
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Machine learning for a fast sparse triangular solve

Auteur : Di Raimo, Gaël

Promoteur(s) : Louveaux, Quentin

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/16759

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège

School of Engineering and Computer Science

Machine learning for a fast sparse
triangular solve

Master’s thesis completed in order to obtain the degree of Master of
Science in Software Engineering

DI RAIMO Gaël

Supervisor: Prof. Louveaux
Academic Year 2022-2023

Abstract
When solving simplex problems, multiple systems of linear equations are solved. This systems
are decomposed in their LU forms, where L and U are sparse. This triangular systems can be
solved with different algorithms that uses the sparse structure to save time. The context in which
an algorithm is faster than another is not well known, 3 of these algorithms referred as General
algorithm, Two-Phase algorithm and One-Phase algorithm can have very different computation
times to solve the systems. One could think to use Machine Learning techniques to learn in which
context an algorithm is faster than others. However, the time window between the two fastest
algorithms can be narrow. Therefore, fast models should be used to predict the fastest algorithm.
One parameter which is expected to have a lot of information is the number of non-zero elements
in the solution, a model will be tested to see if knowing this value can lead to better average
computation time. A simple model classifying these algorithms is created using only information
on b, the right-hand side. This model will be used to compared its performances with new models
which are created. The model that is proposed uses 4 regressions to predict the algorithm, one
is used to predict the number of non-zero elements in the solution which is used as feature for
the 3 other regressions. The other regressions predict the time needed by each algorithm and the
classifier finally predict the one with the lowest predicted time. RFAdaProxy (b) is the classifier
proposed. This model is able to solve the test set proposed in 34.78s whereas the simple model
with just b information needs 44.85s and the fictional model which would always predict the best
algorithm obtained a computation time of 19.95s.

Acknowledgement

I would like to thank Professor Louveaux who guided me through-
out this work and gave me helpful advice. I am also thankful to Pro-
fessor Louveaux for the proofreading of some part of this work.

I would also like to thank Laurent Poirrier who gave me the dataset
necessary for this master’s thesis, without this data, this work would
not be possible.

Contents

1 Introduction 1

2 Background 2
2.1 Solving systems of linear equations . 2

2.1.1 Compressed sparse structure . 4
2.1.2 Sparse matrix solve algorithm . 5
2.1.3 General algorithm . 5
2.1.4 Two-phase algorithm . 5
2.1.5 One-phase algorithm . 8

2.2 Machine learning . 9
2.2.1 Supervised Learning . 9

2.3 Metrics for classification . 10
2.4 Metrics for regression . 11
2.5 Models . 12

2.5.1 Decision Tree . 12

3 Experiment for potential parameters 14

4 Dataset 19

5 First model 21

6 Proxy 24
6.1 Model based on the true number of non-zero elements in the solution 24
6.2 Feature engineering . 30

6.2.1 Feature importance and computation time 31
6.3 Proxy model selection . 33

6.3.1 Linear Regression . 33
6.3.2 KNN . 34
6.3.3 Multilayer Perceptron . 36
6.3.4 Decision Tree . 37
6.3.5 Random Forest . 39
6.3.6 Extremely Randomized Trees . 41
6.3.7 Adaboost . 43

7 Model selection 45
7.1 Linear Regression . 45
7.2 Decision Tree . 47
7.3 Random Forest . 51
7.4 Extremely Randomized Trees . 55
7.5 AdaBoost . 60
7.6 Comparison of the best models . 64

8 Model assessment and conclusion 66

1 Introduction

When solving simplex[1] problems, a series of system of linear equations is solved. Each time, one
changes from one vertex to another, a system of linear equations is solved. To find the solution,
a LU decomposition that can be obtained using Forrest Tomlin[2] and Suhl-Suhl [3] is made. L
and U being sparse triangular matrices, to solve these type of systems, some methods uses the
advantage of sparse matrix format to find the solution as fast as possible as in Direct methods for
sparse linear systems[4]. One algorithm taking advantage of the sparse matrix format is referred
in this master’s thesis as General algorithm, another one is called Two-Phase algorithm and the
last one that will be used is the One-Phase algorithm. Each of these algorithms can be better
than the others depending on the context. However, knowing in which context the algorithm
is the fastest is not well understood. Indeed, the time taken by each algorithm depends on the
non-zeros layout of L, U and b. An hypothesis is that the computation time of these algorithms
depends on the number of non-zero elements in the solution. Nonetheless, knowing these number
of non-zeros is impossible before solving the systems. An approximation of this number could be
used to choose the faster algorithm, which in ideal cases lead to saving time. Machine learning
algorithms can be used to obtain this approximation. Nonetheless, the time that can be saved
while choosing the faster algorithm instead of another one can be very low. Therefore, fast ma-
chine learning techniques must be used in order to make the approximation to avoid adding an
unnecessary computation time to the system solve. Thus, deep learning methods with multiple
layers could lead to, actually, waste time. Consequently, These methods were not explored in this
work.

This work starts by explaining the necessary concepts used in the creation of the classifier.
The first concepts explained are the 3 algorithms implementation that are classified. Understand-
ing these algorithms is necessary to know how features can be extracted in order to later better
classify them. The data structures necessary to the solve of sparse triangular systems are also
explained for the same reasons. Machine learning algorithm basic concepts will also be explained
such as supervised learning, classification and regression. Some of the models used will also be
explained. Furthermore, different metrics that can be used to evaluate the performances of regres-
sion and classification models are also described.

Some experiments will be done in order to support the claim that the number of non-zero
elements in the solution is informative with respect to the computation times of the 3 algorithms.
The relation between the number of non-zero of b will also be tested because this information
can be accessed very fast. In that experiment random L matrices and b vectors are generated
and the system Lx = b is solved. Then, the computation time is plotted as a function of the
number of non-zero elements of the solution, supporting the claim that this number is important
for some algorithm. However, the size of b seem more important for the algorithm referred as Gen-
eral algorithm. The dataset used will be described and how less important data is removed to win
some time on the computation of the features and on the solve of all the LU systems of the dataset.

A first simple model is created to be able to compared future models to the performances
of this very simple one. This model is composed of 3 regression models, one per solve algorithm.
Each regression tries to approximate the computation time of its assigned algorithm. These regres-
sions are, actually, linear regressions that uses the information of b to approximate its algorithm
computation time. The information used to predict the General algorithm computation time is
the size of b. The two other algorithm times are predicted using the number of non-zero elements
in b. The classification model first predicts the 3 algorithm computation times, then, it returns
the algorithm which has the lowest predicted time.

Similarly to the first simple model, another model is created to show that with the number
of non-zero elements in the solution another simple model can perform much better than the one
based only on b. It also support the previous claim that the number of non-zero element of the

1

solution is a key information to know which algorithm is the fastest.

Because the number of non-zero elements of the solution can be used to better classify the
algorithm and since this value is not know before solving the system, regression models will be
trained in order to predict this value. The available information being not enough, new features
are engineered in order to predict the number of non-zero elements of x. Each of these feature
have a computation time complexity in the order of the size of b because higher complexity could
lead to a too much time overhead to predict the fastest algorithm. Then, these feature will be
trained with different regression models. For the prediction of these non-zeros elements the best
average MAPE obtained one the test folds is around 0.5 which does not seem great. From these
regression models, 4 are selected in order to be used as a proxy predictor in the next step of the
algorithm classifier.

With these predicted values, regression models are trained to predict the time taken by each
algorithm. Each regression model are trained with the 4 models predicting the proxy. As with the
previous simple model, one regression is trained to predict the computation time of its assigned
algorithm and the algorithm with the lowest time predicted is the final algorithm chosen for the
solve. In that part, the regression of the time does not seem to be well predicted, however, the
choice of algorithm with these regression model does not seem bad. The models that predict
the least worst performances are selected and the average computation time on the test folds is
computed. Then, the model with the lowest average time on the test folds is selected. Finally, this
selected model is used on 20% of dataset that was not previously seen to assess the performance
of the model. The final model chosen is referred as RFAdaproxy (b), the first part is ”RF”
because the model uses Random Forest as algorithm time regressor. The second part ”AdaProxy”
is because the proxy is predicted using AdaBoost. The last part ”(b)” is for the fact that the
General algorithm time is actually predicted with a linear regression using only the size of b as
feature. When tested on the test set, the model that would always predict the fastest algorithm
obtained a computation time of 19.95s, the one using linear regression and only b information
obtained a computation time of 44.85s and the model RFAdaproxy (b) obtained a computation
time of 34.78s. This result is obtained when adding the feature and the prediction computation
time. This results show that the model is able to better predict the fastest algorithm in average
compared to the simple model.

2 Background

2.1 Solving systems of linear equations

To solve a system of linear equations which is represented by Ax = b, where A is a n×n matrix, b
is a known vector of size n× 1 and x is the solution which is a vector of size n× 1, one well-known
method is to compute the LU decomposition of the matrix A, where L is a lower triangular matrix
and U is an upper triangular matrix. Therefore, the matrix equation becomes

LUx = b.

In order to find the unknown vector x with such decomposition, one must solve two triangular
systems. The first step being to compute y using (1) to finally compute the solution x by injecting
y in (2).

Ly = b (1)

Ux = y (2)

Solving (1) can be done by using forward substitution. This algorithm computes yi in in-
creasing order of i by using the element of the matrix L = [lij] and by supposing that lii ̸= 0∀i ∈

2

{1, 2, ..., n}. This algorithm computes each yi using

yi =
bi −

∑i−1
k=1 likyk
lii

. (3)

After the computation of yi, the solution x can be computed using, this time, the upper-
triangular matrix U = [uij] and supposing that uii ̸= 0 ∀i ∈ {1, 2, ..., n}. The algorithm to solve
linear system with upper-triangular is called backward substitution because the algorithm does not
computes the solution xi in increasing but in decreasing order of i, this means that the values of
x are computed in the order xn, xn−1, ..., x1, and each of these value is computed using

xi =
yi −

∑n
k=i+1 ui,kxk

uii
. (4)

Another way tries to avoid computing this sum naively in order to solve the lower triangular
system Lx = b. This method at each time a value of xk is computed will compute one more term
of the sum from (3) for each xi s.t i > k . This is how Algorithm 1 finds x. Moreover, one can
see in line 8 of the Algorithm 1 that it is not necessary to update xi if the element lij is equal
to 0 because it has no impact on the sum. Therefore, in cases where L matrices have many zero
elements, some unnecessary computation can be avoided. One only needs to consider the non-zero
elements and can use a data structure that saves only non-zero elements.

There exists multiple data structures to save matrices which have a high percentage of zero
elements. These matrices are called sparse matrices. One simple way to avoid saving the zero
elements of a matrix would be to use the coordinate format of the matrix. This representation
uses 3 arrays, one that stores the row indices, another stores the column indices and the last one
stores the values of each element. Let say that these array are called row, col and val respectively
and that nz is the number of non-zeros of a matrix L, then the coordinate format of the matrix L
respects the equality

L[row[i], col[i]] = val[i] ∀i ∈ {0, 1, ..., nz − 1}.

One can also see in the loop starting at line 7 of Algorithm 1, that the algorithm only accesses the
elements of the column j of the matrix L that are non zero. However, accessing the element in a
column of sparse matrices in coordinate format is not optimal. Indeed, to find the correct element
lij , the algorithm will need to travel the row and col array both at the same time and find an
index k such that if row[k] = i and col[k] = j, therefore, val[k] = lij . The worst scenario would
be that the value of the element accessed is the last element in the array val, thus, the complexity
is O(nz), because nz is the size of the the arrays row and col.

Algorithm 1 solve algorithm

1: function Solve(L,b)
2: x← b
3:

4: for j ∈ {0, ..., n− 1} do
5: xj ← xj

ljj
6:

7: for i ∈ {j + 1, ..., n− 1} do
8: xi ← xi − lijxj

9:

10: return x

3

2.1.1 Compressed sparse structure

One way to have a faster access to a column j is to not use column indices in an array but to save
pointers that indicate the start and the end of columns in the row and val array. This is how the
column sparse format works. Therefore, 3 arrays are needed as in the coordinate format. One
could call these arrays p, i and x. The array x stores the values of the elements, one column after
the other and in increasing order. The array p stores the indices of the beginning of each columns
in x. In some variation of the format, the array p has one more element than number of columns
of the matrix. It is actually to store at the end of the array p the number of non-zeros elements of
the matrix. The values stored in the second array i are the indices of the row of each element. The
last array x stores the value of each element. For example, the lower triangular matrix shown in (5)

L =

1 0 0 0
2 1 0 0
2 0 1 0
6 0 5 1

 (5)

has a sparse representation with L.nz = 8, the number of non-zero element and these 3 arrays

L.p = [0, 4, 5, 7], (6)

L.i = [0, 1, 2, 3, 1, 2, 3, 3] and (7)

L.x = [1, 2, 2, 6, 1, 1, 5, 1]. (8)

The compressed sparse column format is better than coordinate format for accessing an entire
column of a matrix. Indeed, for a matrix L, all elements of a column j can be accessed directly
using the array with pointers L.p. One first finds the beginning index of the column in the array
i and x by using L.p[j] and finds the end by using L.p[j + 1], then, one can travel the indices
and values of L with k, ∀k ∈ {L.p[j], L.p[j + 1] − 1} by accessing L.i[k] and L.x[k] respectively.
Accessing an entire column has a complexity that is equal to the number of non-zero elements of
the column j, which is O(L.p[j + 1] − 1 − L.p[j]). This complexity is much faster for a column
access compared to coordinate format which is O(nz).

However, there are drawbacks when using compressed sparse column representation instead
of using a 2 dimensional array. One of these drawbacks is the random access time of an element
at a given row i and a column j. Indeed, to access an element Aij of a matrix A represented
with a sparse structure, first one must get the index of the start and end of the column j using
A.p which counts for two reads, then, it is unavoidable to go through a linear search in the part
of the column j that is in the array A.i in order to find the index where the value is stored in
A.x. Therefore, random access in the worst case needs to travel the row index of the non-zero
elements of an entire column, which leads to a complexity of O(A.p[j+1]−1−A.p[j]) for column j.

Another operation that is computationally expensive compared to the 2D array representa-
tion is to access elements of a same row, for example, an algorithm which would travel the columns
of a matrix A of size n× n at a given row i and computes the sum

n∑
j=1

Aij , (9)

this sum is computationally expensive because the only way to implement such an algorithm is
to do a random access to each element Aij which has complexity of O(A.p[j + 1] − 1 − A.p[j])
resulting to a complexity of O

(
n× (A.p[j + 1]− 1−A.p[j])

)
for the sum, whereas the complexity

for this algorithm when using a 2D array representation for A would simply be O(n).

4

In some cases, it is interesting to have a fast access to row and not an access to column.
Therefore, a data structure corresponding to compressed sparse column but for row access also
exists. This structure is called compressed sparse row and the first array that can be called p will
store pointers to the beginning and end of rows instead of the columns. The second array can be
called j instead of i because it stores the indices of the columns and not the row indices. The last
array x still stores the value of each element.

2.1.2 Sparse matrix solve algorithm

As explained in the previous section, Algorithm 1 can be solved faster if the second loop of the
algorithm is only done over non-zero elements of the matrix L. Moreover, because this update
actually needs to read columns of L, the compressed sparse structure for the matrix L is exactly
what is needed. The next section is about the description of the general algorithm, which is similar
to Algorithm 1 but with the use of a column compressed sparse structure for the matrix L.

2.1.3 General algorithm

The general algorithm to solve a triangular system takes as input the right-hand side b, an array
of size n and a compressed sparse column triangular matrix L, which we suppose to be only lower
triangular for the moment.

The first operation of the general algorithm is to initialise a vector x of size n with the same
values as b and this vector x will at the end be the solution of the system. The structure used
to represent x is an array of size n, therefore, at least n operations are needed to initialise to the
value of x to the array b.

Once the vector x is initialised to b, the algorithm will loop over the row indices of x, with
j which will take the value 0, 1, ..., n − 1. In this loop, the general algorithm will compute x[j]
similarly to the line 5 of Algorithm 1 which is xj =

xj

ljj
. However, because the matrix L is in

Compressed Sparse Column format, the element ljj is not accessed easily. Indeed, to find ljj the
algorithm must access the column j of the matrix L. To find the part of the column j in the array
L.i and L.x, one must can access L.p[j] which indicate the starting index and L.p[j+1]− 1 which
is the last index. Therefore, to find the value lij , one must loop over k ∈ {L.p[j], ..., L.p[j+1]−1}
and find k such that L.i[k] = j and if this statement is verified, L.x[k] = lij . The value lij being

known, the algorithm can update x[j] with x[j] = x[j]
L.x[k] .

The value xj being updated, the general algorithm can make the operation corresponding to
the second loop of Algorithm 1. This loop consist to update all the elements of x that depends on
the previously computed xj , these elements can be access as explained for the computation of the
element xj , i.e. with a loop over k ∈ {L.p[j], ..., L.p[j+1]−1}. The elements of x are updated with

x[L.i[k]] = x[L.i[k]]− x[j]× L.x[k].

However, one must pay attention to not update twice the element xj previously computed, thus,
the update will be performed only if L.i[k] ̸= j.

For clarity, the pseudo code of the algorithm is showed in Algorithm 2.

2.1.4 Two-phase algorithm

In some cases, the general algorithm performs unnecessary operations. Indeed, Algorithm 2 will
initialise x to an array of size n to b, this initialisation have thus a complexity of O(n) which could
be very expensive in some cases. Moreover, the general algorithm travels each value of x, at each
time, without considering if it is zero or not. These operations will not impact the results because
if x[j] equals zero then the line 6 of Algorithm 2 is the equivalent to store zeros in x[j], therefore,

5

Algorithm 2 General algorithm

1: function GeneralSolve(L,b)
2: x = b
3:

4: for j ∈ {0, ..., n} do
5:

6: for k ∈ {L.p[j], ..., L.p[j + 1]− 1} do
7:

8: if L.i[k] = j then

9: x[j]← x[j]
L.x[k]

10:

11: for k ∈ {L.p[j], ..., L.p[j + 1]− 1} do
12:

13: if L.i[k] ̸= j then
14: x[L.i[k]]← x[L.i[k]]− x[j]× L.x[k]

15:

16: return x

these can be skipped. Moreover, the loop at line 8 will just set x[k] to x[k] because x[j] = 0,
which is also not necessary. If the solution x is stored in a compressed sparse column format, the
algorithm can avoid these unnecessary operations. This is what two-phase algorithm try to avoid
doing and to do so the algorithm will have the same inputs as the general algorithm except that
the format of the right-hand side b is in compressed sparse column format.

The solution chosen in the Two-phase algorithm to avoid the initialisation of x which cost
O(n) is to compute its number of non-zero elements before solving the system. This is performed
by computing all the indices which could have a non-zero elements in the final solution of x. Deter-
mining the row indices of the non zero elements of the solution is the first phase of the two phases
algorithm. Once the first phase is finished, the array i used in the compressed sparse column struc-
ture of x is known. Afterwards, in the second phase, the algorithm needs to travel these indices
to compute the final solution, which is to compute the remaining unknown part of x, the array x.x.

In the first phase, one possibility to determine the indices of the non-zero elements of the
solution is to first travel all indices of the elements of b with a value different than zero, this is
easily done by accessing the array b.i. Each of these indices is added to a list l. In order to retrieve
faster that value corresponding to that index, the element in the list can be a structure able to
store two elements, the first one being an index and the second one a value corresponding to that
index.

After adding all the elements of b.i to the list, the list l is sorted in increasing order of the
index. Then, the lowest index of the list l is read in order to find the row number of the non-zeros
elements in the column j of L and add them to the list l. This actually corresponds to add all
the elements of L.i[k] ∀k ∈ {L.p[j], ..., L.p[j + 1]}, each index are added in the list with a value of
0 as second element. The next step, is to sort again the list l so that one can find the next index
to explore. To find the next index j, the task performed is to find in l the lowest index which is
greater than the previous element read from the list. These operations are performed until one
cannot find any new index in the list greater than the previously read index.

In the second phase, the algorithm travels the sorted list l to compute the values of x. This
corresponds to the same loop at line 4 of Algorithm 2 excepts that the algorithm loops over x.i
previously computed and that the structure of x is not a simple array anymore. An example of
pseudo code for the two-phase algorithm is shown in Algorithm 1.

6

Algorithm 3 2 Phase algorithm: Phase 1

1: function 2PhaseSolve(L,b)
2: l← list()
3: sorted b← SortByIndex(b)
4:

5: for j ∈ {0, ..., sorted b.nz} do
6: l.add(sorted b.i[j], sorted b.x[j])

7:

8: list index← 0
9: last explored row ← −1

10:

11: while length(l) > list index do
12:

13: if last explored row = l[list index] then
14: list index← list index+ 1
15: else
16: len array ← L.p[l[list index] + 1]− L.p[l[list index]]
17: new indices← array(len array)
18:

19: ▷ add all row indices at column list index of L
20: for j ∈ {L.p[l[list index]], ..., L.p[l[list index] + 1]− 1} do
21: new indices[j − L.p[l[list index]]] = L.i[j]

22:

23: Sort(new indices)
24:

25: ▷ Find where to insert in the list the new indices
26: for list index 2 ∈ {last explored row, ..., len(l)− 1} do
27:

28: for new index ∈ new indices do
29: if new index = l[list index 2].index then
30: break
31:

32: if new index < l[list index 2].index then
33: ▷ Push the index new index with a value of 0 at index list index 2 of l
34: l.push at(list index 2, new index, 0)

35:

36: last explored row ← l[list index]

37:

38: x = CompressedSparseColumn(length(l))

7

Algorithm 3 2 Phase algorithm: Phase 2

39: prev index← −1
40: x.nz ← 0
41:

42: for list index ∈ {0, ..., length(l)} do
43:

44: new index← l[list index].index
45: x.i[x.nz]← new index
46:

47: ▷ Find diagonal value at new index of L
48: for k ∈ {L.p[new index], ..., L.p[new index+ 1]− 1} do
49: if L.i[k] = new index then

50: x.x[x.nz]← l[list index].val
L.x[k]

51:

52: for k ∈ {L.p[new index], ..., L.p[new index+ 1]− 1} do
53:

54: ▷ Travel the queue to update the corresponding element
55: for list index 2 ∈ {list index, ..., length(l)} do
56: if L.i[k] = l[list index 2].index then
57: l[list index2].val← l[list index 2].val − x.x[x.nz]× L.x[k]

58:

59: x.nz ← x.nz + 1
60:

61: return x

2.1.5 One-phase algorithm

There is another way to avoid traveling all the zeros of the right-hand side b. The two-phase algo-
rithm computes all the row indices of non-zero elements of the solution to initialise the exact size of
x in Compressed Sparse Column format. Then, it can proceed to the actual computation of the so-
lution. However, it is possible to do both at the same time. Such an algorithm, has only one phase.

The one-phase algorithm principle have some similarity with the two-phase algorithm. The
two-phase algorithm has a sort that happens when row indices are added to a list. This sort
is done such that in the second phase, the algorithm know the order of the computation of the
element xi. In order to know the next row index of x to compute, the one-phase algorithm will
use a min priority queue adding the row indices as keys. Therefore, the one-phase algorithm just
have to pop the element of the top of the queue to know the row index of the next xi to compute.

An example of implementation of a one-phase algorithm could be to implement a min priority
queue with a min heap. The first step of the algorithm is to initialise the min priority queue using
b, with the row indices as key and to attach to that key the value at that corresponding row in
b. Once the priority queue initialisation is finished, the algorithm can start the computation of x.
The first non-zeros of x can be computed by taking the first element of the queue and its key and
data. The key k which represent a row index is used to find the corresponding element in Lk,k.
With the data d attached to the key k, the algorithm can compute xk with

xk =
d

Lk,k
. (10)

Once the first value is computed, the algorithm travels the elements in the column k of L to add
to the queue each row indices j of the non-zero elements of that column and by making sure to
avoid adding the index k which is just computed. These row indices will be the key and the data

8

attached to that key is computed with

data = −xk × Lj,k

The next non-zero elements of x are computed a bit differently. Now in the queue multiple
elements may have the same key, this key may be added from the initialization of the queue or at
a computation of a previous xi. Therefore, when an element with key k is popped from the queue,
the algorithm will see the top of the priority queue and pop again if the top key is still equal to k
and compute d with

d =
∑

∀data s.t key=k

data.

Then, the algorithm can compute xk with (10). Afterwards, the algorithm can as previously
explained add all row indices of the non-zero elements of the column k of L and compute the next
x values as described in previous paragraph, the algorithm will keep computing a new value of x
until the priority is empty.

The corresponding pseudo code for that example implementation is shown in Algorithm 4.

Algorithm 4 1-Phase algorithm

1: function 1PhaseSolve(L,b)
2: minQueue←MinPriorityQueue()
3:

4: for j ∈ {0, ..., b.nz − 1} do
5: minQueue.add(b.i[j], b.x[j])

6: x = CompressedSparseColumn(0)
7: node← minQueue.pop()
8:

9: while not minQueue.isEmpty() do
10:

11: prev index = node.index
12: x.i[x.nz]← node.index
13: x.x[x.nz]← 0
14:

15: while prev index = node.index do
16: x.x[x.nz]← x.x[x.nz] + node.val
17: node← minQueue.pop()

18:

19: for k ∈ {L.p[prev index], ..., L.p[prev index+ 1]− 1} do
20: if L.i[k] = prev index then

21: x.x[x.nz]← x.x[x.nz]
L.x[k]

22: break
23:

24: for k ∈ {L.p[prev index], ..., L.p[prev index+ 1]− 1} do
25: if L.i[k] ̸= prev index then
26: minQueue.add(L.i[k],−L.x[k]× x.x[x.nz])

27: x.nz ← x.nz + 1

28: return x

2.2 Machine learning

2.2.1 Supervised Learning

As explain in Introduction of Machine Learning given at the University of Liège [5] the
problem of Supervised Learning is to find a function that given data is able to better fit an output.

9

The formal definition of Supervised Learning given in the Introduction of Machine Learning
given at the University of Liège [5] is :

”From a learning sample {(xi, yi)|i = 1, ..., N} with xi ∈ X and yi ∈ Y, find a function
f : X → Y that minimize the expectation of some loss function ℓ : Y × Y → IR over the joint
distribution of input/output pairs: EX ,Y{ℓ(f(x, y))}”

The different Machine Learning model will have their own way to find this function given
the data. There exist multiple lost function, one must find the loss function which is better suited
for the encountered problems.

In these problems, there is a distinction when the predicted output y is discrete with a finite
number of possibilities. In that case, it is a classification problem. One can distinguish the binary
classification and multiclass classifications. Indeed, some metrics in binary classification does not
work in the multiclass cases. However, when the output y can take continuous value, it is a
regression problem and these problems have also different metrics to evaluate models.

2.3 Metrics for classification

There are multiple metrics to assess the performance of a classifier and they are suited to different
type of problems. Metrics used in this work for classification are explained in the next pages. The
different metric definitions are taken from Scikit-Learn user guide [6]. In the following defini-
tions, n is the number of samples in the dataset.

The accuracy is one of the simplest metric, this metric just computes the number of well
predicted samples over the total number of samples. Binary classification is when there is only
two ouputs, positive or negative, for these classifications the accuracy corresponds to compute

accuracy =
TP + TN

TP + TN + FP + FN

where TP is the number of samples that are predicted positive and their real values are also pos-
itive. FP is the number of samples that are predicted positive but their true values are negative.
TN is the number of samples which are well predicted negative, FN is the number of samples
which are wrongly predicted negative.

However, this metric is not well suited for classification with an unbalanced class distribution.
Indeed, if there is a binary classification problem which has a minority of the samples, for example
1%, then, a model that predicts the majority class all the time will have a 99% accuracy which
seems great but it does not make a great job at predicting the low majority class which may be
the initial goal of the classifier.

For classification with more than two classes the accuracy is computed differently, if y are
the true value of the class and ŷ are the predictions, then, the accuracy can be computed with

accuracy(y, ŷ) =
1

n

n∑
i=1

1(ŷi = yi).

The balanced accuracy is similar to the accuracy except that this metric takes into consid-
eration the proportions of the classes in the dataset. The balanced accuracy can be computed
with (11) for binary classification.

balanced-accuracy =
1

2

(TP

TP + FN
+

TN

TN + FP

)
(11)

10

For classifier with more than 2 classes, the balanced accuracy is computed by first adjusting
the weights of the samples with

ŵi =
wi∑n

j=1 1(yj = yi)wj
,

where yi is the true class of sample i.

By default, the weight given to samples is 1. In that case, the weight ŵi of the sample i is
equal to the inverse of the number of times its class is represented in the dataset. If the prediction
of the sample i is noted ŷi then the computation of the balanced accuracy is

balanced-accuracy(y, ŷ, w) =
1∑n

i=1 ŵi

∑
i

1(yi = ŷi)ŵi (12)

For instance, the balanced accuracy of a dataset of 100 samples with 3 classes and with
a proportion for the majority class of 80% and 10% for the two other classes. If a classifier gives
only the first class as prediction, then

balanced accuracy =
1

80× 1
80 + 10× 1

10 + 10× 1
10

×
(
80× 1

80
+ 0 + 0

)
=

1

3
.

Whereas, the accuracy of this example is equal to 0.8. Actually, in a case where a classifier
predicts only one class, the balanced accuracy is 1

n class where n class is the number of classes.

When the dataset is balanced, each class is represented with an equal proportion, then, the
balanced accuracy is equal to the accuracy.

2.4 Metrics for regression

Regression problems uses other metrics to evaluate a regression model. The one that are used in
this work are the following metrics.

• One metric used for regressions is called coefficient of determination, which is also known
as R2. This score is computed with

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(13)

where n is the number of samples in the dataset and ȳi =
∑n

i=1
yi

n . The R2 score cannot be
higher than 1. If R2 = 1, this means that the predictions are equal to the true values. It is
also possible to have a negative R2. Indeed, if the predictions have an higher squared error
than a model predicting the mean ȳ,

∑n
i=1(yi − ŷi)

2 >
∑n

i=1(yi − ȳi)
2 and, thus, the ratio

in (13) is greater than 1 and R2 is negative.

• Another metric that can be used is the Mean Absolute Percentage Error, which is also
called MAPE. This value is computed with

MAPE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|
max(ϵ, |yi|)

. (14)

The value ϵ is an arbitrarily small value chosen to avoid dividing by 0 if y = 0.

11

2.5 Models

2.5.1 Decision Tree

The following formulas and examples in order to explain decision trees are taken from the course
of Introduction of Machine Learning given at the University of Liège [5].
A decision tree for classification is a tree where each node within the tree represents a decision
made on a feature. Each branch of the tree is actually a value of a feature and the last nodes of
the tree called leaves are the final predicted classes. For example, one could have a tree to classify
the decision to play tennis or not with Figure 1. In that example, the first choice is made on the
feature Outlook which is the top node, Outlook can take 3 values Sunny, Overcast and Rain that
are represented by the branches and if Outlook has the value Overcast then it leads to a leaf where
the decision is to play tennis.

Figure 1: Decision tree to make the choice to play tennis or not. [5]

One way to construct such a tree is to use what is called the top-down approach. The decision
tree is created by taking the learning samples and choosing an attribute according to a strategy
to split the training set in smaller sets, one set for each possible value of the chosen attribute,
this process actually creates new branches of the tree. Then, these smaller sets are afterward also
divided using the same process, creating deeper branches of the tree. This division and creation of
new branches continues until the final set only contains a class. This last set is thus a called leaf
and contains samples with a unique class which will be the predicted class of an element which
features corresponds to the path in the tree.

Actually, to choose the feature to divide a set, one can compute what is called an impurity
measure that will evaluate how well the sample set is divided. Therefore, to choose which feature
will be used in one node, one can computes for each features the expected impurity reduction and
select the feature that maximize this expected impurity measure.

An impurity measure of a samples of objects LS, with the values pj that represents the
proportions of the objects with the class j in LS where j ∈ {0, 1, ..., J}. The impurity measure
I(LS) follows three properties:

• I(LS) is minimum if the sample is alone, i.e. ∃i ∈ LS s.t. ∀j ∈ {LS|j ̸= i} then pi =
1 and pj = 0;

• I(LS) is maximum when the LS is divided in sets with equal number of samples. ∀j, pj = 1
J ;

• I(LS) is symmetric with the arguments pj .

12

A function that respects the properties of impurity measure is the Shannon Entropy which
is defines when using the previous notation as:

H(LS) = −
J∑

j=1

pj log2(pj).

In the course, it is also explained how to finds the best feature to use in order to split the
set into multiples sets. It is done choosing the feature that maximize the following impurity
measure:

∆I(LS,A) = I(LS)−
∑

a∈A(LS)

|LSa|
|LS|

I(LSa), (15)

where A(LS) is the set of possible values taken by the feature A and LSa is the subsets of LS
where the features A have the value a.

Therefore, using these principles one tree can be built in order to make a classification model.
However, this construction method does not explain how to build a tree for regression which is
tailored to the prediction of non-zeros elements of the solution of a LU system.

To build a tree for regression, first, the leaf of the tree does not represent a class but the
predicted value that is computed by averaging the prediction of the samples in that leaf. Moreover,
the impurity measure is different, one that could be used is the variance of the output of the
samples, which is

I(LS) = vary|LS{y} = Ey|LS

{(
y − Ey|LS{y}

)2}
,

where Ey|LS{y} is the average of the output y in the set LS.

The best split for regression are computed similarly to the split for classification three. They
are chosen using (15) but with the impurity measure is replaced by an impurity measure for re-
gression.

These process to create tree only cover features that are discrete and not continuous. In
the case of continuous features, the features which are continuous are either pre-discretised before
growing the tree or the feature can be discretised while the tree is being constructed. For example,
one could discretize each continuous feature C before choosing the feature making the highest
reduction of the impurity measure. In order to discretize C, one can create two sets of samples,
one LSc− which is the set of all samples which have C(o) ≤ c and LSc+ which is the set of all
samples which have C(o) > c. Therefore, to discretize the set of the continuous feature C in two
discrete variable, the algorithm can tests all the possibles splits for each values c of the feature C
and pick the split that have the most impurity reduction. Thus, (16) can be computed for each
feature c ∈ C in order to find the value c where ∆I(LS, c) is maximum. Then, this discretized
feature can be used in the splitting criteria of the actual tree.

∆I(LS, c) = I(LS)− |LSc+ |
|LS|

I(LSc+)−
|LSc− |
|LS|

I(LS), (16)

An application of decision trees is feature selection. One can obtain a score representing how
much a feature is important in the prediction of the decision tree. This score is obtained for a
feature A by summing the impurity difference each times a particular feature A is used to make
a split, which corresponds to compute

I(A) =
∑

Node where A is tested

|LSnode|∆I(LS,A). (17)

13

By computing the feature importance of each feature, one can also evaluate how much each
feature gives information compared to other features and select for example the k best feature of
the data.

3 Experiment for potential parameters

The goal of this section is not to give a proof of the influence that different parameters have on
the time taken by an algorithm. The goal is rather to have an idea on how and which parameters
can influence the computation time of the different algorithms.

In section 2.1, the Two-Phase algorithm 1 will initialize in the first phase a list with the
non-zero elements of b and, then, it travels this list in order to find the indices of the non-zero
elements of the solution. The One-Phase algorithm 4 initializes a priority queue with the non-
zeros elements of b. Therefore, the two algorithm have a loop over the non-zero elements of the
right-hand side, thus, this number can be a parameter for the computation time taken by methods.

To illustrate the influence of the number of non-zero elements in b on the computation time,
the three algorithms were used to solve systems with the same matrix L. This matrix L is gen-
erated with a percentage of number of non-zero elements of 0.1% and with a size of 104 × 104,
which is common in the dataset used. The number of non-zero elements given to a column of L is
generated with a triangular probability distribution in order to have a uniform distribution in the
matrix. This means that each column has a probability to have a number of non-zero elements
inversely proportional to its column number. For this matrix L, multiple b are generated with
different percentages of non-zero elements from 0.01% to 5%. A triangular probability distribution
is also used to generate b so that there is more chance to have a non-zero element in the highest
row number than in the first ones. This probability distribution is used in order to have a more
uniform distribution for the number of non-zero elements in x which is another parameter which
will be tested in this section. Indeed, if this distribution is not used, there is a high chance that
the final solution will be dense.

One can see in Figure 2 that the time taken by the Two-Phase algorithm increases more
than the two other algorithms when the number of non-zero elements in b increases. Figure 3
shows the same results but without the Two-Phase algorithm in order to better see the difference
of performance between the General and One-Phase algorithm. In Figure 3, one can see that for
b with a low number of non-zero elements, the One-Phase algorithm is better than the General
algorithm. However, the time taken for One-Phase algorithm to solve systems increases with
the number of non-zero elements in the right-hand side, whereas, the General algorithm seem to
remain constant. Moreover, the standard deviation of the One-Phase algorithm seem to have a
high variance which could lead to confusion when deciding which algorithm is better for a given b.

14

Figure 2: Times taken per methods with the logarithm of base 10 of the number of non-zero
elements in the right-hand side with the bars indicating the standard deviation of the time.

Figure 3: Times taken in 100 ns per methods with the logarithm of base 10 of the number of
non-zero elements in the right-hand side without the Two-Phase algorithm.

An other parameter that can be tested to have information on the time taken per method is
the number of non-zero elements in solution. Indeed, the Two-Phase algorithm in the first phase
will compute this number of non-zero elements in x. Then, in the second phase, it will iterate over
that list in order to compute each non-zero elements of x. Moreover, the One-Phase algorithm
have a priority queue in order to travel only non-zero elements of x. Therefore, the number of
non-zeros elements in the solution intuitively plays a role on the number of operations. However,
the General algorithm will not try to keep track of the non-zero elements of x, it travels every
elements of x which is initialized to b, thus, the General algorithm may less depend on the number

15

of non-zero elements of x.

The Figure 4 shows the time taken per algorithm as a function of the logarithm of base 10
of non-zero elements of the solution. One can see that the Two-Phase algorithm and the One-
Phase algorithm are better for low number of non-zero elements in the solution. Nevertheless,
for solutions with more non-zero elements the General algorithm becomes faster than the other
algorithm. This Figure also shows a lower standard deviation compared to the Figure 2 and 3
despite showing 3 times the standard deviation in this plot.

Figure 4: Logarithm of base 10 of the time taken per methods in 100 ns with the logarithm of base
10 of the number of non-zero elements in the solution. The bars indicates 3 times the standard
deviation of the y-axis.

When testing on only one matrix L, the number of non-zero elements in the right-hand side
seems to be less interesting as a feature than the number of non-zero elements in the solution.
Moreover, the standard deviation of the time taken per algorithm is much higher when using the
number of non-zeros in b than the one of x, this would lead to a lower accuracy to predict the best
algorithm. However, the number of non-zero elements of b is much more easier to obtain than
the one of x because the solution is unknown when the choice of the algorithm has to be made.
Whereas, b if stored in a format as compressed sparse column, its number of non-zero elements
can be obtained in only one read.

In order to observe the influence of L, multiple matrix L where generated as for the first
experience but with difference percentage of non-zero elements and for each L generated multiple
b with different percentage of non-zero elements where generated. The results of this experience
shown in Figure 5 is similar to Figure 4 but with a greater standard deviation.

16

Figure 5: Logarithm of base 10 of time taken per methods in 100 ns with the logarithm of base
10 of the number of non-zero elements in the solution. The bars indicates 3 times the standard
deviation of the y-axis. The L matrices generated were with a non-zeros percentage from 0.1% to
0.2375% included with a step of 0.0125%. Therefore, 12 L matrices where generated and for each
matrices 100 b where generated, with 10 different percentages from 0.01% to 4.51% included with
a step of 0.5%. For each b sparsity 10 samples where generated.

In order to understand what in Lmay increase the variance in Figure 5. An hypothesis is that
sum of the number of non-zero elements of the column i of L where xi is non-zero influences the
time of the computation. If L is in compressed sparse column format, this value can be computed
with

α =
∑

∀i s.t. xi ̸=0

L.p[i+ 1]− L.p[i]. (18)

Intuitively, this value can influence the time taken by an algorithm because each algorithm will
travel the corresponding column i for each non-zero elements of xi in order to update the value
of x. To verify the influence of this parameter on the computation time, multiple L matrices
where generated for the same solution x Figure 6 shows the influence of the parameter α on the
computation time for the same solution x. In that Figure, one can see that it is possible that for
some case, the number of non-zero elements in the solution is not enough to know which algorithm
is the fastest, in these cases, the parameter α may be needed to make the best prediction, this
parameters alpha seem to influence the computation time of the 3 algorithms linearly.

17

Figure 6: Time taken per methods in 100 ns with the parameter α. The solution x being with a
non-zeros percentage of 1%, the L matrices having a parameter α from 100 to 1990 included with
a step of 10.

In the Figure 7, multiple L were generated with multiple x in order to show the influence on
the computation time that the number of non-zero elements in x and α have at the same time. For
each x multiple L were generated with a parameter alpha proportional to the number of non-zero
elements in x. One can also see that the Two-Phase algorithm seem to have a non-linear behavior.

18

(a) General algorithm
(b) Two-Phase algorithm

(c) One-Phase algorithm

Figure 7: Computation time in 100ns of the three different algorithms with different solution x
and with different parameter α.

4 Dataset

The dataset contains around 2.563× 106 samples which seem to be more than enough, therefore,
in order to save computation time and because the number of samples per datasets is unbalanced.
Indeed, each dataset have a constant size of b and some datasets have more than 7× 104 samples
whereas some have less than 103 samples, as one can see in Figure 9. To balance the entire dataset,
each subdataset has been sampled with the following strategy. If the dataset has less than 4× 103

samples, the dataset is entirely drawn and if it has more than 4 × 103 samples, 4 × 103 samples
are uniformly drawn from the dataset, the remaining samples after the under-sampling is 7× 105

samples.

19

Figure 8: Histogram of the occurrences of sub datasets with their number of samples.

One aspect that one must pay attention to is the dataset balance for the predicted class.
The classes for the problem that is tackled is, actually, the number of the algorithm, 0 is for
the General algorithm, 1 is for Two-Phase algorithm and 2 is for the One-Phase algorithm. The
classification problem that this work is trying to solve is to predict the class number of the fastest
algorithm. One can see in Figure 9 the proportion in the dataset each algorithm is the fastest. As
one can see in that figure, the distribution of the classes is quite unbalanced, thus, this must be
considered while choosing the metrics to evaluate the classifier. Indeed, choosing the accuracy
can lead to a wrong evaluation of models. For example, one classifier could predict every time
that the One-Phase algorithm is the fastest algorithm. In that case, the accuracy is misleading.
Indeed, this simple classifier could achieve an accuracy of 70% which could be considered great
but is not giving any useful information.

Figure 9: Bar chart of the proportion of times each algorithm is the fastest in the undersampled
dataset.

Because each instance is solved two times, one time it is Ly = b that is solved and then it is
Ux = y that is solved, each being a sample of linear triangular solve, the final dataset contains,

20

thus, when merging these two linear system forms, a total number of sample equal to 1.4×106. The
dataset is, actually, made of 253 subdataset each subdataset containing systems of linear equations
that are depended. The dataset will be divided into 2 parts, one part will be containing 20% of
the sub-datasets and the remaining 80% will be used in a cross validation with 10 folds. When
dividing the dataset, the division will be between the subdataset, each subdataset will virtually
count as a sample. This is to prevent to have samples from the same dataset in both training and
testing sets. This is done because the data in a sub-dataset may have similarities. Indeed, in a
subdataset, the simplex method is used to solve linear problems and leading to multiple solves of
the system LUx = b. These solves may share some information. In the simplex method, when
changing vertex, the matrix A changes by only a column. This matrix is later transform into its
LU form and then solved, this LU will most likely have similarity. Therefore, having samples from
the same subdataset in both training and testing may lead to too optimistic performance because
of that similarity. The similarity can be used by machine learning methods. It can for example
use the knowledge on which simplex solve or which subdataset the sample is from to to better fit
the data. However, this context is not an information that could be obtained at run time, thus, it
could lead to wrong performance assessment. This is why when testing performance, the test set
should be made of subdatasets which are not known by the model.

5 First model

In Section 3, one could notice that the number of non-zeros in the right hand side plays a role
in the time that the algorithm will take to solve the system. Moreover, the number of non-zero
elements in the right-hand side can be easily obtained, thus, one naive way to create a model is
to use only this information. In order to predict which algorithm is the fastest, one regression
model will be trained per method to predict the method computation time. Then, the algorithm
that will be predicted the fastest will be the one with the lowest predicted time. Two models
will be tested, LRNNZB (a) and (b). The name LRNNZB stands for Linear Regression using
the Number of Non-Zero elements in b. LRNNZB (a) uses a linear regression only based one the
non-zeros elements in b. Whereas, LRNNZB (b) uses another feature for the regression of the
General algorithm computation time, the size of the right-hand side.

The linear regressions does not predict well the computation time for the 3 algorithms when
using the number of non-zeros elements in b. Indeed, the mean R2 score on the test folds is −0.401
for the General algorithm regression, −7.019 for the Two-Phase algorithm regression and −4.690
for the One-Phase algorithm regression. The Figure 12 shows the time predicted for every algo-
rithm, one can see that the Two-Phase algorithm will never be predicted as the fastest and the
one-phase algorithm will be predicted the fastest for problems with a number of non-zero elements
in b lower than 101.3 ≈ 20 and for every other cases the General algorithm will be predicted as
the fastest. Even if the regressions are not fitting well the computation times, the classification of
the algorithms seems to have significant results. Indeed, model choosing naively the One-Phase
algorithm takes 127.99s when averaging the times taken by models predicted on the test folds and
for a model choosing at random an algorithm, its choices leads to a 2456.25s computation time.
The average computation time per fold when the algorithm is chosen by the model LRNNZB
(a) is 31.508s whereas if the model was always choosing the best algorim, the computation time
would be 7.242s. One of the metric that evaluate the performance of the classification model is the
balanced-accuracy which is used instead of the accuracy because the dataset for the classification
is imbalanced as shown in Section 4. The balanced-accuracy of LRNNZB (a) is 0.506.

The total computation time does not show all the information. Indeed, the classifier could do
well for some problems that are highly represented in the dataset and predict the wrong algorithm
for some other part of the dataset. Indeed, if some instances are not well represented in the
dataset, the impact on the total computation time is less important. The Figure 10 shows the
average computation times taken by the predicted algorithm with different range of the right-hand

21

side and also the time taken by always choosing the best algorithm. One can see in that Figure
that the time taken by the predicted algorithm is greater for systems with a right-hand side size
greater than 26 × 104. One can see on Figure 11 that the error in the high range of right-hand
side size seems to be due to the proportion of time the General algorithm is predicted instead of
the One-Phase algorithm.

Figure 10: Bar plot of the average computation time by the predicted algorithm by LRNNZB (a),
(b) and the model that would lead to the lowest computation times for different ranges of the
right-hand side.

Figure 11: Bar plot showing the proportion of time each algorithm are predicted best with the
size of the right-hand side. ”Pred” standing for predictions and ”GT” for ground truth.

22

Figure 12: Scatter plot of the predictions of the times taken per algorithm of LRNNZB(a) with
the number of non zeros elements of b.

In Section 3, the General algorithm seems to be less dependent on the number of non-zero
elements and because it travels every elements in the right-hand side, the time to solve should
intuitively be more dependant on the size of the right-hand side. Therefore, another model was
used for the regression of the General algorithm computation time using as feature the size of the
right-hand side instead of its number of non-zero elements.

The R2 score for the regression of the General algorithm increased, it is equal to 0.652 whereas
previous model had a R2 = −0.401. However, the classification of the algorithm performed by this
model, which will be referred as LRNNZB (b), seem to be less accurate than the previous model
with a balanced accuracy of 0.459 instead of 0.519 for LRNNZB (a). Even if the balanced accuracy
is lower, the total computation time is better with 27.338s for LRNNZB (b) instead of 31.508s
taken by the algorithm chosen by LRNNZB (a). One can also see in Figure 10 that LRNNZB
(b) choices have a better average computation time than the one of LRNNZB (a) for problems
with a right-hand side size in the interval [26 × 104; 47 × 104]. The Figure 11 shows that for the
right-hand side size range in [26× 104; 47× 104], the proportion of time the General algorithm is
chosen is lower for LRNNZB (b) compared to LRNNZB (a), which is closer to the ground truth.
However, for range with a right-hand side in [0; 5 × 104] the General algorithm is predicted best
more than 70% of the time but it should be around 20%. Even if the General algorithm is to often
chosen the average computation time is similar to LRNNZB (a) for that range of right-hand side
size.

In further section, the goal is to create a model that is able to better choose the fastest
algorithm than the simple model LRNNZB (b) so that the average computation time on the test
folds is lower.

23

6 Proxy

6.1 Model based on the true number of non-zero elements in the solu-
tion

As shown in Section 3 for simple cases, the number of non-zero elements in solution can give some
information about the computation time for the One-phase algorithm and Two phase algorithm.
However, this was not tested for a large number of samples . Therefore, to show that the number
of non-zero elements can help to better classify the different algorithms, 3 regression models will
be trained similarly to Section 5. Nonetheless, this time the feature used is the number of non-zero
elements in the solution. The goal being to prove that using the number of non-zero elements of
the solution can be used as proxy to predict the time of each algorithm.

Three classification models where tested. These will be referred as LRNNZX which stands
for Linear Regression using the Number of Non-zeros of X. The first one, LRNNZX (a), have the
3 linear regressions trained only using the number of non-zero elements of the solution as feature.
The second one, LRNNZX (b), has a regression model using the size of the right-hand side as fea-
ture to predict the General algorithm computation time. Similarly to LRNNZX (a), LRNNZX (b)
uses the number of non-zero elements in the solution to predict the computation time of the two
remaining algorithms. The third one, LRNNZX (c), uses the same regression model as LRNNZX
(b) for the regression of the General algorithm time. However, the regression of the Two-phase
algorithm uses the number of non-zero elements in the solution squared and the regression of the
One-phase algorithm time is made using the number of non-zero elements in the solution times
its logarithm of base 10.

The model LRNNZX (a) has a lower cross validation R2 score than the model LRNNZB(b)
which is only based on b information. Indeed, the average R2 score on the test folds is −0.397
for the General algorithm computation time whereas the regression of the General algorithm of
the model LRNNZB(b) obtained 0.652. These results suggest that using the size of b to predict
the General algorithm computation time is better than using the number of non-zero elements in
the solution. As the General algorithm time regression, the average R2 score on the test folds is
lower for the regression of the two-phase algorithm and one-phase algorithm have a lower cross
validation R2 score with a −11.442 and −5.967 respectively whereas LRNNZB(b) obtained a R2

of −7.019 and −4.690 respectively. The conclusion that should be made is that the number of
non-zero elements in the solution is not usefull to predict which algorithm is the fastest. However,
even if these results are not great, the time taken by the algorithm chosen by the model LRNNZX
(a) on the test folds is lower than the one of LRNNZB (b) with 13.383s instead of 27.337s. The
balanced accuracy also is higher which also reinforce the claim that LRNNZX (a) is a better
classifier than LRNNZB (b). These results are shown in Table 1.

24

Model Name Algorithm R2 train R2 test
Average computation

time (s)
Balanced
accuracy

LRNNZB(b)
General 0.739 0.652

27.337 0.459Two-Phase 0.088 -7.019
One-Phase 0.081 -4.690

LRNNZX(a)
General 0.001 -0.397

13.383 0.509Two-Phase 0.18 -11.442
One-Phase 0.11 -5.967

LRNNZX(b)
General 0.739 0.652

10.993 0.532Two-Phase 0.18 -11.442
One-Phase 0.11 -5.967

LRNNZX(c)
General 0.739 0.652

9.472 0.611Two-Phase 0.093 -1.195
One-Phase 0.107 -5.300

Table 1: Results of the LRNNZX models compared to the model LRNNZB(b). The average
computation time is the average of the computation time computed on the 10 test folds. The
Balanced accuracy is computed by averaging the balanced accuracy obtained on the test folds
when training the model on the other folds.

The model LRNNZX (a) seem to have the same problem as LRNNZB (a) concerning the
computation time of instances with a size of b in [26× 104, 31× 104], as one can see in Figure 13.

The model LRNNZX (b) has performance similar to LRNNZB (b) for the regression of the
general algorithm time with a R2 score of 0.652, which is coherent because it uses exactly the
same feature as LRNNZB (b). Moreover, the R2 for the two other algorithms are equal to the
one of model LRNNZX (a) for similar reasons. However, by using the size of b to predict the
General algorithm computation time, the average computation on the test fold improved with a
time of 10.993s which is the fastest so far whereas the model LRNNZX (a) took 13.383s . The
balanced− accuracy is also the best one so far with 0.532.

The model LRNNZX (c) using functions of the number of non-zero elements in the solution
for the regression of the Two-phase algorithm time and the one-phase algorithm time does not
performed well but it has a better R2 score on the test folds in average. Indeed, the R2 for the
two-phase algorithm and the one of the one-phase algorithm is higher than the previous model
with −1.196 for the regression of the two-phase algorithm computation time and −5.3 for the
one of the one-phase algorithm. Even if the score is higher, the regression does not seem to have
significant result. However, the classification part had the best results with the choice of algorithm
leading to a total computation time of 9.472s, with balanced− accuracy of 0.611.

25

Figure 13: Bar plot of the average computation times of the algorithm predicted with the size of
the right-hand side for LRNNZX (a), (b) and (c) .

Figure 14: Bar plot showing the proportion of time each algorithm are predicted best for every
model LRNNZX with different range of size for the right-hand side.

In Figure 15, the regression of the General algorithm time seems to be better when using the
number of non-zero elements of x than when using the size of b. However, the R2 score of the first
regression is much lower than the one of the second regression. This can due to the fact that the
low number of non-zero elements in the solution which corresponds to a spike in Figure 15a is the
most important part of the dataset. Actually, 81.364% of the samples of the dataset dedicated to
the cross validation have a number of non-zero elements in the solution lower than 200, therefore,
having a bad regression for that part of the dataset should lead to a low R2score. Having a very
high variance for this bandwidth of number of non-zero elements in x is plausible because the
General algorithm will initialize x to b, regardless of the solution. Therefore, having a solution
with the same number of non-zero elements but one with a b with a much lower size than another
can lead to completely different computation time depending on the difference in b sizes. In the
later case, the General algorithm will spend most of its computation time initializing the vector
x. However, even if the R2 score is better when using the size of b as feature the regression is far
from perfect as one can see in Figure 15b.

26

(a) The regression model used by LRNNZX (a).
(b) The regression model used by LRNNZB (b) and
LRNNZX (b), (c).

Figure 15: Scatter plot of linear regressions used to predict the general algorithm computation
time of the validation set.

The regressions of the two-phase algorithm and the one-phase algorithm computation time
seem to be better when using the number of non-zero elements in x compared to the number of
non-zero elements in b. Similarly to the regression of the General algorithm computation time,
most of the dataset samples have a low number of non-zero elements in b and x, therefore, having
a better regression in that range should lead to better results. In Figures 18a and 19a, one can
see that there is a peak in the beginning of the x-axis which is less dense in the the Figures 18b
and 19b, which may increase the R2 when using the number of non-zero elements in x instead of
the one of b. One can also see that the slope of the regression seem too high leading to greater
residual the higher the number of non-zero elements in x is. This may be due to the high peak
and that the models tries to make a trade off between the error made on the peak and the one on
the high range of the x-axis.

One can see the regressions of the Two-phase algorithm and the One-phase algorithm com-
putation time of the model LRNNZX (c) in Figures 18c and 19c. These regressions seem to be
worse than the one shown in Figures 18a and 19a which are used in model LRNNZX (a) and (b).
However, these regressions leads to a better computation time when averaging the computation
time on the test folds. The Figure 14 shows the proportion of time each algorithm is predicted the
fastest by the LRNNZX models over different sizes of problems. The models LRNNZX (a) and
(b) seem to predict the Two-phase algorithm too often knowing that this class was, actually, the
one which was the less often the fastest, as seen in the class distribution of the dataset. One can
see the intersections of the two algorithm regressions in Figure 20, in this figure one could think
that the one-phase algorithm will be predicted best most of time, however, the part which is the
most important one is the part where the two-phase algorithm is predicted the fastest. Indeed,
the intersection occurs in x = 102.1 which corresponds to a number of non-zero elements in the
solution equal to 154 and 79.4% of the samples dedicated to the cross validation have a number
of non-zero elements lower than 154. Therefore, the Two-phase algorithm will be predicted best
most of the time which is what can be seen in Figure 14. In the Figure 20c, it is shown that by
using the number of non-zero elements squared to predict the time taken by the Two-phase algo-
rithm, the model LRNNZX (c) will actually predict the one-phase algorithm every time instead
of the two-phase algorithm. This strategy seems to be a better choice in average for the different
problems size as shown in Figure 13. The Figure 16 and Figure 17 shows the comparison between
the model LRNNZX (c) and the model LRNNZB (b) which was the one with the lowest total
computation time using only information on b. In that Figure, GT, which is the model that would

27

always predict the fastest algorithm, is also shown. In these Figures, one can see that the model
LRNNZX (c) is much closer to the ground truth algorithm prediction and computation time than
the model LRNNZB (b). Furthermore, the error of the model LRNNZB (b) where the general
algorithm seemed to be predicted the fastest to frequently for the size of b in between [0, 5× 104]
is not present in the model LRNNZX (c).

Figure 16: Bar plot of the average computation times of the algorithm predicted with the size
of the right-hand side for LRNNZX (c), LRNNZB (b) and a model that would predict the best
algorithm every time.

Figure 17: Bar plot showing the proportion of time each algorithm are predicted best by the model
LRNNZX (c), LRNNZB (b) and a model that would predict the fastest algorithm every time. The
proportions are shown with different ranges of b sizes.

The R2 score of the regression models seem to show that knowing the number of non-
zero elements in the right-hand side is not enough to precisely predict the time taken by the
3 algorithms, another feature might be able to improve the regressions. Even if there is an
unknown feature capable to improve the predictions of the computation time, these models shows
that knowing the number of non-zero elements in the solution helps to improve the performance
of the total computation time compared to LRNNZB (b). However, knowing the number of non-
zero elements in the solution is not possible before solving the systems. Therefore, the goal of
the next chapter will be to find features and create a model that is able to predict the number
of non-zero elements in the solution without, actually, solving the system and maybe to find the
feature that combined with the number of non-zeros elements in the solution would improve the

28

predicted computation time. These models should be fast enough to be able to win time over the
best model using only information on b which is LNNZB (b).

(a) The regression model used by
LRNNZB(a) and (b).

(b) The regression model used by
LRNNZX (a) and (b).

(c) The regression model used by
LRNNZX (c).

Figure 18: Scatter plot of linear regression used to predict the two-phase algorithm computation
time of the validation set.

(a) The regression model used by
LRNNZB (a) and (b).

(b) The regression model used by
LRNNZX (a) and (b).

(c) The regression model used by
LRNNZX (c).

Figure 19: Scatter plot of linear regressions used to predict the one-phase algorithm computation
time of the validation set.

(a) Prediction of the validation set
of LRNNZX (a).

(b) Prediction of the validation
set of LRNNZX (b).

(c) Prediction of the validation set
of LRNNZX (x).

Figure 20: Scatter plot of linear regressions used to predict the computation time of the validation
set by the model LRNNZX (a),(b) and (c). The general algorithm time regression is not repre-
sented for the model LRNNZX (b),(c) because it uses the size of b as feature and not its number
of non-zeros.

29

6.2 Feature engineering

At first, features are proposed regardless of their computation times in order to see what values
are relevant to predict the number of non-zeros of the solution.

To solve a system that is in a LU form 3 algorithms are proposed and to make the decision
of which solving algorithm to choose. Some data are available with just a read if the matrices are
stored in a compressed sparse column format. Such as, the number of non-zeros elements of the
matrices L or U and its size, the number of non-zeros in the right-hand side. Another available
information is the solve-type which take the value 1 if the system is in the form LUx = b and 0 if
the system is in the form xTLU = bT .

The other features that are tested are less easily computed. The following features will need
an order of complexity proportional to the number of non-zero elements present in the right-hand
side to be computed.

• The first feature that will be called f0 is to compute the number of non-zeros of each column
j which has a non-zero element at the corresponding index j of the right-hand side, the set
of these column indices will be called J . The feature f0 is motivated by the fact that if a
matrix L has no row index duplicates for all the elements of the columns j and if in the
solution some element computation does not give 0, then it represent a minimal bound of
the number of non-zero elements in the solution. The computation of the feature is shown
in (19). In this equation, the matrix A represent either L or U depending on the system
and b represent the right-hand side. The computation have a complexity of the order of the
number of non-zeros elements of the right-hand side thanks to the condense sparse column
or row format.

f0 =
∑
∀j∈J

A.p[j + 1]−A.p[j] (19)

where J = {j | bj = 0}.

This feature f0 is computed similarly in the case that the matrix is upper triangular. More-
over, if the solve type is in the form of xTL = bT , then, computation is exactly the same
except that in that case the matrix is loaded in the compressed sparse row format instead
of the compressed sparse column format.

The problem of this feature is that it is completely blind to the impact that a non-zero
element could create at computation since one non-zero will lead to more and more non-
zeros depending on the matrix L or U , and to the fact that multiple columns may have the
same row, thus, this feature may count more than one time a non zero element.

• Another feature that will be used is a score that tries to capture the possibility to create
new non-zeros. This feature also uses the index of the right-hand side non-zero elements
and find the corresponding column in the triangular matrix involved in the system. The
score is computed using (20). The idea behind this feature is to highlight the fact that for
system Lx = b and system of the type xTU = bT . Intuitively, the lower is the index in the
right-hand side, the higher is the probability to create new non-zeros elements.

f1 =
∑
∀j∈J

Anb row − j (20)

30

where Anb row is the number of row of A.

In the case that the system is in the form of xTL = bT or the system is Ux = b, then,
the importance changes. The higher is the row (resp. column) number, the higher is the
probability to create non-zeros. In these cases, this feature is computed with (21)

f1 =
∑
∀j∈J

j. (21)

• The third feature is similar to the second except that each element of the sum will be weighted
by the number of non-zero elements in the column or row of the matrix depending on the
type of solve. For the system of the type Lx = b and Ux = b, it is the number of non-zeros
element in the column that is taken. If the system has the type xTL = bT or xTU = bT ,
then, it is the number of non zeros element in the row that is taken. Similarly to the first
feature, the computation is actually the same for system with xT , it is just the format used
to load the matrices that changes. The corresponding equation for the systems Lx = b and
xTU = b is shown in (22) and the one for xTL = bT or Ux = b corresponds to (23).

f3 =
∑
∀j∈J

(Anb row − j)× (A.p[j + 1]−A.p[j]) (22)

f3 =
∑
∀j∈J

j × (A.p[j + 1]−A.p[j]) (23)

• The last feature that is computed is similar to the third feature but it is not weighted but
powered. This may better fit the number of non-zeros since it may better fit the snowball
effects of one non-zero element creating other non-zero elements, this corresponds to compute
(24) for Lx = b and xTU = bT and (25) for the system xTL = bT and Ux = b.

f3 =
∑
∀j∈J

(Anb row − j)A.p[j+1]−A.p[j] (24)

f3 =
∑
∀j∈J

jA.p[j+1]−A.p[j] (25)

6.2.1 Feature importance and computation time

Some features have been proposed but their importances have not been tested. Furthermore,
using irrelevant features in a model can result to more time to make a prediction. It is even more
important in a context where the time window to make a prediction is very low. That is why
feature selection can be a valuable option in this work.

The feature importance is computed using decision tree as explained in sectionDecision Tree.
The importance of the features is shown in Figure 21. The feature computed such as the size
of the system and the feature f0 seem to have played a role in the creation of the decision tree.
This figure is only to show that some feature that have been proposed are not completely useless,
the score of the feature will not be used for feature selection. The features that seem the more
important are the size of the matrix L or U depending on the system, the feature f0 and the
number of non-zero elements in the triangular matrix.

31

Figure 21: Feature importance for the prediction of the number of non-zero elements in the solution
NNZ standing for Number of Non-Zero elements.

Figure 22: Ratio between the feature computation time and the time difference between the best
and second best algorithm.

In order to see if there is still time to win when computing the features when choosing the
best model over the second model, one can see the Figure 22 that shows the average of the ratio
between the feature computation time and the time difference between the fastest algorithm and
the second fastest algorithm. This computation is done over the training set to avoid making a
selection of the feature based on the test set. Indeed, doing so would lead to a fit of the test set
and maybe a bias on the performance analysis of the model. One can see that the computation
times of the features are lower than 1% compared to the time difference between the two fastest
algorithms. On average, computing all the features will lead to a small overhead that leaves more
than 99.48% of the time window between the first and second choice algorithm.

Previous results were showing the average proportion that the feature computation times
takes over the possible time to win if the best algorithm were chosen instead of the second choice.
Therefore, it is still possible that computing these features leads to an overhead greater than the
possible time to win in some cases. The percentage of these cases was computed over the training
set and represent, actually, 1% of this set. For those systems, the average computation time is
very low 1.30ns for the fastest algorithm and 1.39ns for the second fastest. This leaves around

32

0.09ns to compute the features and in those cases the computation of f0 is 0.2ns. Those cases
are not considered for now but it can be great to know more about those cases to maybe use a
simpler method to predict the fastest algorithm.

6.3 Proxy model selection

The model predicting the number of non-zero elements in the solution will be trained with the
same folds used to train the models LRNNZB and LRNNZX. However, some of the plots that
will be shown in this section needs a training and test set, it is not possible to make an average
of the measure on the test folds. Therefore, these plots are made using the test set methods by
taking 7 folds as learning set LS and the 3 other folds as second TS. The 30% which was put
aside before the model must not be used, these sample must be kept and used only for the model
assessment.

In order to train the model predicting the time in next section, the model will also be trained
on the 10 folds as previous model. In that case, for the fold i which is used to evaluate how the
model perform on new data, the model predicting the proxy should not be trained on that folds.
Indeed, this will lead to an overestimation of the performance of the model predicting the time.
To avoid this situation, the model trained to predict the proxy will be trained on the same folds
as the model predicting the time.

In order to measure if an algorithm is fast enough, a metric will be used to measure the
efficiency of the algorithm. This metric is the ratio between the mean time of prediction over
the difference between the time taken by the fastest algorithm and the one of the second fastest
algorithm. The metric is defined as

β1,2(t pred, t) =

∑n
i=1 t predi∑n

i=1 min
∀j\{argminj(tij)}

(tij)−min
∀j

(tij)
.

The time t predi is the time taken to make the prediction of the sample i including the
feature computation time and the value tij is the time taken for the solver j to solve the sample i.

This metric being an average, there is still a possibility that using a model to predict the
number of non-zeros adds an overhead that is greater than the time difference between the two
fastest algorithm. Therefore, a second metric is used to measure the ratio of such cases on a
dataset. This value uses the same input as β1,2 and it also uses n, which is the size of the dataset.
This metric is defined as

γ1,2(t pred, t) =

∑n
i=1 1

(
t predi >

(
min

∀j\{argminj(tij)}
(tij)−min

∀j
(tij)

))
n

.

6.3.1 Linear Regression

One of the model that is tested to predict the number of non-zero elements in the solution is the
ordinary least square regression. If the data follows a linear model, thus, the residuals follows a
normal distribution. This means that if the linear regression fits best the model, the residuals of
the fitted models only becomes noise which is present in the dataset. However, when training a
linear model with the 7 first folds and using the 3 other folds as test set , the residual does not
seem to be following a normal distribution as shown in Figure 24.

Nonetheless, for the number of non-zero elements between 10000 and 25000, the residual
seem to increase linearly with the number of non-zero elements which can be due to a too low
slope of the model for that range of output. Therefore, the error increases with the output value.

33

One can also see in that figure that most of the error seems to be located in the low part of the
output, which is for a predicted value lower than 10000. Furthermore, the R2 score does not seem
bad considering the simplicity of the model. It is equal to 0.395 when using the training set and
0.372 when using the test set. However, when using cross-validation, the average R2 score on the
test folds is −1.644× 1013 and the average R2 score on the training folds is 0.389. the reason why
the R2 score on the test folds is so low in average is actually because there is a folds in particular
that the linear regression does not predict well when not trained on. Indeed, without the fold
having an R2 on test of −1.1644× 1014, the average R2 score becomes 0.342.

The time added to predict the number of non-zeros elements in x is very low compared
to the time needed to compute the features. Indeed, the prediction complexity of the linear
regression is very low. To make a prediction, there is actually a multiplication with the slope
which is obtained by training for every feature and the bias b. Therefore, the complexity is just
O(nfeatures) which is very low. In that case, the average computation time has a ratio of 8×10−5

over the difference between the fastest and the second fastest algorithm. Most of the overhead
added to make the prediction is, actually, due to the feature computation. The parameter β1,2

for the Linear regression is 0.0053 which is very close to the time needed to compute the feature.
The prediction time is actually negligible compared to the feature computation time.

Figure 23: Residual plot when using Ordinary Least Squares regression. The training set used to
make the figure is the 7 first folds and the test set is the remaining 3 folds.

6.3.2 KNN

The KNN regressor that was first tested was the default one of Scikit-Learn[7] which uses a
number of neighbors equal to 5. This KNN regressor obtained an average R2 score on the test
folds equal to 0.0790 and the one obtained on the training set equal to 0.8037, this may be due to
an overfitting of the training set by the model. Therefore, multiple value of nearest neighbors were
tested in order to find the model which has the best bias and variance trade-off. The variance for
the KNN is increasing when the number of nearest neighbors decrease and the bias is decreasing
when the number of nearest neighbors increase, which means that the lower the number of neigh-
bors the more complex the model is.

As one can see, Table 2 the average R2 score on the test folds increases with the number of
neighbors which were tested. An higher number of neighbor could actually lead to a better R2 on
test folds. However, one can also see the increase of the parameter β1,2 with the parameter k which

34

is coherent because the time complexity of KNN prediction when using a tree is O(k∗ log(n)), with
n the number of samples in the dataset, which increases with the number of neighbors. Further-
more, the parameter γ1,2 is actually already at 0.8068 with k = 50, this means that 80% on average
on the test folds will to win time if the best algorithm is chosen over the second best algorithm.
Therefore, no higher k were tested. Moreover, the time complexity also depends on the number of
samples in the training set, therefore, if the model is trained with more samples for example when
adding the test set to the training, the computation time will increase, thus, β1,2 will also increase.

One can also see in Table 2 that despite being the model with the lowest R2, the model KNN
with k = 50 is not the model with the lowest MAPE on the test set. The KNN regressor with
the lowest MAPE is the one with k = 5, the MAPE on average on the test fold is 14.0453 for
KNN with k = 5. Therefore, KNN algorithm does not seem to be well predicting the number of
non-zero elements in the solution. Indeed, the KNN with the lowest MAPE makes in average an
error which is 14.0453 times its value.

n neighbors R2 test R2 train MAPE test MAPE train β1,2 γ1,2

5 0.0790 0.8037 14.0453 4.6097 0.0629 0.7515
8 0.1259 0.7581 14.2764 5.7806 0.0727 0.7653

10 0.1398 0.7369 14.3015 6.2688 0.0724 0.7623
50 0.2835 0.5979 15.1331 9.6880 0.1476 0.8068

Table 2: Results of the KNN regressor using 4 values of nearest neighbors, which are [1, 2, 5, 10].

Figure 24: Residual plot when using KNN with N = 50. The training set used to make the figure
is the 7 first folds that are used in cross validation and the test set the remaining 3 folds.

35

Figure 25: Average R2 score of the test and training folds with the number of neighbors parameter
of the KNN regressor model.

6.3.3 Multilayer Perceptron

The Multi-layer Perceptron regressor was trained using default parameters of Scikit-learn but with
different hidden layer size. Noted that, the MLPs actually needs to have a scalar in order to put
the feature in a range between 0 and 1 which is not the case for the other regressors. This will
add 2 operations per features before making the prediction of the MLP. Indeed, Scaler computes
the mean and standard deviation for each feature and store it. Then, when making a prediction
for each feature, the value that will be given to the MLP is computed with

z = (x− µ)σ

where z is the scaled feature, x is the feature not scaled, µ is the mean and σ is the standard
deviation.

Different hidden layer size for the MLP were tested and are shown in Table 3 to find the best
complexity of the model. Even if the lowest average R2 score on the training folds is equal to 0.74,
the highest average R2 on test folds of the MLP regressor is obtained with an hidden layer size of
10 with a value of −1.3756×1014 which is lower than the one obtained with linear regression which
have a R2 on test set equal to −1.644 × 1013. When computing the R2 score obtained on each
fold when they are used as test fold, as the linear regression method, the R2 score obtained on
the fold 3 is much lower than the other with a value equal to −1.3756× 1015 whereas the average
R2 score when removing the score on the folds 3 is 0.604 which is higher than this score obtained
by linear regression. The reason why the average R2 is lower when using MLP than when using
the linear regression is because MLP fits less well the fold 3 is unknown. The Figure 26 shows the
residual of the MLP with an hidden layer size equal to 10 and one can see that the spike error of
the MLP for systems that should have a very low number of non-zero elements the model predict
actually a very high value.

36

hidden layer sizes R2 test R2 train MAPE test MAPE train β1,2 γ1,2

10 −1.3756× 1014 0.7413 1.0373× 106 16.9972 0.0005 0.0223
50 −2.2330× 1014 0.7931 1.3212× 106 15.3506 0.0015 0.1050
100 −2.0554× 1014 0.8141 1.2678× 106 17.0552 0.0036 0.2094
200 −5.1828× 1014 0.8302 2.0133× 106 17.8585 0.0050 0.2298
500 −3.43257× 1014 0.8433 1.6384× 106 19.0117 0.0134 0.3528

Table 3: Results of the MLP regressor different hidden layer sizes.

Figure 26: Residual plot when using MLP with an hidden layer size equal to 10. The training set
used to make the figure is composed of the 7 first folds and the test set is the remaining 3 folds.

6.3.4 Decision Tree

One can see in Table 4 the results of Decision Tree trained with different maximal depths. The
decision tree achieved better R2 score than previous models with a maximal average R2 score on
the test folds equal to 0.37 which is obtained with a depth of 10. However, the lowest MAPE
is obtained with a depth of 20 with a value equal to 0.6339. For higher depths, the MAPE
increases which can be due to overfitting. Therefore, the Decision Tree that is supposed best for
the regression of the number of non-zero elements in the solution is the one with a depth of 20.
The residual plot of this model is shown in Figure 27. That plot shows that even if the average
MAPE in test folds is equal to 0.6339, there is still cases in the model that can lead to high error.
In the Table 4, it is shown that parameters β1,2 and γ1,2 increase with the depth of the decision
tree with a maximal value of 0.0007 for β1,2 and 0.0335 for γ1,2. These value have a great ratio
performance per computation time, the KNN regressor with N = 50 obtained an average R2 on
the test folds equal to 0.2835 which is lower than the one of the Decision Tree and this KNN
have parameter γ1,2 = 0.8068 which is much greater than the one of the DT. The reason why the
parameters β1,2 and γ1,2 increases with the depth of the tree i the because the time complexity of
the prediction of a decision tree is proportional to the depth of the tree, the complexity is O(D)
with D being the depth.

37

max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

10 0.3700 0.9505 0.6865 0.5420 0.0003 0.0131
20 0.3410 0.9986 0.6339 0.1710 0.0006 0.0263
30 0.3097 1.0000 0.6849 0.0219 0.0006 0.0281
40 0.3199 1.0000 0.6950 0.0006 0.0007 0.0328
50 0.3034 1.0000 0.6740 0.0000 0.0007 0.0328
60 0.3218 1.0000 0.6776 0.0000 0.0007 0.0317
70 0.3218 1.0000 0.6777 0.0000 0.0007 0.0328
80 0.3218 1.0000 0.6777 0.0000 0.0007 0.0335

Table 4: Results of Decision tree regressors using 8 values of maximum depth. In this table the
test means that the metrics is taken by averaging the value obtained on the test folds.

Figure 27: Residual plot when using the supposed best Decision Tree, which is the one with
maximal depth of 20. The training set used to make the figure is the combination of 7 folds and
the test set is 3 remaining ones.

38

Figure 28: MAPE of the test being 3 folds and training the 7 remaining folds with maximum
depth of the Decision Tree regressor model.

6.3.5 Random Forest

The Table 5 shows the results of the Random Forest regressor with different number of features
used to make the split. This table shows that one of the Random Forest regressor that obtained
the lowest average MAPE on the test folds is the one using all available features to make the
split, which is actually the parameter suggested in Sklearn. Therefore, the Random Forest with
this parameter is the same as doing Bagging with decision trees. Indeed, the difference between
Random Forest and Bagging with trees is that the random forest introduces randomness by using
a number of feature to select. In that case all the feature are used, so there is no randomness
added. Even if the average MAPE on test folds is one of the lowest, the average R2 seem to be
the highest when using 2 features.

The Random Forest using all the features to make the split was used to test another pa-
rameter, which is the number of decision trees used to make the prediction. The result that the
metric β1,2 increases with the number of tree used is what is expected because the complexity of
the prediction made by a Random Forest is O(N × D), with N the number of trees and D the
maximum depth of the trees. As one can see in Table 6, the higher the number of trees the lower
the MAPE and the higher the R2. However, the MAPE and R2 reach a plateau very fast, the
performance increase but this cost more and more computation time.

39

k R2 test R2 train MAPE test MAPE train β1,2 γ1,2

1 0.7278 0.9946 3.0284 0.2017 0.0940 0.7794
2 0.7452 0.9958 1.2111 0.1054 0.0740 0.7637
3 0.7118 0.9964 0.8662 0.0804 0.0552 0.7389
4 0.6966 0.9967 0.6804 0.0734 0.0549 0.7379
5 0.6952 0.9968 0.6453 0.0708 0.0552 0.7396
6 0.6265 0.9969 0.6413 0.0696 0.0494 0.7253
7 0.5872 0.9969 0.6431 0.0687 0.0493 0.7241
8 0.4742 0.9968 0.6415 0.0683 0.0465 0.7150

Table 5: Results of the Random Forest regressor different number of feature used to make the
split. These value are called k in the table.

n estimators R2 test R2 train MAPE test MAPE train β1,2 γ1,2

10 0.4992 0.9955 0.6625 0.0724 0.0053 0.2342
20 0.4887 0.9960 0.6464 0.0703 0.0123 0.3401
50 0.4802 0.9966 0.6455 0.0688 0.0240 0.4824
100 0.4742 0.9968 0.6415 0.0683 0.0474 0.7181
200 0.4664 0.9969 0.6386 0.0679 0.1107 0.7884

Table 6: Results of the Random Forest regressor with different number of estimators.

In the same table, the parameters γ1,2 is very high the lowest one being the Random Forest
with a number of estimators equal to 10 that already have a value around 0.23. This means that
around 23% of the samples will not win time when choosing the best algorithm over the second
one. Moreover, three regressions will also come after this one to predict the computation time of
each algorithm, thus, Random Forest with lower number of estimators and with a limited depth
of tree where tested to find one with similar performance with a lower prediction time. One can
see in Table 7 that Random Forest with 2 estimators and with a depth of 20 can compete with
Decision Tree with a depth of 20 that had an average MAPE on the test folds of 0.6339 whereas
Random Forest have the lowest MAPE obtained so for with a value equal to 0.6190 but with a
gamma which is approximately two times the one of the Decision Tree.

n estimators max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

2

10 0.5203 0.9504 0.6995 0.5362 0.0005 0.0226
20 0.5041 0.9877 0.6190 0.1895 0.0010 0.0502
30 0.5123 0.9882 0.6247 0.0878 0.0013 0.0767
50 0.4844 0.9883 0.6532 0.0778 0.0012 0.0803

Table 7: Results of the Random Forest regressor with 2 estimators and different maximal depth
of trees.

The Figure 29 shows the residual of the Random Forest with the lowest MAPE obtained
which is the one with the parameter k = 8, n estimators = 2 and max depth = 20. The Random
forest makes more error on the training set than the Decision Tree, the Decision Tree residuals
points were very close to the x− axis. This can be due to the fact that the Decision Tree with a
depth of 20 may be overfitting the training set compared to the Random Forest model.

40

Figure 29: Residual plot when using Random Forest with n estimators = 200 and k = 8. The
training set used to make the figure is the combination of the 7 first folds and the test set is the
remaining 3 folds.

6.3.6 Extremely Randomized Trees

Extremely Randomized Trees have similar parameters with the Random Forest such as the number
of features used to make the split. The Table 8 shows the metrics obtained with different value
of this parameter. One can see that similarly to the Random Forest, the Extremely Randomized
Trees that has the lowest average MAPE score on the test folds is the one with the number of
feature used in the split equal to the number of feature in the dataset. However, the R2 test is
not the maximum with k = 8. The maximal R2 test is obtained with k = 4.

A table with the result of Extremely Randomized Trees with k = 8 and using different num-
ber of estimators was made. As shown in the Table 9, similarly to Random Forest, the higher
the number of estimators the higher the R2 score and the lower the MAPE test but at the cost
of computation time, that is why higher number of estimators where not tested. Indeed, the Ex-
tremely Randomized Trees with a number of estimators equal to 100 already have a γ1,2 equal to
0.7662 and because Extremely randomized trees prediction has a complexity equal to O(N ×D).
Therefore, higher number of estimators would necessarily lead to higher γ1,2.

With the parameters tested, the Extremely Randomized Trees that obtained the lowest
average MAPE on the test folds with the default parameter of Scikit-learn, this means with
n estimators = 100 and k = 8. The MAPE test of this regressor was 0.6241 which is slightly
higher than the one of the Random Forest with the lowest MAPE which had a value of 0.6190.
However, the Extremely Randomized Trees obtained a much higher average R2 on the test folds
with a value of 0.7328 whereas the Random Forest obtained 0.5041.

41

k R2 test R2 train MAPE test MAPE train β1,2 γ1,2

1 0.7220 1.0000 3.5532 0.0000 0.0989 0.7839
2 0.7454 1.0000 1.8964 0.0000 0.0780 0.7688
3 0.7512 1.0000 1.1991 0.0000 0.0969 0.7819
4 0.7661 1.0000 0.7949 0.0000 0.0764 0.7663
5 0.7658 1.0000 0.7713 0.0000 0.0812 0.7696
6 0.7495 1.0000 0.6739 0.0000 0.0683 0.7575
7 0.7461 1.0000 0.6645 0.0000 0.1194 0.7764
8 0.7328 1.0000 0.6241 0.0000 0.0866 0.7703

Table 8: Results of the Extremely Randomized Trees trained using different value of k, which is
the maximum number of feature used in a split.

n estimators R2 test R2 train MAPE test MAPE train β1,2 γ1,2

5 0.6342 1.0000 0.6716 0.0000 0.0035 0.2095
10 0.6514 1.0000 0.6534 0.0000 0.0072 0.2593
20 0.7076 1.0000 0.6296 0.0000 0.0142 0.3619
30 0.7138 1.0000 0.6278 0.0000 0.0229 0.4571
50 0.7229 1.0000 0.6232 0.0000 0.0377 0.6659
100 0.7328 1.0000 0.6241 0.0000 0.0714 0.7662

Table 9: Results of the Extremely Randomized Trees using different number of trees generated.

Similarly to Random Forest, without pruning the trees or reducing the number of estimators,
the value γ1,2 of the Extremely Randomized Trees with the lowest average MAPE on test folds is
quiet high. Therefore, lowest value of the parameter n estimators and max depth where tested.
The Table 10 shows with 2 to 3 number of estimators and a limited depth to 50, the Extremely
Randomized Trees seem to need an higher value for the depth to achieve similar average MAPE
on test folds than Random Forest. Indeed, the Extremely Randomized Trees with a number of
estimators of 2 with a maximal depth of 50 obtained an average MAPE on test folds equal to
0.6445 whereas Random Forest with the same number of estimators had 0.6190 but with a maxi-
mal depth of 20. Increasing, the number of estimators to 3 did increases the R2 score but it did
not decrease the MAPE. Furthermore, the computation time is higher, thus, it increases γ1,2.

n estimators max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

2

10 0.5336 0.7790 12.6068 12.1897 0.0004 0.0182
20 0.5200 0.9631 1.2097 1.0531 0.0007 0.0315
30 0.4806 0.9971 0.7319 0.2322 0.0012 0.0885
50 0.5486 1.0000 0.6445 0.0053 0.0014 0.1055

3

10 0.6328 0.8034 10.6884 10.3683 0.0005 0.0226
20 0.6329 0.9698 1.0952 0.9507 0.0010 0.0659
30 0.4507 0.9981 0.6947 0.2393 0.0018 0.1436
50 0.6242 1.0000 0.6562 0.0060 0.0023 0.1718

Table 10: Results of the Extremely Randomized Trees using different number of trees generated.

One can see in Figure 30 that the residual of the test set does not seem to be different
than the one of the Random Forest. However, the residual on the training set is close to zero.
Therefore, there is not much error on the training set compared to the one on the test set as the

42

R2 score on the two sets suggests. This may be due to an overfit of the Extremely Randomized
Trees compared to Random Forest that leads to an higher error on the test set.

Figure 30: Residual plot when using Extremely Randomized Trees with k = 8, the number of
estimators equal to 2 and a maximal depth of 50.

6.3.7 Adaboost

The Table 11 shows the results of the regressor Adaboost when finetuning the parametermax depth
of the decision tree that is used as based estimator, every other parameters are kept with the default
values of Scikit-learn. The Adaboost regressor which obtained the lowest MAPE is the one with
a max depth equal to 50 with a value of 0.4265. This MAPE is actually the lowest obtained so
far.

The Table 12 shows Adaboost performance with the parameter max depth equal to 50 but
with different number of estimators. The parameter that have the lowest MAPE on the test set is
the one with the number of estimator equal to 50, which is, actually, the default value. However,
the R2 score on the test may still increase when the number of estimators increases. The highest
average R2 on test folds obtained so far is also with a number of estimators equal to 50, it has
value of 0.7056 whereas the Extremely Random Trees with k = 4 and with all other parameters
kept with default obtained 0.7661.

max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

10 0.5414 0.9842 0.9305 0.7470 0.0181 0.3852
20 0.6804 0.9997 0.5170 0.1627 0.0282 0.5711
50 0.7056 1.0000 0.4265 0.0036 0.0345 0.6473
70 0.5821 1.0000 0.4429 0.0038 0.0317 0.6241
80 0.5821 1.0000 0.4429 0.0038 0.0321 0.6264

Table 11: Results of the ADABoost regressor with different value of the max depth parameter of
the decision tree used as a base estimator.

43

n estimators R2 test R2 train MAPE test MAPE train β1,2 γ1,2

5 0.5913 0.9997 0.5088 0.0177 0.0047 0.2255
10 0.6504 0.9999 0.4868 0.0100 0.0075 0.2700
20 0.6668 1.0000 0.4627 0.0050 0.0135 0.3546
50 0.7056 1.0000 0.4265 0.0036 0.0323 0.6289

Table 12: Results of the ADABoost regressor using a number of estimator equal to 5, 10, 20 and
50.

The parameter γ1,2 for Adaboost with max depth equal to 50 and a number of estimator
equal to 50 is quite high with a value of 0.6289, therefore, if this estimator is used an average
62.89% of the samples will not have time benefit when choosing the best algorithm instead of
the second. In order to have Adaboost with lower γ1,2, lower number of estimators and maximal
depths were tested. One can see in Table 12 that Adaboost does not perform better than random
forest and Extremely Randomized Trees if one does not accept a γ1,2 greater than 0.11. Extremely
Randomized Trees optained an average MAPE on test folds equal to 0.6445 for a γ1,2 = 0.1055
and Random Forest obtained a MAPE of 0.6190 for a γ1,2 = 0.502. However, if more time can
be accepted, Adaboost manage to obtain a MAPE equal to 0.5088 with γ1,2 = 0.2255.

n estimators max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

2

10 0.2716 0.9415 0.6966 0.5497 0.0009 0.0476
20 0.1651 0.9800 0.6759 0.1925 0.0013 0.0804
30 0.3993 0.9819 0.6831 0.0928 0.0014 0.1076
50 0.3820 0.9812 0.6937 0.0800 0.0014 0.1035

3

10 0.6227 0.9654 0.7025 0.5624 0.0013 0.0932
20 0.4788 0.9980 0.5351 0.1680 0.0020 0.1524
30 0.5744 0.9989 0.5406 0.0438 0.0021 0.1659
50 0.4738 0.9989 0.5422 0.0297 0.0025 0.1723

5

10 0.6831 0.9714 0.7283 0.5839 0.0023 0.1575
20 0.6317 0.9988 0.5142 0.1642 0.0032 0.2011
30 0.6378 0.9997 0.5139 0.0334 0.0037 0.2079
50 0.5913 0.9997 0.5088 0.0177 0.0047 0.2255

Table 13: Results of the ADABoost regressor with different value of the max depth parameter of
the decision tree used as a base estimator.

Another advantage that Adaboost does not have compared to Extremely Random Trees and
Random Forest is that it cannot be parallelized but the two other can. Indeed, the estimators of
Adaboost needs the results of the previous estimator to make its prediction whereas for Extremely
Random Trees and Random Forest the estimators can run in parallel and, then, the results of the
estimators can be averaged.

Adaboost is known to be better on difficult cases. Indeed, it will train a tree one after the
other and putting more weights on samples which are less well predicted on previous tree. One
can see in the Figure 31 that the residual for some prediction seem to be reduced compared to the
one of the Extremely Randomized Tree.

44

(a) Residual plot of Adaboost regressor with the pa-
rameter n estimator equal to 5 and the parameter
max depth equal to 50.

(b) Residual plot of Extremely Randomized Trees
with k equal to 8, the number of estimators equal
to 2 and a max depth of 50.

Figure 31: Residual plot of the supposed best Extremely Randomized Tree model and the supposed
best and fast Adaboost model with the test set being the 3 last folds and training set being the
remaining 7 folds.

7 Model selection

In section Proxy model selection, some regression models were trained to predict the number of
non-zeros elements in the solution. In order to avoid testing every model that were trained, the
one with the best performance in cross validation will be used. The first model that will be tested
is Linear Regression even if its prediction of the proxy were not performing well compared to other
models.This model is kept because it is very fast. The models which predict well the number of
non-zero elements in the solution are Decision Tree with a depth of 50, Random Forest with a
number of estimator of 2 using all the features and with a maximal depth a 20 and the last proxy
model that is used is AdaBoost with 5 estimators and with a maximal depth of 20. The output of
these models will be used as a feature for three other models, these 3 models will predict the time
of taken by its assigned algorithm. This section is to try to find the best combination of proxy
model and models predicting the solve computation time, and to finally try which combination
predicts best the fastest algorithm.

However, some regression models used in previous section will not be used in this section
to predict the computation time. Indeed, when KNN was tested in previous section, it had
a parameter γ1,2 = 0.7515, adding 3 more KNN to predict the time of the 3 algorithms will
necessarily lead to higher γ1,2, which means that even less than 30% of the systems will save time
if the right choice of the algorithm is made instead of the second best choice. The MLP was also
not predicting well the number of non-zero elements in the solution, therefore, it was not further
tested as proxy. The Extremely Randomized Trees obtained reasonable performance compared to
other models but it needed more time to have similar performance as Random Forest, thus, this
proxy predictor is not used in this section.

7.1 Linear Regression

The Table 14 shows the score of the Linear Regression when predicting the 3 algorithm solve times
using a Linear regression to predict the proxy. In this table, one can see that the average R2 score
of the test folds is negative and very low indicating that this model is very bad at predicting the
computation time.

45

Algorithm R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General -5.1404×107 0.8690 1.4129×103 0.2074 0.0003 0.0114
Two-Phase -3.3304×1012 0.7809 3.0865×107 2.7769×103 0.0002 0.0115
One-Phase -3.1918×1012 0.8178 2.1119×105 48.5596 0.0002 0.0104

Table 14: Results of the Linear Regression to predict the time taken by each algorithm using also
a Linear regression to predict the number of non-zero elements in the solution.

The Table 15 shows the same model but with another model to predict the proxy. In this
table, the proxy is predicted with a Decision Tree with a maximal depth of 50. Changing the
model predicting the proxy to the Decision Tree one does not seem to help the prediction of the
algorithm solve times. The Table 16 and 17 shows the score of the models when using the 2 other
proxy regressors. In these tables, one can see that the R2 score does not seem to increase signifi-
cantly. The highest average R2 score of the test folds of the Two-Phase algorithm and One-Phase
algorithm time regression is obtained when using the Random forest regressor to predict the proxy.

Algorithm R2 test R2train MAPE test MAPE train β1,2 γ1,2

General -4.2378×108 0.8690 4.0564×103 0.2044 0.0007 0.0262
Two-Phase -9.1182×1011 0.8027 1.6154×107 5.8134×103 0.0007 0.0262
One-Phase -5.7534×1012 0.8189 2.8354×105 63.1362 0.0006 0.0262

Table 15: Results of the Linear Regression to predict the time taken by each algorithm using a
Decision Tree with a maximal depth of 50 to predict the number of non-zero elements in the
solution.

Algorithm R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General -4.2528×108 0.8690 4.0635×103 0.2046 0.0013 0.0878
Two-Phase -8.5940×1011 0.8017 1.5683 ×107 5.7631 ×103 0.0012 0.0812
One-Phase -5.7170×1012 0.8188 2.8264 ×105 62.7912 0.0013 0.0874

Table 16: Results of the Linear Regression to predict the time taken by each algorithm using
Random Forest with two decision tree with a maximal depth of 20 to predict the number of
non-zero elements in the solution.

Algorithm R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General -4.2329×108 0.8690 4.0540×103 0.2044 0.0042 0.2200
Two-Phase -9.2075×1011 0.8027 1.6233×107 5.7966×103 0.0042 0.2194
One-Phase -5.7467×1012 0.8189 2.8338×105 62.9924 0.0042 0.2199

Table 17: Results of the Linear Regression to predict the time taken by each algorithm using
AdaBoost using 3 Decision trees with a maximal depth of 20 to predict the number of non-zero
elements in the solution.

However, when predicting the time of the algorithm in Section First model with the number
on non-zero elements in the solution, the R2 score were not significant either but that model was
still predicting well which algorithm was the fastest. Therefore, one model using Linear regression
were used to try predicting the fastest algorithm and this even if their regressions were bad. The
Table shows that the predicted algorithm does not have better results than the model LRNNZB

46

(b) which obtained an average computation time of the test folds of 27.338s and a balanced-
accuracy of 0.459. The new model LRRFProxy uses only the size of b as feature to predict the
General algorithm solve time, whereas, the two other algorithm solve time are predicted using the
same features used for the proxy and it also uses the proxy itself as feature. This model does not
have lowest average time than LRNNZB (b), it took 36.4851s for LRRFProxy and 27.3383s
for LRNNZB (b). This time includes the solve time, the time to compute the feature, the proxy
prediction and the 3 algorithm solve time regressions.

Model Average time (s) Balanced accuracy β1,2 γ1,2 γ1,3

LRRFProxy 36.4851 0.4668 0.0010 0.0568 0.0000
LRNNZB(b) 27.3383 0.4589 0.0001 0.0053 0.0000

Table 18: Classifier comparison between LRNNZB(b) and LRRFProxy. The average time is
average of the total time needed to solve the test fold. The metrics average time, β1,2, γ1,2 and
γ1,3 includes all the time necessary to predict the algorithm.

7.2 Decision Tree

Similarly to other Linear Regression, Decision Tree models were tested with different models that
predicts the number of non-zero element in the solution. As in the proxy model selection when
using Decision Tree, different maximal depth of the Decision Tree were tested in order to find the
best variance/bias trade-off.

The Table 19 shows the scores of the regression of the algorithm solve time when using a
Linear Regression to predict the number of non-zero elements in the solution. The R2 test score
are not as bad as when using Linear Regression to predict the time, even if they are still negative.
One can also see that the average MAPE test for the prediction of the General Algorithm solve
time is not bad. However, a simple Linear Regression with only the size of b achieve a better R2

score as show in the Section First model. The bestMAPE test for the regression of the Two-Phase
algorithm is obtained with a depth of 30, with a R2 test score of −2.1930 and a MAPE test of
9.1725 whereas the depth with the lowest average MAPE over the test folds for the regression of
the One-Phase algorithm is obtained with a maximal depth equal to 20 with a R2 test score of
−1.6358 and MAPE test of 2.1068.

47

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 -0.3626 0.9060 0.1632 0.0912 0.0003 0.0131
20 -0.5545 0.9795 0.2104 0.0463 0.0006 0.0270
30 -0.6511 0.9964 0.2428 0.0103 0.0009 0.0461
40 -0.5640 0.9980 0.2325 0.0028 0.0007 0.0315
50 -0.5737 0.9981 0.2331 0.0024 0.0008 0.0407
80 -0.6553 0.9981 0.2391 0.0023 0.0008 0.0334

Two-Phase

10 -1.3976 0.9614 14.5672 11.2169 0.0003 0.0120
20 -2.3100 0.9986 13.5959 1.6076 0.0005 0.0225
30 -2.1930 1.0000 9.1725 0.4070 0.0009 0.0492
40 -2.2787 1.0000 12.9155 0.1103 0.0009 0.0484
50 -2.2446 1.0000 10.2121 0.0268 0.0010 0.0641
80 -2.2192 1.0000 10.1793 0.0076 0.0010 0.0537

One-Phase

10 -1.3791 0.9537 7.2406 5.5790 0.0003 0.0120
20 -1.6358 0.9945 2.1068 0.6573 0.0005 0.0214
30 -1.7296 1.0000 2.2554 0.1472 0.0010 0.0570
40 -1.6968 1.0000 2.2750 0.0236 0.0009 0.0435
50 -1.7088 1.0000 2.3909 0.0063 0.0010 0.0549
80 -1.6538 1.0000 2.2095 0.0043 0.0010 0.0534

Table 19: Results of the Decision Tree to predict the time taken by each algorithm and using a
Linear Regression to predict the proxy.

One can see on Table 20 that using Decision Tree instead of a Linear Regression to predict
the number of non-zero elements in the solution increases the average R2 score of the test folds.
Indeed, for a maximal depth of 10 the General algorithm time regression has a positive R2 test
score with a value of 0.3208, the Two-Phase algorithm time regression with a depth of 50 has a
similar MAPE to the one with a depth of 20 and because the R2 is higher for a depth of 20,
the selected depth is 20. This Decision Tree does not have a positive R2 test score but it has the
highest one seen so far with a value of −0.6010. The lowest MAPE of the One-Phase algorithm
time regression obtained in the table is with a Decision Tree with a maximal depth equal to 20.
However, the R2 test score of the Decision Tree with a maximal depth of 10 was higher for the
One-Phase algorithm.

The Table 21 shows the score of the Decision Tree when using the supposed best Random
Forest to predict the number of non-zero elements in the solution. In that table, one can see that
the average MAPE of the test folds is slightly lower than the model that uses a Decision Tree to
predict the proxy. The best MAPE for the regression are obtained in the same maximal depth
of the Decision Tree. Even if the MAPE are lower for the 3 algorithm solve time regressions, the
R2 test score decreases.

48

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.3208 0.9050 0.1309 0.0911 0.0009 0.0527
20 0.2873 0.9820 0.1770 0.0463 0.0011 0.0746
30 -0.0539 0.9977 0.2031 0.0100 0.0015 0.1114
40 -0.0301 0.9981 0.1991 0.0027 0.0015 0.1027
50 0.2041 0.9981 0.1940 0.0023 0.0014 0.1029
80 0.0200 0.9981 0.1949 0.0023 0.0013 0.0935

Two-Phase

10 -0.8207 0.9762 38.9513 34.0940 0.0008 0.0516
20 -0.6010 0.9998 9.0966 0.7849 0.0010 0.0600
30 -0.7755 1.0000 9.2831 0.4561 0.0014 0.1064
40 -0.6633 1.0000 9.2489 0.1847 0.0016 0.1266
50 -0.6558 1.0000 9.0493 0.0878 0.0019 0.1513
80 -0.8338 1.0000 9.3362 0.0132 0.0017 0.1352

One-Phase

10 -0.6373 0.9573 2.3987 0.6951 0.0009 0.0621
20 -0.9388 0.9983 2.0195 0.2185 0.0011 0.0712
30 -0.9499 1.0000 2.2590 0.0833 0.0015 0.1074
40 -1.2115 1.0000 2.2959 0.0203 0.0018 0.1385
50 -0.9566 1.0000 2.3071 0.0062 0.0019 0.1482
80 -1.1673 1.0000 2.2699 0.0043 0.0016 0.1268

Table 20: Results of the Decision Tree to predict the time taken by each algorithm and using a
Decision Tree to predict the proxy.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.3340 0.9052 0.1301 0.0911 0.0010 0.0602
20 -0.0045 0.9802 0.1719 0.0464 0.0013 0.0764
30 0.2719 0.9970 0.1899 0.0100 0.0014 0.1124
40 0.0072 0.9981 0.1991 0.0027 0.0015 0.1197
50 -0.0529 0.9981 0.2117 0.0023 0.0015 0.1159
80 -0.0840 0.9981 0.2048 0.0023 0.0015 0.1159

Two-Phase

10 -4.7540 0.9755 34.5469 29.9838 0.0010 0.0502
20 -11.7417 0.9998 7.8288 0.9978 0.0012 0.0764
30 -11.7208 1.0000 8.2587 0.5074 0.0014 0.1041
40 -11.7824 1.0000 8.7648 0.1708 0.0016 0.1422
50 -11.7368 1.0000 8.9521 0.0625 0.0018 0.1479
80 -11.4859 1.0000 9.0313 0.0089 0.0018 0.1499

One-Phase

10 -1.3475 0.9573 1.8059 0.8704 0.0010 0.0568
20 -2.0446 0.9982 1.5749 0.3620 0.0012 0.0764
30 -1.4165 1.0000 1.7398 0.1220 0.0015 0.1159
40 -1.3428 1.0000 1.7716 0.0252 0.0017 0.1422
50 -1.5752 1.0000 1.6450 0.0070 0.0018 0.1479
80 -1.3865 1.0000 1.6767 0.0043 0.0018 0.1479

Table 21: Results of the Decision Tree to predict the time taken by each algorithm and using
Random Forest with a 2 estimator and a maximal depth of 20 to predict the proxy.

The Table 22 shows the results of the Decision Trees predicting the algorithm solve times
when using AdaBoost to predict the number of non-zero elements in the solution. When it concerns
the prediction of the General algorithm times, the average R2 score and MAPE of the test folds

49

are very similar to the one using the Random Forest proxy regressor. However, the minimal mean
MAPE over the test folds of the Two-Phase algorithm is lower with a value of 5.7097, this value
is obtained with a Decision Tree with a maximal depth of 50. The best MAPE that was obtained
previously was 7.8288. Even if the regression of the Two-Phase algorithm seems better when using
AdaBoost to predict the proxy rather than using Random Forest, the regression of the One-Phase
algorithm seem worse. Indeed, the minimal average MAPE over the test set was 1.5749 when
using Random forest to predict the proxy and the one when using AdaBoost obtained a value of
2.0576.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.3349 0.9050 0.1300 0.0912 0.0028 0.1940
20 -0.0028 0.9794 0.1754 0.0463 0.0030 0.2005
30 -0.0447 0.9962 0.2087 0.0100 0.0032 0.2034
40 -0.0865 0.9981 0.1951 0.0027 0.0032 0.2036
50 -0.0997 0.9981 0.2091 0.0023 0.0033 0.2053
80 0.1961 0.9981 0.2014 0.0023 0.0037 0.2115

Two-Phase

10 -0.1561 0.9766 37.5835 35.8641 0.0028 0.1935
20 -0.1467 0.9998 5.9658 0.9050 0.0029 0.1978
30 -0.2395 1.0000 5.7619 0.5246 0.0032 0.2021
40 -0.1324 1.0000 5.8583 0.1813 0.0034 0.2069
50 -0.2638 1.0000 5.7097 0.0657 0.0036 0.2096
80 -0.1230 1.0000 6.2848 0.0090 0.0040 0.2168

One-Phase

10 -0.9918 0.9554 2.1454 0.8186 0.0028 0.1940
20 -1.1063 0.9968 2.0576 0.3410 0.0030 0.1983
30 -1.9912 1.0000 2.1544 0.1108 0.0033 0.2043
40 -1.0740 1.0000 2.1992 0.0221 0.0035 0.2074
50 -1.1160 1.0000 2.2053 0.0064 0.0035 0.2093
80 -1.1450 1.0000 2.2037 0.0043 0.0040 0.2156

Table 22: Results of the Decision Tree to predict the time taken by each algorithm and using
AdaBoost with a 5 estimator and a maximal depth of 20 to predict the proxy.

Four classifier models using a Decision Tree to predict the time taken by the algorithms
were tested and compared against LRNNZB (b). Each of these models uses as LRNNZB(b) a
Linear Regression which only uses the size of b as feature to predict the General algorithm solve
time. One of these classifier will be called DTRFproxy using a Random Forest to predict the
proxy, the maximum depth of tree to predict the Two-Phase algorithm and One-Phase algorithm
is 20. The second model tested that will be called DTLRProxy is using the Linear Regression
to predict the proxy because the Linear Regression is fast and the model based on this proxy
prediction had a MAPE close to the one which was using a Random Forest to predict the proxy.
The maximal depth of the Decision Tree for the Two-Phase algorithm is 30 and the one for the
One-Phase algorithm is set to 20. Another classifier is the one that uses Decision Tree for the
regression of the proxy and algorithm time regression. This classifier uses a maximal depth of 20
for both the regression of the Two-Phase algorithm time and the one of the One-Phase algorithm
time. The last classifier model uses AdaBoost to predict the proxy. This model is tested because
it had the best MAPE when predicting the Two-Phase algorithm time. That model maximal
depth for the Decision Tree predicting Two-Phase algorithm time is set to 30 and the one of the
One-Phase algorithm is set to 20. The last model will be referred to as DTAdaProxy.

The results of the classifier are shown in Table 23, one can see that the classifierDTDTProxy
and DTAdaProxy obtained a much lower average computation time of the test folds than the
model LRNNZB (b) which is only based on the size and number of non-zero elements of b.

50

However, one can see that the metric γ1,2 is high for the 3 classifiers. Indeed, in the model using
a Linear regression to predict the proxy obtained a γ1,2 0.0764 and the one using AdaBoost to
predict the proxy have one of 0.2140. Interestingly, the use of a Decision Tree to predict the
proxy obtained a great average time whereas the one using a Random Forest, which predicted
slightly better the time taken by the algorithms, obtained an higher average computation time of
the test folds. As in Section First model, the balanced-accuracy does not capture the weight
of choices that would lead to higher computation time. Therefore, some classification model have
a better balanced-accuracy but a worse average computation time of the test folds. Namely,
DRLRProxy which has a balanced-accuracy of 0.6314 and an average computation time of
24.3714s whereasDTDTProxy has a balanced-accuracy of 0.5557 and an average computation
time of 14.5731s.

Model Average time (s) Balanced accuracy β1,2 γ1,2 γ1,3

DTLRProxy 24.3714 0.6314 0.0012 0.0764 0.0000
DTDTProxy 14.5731 0.5557 0.0014 0.1041 0.0000
DTRFProxy 18.3274 0.5643 0.0016 0.1293 0.0000
DTAdaProxy 12.4303 0.6060 0.0037 0.2129 0.0000
LRNNZB (b) 27.3382 0.4589 0.0001 0.0062 0.0000

Table 23: Classifier comparison between LRNNZB(b), DTLRProxy, DTRFProxy and
DTAdaProxy. The average time is the average of the total time needed to solve the test folds.
The metrics average time, β1,2, γ1,2 includes all the time necessary to predict the fastest algorithm.

7.3 Random Forest

Similarly to previous regressors, Random Forest was tested with different maximal depth and
with the 4 proxy models selected. The Table 24 shows the result of Random forest when using
Linear Regression to predict the proxy. This model does not seem to be better to fit the General
algorithm solve time than the Linear Regression using the size of b. The lowest MAPE test of
the Two-Phase algorithm time regression is not lower than the Decision Tree found to predict the
computation time, this model have a lowest MAPE test of 9.0966 and the one using a Random
forest to predict the computation time has a value of 11.6213. Similarly, the One-Phase time
regression has an highest MAPE test when using Random Forest.

51

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.0341 0.9038 0.1502 0.0891 0.0006 0.0245
20 -0.0763 0.9445 0.1924 0.0549 0.0011 0.0652
30 0.0733 0.9503 0.2038 0.0372 0.0015 0.1156
40 0.0121 0.9501 0.2052 0.0345 0.0015 0.1191
50 0.0653 0.9505 0.2082 0.0344 0.0014 0.1009
80 -0.0209 0.9505 0.2032 0.0344 0.0014 0.1009

Two-Phase

10 -2.0911 0.9603 15.5057 11.5227 0.0005 0.0212
20 -2.1783 0.9779 12.6080 1.9995 0.0009 0.0561
30 -2.2118 0.9783 13.7250 0.9359 0.0015 0.1112
40 -2.7146 0.9785 11.6213 0.6546 0.0019 0.1542
50 -2.2062 0.9781 14.8658 0.5858 0.0019 0.1565
80 -2.2490 0.9789 14.1782 0.5856 0.0019 0.1545

One-Phase

10 0.0643 0.9279 7.6334 5.2639 0.0005 0.0212
20 -0.0135 0.9471 3.8842 0.6861 0.0010 0.0686
30 -0.0523 0.9479 4.3763 0.2756 0.0016 0.1319
40 -0.7946 0.9494 3.7671 0.2043 0.0025 0.1661
50 0.0005 0.9479 3.7130 0.1925 0.0019 0.1540
80 -0.8638 0.9471 4.1000 0.1959 0.0019 0.1545

Table 24: Results of Random Forest to predict the time taken by each algorithm and using Linear
Regression to predict the proxy.

One can see in the Table 25 that the prediction of the General algorithm time have a R2

test that is significant when using a Random Forest for the time prediction and a Decision Tree
for the prediction of the number of non-zero elements in x. This score is equal to 0.7133. The
previous highest R2 test score obtained was when using a Linear Regression with only the size of
b as feature, this regression has a R2 test score of 0.6520. However, the MAPE does not decrease
significantly compared to previous model. It dropped from 0.1300 to 0.1175. For the regression
of the Two-Phase algorithm time and the One-Phase algorithm the lowest average MAPE of the
test folds are higher than the one obtained with both Decision Tree for the prediction of the time
and the proxy prediction. When using a Random Forest to predict the time of the Two-Phase
algorithm the lowest MAPE test obtained is 9.4258 whereas the lowest one obtained is equal to
5.7619. The lowest average MAPE of the test folds for the One-Phase algorithm is 1.5749 and
the lowest one obtained in the table is 2.0576 with a maximal depth of 20.

The Table 26 shows the result when using the Random Forest model to predict the proxy and
when also using a Random Forest to predict the algorithm computation time. One can see in that
table that the scores of the General algorithm is very similar to the score obtained with the same
time predictor but with a Decision Tree as proxy regressor. It has a slighly lower MAPE test
than the previous best MAPE test with 0.1173 instead of 0.1175. The lowest avrerage MAPE
test over the test folds of the Two-Phase algorithm time regression in the table is 8.3770 and it
is not lower than the lowest MAPE test obtained so far that had a value equal to 5.7619. The
lowest average MAPE of the test folds of the One-Phase algorithm in the table is also higher
than the lowest one. This MAPE test of the One-Phase algorithm time regression is obtained
with a depth of 80 and its MAPE is equal to 2.2202 whereas the lowest MAPE test obtained
was 1.5749, this value is obtained with a Decision Tree to predict the time and also a Decision
Tree as proxy predictor.

52

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.7133 0.9032 0.1175 0.0892 0.0010 0.0537
20 0.7285 0.9456 0.1485 0.0550 0.0014 0.0970
30 0.7798 0.9512 0.1626 0.0373 0.0016 0.1323
40 0.6959 0.9516 0.1683 0.0346 0.0020 0.1565
50 0.7338 0.9515 0.1661 0.0346 0.0019 0.1515
80 0.6715 0.9516 0.1650 0.0346 0.0017 0.1374

Two-Phase

10 -4.9467 0.9710 39.5086 33.6275 0.0009 0.0471
20 -5.0350 0.9801 9.8703 0.7827 0.0011 0.0619
30 -4.8475 0.9802 9.6542 0.4702 0.0016 0.1313
40 -4.9395 0.9804 9.4258 0.2319 0.0021 0.1641
50 -4.9525 0.9801 9.8523 0.1494 0.0023 0.1734
80 -4.9161 0.9804 9.4506 0.0899 0.0024 0.1800

One-Phase

10 -0.2602 0.9337 2.3815 0.6853 0.0009 0.0416
20 -0.3247 0.9447 2.3103 0.2200 0.0012 0.0862
30 -0.3290 0.9446 2.3622 0.1151 0.0019 0.1484
40 -0.2821 0.9459 2.2412 0.0773 0.0023 0.1722
50 -0.3623 0.9481 2.3264 0.0708 0.0024 0.1810
80 -0.3330 0.9464 2.2202 0.0703 0.0022 0.1679

Table 25: Results of Random Forest to predict the time taken by each algorithm and using also a
Decision Tree but with a maximal depth of 50 to predict the proxy.

The Table 27 shows the results of the Random Forest with AdaBoost to predict the number
of non-zero elements in the solution. In that table, the lowest average MAPE of the test folds is
obtained with a depth of 10 for the General algorithm time regression and this regression has a
MAPE of 0.1174. The lowest MAPE for the Two-Phase algorithm time regression is obtained
with a depth of 20 with a value of 5.7233 which is very close to the previous lowest one obtained
with a value of 5.7097 but the one of the Table 27 has a higher R2 test score which has a value
of −0.0603 instead of −0.2395. If a model have an higher R2 but a very close MAPE score, it
suggests that the model is better. Even if the regression of the Two-Phase algorithm time regres-
sion seem better with a Random Forest to predict the time and AdaBoost to predict the proxy,
the regression of the One-Phase algorithm time seems worse than the best previous one. Indeed,
it has a MAPE test equal to 2.1637 when using a depth of 20 whereas the best regression had a
MAPE test of 1.5749 for the One-Phase algorithm time predicted. This regression is predicted
using a Decision Tree to predict the time and a Random Forest to predict the number of non-zero
elements in the solution.

53

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.7372 0.9031 0.1173 0.0892 0.0011 0.0850
20 0.6259 0.9448 0.1548 0.0550 0.0016 0.1185
30 0.7388 0.9509 0.1658 0.0373 0.0021 0.1587
40 0.7215 0.9507 0.1718 0.0347 0.0021 0.1690
50 0.7539 0.9506 0.1665 0.0344 0.0022 0.1659
80 0.7623 0.9509 0.1645 0.0343 0.0022 0.1712

Two-Phase

10 -4.8636 0.9680 38.6339 34.5725 0.0010 0.0728
20 -4.7731 0.9776 8.6679 1.1343 0.0013 0.0955
30 -4.7149 0.9780 8.3770 0.7732 0.0019 0.1497
40 -4.8858 0.9779 8.8907 0.4096 0.0023 0.1805
50 -4.9257 0.9776 8.6910 0.4039 0.0027 0.1915
80 -4.8845 0.9778 9.3595 0.3531 0.0025 0.1837

One-Phase

10 -0.9720 0.9342 2.0807 0.8492 0.0011 0.0839
20 -1.0714 0.9476 2.0297 0.3692 0.0015 0.1091
30 -1.1024 0.9475 2.0484 0.2032 0.0021 0.1587
40 -1.0364 0.9457 2.0907 0.1522 0.0023 0.1803
50 -1.0399 0.9476 2.0781 0.1443 0.0026 0.1837
80 -0.9718 0.9477 2.1002 0.1433 0.0026 0.1878

Table 26: Results of Random Forest to predict the time taken by each algorithm and using
Random Forest with 2 estimators and a maximal depth of 20 to predict the proxy.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.7350 0.9030 0.1174 0.0892 0.0029 0.1975
20 0.7881 0.9456 0.1490 0.0551 0.0033 0.2055
30 0.6752 0.9512 0.1654 0.0373 0.0037 0.2131
40 0.7261 0.9513 0.1694 0.0347 0.0043 0.2176
50 0.6754 0.9512 0.1676 0.0345 0.0043 0.2217
80 0.6701 0.9514 0.1712 0.0345 0.0042 0.2198

Two-Phase

10 -0.1383 0.9708 36.3432 34.3883 0.0030 0.1994
20 -0.0603 0.9798 5.7233 0.9028 0.0032 0.2035
30 -0.1406 0.9797 6.1012 0.5533 0.0037 0.2116
40 -0.0517 0.9800 6.6776 0.2698 0.0048 0.2249
50 -0.0689 0.9798 6.6238 0.1761 0.0050 0.2304
80 -0.0531 0.9802 6.6844 0.1320 0.0049 0.2288

One-Phase

10 -0.6542 0.9326 2.2068 0.8152 0.0030 0.1995
20 -0.7571 0.9454 2.1637 0.3493 0.0033 0.2050
30 -0.6687 0.9448 2.2220 0.1843 0.0039 0.2150
40 -0.6144 0.9444 2.2486 0.1327 0.0048 0.2244
50 -0.7220 0.9461 2.2759 0.1265 0.0050 0.2305
80 -0.7139 0.9461 2.2778 0.1258 0.0048 0.2264

Table 27: Results of Random Forest to predict the time taken by each algorithm and using
AdaBoost with 5 estimators and a maximal depth of 20 to predict the proxy.

With these regression algorithms with the best depth found, 7 classifiers were compared to
the performances of LRNNZB (b). The results are shown in Table 28. All these classifiers
use a Random Forest with 2 estimators to predict the time taken by the Two-Phase and the
One-Phase algorithm, the maximal depth of these estimators is adjusted to the proxy using the

54

tables. The first model is called RFLRProxy because it uses a Random Forest to predict the
time of each algorithm and it uses a Linear Regression to predict the number of non-zero elements
in x. However, as in the previous section when using Decision Tree, the prediction of the General
algorithm time was less well predicted when using a Random forest to predict the time combined
with a Linear Regression to predict the proxy than when just using a Linear Regression only
based on the size of b. Therefore, the simple Linear Regression with only the size of b was
used to predict the General algorithm time, this model obtained an average computation time
of 16.7543s. Random Forest was also combiined with a Decision Tree to predict the proxy. The
models RFDTProxy uses a Random forest to predict the algorithm time and a Decision Tree to
predict the proxy. The difference between the model RFDTProxy (a) and RFDTProxy (b) is
the regression of the General algorithm time. In RFDTProxy (a), it is the Random Forest with
a max depth of 10 that predicts the General algorithm time. For the model RFDTProxy (b),
the General algorithm time is predicted by the same Linear Regression used in RFLRProxy.
Actually, the difference between all (a) and (b) is this General algorithm time regressor, the (a)
models uses a Random Forest and (b) models uses a Linear Regression with the size of b as feature.
One can see in Table 28 that overall, the ”(b)” classifier obtained a lower average computation
time fo the test folds despite having a lower balanced-accuracy than the ”(a)” version. One
can also see the model with the lowest average time computation, it is obtained with the model
RFAdaProxy (b) which has an average time computation of 12.9462s which is slightly higher
than the model DTAdaProxy obtained in previous section which have an average time of 12.4303s.
Furthermore, the metric γ1,2 is very similar to all classifier.

Model Average time (s) Balanced accuracy β1,2 γ1,2 γ1,3

RFLRProxy 19.1151 0.6052 0.0038 0.2126 0.0000

RFDTProxy (a) 18.1238 0.6872 0.0045 0.2221 0.0000
RFDTProxy (b) 13.4330 0.6131 0.0041 0.2157 0.0000

RFRFProxy (a) 26.9035 0.6827 0.0042 0.2193 0.0000
RFRFProxy (b) 14.9314 0.6169 0.0040 0.2173 0.0000

RFAdaProxy (a) 16.4428 0.6419 0.0043 0.2213 0.0000
RFAdaProxy (b) 12.9462 0.5617 0.0041 0.2186 0.0000

LRNNZB (b) 27.3373 0.4589 0.0001 0.0054 0.0000

Table 28: Classifier comparison between the model obtained in this section with a Random Forest
with a max depth which obtained the best MAPE for the algorithm regressions and with the
different proxy selected. The average time is the average of the total time needed to solve the test
folds. The metrics average time, β1,2, γ1,2 and γ1,3 includes all the time necessary to predict the
fastest algorithm.

7.4 Extremely Randomized Trees

In this section, Extremely Randomized Trees was tested to predict the 3 algorithm computation
times. Because the time window to predict the algorithm is low, the number of estimators used
by the Extremely Randomized Trees should not be high. Therefore, in this section the number
of estimators used in the Extremely Randomized Trees to predict the computation time is always
set to 2. The parameter that changes to find the best regression is the maximal depth of these
two estimators.

One can see in Table 29 that the Extremely Randomize Trees with a maximal depth of 10
using a Linear Regression predicted the General algorithm with the highest average R2 score of
the test folds so far. Its value is equal to 0.8429, the previous highest score was 0.7881. However,
the MAPE test is not the lowest one, the lowest value was 0.1173. For the Two-Phase algorithm

55

regression, the depth that leads to the lowest average MAPE of the test folds is equal to 80.
The MAPE for this regressor is 8.5867, this regressor does not seem to perform well compared
to previous models tested because the best MAPE test obtained was equal to 5.7619. The Two-
Phase algorithm regression obtained a MAPE test of 1.9818 which seems great compared to other
models, but it is, actually, not the lowest.

The Table 30 shows that Extremely Randomized Trees with Decision Tree to predict the
proxy with a depth of 10 obtained similar results for the General algorithm as the one with Linear
Regression. This may be due to previous observed results. Indeed, in section Model based on the
true number of non-zero elements in the solution, the General algorithm does not seem to highly
depend on the number of non-zero elements in the solution. Therefore, having a more accurate
predictor for this value should not improve the performance that much. The Two-Phase algorithm
was predicted with a lowest MAPE test of 7.2151 with a depth of 80, this model also did beat
the lowest MAPE test obtained. In the table, the One-Phase algorithm time was predicted with
the lowest MAPE test when a maximal depth of 30 was set to the trees, this MAPE is equal to
1.8949. One can also see in Table 30 that the R2 score is for the first time positive when predicting
the One-Phase algorithm but it is still not great.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.8429 0.8846 0.1477 0.1308 0.0005 0.0216
20 -0.2996 0.9639 0.1971 0.0638 0.0009 0.0505
30 0.6967 0.9968 0.1720 0.0191 0.0014 0.0992
40 0.7111 0.9981 0.2039 0.0034 0.0014 0.1124
50 0.4701 0.9981 0.2073 0.0024 0.0017 0.1256
80 0.7359 0.9981 0.1771 0.0023 0.0015 0.1168

Two-Phase

10 -2.9501 0.9466 119.3993 118.4647 0.0005 0.0204
20 -0.5708 0.9983 33.1809 4.6062 0.0008 0.0421
30 -0.6759 1.0000 11.4462 1.1697 0.0014 0.1123
40 -3.4489 1.0000 16.4851 0.2429 0.0019 0.1581
50 -4.2975 1.0000 26.9042 0.0408 0.0022 0.1742
80 -0.2770 1.0000 8.5867 0.0076 0.0023 0.1749

One-Phase

10 0.5684 0.9434 30.3206 30.4541 0.0005 0.0183
20 0.3228 0.9989 4.0906 3.1533 0.0008 0.0372
30 0.0712 0.9999 1.9818 0.7526 0.0013 0.0966
40 0.2832 1.0000 2.0380 0.1434 0.0019 0.1626
50 0.1447 1.0000 4.7032 0.0223 0.0022 0.1730
80 0.2011 1.0000 3.4523 0.0043 0.0023 0.1772

Table 29: Results of Extremely Randomized Trees to predict the time taken by each algorithm
and using Linear Regression to predict the proxy.

56

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.8028 0.8833 0.1520 0.1309 0.0010 0.0537
20 0.7776 0.9624 0.1334 0.0643 0.0014 0.1130
30 0.7852 0.9967 0.1694 0.0190 0.0019 0.1505
40 0.6162 0.9981 0.1640 0.0034 0.0020 0.1583
50 0.7627 0.9981 0.1623 0.0024 0.0020 0.1650
80 0.6793 0.9981 0.1591 0.0023 0.0020 0.1639

Two-Phase

10 -0.8501 0.9625 136.3661 130.2248 0.0009 0.0470
20 -1.3366 0.9996 7.7397 1.2600 0.0013 0.0838
30 -0.7536 1.0000 8.3005 0.7007 0.0017 0.1439
40 -0.8395 1.0000 7.7399 0.3703 0.0024 0.1777
50 -1.0380 1.0000 8.9674 0.1028 0.0029 0.1941
80 -0.5349 1.0000 7.2151 0.0076 0.0029 0.1974

One-Phase

10 0.0996 0.9338 36.0429 34.3301 0.0009 0.0501
20 0.1850 0.9979 2.5261 1.0586 0.0013 0.0913
30 0.1057 0.9999 1.8949 0.2283 0.0018 0.1412
40 0.2353 1.0000 1.9300 0.1004 0.0024 0.1827
50 -0.1515 1.0000 2.0476 0.0277 0.0028 0.1940
80 0.3580 1.0000 2.1052 0.0043 0.0029 0.1978

Table 30: Results of Extremely Randomized Trees to predict the time taken by each algorithm
and using Decision Tree with a maximal depth of 50 to predict the proxy.

One can see in Table 31, the influence of the maximal depth of the Extremely Randomized
Trees on the time regressions when using the selected Random Forest as proxy predictor. The
General algorithm time regression that is obtained with a depth of 20 has an average MAPE of
the test folds of 0.1294 that is not far from the lowest one obtained so far which have a value of
0.1175. The Two-Phase algorithm has a lowest MAPE test value with a depth of 80, its value
equals to 8.5867. This performance is similar to the one obtained with the same proxy and a
Random Forest to predict the time, however, Extremely Randomized Trees needed deeper trees
resulting to a need of more computation time. The lowest average MAPE of the test folds for
One-Phase algorithm time regression was obtained with a depth of 40. For that depth, the MAPE
test is equal to 1.5552 which is, actually, the lowest value obtained so far for that regression, the
previous lower value was very close with a number of 1.5749.

57

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.8385 0.8839 0.1499 0.1312 0.0013 0.0841
20 0.7049 0.9625 0.1294 0.0637 0.0017 0.1472
30 0.6639 0.9967 0.1555 0.0184 0.0021 0.1702
40 0.7115 0.9981 0.1723 0.0034 0.0022 0.1716
50 0.7686 0.9981 0.1643 0.0023 0.0023 0.1799
80 0.7009 0.9981 0.1651 0.0023 0.0022 0.1739

Two-Phase

10 -0.8783 0.9598 179.9604 176.3994 0.0012 0.0802
20 -2.9170 0.9993 10.6914 2.1913 0.0015 0.1241
30 -0.8725 1.0000 8.8241 0.8545 0.0020 0.1639
40 -0.9593 1.0000 9.4561 0.3924 0.0026 0.1879
50 -1.4023 1.0000 8.0853 0.1089 0.0032 0.2024
80 -0.9516 1.0000 10.1392 0.0076 0.0034 0.2054

One-Phase

10 0.2817 0.9413 35.8867 34.4841 0.0012 0.0802
20 -0.0399 0.9989 2.1220 0.7706 0.0015 0.1192
30 -0.2638 0.9999 2.4926 0.3754 0.0020 0.1639
40 -0.5817 1.0000 1.5552 0.1446 0.0027 0.1878
50 -0.5454 1.0000 1.8147 0.0288 0.0031 0.2027
80 -0.4751 1.0000 2.5273 0.0043 0.0035 0.2058

Table 31: Results of Extremely Randomized Trees to predict the time taken by each algorithm
and using Random Forest with 2 estimators each having a maximal depth of 20 to predict the
proxy.

The Table 32 shows the results for the Extremely Randomized Trees with AdaBoost to
predict the number of non-zero elements in the solution. The lowest MAPE for the regression
of the General algorithm for this model is obtained with a depth of 10 and its values is equal to
0.1509. This value does not seem great compared to others models tested. Indeed, many other
models could get a MAPE around 0.13 and for much lower computation time, the γ1,2 that
represents the ratio of the samples which cannot win time if the best choice is made over the
second best choice after making that regression without even making a regression over the two
other algorithms. The regression of the Two-Phase algorithm achieved a lower average MAPE of
the test folds than the best one obtained in previously tested models. Indeed, the lowest MAPE
obtained in the table for the Two-Phase algorithm is 5.3612 and is obtained with a depth of 30
whereas the previously lowest value was 5.7619. Moreover, for the first time the R2 test score is
positive for the regression of this algorithm time. For the One-Phase algorithm time regression,
the lowest MAPE test is obtained with a depth of 30 and has a value of 1.8287 which is the lowest
one obtained for this algorithm and with AdaBoost as proxy predictor.

58

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.8194 0.8836 0.1509 0.1314 0.0030 0.2001
20 0.6772 0.9604 0.1513 0.0643 0.0034 0.2073
30 0.6399 0.9970 0.1565 0.0189 0.0040 0.2163
40 0.6826 0.9981 0.1662 0.0035 0.0042 0.2178
50 0.7870 0.9981 0.1565 0.0024 0.0040 0.2163
80 0.6481 0.9981 0.1714 0.0023 0.0042 0.2205

Two-Phase

10 0.1514 0.9651 133.7584 130.5599 0.0030 0.1990
20 0.0793 0.9997 8.7585 1.4146 0.0033 0.2056
30 0.2525 1.0000 5.3612 0.7857 0.0038 0.2138
40 0.1140 1.0000 5.8989 0.3920 0.0045 0.2229
50 0.2042 1.0000 5.3973 0.1006 0.0047 0.2253
80 0.0835 1.0000 5.7792 0.0077 0.0051 0.2326

One-Phase

10 0.4284 0.9383 35.9911 34.3465 0.0030 0.1990
20 0.3395 0.9987 2.7718 1.2617 0.0033 0.2060
30 0.4078 0.9999 1.8287 0.3772 0.0038 0.2142
40 0.2909 1.0000 5.0703 0.1619 0.0046 0.2233
50 0.3792 1.0000 2.2012 0.0364 0.0047 0.2267
80 0.2460 1.0000 1.9765 0.0043 0.0050 0.2298

Table 32: Results of Extremely Randomized Trees to predict the time taken by each algorithm and
using AdaBoost with 5 Decision Tree as estimators and with a maximal depth of 20 to predict
the proxy.

With the max depth which minimize the MAPE test obtained in this section, 8 classifiers
are made and their results are shown in Table 33. The name of these models are chosen as in
previous section, the first part of the name indicates the regression model used to predict the
time algorithm and the second part indicates the proxy predictor and if there is a letter b after
the model name, it means that the General algorithm is predicted using a Linear Regression with
only the size of b as feature. Models with the letter a after their names signify that the General
algorithm time is predicted with the model given by the first part of their name. For example,
ETLRProxy (a) uses Extremely Randomized Trees to predict the 3 algorithm times and these
regression models use the proxy predicted by a linear regression. In Table 33, similarly, as model
using Random Forest to predict the algorithm times, the model using a Linear Regression with
only the size of b as feature leads to lower average computation time. The model using a Linear
Regression to predict the proxy has the highest computation time and models which uses better
predictor for the proxy seem to have a lower computation time which may indicate that the proxy
is important for the prediction of the best algorithm. The lowest average computation time is not
as good as previous models. Indeed, when using Decision Tree to predict the algorithm times, the
lowest average computation time was 12.43s and when these regressions are made with Random
Forest, this time becomes 12.95s whereas the best one in Table 33 has an average computation
time of the test folds equal to 14.26s. This value is obtained with ETDTProxy (b).

59

Model Average time (s) Balanced accuracy β1,2 γ1,2 γ1,3

ETLRProxy (a) 31.6717 0.7133 0.0041 0.2210 0.0000
ETLRProxy (b) 28.0744 0.6376 0.0037 0.2108 0.0000

ETDTProxy (a) 18.1180 0.6854 0.0068 0.2624 0.0000
ETDTProxy (b) 14.2553 0.6160 0.0056 0.2363 0.0000

ETRFProxy (a) 27.0545 0.6976 0.0046 0.2251 0.0000
ETRFProxy (b) 15.4451 0.6311 0.0048 0.2286 0.0000

ETAdaProxy (a) 17.5896 0.6616 0.0063 0.2543 0.0000
ETAdaProxy (b) 14.9077 0.5839 0.0052 0.2317 0.0000

LRNNZB (b) 27.3384 0.4589 0.0001 0.0070 0.0000

Table 33: Classifier comparison between the models obtained in this section with a Extremely
Randomized Trees with a maximal depth that obtained the best MAPE for the algorithm re-
gressions and with the different proxy selected. The average time is the average of the total time
needed to solve test folds. The metrics average time, β1,2, γ1,2 and γ1,3 includes all the time
necessary to predict the fastest algorithm

7.5 AdaBoost

In this section, AdaBoost is used to predict the 3 algorithm computation times. As with Extremely
Randomized Trees, the time window is low and because the model is used 3 times, the number
of trees used by the model is limited to 2. This limitation is on all the regression models trained
in this section. The parameters that will be changed to find the best regressors is the maximal
depth given to the two estimators.

The Table 34 shows the score of AdaBoost when predicting the time taken by the 3 algorithm
with different maximal depth parameters of the Decision Tree used as an estimator and with the
use of a Linear Regression to predict the proxy. In that table, the lowest average MAPE of the
test folds for the General algorithm is obtained with a depth of 10, its value is equal to 0.16012
which is the worst obtained for the regression of the General algorithm. For the regression of the
Two-Phase algorithm time, the MAPE test was also high compared to the one obtained in with
previous regression. Indeed, with a depth of 20, the model obtained a MAPE of 12.4458 which
is one of the highest obtained for this algorithm. The MAPE test of the One-Phase algorithm is
surprisingly good compared to other regressors. This score is obtained with a maximal depth of
20 and is equal to 1.4904 which is the lowest obtained so far.

The result of the algorithm time regressions when using AdaBoost and the supposed best
Decision Tree to predict the proxy is shown in Table 35. The lowest average MAPE of the test
folds for the regression of the General algorithm is obtained with a depth of 10 and is equal to
0.1266 and one can see that the R2 seem great, these value are not bad compared to other models
but they are not the best seen so far. The MAPE test for the regression of the Two-Phase
algorithm is equal to 9.7425 when using the max depth parameter of the decision tree estimator
set to 30. This value is far from the lowest value obtained for this algorithm, the lowest value is
5.3612. The regression of the One-Phase algorithm which obtained the lowest MAPE test on the
table was the one with depth of 20. This model obtained a MAPE over the test folds of 1.9443
which is still higher than the lowest one obtained so far for this algorithm. Indeed, the lowest one
obtained a value of 1.5552 and the regressor was obtained with Extremely Randomized Trees for
the time regression and Random Forest for the proxy prediction.

60

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.1100 0.8921 0.1612 0.0926 0.0011 0.0706
20 -0.0533 0.9125 0.1986 0.0584 0.0014 0.1124
30 -0.3086 0.9170 0.2216 0.0393 0.0018 0.1500
40 -0.4029 0.9183 0.2235 0.0355 0.0019 0.1582
50 0.0142 0.9173 0.2584 0.0353 0.0021 0.1659
80 -2.8881 0.9221 0.2631 0.0362 0.0020 0.1678

Two-Phase

10 -1.7954 0.9507 14.9136 11.3013 0.0010 0.0533
20 -2.0265 0.9614 12.4458 1.9720 0.0014 0.1040
30 -2.1669 0.9679 135.4954 1.0312 0.0018 0.1500
40 -5.9059 0.9661 140.8121 0.8347 0.0023 0.1765
50 -7.0811 0.9639 44.3259 0.5886 0.0025 0.1874
80 -4.9772 0.9661 20.6734 0.8924 0.0027 0.1892

One-Phase

10 -0.0747 0.9148 5.7727 5.6348 0.0010 0.0569
20 0.2644 0.9234 1.4904 0.7883 0.0014 0.1067
30 -1.5894 0.9198 3.4392 0.3118 0.0020 0.1628
40 -1.4008 0.9187 5.3052 0.2289 0.0023 0.1765
50 -1.6148 0.9261 6.7486 0.2438 0.0025 0.1853
80 -2.2709 0.9146 4.8373 0.2337 0.0027 0.1908

Table 34: Results of AdaBoost to predict the time taken by each algorithm and using Linear
Regression to predict the proxy.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.7769 0.8921 0.1266 0.0928 0.0016 0.1207
20 0.7140 0.9128 0.1746 0.0591 0.0020 0.1608
30 0.7215 0.9155 0.1693 0.0387 0.0027 0.1924
40 0.7255 0.9191 0.1795 0.0361 0.0025 0.1838
50 0.7126 0.9195 0.2132 0.0360 0.0026 0.1857
80 0.7403 0.9218 0.1724 0.0360 0.0024 0.1797

Two-Phase

10 -6.5470 0.9598 38.1644 31.3656 0.0014 0.1109
20 -3.6551 0.9680 9.7455 0.8006 0.0019 0.1542
30 -6.8279 0.9727 9.7425 0.4857 0.0026 0.1863
40 -5.6895 0.9691 10.6426 0.2449 0.0028 0.1920
50 -6.4752 0.9729 9.8618 0.1601 0.0031 0.1993
80 -7.8365 0.9661 10.3926 0.0915 0.0029 0.1974

One-Phase

10 -0.2885 0.9187 2.4333 0.7457 0.0014 0.1049
20 -0.6259 0.9352 1.9443 0.2317 0.0019 0.1608
30 -0.5300 0.9289 2.3593 0.1233 0.0029 0.1956
40 0.1169 0.9349 2.6021 0.0850 0.0030 0.1983
50 -0.8843 0.9262 2.2619 0.0748 0.0032 0.2018
80 -1.1058 0.9234 2.3555 0.0768 0.0029 0.1951

Table 35: Results of AdaBoost to predict the time taken by each algorithm and using Decsision
Trees to predict the proxy.

The Table 36 shows the results for different depth of the Decision Trees used by AdaBoost to
predict the time of the algorithm and with the proxy predicted with Random Forest. The maximal
depth which obtained the best regression for General algorithm in the table is equal to 10 with a
MAPE of 0.1263 which is similar to what can be obtained with other models. For the Two-Phase

61

algorithm the lowest average MAPE of the test folds is equal to 6.6193 which is higher than the
lowest one obtained. The best value for this algorithm in the table is achieved with a depth of 30.
The lowest MAPE test for One-Phase algorithm time regression in the table is equal to 1.4614
which is the lowest seen so far for this algorithm. However, the R2 test score is negative, although,
some models had an higher MAPE with a positive R2 score.

The last table showing the result of regression with different value of maximal depth for the
Decision Tree used by AdaBoost is shown in Table 37. In this table the regression of the number of
non-zero elements in the solution is also made with AdaBoost. The best regression of the General
algorithm found with these regressors has a MAPE test of 0.1263 which is, actually, equal to the
one obtained with AdaBoost and the proxy regressor, which was Random Forest. The depth which
obtained the lowest average MAPE of the test folds for the Two-Phase algorithm time regression
is equal to 20. Its MAPE is equal to 5.6830, which is not the lowest one but it has a value
close to it.Indeed, the lowest MAPE test for this algorithm is equal to 5.3612. For the One-Phase
algorithm, the average MAPE of the test folds is equal to 1.4614 which was obtained with a depth
of 20. Actually, this value is the lowest one obtained for the regression of the One-Phase algorithm
time but the R2 test score is negative, where other model manage a similar MAPE with positive
R2.

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.8220 0.8923 0.1263 0.0928 0.0018 0.1421
20 0.6918 0.9152 0.1522 0.0583 0.0021 0.1699
30 0.6737 0.9155 0.1864 0.0394 0.0025 0.1855
40 0.7416 0.9199 0.1777 0.0361 0.0025 0.1875
50 0.6878 0.9223 0.2514 0.0359 0.0029 0.1971
80 0.6588 0.9174 0.1873 0.0358 0.0045 0.2213

Two-Phase

10 -4.8445 0.9561 35.1183 30.6593 0.0017 0.1406
20 -5.6836 0.9713 9.5328 1.1016 0.0019 0.1589
30 -1.8797 0.9665 6.6193 0.7139 0.0024 0.1800
40 -0.3567 0.9695 7.7181 0.4232 0.0029 0.1947
50 -4.7562 0.9712 9.6111 0.2836 0.0036 0.2093
80 -5.1089 0.9656 8.7228 0.2276 0.0060 0.2416

One-Phase

10 -0.9386 0.9157 1.8054 0.8685 0.0017 0.1398
20 -1.0556 0.9244 1.4614 0.3791 0.0020 0.1685
30 -1.6794 0.9328 1.5585 0.2142 0.0026 0.1876
40 -1.6908 0.9308 1.4906 0.1481 0.0030 0.1973
50 -0.8564 0.9169 1.6521 0.1487 0.0035 0.2087
80 -1.3786 0.9315 1.9535 0.1409 0.0053 0.2293

Table 36: Results of AdaBoost to predict the time taken by each algorithm using Random Forest
with 2 estimators and with a maximal depth of 20 to predict the proxy.

62

Algorithm max depth R2 test R2 train MAPE test MAPE train β1,2 γ1,2

General

10 0.7909 0.8912 0.1263 0.0929 0.0042 0.2177
20 0.7055 0.9151 0.1833 0.0580 0.0044 0.2253
30 0.5233 0.9226 0.2051 0.0391 0.0043 0.2211
40 0.7427 0.9170 0.1772 0.0360 0.0047 0.2256
50 0.6874 0.9184 0.1838 0.0360 0.0046 0.2243
80 0.7093 0.9172 0.1764 0.0354 0.0046 0.2240

Two-Phase

10 -0.3267 0.9595 36.0455 34.0427 0.0042 0.2163
20 -0.5293 0.9677 5.6830 0.9245 0.0041 0.2203
30 0.0879 0.9692 24.4041 0.5714 0.0042 0.2187
40 0.2612 0.9696 5.7660 0.2848 0.0050 0.2296
50 -0.3127 0.9716 5.9178 0.1829 0.0051 0.2302
80 -0.5445 0.9639 6.2715 0.1330 0.0053 0.2325

One-Phase

10 -0.7538 0.9116 2.2011 0.8836 0.0042 0.2181
20 -0.8843 0.9266 2.0115 0.3607 0.0043 0.2228
30 -0.6783 0.9213 2.1221 0.1973 0.0045 0.2219
40 -0.7754 0.9269 2.2321 0.1451 0.0051 0.2304
50 -1.1621 0.9268 2.1965 0.1338 0.0051 0.2308
80 -1.0858 0.9220 2.1679 0.1312 0.0052 0.2310

Table 37: Results of AdaBoost to predict the time taken by each algorithm and using AdaBoost
with 5 estimators and with a maximal depth of 20 to predict the proxy.

As in previous section, the Table 38 shows the result of the classification if AdaBoost is
used to predict the algorithm time and with different proxy. In the model name, for example
in AdaLRProxy (b), the first part ”Ada” is because AdaBoost is used for the algorithm time
regression, ”LRProxy” is because Linear Regression is used for the proxy regression and if there is
a ”(b)”, it means that the General algorithm is predicted with a Linear Regression using the size
of b as unique feature. As previous models, models using the Linear Regression with only the size
of b to predict the General algorithm have lower average predicted times even if their balanced-
accuracy is lower. The model obtaining the lowest average time in the table is AdaDTProxy (b)
with a time of 13.7499s which is higher than the one of RFAdaProxy (b) and DTAdaProxy
which obtained an average time of 12.9462s and 12.4303s respectively.

63

Model Average time (s) Balanced accuracy β1,2 γ1,2 γ1,3

AdaLRProxy (a) 16.9415 0.6562 0.0040 0.2163 0.0000
AdaLRProxy (b) 14.6581 0.5776 0.0027 0.1924 0.0000

AdaDTProxy (a) 17.7854 0.6677 0.0045 0.2244 0.0000
AdaDTProxy (b) 13.7499 0.5930 0.0038 0.2142 0.0000

AdaRFProxy (a) 24.2992 0.6853 0.0052 0.2327 0.0000
AdaRFroxy (b) 23.4228 0.6080 0.0040 0.2173 0.0000

AdaAdaProxy (a) 24.5938 0.6380 0.0062 0.2433 0.0000
AdaAdaProxy (b) 22.9493 0.5611 0.0053 0.2317 0.0000

LRNNZB (b) 27.3382 0.4589 0.0001 0.0061 0.0000

Table 38: Classifier comparison between the models obtained in this section with AdaBoost using
Decision Trees with a maximal depth which obtained the bestMAPE for the algorithm regressions
and with the different proxy predictor selected. The average time is the average of the total time
needed to solve the test folds. The metrics average time, β1,2, γ1,2 and γ1,3 includes all the time
necessary to predict the fastest algorithm.

7.6 Comparison of the best models

In the classifiers tested, the regressions of the algorithm times use always the same regression mod-
els. One could try different combinations of regressors to predict the algorithm times. However,
the noticeable difference of MAPE test for the time regressions of the Two-Phase algorithm is
when using AdaBoost as proxy predictor and Extremely Randomized Trees for the time regres-
sions, this one obtained the lowest MAPE with a value of 5.3612. The lowest MAPE for this
algorithm when removing all models using AdaBoost as proxy predictor is 6.68193, thus, to have
the lowest MAPE, AdaBoost should be used to predict the proxy. For the One-Phase algorithm
time regression, the MAPE is better predicted when the proxy regressor is a Random Forest or a
Decision Tree. Indeed, when AdaBoost predicts the proxy, the best MAPE test for the One-Phase
algorithm time regression obtained is 1.8287 whereas when other proxy predictors are used the
lowest MAPE is 1.5552. Therefore, having AdaBoost to predict the proxy should lead to better
Two-Phase algorithm time regression and to have the best regression for the One-Phase algorithm
time, the proxy should be one of the model. Thus, two proxy models should be used resulting
to one more prediction and, thus, to more computation time. Therefore, to avoid adding more
computation time, these other combinations were not explored.

Figure 32: Bar plot of the average computation time taken by the predicted algorithm of the
models DTDTProxy, DTAdaProxy and RFAdaProxy (b).

The best models which are selected are the one which achieved the lowest average com-

64

putation time of the test folds, this value is around 12s, these models are DTAdaProxy and
RFAdaProxy (b). Another model that will be tested is DTDTProxy which obtained an aver-
age computation time of 14.57s. This model is tested because it obtained a γ1,2 = 0.1043 which
is much lower compared to the other one obtained. The two other models have a γ1,2 equal to
0.2129 and 0.2186 respectively.

One can see in Figure 32 that the time that is lost by the model DTDTProxy compared
to other models is mostly due to samples that have size of b in between 10 × 104 and 16 × 104.
The Figure 33 shows the proportion of the algorithm predicted with different b size ranges. In this
figure, the DTDTProxy does not seem to have a much different proportions of prediction for the
problematic range. One problem that may occur is that some algorithm prediction are swapped.
Indeed, if an algorithm is predicted in the place of another one and the other one is predict at
the place of first algorithm then the proportion stays the same but the algorithm are not well
classified. Because of the problem in that range of b sizes, DTDTProxy will not be the chosen
as final model. In the Figure 32, for a size of b between 16 × 104 and 21 × 104, the prediction
of the Two-Phase algorithm seem a bit too high compared to the prediction of RFAdaProxy
(b). In the Figure 32, one can see that RFAdaProxy (b) proportions of algorithm predictions
is close to the ground truth. This means that the model DTAdaProxy was wrongly predicting
the Two-Phase algorithm without impacting to much the average computation time. This wrong
classification could lead to problems, therefore, the final model chosen is RFAdaProxy (b). In
the Figure 34, one can see that RFAdaProxy (b) predictions leads to a time much closer to the
ground truth than LRNNZB (b).

Figure 33: Bar plot of the average computation time taken by the predicted algorithm of the
models DTDTProxy, DTAdaProxy and RFAdaProxy (b).

Figure 34: Bar plot with the proportion of time each algorithm is predicted for different rang of
b size. The models shown are RFAdaProxy (b), LRNNZB (b) and the ground truth called
GT.

65

Figure 35: Bar plot of the average computation time taken by the predicted algorithm of the
models RFAdaProxy (b), LRNNZB (b) and the ground truth called GT.

8 Model assessment and conclusion

Now that a model has been chosen, its performances must be tested with the part of the dataset
which was not used before. This part represent 20% of the samples. The modelRFAdaProxy (b)
will be trained with all the folds which were used in the model selection part, this part represents
the remaining 80% of the data. Then, the performance of the model will be computed using the
unseen test set. The final step, if the model performs well, is to train the model RFAdaProxy
(b) with all the dataset.

The model which would always preditct the fastest algorithm would complete the solve of
the test set with a time of 19.95s. The model RFAdaProxy (b) obtained a total computation
time of 34.78s on the unseen 20% of the dataset. In order to understand the performance of the
model RFAdaProxy (b), LRNNZB (b) was also tested on the test set. The algorithms chosen
by LRNNZB (b) completed the solve of these problems with a time of 44.85s.

This results show that the model RFAdaProxy (b) still obtains results that improves the
average computation time when solving multiple problems compared to the simple model using
linear regressions.

Github

https://github.com/Gael-di-raimo/MasterThesis

References

[1] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
scientific Belmont, MA, 1997.

[2] John JH Forrest and John A Tomlin. Updated triangular factors of the basis to maintain
sparsity in the product form simplex method. Mathematical programming, 2(1):263–278, 1972.

[3] Leena M Suhl and Uwe H Suhl. A fast lu update for linear programming. Annals of Operations
Research, 43(1):33–47, 1993.

[4] Timothy A Davis. Direct methods for sparse linear systems. SIAM, 2006.

[5] Pierre Geurts and Louis Wehenkel. Introduction to machine learning, faculty of applied sci-
ences, university of liège, September 2020.

66

https://github.com/Gael-di-raimo/MasterThesis

[6] Scikit-learn: Metrics and scoring: quantifying the quality of predictions. https:

//scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_

is_fitted.html. Accessed: 2022-11-17.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

67

https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html

