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ABSTRACT

Electricity generation from renewable energy sources (RESs) is becoming increasingly
important for achieving EU emissions reduction targets. However, integrating high-level
RESs into the existing grid is a challenging task due to their fluctuating nature. Thus,
power systems need to become increasingly flexible in order to deal with unpredictable
renewable energy generation.

The aim of this work is to contribute to the development of relevant models for the sim-
ulation of the European power system and its short-term prospects. The study focuses
on the simulation of high renewable energy shares along with various flexibility options
(generation, transmission expansion and storage). The simulations are then used to train
machine learning models based on Artificial Neural Networks (ANNs). Results indicate
that ANNs can predict the main power system constraints and outcomes with good accu-
racy.

The generated models can be integrated into a more general system-dynamics model, thus
improving the representation of the power system operation and constraints.
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1. INTRODUCTION

One of the most researched challenges of the energy system focuses on the interactions
between centralized and decentralized power generation, as well as between different
energy sectors. As a result of this research, new concepts have emerged such as “Smart
Energy Systems” or “Integrated Energy Systems”.

Smart Energy Systems are able to integrate electricity, heating, cooling, gas and transport
sectors. This requires coordination between many sectors, such as electricity grids, district
heating and cooling grids, gas grids and different fuel infrastructures. However, modelling
these aspects in an integrated way is challenging. The high temporal and technical level
of detail required by energy system models may not be compatible with long-term energy
planning involving all relevant energy sectors [1]. Current solutions involve the use of
hybrid models which, based on the level of linking between models, are classified as
soft-linking and hard-linking.

A soft or hard linking means joining two or more codes in a coherent way to capture
different details present in their frameworks, in order to increase the strength of the as-
sessment. From a connectivity point of view, soft and hard linking differ in the existence
of feedback communication (soft) or the absence of it (hard) [2].

Soft-linking runs both models iteratively, keeping their complexities fairly intact. How-
ever, its computational efficiency is low, and its convergence is not guaranteed.

Hard-linking often implies a simplified description of one of the two models. The models
are integrated and solved in a simultaneous optimization. Its disadvantages include low
computational tractability, and non-applicability to models with divergent formulations.

Fig. 1.1. Model linking types [3]

The current thesis formulates an alternative approach in order to couple a power sys-
tem model (the EU Dispa-SET power system model) and a system dynamics model (the
MEDEAS model). This method relies on the creation of a surrogate model that approx-

1



imates the power system optimization results. In [4], surrogate models, also known as
metamodels or emulators, are defined as simplified approximations of more complex,
higher order models.

1.1. Flexibility assessment: State of The Art

The integration of higher shares of variable renewable energy (VRE), such as wind and
solar energy, in power systems is essential to decarbonise the power sector while still
meeting the energy demand. However, the forecast uncertainty and seasonal variability of
wind and solar energy are the main challenges for power systems operators and regulators
[5]. Hence, a need to increase the flexibility of the system arises in order to effectively
manage the high penetration of VREs.

Power system flexibility can be defined as the power system’s ability to respond to both
expected and unexpected changes in demand and supply [6]. Several flexibility mech-
anisms exist to address RES intermittency issues, such as dispatchable generation, grid
flexibility, energy storage, and demand integration:

• Conventional dispatchable generation is needed to meet the electricity demand not
covered by RES. This generation can also cope with a highly variable net load
profile when it is dynamically flexible [7].

• Grid flexibility describes the existence of a robust transmission network that bal-
ances supply and demand across wider balancing zones, as well as cross-border
interconnections that facilitate flexibility exchange between regions. It also refers
to the existence of advanced controls for improving communication among system
components [6].

• Energy storage systems are essentially used to modify the timing of power supply
by storing electricity at low rates and discharging it at higher rates. Due to their
ability to adjust their output and switch between charging and discharging modes,
storage systems can handle fluctuations and unpredictability well. While pumped
hydro storage continues to dominate electricity storage, future options can include
compressed air energy storage, batteries, or conversion to other energy carriers (e.g.
power-to-gas) [7].

• In terms of demand, it can either change in absolute terms (by increasing or de-
creasing given a certain elasticity) or shift over time to better match electricity sup-
ply. Examples include the operation of deferrable loads (e.g. washing machines),
devices related to heating, ventilation, and air-conditioning, and the charging of
electric vehicles in the future.

Insufficient flexibility may result in load shedding during periods of low VRE generation
and renewable energy curtailment during periods of high VRE generation [8]. These
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are often used as indicators in VRE integration analyses in order to assess a system’s
flexibility.

1.2. Objectives and Methodology

The goal of this master’s thesis is to integrate flexibility constraints into the low time-
resolution model MEDEAS. In order to do so, a surrogate model is created to predict
the adequacy and flexibility of the large-scale power system Dispa-SET and then imple-
mented into the least-detailed model MEDEAS. The flexibility mechanisms considered
in this work are: dispatchable generation, grid extension and electricity storage. The EU
power system case study is considered with a focus on a high share of renewables.

The surrogate model is a simple analytical model that mimics the input and output be-
haviour of the Dispa-SET system. For its development, computationally expensive sim-
ulations must be performed on a carefully selected set of samples [9]. First, a multi-
dimensional inputs space is created by varying the following key system characteristics:
flexible capacity, non-flexible capacity, storage, grid infrastructure and renewable pene-
tration. A Latin hypercube sampling is then defined to run the Dispa-SET model over this
inputs space.

For the surrogate model construction, machine learning techniques based on artificial
neural network (ANN) algorithms are developed to predict the key system performance
indicators, in this case curtailment and unserved energy, as a function of the system fea-
tures. The generated surrogate models can approximate the behaviour of the underlying
complex simulations with reasonable precision while being computationally cheaper to
evaluate [9]. They can be incorporated into the MEDEAS model, thus enhancing the
current flexibility integration.

Fig. 1.2. Dispa-SET and MEDEAS model integration [1]
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1.3. Contributions

This thesis has been developed using the Dispa-SET EU model [10]. Below is clarified
the personal contribution to the work:

• Improvement of the Dispa-SET model by adding the function adjust_ntc to the
repository.

• Design of experiment by running multiple variations of the model.

• Analysis and execution of the simulation from the HPC NIC5 from CÉCI 1.

• Development of a machine learning algorithm based on neural networks to train
surrogate models.

Most of the scripts and data used and generated are available at the following repository:
https://github.com/carlavidalm/Master_Thesis.

1.4. Thesis Outline

The present thesis is organized as follows:

• Chapter 2: Description of the Dispa-SET model, as well as its tools, methods and
techniques.

• Chapter 3: Creation of the dataset for training the surrogate model using Dispa-
SET.

• Chapter 4: Creation of a surrogate model with ANN that approximates the results
of the power system optimization Dispa-SET.

• Chapter 5: Overview description of the MEDEAS model, how flexibility is cur-
rently integrated and how it could be improved with the ANN regression model.

• Chapter 6: Conclusions and future work.

1https://www.ceci-hpc.be/
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2. DISPA-SET MODEL

2.1. Introduction

Dispa-SET is an open-source unit commitment and optimal dispatch model focused on
the balancing and flexibility problems in European grids with a high share of VRES. The
main purpose of using the Dispa-SET is to analyse large interconnected power systems
with a high level of detail. Other purposes applied to this work are the analysis of VRES
impacts on the power system, based on a high temporal resolution representation with sev-
eral flexibility options, as well as the consideration of technical constraints in the power
system.

Figure 2.1 illustrates the data flows and links within the modelling framework, which has
five main components: inputs, preprocessing, simulation, and outputs.

Fig. 2.1. Relational block diagram between elements in the simulation

The model is formulated as a Mixed Integer Linear Programming (MILP) or Linear Pro-
gramming (LP) problem. The pre and post-processing tools are written in Python and the
optimization tool is written in GAMS [11]. Input data is handled using .csv files.

The following sections are inspired by the Dispa-SET documentation [10].
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2.2. Objective function

The goal of the Dispa-SET model is to minimize the total power, heating and transporta-
tion system operational costs in order to distribute the total power demand among the
available generation units. Therefore, the MILP objective function is the overall genera-
tion cost over the optimization period and can be formulated as follows:

MinTotalS ystemCost =∑︂
u,i

(CostS tartU pi,u +CostS hutDowni,u) +∑︂
u,i

(CostRampU pi,u +CostRampDowni,u) +∑︂
u,i

CostFixedu ·Comittedi,u · TimeS tep +∑︂
u,i

CostVariablei,u · Poweri,u · TimeS tep +∑︂
hu,i

CostVariablei,u · Heati,u · TimeS tep +∑︂
l,i

PriceTransmissioni,l · Flowi,l · TimeS tep +∑︂
n,i

CostLoadS heddingi,n · S hedLoadi,n · TimeS tep +∑︂
n_th,i

CostHeatS lackn_th,i · HeatS lackn_th,i · TimeS tep +∑︂
n_h2,i

CostH2S lackn_h2,i · H2S lackn_h2,i · TimeS tep +∑︂
chp,i

CostVariablechp,i ·CHPPowerLossFactorchp,i · Heatchp,i · TimeS tep +∑︂
i,n

VOLLPower(LLMaxPower,i,n + LLMinPower,i,n) · TimeS tep +∑︂
i,n

0.8 · VOLLreserve(LL2U,i,n + LL2D,i,n + LL3D,i,n) · TimeS tep +∑︂
u,i

0.7 · VOLLRamp(LLRampUP,u,i + LLRampDown,u,i) · TimeS tep +∑︂
s,i

CostO f S pillage · S pillages,i

(2.1)

TotalSystemCost, expressed in EUR, is defined as the sum of different cost items:

• Fixed costs: whether the unit is on or off.

• Variable costs: based on the power output of the units.

• Start-up and shut-down costs.
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• Ramp-up and ramp-down costs.

• Shed load costs: due to necessary load shedding.

• Transmission costs: determined by the flow in the transmission lines.

• Loss of load costs: power exceeding the demand or not matching it, ramping and
reserve.

• Spillage costs: due to spillage in storage.

2.3. Demand balance

The main constraint to be met is the power supply–demand balance, for each period and
each zone, in the day-ahead market. Thus, the sum of the power generated by all the
units present in the node (including the power generated by the storage units) and the
power injected from neighbouring nodes is equal to the load in that node, plus the power
consumed for heat generation through P2H units and power consumed for energy storage,
minus the shed load.

∑︂
u

(Poweru,i · Locationu,n) +
∑︂

l

(Flowu,i · LineNodel,n)

= DemandDA,n,i + DemandFlex,n,i +
∑︂

s

(S torageInputs,i · Locations,n)+∑︂
p2h

(PowerConsumptionp2h,i · Locationp2h,i) − S hedLoadn,i − LLMaxPowern,i + LLMinPowern,i

(2.2)

2.4. Rolling Horizon

The mathematical problem could theoretically be solved for a whole year divided into
one-hour time steps. However, when attempting to solve the model with realistically
sized data sets, it would likely to become extremely computationally demanding. The
problem is therefore divided into smaller optimization problems that are run recursively
throughout the year.

An example of this is shown in Fig 2.2, in which both the optimization horizon and the
look-ahead (or overlap) period are one day. The initial values of the day j optimisation
are the final values of the previous day’s optimisation. A look-ahead period is modelled
and then discarded in order to avoid issues that may occur at the end of the optimization,
such as emptying the hydro reservoirs or starting low-cost but non-flexible power plants.
In this example, the optimization is performed for 48 hours, but only the first 24 hours are
conserved.
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Fig. 2.2. Principle of the rolling horizon optimisation [10]

The optimisation horizon and overlap values can be set in the Dispa-SET configuration
file. In this thesis, the Horizon length is set to 4 days (96 hours) and the overlap to 1 day
(24 hours).

2.5. Mid-Term Scheduling (MTS)

Because emptying the storage has a zero marginal cost, a non-constrained optimization
tends to leave the storage completely empty at the end of the optimisation horizon. For
that reason, a minimum storage level must be imposed at the last hour of each optimisation
horizon, which is typically a few days. Thus, the minimum storage level at the last hour is
an exogenous input. It can be obtained from a long-term scheduling optimization, which
is called Midterm Hydro-Thermal Scheduling (MTS).

MTS module represents a simplified version of the linear programming formulation used
to pre-allocate reservoir levels of large storage units which are then used as guidance
curves. It is especially relevant in systems with high shares of HDAM and HPHS.

The formulation used in this thesis is called Regional-MTS, in which MTS is run for the
selected zones simultaneously. MTS is achieved by relaxing the integer variables and re-
moving the following constraints, transforming the MILP problem into a LP formulation:

• Parameters and variables linked to the thermal sector (e.g. CHP units, thermal
storage and heating demands)

• Parameters and variables linked to power plant cycling (e.g. Start-up and shut-down
time, ramping rates, minimum up and down time, etc)

• Costs associated to the above-mentioned constraints

2.6. Dispa-SET EU model

The present thesis is based the Dispa-SET EU model, a case study of the EU. The follow-
ing sections describe the EU model inputs used in the simulations.
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2.6.1. Zones

All EU countries except Cyprus, Malta, and Luxembourg are covered in this thesis to-
gether with Norway, Switzerland, and the United Kingdom. Table 2.1 presents an overview
of countries and their country codes (ISO 3166).

Code Country Code Country
AT Austria IE Ireland
BE Belgium IT Italy
BG Bulgaria LT Lithuania
CH Switzerland LV Latvia
CZ Czech Republic NL Netherlands
DE Germany NO Norway
DK Denmark PL Poland
EE Estonia PT Portugal
EL Greece RO Romania
ES Spain SE Sweden
FI Finland SI Slovenia
FR France SK Slovakia
HR Croatia UK United Kingdom
HU Hungary

Table 2.1. Overview of countries and ISO Alpha 2 country codes

2.6.2. Technologies

The technologies considered in this study are listed in Table 2.2. Three columns are
used to classify technologies. The VRES column indicates the variable renewable tech-
nologies, the Storage column indicates the technologies that can store energy and the
Flexibility column indicates whether a technology is flexible, semi-flexible, or inflexible.

Variable renewable energies are considered inflexible because they are non-dispatchable
and depend on the intermittency of their resources.

On the other hand, reservoir-based hydroelectric facilities are considered semi-flexible, as
they have room for manoeuvre thanks to their reservoir storage. Steam turbines are also
classified as semi-flexible since they depend on the fuel used, for example, natural gas
would be more flexible than nuclear energy.

Note that only technologies related to electricity are considered. Heating and CHP units
are outside the scope of this thesis.
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Technology Description VRES Storage Flexibility
COMC Combined cycle N N F
GTUR Gas turbine N N F
ICEN Internal combustion engine N N F
STUR Steam turbine N N S
HDAM Conventional hydro dam N Y S
HROR Hydro run-of-river Y N I
HPHS Pumped hydro storage N Y S
WTOF Offshore wind turbine Y N I
WTON Onshore wind turbine Y N I
PHOT Solar photovoltaic Y N I
BATS Stationary batteries N Y F

Table 2.2. Overview of technologies

2.6.3. Fuel types and prices

Dispa-SET only considers a limited number of fuel types, which are summarized in Table
2.3.

Fuel Description
BIO Biofuels
GAS Gas
HRD Coal
LIG Lignite
NUC Nuclear energy
OIL Petroleum
PEA Peat Moss
GEO Geothermal steam
SUN Solar energy
WAT Hydro energy
WIN Wind energy
WST Energy from waste
OTH Other fuels and energy carriers

Table 2.3. Overview of fuel types

Different fuels can be used to power a given technology, e.g. steam turbines can be pow-
ered by almost any type of fuel. In Dispa-SET, each power plant unit must be defined
with the pair of values (Technology, Fuel).

Table 2.4 shows a summary of the fuel prices considered.
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Price
Nuclear 3
Black coal 10
Gas 80
Fuel-Oil 65
Biomass 10.08
Lignite 7.23
Peat 9.36

Table 2.4. Overview of fuel prices[EUR/MWh]

2.6.4. Power Plants database

In order to improve computational efficiency, some original units are clustered into larger
ones during pre-processing. As a result, the number of continuous and binary variables is
reduced and the simulation accuracy can, in some cases, be performed without significant
loss [10].

To generate the database of clustered power plants units, the get_capacities.py script of
the DispaSET SideTools is run. The power plants database has the following fields for all
units:

Description Field Name Units
Unit Name Unit -
Power Capacity (for the clustered unit) PowerCapacity MW
Nº of original units clustered Nunits -
Zone Zone -
Technology Technology -
Fuel Fuel -
Efficiency Efficiency %
Effciency at minimum load MinEfficiency %
Minimum up time MinUpTime h
Minimum down time MinDownTime h
Ramp up rate RampUpRate %/min
Ramp down rate RampDownRate %/min
Start up cost per unit StartUpCost_pu EUR
No load cost per unit NoLoadCost_pu EUR/h
Ramping cost RampingCost EUR/MWh
% of minimum nominal capacity PartLoadMin %
Start up time StartUpTime h
CO2 intensity CO2Intensity tCO2 /MWh

Table 2.5. Common fields for clustered units
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For BATS units, ramp up and down rates are set to 1 and all other parameters, except for
efficiency, are set to 0.

For storage units, there are some parameters that need to be defined. For other equipment,
these can be left blank.

Description Field Name Units
Storage capacity STOCapacity MWh
Self-discharge rate STOSelfDischarge %/d
Maximum charging power STOMaxChargingPower MW
Charging efficiency STOChargingEfficiency %

Table 2.6. Specific fields for clustered storage units

The discharge efficiency of a storage unit should be assigned to the common field Effi-
ciency. Likewise, the common field PowerCapacity is the nominal power in discharge
mode.

For BATS individual units, the number of hours that can discharge at its power capacity
before exhausting its energy capacity (Storage Capacity/Power Capacity) is fixed to 4.

In this thesis, the LP formulation for the optimization problem is used (i.e. without the
binary variables). In this case, the Ramp up and down rates are updated as follows:

RampU pRate = PartLoadMin ·
1

max (1; MinDownTime)
+⎛⎜⎜⎜⎜⎜⎜⎝1 − PartLoadMin ·

1

min
(︂

1
60 ; RampU pRate

)︂⎞⎟⎟⎟⎟⎟⎟⎠
RampDownRate = PartLoadMin ·

1
max (1; MinU pTime)

+⎛⎜⎜⎜⎜⎜⎜⎝1 − PartLoadMin ·
1

min
(︂

1
60 ; RampDownRate

)︂⎞⎟⎟⎟⎟⎟⎟⎠
2.6.5. Electricity Demand

Electricity demand time series of year 2019 is given per zone. It is assumed to be inelastic
to the price signal.

2.6.6. Renewable generation

The availability factor (AF) for RES is defined as the percentage of the nominal power
that can be generated each hour. It is provided as an hourly non-dimensional time series.
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This variable renewable generation is either fed to the grid or curtailed. The availability
factor for non-renewable technologies is 1.

2.6.7. Net Transfer Capacities (NTC)

The capacities of electricity transmission between countries are given as hourly time se-
ries and assumed constant for the whole year. They are based on the maximum of reported
historical capacities of 2019.

2.6.8. Input Prices

Price
Price of CO2 25
Price of Unserved Heat 84.21
Load Shedding Cost 1000
Price of Transmission 0
Price of Unserved H2 75
Curtailment Cost 20

Table 2.7. Overview of other prices [EUR/MWh]
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3. MULTIDIMENSIONAL INPUT SPACE FOR THE
SIMULATIONS

3.1. Introduction

The purpose of this chapter is to create the dataset for training the surrogate model. A
selection of the sample points within the design space is performed using a technique
known as design of experiments (DoE). At these selected points, a computationally ex-
pensive simulation is run, and the responses are recorded. In Chapter 4, these input/output
data are used to approximate the behaviour of the complex simulations by using a surro-
gate model [9].

3.2. Case study

As mentioned before, the EU power system is considered in Dispa-SET in order to create
and validate the surrogate model. The period for each simulation is one year, specifically,
2019.

To generate the dataset, power plant units are classified into five types: flexible units, slow
units, storage units, PV units and wind units.

The classification of conventional units into flexible and non-flexible units is based on
certain conditions. IRENA [6] defines flexible units as "units that can ramp up and down
quickly, have a low minimum operating level and fast start-up and shutdown times."

Units Fuel Condition
Flexunits GAS, HRD, OIL,

BIO, LIG, PEA,
NUC, GEO

PartLoadMin < 0.5 and TimeU pMin < 5 and
RampU pRate > 0.01

S lowunits PartLoadMin ≥ 0.5 or TimeU pMin ≥ 5 or
RampU pRate ≤ 0.01

Table 3.1. Flexible and slow units classification

In order to assess renewable penetration, onshore wind turbines and photovoltaic units
are considered among renewable sources, since wind and solar energies currently have
the highest potential [12]. The European Commission [13] states that, by 2030, the share
of wind and solar energy in electricity production capacity should double from 33% today
to 67%. By then, solar energy would also be the largest source of electricity in the EU,
while wind would account for 31% of installed capacity.

Regarding storage units, as the potential for more hydro units is rather limited in the EU,
only BATS units are considered.
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Units Fuel Technology
S torageunits OTH BATS
PVunits SUN PHOT
Windunits WIN WTON

Table 3.2. Storage, PV and wind units

In addition, three parameters of interest are calculated: the annual average Availability
Factor (AF) of onshore turbines and solar panels and the peak load.

Value Units
AFwton 0.2604 %
AFpv 0.1313 %
PeakLoad 440929.4125 MW

Table 3.3. Parameters

3.3. Design parameters

It is first necessary to define the input parameters for the simulations, which include six
unitless variables:

Capacity ratio [%]:

Capacityratio =
PowerCap f lexunits + PowerCapslowunits + PowerCapstorageunits

PeakLoad
(3.1)

Share flexibility [%]:

S hare f lex =
PowerCapacity f lexunits

PowerCapacity f lexunits + PowerCapacityslowunits
(3.2)

Share storage [%]:

S harestorage =
PowerCapacitystorageunits

PeakLoad
(3.3)

Share wind [%]:

S harewind =
PowerCapacitywindunits

PeakLoad
· AFwton (3.4)

Share pv [%]:

S harepv =
PowerCapacitypvunits

PeakLoad
· AFpv (3.5)

Rntc [%]: The Net Transfer Capacity Ratio is a parameter that takes into account the
effect of the capacity grid. It is calculated as follows:
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Each NTC between two countries (c and x) can be estimated as the mean of its value for
each hour of the horizon.

NTCc→x =
∑︂

h

NTCc→x,h

Nh
(3.6)

The NTC Ratio for each country can be defined as the sum of all the Net Transfer Capac-
ities of this country to others divided by its maximum load.

NTCc =

∑︁
x NTCc→x

Maxloadc
(3.7)

Each country is then weighted by its contribution according to its maximum load.

NTCc,weigthed = NTCc ·
MaxLoadc∑︁
c MaxLoadc

(3.8)

Finally, the NTC Ratio is calculated as the sum of the NTC Ratios of all the countries:

RNTC =
∑︂

c

NTCc,weighted (3.9)

The obtained values for one-year simulation are shown in Table 3.4:

Parameter Value
Capacity ratio 1.658
Share flexibility 0.417
Share storage 0.497
Share wind 0.106
Share pv 0.035
Rntc 0.282

Table 3.4. Input parameters

3.4. Design of experiments

Design of experiments (DoE) refers to the different methods of locating sample points in a
design space. The sample points should provide a good representation of the entire design
space, so that the surrogate model can accurately predict complex simulation responses
based on them [9]. Among all DOE methods, the Latin Hypercube Sampling (LHS) is
applied, which generates random samples uniformly distributed in a sample space.

The parameters provided in Table 3.4 are varied, combined, and an optimization is run
for each selected combination. A Latin hypercube sampling technique is used to avoid
intractable computational time and cover the input space of the optimization model. A
total amount of 2718 input parameter combinations are generated. The variation ranges
of each input are detailed in Table 3.5.
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Parameter Range
Capacity ratio 0.5-1.8
Share flexibility 0.01-0.99
Share storage 0-0.5
Share wind 0-0.5
Share pv 0.2-0.5
Rntc 0-0.7

Table 3.5. Input parameters ranges

For each simulation, the input parameters are used to adjust, i.e. increase or decrease, the
installed and storage capacity of the units as well as the Net Transfer Capacities. For this
purpose, the following functions are created in the Dispa-SET repository:

Flexible Capacity: The function adjust_flexibility modifies the power capacities of flexi-
ble and slow units in order to achieve the imposed flexibility ratio S hare f lex.

First, the current_total_cap is calculated as the sum of the power capacities of flexible
and slow units for the whole system. Thus, the target of flexible capacity can be defined
as:

target f lexible capacity = current_total_cap · S hare f lex (3.10)

The flexible capacity remained to reach the desired S hare f lex can be calculated as the
difference between the target f lexible capacity and power capacities of flexible units:

δ = target f lexible capacity − current_ f lex_cap = current_ f lex_cap · (S hare f lex − 1)
(3.11)

A dataframe is then created with the input zones (countries) as rows, and the follow-
ing columns: flex (PC f lexunits), slow (PCslowunits) , total (PC f lex+slow) and ratio (S hare f lex

current ratio).

The dataframe is sorted based on the ratio column in descending order. Then, a new
column cum_sum is added as the cumulative sum of the total column.

zones flex slow total ratio cum_sum
1
...
n

Table 3.6. Dataframe created in adjust_function

Finally, an algorithm loops through all the countries, by adding or subtracting the remain-
ing capacity value to the current ones, to ensure that the final S hare f lex is the desired one.
It works as follows:
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if δ > 0 then:
remain = δ
for z ∈ zones do

weight = totalz
current_total_cap− cum_sumz+totalz

added_cap = min(weight · remain, totalz − f lexz)
new_ f lex_capz = f lexz + added_cap
new_slow_capz = slowz − added_cap

end for
else if δ < 0 then:

remain = −δ
for z ∈ zones do

weight = totalz
current_total_cap−cum_sumz+totalz

removed_cap = min(weight · remain, f lexz)
new_ f lex_capz = f lexz − removed_cap
new_slow_capz = slowz + removed_cap

end for
else

new_ f lex_capz = f lexz

new_slow_capz = slowz

end if

Power Capacity: The function adjust_capacity modifies the installed capacities of the
units in the following table:

Units New Power Capacity [MW]
S torageunits PeakLoad · S harestorage

Windunits
PeakLoad·Cap_ratio·S harewind

AFwton

PVunits
PeakLoad·Cap_ratio·S harepv

AFpv

Table 3.7. New power capacities for wind, pv and storage units

Grid Capacity: The function adjust_ntc modifies the grid capacity by multiplying the
Rntc value to the actual NTC interconnection lines values between all countries:

New Grid Capacity [MW] = NTCc→x

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐↓

hours
−−−−−−−−−−−−−−−→⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ NTCc→x,h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ · RNTC

A folder is created for each simulation, whose name its combination of parameters:
cap_ratio - flex - sto - wind - pv - rntc. Inside are the required files to run the simula-
tion in GAMS.
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3.5. Output evaluation

The simulations are run on the HPC NIC5 cluster of the CÉCI (Consortium des Équipements
de Calcul Intensif ) hosted at the University of Liège. Parallel jobs are submitted, where
4 cores with 8000 MB each solve each simulation in GAMS at the same time. CPU time
per simulation ranges from 6 to 22 hours.

Finally, the simulations are read and the unfeasible ones are discarded. The remaining
ones are analysed and the parameters of interest in table 3.8 are extracted.

Parameter Unit Parameter Unit
Cost €/MWh Shedding TWh
Congestion h LostLoad TWh
PeakLoad MW CF gas %
MaxCurtailment MW CF nuc %
MaxLoadShedding MW CF wat %
Demand TWh CF win %
NetImports TWh CF sun %
Curtailment TWh

Table 3.8. Output parameters

Figure 3.1 presents an example of Curtailment on a dispatch plot from the first week of
July in Germany. It shows that a large amount of electricity is exported due to high wind
power generation. However, some of this energy has to be curtailed, coloured in red.

Fig. 3.1. Power dispatch plot for a week in July in Denmark

As mentioned before, the most common indicators to assess system flexibility are curtail-
ment and load shedding. Disa-SET considers the possibility of voluntary load shedding
as a result of contractual agreements between generators and consumers [10]. However,
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it also considers some variables, called lost loads, that represent the capacity that can-
not be provided by the system when the minimum or maximum power, reserve or ramp
constraints are reached. Lost loads are an expensive last resort of the system that is used
when no other options are available. The LostLoad parameter in Table 3.8 represents the
sum of all lost loads variables.

It is therefore necessary to replace the load shedding indicator with the ENS (Energy not
served) indicator, defined as the sum of load shedding and LostLoad, in order to evaluate
the lack of flexibility during periods of low VRE generation.

Since the main goal of this thesis is to assess the flexibility of the system, Curtailment
and Energy Not Served (ENS) are the two parameters to be predicted based on the input
parameters.

3.6. Dataframe generation

The six input parameters used to generate simulations are combined with those from the
Table 3.8 in order to generate the final DataFrame in .csv form.

The following Table 3.9 shows the parameters of the Dataframe which vary from each
simulation.

Parameter Unit Parameter Unit
Cost €/MWh CF nuc %
Congestion h CF wat %
PeakLoad MW CF win %
MaxCurtailment MW CF sun %
MaxLoadShedding MW Capacity ratio %
Demand TWh Share flex %
NetImports TWh Share sto %
Curtailment TWh Share Wind %
ENS TWh Share PV %
CF gas % Rntc %

Table 3.9. Dataframe parameters

The final simulation results can be found in the generated dispaset_results.csv of the au-
thor’s repository. The scripts and data used for the Dispa-SET EU simulations are avail-
able at: https://github.com/MPavicevic/DispaSET-SideTools/tree/Matijs/
dispaset_sidetools.
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4. SURROGATE MODEL CREATION AND VALIDATION

4.1. Introduction

This chapter describes the creation of a surrogate model using machine learning (ML)
algorithms. This model predicts the adequacy and flexibility of the EU-wide Dispa-SET
power system model, making it possible to couple it with the MEDEAS system dynamics
model.

4.2. Machine learning regression methods

The Artificial Neural Network (ANN) algorithm is used for fast parameter estimation
of curtailment and Energy not served (ENS). Although neural networks are well known
techniques for classification problems, they can also be applied to regression problems.
Regression ANNs predict an output variable as a function of the inputs. The input features
(independent variables) can be categorical or numeric types while the output must be a
numeric variable. Since the goal is to predict two output values, two neural networks are
developed in regression mode.

The input dataset used is the one obtained in Table 3.9 in Chapter 3. Each neural network
has the following structure, with X being the inputs and Y being the target:

i
X y

Capacity ratio Share flex Share sto Share wind Share PV Rntc ENS
1
...
n

Table 4.1. Dataframe for ENS

i
X y

Capacity ratio Share flex Share sto Share wind Share PV Rntc Curtailment
1
...
n

Table 4.2. Dataframe for Curtailment
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4.3. Neural Network architecture

Artificial Neural Networks (ANNs) are biologically inspired computational networks com-
posed of layers of nodes. Each node, or artificial neuron, is connected to another and has
an associated weight and threshold (or bias).

Among the different types of ANNs, this thesis focuses on multilayer perceptrons (MLPs),
based on a supervised learning algorithm. MLP architecture is a layered feed-forward
neural network, where neurons are arranged in consecutive layers, and the information
flows unidirectionally, from the input layer to the output layer, through the hidden layer(s).
Nodes of one layer are fully connected to all nodes of the adjacent layer.

Fig. 4.1. Artificial Neural Network [14]

4.3.1. Neurons

Neurons are the atomic units of a neural network and are arranged into layers. They
consist of two functions that work together: a linear and an activation function.

Linear function
The output of the linear function is the sum of the inputs, each multiplied by a coefficient
(or weight) plus the bias term.

z =
n∑︂

i=1

wixi + b (4.1)

Where xi are the inputs, wi are the weights and b is the bias term.

Activation function
The activation function is responsible for introducing a non-linearity between neurons.
It squashes (or limits) the amplitude of output signal into a finite value. For simplicity,
nodes from the same layer use the same activation function. There are many activation
functions, but the following are considered:

Rectified Linear (ReLU)
f (z) = max(z, 0) (4.2)

Hyperbolic Tangent (Tanh)

tanh(z) =
ez − e−z

ez + e−z (4.3)
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Figure 4.2 shows an example of a neuron with (x1, ..., xm) inputs and their corresponding
weights (w1, ...,wm), a bias (b) and the activation function applied to the weighted sum of
the inputs.

Fig. 4.2. Artificial Neuron [15]

4.3.2. Loss and cost function

The loss function is defined as the correction of the fit for a single observation within the
training set. The cost function (J) measures how well the model fits the training data as
the average loss over the entire training set.

For regression tasks, the most common cost functions are the Mean Squared Error (MSE)
and the Mean Absolute Error (MAE).

The MSE computes the mean of squares of errors between labels and predictions while
the MAE computes the mean of absolute difference between labels and predictions.

MS E =
∑︁N

i=1(yi − yî)2

N
(4.4)

MAE =
∑︁N

i=1 |yi − yî|

N
(4.5)

Where N is the number of training samples in a set, ŷ is the predicted value and y is the
actual target value.

The MAE is used as the loss function.

4.3.3. Forward propagation

It is the process that calculates and stores intermediate variables (including the target
value) using the features present in a single observation in order from the input layer to
the output layer. For the first training example, biases are typically initialised to 0 and
weights to values from a normal distribution N(0,1).
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4.3.4. Back propagation

Once forward propagation is completed, the network predictions for each data point (ŷ)
are obtained. As the target value of each data point is also known (y), the network error
can be estimated using the cost function.

For the neural network to learn, the network error signal must be propagated backwards
through the network layers from the last to the first, updating the weights and biases of the
network as the signal travels. Mathematically, the cost function (J) must be minimized by
fine-tuning the weights and biases. This process is known as Gradient Descent algorithm.

This method calculates the gradient of the cost function with respect to all the parameters
to update within the network (∂J

∂θ
). Gradients of each variable can be calculated using the

chain rule and gradients of above layers.

Once the gradient of the variable is known, the Gradient Descent algorithm iteratively up-
dates its value using the gradient at the current position (direction of the steepest descent),
then scales it (by a learning rate α) and subtracts the obtained value from the current po-
sition (makes a step). This process can be expressed as:

θt+1 = θt − α ·
∂J
∂θt

(4.6)

Where θ is the variable to be modified during the optimization of the model which can be
weights or biases.

The Gradient Descent repeats this update until the cost function converges. Note that, in
this case, the model update is performed only after all training examples are evaluated,
since the cost function sums the error for each point within training set. This is known as
Batch Gradient Descent as it has only one batch of the size of the training set.

Fig. 4.3. Gradient Descent algorithm [16]

24



There are two other types of Gradient Descent based on the batch size:

Stochastic gradient descent (SGD): The batch size is of one training sample, meaning
that it updates each training example’s parameters one at a time.

Mini-batch gradient descent: It combines both batch and stochastic gradient descent. It
splits the training dataset into small batches and updates each batch separately. The batch
size is between one and the size of the training set.

4.3.5. Batch size and number of epochs

These two hyperparameters must be specified in the algorithm. The batch size is the
number of samples processed before the model update while the number of epochs is the
number of complete passes through the entire training dataset.

4.3.6. Learning rate

The learning rate α is an important hyperparameter which scales the gradient and thus
controls the step size. It has a strong influence on performance and its value is usually
between 0.0 and 1.0.

High learning rates result in larger step sizes, but there is a risk that the model converges
too quickly to a suboptimal solution. On the other hand, low learning rates have the ad-
vantage of higher accuracy, but compromise overall efficiency as they are computationally
expensive.

Fig. 4.4. High and low learning rates [16]

4.3.7. Other optimization algorithms

Gradient descent can run into certain problems during training that can slow down the
learning process or, in the worst case, even prevent the optimal weights from being found.
These are saddle points and local minima, that is, when the cost function becomes flat
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at this point, and its gradient approaches zero. Gradients close to zero do not improve
weight parameters and impede the entire learning process. [17]

Three optimization algorithms are used to solve these problems:

Gradient descent with Momentum
Momentum is a method that speeds up gradient descent in the relevant direction thus lead-
ing to faster converging. It can be defined as the moving average over the past gradients
and then use it to update the weights of the network. This could be written as follows:

vt = β · vt−1 + (1 − β) ·
∂J
∂θt

θt+1 = θt − α · vt

(4.7)

The momentum term comes from an analogy to physics. One can think of the derivative
terms ( ∂J

∂θt
) as providing acceleration to a ball rolling downhill and the momentum terms

(vt−1) as the velocity. Finally, the momentum parameter (β) can be considered as a friction
that "slows down" the velocity. The most common value for this hyperparameter is 0.9,
which is the value employed.

The saddle points and local minima become less critical for gradients when using the
momentum term, since the step size toward the global minimum now depends not only
on the slope of the cost function (α), but also on the cumulative velocity over time (vt).

RMSProp Algorithm
Through the multidimensional space represented by the network’s weights, RMProp al-
gorithm can accelerate gradient descent in some directions, and dampen oscillations in
others.

dθt =
∂J
∂θt

vt = β · vt−1 + (1 − β) · dθ2t

θt+1 = θt − α ·
dθt
√

vt + ϵ

(4.8)

Adam optimizer
Adam (derived from adaptive moment estimation) is one of the best optimization algo-
rithms. It combines the best properties of Momentum and RMSProp algorithms.

dθt =
∂J
∂θt

mt = β1 · mt−1 + (1 − β1) · dθt
vt = β2 · vt−1 + (1 − β2) · dθ2t

θt+1 = θt − α ·
mt
√

vt + ϵ

(4.9)
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4.4. Frameworks

TensorFlow is an open-source deep learning library developed by Google used to build
deep neural networks. A computation graph (or graph) is the basic unit of computation in
TensorFlow. It is a series of TensorFlow operations arranged into a graph of nodes. The
nodes of the graph represent the mathematical operations covered so far, while the edges
between these nodes represent the multidimensional data arrays (or tensors). Given a loss
function and a neural network defined as a graph, TensorFlow can compute gradients for
the network and optimize the graph by minimizing the loss function.

Keras is a high-level API written in Python, running on top of TensorFlow. Designed to
enable fast experimentation, Keras allows to quickly iterate through model architecture in
an easier way.

Scikit-learn is an open source data analysis library that offers a selection of efficient tools
for machine learning and statistical modeling.

4.5. Training, validation and test datasets

In order to avoid overfitting, the data is shuffled and then split into three sets, each with
its respective percentage in parenthesis:

Training set (70%) It is used to train the network.

Validation set (10%) It is used to find the best hyperparameters and to measure overfit-
ting. After every epoch, a prediction is made on the validation set to monitor the overfit-
ting and to know when the training process is completed.

Test set (20%) Once training is complete, the test set is used to measure the model per-
formance on a dataset that the network has not seen.

4.6. Data pre-processing

DataFrame inputs cover different ranges. Some ML algorithms are highly sensitive to
these features and therefore the variable with the larger scale totally dominates when
trying to predict the trend. These include machine learning algorithms that use gradient
descent as an optimization technique or those that calculate distances between data. Thus,
feature scaling needs to be performed on the input variables.

However, scaling output variables must also be considered if there are big differences in
terms of scale. A target variable with a large range of values may result in large error gra-
dient values, causing weight values to change dramatically, and thus making the learning
process unstable. By reducing the scale of the target variable, the size of the gradient used
to update the weights is reduced, resulting in a more stable model and training process.
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As shown in Table 4.3, the magnitude of dataset range for each target variable is quite
large, requiring scaling the output variables.

Target Unit Mean Standard deviation Min Max
Curtailment TWh 1351.0738 1066.5681 0.0228 5572.3302
ENS TWh 53.0120 29.9609 0.0035 157.2003

Table 4.3. Statistical description of target values

The most commonly used feature scaling techniques are Min-Max Normalization (MMN)
and Z-Score normalization or standardization (ZSN). MMN rescales the dataset so that
each value ranges between 0 and 1 while ZSN rescales the dataset to have zero mean and
unit variance.

Normalization is appropriate when the data does not follow a Gaussian distribution. As
neural networks do not assume any data distribution, this pre-processing transformation
is used.

Xnew =
Xi − min(X)

max(X) − min(X)
(4.10)

Preprocessing.MinMaxScaler() function in the sklearn library allows to scale each feature
between 0 and 1.

4.7. Structure of MLP

Keras uses an instance of a model object to contain a neural network. The neural network
is defined using a Sequential model which consists of a linear stack of layer objects, each
with an input and output tensor.

Input layer shape
The shape of the input matrix is (Number of data observations x Number of features). It
is possible to define the number of observations in a dataset using None as a placeholder,
which means that the dimension can take any integer value.

Hidden layer(s) shape
The number of hidden layers is an hyperparameter to tune, as well as the nodes within
these layers. The shape of the first hidden layer would be (Number of features x Number
of neurons of the HL).

Output layer shape
A single neuron comprises the output layer that, by using the inputs from the last hidden
layer, predicts a single output value for each observation (ŷ).
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4.8. Bias and variance

Bias-variance trade-off is a fundamental principle for understanding the generalization of
traditional predictive learning models.

• Bias error. It refers to the error introduced by the model due to its erroneous
assumptions.

• Variance error. It refers to the error that is introduced by the sensitivity to fluctu-
ations in the training set.

The bias-variance trade-off predicts that as model complexity increases, bias decreases
and variance increases, leading to a U-shaped test error curve. However, recent empiri-
cal studies with over-parameterized neural networks show that the test error curve does
not conform to the classical U-shape: the test error decreases as networks become wider.
There is evidence that both bias and variance decrease as the number of parameters in-
crease in common classification and regression settings [18].

As a result, the trade-off between bias and variance can be overcome in deep neural net-
works so that bias and variance can be manipulated independently. An overview of how
bias and variance errors can be controlled in a deep neural network is given below.

• High bias: High error rate when predicting on the training set, i.e. the model is not
fitting the data well. To reduce the bias, the network architecture may need to be
changed by adding layers, neurons, or both.

• High variance: Low bias error means that a network fits the training data well.
However, if the validation error exceeds the test error, the network is overfitting.
Adding data and regularization to the network are the best ways to reduce vari-
ance. Among the most common regularization techniques, such as L2 regulariza-
tion, batch normalization or dropout, the latter is used.

4.9. Regularization techniques: Dropout

Dropout is a regularization technique in which randomly selected neurons are “dropped-
out” during training. Dropping a unit out means temporarily removing it from the net-
work, as well as its incoming and outgoing connections. The presence of other hidden
units becomes unreliable as a result of dropout, preventing co-adaptation [19].

Applying dropout is equivalent to sample an exponential number of different "thinned"
networks during training. A thinned network consists of all the units that weren’t re-
moved. The probability p of retaining a unit during training is an hyperparameter to be
considered.
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(a) Standard Neural Network (b) Neural Network after applying dropout

Fig. 4.5. Dropout technique [19]

At test time, the outgoing weights of that unit are scaled down by multiplying them by p.
This single "unthinned" network with smaller weights approximates the effect of averag-
ing the predictions of the “thinned” networks.

Dropout can be implemented on any hidden layer(s) or the input layer. In this study,
dropout is implemented on all hidden layers by adding a Dropout layer in the Sequential
model after each hidden layer. The Dropout layer takes a dropout rate as an argument,
which is defined as the fraction of the input units to drop (1-p). This is an hyperparameter
to be tuned.

4.10. Hyperparameter tuning

Deep Neural Network (DNN) models learn the values of their parameters, such as con-
nection weights and bias, from training data. Model learning or training is the process
of determining their values from the data. However, there are a few high-level parame-
ters called hyperparameters whose values cannot be learned from the data and have to be
defined beforehand.

Hyperparameters control both the training process and the topology of an ML model,
which can have a significant impact on the ML program’s performance. There are two
types of hyperparameters:

• Model hyperparameters: These influence model selection, such as the number
and width of hidden layers.

• Algorithm hyperparameters: These influence the quality and speed of the learn-
ing algorithm, such as the learning rate or the batch size.

The Keras Tuner library is used to find the optimal set of hyperparameters, which is called
hyperparameter tuning or hypertuning.
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4.10.1. Model building function

A build_model function must first be written, which takes an hp argument to define the
hyperparameters and returns a compiled Keras model. The hp object is an instance of the
Keras Tuner HyperParameters class and specifies the range of hyperparameter values by
three methods: hp.Choice, hp.Int and hp.Float.

The hyperparameters selected for the ANN model and their ranges are shown in Table
4.4.

Hyperparameter Name Type Interval/step or Values

Network
Number of hidden layers Int [1-2]/1
Learning rate Float [0.0001-0.01]/log
Optimizer Choice SDG,rmsprop,adam

Hidden Layer
Number of units Int [32-512]/32
Dropout rate Int [0.5-0.8]/0.1
Activation function Choice relu, tanh

Table 4.4. Selected hyperparameters

The build_model function builds one of the models from the search space using the Hy-
perParameters object.

4.10.2. Tuners

The Keras Tuner library provides the Tuner class to manage the hyperparameter search
process. Tuner subclasses include RandomSearch, Hyperband, and BayesianOptimiza-
tion for widely used tuning algorithms. By using these algorithms, good hyperparameter
settings can be found in fewer trials and without running all possible combinations (i.e.
Grid Search).

Random Search
This tuner randomly picks different combinations from all possible hyperparameter com-
binations in order to find a good fit. Compared to Grid Search, Random Search allows
exploring more hyperparameter space in less time.

Hyperband
This tuner focuses on speeding up Random Search through adaptive resource allocation
and early stopping. The algorithm trains a large number of random models for a few
epochs (less than the maximum) and carries forward the best performing models to the
next round. Iteratively, the number of candidate models decreases and their resources
(epochs) increase. Lastly, the final candidates are fully trained and evaluated. Algorithm
input parameters to set are:

• max_epochs: The maximum number of epochs to allocate to a single model. It
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should be slightly higher than the largest model’s expected convergence epochs.

• factor: Factor that reduces the number of models and increases the number of
epochs. It is set to the default value, 3.

The number of models to train is calculated as: 1 + log f actor max_epochs rounded up.

During training the early stopping technique is used by calling the callback object keras.
callbacks.EarlyStopping (monitor=’val_loss’, patience=5) from the Keras tuner library.
The training stops if the ’val_loss’ doesn’t improve in 5 epochs.

Bayesian
In contrast to random search and hyperband, Bayesian optimization takes previous evalu-
ations into account when choosing the next set of hyperparameters to evaluate.

Initially, the algorithm randomly chooses some hyperparameter combinations and then,
based on their performances, it uses Bayes theorem to select the next best candidate. The
last step is repeated iteratively until the tuner reaches optimal hyperparameters or exhausts
all trials allowed.

Figure 4.6 shows how some different search algorithms mentioned fill in the hyperparam-
eter space. The colour gradient of the points indicates the order of the search, from black
to yellow to orange.

Fig. 4.6. Comparison of hyperparameter search methods [20]

The most important arguments for both Random Search and Bayesian tuners are:

• max_trials: Number of trials (hyperparameter combinations) to execute during the
search. It is set to 16.

• executions_per_trial: Number of times to execute each trial. Given the stochastic
nature of the Gradient Descent optimization algorithms, results may vary when
rerun the same model. Multiple executions per trial reduce variance and enable a
more accurate assessment of the model’s performance. It is set to 3.

To instantiate any of the tuners, two common arguments must be passed: hypermodel
and objective. For the first one, the build_model function is set, which returns a model
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instance. As for the second one, the ’val_loss’ string is passed since the tuner needs to
minimize the validation loss. All three tuners are used and their selected optimal hyper-
parameters are compared.

4.10.3. Hyperparameter tuning process

The method tuner.search() is called, which performs a search for best hyperparameter
configuations. For each trial, the tuner trains the model on the training set obtaining its
optimized weights (parameters) and it is then evaluated in the validation set. Below is a
small scheme of what happens during hyperparameter optimization.

Fig. 4.7. Hyperparameter optimization [21]

However, two training hyperparameters, the batch size and the number of epochs, must
be set before training. The batch size is set to 32, the default value, which generally gives
good results [22]. For the number of epochs, it can be initialized to a large number, such
as 300, and visualize through the learning curves at what epoch the validation loss value
stabilizes. By calling keras.callbacks.Tensorboard during the search, the learning curves
of the trials can be visualised through tensorboard. In order to determine the epochs
parameter, 6 trials are run.

(a) Graph for Curtailment (b) Graph for ENS

Fig. 4.8. Validation loss curves

The plots in Figure 4.8 shows that the value of ’val_loss’ for the best trials stabilizes
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approximately at epoch 150 for both Curtailment and ENS. For this reason, this is the
value employed for the searching.

Once the searching is completed, the tuner.get_best_models (num_models=1) method re-
turns the best model based on the tuner’s objective. The model is loaded at its best epoch
evaluated on the validation set.

At the same time, the tuner.get_best_hyperparameters (num_trials=1) returns the hyper-
parameters of the best model. The following tables 4.5 and 4.6 break down the hyperpa-
rameter results for each optimizer:

Hyperparameter Random Search Hyperband Bayesian
Number of hidden layers 1 1 1
Learning rate 0.00176 0.00287 0.00079
Optimizer adam sgd adam
Units Hidden Layer 1 480 448 512
Dropout Hidden Layer 1 0.6 0.6 0.5
Activation Hidden Layer 1 relu relu relu

Table 4.5. Optimal hyperparameters for Curtailment

Hyperparameter Random Search Hyperband Bayesian
Number of hidden layers 1 1 1
Learning rate 0.00176 0.00101 0.00170
Optimizer adam adam adam
Units Hidden Layer 1 480 288 512
Dropout Hidden Layer 1 0.6 0.7 0.5
Activation Hidden Layer 1 relu relu relu

Table 4.6. Optimal hyperparameters for ENS

4.11. Validation

For best performance, it is recommended to retrain the model on the entire dataset (both
validation and training set). In order to do so, the best model should be reinstantiated with
the best hyperparameters and then trained. Theoretically, more training data will make the
final model more generalizable to new data.

The retrained model is saved at its best epoch in a checkpoint file so that it can be loaded
later. This is done by calling the callback keras.callbacks.ModelCheckpoint() when train-
ing using model.fit().

Finally, the final model performance is measured using the test set. Figure 4.9 shows a
scheme of the hyperparameter tuning process followed.
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Fig. 4.9. Hyperparameter tuning process. Figure inspired by [23]

Since the target values were scaled during pre-processing, predictions should be scaled
back. This is achieved by using the inverse_transform function from scikit-learn library.

Four performance metrics are used to evaluate the model prediction: MAE, MSE, RMSE,
and R2.

Root Mean Squared Error (RMSE): Square root of mean squared error.

RMS E =
√

MS E =

√︄∑︁N
i=1(yi − yî)2

N
(4.11)

Coefficient of determination (R2) : Statistical measure that defines the percentage of vari-
ance in the dependent variable (target) that can be explained by the independent variables
(features) in a regression model. In other words, it measures the goodness of fit of a
model, i.e. how well the regression model fits the data.

It is calculated by dividing the sum of squares of the residuals (SSQ) of the regression
model by the total sum of squares (SST) of the mean model and subtracting 1. Values
range from 0 to 1.

R2 = 1 −
S S R
S S T

= 1 −
∑︁N

i=1(yi − yî)2∑︁N
i=1(yi − ȳ2)

(4.12)

Metrics are calculated using both normalized and rescaled predictions. The following
tables 4.7 and 4.8 show the metric values obtained for both scales:

Scaled Test data Non-scaled Test data
MAE MSE RMSE R2 MAE MSE RMSE R2

Random Search 0.04136 0.01107 0.10523 0.69735 230.454 343838.661 586.378 0.69735
Hyperband 0.04336 0.01362 0.11671 0.62772 241.616 422941.666 650.340 0.62772
Bayesian 0.03886 0.01064 0.10314 0.70924 216.527 330327.794 574.742 0.70924

Table 4.7. Statistical metrics for Curtailment
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Scaled Test data Non-scaled Test data
MAE MSE RMSE R2 MAE MSE RMSE R2

Random Search 0.05700 0.01552 0.12458 0.56441 8.959 383.518 19.584 0.56441
Hyperband 0.05740 0.01558 0.12482 0.56275 9.024 384.984 19.621 0.56275
Bayesian 0.05632 0.01573 0.12544 0.55840 8.853 388.813 19.718 0.55840

Table 4.8. Statistical metrics for ENS

As a result of the increased range of the scale, the MAE, MSE, and RMSE errors in the
original scale are larger than in the normalized values. Nevertheless, the results show
good metrics for both Curtailment and ENS.

Bayesian optimization returns the lowest error metrics and the highest R2 coefficient for
Curtailment. As for ENS, bayesian optimization provides the lowest MAE error while
random search optimizer provides the highest R2. However, it does not necessarily mean
that the bayesian tuner should always be used. Tables 4.5 and 4.6 show some discrepan-
cies in hyperparameters selected by each of the tuners.

For Curtailment (Table 4.5), the number of hidden layers and the activation function of
the first layer are the same across all three tuners. For ENS (Table 4.4), they also agree on
the optimizer. As a result, the hyperparameters that are common to all three tuners have a
greater effect on the loss function than the others.

Figures 4.10 and 4.11 illustrate the results obtained through Bayesian optimization.

Figure 4.10 illustrates the loss curves during testing, with the testing curve being lower
than the training curve. This occurs due to the dropout regularization mechanism. At
training time, the network does not operate at full capacity, resulting in a high training
loss. At test time, the dropout is turned off, resulting in a lower test loss. Moreover, as the
model changes over time, the loss in the first batches of an epoch is usually larger than in
later batches. The testing loss for an epoch is therefore calculated using the model at the
end of the epoch, which results in a lower loss [24].

(a) Graph for Curtailment (b) Graph for ENS

Fig. 4.10. Testing and training loss curves

Figure 4.11 shows scatter matrices for (a) curtailment and (b) energy not served. These
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matrices plot the design variables in relation to each other and to the target value. Ap-
parently, there is no cross-correlation between the features, which means that the Latin
Hypercube technique is effective. However, scatter plots between target values and vari-
ables reveal some trends.

Curtailment (a) generally increases with share_pv, share_wind and capacity ratio vari-
ables. On the other hand, Energy not served (b) shows a decreasing trend with decreasing
share_sto and rNTC.

(a) Matrix plot for Curtailment

(b) Matrix plot for ENS

Fig. 4.11. Matrices plots

4.12. Regression results

Regression plots are generated by loading the best model from the checkpoint file and
evaluating it in a series of test sets. Each test set is calculated by varying two input
parameters, e.g. Share flex and Share sto, while keeping the others constant. Therefore, it
is possible to predict target values as a function of two variables.

Figure 4.12 shows four Curtailment plots generated by combining the following input
parameters: Share wind, Share pv, Share flex, rNTC and Capacity factor.
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Figures (a) and (b) show that the curtailment increases as the Capacity factor, Share wind
and Share pv increase, since the system flexibility remains unchanged.

Alternatively, figure (c) shows that curtailment decreases as system flexibility increases
for a given level of Share pv. Thus, the maximum level of curtailment occurs when Share
pv is at its maximum and Share flex is at its minimum. Similarly, Figure (d) illustrates
that curtailment decreases with increasing flexiblity through grid extension.

(a) Curtailment vs Share wind and Share
pv

(b) Curtailment vs Share wind and
Capacity ratio

(c) Curtailment vs Share pv and Share flex (d) Curtailment vs Share wind and rNTC

Fig. 4.12. Curtailment plots

Likewise, in Figure 4.13, four plots are generated for the ENS by combining the same
input parameters as in Curtailment.

Figures (a) and (b) show that ENS tends to increase as the Capacity factor, Share wind
and Share pv decreases.

On the other hand, Figures (c) and (d) show that as flexibility of the system increases
through rNTC and Share flex parameters, ENS decrease. ENS reaches its maximum when
RES generation and system flexibility are lower.
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(a) ENS vs Capacity ratio and Share pv (b) ENS vs Share pv and Share wind

(c) ENS vs Share flex and rNTC (d) ENS vs Capacity ratio and rNTC

Fig. 4.13. ENS plots

As illustrated in Figures 4.12 and 4.13, there is no linear relationship between the vari-
ables. Due to this non-linearity, neural networks appear to be a good option when predict-
ing flexibility indicators, since a linear regression would not be able to predict the values
accurately.
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5. MEDEAS MODEL

5.1. Introduction

This chapter includes an overview description of the MEDEAS model and its framework.
The major limitation of MEDEAS is the low temporal resolution, which prevents a proper
flexibility assessment such as the computation of the excess renewable energy or the lack
of peak capacity. The main solution presented is based on the integration of the surrogate
model into MEDEAS. Although such integration has not been addressed in this work,
this chapter evaluates how the management of curtailment and energy not served could be
improved.

5.2. MEDEAS Model

Integrated environmental assessment modelling describes any type of analysis that in-
tegrates multiple disciplines and dimensions in order to gain a better understanding of
human-environmental interactions, which are often highly dynamic, non-linear, and com-
plex. Its objective is to provide an holistic knowledge of system and project alternative
future climates as a useful information for policy-making [25].

Integrated Assessment Models (IAMs) or Energy-Economy-Environment (E3) Models
are computer programs that connect a series mathematical representations of information
from different disciplines. There is a great variety of IAMs due to the diverse approaches
developed to address complex interactions and high uncertainties in the environmental
and human systems.

The open-source MEDEAS modelling framework is designed with the objective of in-
forming decision-making to achieve the transition to sustainable energy systems by ad-
dressing some of the limitations identified in current IAMs and focusing on biophysical,
economic, social, and technological restrictions.

The model was built using Vensim DSS software for Windows Version 6.4E (x32) and is
also available in Python open-source code.

5.3. Overview of MEDEAS modelling framework

MEDEAS models analyse the long-term strategic outcomes of human-nature interactions
and are designed using System Dynamics, which facilitates integrating knowledge from
different perspectives and disciplines, along with feedback from different subsystems.

Its aim is to develop medium to long-term socio-economic-environmental scenarios at
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three different geographical levels: global (MEDEAS-W), European Union (MEDEAS-
EU) and country-level for Austria and Bulgaria (MEDEAS-AU and MEDEAS-BGR). The
simulation horizon is usually between 1995 and 2060, although for long-term strategic
sustainability analyses it can be extended to 2100.

MEDEAS models are structured in seven main modules: Economy, Energy, Energy In-
frastructures, Materials, Land Use, Climate Change and Social and Environmental Im-
pacts Indicators. Figure 5.1 illustrates the main relationships between the different mod-
ules of MEDEAS models.

Fig. 5.1. Conceptual schematic overview of the MEDEAS models [26]

In the present thesis, the European-aggregated scale MEDEAS-EU is considered, focus-
ing on the Energy module.

5.4. Energy Returned on (Energy) Invested (EROI)

EROI is defined as the ratio of the amount of usable energy obtained from a particular
energy resource (Energyreturned) to the amount of energy expended to obtain that energy
resource (Energyinvested) [12]. EROI is a key factor when evaluating the efficiency of an
energy source, and RES technologies generally have lower values than conventional fossil
fuels. [27], [28].

Net energy, on the other hand, is the energy remaining after accounting for the energy
expended to obtain the energy resource. In other words, it is the energy available to
society and it must be greater than zero for a system to be viable. A net energy approach
is applied that takes into account the energy return on energy invested (EROI) of the
individual technologies and for the entire system.
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EROI =
Ereturned

Einvested
(5.1)

Net energy = Ereturned ·

(︄
1 −

1
EROI

)︄
(5.2)

MEDEAS dynamically and endogenously computes the EROI from a standard approach
(EROIst) of the full energy system. Therefore, all the necessary overcapacity, storage, and
networks are allocated to the entire energy system, rather than to a specific technology.

The dynamic EROIst of the system is defined as the ratio of the final energy delivered to
society (1) and two factors: the energy required to build, operate, maintain, and dispose
of the energy generation plant (2); and the energy required to manage the intermittency
of RES (3) [27].

EROI system
st =

(1)
(2) + (3)

(5.3)

Fig. 5.2. Representation of society’s energy metabolism [27]

To calculate the EROI system
st , the following assumptions are taken into account [27]:

• EROIst for non-renewable energy sources is assumed constant over time.

• EROIst is dynamically estimated for renewable technologies for electricity genera-
tion

• Allocating technologies based on their relative EROIst buffered with energy invest-
ments to manage intermittency (RES technologies with higher EROI typically cover
a greater share of energy demand)

• Overcapacities and overgrids related to the increasing penetration of variable RES
technologies in the system are endogenously computed in the model.

• Additional losses due to the use of storage are modelled
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5.5. Modelling of variability of renewable technologies

The intermittency of RES is considered in the model framework, introducing a certain
level of flexibility as a function of the variable RES penetration. This is achieved by
computing endogenous levels of new power grids, storage and overcapacities.

5.5.1. Grid development

The additional grids needed to integrate variable renewable electricity generation are es-
timated per MW of variable RES. The additional material requirements related to grid
developments are then calculated, which ultimately affect the system’s EROI.

5.5.2. Storage

Pumped Hydro Storage (PHS) is the main electrical storage technology in the MEDEAS
model. The storage requirements are estimated using the study from [29].

Figure 5.3 shows the exponential fit to [29] data to estimate the electric storage capacity
demand associated with different levels of RES variables. However, according to the
literature review, a 20-35% share of variable RES may require low levels of storage and
overcapacity. Consequently, the exponential fit is adjusted so that it passes through the
point (20%; 0) by subtracting the current installed PHS.

Fig. 5.3. Ratio of capacity electricity storage and total capacity of RES
as a function of the electricity generation from RES variables in the total

mix [27]
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5.5.3. Overcapacities of dispatchable and variable RES power plants

A literature review of studies analysing the implications of RES intermittency for system
overcapacity reaches one conclusion: an increasing level of overcapacity of both dis-
patchable and variable RES is required as the latter increase their generation share in the
electricity sector. The approach followed estimates the reduction in Capacity Factor (CF
i.e., ratio of the actual electrical energy produced over a period of time to the maximum
electrical energy that could be produced over that period [27]) of RES plants depending
on the penetration of variable RES.

Dispatchable RES power plants

The overcapacity of dispatchable RES is estimated using the study from [29]. The poly-
nomial curve in Figure 5.4 illustrates the reduction in the CF of dispatchable RES as a
function of the penetration of variable RES. The model applies the same reduction factor
to both RES baseload and nuclear plants for the sake of simplicity.

Fig. 5.4. Capacity Factor reduction of baseload power plants as a
function of variable RES penetration [27]

Variable RES power plants

The overcapacity of variable RES is estimated using the study from [7]. In this case,
two main effects must be considered depending on the penetration of renewables in the
electricity mix: the exponential growth of the overcapacities of RES variables and their
reduction of the capacity factor.

Figure 5.5 shows the two curves introduced to the model. The first one (a) estimates the
overcapacity curve based on [7] data as an exponential fit and extrapolate it until 100%
variables RES penetration. The capacity factor reduction curve (b) is then calculated as a
function of overcapacity, assuming that CF = 1

1+overcapacity .
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Fig. 5.5. (a) Overcapacities of RES variables (b) Capacity Factor
reduction of RES power plants [27] as a function of variable RES

penetration

5.6. Comparison with the ANN model

This section compares the model built from ANN in Chapter 4 with the current one inte-
grated in MEDEAS. Figure 5.6 shows the regression plots of both approaches.

Figure (a) shows the model used in MEDEAS, as explained in subsection 5.5.3. Based on
Delarue’s study [7], overcapacity (i.e. curtailment) is modeled as a function of variable
RES penetration in the electricity mix.

To compare the models, graph (b) is generated using the neural network model. For
this purpose, the share of RES is varied at different pv/wind ratios and curtailment is
then calculated. Three curves are plotted by changing the Share wind value of the ANN
model. The blue curve is generated by setting the Share wind variable to 0.06 and varying
the Share pv variable. This results in a number of different wind and pv ratios, whose sum
corresponds to the Share res value. For the red and green curves, Share wind values of
0.28 and 0.44 are used. The dots represent the simulation value and the curve represents
the ANN regression model.

(a) MEDEAS model [27] (b) ANN model

Fig. 5.6. Curtailment vs variable RES penetration. Curtailment (%) is
calculated as Energy curtailed [TWh] / Energy produced by RES [TWh]
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MEDEAS does not currently compute energy not served as a function of Share RES.
However, this could be modelled with ANN regression and introduced into the model as
shown in Figure 5.7.

Fig. 5.7. ENS vs variable RES penetration. ENS (%) is calculated as
Energy not served [TWh] / Energy produced by RES [TWh]

The following reasons can be stated as to why the ANN regression model for Curtailment
is an improvement over the MEDEAS model:

• The new model has more inputs to compute the curtailment.

• The ANN model considers an interconnected system (European network), whereas
Delarue’s study only considers Belgium.

• Regression ANN values are more reliable since they are based on more simulations.

46



6. CONCLUSIONS AND FUTURE WORK

6.1. Conclusions

In this thesis, a new technique for coupling models based on the creation of a surrogate
model was performed. The main goal was to integrate flexibility constraints into a system
dynamics model (MEDEAS) by using the aforementioned technique. The Dispa-SET
model was used for the analysis of VRES impacts on the power system based on a high
temporal resolution representation, with several flexibility options and constraints. Dispa-
SET simulations were run on a set of samples, selected by the Latin hypercube technique,
and then used to train machine learning methods based on ANN. Curtailment and Energy
not served, the two main flexibility indicators, were predicted using the surrogate model
as a function of the system features. Thus, the generated model can approximate the
behaviour of the complex simulations of Dispa-SET and be integrated into the MEDEAS
model.

A dataset was developed for the creation of the surrogate model by varying the system
parameters using the Dispa-SET model. 2718 simulations were run on the HPC cluster
of ULiège to obtain more parameters of interest. System key parameters were defined
to predict their values through a machine learning method. This was done in order to
evaluate the flexibility of the energy systems. Furthermore, two artificial neural networks
were built using the Tensorflow and Keras libraries. Three optimizers from the Keras
Tuner library were used to find the optimal hyperparameters for each neural network. The
architecture of these neural networks was defined once the optimal hyperparameters were
found. Despite the slightly different architectures obtained by the three optimizers, all of
them achieved good prediction accuracy. This suggested that some hyperparameters were
more critical than others.

Three-dimensional plots were generated for the Curtailment and ENS parameters as a
function of two input variables. Since there were no linearities in the results, neural net-
works proved to be an appropriate choice for regression, as they can approximate func-
tions that are not linear.

Finally, the MEDEAS model was presented along with its modelling of RES intermittency
and variability based on Delarue’s work [7]. In the MEDEAS model, overcapacity was
modelled as an exponential function of variable RES shares. Moreover, the surrogate
model, i.e. the ANN regression model, also modelled overcapacity based on different
RES shares. In this case, the pv/wind ratio could be adjusted to produce different curves,
resulting in a more detailed model. In comparison to the previous model, the ANN model
had more inputs, considered a whole interconnected system instead of a single country,
and had a greater number of simulations, thus making its results more reliable.
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Furthermore, the ENS parameter was modeled with ANN regression for future incorpo-
ration into the MEDEAS model as it is not currently computed.

Therefore, we can conclude that integrating the surrogate model into MEDEAS will im-
prove the modelling of variable RES intermittency.

6.2. Future work

Further extensions to this work that may improve the method and results are presented
below:

• The integration of the surrogate model into MEDEAS. This would imply a good
knowledge of IAMs models as well as of the External Function Libraries [30] in
order to create a function that integrates the ANN algorithm into MEDEAS.

• The addition of the Energy Not Served concept into MEDEAS, and the implemen-
tation of the corresponding surrogate model.

• Comparison of the surrogate model method with other coupling techniques.

• Integration of other technologies into the surrogate model such as pumped stor-
age hydropower (HPHS) as storage options or Offshore wind turbines (WTOF) as
renewable penetration.

• The use of MILP formulation for Dispa-SET model instead of the current (and
faster) LP approach.

• Since more data leads to a better machine learning model, an increase in the number
of simulations could improve the accuracy of the models.
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APPENDIX A

Name Description
au All Units
chp(u) CHP units
f Fuel types
h Hours
hu(au) Heat only units
i(h) Time step in the current optimization horizon
l Transmission lines between nodes
mk Markets {DA: Day-Ahead, 2U: ReserveUp, 2D: ReserveDown, Flex: Flexibility}
n Zones within each country (currently one zone, or node, per country)
n_th Thermal nodes
n_h2 Hydrogen nodes
p Pollutants
p2h(au) Power to heat units
p2h2(au) Power to hydrogen storage technologies
s(au) Storage Units (including hydro reservoirs)
t Power generation technologies
th(au) Units with thermal storage
thms(au) Thermal storage units only
tr(t) Renewable generation technologies
u(au) Generation units (all units except for P2HT units)
wat(au) Hydro technologies
z(h) Subset of every simulated hour

Table A1. Sets



Name Units Description
AvailabilityFactor(au,h) % Availability factor
CHPPowerLossFactor(u) % Power loss when generating heat
CHPPowerToHeat(u) % Nominal power-to-heat factor
CHPMaxHeat(chp) MW/u Maximum heat capacity of chp plant
CHPType
CommittedInitial(au) n.a. Initial committment status
CostFixed(au) EUR/h Fixed costs
CostRampUp(u) EUR/MW Ramp-up costs
CostRampDown(u) EUR/MW Ramp-down costs
CostShutDown(u) EUR/u Shut-down costs
CostStartUp(u) EUR/u Start-up costs
CostVariable(au,h) EUR/MW Variable costs
CostHeatSlack(n_th,h) EUR/MWh Cost of supplying heat via other means
CostH2Slack(n_h2,h) EUR/MWh Cost of supplying H2 by other means
CostLoadShedding(n,h) EUR/MWh Cost of load shedding
Curtailment(n) n.a Curtailment allowed or not {1 0} at node n
CostCurtailment(n,h) EUR/MWh Cost of VRES curtailment
Demand(mk,n,h) MW Demand
Efficiency(au,h) % Efficiency
EmissionMaximum(n,p) tP Emission limit
EmissionRate(au,p) tP/MWh P emission rate
FlowMaximum(l,h) MW Line limits
FlowMinimum(l,h) MW Minimum flow
Fuel(u,f) n.a. Fuel type {1 0}
HeatDemand(n_th,h) MWh/u Heat demand profile for chp units
H2Demand(n_h2,h) MW H2 rigid demand
LineNode(l,n) n.a. Incidence matrix {-1 +1}
LoadShedding(n,h) MW Load shedding capacity
Location(au,n) n.a. Location {1 0}
Location_th(au,n_th) n.a. Location {1 0}
Location_h2(au,n_h2) n.a. Location {1 0}
Markup(u,h) EUR/MW Markup
MaxCapacityPtL(n_h2) MW Max capacity of PtL
Nunits(au) n.a. Number of units inside the cluster
OutageFactor(au,h) % Outage Factor (100 % = full outage)
PartLoadMin(au) % Minimum part load
PowerCapacity(au) MW/u Installed capacity
PowerInitial(u) MW/u Power output before initial period
PowerMinStable(au) MW/u Minimum power output
PriceTransmission(l,h) EUR/MWh Transmission price
PtLDemandInput(n_h2,h) MWh Demand of H2 for PtL at each timestep



RampDownMaximum(u) MW/h/u Ramp down limit
RampShutDownMaximum(au) MW/h/u Shut-down ramp limit
RampStartUpMaximum(au) MW/h/u Start-up ramp limit
RampUpMaximum(u) MW/h/u Ramp up limit
Reserve(au) n.a. Reserve technology {1 0}
StorageChargingCapacity(au) MW/u Storage capacity
StorageChargingEfficiency(au) % Charging efficiency
StorageSelfDischarge(au) %/day Self-discharge of the storage units
StorageCapacity(au) MWh/u Storage capacity
StorageDischargeEfficiency(au) % Discharge efficiency
StorageOutflow(au,h) MW/u Storage outflows
StorageInflow(au,h) MW/u Storage inflows (potential energy)
StorageInitial(au) MWh Storage level before initial period
StorageProfile(au,h) % Storage level at the end of each horizon
StorageMinimum(au) MWh Storage minimum
Technology(au,t) n.a. Technology type {1 0}
TimeDownMinimum(au) h Minimum down time
TimeUpMinimum(au) h Minimum up time
TimeStep h Duration of a timestep of optimization
VOLL EUR/MWh Value of Lost Load

Table A2. Parameters



Name Units Description
AccumulatedOverSupply(n,h) MWh Accumulated oversupply due to the flex demand
CostStartUpH(u,h) EUR Cost of starting up
CostShutDownH(u,h) EUR cost of shutting down
CostRampUpH(u,h) EUR Ramping cost
CostRampDownH(u,h) EUR Ramping cost
CurtailedPower(n,h) MW Curtailed power at node n
CurtailedHeat(n_th,h) MW Curtailed heat at node n_th
CurtailedH2(n_h2,h) MW Curtailed hydrogen at node n_h2
Flow(l,h) MW Flow through lines
Power(au,h) MW Power output
PowerConsumption(au,h) MW Power consumption by P2H units
PowerMaximum(u,h) MW Power output
PowerMinimum(u,h) MW Power output
ShedLoad(n,h) MW Shed load
StorageInput(au,h) MWh Charging input for storage units
StorageLevel(au,h) MWh Storage level of charge
LL_MaxPower(n,h) MW Deficit in terms of maximum powerv
LL_RampUp(u,h) MW Deficit in terms of ramping up for each plant
LL_RampDown(u,h) MW Deficit in terms of ramping down
LL_MinPower(n,h) MW Power exceeding the demand
LL_2U(n,h) MW Deficit in reserve up
LL_3U(n,h) MW Deficit in reserve up - non spinning
LL_2D(n,h) MW Deficit in reserve down
spillage(au,h) MWh spillage from water reservoirs
SystemCost(h) EUR Hourly system cost
Reserve_2U(au,h) MW Spinning reserve up
Reserve_2D(au,h) MW Spinning reserve down
Reserve_3U(au,h) MW Non spinning quick start reserve up
Heat(au,h) MW Heat output by chp plant
HeatSlack(n_th,h) MW Heat satisfied by other sources
H2Slack(n_h2,h) MW H2 demand satisfied by other sources
WaterSlack(au) MWh Unsatisfied water level constraint
StorageSlack(au,h) MWh Unsatisfied storage level constraint
H2Output(au,h) MWh H2 output from H2 storage to fulfill demand
PtLDemand(n_h2,h) MW Demand of H2 for PtL for each n_h2 node

Table A3. Variables



Name Units Description
Committed(au,h) n.a. Unit committed at hour h {1 0} or integer
StartUp(au,h) n.a. Unit start up at hour h {1 0} or integer
ShutDown(au,h) n.a. Unit shut down at hour h {1 0} or integer

Table A4. Integer Variables
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