baseline.

Figure 5: Keel line Depth for Planing Boat
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Chine:

Just like any conventional hull shape, chine is the area which is at the intersection
of bottom and sides. In Figure 6 it can be seen that the chine links the bottom with
spray rails and thus eventually, the sides of the vessel. Hard-chine planing hulls
push water out and away from the hull and thus making the vessel to enter planing
regime at much lower speeds as compared to soft chine planing hulls. In this work,
hard chine planing vessel with spray rails has been employed.

Figure 6: Chine for Planing Boat

Tunnel:

Initial designs of planing hulls have tunnels incorporated to reduce the hull draft,
propeller noise and provide more flexibility in shaft and propeller placement. It
allowed the vessel to be operated with smaller shaft angles, specially in the condi-
tions where trim is larger. After that, the concept of stepped hull for high speed
vessels was introduced. The idea of stepped hulls is to introduce one or more dis-
continuities at the hull bottom, increasing the flow separation and drag reduction.
Tunneled planing hulls operates on the same principle, it provides better shaft an-
gles and larger trim angle. Furthermore, the reduction of wetted surface area and
corresponding drag is one more application of the tunnel in planing hulls.

Figure 7 shows two tunnels as included in the baseline. Both of these tunnels have
one propeller each, which makes the twin-screw propulsion system. Along with the
hull form, the optimization of the tunnel as well is the scope of this thesis.
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Figure 7: Tunnel for Planing Boat

2.1.2 Working Principle

After mentioning and defining about different features of the planing hulls and their
functions. The following figures depicts the basic working principle of planing hulls
by show-casing a simplified 2D inclined plate moving across the water.

In Figure 8 , the reaction forces resulting from the action of fluid on the inclined
plate is shown. Horizontal component of the force FH corresponds to the horizontal
drag force the body will encounter while moving forward in the water. The vertical
force FV refers to the lift force acting on the vessel. While in displacement vessels
the objective function is limited to minimizing Drag Force FH . In planing vessels,
the objective is to minimize the horizontal component of the force and maximize
the lift forec FV of the planing vessel.

Figure 8: Fluid forces on an Inclined Plate(Bertram 2012)

For the more realistic depiction of this phenomenon, Figure 9 present the action of
fluid and the corresponding velocity vectors. It can be seen that the generation of
lift and horizontal drag force are function of the wetted length LE and trim angle
α. These two parameters also influence the center of pressure location underneath
the hull.
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Figure 9: Flow distribution around an Inclined Plate(Bertram 2012)

Similarly, parallels can be drawn with the actual planing hull geometry. With the
addition of some features that promotes the efficient use of the vessel. The basic
principles of working of the high-speed planing craft remains same. That is, gener-
ation of additional dynamic lift to pull the hull out of water. Further, directing the
flow in the right direction to promote the rise, and the use of additional geometrical
features to decrease the wetted surface area beneath the hull.

2.2 Numerical Methods
Although various numerical methods are used which are briefly described in Method-
ology section, this section focuses on developing concepts about newly and efficiently
employed methods in the current context. Some of them are, the concept of Slip Ve-
locity to encounter numerical ventilation in CFD simulations. Also, the concept of
body force propeller method, to simplify the effect of propeller forces and to include
them in the computations is discussed here.

2.2.1 VOF - Slip Velocity Method

The concept of slip velocity is introduced in STAR-CCM+ and is used in this work.
Thorough implementation and concept behind this work is given in Wheeler, Ryan,
et al. 2021. The main idea for using VOF-Slip velocity method is to remove numerical
ventilation beneath the hull.

Numerical ventilation is the phenomenon of having artificially entrapped air beneath
the hull. It particularly effects the shear component of force near walls and it can
arise due to smeared interfaces and improper time or spatial discretization. Conven-
tional VOF models works well for immiscible flows with free surfaces. Particularly,
for the applications where shape and position of interface (or free surface in this
case) is fully resolved. The application of this method on planing hull requires very
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high resolution in both time and space, thus making the simulations and subse-
quent optimization impractical. While in VOF method, the mixing of two phases
is irreversible, Slip Velocity method allows the mixture to separate again and give
meaningful results. The slip velocity can be defined as,

VP S = VS − VP (2.1)

Where, VS is the velocity of the secondary phase and VP is the velocity of the primary
phase. The difference between the two will give the relative velocity between the
two phases, termed as Slip Velocity. The slip relative velocity helps in recovering
smeared interface between two phases. One of the approach of defining slip velocity
is called, Drag-based approach. In this method, slip velocity is calculated based on
the resultant of the forces acting on dispersed phase. These forces are, drag force,
gravity or buoyancy force, and centrifugal force.

Figure 10: Calculation of Slip Velocity using concept of a Rising Bubble(Wheeler,
Ryan, et al. 2021)

For marine applications, it has been observed that the use of drag-based slip velocity
can be problematic for computational stability. The efficient method to define slip-
velocity for marine applications is called User-defined Slip Velocity method. User
defined function implemented in STAR-CCM+ for given application uses the concept
of a rising air bubble suspended in water. As shown in Figure 10, in the far-
field the bubble will rise due to the effect of buoyancy and defining vertical slip
velocity. Near the body or hull, the component of slip velocity can be calculated by
subtracting the surface normal mapped on the hull surface. These surface normal can
be calculated from the volume mesh at each time step. Alternatively, to reduce the
computational cost here, the slip-velocity is calculated after reaching the equilibrium
floating condition.
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Figure 11: Blending Direction on Overset Mesh

Figure 11 shows the blending function which dictates the slip velocity direction. It
is used to remove the normal component of the slip velocity. As can be seen, in the
far-field the blend direction is 1. In contrast, it changes to 0 very close to the hull.
A parameter blending distance Bd is the function of Prism Layer Thickness. The
value of Bd influence the change between far-field and near-field. Further formulation
about blending direction and different relevant formulae are given in Appendix A.

Figure 12: Slip Velocity Vector representation with Blending Direction

Figure 12 presents the results of the application of VOF-Slip Velocity method on
given planing hull. The direction and magnitude of the shown vectors represent the
direction and magnitude of slip velocity, respectively. These slip velocity vectors
defines relative velocity between two phases and it can be used to recapture the
phases separately from the mixtures. The following two figures, Figure 13 & 14
shows the presence of numerical ventilation and its removal.
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Figure 13: Volume of fraction of Water, Numerical Ventilation beneath Hull

Figure 14: Volume of fraction of Water, Removal of Numerical Ventilation beneath
Hull

2.2.2 Body Force Propeller Method

One of the initial findings of this work, highlights the importance of modeling pro-
peller forces in order to correctly simulate planing hull. For displacement hulls,
resistance tests are adequate in predicting the required power output in most of
the cases. By using Froude scaling, model scale tests are usually performed in tank
tests and the results are then extrapolated to full scale with minimal loss of accu-
racy. Similar methods can be used by using numerical tools like CFD. Furthermore,
if enough computational resources are available, CFD results are usually obtained
in full scale.

This method is not very efficient for planing hulls, due to its different working
principle. Planing hulls often have lighter displacement, large dynamic trim and
sinkage motions. Presence of propeller can directly effect the swimming conditions
and thus wetted surface area of the vessel. In the context of optimization, it is
essential to correctly identify the objective function as close as possible. Due to
this fact, the propeller forces are model in simulations using Body Force Propeller
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Method and the propeller thrust is chosen as the objective function.

Figure 15: Appended Hull modeled with Actuator Disk

To model propeller forces in CFD simulations, there are two methods which are
being used. First, complete propeller geometry can be resolved using very fine
mesh size. This type of method predicts the propeller forces as well as local flow
around propeller with good accuracy. However, this comes with the cost of very
fine discretization in space and time with combination of sliding mesh. Second
method is called Body Force Propeller Method, or sometimes called as Virtual Disk
method. The idea behind this method is to simplify the propeller geometry in a
circular virtual disk. This model adds a momentum source in momentum equation
and approximate the average flow field around the propeller.

By using this simplification, propeller forces can be resolved with a relatively coarser
mesh and without the need of sliding mesh around propeller geometry. To perform
self-propulsion test, propeller open-water characteristics are required. Based on the
propeller curves, and using fundamental equations for propulsion as in given equa-
tions, operating point is calculated. Equations 2.2 to 2.4 presents this formulation.

J =
Va

nD
(2.2)

KT =
T

ρn2 D4
(2.3)

KQ =
Q

ρn2 D5
(2.4)

In this project, body force propeller method is used to model the effect of propeller
forces. Propeller characteristics are taken from experimental data available and
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propeller thrust is taken as objective function to be minimized. Figure 16 presents
the pressure distribution acting on the hull for this type of implemented model.
From this figure, high pressure zone near the fore part depicts the point where free
surface attaches to the hull. In planing hulls it is located near the midship and
towards fore part of the vessel. Negative pressure near the aft part indicates lower
pressure due to the suction effect of the propeller.

Figure 16: Pressure Distribution of an appended hull with propeller disk

2.3 Optimization and Dimensionality Reduction
Standard optimization procedures involves design variables and objective function.
Design variables are the parameters that dictates the position or influence of each
design feature (in this case hull parametric model). While objective function is the
function to be optimized and often called as cost function. In marine industry,
achieving higher energy efficiency has always been the desired cost function. Also,
in the context of planing hulls it is desired to minimize the propeller thrust and thus
engine power by diligently designing the propeller and tunnel.

Equation 2.5 depicts a standard optimization problem formulation to minimize the
objective function f(x). Equations 2.6 to 2.7 represents inequality and equality
constraints on the objective function, respectively. Other than bounds on objective
function, there can be bounds on design variables as well to incorporate manufac-
turing bounds. For example, design variable of pipe diameter can not be less than
0. Equation 2.8 presents the bound on design variables.

min
xi

f(x) (2.5)

s.t. gj(x) < 0 j = 1...m (2.6)
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hk(x) = 0 k = 1...l (2.7)

xi <= xi <= xi i = 1...n (2.8)

This section introduces two concepts that are involved in this work. First is called
Karhunen - Loève Expansion (KLE) which is a special type of Principal Component
Analysis used in dimensionality reduction of design space. Second concept is the use
of data-driven and Machine Learning algorithms to increase the turnaround time of
the optimization. The mentioned concepts corresponds to dedicated fields of their
own and requires detailed study. Upcoming sections present brief concepts and their
use for this work.

2.3.1 Karhunen - Loève Expansion

Principal Component Analysis (PCA) is a statistical procedure that has been used
vastly to reduce large dimensional data and summarize it with few parameters. More
often, the number of design variables for a parametric model is between 10-20 and
occasionally can go up to 50. With the increase in design variables the number of
designs to be tested to explore the design space also increases exponentially. For
Design of Experiment (DOE), a rule of thumb is to have number of simulated designs
equals to square of design variables (n2) as given in Harries and Abt 2019b.

PCA should not be confused with regression analysis, which tries to find correlation
between different design variables and objective function. Instead, the main principle
is to project data points on to lower dimensional space. The projection is done such
that to maximize the covariance of the data set to capture maximum variability of
original data points. Standard covariance matrix for a 2D space has a following
structure,

CovarianceMatrix =

∣∣∣∣∣ V ar(X) Cov(X,Y )

Cov(X,Y ) V ar(Y )

∣∣∣∣∣ (2.9)

More general form of covariance equation, also called Closed Form of Covariance
Equation is given in equation 2.10 to 2.12. S denotes the covariance matrix while
U1 is the unit vector.
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max UT
1 [

1

N

N∑
n=1

(Xn −X)(Xn −X)T ]U1 (2.10)

max UT
1 S U1 = f(x) (2.11)

S.t UT
1 U1 = 1 (2.12)

Other than reduction of design space, PCA also helps in data visualization of larger
set, and feature extraction or determining dependency of different variables. The
working of PCA can be defined in few steps. In order to understand better, consider
two dimensional uncorrelated data as shown in Figure 17. The task is to reduce this
two dimensional data into one dimensional space by using Principal Component
Analysis.

Figure 17: Two dimensional data in design space

First step in PCA involves data centering, axis of data points is shifted to centralize
the data. While doing so, the co-relations between the data points remains same.
Second step is to compute the covariance matrix of the high dimensional data and
then trying to find an axis which maximizes the covariance when projecting the data
onto it. To better visualize this step, the depiction of this step is given in Figure 18.

The axis which maximises the covariance is called Principal Axis. The principal
axis is defined by its eigenvalue and eigenvectors, termed as principal parameter.
While for 2D data there is only one principal parameter, for high dimensional data
there can be many principal axes and thus parameters. These principal parameters
denotes the design variables and CAD model in KLE space. All the principal axis
are orthogonal to each other.
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((a)) Finding Principal Axis ((b)) 1-D data on Principal Axis

Figure 18: Finding Principal Axis left, Principal Axis 1 on right

From these principal parameters a handful of them are chosen so as to reduce the
design space and achieve desired variability for the CAD model. Often, principal
parameters are chosen to acheive 95% or more CAD variability. Application of PCA
can be very useful while dealing with data or optimization with higher number of
design variables.

Karhunen - Loève Expansion (KLE) is a particular type of PCA. It works by defining
the CAD geometry in set of points distributed along its surface. These points now
serves as the basis for dimensionality reduction. Input to KLE in the given context,
is the number of points and number of samples. Number of points distributes the
CAD into desired data points, while samples are generated to analyze the covariance
matrix and its subsequent maximization. Since, it is only decomposition in CAD
Space and evaluated functions are eigen values and covariances, this step is much
faster.

After selecting desired principal parameters and captured variance, the KLE model
needs to be transformed from KLE space to CAD Space to perform the evaluation of
objective function using CFD. This process of transformation can be either Linear or
by using SIMPLEX transformation. Flowchart describing the previously mentioned
steps is given in Appendix B.

2.3.2 Machine Learning based Optimization

In this work, different surrogate models are built from the data generated from
CFD Simulations. These machine learning models are then employed to perform
optimizations using deterministic and stochastic methods. Some commonly used
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surrogate models are, Linear Regression, Kriging and Articial Neural Networks.

Kriging

Kriging Model is also called as deterministic interpolation method, because the value
of the objective function is calculated directly from its surrounding values. For that,
weights are assigned to each neighbor point and objective function at the new point
is calculated using equation 2.13 and 2.14. Where, ϵnew is the error of estimation
for the newly estimated value.

ynew = W Ty + ϵnew (2.13)

ynew = w1y1 + w2y2 + ....+ wnyn + ϵnew (2.14)

Hence, only unknown for the kriging model is the calculation of weights ’W’. These
weights are determined by Variogram fitting on the data points. Detailed explana-
tion about it can be found in the literature. Following two equations are used for
weight calculations in kriging model.

γ(xi, xj) =
1

2
(yi − yj)

2 (2.15)

γ(xi, xj)W = γ(xnew, xi) (2.16)

Artificial Neural Networks

Artificial Neural Network is another type of Machine Learning model. Although,
there are many modifications of the ANN for different data types. The basic principle
is shown in Figure 19, the working of the ANN is similar to human brain where
different neurons carries different weights. With the given inputs and outputs, the
network works back and forth and train the model for prediction.

Figure 19: ANN Representation (Coursera - Deep Learning Specialization)
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Methodology

This section is focused on presenting complete methodology applied for this work.
Starting from the geometrical features and parametric modeling, discussing con-
cepts about computational modeling of the problem. Further, automation of the
design optimization procedure is discussed. In the end, the concepts and methods
of applying optimization runs and dimensionality reduction is presented.

3.1 Geometrical Features & Parametric Modeling

The starting baseline of this project is taken from an existing hull model available
from UZMAR Shipyard. Using the available hull model, fully parametric model is
then built in CAESES to depict the already built geometry. This CAD parametric
model is termed as ’Initial Baseline’ for this project. It has different geometrical
features to improve planing characteristics and efficiency of the vessel, such as,
Spray Rails, Chine and Tunnel.

Table 1 presents the features and design parameters for both full scale and model
scale. Froude scaling with a scaling factor of λ = 3.2871 is used. Using Froude
Similitude, the optimization is focused on model scale. The use of model scale
dimensions for the optimization is backed by tank tests results, which are also per-
formed with model scale dimensions. Design speed of 27.5 knots, corresponding to
Froude number of 1.36 is the target speed for optimization studies. Attachment
points represents the point of attachments in tank tests as well as simulated CFD
computations.
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Table 1: Design Parameters Full & Model Scale

Parameters Denotation Full Scale Model Scale Units
Peak Length Lpp 11.058 3.364 m
Beam B 3.5 1.065 m
Displacement ∆ 9.5 0.267 ton
Draft D 0.611 0.186 m
Longitudinal Center of Gravity LCG 4.945 1.504 m
Vertical Center of Gravity VCG 0.7 0.213 m
Speed V 27.5 15.168 knots
Froude Number Fr 1.358 1.358
Attachment Point X APx 5.529 1.682 m
Attachment Point Z APz 0.611 0.186 m

3.1.1 Parametric Model

The idea of making parametric model is to represent the complete CAD geometry
by intelligently defined few parameters. These parameters allows complete freedom
to adapt the design within feasible design space, for the optimization runs.

While some of these parameters remains fixed for optimization, like length between
perpendiculars Lpp and beam B of the vessel. Other remaining parameters called
design variables, are allowed to change and changing these parameters gives different
geometrical shape and thus design variants for the optimization.

Figure 20: Defining Geometrical Features for Parametric Model

In this case, a total of 18 design variables defines the planing hull model. These
design variables can also be regarded as the degrees of freedom for the optimization
studies. Figure 20 presents the geometrical curves and points that are used to
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make the parametric model. Out of 18 design variables, 8 variables are defining
the complete hull model except tunnel. This includes, transom, keel line , chine ,
spray rails and deck of the vessel. The other 10 variables are devoted to predict and
define the tunnel model. As compare to the hull, the tunnel is more curvilinear and
requires larger number parameters to completely defines it geometry.

Figure 21: Complete Parametric Model

All of these curves and points are joined together by surfaces and make a complete
CAD model as presented in Figure 21. The tunnel solid model is subtracted from the
hull solid model using a Boolean operation, thus giving the required tunnel cavity
for propeller mounting, beneath the planing hull.

3.2 Computational Modeling
Accurate prediction of dynamic motions and resistance for the planing vessels, re-
quires distinctive numerical techniques than the conventional displacement vessel
problem. It involves, using dynamic overset grids, adaptive mesh refinement, slip-
velocity method, wave forcing zones and the use of adaptive time-step for accurate
and faster CFD computations. Upcoming section presents these employed strategies
and their implementations in the given context.

3.2.1 Mesh Discretization

For marine applications, there are different strategies to predict correct motion and
resistance of the vessels. ITTC “International Towing Tank Conference” n.d. has
documented these guidelines for different type of vessels simulations, as well as
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guidelines for the practical implementation in the tank tests. Because of the highly
turbulent (larger Reynold’s number) problem for ship flows, getting meaningful re-
sults from CFD computations requires appropriate simulation settings.

Other than properties of water, Reynold’s number is a function of characteristic
length and speed of the vessel and is directly proportional to these values. For
larger tanker and bulk carriers, the speed is limited and highly turbulent flows is
mainly because of the larger peak length of the ship. For planing hull, although the
length is limited but these vessels are designed to be operated with high speed and
thus resulting in higher Reynold’s number. A unique characteristic of high-speed
planing vessel is that, it also has larger dynamic motions such as pitch and heave.
To capture these motions and to accurately discretize free surface, dynamic overset
grid motion along with free surface adaptive mesh refinement is used. The overset
grid can be seen in Figure 22.

Figure 22: Overset Grid near Ship

The primary working of overset grid technique, known as Chimera Grid is to capture
large motions and avoid mesh distortion in presence of large motions. It employs two
separate grids, one for background mesh in which the cells lying at overset section
are inactive. The other part is the overset grid around ship, this grid is responsible
of capturing the boundary layer and maintaining required y+ values using prism
layer mesh. Information transferring between these two grids is done by overset
algorithm. Proper implementation of this technique requires transitional domain
between background and overset grid. Different transitional zones ensuring smooth
transition of mesh size and adaptive refinement for overset grid are used. Figure 23
presents these domains at the final time-step of the solution.

Information transferring between two domains also requires an intersection zone.
This overset intersection zone have few cells at the intersection of both domains
and uses same cell size across each domain. Although the use of overset grid is
very useful for bodies with larger motion, before using this type of technique all
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Figure 23: Working of Overset Grid with Adaptive Mesh Refinement

of the above mentioned requirements should be treated with care. In this project,
tight over-set grid in combination with adaptive mesh refinement is used. Adaptive
mesh refinement for overset grid ensures good transfer of motion between the two
domains. Adaptive free surface refinement (AMR) is used to adapt the mesh size
depending on the turbulence and flow conditions. By doing so, free surface is refined
only in the required area as shown in Figure 24.

Figure 24: Adaptive Mesh Refinement for free surface

Figure 25 also shows the coarsen and refined free surface mesh. The imposed velocity
in surge direction starts from zero and reaches the required design speed. Signifi-
cance of using this type of imposed velocity is to avoid excessive pressure forces on
the hull leading to numerical uncertainties. In the phase of increasing speed, free
surface adaptive mesh refinement is not applied. It is applied just after reaching the
design speed to accurately capture the flow.
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((a)) Initial Mesh ((b)) Final Mesh

Figure 25: Mesh Domain before & after Free Surface Refinement

3.2.2 Numerical Setup

For the CFD computations, utilized physical setup can be briefly described in fol-
lowing points.

• Segregated Fluid solver for in-compressible fluids is used.

• Semi-Implicit Pressure Linked Equations (SIMPLE) scheme is used to couple
velocity and pressure equations using 2nd order convection schemes.

• In the transient acceleration phase while reaching the design speed, 1st Order
Pseudo State Transient Solver is used in order to reach steady state operating
conditions.

• Reynold’s Averaged Navier Stokes (RANS) based Realizable K-Epsilon method
with wall function approach is employed.

• Volume of Fluid (VOF) scheme to model free surface using HRIC (High Res-
olution Interface Capturing) scheme is used.

RANSE Model & Wall y+

The prism layer thickness in the overset grid is kept constant to ensure constant
y+ values. Wall function approach with realizable K-epsilon as defined previously is
utilized. Figure 26 shows the y+ distribution beneath the hull at final steady state
swimming conditions.

Boundary Conditions & Forcing Zones

For high speed vessels where hydrodynamic forces dominates hydrostatic contribu-
tions, appropriate method is to resolve motion using mass and inertia properties,
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Figure 26: Wall y+ values on the hull surface

using integrated fluid forces and moments. Conventional virtual tank model for dis-
placement hull uses 2-DOF with incoming velocity & stationary domain. In contrast,
for high-speed vessel and for ramping up velocity this approach can be impractical.
Hence, 3-DOF approach is used here with surge motion along with free pitch and
heave. The domain contains stationary water and overset domain moves in forward
direction to depict the surge motion of the vessel.

It is also impractical to have very large background domain to capture the final state
of the vessel, which can be of several lengths of the vessel. To have a reasonable size
of the virtual tank domain, 1-DOF surge motion matching the motion of overset
grid is applied on background domain as well. This approach will make the size of
the computational domain reasonable and the overset grid will always remain in the
center of the background domain.

Figure 27: Wave Forcing Zones and Boundary Conditions - Top View

The imposed translation of background mesh uses wave forcing treatment, applied
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Figure 28: Wave Forcing Zones and Boundary Conditions - Side View

in the buffer layer near the vertical walls as shown in Figure 27 and 28. Velocity
inlets with zero velocity are prescribed at the domain boundaries, while pressure
boundary condition at the top of the domain ensures a hydrostatic applied gradient.
No-slip boundary condition is utilized near the vessel boundaries, and symmetry
along the y-section is used to reduce computational time. Forcing is achieved by
an additional term on the right hand side of momentum equations. Brief numerical
equations about it are presented in Appendix C.

qϕ = −γρ(ϕ− ϕ∗) (3.1)

Virtual Disk & Propeller Method

The significance of using body force propeller method to simulate the effect of pro-
peller forces is highlighted in the previous section. The utilized DFBI method uses
general planar carriage motion to accelerate the ship up to required speed. Further,
RPMs and thrust forces are adjusted using employed equations and JAVA macros to
match the vessel speed. Propeller thrust as well as propeller RPMs and consequent
engine power are available at the disposal using propeller open water curves.

Eventhough, engine power is the main objective function to minimize in real condi-
tions. By doing so, the effect of propeller working point and efficiency should also
be considered in the optimization framework. To simplify the analysis, and to solely
focus on the optimization of the hull shape, propeller thrust is taken as the objective
function to be minimized.
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3.3 Automated Software Connection

For any optimization studies, several designs have to be tested in order to reach the
relatively better design. In practical aspects, it is essential to automate the optimiza-
tion workflow and remove the need of human intervention. Previous two sections
have developed the concepts behind making of parametric model in CAESES and
the numerical set-up for CFD computations in STAR-CCM+. In this section, brief
description about the automation procedure is introduced.

Figure 29: Process Flow Diagram for SDD of Planing Hull

The complete optimization frame work is given in Figure 29. JAVA macro’s defines
the connection between the two software. These macro’s can be recorded in STAR-
CCM+ and imported in CAESES, which gives the control to link the variables from
the JAVA file to the optimization algorithm. The workflow also gives the command
to adjust the previously defined macro by writing own JAVA scripts. By doing so,
the need of redefining and re-recording macros is eliminated.

Moving forward, the complete set-up and connections for the optimization are trans-
ferred to the High-Performance Cluster accessed by LINUX. A bash script written
in LINUX takes the name of the design optimization engine as the input. Then,
it runs the optimization on cluster and moves back the simulation files in GUI for
visualization of optimization runs. Figure 30 and 31 presents the tested several
designs and their monitored convergence histories. It can be seen that most of the
tested designs have shown good convergence plots. These plots are beneficial for
post-processing, not only for graphical plots but also for geometry visualization.
Pressure distribution highlighting the wetted surface area is also monitored for each
design, as shown.
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Figure 30: Automated Software Connection Convergence Histories

Figure 31: Automated Software Connection Convergence Histories Monitors
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3.4 Speeding-up CFD Computations
While previously described techniques are utilized so that to have accurate predic-
tion of objective function for optimization, with reduced computational resources.
Few more steps to decrease the convergence instabilities and decreasing the time
taken to achieve steady state values are presented here. To summarise, the methods
enforced to speed-up CFD computations are given here.

• Dynamic tight - overset grid with combination of adaptive mesh refinement
and forcing zones, ensures faster convergence and relatively accurate predic-
tions.

• Volume of Fluid (VOF) Slip-velocity method to remove artificial air beneath
the hull, without using much finer grids.

• Use of Implicit Multi-Step time steps for faster convergence.

• Adaptive time-step is chosen to target courant number upto 5 for acceleration
phase and less than 0.5 for the steady state final steps.

• Ramping up the velocity using a sinusoidal equation starting from rest position
to smoothly reach design speed, with larger time steps.

• Artificially damping the motion of the vessel to reach steady state at lesser
solution time.

Ramping up the velocity as defined previously, uses smooth transition and adap-
tation of dynamic body motions along with associated mesh motions. Hence, the
velocity input to DFBI vessel is defined as a sinusoidal input reaching required speed
as given in equation 3.2.

If t < Tr V (t) = Vt sin(
πt

2Tr

) Else V (t) = Vt (3.2)

This approach is effective in way to avoid large motions at the initial time steps and
to avoid excessive pressure forces on the hull. Tr is the ramp up time and is set to
have maximum acceleration of 1g (10 m/s). Tr value is 0.8s in this work, and design
speed is 27.5 Knots full scale or V (t) = 7.802 m/s at the model scale. Figure 32
presents the input velocity for DFBI motion.

The use of ramp for the prescribed velocity of the body should be chosen with care.
Steeper ramps can make the vessel reach equillibrium at much less Tr values, but it
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Figure 32: Velocity Plot to reach design speed

can also impose larger acceleration gradients that needs to be avoided. In contrast,
using high Tr value with much less acceleration can increase the computational time
substantially. In this work, max acceleration of 1g is targeted to make a better
compromise between the two. Despite that, as shown in left side of Figure 33 the
acceleration forces which are directly linked with inertial properties of the body
requires much higher time to dampen (in excess of 20 - 25s). To avoid larger com-
putational time, the inertial forces are reduced by artificially reducing the inertial
values of the vessel. As the requirement in given condition is to capture resistance
and motion at the final-steady state conditions, dampening the inertia does not have
any effect on the final solution as shown in right side of Figure 33.

((a)) With initial geometrical parameters ((b)) With Damped Inertia

Figure 33: Pitch Plots with original and modified Inertia values

3.5 Optimization Runs
In the end, the previously described automated connection with employed tech-
niques for faster CFD Computations is used to perform optimization runs. A series
of optimization strategies including, deterministic and stochastic modeling, design of
exploration and exploitation, and Machine learning based surrogate models are uti-

33



Methodology Master Thesis Report

lized to find a set of optimized designs. To better explain the optimization workflow,
Figure 34 presents the flowchart used for optimization studies.

After testing initial baseline with CFD as well as tank tests, both of the computa-
tions have shown undesirable propeller and motion characteristics. Taking this into
account, the first baseline was manually modified to have better rudder efficiency
and dynamic motions. The modified geometry which is called New Baseline, now
serves as the starting point of optimization and it has same principal dimensions as
mentioned in Table 1 but with a change in draft and tunnel geometry.

Starting from this new baseline, the optimization runs are performed on full model
with 18 design variables, as well as KLE model with 4 principal parameters. The
optimization studies involves, Design of Experiment (SOBOL), Response Surface
Optimization (DAKOTA), Tangent Search (T-search), Kriging and ANN based Sur-
rogate models. By doing so, 7 best optimized designs are obtained and the quality
of obtained designs against time taken to find them, are compared. The concept
behind obtaining the new baseline, along with the results of each optimized design
is presented and compared in the upcoming sections.

Figure 34: Hierarchical View of Optimization Runs
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Chapter 4

Results and Discussion

Before starting for any optimization runs, it is essential to perform verification and
validation analysis of CFD setup. The results presented here are verified by per-
forming conventional grid convergence studies, along with quantification of grid
uncertainties using Richardson Extrapolation Factor of Safety method (Xing and
Stern 2010) . The results are then validated against the results of the tank tests
available from Technische Universität Berlin (TU-Berlin).

First optimization studies involves conceptual changes to the tunnel geometry design
after analyzing the results of both CFD and tank tests. Then, the new tunnel (up-
dated baseline) geometry is tested again in the tank and validated by CFD results.
Moving forward, the optimization is then performed on this new validated baseline.
This section presents the results of previously mentioned studies. Furthermore, the
results of subsequent optimization runs using the validated setup are also shown.

4.1 Verification and Validation
Verification and validations are two important steps for any numerical simulation.
Briefly describing, verification refers to determining the numerical accuracy of the
predicted results by varying grid sizes. Validation on the other hand is the step where
the results of numerical code is compared with real-life experimental test data. These
two steps are essential to quantify and measure any numerical uncertainty present
in the code, and to compare the validity of numerical model with real life examples.

In this study, verification and validation are performed with some appendages to
depict the experimental study. Also, this detailed analysis is focused on Resistance
Tests to compare drag and motions. The study is then extended to validate one
particular case of self-propulsion and to use it for the optimization studies.
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4.1.1 Grid Convergence Studies

To test grid dependence, 5 different mesh sizes with different background and overset
grids are used. Coarsen Factor (R) is a parameter defining the grid sizes such that
the grid sizes are varied uniformly and same ratio of cells in background and overset
domain is guaranteed. This is important for the reason of data transfer between the
two domains, and it can directly affect the solution accuracy.

Background and overset meshes are varied according to R values as, L/5R for back-
ground mesh and L/100R for overset mesh. Where, L corresponds to length of the
vessel Lpp = 3.364m in this case. R value starts from 1/2 and it increases by a factor
of

√
2 with finer grid sizes. Details about the grid convergence studies is given in

Table 2.

Figure 35 highlights the convergence plots for Drag force and for dynamic motions
of sinkage and trim angles. It can be seen from the figure that drag force converges
after Mesh 3. For pitch and heave, the utilized grid sizes does not affect the values
drastically. The relative percentage errors for Mesh 4 and Mesh 5 are less than 2 %
for Drag and motion values.

To reach a good compromise, other than accuracy of the solution the computational
time should also be taken into account. Figure 36 shows the time taken for each
mesh size until convergence. Mentioned time are for a HPC Cluster with 40 cores
and 90 GBs of RAM. Computational time between Mesh 4 and Mesh 5 is almost
double, while very less improvement in accuracy of solution is observed. Based on
these analysis, Mesh 4 with grid size of 3.6M and computational time of almost 5
Hrs is adapted for validation purpose.

((a)) For Drag Force ((b)) For Pitch and Heave

Figure 35: Grid Convergence Studies for motions and forces
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Figure 36: Computational Time of different Grids

Table 2: Grid Convergence Studies Parameters

Base Size
Name Background Overset Total Cells Time Coarsen Factor Heave Pitch Drag

m m Hrs cm deg N
Mesh 1 1.35 0.065 408676 1.22 0.5 10.581 4.9867 526.36
Mesh 2 0.95 0.05 831152 2.21 0.7071 10.727 5.10946 569.42
Mesh 3 0.67 0.035 1755600 3.79 1 10.4975 5.0044 535.572
Mesh 4 0.48 0.025 3661000 5.2 1.4142 10.667 5.1003 520.557
Mesh 5 0.4 0.02 5745000 10.2 2 10.679 5.143 519.271

4.1.2 Quantification of Grid Uncertainties

For numerical solutions such as CFD, quantifying the uncertainties in grids are of
particular interests. The idea is to find the function value as the grid size approaches
to zero. Theoretically, this value is called exact value and it should be equal to
the real value of the physical system. As it is not possible to have grid size zero
practically, there are some methods to quantify the percentage difference with the
finest acquired grid and its exact value, determined theoretically.

Conventional method of quantifying the uncertainties are Grid Convergence Index
(GCI), Richardson Extrapolation and many others. In Table 3, grid uncertainties
of Drag, Pitch and Heave are highlighted using Richardson Extrapolation Factor of
Safety method (called as FS) and GCI.

Table 3: Grid Uncertainty Quantification Values

# of Cells R Drag (N) Pitch (Deg) Heave (cm)
1.76E+06 1 535.57 5 10.5
3.66E+06 1.4142 520.56 5.1 10.67
5.75E+06 2 519.27 5.14 10.68

Uncertainty_FS % 0.753 4.647 0.31
Uncertainty_GCI % 0.029 2.867 0.011
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Comparing both of these quantification methods, GCI is less conservative as com-
pared to FS method. Similar findings are observed in other papers. It should be
taken into account that these uncertainties does not necessarily quantify the per-
centage difference with the experimental values. But, can give a good indication
of grid convergence. Higher uncertainties in pitch can be justified due to smaller
absolute differences. Because the values are smaller, the percentage difference scales
up. Figure 37 and 38 shows the evolution of drag, pitch and heave as the grid size
approaches to zero. Sc corresponds to the exact value of the numerical solution,
calculated theoretically.

Figure 37: Uncertainty Quantification for Drag Force

((a)) For Pitch ((b)) For Heave

Figure 38: Uncertainty Quantification for Pitch and Heave

4.1.3 Validation Studies

After the appropriate selection of the mesh size and quantification of uncertainty
associated with it, the numerical model is then validated against the experimental
data available. Resistance tests performed in a tank tests is validated by a virtual
tank test simulated in STAR-CCM+ computations. The observed results suggested
a good comparison between the two setups.
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Table 4: Validation at Design Speed

V(knots) Error estimation
Fr Full Scale Model Scale Drag (%) Heave (m) Pitch (deg)

1.3581 27.5 15.18 0.2684 0.0114 0.88

Figure 39 and 40 below shows the comparison of numerical and experimental results.
For comparison, simulations are carried out with different velocities ranging from
Froude number 0.8 to 1.45. Resistance forces have good comparison with percentage
difference of less than 1%. For trim and heave comparison, it is feasible to compare
the absolute difference because of smaller values. Comparison of pitch motion shows
the maximum deviation of 0.9 degree. For sinkage motion, the experimental data
was only available for the design speed and shows difference of 1cm.

Focusing on optimization, it is desirable to optimize the hull design at the design
speed of 27.5 knots. Table 4 shows the validation studies at design speed. Taking
into account the grid uncertainties defined previously and assuming measurement
uncertainties of 5-8 % the simulated CFD setup is considered to be validated.

Figure 39: Validation for Drag Force against Experiments

((a)) For Pitch ((b)) For Heave

Figure 40: Validation for Pitch and Heave against Experiments
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4.2 First Optimization Study
For the first optimization studies, the initial baseline is analyzed and conceptual
changes are made in the tunnel geometry from the outcome of the tank tests and
simulations. It has been observed that the initial baseline has cross-flow around the
wake and higher wave elevation behind the transom. This phenomenon also resulted
in poor rudder efficiency, highlighted from tank tests results.

In order to overcome this issue before the optimization phase, tunnel parametric
model is adapted with new parameters. These parameters are taken in order to
avoid the cross-flow, and have relatively lower wave elevation behind the transom.
Proceeding with this concept in principal, has also reduced the pressure drag or
wave making resistance of the vessel. Parametric models of two tunnel geometries is
given in Figure 41. Visual comparison of the free surface elevation for both of these
geometries is shown in Figure 42 and 43.

((a)) Old Tunnel ((b)) New Tunnel

Figure 41: Old and New Tunnels Geometries

While this new geometry provides smoother flow around wake, and better rudder
efficiency in tank tests. The results of the tank tests have shown similar drag values
for this new geometry. In order to analyze it, CFD computations of same setup are
undertaken and components of pressure and shear drag are computed separately.
As shown in Table 5, the pressure drag has been reduced as evident by relatively
smoother flow. In contrast, the gain acquired by decrease in pressure drag is negated
by the significant increase in the shear drag component.

The subsequent increase in the shear drag is due to the increase in wetted surface
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area for the new geometry. Figure 44 compares the pressure distribution of the two
designs. It can be observed that the new geometry is in the semi-planing regime
with larger wetted surface area. The reason behind this is not having enough lift
force to lift the vessel out of the water, and therefore relatively lesser trim and rise
values.

The results of this study, highlights the importance of clearly defining the objective
function. Some possible objective functions can be, to minimize the total drag or its
individual components. Maximization of lift force can also be taken as an objective
function for the optimization.

Figure 42: Free Surface around wake for Old Tunnel Geometry

Figure 43: Free Surface around wake for New Tunnel Geometry

Table 5: Comparison of the old and new tunnel

LCG XCB Resistance Trim Heave Pressure Drag Shear Drag
(m) (m) (N) (Deg) (cm) (N) (N)

Old 1.504 1.4681 521.52 5.09 10.06 311.68 209.84
New 1.504 1.4681 520.62 2.98 6.96 263.38 257.24
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((a)) For Old Tunnel ((b)) For New Tunnel

Figure 44: Pressure Distribution for old and new tunnel geometries

Validation for Self Propulsion Tests

Resistance tests simulations are extended to incorporate the effect of propeller forces,
by performing self-propulsion tests. The importance of dynamic trim and rise in
the context of optimization is discussed previously. Furthermore, the presence of
propeller forces in the momentum equation can directly effects the running attitude
and corresponding resistance of the vessel.

Taking this into account, propeller thrust is taken as objective function for opti-
mization by creating a virtual disk model. Before proceeding with the optimization,
validation studies were performed at design speed. Table 6 presents the experimental
and CFD results, which shows a promising comparison.

Table 6: Validation with Propeller Method

Property Experiment CFD Units
Thrust 532.08 520.4 N
RPMs 2285.7 2280.29 /s
Torque 25.65 24.44 N.m

Power / motor 3.0698 2.9180 kW / motor
Pitch 3.44 3.67 deg
Heave 7.98 7.92 cm

4.3 Numerical Model Adaptation
Speeding-up of an optimization task does not only come from faster and effective
optimization methods. Instead, simplification of the numerical model using applied
assumptions also plays an important role. For example, using relatively coarser grid
or removing appendages that are not part of optimization studies. After validation
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of numerical setup the target is to find an optimized design with respect to baseline.
In this case, it is convenient to simplify the whole system by using these assumptions
and compare the relative percentage difference against the baseline of a simplified
system. Afterwards, few optimized designs obtained using a simplified and much
faster system can be transformed back to appended model and the actual percentage
improvements are checked by using finer grid sizes.

4.3.1 LCG Sensitivity Analysis

Before moving with the simplification steps, the target was to improve the planing
performance of the new baseline. This consideration comes after looking at the
pressure distribution of new baseline as in Figure 44, which represents that the
vessel is in semi-planing regime. To improve the planing characteristics, a shift of
longitudinal center of gravity (LCG) towards aft is proposed.

Planing vessels are very sensitive to LCG positions as studied by different authors
in literature. The proposed shift in LCG position is also backed by the fact that
at the hydro-static position, the vessel has a −0.22 degree trim angle which is not
desirable. Negative trim angle is due to the position of center of buoyancy (CB)
which is few percentage aft from current LCG position.

Table 7: LCG Sensitivity Analysis

LCG Resistance Trim Heave Pressure Drag Shear Drag Static Trim
(m) (N) (Deg) (cm) (N) (N) (deg)
1.504 520.62 2.98 6.96 263.38 257.24 -0.22
1.468 515.01 3.20 7.57 263.29 251.72 0.00
1.454 511.72 3.26 7.74 261.42 250.3 0.06
1.404 501.5 3.43 8.34 257.66 243.84 0.23
1.354 491.8 3.63 8.96 255.30 236.50 0.43
1.254 478.62 4.02 10.28 258.18 220.44 0.82
1.154 472.5 4.42 11.74 267.02 205.48 1.22
1.054 465.18 4.82 13.34 277.92 187.26 1.62

To quantify the effect of LCG shift on vessel performance as well as on drag com-
ponents, LCG sensitivity analysis as given in Table 7 is carried out. LCG is shifted
from its original position of 1.504 m to 5 cm aft in each iteration. The results of
dynamic motions as well as resistance is presented. Static trim angle is -0.22 deg
for the initial LCG position and 0 deg of static trim angle is observed for LCG of
1.468 m, as this is also the position of center of buoyancy. When, LCG and CB are
in the same vertical plane there are no added momentum to produce static trim at
the hydro-static position of the vessel.
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Plots of above given table is presented in Figure 45. On the left hand side, it is
highlighted that shifting the LCG position towards aft in the given setup improves
the performance of the vessel. This is due to the subsequent reduction in shear drag
component due to the decrease in wetted surface area, and increase in pitch and
heave motions. It is also interesting to see each component on drag individually, as
in the right hand side. Individual component of drag forces behaves differently as
we shift LCG significantly towards aft of the vessel. Increase in the pressure drag
occurs due to increase in the wave making resistance of the vessel, backed by larger
trim angle. While, the decrease in the frictional drag occurs due to the decrease in
wetted surface area of the vessel.

((a)) LCG effect on Total Resistance ((b)) LCG effect on Resistance Components

Figure 45: LCG Sensitivity Analysis

This study gives important aspects that should be taken into account while per-
forming optimization for a planing craft. In the light of this, the proposed value of
LCG is 1.354m that is, 15 cm shift from its original position. In full scale, the shift
in LCG postion is 50 cm and calculated to have static trim angle of around 0.45

degrees. The shift in LCG improves the performance of the vessel by around 4 %
as given in Table 7.

4.3.2 Effect of Appendages

Moving forward with the model simplification tasks, this section presents the op-
timization studies carried out for 5 designs with and without appendages. This is
done to check the influence of the appendages on the vessel performance. 5 designs
are generated using Design of Experiment (SOBOL) by varying different design pa-
rameters. The results of these designs with and without appendages are given in
Table 8, the table is arranged chronologically with respect to drag values.

Absolute differences for forces and motion values are also presented in this table.
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Table 8: Effect of Appendages on Designs Performance

Designs With Appendages Without Appendages Absolute Difference
Drag Heave Pitch Drag Heave Pitch Drag Heave Pitch
(N) (cm) (Deg) (N) (cm) (deg) (N) (cm) (Deg)

Des0003 534.27 7.0842 -2.99 476.08 5.8328 -2.77 58.19 1.25 -0.22
Baseline 532.33 6.9755 -2.89 477.64 5.8468 -2.80 54.68 1.13 -0.10
Des0002 537.72 6.9682 -2.90 484.81 5.8924 -2.79 52.90 1.08 -0.11
Des0000 551.98 6.2163 -2.36 500.85 5.2414 -2.23 51.13 0.97 -0.13
Des0001 576.55 5.6768 -1.90 538.55 4.6621 -1.71 38.00 1.01 -0.19

Based on the observations, the effects of appendages can be seen to have an added
resistance effect. This added resistance varies from 30 to 50N for each design,
while averaging around 50N . Heave and pitch values also have same effects of
appendages, increase in heave by around 1 cm and pitch angle is reduced by 0.15
degrees. In contrast, taking into account appendages into simulations also requires
resolving the appendages with finer grid sizes. Simulation time with appendages
is 5 hours (Mesh 4) while without appendages is 3.5 hours (Mesh 3). Taking this
into account, the simulation studies are carried out without appendages and with
smaller simulation time. Ranking of designs for the simulated model with and
without appendages, remains same except for Des0003 and Baseline which are within
numerical uncertainty of 1 %.

4.3.3 Effect of Mesh Refinement

Similar studies are carried out for the effect of mesh size on the designs performance.
Mesh 4 from the convergence studies is compared with Mesh 2, solution values along
with absolute differences are presented in Table 9. The obtained results highlights
the same findings as for the effect of appendages. In contrary, using Mesh 2 decreases
the computational time to 2.5 Hrs from 5 Hrs. Absolute differences shows that both
of these meshes does not significantly alters the motion values, only the drag values
changes by 5 to 10N .

Table 9: Effect of Mesh Size on Designs Performance

Designs Mesh 2 Mesh 4 Absolute Difference
Drag Heave Pitch Drag Heave Pitch Drag Heave Pitch
(N) (cm) (Deg) (N) (cm) (deg) (N) (cm) (Deg)

Des0001 444.49 6.8078 3.31 434.25 6.8590 3.34 10.24 -0.05 -0.03
Des0003 446.40 6.6714 3.32 438.12 6.7170 3.35 8.28 -0.05 -0.03
Des0000 451.22 5.7720 3.22 445.34 5.8646 3.30 5.88 -0.09 -0.07
Des0002 468.86 4.5263 3.10 462.01 4.6536 3.17 6.85 -0.13 -0.07
Des0004 477.78 2.8527 2.94 468.38 3.1885 3.08 9.40 -0.34 -0.15
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4.4 Optimization Runs
For the optimization runs, various deterministic and stochastic methods are tested
and compared. Following mentioned points highlights the brief summary of the
optimization studies.

• Propeller thrust is the objective function for optimization while using body
force propeller method in CFD simulations.

• Initial baseline is modified with new tunnel geometry, the new geometry is
termed as ’Baseline’ for the context of optimization runs.

• For the new geometry shifting LCG 15cm aft, improves the performance by
4-5 %. Hence, before starting the conventional optimization runs around 5 %
thrust deduction is already achieved.

• In the following sections, the already improved design with shifted LCG and
new geometry is termed as ’Baseline’ and serves as the starting point of opti-
mization runs.

• Simplifications for the optimization runs are employed, this involves using
coarser grid and removing the appendages.

• The final set of best designs found out using different optimization techniques,
are back transformed to actual model with appendages and with finer grid size.

• Comparison for the total thrust reduction achieved by using different opti-
mization strategies against the time taken is shown.

4.4.1 Design of Experiment (SOBOL)

SOBOL is a method of Design of Experiment employed for exploration of the design
space. It is a good indicator of analyzing the correlations between the objective
function and different design variables. For the SOBOL analysis, 100 designs are
generated and computed with automated simulations setup. Figures 46 presents
some of the correlations for some design variables. The color of the plots highlights
the linear correlations and its strength. With red or orange shows increasing plots
of direct relationship and blue plot showing decreasing plots or inverse relationship.

It is also interested to see the effect of pitch, heave and drag values on the propeller
thrust. As expected from previous study, drag increases linearly with the increase
in thrust value. Also, higher pitch angles and rise is associated with lower thrust
values. More correlation plots are attached in Appendix E.
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Figure 46: Design of Experiment Analysis (SOBOL) - Correlations Plots

With all the simulated designs, the thrust values obtained is plotted in Figure 47.
The values are plotted as a function of percentage improvement against the baseline.
This analysis highlights the sophistication of the baseline, with more designs out-
performing the baseline shows that there is a significant room of improvement for
optimization. Very few designs out-performing the baseline shows that the baseline
is already sophisticated and there is very little room for improvement. It can be
presumed from this figure that quite a few number of designs out performed the
baseline and there is considerable room for improvement in terms of energy efficiency.

Figure 47: Design of Experiment Analysis (SOBOL)
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4.4.2 Deterministic Tangent Search (T-search)

While design of experiment is useful in analyzing the sophistication of the baseline,
it can also produce some relatively better designs as compared to initial geometry.
These designs can be termed as optimized designs from DOE analysis. Furthermore,
they can serve as a good starting point (initial condition) for the deterministic
optimization search. In this study, the focus is based on T-search (Tangent search)
method of deterministic (local) optimization.

The working of T-search model is based on the pattern search. It is a gradient
free optimization method. While staying in the feasible domain, it searches for the
pattern towards the nearest minimum of the function. The pattern search always
remains within the feasible domain (upper and lower limits of design variables).
If at some iteration it goes into the infeasible domain it returns to the currently
best or last design. The next design is searched along the tangent of the inequality
constraints. The pattern search although does not includes computing gradients, but
it is based on developing patterns by changing each design variable and analyzing
their influence on the objective function. After a pattern is developed, much larger
step in the proposed direction is undertaken to reach the best possible design.

This method is useful for finding local optimum. Nevertheless, it involves perturba-
tions of each design variable before finding a pattern. This leads to testing several
designs based on number of design variables. Figure 48 presents the T-search carried
out starting from design number 15 of the SOBOL optimization run. It involves 12
design variables out of 18 design variables tested originally. 6 design variables were
removed to reduce the computational time of T-search, and by analyzing the corre-
lation plots described previously. That is, the variables with little to no correlations
on the computed thrust were removed for T-search.

Figure 48: Deterministic Optimization - Tsearch from best design
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The T-search started from Des0015 of SOBOL which is 5% improved with respect to
the baseline, reaches the stopping criteria of maximum number of CFD iterations.
Figure 48, it can be seen that the perturbations of design variables is carried out
until 22th design iteration. After that, much larger step in the optimum direction is
undertaken. The final design of the T-search is 2.3 % better than its starting point,
and 8.3% better than the baseline of optimization start.

4.4.3 Surrogate Modeling

One of the potential task of this thesis was to explore the Machine Learning and
AI-based optimization strategies, also called as Surrogate Models. The surrogate
models uses the input data to train a model and make prediction of the new values.
In this context, two types of Machine Learning models are used that includes Kriging
and Artificial Neural Networks.

The input data for training is taken from the DOE results. The designs are dis-
tributed uniformly around the design space using SOBOL algorithm. Hence, this
data serves as a good training set for the model. The quality of the generated model
is often represented by its Coefficient of Performance (CoP) value. This value is cal-
culated by training the model with a larger portion of the data set while comparing
the predicted values with the remaining, but smaller portion of the data set. CoP
values of around 1 is desirable ideally, but most of the ML models have been found
to perform well with 95% performance or 0.95 CoP value.

Figure 49: Performance of Machine Learning Model - Data Filtering

As in any regression analysis there can be some outliers, which should be removed in
order to have better R2 value. The same is true for sophisticated Machine learning
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based models, Figure 49 presents the plots of CoP value of Kriging model with
complete data set taken from SOBOL runs, and with filtered data after removing
outliers. The outliers from the data is removed by writing a feature in CAESES
that iteratively takes a portion of the data set by increasing sample size. If the
performance is reduced by inserting a certain set of data (say designs 50-55), the
function then calculates the effect of each of these designs on CoP value. Hence,
removing the designs which are not well fitted with the Machine Learning model.

Table 10: Kriging and Artificial Neural Network (ANN) Performance - Filtered Data

CoP Value Function Value
# of Variants Kriging ANN Kriging ANN

40 0.8212 0.8034 218.42 219.5
50 0.8796 0.7902 218.42 220.39
60 0.8809 0.9398 218.42 214.13
70 0.8867 0.9095 218.42 217.56
80 0.9446 0.8014 218.42 220.95

The approach used for data filtration is robust but not very efficient for larger data
set. In this context, as the number of designs were limited to 100 it was feasible
to use this method. For larger data sets, there are python libraries and functions
that are being vastly used for data filtration. Table 10 presents the filtered data
and highlights the performance of each ML model with the increase in the number
of variants.

From this table, it can also be seen that the performance of kriging model improves
with the increasing sample size. In contrast, ANN performance as well as the pre-
dicted function value for the baseline varies significantly. This is due to different
working principle of each of them as explained in earlier sections. Everytime the
model is generated back from scratch, ANN shows slightly different values while
Kriging always predicts the same values for the given data set.

T-search based on Surrogate Model

After training the data set and having formed a good working Machine learning
model, optimization is carried out using this model. For the optimization, Kriging
based model is trained with around 90 design variants having filtered data and CoP
value of around 0.95 or 95 %. Figure 50 represents the results of the T-search carried
out using this model. To better visualize and make a comparison, the results of T-
search starting from Des0015 using Kriging model is plotted with previous results.
This includes the results of the initial SOBOL run, along with the T-search from
Des0015 carried out using CFD as previously shown in Figure 48.
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As compared to its CFD counterpart, the T-search based on Kriging model is rela-
tively faster and hundreds of designs can be computed in few minutes. Therefore,
the maximum number of evaluations for this model has been increased to 100 iter-
ations. This gives the optimizer more time to find various optimums. One of the
interesting feature highlighted in Figure 50 is the local plateau or minima found in
between 40-50 iterations. This minima is found out by both T-search, using CFD
and Kriging model. Variation of around 1 % is acceptable considering the CoP
value of the ML model. In comparison, CFD computations uses much larger time to
converge to the same design havig 8 - 9 % improvment against the baseline. If the
simulations are allowed to run more for CFD computations, the proposed T-search
is expected to find the same minima in 100 iterations. But, at the expense of several
hours of computations.

Figure 50: Surrogate based Tsearch - Comparison

Response Surface Optimization

Response Surface Optimization is another optimization genetic algorithm, it works
similar to previously described Machine learning model. The difference being that
it uses DAKOTA open-source libraries and creates a response surface for the op-
timization. Then, at the second step the genetic algorithm is run on the response
surface model to find the global optimum of the initial surrogate model.

The data to train the response surface model can either be an input data, as in this
case SOBOL. If the data is not provided, the optimizer will create a design pool
with minimum number of designs required for generating the model (which is equal
to 5 x Number of Design Variables). If the data set is not provided, design pool
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uses Latin-Hypercube Sampling (LHS) instead of SOBOL algorithm. LHS is also
another type of DOE tool works differently than SOBOL, but for same purpose of
exploring design space.

This work uses Response Surface Optimization with the data set previously gen-
erated with SOBOL. As an output, a new variant is created which has 11 % im-
provement against the baseline. The output result is also backed by running a CFD
simulation by the algorithm itself. This newly created variant lies on the same lo-
cation as the T-search from Kriging model between 60 to 90 iterations. To have
a better comparison, Figure 51 presents the results of DAKOTA in comparison to
previous optimization methods.

Figure 51: Response Surface Optimization (DAKOTA)- Comparison

4.4.4 KLE based Optimization

Another idea of decreasing the optimization time is to reduce the parametric dimen-
sional space. As described previously, deterministic optimization strategies such as
T-search uses several design iterations. These design iterations are the function
of number of design variables. In this work, special form of Principal Component
Analysis KLE is carried out to decrease the design space.

Table 11 presents the captured variance resulting from the PCA Analysis. 2500
samples are generated to train the PCA model, with 10000 points to resolve the
CAD for each design. Presented results indicates the captured variance with each
principal parameter. Three different columns shows the PCA analysis carried out
for hull and tunnel geometry separately, and then combined. It can be seen that
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by considering 3 principal parameters around 97% of variance of the original CAD
model can be captured. For this study, 4 principal parameter are retained and PCA
analysis of the combined model is used to further carry out the optimization studies.

Table 11: Principal Component Analysis , Captured Variance

Captured Variance
Principal Parameter For Hull For Tunnel Combined

1 56.78 77.58 51.00
2 82.04 92.56 81.54
3 98.03 97.56 97.10
4 98.67 98.65 97.92
5 99.10 99.16 98.41
6 99.34 99.52 98.76
7 99.46 99.77 98.96

With the reduced KLE model, design of experiment (DOE) studies are carried out
using SOBOL algorithm. The optimizer actually used 4 principal parameters as
the design variables and spread it throughout the design space. These principal
parameters are back transformed to actual design space to generate a CAD model
using linear back transformation. Figure 52 highlights the results of the SOBOL
runs carried out for KLE model. In Appendix E , correlation plots of KLE model is
shown. The correlations plots highlights same correlations shown by the full PCA
model, but with relatively less degrees of freedom and thus less number of designs.
The reduced KLE model can be used to perform T-search with principal parameters
and is expected to converge faster for only 4 variable. However, KLE based T-search
is out of the scope of this project.

Figure 52: Design of Experiment of Reduced (KLE) Model
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4.5 Comparison of Obtained Results
Having described different results obtained from various optimization methods, it
is also essential to compare each of them. The comparison is carried out in terms
of the efforts needed to obtain the optimum versus the quality of the optimized
design. This section presents the comparison of obtained optimized designs, for
both simplified setup and appended hull model with finer mesh.

4.5.1 Optimization Results for Simplified Model

Before proceeding with the comparison of obtained designs, the optimization frame-
work is extended to better analyze the design space and to search for the global
optimum. With the very fast optimization time of the trained surrogate model, it
is possible to run several T-search from various designs of SOBOL that are already
performing better. Figure 53 presents T-search from various starting points using
surrogate model.

Figure 53: T-search from various designs - Using Surrogate Model

All the other optimized designs taken from SOBOL, KLE or DAKOTA were vali-
dated or computed with simplified CFD model. To make a good comparison and
to check the validity of the trained surrogate model, optimized designs from sev-
eral T-search are validated with CFD computations. To do that, each of the best
converged design from Figure 53 is taken and CFD computations are performed
with the automated setup. The results of this study is given in Table 12. Indicated
results shows the behavior of the surrogate model which tries to over-predicts the
improvement for each of the design. It is also interesting to see that with CFD
model, other than the study that starts from the baseline, all the other optimization

54



Results and Discussion Master Thesis Report

tasks have shown almost same percentage difference. Improvement of around 10-11
% is given by each of the T-search, starting from various initial designs. Similar
orders of improvement is given by DAKOTA response surface model, highlighting
the possible presence of global optimum around this location.

Table 12: Validation of Surrogate-Based T-search with CFD

% Improvement
RSM Studies Results With Kriging Model With CFD Model
Starting from Baseline 91.21 93.13
Starting from Des0006 86.21 88.91
Starting from Des0015 88.11 90.05
Starting from Des0038 86.36 89.36
Starting from Des0070 89.13 90.39

Out of all these Surrogate based T-search designs, only one of them is chosen for
the final validation and comparison with other designs. While looking at the above
table, it seems preferable to take the results of Des0006 or Des0038. Nevertheless, as
mentioned earlier the present optimization is a single-objective optimization focusing
on the minimization of resistance only. This is directly link with the maximization of
Lift Forces. Taking this into account, the optimizer goes into direction to maximize
the surface area to create maximum lift forces. Thus, creating designs which are
good for power reduction but have poor see-keeping performances. As see-keeping
and stability analysis is out of the scope of this work, the designs which looks flatter
are removed from the optimized set of design.

((a)) Des0006 ((b)) Des0015

Figure 54: Comparison of two designs from T-search - Front View

Table 13 highlights the set of best designs obtained from various methods. Results
of surrogate models are already validated with CFD computations. Hence, all the
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obtained results can be compared with respect to optimization gain and correspond-
ing computational time associated with the optimization process. Along with the
table, an explanation of each obtained design is given here.

• 1st Optimized Design, also termed as new baseline for the optimization runs.
This design is the result of manipulating the tunnel geometry based on in-
tuitions to reduce wave making resistance, and shifting LCG towards aft to
realize the potential gain in terms of total resistance reduction.

• 2nd Optimized Design, comes from the resulting Design of Experiment (SOBOL)
analysis. By doing DOE analysis, some designs out-performing the baseline
were identified and the best out of them is taken for validation purposes.

• 3rd Optimized Design, utilizes the best of the previous SOBOL runs and start
a deterministic Tangent Search (T-search) to identify nearest local optimum.

• 4th Optimized Design, uses Response Surface Model to create a response sur-
face and predict the output using genetic algorithms. It also utilizes the data
set created from SOBOL runs.

• 5th Optimized Design, using the generated CFD data, a machine learning
model is trained to perform deterministic optimization. The process of kriging
is used and the trained model is much faster as compared to CFD computa-
tions, which were utilized by 3rd optimized design.

• 6th Optimized Design, utilized the reduced dimensional KLE based DOE anal-
ysis. With the reduced parameters, the requirement of testing several designs
has been reduced to few designs. With few design variables or principal pa-
rameters, complete design space is represented and the best design is taken
out of all designs.

• 7th Optimized Design, uses the reduced dimensional DOE data set to repeat
the same procedure of 4th best design.

Eventhough, these tested designs represents simplified model without appendages
and relatively coarser grid but the obtained results gives a good estimate of the actual
model results. This is because optimization is always a relative task with respect
to a fixed observation or design. By doing simplification and utilizing deligent
optimization and Machine learning algorithms, around 10% of reduction in propeller
thrust is highlighted. From Table 13, time taken for each optimization setup can be
seen. Most of the response surface and ML models requires a training set so that to
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make prediction of the objective function. Therefore, performing DOE analysis takes
most part of the optimization process with almost 200 Hrs (for computations only) in
this case. Depending on computational resources, design space can be reduced using
KLE expansion as shown previously. By doing so, with less expense of computational
resources a good design candidate can be found as in 6th or 7th design. It also comes
with the price of relatively lower improvement in the performance as compared to
full model.

Table 13: Optimization Results for Simplified Model

Optimized Design Optimization Methods Propeller Thrust Difference Time Taken
(N) (%) (Hrs)

1st New Baseline for Optimization 436.84 100 2.3
2nd Design of Exploration (SOBOL) 413.42 94.64 207
3rd Tsearch from 2nd 401.88 92.00 80.5
4th DAKOTA based on SOBOL 391.12 89.53 2.3 + 207 (Data set)
5th Tsearch-RSM 393.36 90.05 2.3 + 207 (Data set)
6th Design of Exploration (SOBOL) - KLE 415.56 95.13 46
7th DAKOTA - based on KLE 424.32 97.13 2.3 + 46 (Data set)

4.5.2 Optimization Gain for Appended Model

Previously shown results of the simplified model gives best performing design can-
didates for each methods. The simplification of the model by removing appendages
and using coarser grid, is based on the assumption that both of these have an ’added’
effect on the objective function. Therefore, relative improvement against a fixed de-
sign baseline should be same for appended and simplified model. This assumption
was useful in decreasing the turnaround time by a factor of 2 given in Table 13.
Without these assumptions, the time taken for the optimizations would be 2 times
the mentioned time.

To check the validity of these assumptions and test different design candidates.
Original baseline which was validated against tank tests is compared with all 7 best
possible design candidates. In Table 14, the comparison is made with ’Original
Baseline’ with initial LCG position. First optimized design which shows 4.92%
improvement in Thrust deduction, is the ’New Baseline’ for previous runs. All the
other optimized design candidates have shown same order of improvement as with
the simplified model. Optimization gains for this study using different methods
varies from 5 to 15 % reduction in thrust and hence engine power.

Based on the observed results, DAKOTA response surface based optimization out-
performs different candidates with 15.77% improvement with respect to baseline.
Pictures of the best design candidate is given in Figure 55, 56 and 57. Different
views of other design candidates are given in Appendix F. It is interesting to see
that all of these design variants computed from entirely different methods, have
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Table 14: Optimization Results for Fully Appended Model with Fine Mesh

Optimized Design
Original Baseline 1st 2nd 3rd 4th 5th 6th 7th Units

Thrust 520.4 494.78 448.6 440.76 434.64 438.34 452.04 487.3 N
RPMs 2280.29 2255.47 2204.2 2205.83 2205.12 2199.32 2206.72 2230.34 /s
Torque 24.44 23.46 21.42 21.196 20.9644 21.0506 21.54 22.84 N.m
Power 2.9180 2.7705 2.4721 2.4481 2.4205 2.4241 2.4888 2.6673 kW/motor
Pitch 3.67 4.214 3.83 4.57 4.556 5.01 3.65 4.19 deg
Heave 0.0792 0.0975 0.09 0.1038 0.1047 0.1134 0.0871 0.1267 m
LCG 1.504 1.354 1.354 1.354 1.354 1.354 1.354 1.354 m
% Improvement - 4.92 13.80 15.30 16.48 15.77 13.14 6.36 %

similar characteristics. This involves, presence of rocker at the aft, much flatter
sides of the transom besides tunnel, convexity of the keel line near bow part, and
smaller but shallow tunnels as shown.

((a)) Front View ((b)) Back View

Figure 55: Best Optimized Design Candidate - Using DAKOTA Response Surface

Figure 56: Best Optimized Design Candidate - Side View

Figure 57: Best Optimized Design Candidate - Bottom View

58



Chapter 5

Conclusion & Future Work

The motivation behind this thesis was to present a comprehensive study for the
simulation driven design of a High Speed Planing Craft optimization. Not only that,
but to introduce methods for the faster turn around time of simulation driven design
of a complex problem of planing hulls. The proposed methodology and subsequent
faster optimization techniques can be applied to any other case of SDD with minor
relevant changes.

Speeding-up the optimization tasks does not necessarily comes from faster optimiza-
tion strategies. But, diligently employed CFD methods for efficient and accurate
predictions in a shorter time, also plays an important role. This is true, because for
any data-driven optimization task large amount of data showing the effect of design
variables on the objective function is required. In this case, efficient CFD methods
employed for faster CFD predictions of the objective function is shown. Results
are verified using grid convergence studies and validated against tank tests results.
Presented results are found to have good convergence as well as validation against
experimental data that is, around 1 % difference of drag force and propeller thrust.

Automated software connection for faster optimization task is also one of the es-
sential method for speeding up SDD. Before starting the conventional optimization
runs, simplification of the numerical setup is exercised. It is shown that by using
a very simplified geometry along with a relatively coarser grid simplified model is
2 times faster as compared to actual complete setup. It is also essential to identify
that the importance of relative improvement against a baseline is more important
for the optimization task rather than quantifying the actual improvement at initial
stage. After finding a set of relatively improved designs, back transformation to
actual hull model helps in quantifying the actual improvement for the design.
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A set of optimized designs using different optimization methods are presented. These
optimization tasks utilizes various Design of Experiment and Exploitation tools.
These tasks are applied to fully parametric model as well as reduced dimensional
KLE model. Calculation of objective function or propeller thrust is carried out first
by using CFD, then by using data-driven algorithms trained on CFD data.

Performed set of optimized designs have shown improvement of between 5-15 % in
propeller thrust reduction. The amount of propeller thrust reduction that can be
achieved depends on the amount of time available for the optimization runs as for
any industrial applications. With limited computational resources available, KLE
based optimization can be carried out to produce an optimized design with few %
improvement (Optimized Design 6th and 7th in this case). If enough computational
resources are available, more detailed data-driven and response surface optimization
tasks presents good improvement in design performance. With designs 4th and 5th

shows the presence of global optimum of the optimization problem.

Speeding-up of simulation driven designs are successfully employed for the case of
high-speed planing hulls. Presented results shows significant improvements in the
propeller thrust reduction for planing vessels starting from the initial baseline. A set
of optimized design resulting from various data-driven and AI-based optimization
strategies can be selected for production and validation in tank tests. Current work
of optimization and simulation-driven design can be extended for any other complex
application with appropriate relevant changes.

5.1 Future Work
Although various optimization and speeding-up methods of SDD are already shown
in this work. Nevertheless, optimization is always an ongoing process. Some of the
future prospects of this work is to study following topics.

Using various deterministic optimization strategies other than T-search to find good
local or global optimum, and to compare the optimization time. Also, the work of
KLE based optimization, can be extended to perform design of exploitation after
SOBOL (DOE) analysis.

The concept of adjoint simulations is another strategy that is expected to be much
faster and efficient in terms of optimization. It uses calculation of sensitivities and
a primal solution to optimize the design. Though it is efficient but creating a CFD
code for adjoint simulations of movable (overset) grid is still a challenging task.
The use of parametric model with adjoint simulations, so called parametric-adjoint
simulations is another task to be studied in this context.
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Appendix A

Numerical Setup

Slip velocity blending direction is given by,

Bd = min(

(
Wall Distance

1.5 Prism Layer Thickness

)3

, 1) (A.1)

Force balance if the bubble is considered as sphere,
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Density of air-water mixture for VOF method,

ρ = ρair β + ρwater(1− β) (A.3)

Viscosity of air-water mixture using VOF method,

µ = µair β + µwater(1− β) (A.4)
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Governing equations for high resolution interface capturing scheme (HRIC) for VOF
method,

δρ
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+
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δxj

= 0 (A.5)
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Appendix B

Flowchart for PCA

Figure 58: Flowchart of the steps of PCA
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Appendix C

Wave Forcing Equation

Introducing wave forcing term at right hand side of momentum equation,

qϕ = −γρ(ϕ− ϕ∗) (C.1)

Wave forcing coefficient γisgivenby,

Wave forcing coefficient (γ) = −γo cos
2(
πx∗

2
) (C.2)
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Appendix D

Convergence Histories

((a)) For Instantaneous Drag Force ((b)) For Mean Drag Force

Figure 59: Convergence Histories for Drag Force

((a)) For Pitch ((b)) For Heave

Figure 60: Convergence Histories for Pitch and Heave
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Convergence Histories Master Thesis Report

Table 15: Validation Studies at different Speeds

Experimental Test CFD
Fr V (knots) RT (N) Trim (Deg) Heave (cm) V (knots) RT (N) Trim (Deg) Heave (cm)

0.2612 5.29 80.91 0.28
0.6790 13.75 318.19 3.46 13.75 316.90 3.28 0.90
0.8149 16.50 362.06 3.65 16.50 362.56 3.87 2.95
0.9507 19.25 403.47 3.92 19.25 411.99 4.58 5.17
1.0865 22.00 447.43 4.27 22.00 452.43 5.12 7.63
1.2223 24.75 481.70 4.34 24.75 485.82 5.19 9.41
1.3581 27.50 521.54 4.22 9.53 27.50 520.14 5.10 10.67
1.4940 30.25 560.32 4.19 30.25 556.39 4.95 11.61
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Appendix E

Correlation Plots

Figure 61: Design of Experiment Analysis (SOBOL) - Correlations Plots
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Correlation Plots Master Thesis Report

Figure 62: Design of Experiment Analysis (SOBOL) - Correlations Plots

Figure 63: Design of Experiment Analysis (SOBOL) - Correlations Plots - KLE
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Appendix F

Optimized Designs

((a)) Front View ((b)) Back View

Figure 64: 1st Optimized Design

Figure 65: 1st Optimized Design - Side View

Figure 66: 1st Optimized Design - Bottom View
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Optimized Designs Master Thesis Report

((a)) Front View ((b)) Back View

Figure 67: 2nd Optimized Design

Figure 68: 2nd Optimized Design - Side View

Figure 69: 2nd Optimized Design - Bottom View
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Optimized Designs Master Thesis Report

((a)) Front View ((b)) Back View

Figure 70: 3rd Optimized Design

Figure 71: 3rd Optimized Design - Side View

Figure 72: 3rd Optimized Design - Bottom View
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Optimized Designs Master Thesis Report

((a)) Front View ((b)) Back View

Figure 73: 5th Optimized Design

Figure 74: 5th Optimized Design - Side View

Figure 75: 5th Optimized Design - Bottom View
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Optimized Designs Master Thesis Report

((a)) Front View ((b)) Back View

Figure 76: 6th Optimized Design

Figure 77: 6th Optimized Design - Side View

Figure 78: 6th Optimized Design - Bottom View
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Appendix G

Baseline Results at Design Speed

Figure 79: Free Surface around the vessel

Figure 80: Free Surface around the vessel
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Baseline Results at Design Speed Master Thesis Report

Figure 81: Free Surface around the vessel

Figure 82: Pressure distribution with propeller disk
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Appendix H

Data Filtering

Table 16: Unfiltered Data for Surrogate Model

CoP Value Function Value
# of Variants Kriging ANN Kriging ANN

30 0.9049 0.613 218.42 221.36
35 0.8167 218.42
40 0.8889 0.786 218.42 223.47
45 0.9142 218.42
50 0.8499 0.7273 218.42 221.87
55 0.9168 218.42
60 0.8589 0.6525 218.42 213.08
65 0.9041 218.42
70 0.8604 0.6429 218.42 217.77
75 0.7673 218.42
80 0.8267 0.518 218.42 215.63
85 0.8309 218.42
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Appendix I

Validation Studies for 1st Variant
(New Baseline)

Figure 83: Validation Studies New Variant - Resistance

80



Validation Studies for 1st Variant (New Baseline) Master Thesis Report

Figure 84: Validation Studies New Variant - Pitch

Figure 85: Validation Studies New Variant - Heave
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Appendix J

Propeller-Open Water
Characteristics

Figure 86: Propeller Open Water Experimental Curves
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