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Abstract

With the increasing amount of data being exchanged over the Internet, privacy has
become a critical concern for many actors relying on its services. This includes both
individuals and organizations, who may be concerned about the confidentiality of
their data as well as their own identity confidentiality. This work builds upon a
model designed for server anonymization in IP networks, and presents a series of
models built on top of the LISP protocol that aim at mitigating threats to privacy,
such as network scanning and other forms of surveillance, which can have serious
consequences for both clients and servers. It does so by reducing devices’ identifia-
bility as much as possible.

The Locator/Identifier Separation Protocol (LISP) has been developed to address
the issue of the increasing size of routing tables in routers of the default-free zone
(DFZ). The IAB highlighted the overloading of IP address semantics as the main
cause. LISP separates the identifier and locator properties of an IP address into two
separate address spaces in order to address this issue.

This work explores the potential for using LISP to provide anonymization to end
devices in a communication. By implementing and comparing various models in
the ns-3 simulation environment, we demonstrated the feasibility of using LISP for
this purpose. The models provided in this work proved to be much better in terms
of delay compared to the original solution and they can be combined to provide
complete privacy to both clients and servers while also being easier to deploy and
maintain.

This works explores solution built on top of the LISP protocol which have the
advantage to be easy to deploy on top of an existing architecture. As LISP is still in
development, it would be interesting to study the advantages of built-in solutions.
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Chapter 1

Introduction

Context

Nowadays, most communication is digital and digital privacy has become critically
important for both clients and servers. As a result, more and more research is
being conducted to provide privacy at the different layers of the Open Systems
Interconnection (OSI) model. In this paper, we will study how to provide privacy
to communications using the LISP network layer protocol.

LISP, the Locator/Identifier Separation Protocol [1], was developed to address
the issue of the increasing size of routing tables of routers in the default-free zone
(DFZ). This scalability issue of the Internet routing and addressing system has been
discussed in the Internet Architecture Board (IAB) workshop of 2006 [2], which iden-
tified the overloading of IP addresses semantics as the main cause of these issues.
This results from conflictual interests between the core and the edge networks. The
core of the Internet benefits from using an IP address as a Locator, allocated with
respect to the topology in which they will be used, so that they can be aggregated
into a single entry in the routing tables. This keeps the routers’ table size as small
as possible for efficient routing and reduce router costs. However, at the edge of
the Internet, customer ISPs and large enterprises make use of different mechanisms
such as multihoming, traffic engineering, and provider-independent addresses to re-
duce costs and improve the performance and maintainability of their infrastructure.
These mechanisms rely on using IP addresses as identifiers, allocating them without
considering the global topology, which leads to prefix de-aggregation and an increase
in the number of entries in the routing tables.

A single address cannot efficiently fulfill this dual role and to address this issue,
LISP separates the identifier and locator properties of an IP address into two sep-
arate address space. Endpoint Identifier (EID) addresses are used at the edge of
the Internet and are locally routable addresses used to identify hosts in a network.
Routing Locator (RLOC) addresses are globally routable addresses used in the core
to identify network attachment points. To connect these two independent spaces,
LISP introduces two components: LISP-enabled routers at the border of LISP sites
and a Mapping System [3]. This mapping system provides the mappings between
the two address spaces, similar to the Domain Name System (DNS) service. The
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LISP protocol then uses IP-in-IP encapsulation to route packets between any border
router.

This leads to a high compatibility with the current IP architecture as only these
two components need to be added to support LISP, while the rest of the Internet
remain unmodified. Due to the static nature of RLOCs and their high aggregability,
this solution addresses the scalability issue in the Internet core and reduces the
number of updates required to reach and maintain stable routes. EIDs, on the other
hand, can be allocated according to an organization’s policies without impacting
the rest of the Internet. Multihoming, Traffic Engineering and renumbering are also
well-supported by LISP.

Problem

Solutions such as LISP-SEC [4] exist to make LISP more secure, but none have
focused on the issue of digital privacy. In this work, digital privacy is divided
into two properties: data confidentiality and identity confidentiality. While many
solutions exist to implement data confidentiality at the network layer, very few
addresses the challenge of anonymization.

Anonymization can provide significant benefits to both clients and servers. For
clients, it brings anonymity to data transmission and minimizes the risk of iden-
tification or correlation between a client and a service. For servers, it decreases
exposure to attacks and increases the reliability and availability of a service. One of
the main threat to servers is network scanning [5, 6], which is often used to identify
potential targets and their vulnerabilities. Even with the large address space of IPv6
[7], servers remain vulnerable as more and more studies are conducted to create new
ways to scan IPv6 addresses [8, 9, 10, 11].

The goal of this work is to provide a first step towards the decrease of identifiabil-
ity, at the network layer, of devices involved in a communication using LISP.

Methodology and results

This thesis will demonstrate, starting from a methodology applied to a classic IP
network [12], how we can establish both identity and location privacy to reduce
both the identifiability of the actors involved in a communication and the risk of
scanning for servers. By using LISP-specific architectural elements, a series of solu-
tions will be presented and implemented using the network simulator environment
ns-3 [13] and the existing LISP implementation updated by E. Marechal [14]. The
solutions will also be compared based on the different metrics gathered from the
implementation.

By comparing our models, we will show that these new privacy techniques using
LISP are better than the original model implemented on an IP architecture. They
are easier to deploy and maintain and result in less delays for clients when proper
caching mechanisms are in place. They can also be used to provide privacy to
clients.
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Roadmap

This work will be divided as follows. Chapter 1 will provide an overview of network
privacy, defining a terminology of digital privacy and its threats, as well as a taxon-
omy of the solutions that can be developed. It will give an overview of privacy for
both IPv4 and IPv6 and will end by presenting the model that inspired this work:
Addressless privacy by Hao et al. [12]. Chapter 2 will describe the LISP protocol,
its motivations, and its specific mechanisms. Chapter 3 will present the models de-
veloped in this work, following the taxonomy defined in Chapter 1. Chapters 5 and
6 will introduce the network simulator ns-3 and describe how it was used to gather
data from these models. They will end by presenting a comparison of these models
that will be made based on different metrics.

3



Chapter 2

Network Privacy

2.1 Privacy

Privacy is a broad term that has a lot of different definitions and interpretations,
depending on the context in which it is being used. In this work, we will consider the
legal definition of privacy, which refers to the ability of an individual or organization
to control who has access to their personal information and under what circumstances
that information can be used. In the context of Computer Sciences, data privacy
encompasses a wide range of practices, tools, and regulations (such as the well-known
GDPR [15] legislation) that have been put in place to ensure the proper collection,
storage, and usage of digital data.

Digital privacy has become increasingly important nowadays, as more and more
information is being shared online. Gathering data is now of crucial importance for
a lot of different actors, for purposes ranging from targeted advertising, research, to
others far more malevolent. As such, data privacy is a concern at every layer of the
OSI model, with solutions at each of these layers that have been developed to protect
the addresses and data involved from being listened to or tampered with. It’s often
through the use of overlapping mechanisms at each layer that digital privacy can be
achieved to some extent.

This chapter will first establish a taxonomy of network address privacy, then it
will give an overview of privacy in the context of an IP network with a focus on one
particular model.

2.1.1 Goals and Terminology

Many threats involved are discussed in RFC 7258 [5] and RFC 6973 [6], with the
most notable threats to digital privacy being: surveillance of an individual’s network
traffic, disclosure and mis-attribution of information. In this work, we will assume
that the privacy of the data involved in the communication is assured, which is
often done by using encryption during the communication and proper storage on
the server side.

This work will focus on network-layer addresses and how to provide privacy guar-
antees to them. Why do we need to protect IP addresses? Let’s consider a simple

4



Term Definition

Anonymity The state of being anonymous.
Anonymous A state of an individual in which an observer or attacker can-

not identify the individual within a set of other individuals (the
anonymity set).

Anonymity Set A set of individuals that have the same attributes, making them
indistinguishable from each other from the perspective of a par-
ticular attacker or observer.

Identifiability The extent to which an individual is identifiable.
Identifiable A property in which an individual’s identity is capable of being

known to an observer or attacker.
Identification The linking of information to a particular individual to infer an

individual’s identity or to allow the inference of an individual’s
identity in some context.

Correlation The combination of various pieces of information related to an
individual or that obtain that characteristic when combined.

Table 2.1: Terminology of Privacy components

example involving a single client contacting a server. In this scenario, the most
pressing privacy threats for a client are Identification and Correlation, for example,
linking an individual (or their device) to the use of a specific service. For a server,
the threat would be to have its IP address collected, by either eavesdropping or
Network Scanning, which is usually the first step in most attacks. Network scanning
is usually used to gather IP addresses of potential targets, that can then be used
when needed.

The terminology that will be used in this work is given in Table 2.1 and comes
from RFC 6973 [6].

Our goal, using this terminology, is to create an Anonymity set by hiding the
IP addresses involved in a client-server communication, making the attribution of
the connection and the identification of the devices involved far more complicated.
For a client, this has several benefits, such as avoiding its traffic to be linked to
its device. But it is also very beneficial for a server, hiding the identity of a server
will make the work of potential malicious actors less straightforward, as they would
only be able to target a service and no longer target a specific server providing the
service.

Figure 2.1 shows in orange the part of the Digital Privacy spectrum that is tackled
in this work.

2.1.2 Threat to Digital Privacy: Network Scanning

Network scanning is the process of identifying and mapping the devices and services
present in a network. It is typically performed by network administrators, secu-
rity professionals, or malicious actors to identify vulnerabilities and/or troubleshoot
network issues.

5



Figure 2.1: Taxonomy of Digital privacy

There are many automated tools have been developed to perform network scan-
ning, including well-known such as Nmap [16] and Zmap [17]. Although they both
perform network scanning, they have been specialized in different direction. Nmap
is able to perform deep and thorough scanning of small to medium size networks,
it is able to detect active hosts, open ports and even perform OS fingerprinting.
It also has a scripting framework that allows it to perform vulnerabilities testing
on listening ports. Zmap, on the other hand, has specialized for large but shallow
network scanning. It is capable of scanning the entire IPv4 address space in less
than one hour (1300 times faster than Nmap).

With the emergence of such efficient tools, it is critical for servers administrators
to find and use mechanisms to reduce the identifiability of their servers to reduce
their exposure to malicious actors.

2.1.3 Taxonomy of solutions

Privacy is still an important research topic, and new solutions have been summa-
rized [18] in two categories by the Privacy Enhancements and Assessments Research
Group (PEARG) at the Internet Engineering Task Force (IETF):

� Over-the-top approaches: Use existing architecture to implement new mecha-
nisms, makes the deployment easier since fewer changes are to be made to the
actual topology.

� Built-in approaches: Make strong changes in existing protocols or develop new
ones. Very hard deployment, requires heavy changes.

In the context of a communication between a client and a server providing a
service, we will divide the notion of ”address privacy” into 3 properties, as depicted
in Figure 2.2. Since an IP address is both the locator and the identifier of a device
in an IP network, we can define, for a server:

� Identity privacy: hiding the identity of the server that provides the service.

� Location privacy: hiding the position of the server on the Internet, or, at least,

6



where it is located in the service provider topology.

� Complete privacy combining the two, ensuring both identity and location pri-
vacy.

Of course the same logic can be applied for a client.

Figure 2.2: Taxonomy of privacy components

2.2 Privacy in IP networks

The position of the network layer about privacy is ambiguous, as actors generally
prefer to use higher-level protocols, such as Transport Layer Security (TLS) [19],
to ensure data confidentiality and usually have to rely on complex mechanisms to
guarantee anonymization of network traffic.

There already are some relatively widely used protocols and architectures that
try to mitigate threats to privacy at the network layer:

� Tunneling and VPNS using protocols like IPsec [20], but, even in the best case,
the router addresses involved in the tunnel are still in clear. Moreover, IPsec
is usually used between networks under the same administrative authority.

� Indirect routing using alternate topologies like Tor networks, that introduces
heavy delays to the communication.

In the next section, a quick overview of network scanning and privacy in IPv4
and IPv6 will be presented.

2.2.1 IPv4

The IPv4 protocol uses a 32 bits address space, which makes it very vulnerable to
address scanning by tools such as Zmap, as mentioned earlier.

Nevertheless, the shortage of IPv4 has an interesting side effect in terms of pri-
vacy: Network Address Translator (NAT) [21]. NAT allows devices without a public
IP address to browse the Internet by sharing a single, public IP address. This helps
to mask the true IP addresses of devices within a network and thus can help to im-
prove the privacy of IPv4 communications by making it more difficult for attackers
to identify and track individual devices of clients.

For servers, it is more complicated to protect against network scanning as NATs
are not well suited in this scenario. However, good firewalls rules can help mitigate
these scans or their efficiency. It is interesting to note that for situation where

7



multiple servers provide the same services, a load balancer is able to provide the
same privacy properties as a NAT provides for clients by distributing incoming
requests to a service to different servers, thus reducing the identifiability of these
servers.

2.2.2 IPv6

The IPv6 protocol [7] has been developed to solve the address shortage of IPv4. As
such, the main difference is that IPv6 uses an address space of 128-bit, which is
far bigger than its predecessor. These 128-bit addresses are composed of 2 parts: a
64-bit network prefix and a 64-bit identifier interface (IID). Two protocols exists for
address configuration of hosts: Stateless Address Auto-Configuration [22] (SLAAC)
and Dynamic Host Configuration Protocol version 6 (DHCPv6) [23]. DHCPv6 is
usually preferred when control is needed over address allocation like in large enter-
prise networks for example.

IPv6 has been designed with security in mind, learning from the mistakes made
earlier to implement built-in security mechanisms such as IPsec (with its AH and
ESP protocols) for confidentiality. In terms of addresses privacy, this huge address
space makes brute-force network scanning far more complicated as it would require
years to scan the entire IPv6 address space.

To bypass this time restriction, new IPv6 scanning techniques beyond brute-
forcing have been developed, notably:

� Collecting IPv6 addresses from different sources, such as DNS [8] records or
BGP advertised prefixes [9].

� Prediction of active/allocated IPv6 addresses using machine learning algo-
rithms [10, 11].

These methods can be used to generate lists of IPv6 addresses that can then be
targeted for deeper scanning. However, there is a concern among those involved in
the development of IPv6 about the use of NAT [24]. NATing breaks the end-to-
end principle, which is why it is not recommended for use with IPv6. As a result,
depending on the direction that the practical implementation of IPv6 will take in
the future, clients’ privacy may be at risk in IPv6.

To address those new privacy concerns, both SLAAC and DHCPv6 have mecha-
nisms in place to try to mitigate these threats. RFC 8981 [25] talks about SLAAC
”Temporary addresses extensions” but these temporary addresses last at least sev-
eral hours, with a network prefix that remains constant. Nevertheless, these mech-
anisms provide some form of mitigation for a very low cost. A very thorough list of
background work on the improvement of address privacy, is given in the work done
by Hao et al. [12].

In the next section, an overview of a new model providing ”addressless” commu-
nication between clients and servers will be presented.
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2.3 Addressless IP model

The core of this thesis is articulated around the model defined in the scientific paper
”Addressless: A new internet server model to prevent network scanning”[12]. To
compare this model with the results that we will obtain with our models in LISP,
it is crucial to define and analyze the original solution.

The goal of this paper is to provide a new model that takes advantage of the
vast IPv6 address space, the DHCPv6 prefix delegation mechanism [23] to allocate
a prefix of addresses to a device, and a new intermediate device called Entrance
Module to provide complete privacy to the server.

2.3.1 Model description

For this model to work, we have to set up several components:

� The Entrance Module is a basic server that has a public IP address that should
be configured in the DNS system. Its only role is to generate an IP address
and redirect incoming clients.

� The main service module is the server that provide the service. It is configured
with a prefix of IP addresses thanks to DHCP-PD and uses all the addresses
under the prefix to communicate with clients.

The key function is that the server will only accept incoming connections from
clients that have gone through the entrance module first. This entrance module will
redirect clients by giving them a specific IP address that they must use to contact
the server.

The model involves multiple steps, which are depicted in Figure 2.3

Figure 2.3: Addresslesss IP model topology

1. The client will start by sending a request to the service IP address obtained
through the DNS system.

2. After receiving the request, the entrance module uses

(a) The prefix of the main service module

(b) The source address of the packet

to generate an IPv6 address through the encryption function.
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3. It will return this generated address to the client.

4. Finally, the client initiates a connection with the main service module using
the received address.

5. Before establishing the connection, the main service module verifies the desti-
nation address used. If it checks out, the sever carries on with the connection,
otherwise, the packet is dropped.

6. Communication takes place as usual with no modifications.

A simplified view of the model is given in Figure 2.4. In this figure, we can define
the additional connection delay induced by this architecture as the time elapsed
between the first request sent by the Client and the reception of the response sent
by the Server to this Client.

This work only considers IPv6, as its address space size and the number of unused
addresses allow allocating small prefixes to devices.

Figure 2.4: Addresslesss IP model packet flow

2.3.2 Generation and verification of IP addresses

In this work, a lot of mentions are made to the generation and verification of the
IP addresses used to reach the server. We will follow the nomenclature used in the
work of Hao et al. and define a simple version of the generation process:

DA1:N = PS (2.1)

DAN+1:128 = E(H(IPC), TS) (2.2)

where we define:

1. DA: The destination address that will be used by the client to reach the server.

2. PS: The prefix of IP addresses that has been allocated to the server.
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3. E(): The encryption process used to generate a valid suffix.

4. IPC : The IP address of the client.

5. N : The number of bits allocated to the address prefix.

6. TS: The system time when generating the address.

It is important to note that the study of the encryption process itself is beyond
the scope of this work, but is studied in multiple other research papers [26, 27, 28,
29, 30]. For these simulations, E() will be used as a simple hash function but the
architecture is compatible with any encryption/verification functions that follows
these definitions.

The verification process can be defined as

(H(IPC), TS) = E−1(DAN+1:128) (2.3)

The two conditions to accept an incoming connection are:

H(IPS)
?
= H(IPC) (2.4)

TM − TS

?
< Ttresh (2.5)

where we define:

1. IPS: The address that has been used to contact the server.

2. TM : The system time when verifying the address.

3. Ttresh: The period of validity of an address.

4. E−1(): The decryption process.

When this verification failed, the server simply ends the communication.

The complete description of the generation and verification process can be found
in Annex A.1, the use of stateless salt using timestamps are added to fence off replay
attacks.

2.3.3 Analysis

There are considerable benefits to this architecture, as detailed in great length by
its authors. The key advantage is that the server is only accessible through the
entrance module, making it far more difficult to scan.

� Attempting to collect active addresses of the server through the DNS records
would only give the entrance module’s address.

� Using machine learning or pattern recognition algorithms would not yield any
valid addresses, as the generation algorithm used to generated valid addresses
do not show any pattern, according to the authors.

� Eavesdropping. Using spoofed packets or replay attacks only work during the
timeframe of validity of an IP address. However, it would not work if any kind
of application or transport layer encryption is used.

11



� Brute-force, because of the IPv6 address space size, has a negligible chance
of yielding any results. And even if the valid address of a given timeframe is
found, it would only be valid for a small period of time.

This model also provides some light mitigation of well-known denial of service
(DoS) attacks such TCP Syn-Flood and UDP Flooding. This model can mitigate
these attacks when erroneous pairs of addresses are used since resource allocation
on the server side only occurs after the destination address check. Still, this model
is vulnerable within the address validity period when valid pairs of addresses are
found. It is also vulnerable to DoS attacks that do not directly send packets to the
server, such as bandwidth exhaustion

Finally, another benefit is that the solution allows for load balancing and/or user
authentication to be performed at the entrance module, if needed. No modifications
are required for the client.

This solution does come with some trade-offs. One drawback is that it introduces
an additional round-trip time (RTT) and possibly a connection handshake, for TCP
connections, before the actual connection can be established. Additionally, the
redirection occurs at the application layer, which means that modifications would be
required for any application that wants to use this model. The server also needs to be
modified to perform the address checking, as performing this check at the application
layer, after the connection is first established, would leave the server vulnerable to
DoS attacks. Another implementation cost is the need for an additional device,
the entrance module, to be configured and accessible. While this solution can be
vulnerable to fast replay attacks and session hijacks within the period during which
a source address is associated to a destination address, both of these vulnerabilities
can be mitigated by using encryption at the transport or application layer.

Figure 2.5: Encryption and verification delay
[12]

In their work Hao et al. measured the delay introduced by both encryption and
redirection of a client using a real-life implementation of their work. They used
multiple Raspberry Pi, running on RaspberryOS based on Debian, in the same local
network and configured them to take on the job of the entrance module, the server
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and the client as shown in Fig. A.2. They used DHCP-PD to allocate prefixes to
the server.

The experiment was done using multiple combination of OSes and web browsers,
a raspberry client went through both the entrance module and server, and the delays
were measured using Wireshark.

The experiment is repeated 10 times, and the results of their measurements are
divided between the delay due to encryption and decryption, shown in Figure 2.5
and the delay due to the change of connection performed by the client, shown in
Figure 2.6. These results show that, except for the additional RTT due to the con-
nection change, the delay induced at both the server and client side is negligible.
We will use these empiric measures for our timing models in the ns-3 implementa-
tion.

An experiment was also conducted to measure the efficiency of the model against
scanning attempts. In this scenario, a Raspberry Pi is used as an attacker, that will
different method of scanning to try to find an active address of the server.

� A 100-hour brute force that yielded no results.

� Generating addresses using machine learning algorithm such as 6gen also
yielded no results.

They concluded that their model was efficient as preventing the main server to
be scanned by existing IPv6 scanning approaches.

Figure 2.6: Delay due to the change of connection, for different Operating Systems
and web browsers

[12]
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Chapter 3

Locator/Identifier Separation
Protocol

The Locator/Identifier separation protocol [1] is a network layer protocol that has
been designed to address some shortcomings of the current use of IP addresses in the
Internet’s addressing and routing system. This chapter will cover the background
and objectives of LISP, as well as its functional principles and mechanisms.

3.1 Motivation

In 2006, the IAB expressed during its annual workshop on routing and addressing
several concerns about the current Internet network architecture. The main conclu-
sion of the workshop was that the current growth of both the Routing Information
Base (RIB) and Forwarding Information Base (FIB) of routers would lead to signifi-
cant scalability issues for these routers in the near future. The following subsections
will provide an overview of the issues and their causes, as presented in the workshop
summary [2].

3.1.1 Scalability of the routing systems

During the meeting, the main concern discussed was the growing size of the DFZ
(Default-free zone) routing table. The DFZ is composed of every router and Au-
tonomous Systems (AS) on the Internet that do not use a default route to route
packets, the routers in the DFZ have a complete Internet routing table which allows
routing packets to any reachable destination. It is also known as the global routing
table. The evolution of the size of this table is given in Figure 3.1 for IPv4 and
Figure 3.2 for IPv6.

As the RIB size grows in the DFZ, there are several consequences that can impact
the performance of the Internet. One of these is the cost of recomputing the FIB.
When the RIB grows, it takes more time and resources to recompute the FIB, which
can slow down the routing process.

This increased processing time directly impacts routing protocols that uses the
RIB and FIB such as the Border Gateway Protocol [32] (BGP). BGP is used to
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Figure 3.1: IPv4 routing table size evolution over the years
[31]

Figure 3.2: IPv6 routing table size evolution over the years
[31]
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exchange routing information between networks, its messages often lead to the pro-
cessing of the RIB to compute the FIB. Because of the increase in RIB size, it will
take longer for BGP to compute routes which in turn lead to delays in routing traffic.
However, this is not the main issue for BGP. Large RIB size, as we will explain in the
next sections, is mainly caused by the de-aggregation of routes. This increase in the
number of routes can also lead to an increased number of BGP UPDATE messages
being injected into the DFZ, which can contribute to UPDATE churn. BGP churn
refers to the number of prefixes that are changed, added, or withdrawn over time.
More churn a negative impact on routing converge and increase the delays needed
to establish stable routes.

Finally, the growing RIB size has implications for the hardware needed to route
traffic in the core of the Internet. As the RIB grows, more processing power and
efficient storage are required to process and maintain the longer prefixes and to
update the FIB. This increases the cost and power consumption of the hardware, as
well as the heat dissipation.

The main technique to reduce the size of the RIB and FIB is prefix aggregation.
Instead of having one entry per IP address in a network, the number of entries is
reduced by representing a group of devices or networks with a single route for the
common prefix that these addresses share. Representing a network by the prefix
that has been allocated to it seems to be the rational approach, but problem is,
for multiple reasons, a tendency towards prefix de-aggregation has been observed,
which has lead to this increase of RIB size.

All the factors that will be explained in the following subsections can contribute
to prefix de-aggregation and/or the injection of unaggregatable prefixes into the
DFZ RIB, resulting in an uncontrolled RIB growth.

Allocation of PI addresses

A RIR (Regional Internet Registry) is an organism that is responsible, among other
things, for allocating addresses in a certain region of the world. It typically allocates
two types of addresses: Provider-Independent (PI) and Provider-Aggregatable (PA)
addresses.

PA addresses are IP addresses allocated by blocks to Internet service providers
(ISP) by the RIR, and are further assigned by ISPs to customers. They are typically
used by smaller organizations or networks that do not need to maintain a persistent
IP address and are willing to use the address space of their ISP. They are said to be
aggregatable, as all the IP addresses of an ISP block will usually be summarized in
a single aggregated entry in the DFZ RIB.

PI addresses, on the other hand, are addresses that are not assigned by an ISP
and are not specific to a particular provider. These addresses are not part of an ISP’s
allocated block and as such, are not aggregatable with it. This leads to additional
entries in the RIB in order for these addresses to be reachable. These addresses
are typically used by larger companies that needs stability for their addressing poli-
cies.

If an organization with a block of PA addresses wants to change ISPs, it must
obtain a new block of IP addresses from the new provider. The owner of PI addresses,
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however, can use it with any ISP and can change providers without changing its IP
addresses. This is a huge benefit for an organization, as these addresses are often
used statically, in firewalls, system’s configuration or even for routing rules. It could
become costly for an organization to change everything each time it has to change
ISP, using PI addresses brings this needed flexibility.

Multihoming

Multihoming refers to the practice of connecting an AS to multiple ISPs. This
can be done for various reasons, such as increasing available bandwidth, increasing
reliability, and providing connection redundancy.

When a site uses multihoming with provider-independent (PI) address space,
its prefixes will be present in the routing tables of each of its ISPs and won’t be
aggregatable, as explained in the previous subsection. Even if the site uses provider-
aggregatable (PA) address space, it leads to prefix de-aggregation. Each prefix
allocated by one ISP can only be aggregated by that ISP and not by the others. In
the case where the site has a ”primary” ISP that it normally uses for routing unless
there is a failure, the additional routing table entries for the other ISPs should only
appear in the event of a failure to the primary ISP. However, the primary ISP will
often have to de-aggregate the block allocated to a multi-homed site to avoid having
the site’s traffic directed to a secondary ISP if that ISP chooses to start advertising
the prefix. As these prefixes won’t be aggregatable by this ISP, traffic will start
flowing through it because of the longest-prefix matching rule.

In both scenario, multihoming leads to prefix de-aggregation and thus growing
RIB size.

Traffic engineering

Traffic engineering refers to the practice of designing, implementing, and managing
routing policies in a way that allows for the control and manipulation of routes taken
by traffic in order to optimize traffic management.

It is often used for several reasons:

� Load balancing: achieve better utilization of network resources by spreading
the traffic load.

� Policy routing: enforce some sorts of arbitrary rules or preferences by avoiding
or enforcing path usage.

� Reduce cost: balance traffic to either respect peering agreements, or to use
the cheapest paths.

Traffic Engineering is usually achieved by adjusting some parameters of BGP
advertisement. Problem is, if the prefix to which Traffic Engineering must be applied
is part of a bigger block of PA addresses, it must be de-aggregated in order to be
advertised separately with the proper parameters. As a result, TE is one of the
causes of the RIB growth in the DFZ.
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IPv6 adoption

It is believed that the current growth of DFZ RIB size is limited by the exhaustion
of the IPv4 address space. While IPv4 is still the main version currently used on
the Internet, the transition to IPv6 and its vast address space is slowly taking place.
As a result of this shift and the increasing number of digital devices being produced
each year that require IP addresses, it is believed that an explosion in RIB growth
could be due to the adoption of IPv6.

3.1.2 Overloading of IP address semantics

All these causes have a common root problem: the overloading of IP address se-
mantics. The origin of this overloading lies in the two different conflicting business
models of the organizations that constitute the Internet architecture. At the core,
transit ISPs and the DFZ see IP addresses as locators that points to locations in
the Internet topology. But as we move closer to the edge, we see the emergence of
a new use for IP addresses: identifiers for end devices. At the edge, customer ISPs
and organizations use IP addresses as identifiers for their customers.

Problem is, the core of the Internet benefits from keeping the RIB as small as
possible for efficient routing and reduced router costs. To achieve this, addresses
should be allocated with respect to the topology in which they will be used, so that
they can be aggregated. But customer ISPs and large enterprises make use of differ-
ent mechanisms to reduce their costs or make their infrastructure easier to maintain
and more performant. As we saw in the previous sections, these mechanisms mainly
lead to prefix de-aggregation, due to addresses being allocated as static identifiers
for devices.

A single address cannot efficiently fulfill this dual role that the different actors of
the Internet have for it, and as such, its separation has been a key mechanism for
new network layer protocols [33], such as LISP, that have been developed to solve
the scalability issue that the Internet is facing. This protocol will be presented in
the next section.

3.2 LISP Introduction

The LISP protocol, short for Locator/ID Separation Protocol, is a network protocol
that was developed to address the scalability challenges that have been described.
The traditional Internet Protocol (IP) uses a single identifier, known as an IP ad-
dress, to both identify the host and specify its location on the network. LISP
addresses this issue by separating the host identification and location information
into two distinct address spaces:

1. The Endpoint Identifier (EID), used to identify end-devices, is assigned inde-
pendently of their topological location. It is used for intra-domain routing.

2. The Routing Locator (RLOC) are assigned topologically to network attach-
ment points. They are typically routed inter-domain.

This marks a clear separation between the edge and the core of the Internet,
as they both use different address spaces for different functions. They are now
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Term Definition

Endpoint Identifier (EID) Addresses used to uniquely identify nodes irrespec-
tive of their topological location. Routed intra-
domain.

Routing Locator (RLOC) Addresses assigned topologically to network at-
tachment points. Routed inter-domain.

Ingress Tunnel Router (ITR) A LISP-capable router that encapsulates packets
from a LISP site towards the core network.

Egress Tunnel Router (ETR) A LISP-capable router that decapsulates packets
from the core of the network towards a LISP site.

xTR A router that implements both ITR and ETR
functionalities.

Table 3.1: Terminology of LISP elements
[1]

logically separated. The link between the two is made thanks to LISP-enabled
routers, which interconnect them and use a new database, the Mapping System,
that supports the storage and retrieval of mappings between EIDs and RLOCs.
These routers are located at the border of a LISP site and exchange packets by
encapsulating them. With these routers and the Mapping System, no modification
of the current Internet Architecture is necessary to adopt LISP. EIDs and RLOCs are
identical to IP addresses and as such, both the core network and the edge can remain
unmodified: the core network can keep routing packets based on their RLOCs, and
end-devices will identify each other using EIDs. A table with definitions that will
be used throughout this work can be found in Table 3.1. The term xTR will be used
for LISP-enabled routers for the rest of this work.

LISP has several benefits, including the ability to support mobility and multi-
homing, improve security and privacy, and enable more efficient use of IP addresses.
It is an experimental protocol and is not widely deployed, but it has been im-
plemented in a number of research prototypes [34] and is being studied by the
IETF.

In the rest of this chapter, we will explore a detailed description of how it works
and how it has been implemented in modern networks.

3.2.1 Data Plane

The Data Plane of LISP is described in RFC 9300 [1]. The main addition to the
classic IP Data Plane is the process of encapsulating and decapsulating packets done
by the xTRs, border routers of the LISP site.

To illustrate, we will consider a typical scenario in which a host inside the LISP

19



site sends a packet to some server. The destination EID used is often found using
the DNS system, like a regular IP address. When an xTR receives this packet
from inside the site, it will first check if it knows an RLOC associated with the
destination EID. If it does not, it will contact the Mapping System to obtain it.
Once the mapping is known, the xTR encapsulates the packet with an IP header,
a UDP header, and a LISP header. This process tunnels the traffic between the
two xTRs through the core network. When the packet is received at the border
of the destination’s site, the decapsulation is done by the site’s destination xTR.
The process is then repeated in the opposite direction, as shown in Figure 3.3. The
RLOC space is highlighted in red while the EID space is in green.

The format of an encapsulated packet is given in Figure 3.4. The need to encap-
sulate with multiple headers instead of simply adding and outer IP header, comes
from the filtering that can be done by some middle-boxes. An IP-in-IP encapsula-
tion could be filtered by these devices when they don’t recognize a classic packet
structure, composed of an IP header encapsulating a TCP/UDP header. We can
see that the packet now has multiple different headers:

1. An outer IP header with the xTRs’ RLOCs as source and destination. This
header will be used to route the packet between these two routers.

2. A UDP header, to avoid discarding by middle-boxes.

3. A LISP header containing LISP specific information.

4. An inner IP header which contains the source and destination EIDs.

These additional headers increase the overall size of the original packet, but that
is the price to pay for compatibility with the existing architecture and reduced
deployment costs.

Figure 3.3: LISP Data Plane operations
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Figure 3.4: LISP header format
[35]

3.2.2 Control Plane

The key mechanisms of LISP lie in its Control Plane, which has an essential role in
its architecture as it is response for registering, storing, and retrieving EID-to-RLOC
mappings. These mappings are used to associate a list of RLOCs with an EID-Prefix.
The details of this Control Plane have been defined in RFC 9301 [3].

Registering and retrieving: the interface

The LISP Control Plane has been developed with modularity in mind by decoupling
the database used to store the mappings from the interface used by the xTRs to
interact with it. This allowed multiple different database schemes to be developed
in parallel, each with their own advantages and drawbacks. To do this, two new
devices are used in LISP topologies:

� The Map-Server: Learns mappings from xTRs and publishes them in the
Mapping System.

� The Map-Resolver: Used as a proxy by xTRs requesting mappings.

Four Control Plane messages have also been added for the communication be-
tween xTRs and the interface. Two of these messages, the Map-Request and the
Map-Reply, are used to obtain mappings from the Mapping System. The Map-
Register and Map-Notify are authenticated messages used by an xTR to register
the EIDs for which it is authoritative to the Mapping System through its Map-
Server.

To summarize how all these elements interact together, we will go through the
process depicted in Figure 3.5.
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Figure 3.5: Delay perceived with no caching
[36]

1. First, a host in the LISP site will send a packet with a destination outside the
LISP site.

2. When receiving this message, the xTR has to encapsulate it. If it does not
have an entry with a RLOC associated to the destination EID, it sends a
Map-Request to its Map-Resolver.

3. Through the mapping system, the Map-Resolver forwards the request until it
reaches a Map-Server that knows the authoritative xTR for this EID and can
forward the request.

4. The authoritative xTR directly send the Map-Reply to the requesting xTR,
without going through the Mapping System again.

5. The message can now be encapsulated and sent towards its destination.

The same process must be repeated in the inverse direction if needed.

It is interesting to note that Map-Servers can be configured to answer Map-
Requests instead of forwarding them to the xTR, to alleviate the workload of the
xTR.

Storage

Mappings can be stored at various places in the LISP architecture. First, each xTR
has a Mapping Database containing the mappings for which it is authoritative and
is thus derived from the initial configuration. This database is queried by the xTR
to generate a Map-Reply when it receives a Map-Request.

The LISP mapping system introduces a new delay to a packet exchange: the
delay generated by waiting for a response from the mapping system to a mapping
request. To reduce this delay for successive requests, an xTR also has a Mapping
Cache in which it stores recently received mappings. These mappings remain in the
cache until their Time-To-Live expires.
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LISP mapping databases

Multiple specifications for mapping databases have been developed, the most well-
known being LISP Alternative Topology (LISP+ALT) [37] and LISP Delegated
Database Tree (LISP-DDT) [38]. In this work, a simplified version of LISP-DDT
has been used for the simulations.

The main goal of LISP-DDT is to achieve a scalable mapping system. To do this,
a hierarchical approach has been chosen, very similar to the architecture observed
in the DNS system. To achieve this hierarchy, the EID space is divided between
each node of the system (DDT-node). Starting from the root DDT node, which is
responsible for the entire EID space, each child node is responsible for a portion
of its parent prefix. Each parent node keeps track of its children, and the prefix
it is responsible for. Going down the hierarchy means reaching smaller prefixes, as
shown in Figure 3.6. At the bottom of the hierarchy we find the Map-Servers which
can redirect requests to the authoritative xTRs.

Going through this architecture for each mapping that needs to be resolved in-
troduces a non-negligible delay to data transmission. That is why using caching
at both the xTR and the Map-Resolver is important to reduce this delay as much
as possible. A Map-Resolver can be used by multiple different xTRs, similar to a
DNS proxy of an ISP. Because of that, caching xTRs’ RLOCs and the EID prefix
for which they are authoritative, after going through the Mapping system, heavily
reduces delay for scenarios where clients are behind different xTRs.

Figure 3.6: LISP-DDT hierarchy example
[35]

3.3 Benefits

With LISP, the scalability problem is solved. RLOCs are static addresses that
denote attachment points of networks and are expected not to change much. They
are assigned with respect to the topology, which leads to a high aggregability and a
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low BGP churn. The EIDs, on the other hand, have a more dynamic nature. They
can change due to a change of ISPs, configuration, or because of mobility events
with end devices moving from network to network. With these events, only the
Mapping System entries change to reflect these events, and the core network remains
unaffected. Mobility and renumbering is thus well-supported by LISP.

Another benefit is that mapping entries can contain Traffic Engineering policies
to achieve both multihoming and load balancing with minimal effort. Weights and
priorities are used by the authoritative xTR to implement these policies. Priorities
are used to indicate which RLOC should be used by the remote site (inter-domain
TE) and weights allow load balancing for RLOCs with the same priority. These
two values are dynamic and policies can be used to change them depending on the
requesting remote site.
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Chapter 4

LISP Network Privacy

4.1 Securing LISP

RFC 7835 [39] has identified a list of possible threats to the LISP protocol and
multiple extensions are in development to provide security guarantees to both the
data plane and the control plane of LISP.

To secure the control plane, LISP-SEC [4] is an extension that adds several secu-
rity mechanisms to the EID-to-RLOC mapping communications to provide message
authentication and integrity. For the data plane, RFC 8061 [40] describes how en-
cryption keys could be exchanged using the current LISP architecture and how these
keys can be used by xTRs, in the same fashion as IPsec, to encrypt and decrypt the
inner IP header, its associated payload, the UDP header and the LISP header of a
LISP packet. The outer header remains in clear for proper routing.

But these additions are not enough to provide privacy guarantees for LISP com-
munications. Communication data is protected during transmission, but the devices
involved in the communication are still identifiable at both ends.

Now let’s review a series of models built upon the example provided by Hao et
al. [12]. These models will be implemented in ns-3 alongside the original model and
compared in the next chapter based on different metrics.

4.2 LISP Topology

The topology used for the LISP models and simulations is nearly identical to the
one use for the IP addressless topology (defined in Figure 2.3) with LISP specific
elements.

The Map-Resolver (MR) and Map-Server (MS) will act as the LISP interface to
access the underlying mapping database system as specified in RFC 9301 [3], al-
lowing our solutions to work with any mapping database system. Nevertheless, In
the actual ns-3 implementation, LISP-DDT is the only LISP mapping system im-
plemented, as such, it will be used for the simulations. Let’s now proceed iteratively
and find how we can benefit from privacy in a LISP network.
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Figure 4.1: Default LISP architecture

Name Redirection
mechanism

Server Entrance module

Addressless IP Active at app-
layer

Modified Additional device

Addressless LISP Active at app-
layer

Unmodified Additional device

xTR Redirection Active at app-
layer

Unmodified Server’s xTR

Map-Reply redirection Active at app-
layer

Unmodified Server’s xTR or
Map-Server

Passive redirection Passive at
network-layer

Unmodified Not needed

Table 4.1: Summarized comparison of models providing Identity privacy

4.3 Identity privacy

To achieve identity privacy, identifiability of the devices involved in communication
must be reduced as much as possible. A serie of models, summarized in Table 4.1,
will be presented in the next subsection.

4.3.1 Addressless LISP

An obvious (but naive) first solution that could be used with LISP would be a
direct implementation of the IP model, with no modifications besides the LISP
specific elements:

The steps are nearly identical as the IP version:

1. The client will start by sending a request to the service IP address obtained
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Figure 4.2: Packet flow: LISP addressless approach

through the DNS system.

2. The client’s xTR performs an EID-to-RLOC mapping lookup to obtain the
entrance module’s xTR RLOC.

3. After receiving the request, the entrance module uses

(a) The prefix of the main service module.

(b) The source address of the packet

to generate an IPv6 address through the encryption function.

4. It will return this generated address to the client.

5. The entrance module’s xTR performs an EID-to-RLOC mapping lookup to
obtain the client’s xTR RLOC.

6. Finally, the client initiates a connection with the main service module using
the received address.

7. Depending on the prefix advertised, the client’s xTR may require to perform
an additional mapping lookup.

8. Before establishing the connection, the main service module verifies the desti-
nation address used, if it checks out the sever carries on with the connection,
otherwise, the packet is dropped.

9. Communication takes place as usual with no modifications.

This solution has the same advantages and drawbacks as the IP version, the only
additional drawback being the delay due to the LISP environment, in this case we
have up to three EID-to-RLOC mapping resolution that needs to be done before
the connection can take place. That is of course the worst case scenario, where the
entrance module and the server are in different subnets, if both the entrance module
and the main module were located in the same subnets, the server xTR could choose
to advertise the subnet prefix in its response to the first mapping request, and only
two mapping resolution would have been necessary.
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4.3.2 xTR Redirection

In this solution, we get rid of the entrance module, taking advantage of our xTR to
perform both the address generation and verification. The server’s xTR will take
on the job of the entrance module and will have a public IP address associated with
the server’s service. Of course, this address must be configured as an AAAA records
in the DNS system.

Figure 4.3: Packet flow: Redirection by the xTR

The steps taken are described in Figure 4.3, the main differences with the previous
model being the role taken by our xTR. It is interesting to note that the verification
process can be done in either a stateless or stateful approach by our xTR. The
stateful approach would be to keep track of each line (source address, generated
address, time to live) that has been generated by this xTR and check each packet.
A stateless approach would be to only check the first packet in a given flow.

This model simplifies the architecture, as we do not need an additional physical
device anymore. As a consequence, the mapping required to reach the entrance
module is not needed anymore, reducing the connection delay. The second interest-
ing consequence is that our server is now unmodified since the xTR took on the job
of verifying the destination EID.

This new model still holds the properties of the previous one. Our xTR can
support multiple services as an entrance module by simply having multiple different
IP addresses or ports associated with each service. The position of the xTR is not
a constraint either, any xTR in the topology can perform the job.

4.3.3 Map-Reply redirection

To reduce delay even further, the address redirection message can be send when a
Map-Request for the server EID is received.

Using the same setup as the previous model, the communication steps are:

1. The client sends the request to the address obtained thanks to the DNS system.

2. The client xTR will send a LISP Map-Request in order to get the destination
RLOC associated to this EID.

28



Figure 4.4: Packet flow: redirection with Mapping reply

3. After receiving the request, the server xTR uses the prefix allocated to the
server and the EID of the client to generate an IPv6 address through the
encryption module. It will send:

(a) its RLOC in a LISP Map-Reply message.

(b) the computed server EID in a address redirection packet addressed to the
Client.

4. Finally, the client initiates connections with the server using this address as
the destination address.

5. The server’s xTR verifies the destination address used.

6. Communication takes place as usual.

The server’s xTR sends the address redirection alongside the Map-reply in order
to minimize the delay caused by this additional pair of messages. If multiple clients
are behind the same xTR, RLOC caching must be taken into account. The first
client’s request will trigger a mapping resolution, while subsequent requests made
by the other clients will not. Therefore, our server’s xTR must be able to fall back to
the classic xTR redirection explained in the previous section for these clients.

4.3.4 Passive redirection

So far only solutions using active redirection have been explored, instead, a passive
method could be used to silently redirect incoming traffic. The server’s xTR will
act like a traditional NAT would do, replacing addresses of incoming and outgoing
packets but using the encryption module discussed before.

The setup is similar to previous models, with the exception that, in this scenario,
the public IP address associated to the service may or may not be allocated to a
device in the topology. This IP address is only used to reach the service.

The steps, depicted in Figure 4.5 are as follows:

1. The client sends the request to the address obtained thanks to the DNS system.
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2. The server’s xTR, when decapsulating the request, will check that:

(a) This packet is not addressed to any of the IP addresses allocated to the
server(s), otherwise the packet is dropped.

(b) If this packet is addressed to the service, it is addressed to the port(s)
used by the service, otherwise the packet is dropped.

3. It will then replace the destination address of the packet by the one generated
using the encryption module.

4. The server will receive the modified packet and answer to the client.

5. The server’s xTR, when encapsulating the packet, will replace the source IP
address of the server by the service IP address.

6. Communication takes place as usual with this additional translating system
in place.

Figure 4.5: Packet flow: Passive redirection

This solution is now completely located at the network layer. This is a huge
change comparing to the original model for IP networks, where all mechanisms were
located at the application layer. The first obvious advantage is that the model can
be used for any application layer protocol whereas previous solutions required the
application to include some form of redirection mechanism. Now both the server and
the client are left unmodified. The other key advantage is clients are no longer talking
to a server but to a service, with no information about which server is answering
the requests. The servers are not directly reachable through the IP addresses that
have been allocated to them, but only through the unique IP associated to the
service, making them less vulnerable to brute-force scanning of the address space.
Any client has to use the service IP in order to reach the server. This model can also
easily be adapted to provide privacy for clients, as it is described in the following
sections.

Still, compared to active redirection mechanisms, we could think that if the service
IP address is collected using one of the methods mentioned earlier, it would leave the
servers that provide the service vulnerable to scanning because they are now directly
reachable, without any application layer specific redirection mechanism. However,
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since a sequence of flows initiated by a malicious actor won’t be mapped to the same
server and since our router limit the traffic going towards the servers to the ports
the services use, in the fashion of a firewall, this model severely reduce the scanning
ability of an attacker.

The impact that the address replacement will have on delay and performance in
case of a high amount of traffic will be evaluated thanks to the ns-3 implementa-
tion.

4.4 Location privacy

The same notions that we used to hide the identifier of a server can be used to hide
its locator.

In this scenario, The server’s xTR will be allocated a prefix of RLOC addresses
and will use a specific RLOC for each new connection to the server. It performs
checks to ensure that the appropriate RLOC is used for flows between a client and
the server. Any packets that do not have the appropriate destination RLOC will be
discarded.

The communication steps are defined as follows:

Figure 4.6: Packet flow: RLOC hiding model

1. The client sends the request to the address obtained through the DNS system.

2. The client xTR will send a LISP Map-Request in order to get the destination
RLOC.

3. After receiving the request, the server xTR uses the prefix allocated to it and
the source EID to calculate an IPv6 address through the encryption module.

4. Then returns this address to the client xTR in a LISP Map-Reply message.

5. Finally, the client xTR encapsulate the client request in a LISP Packet.

6. The server xTR, when receiving LISP packets, verifies the destination RLOC.

7. Communication takes place as usual.

This model is simple and do not require any modification on both ends of the
connection, as everything is done in the control plane. In the scenario where proxy
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map reply is requested, then the Map-Server will perform the generation of RLOC
addresses. This model, like the previous one, can be applied on the client side with
no modification. It only adds very few additions to the complexity, one encryption
per map request and one encryption per incoming flows to verify the destination
RLOC being used.

Unlike the models used to provide identifier privacy, the period of time during
which an RLOC is associated with a source address is slightly larger, as it has to ac-
commodate the possible RLOC caching that can be done on either the Map-Resolver
or client’s xTR side. Another possibility would be to use LISP Publish/Subscribe
[41]. This extension of LISP control plane is used to allow xTR to notify other xTRs
of changes in mapping. An xTR could use this mechanism to notify maintain the
customized RLOC up to date during a communication.

4.5 Complete privacy

So far we have only studied identity and location privacy separatly but any solutions
described so far can be combined to achieve both location and identity privacy.

In this scenario we will use both the RLOC redirection and the passive EID
redirection.

Figure 4.7: Packet flow: Association of Identity and Location privacy

As a result, we now have a model that provides the same privacy properties as the
one presented by Hao et al., but with several key advantages. It is easier to deploy
and maintain because it does not require any modification to the client or server
and does not require any additional devices. It can be used for any application-layer
protocol since it performs the redirection at the network-layer, and also achieves
better delays, as we will see in the next chapter, because it does not require an
additional connection to be established.

We can also easily apply our server privacy model to the client side. In this case,
the xTR passive redirection functions like a NAT, replacing the source address of
outgoing packets with a generated IP address that depends on the prefix allocated
to the client and the destination address of the packet. This allows us to obtain
both identifier and locator privacy for the client.
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Chapter 5

Implementation in NS-3

In Chapter 2, new privacy models for LISP were developed based on the ”Address-
less” model proposed by S. Hao et al. for IP networks [12]. These models were
discussed on a theoretical level. In this chapter, these models will be simulated in
the ns-3 network simulator using the existing LISP implementation. This will allow
us to compare the performance of the different privacy models in the next chapter
using metrics gathered from the ns-3 simulation.

Before diving into the implementation of the privacy models, this chapter will
provide an overview of ns-3 and describe the existing LISP implementation, followed,
by a description of the modifications made to implement the privacy models.

5.1 Ns-3: Network Simulator

Ns-3 is a discrete-event network simulator, targeted primarily for research and edu-
cational use. It provides a simulation environment for modeling network protocols
and technologies, as well as for evaluating their performance.

Compared to other network simulators, ns-3 is open-source and has no graphical
user interface. It is entirely implemented in C++, for performance and structure,
and provides a Python interface for scripting and control. Users can utilize the
existing codebase of implemented protocols or design their own protocol for any
network layer. The basic architecture of ns-3 is shown in Figure 5.1, which was
imported from the ns-3 annual meeting of 2017 [42]. In this figure, we can define
a ns-3 Node as ”a shell of a computer, to which applications, protocol stacks, and
NetDevices are added”, according to the same document. As for the NetDevices,
they represent the network interface card of computers.

In ns-3, a simulation typically consists of creating a network topology, defining
the behavior of each component of the network (e.g., nodes, links, and protocols),
running the simulation, and gathering data through their built-in tracing system.
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Figure 5.1: Ns-3 basic architecture
[42]

5.1.1 Time and ns-3

As previously mentioned, time and events are simulated through the use of a discrete-
event simulator. This means that ns-3 doesn’t have any knowledge of real time,
the simulator simply executes a series of discrete events, rather than simulating a
continuous flow of time, and it has critical implications for our simulations.

A simulation typically consists of an initial list of events, each event has a specific
execution time associated to it and the simulator executes them in chronological
order based on this time stamp. An event can lead to the scheduling of new events, as
depicted in Fig. 5.2. This allows the simulator to model the behavior of the network
over time. Ns-3 provides various functions to help manage and schedule events,
such as the ability to cancel or reschedule events, and to schedule events to occur
at regular intervals. All these functions are accessible through the ns3::Simulator
class.

Figure 5.2: Ns-3 events queue
[42]

An important consequence of this simulation method is that events are considered
instantaneous. The virtual clock is paused during the execution of an event and the
simulator jumps from one event to the next until there are no more scheduled events
in the queue. For example, an event lasting 3 seconds in the simulation may have
taken hours of real processing time.

This has two side effects. First, the limits of an application’s performance must
be explicitly provided, otherwise, the application will run until exhaustion of the
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resources of the hosting computer. Secondly, To implement things such as delay,
explicit timing models must be provided. The models will delay the start of the
next event by increasing its timestamps to simulate these delays.

For example, in ns-3, a packet transmission event may be scheduled at a specific
time, and when that time arrives, the packet is transmitted according to the rules of
the protocol being simulated. Then, event(s) to process the received packet at the
receiver(s) end may be scheduled at a later time. The time between the transmission
event and the reception event will thus represent the link delay and will typically
be handled by the link implementation.

5.1.2 Code architecture

The code that composes ns-3 is organized in modules composed of code, documen-
tation, examples and helper classes. These helper classes are used to simplify the
process of creating and configuring the objects defined in the main code of the
module without having to worry about the low-level details of the code.

Ns-3 code itself is implemented using an object-oriented architecture, the different
components of the simulator are implemented as classes, with each object having its
own set of attributes and behaviors. This allows the simulator to be modular and
flexible and lead to a high reusability of the existing components.

5.2 LISP in ns-3

This LISP implementation in ns-3 has been developed and updated over the years
by successive authors. The initial version has been created by L. Agbodjan [43] and
included the basic LISP functionalities, namely the Data Plane, the Control Plane,
and the Map-Server/Map-Resolver interface. Its work was updated to the latest
ns-3 version by Y. Li [36] and extended to add support for LISP-MN [44].

E. Marechal [14] et T. Piron [45] also added some LISP extensions to the project,
LISP+NAT [46] and LISP Publish-Subscribe [47], respectively. This work uses the
latest LISP implementation available at its start, the version of E. Marechal.

The LISP implementation relies heavily on the existing IP implementation, and
adds functions calls in this existing code to implement LISP specific mechanisms.
The following subsections will give an overview of the LISP implementation and
then highlight the modifications that have been done to it.

5.2.1 Code Structure

The implementation choice that has been made is to separate the Data Plane and
Control Plane in two different ns-3 applications, that communicate through a UDP
socket called the LISP mapping socket, as depicted in Figure 5.3. The color code
defined in this figure will be used in the following graphs.
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Figure 5.3: LISP code architecture in ns-3

− →: packet exchanged through the named sockets
→: function calls

5.2.2 LISP Data plane

The LISP Data plane in ns-3 is responsible for the encapsulation and decapsulation
of packets and is mainly located in two classes: LispOverIP and its child classes
are responsible for the handling of encapsulation and decapsulation packets and
the MapTable class is used to describe the interface needed for the data structure
containing the EID-to-RLOC mapping. Currently, only a simple implementation of
this data structure as a list exist and is described in SimpleMapTable, it is used for
both the mapping cache and mapping database. The packet forwarding is done by
the IP code.

Figure 5.4: Data Plane architecture in UML
[14]

The encapsulation process is depicted in Figure.5.5. Code has been added to the
existing Ipv4L3Protocol class to check, before sending a packet, if it needs to be
encapsulated or not. This check has three possible outcomes:

1. The packet doesn’t require an encapsulation and can be forwarded to the lower
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layer code.

2. The packet requires an encapsulation and the associated RLOC is found, either
in the LISP cache or database. The packet is encapsulated in LispOutput and
then sent.

3. The packet requires an encapsulation but the associated RLOC has not been
found. Packet is dropped and a message is sent to the Control Plane to send
a Mapping request.

Figure 5.5: Encapsulation process

In the same fashion, calls to LispInput have been added to the receive function
of Ipv4L3Protocol to decapsulate the packet if needed. It is interesting to note that
the code will loop and decapsulate the packet multiple times if required, which can
be the case with the mobility extension for LISP [44].

Figure 5.6: Decapsulation process

5.2.3 LISP Control Plane

The LISP control plane in ns-3 is made of three components:

1. The LispEtrItrApplication is responsible for the Control Plane operations.

2. The MapServer and MapResolver describes the interface used for the mapping
system components.

3. The LispControlMsg and its children classes define all the different Control
Planes messages format of LISP.

When starting, the LispEtrItrApplication will register the content of the LISP
database (EIDs for which it is authoritative) to its Map-Server. After that, it awaits
requests or messages from the Data Plane or other LISP devices.

When the Data Plane doesn’t find the destination RLOC associated with a packet,
it will drop the packet and notify the control plane, by sending a packet through
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Figure 5.7: Control Plane architecture in UML
[14]

the LISP mapping socket. Upon reception of this packet, the Control Plane will
send a Map-Request to the Map-Resolver. When it receives the Map Reply sent by
either the destination’s xTR or its Map-Server, it notifies the Data Plane so that
the mapping entry can be added to the LISP cache. Both situations are shown in
Figures C.1 and C.2 of the annex.

5.2.4 Map-Resolver and Map-Server

In the current LISP implementation, only a simplified version of LISP-DDT [38] has
been developed. Instead of having a complete distributed and hierarchical architec-
ture like in the DNS, everything is resumed to one Map-Server and one Map-Resolver
serving all clients. The Map-Server is in charge of storing the EID-to-RLOC map-
pings in its LISP database during the registration process, and either redirecting to
the authoritative xTR or directly replying with the proper mapping when receiving
mapping requests. The Map-Resolver is a simple proxy that forwards the requests
received from the xTRs to the Map-Server.

5.3 Modification to NS-3

A certain number of modification have been done to the LISP implementation, either
to improve the code and address some shortcomings or to implement the solutions
described in Chapter 3.

Packet buffering

As outlined in the Data Plane subsection, when the xTR does not find the RLOC
associated to the destination EID while encapsulating a packet, the default behavior
is to drop the packet and generate a Map-Request. After that, the xTR waits for
the Map-Reply and for a possible re-transmission of the discarded packet. For
our measures, it would induce far too much additional delay as we would need to
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wait for the default TCP re-transmission delay to trigger before having the client
request sent. To change this behavior, the ns-3 IP Data Plane ipv4-l3-protocol
and LISP Data Plane Lisp-over-ipv4-impl and lisp-over-ip have been modified to
buffer a packet when a Map-Request is required, and send this packet when the
corresponding Map-Reply is received.

Map-Request fields

In the base implementation of LISP in ns-3, mapping requests did not contain the
Source EID Address field which contain the EID of the client that triggered the
Map-Request, as described in RFC 9301 [3]. Modifications have been made to the
LISP Control Plane to both the MapRequestMsg message format and the lisp-etr-
itr-application operation to include this field in map-request when needed. This
allows the implementation of the LISP RLOC privacy, which requires the source
address of the client to be known to generate a customized RLOC.

Map-Server Proxy map Reply

When registering an EID prefix to a Map-Server, an xTR can set the proxy map
reply bit in its Map-Register message to indicate to the Map-Server that it can
answer to mapping requests for this prefix on behalf of the xTR.

Modifications have been made to both lisp-etr-itr-application and map-server-
ddt to include the proxy map reply bit in their processing of the Map-Register
message. The Map-Server has also been modified to answer to Map-Request when
needed.

Map-Resolver Caching

When sending a mapping request, a Map-Resolver in LISP-DDT must first go
through the distributed architecture to find the authoritative Map-Server and xTR.
In the same way as in the DNS infrastructure, this adds to the delay observed when
initiating a connection to a server. Modifications have been made to map-resolver-
ddt to implement a simple caching mechanism.

With caching, clients that have xTRs sharing the same Map-Resolver will only
suffer from the additional delay if the authoritative xTR for a given EID is not
present in the Map-Resolver cache. This is very similar to an ISP providing a DNS
proxy service to its clients as this proxy will usually do some caching as well.

Privacy extensions

The ns-3 LISP Data Plane Lisp-over-ipv4-impl has been modified to include the
address checking required for both the EID and RLOC privacy. During the decap-
sulation process, code has been added to check, if needed, that the proper destination
EID and RLOC are used to contact the server. Modifications have also been made to
the LISP Data Plane lisp-over-ipv4-impl encapsulating and decapsulating processes
to include the proper translation of source and destination addresses for the passive
solution.
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The LISP Control Plane lisp-etr-itr-application has been modified to include the
dynamic generation of the RLOC addresses included in the map replies.

5.4 Extension to NS-3

New classes have been added to the existing ns-3 implementation.

Since the IP privacy model and several LISP privacy models use application
layer redirection, three applications have been added to represent the client, the
server and the entrance module in the simulations. They can use TCP or UDP and
exchange custom-made application-layer messages to communicate. These messages
can either contain data, or redirection data such as the new IP to contact. The state
machine of the server, the client and the entrance module can be found in annex
B.

A short overview is given.

1. The client will start by initiating a connection with the IP it is configured
with, either the entrance or the server. When it receives a message that is not
a redirection, it logs the connection delay. Then, it sends data until the end
of the simulation.

2. The entrance module is a simple application that replies with a redirection
message to any received message. This redirection message contains an IP
address generated with the encryption process described in Chapter 2.

3. The server will accept any incoming connection that passes the destination
address check, if address checking is required. After accepting a connection,
the server receives packets and will log at the end of the simulation information
about the transmission such as the quantity of data exchanged and the total
duration of the transmission.

Clients queuing

Modifications have been made to all privacy related code to include clients queuing
delays. Without this modification to the basic ns-3 implementation, the server would
be able to handle an infinite number of client requests, without additional delay for
the clients. These modifications allow the code to schedule arriving requests after
the last request that has been scheduled but has not yet been processed.

40



Chapter 6

Evaluation and Comparison

The aim of this thesis is to compare the privacy models developed for the LISP
protocol with the original model developed for IP networks. This chapter will begin
by exploring the choices and methodology used for the comparison of these models, it
will then iterate through multiple different metrics and compare each solution.

6.1 Methodology

The collection of data is done using the ns-3 implementation, the base topology
used in the simulation are depicted in Figure 2.3 and Figure 4.1, with links of 1
Gbs and 5 ms of delay. The clients, servers, and entrance module use TCP for their
connections and the tracing system of ns-3 is used to gather the data during and at
the end of the simulation, as depicted in the state machines of both the client and
the server in Appendix B.

Each model has been run using three different scenarios to gather data:

1. Clients behind the same xTR sending requests one after another.

2. Clients behind different xTRs, using the same Map-Resolver, sending re-
quests one after another.

3. Another scenario with hundreds of simultaneous clients, used to measure the
scalability of our models.

The three scenarios will allow the comparison of performance of all the models
presented in situations where caching is or is not available and the effect of simul-
taneous clients on the delay perceived. Each scenario has been run once for each
model, as ns-3 is deterministic and we do not make use of any non-deterministic
value, each run yields the same results.
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6.1.1 Timing models

As explained in section 5.1, timing models must be explicitly given to the ns-3
simulator so that an accurate measure of the delay can be made. To do so, the
sources of delay must first be identified.

From Figure 2.4 and Figure 4.2, we can identify several sources:

� The delay of the links used in the topology.

� The packet processing in Routers and xTRs.

� The time needed for the Client to change connection.

� The address generation and check performed at the server or at the xTR.

� The LISP mapping system.

To determine values for these sources, we need to make some assumptions. First,
we consider the LISP and IP networks to be in identical deployment situations. We
do not compare the existing IP network with an existing LISP network, such as
the LISP beta network. To make this comparison, we would need to model the
difference of average RTT between IP routers and between LISP xTRs from these
real-life implementations. It is important to keep in mind that the goal of thesis is to
compare privacy models. Therefore, the focus will not be on studying the differences
between IP and LISP, as this has been done in previous works, but rather on the
differences between several privacy models developed on top of these two protocols.
A second assumption is to consider routers and xTRs processing to be instantaneous,
we consider these delays negligible, except for privacy related computations such as
address generation and checking.

For privacy related delays, we use the worst-case values given by empirical data
gathered by S. Hao et al. [12], which are represented in Figure 2.5 and Figure 2.6.
Finally, there are two options for determining the resolution of the mapping system.
The first would be to estimate the resolution delay using data from the LISP beta
network, which also uses LISP-DDT for the mapping system. The second option
is to consider LISP-DDT to be similar to the DNS infrastructure and use DNS
resolution delays as a reference. Since the comparison is made using the same
deployment context for both LISP and IP networks, the second option has been
used in this project. The mapping resolution delay used is the average DNS lookup
delay measured by sending web requests to a dataset of the most popular websites
(Alexa top 1 million). The average delay measured was of 20ms.

6.1.2 Results

The results of the first scenario are given in Figure 6.1 and Figure 6.2. Figure 6.1
presents the connection delay experienced by the first client sending a request to the
server or entrance module, broken down into three components: the delay caused
by the LISP mapping system (mapping resolution delay), the delay caused by the
links (propagation delay), and the delay caused by privacy mechanisms.

We see that when there is no caching (e.g., when it is the first request sent to
a service), this first client experiences the full mapping delay. Addressless LISP,
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with its three mapping resolution, suffers the most with a total mapping delay of
nearly 150 ms, while the other models have a total mapping delay of 100 ms for two
mapping resolutions. The privacy delay reflects the impact of both the processing
delay caused by the generation and verification of addresses and the redirection at
the client side. As expected, it is the redirection that has the greatest impact, with
a delay of nearly 10 ms for the active redirection models. In terms of propagation
delay, the solutions using an active redirection have the highest delay because the
client must establish two TCP connections before reaching the server. Since TCP
is used in our simulations, this means going through the TCP three-way handshake
twice.

Figure 6.2 shows the delay experienced by the clients sending requests after the
first one. Thanks to map caching at the xTR, these clients don’t experience any
mapping resolution delay. This figure highlights the significant difference between
the models’ propagation delay.

Finally, Figure 6.3 displays the results when clients are behind different xTRs
and cannot benefit from mapping caching at the xTR. In this case, caching at the
Map-Resolver is used to reduce delay. When caching is available, it reduces each
mapping resolution delay by half.

The third scenario’s results are depicted in Figure 6.4, which shows the evolution
of the delay experienced by each client. This delay increases, as clients experiences
more and more queuing delay due to the privacy mechanisms.

Figure 6.1: Delay perceived with no caching
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6.2 Interpretation and Comparison

With these results gathered, we can now compare these models using the following
metrics:

1. Connection delay

2. Scalability in worst-case scenario

3. Impact on the throughput of the connection

4. Implementation complexity and deployability

5. Privacy and security properties

6.2.1 Delay and scalability

Figure 6.2: Delay perceived with xTR Caching

As expected, Figure 6.1 shows that the mapping resolution delay has a big impact on
the connection delay experienced by a client, when there are no caching mechanisms
in place or in case of cache miss. The first ”naive” model described in this work
performs far worse than the other models because of the three mapping resolution
that the xTRs must go through to reach each element of the topology. The following
figures demonstrate that this delay can be heavily mitigated by the mechanisms
quoted in previous section.

44



Figure 6.3: Delay perceived in case of Map-Resolver caching

After that first client, any clients behind the same xTR will experience a much
smaller connection delay, as depicted in Figure 6.2, thanks to xTR caching. Analyz-
ing the connection delay for these clients, we see that the passive solutions performs
far better than the active ones, which is an obvious consequence of removing the need
for client redirection and the additional connection establishment associated.

For Clients that are behind different xTRs, but with these xTRs using the same
Map-Resolver, mapping delay will also be slightly reduced after the first request. In
this case, for the active solution, sending a redirection request upon reception of a
mapping request for the service EID is the best solution in terms of delay. Indeed,
the redirection message, in the case of a TCP connection, arrives before the first
SYN packet of a client can reach its destination IP. In the other active solutions, two
complete TCP connections must be established for the client to be able to contact
the server.

In conclusion, even in the worst case scenario, for the first request sent to the
service, the solutions implemented using the LISP protocol do perform with only a
small increase in perceived delay. If we do not consider the mapping delay, these
models can achieve far better delays than the original IP model. It will thus depend
on the ISP topology and positioning of xTRs, but as mapping resolution is the main
source of delay for LISP networks, it can be expected that topologies would be built
to take full advantage of the mechanisms that exist to reduce it.

The same observation can be made for scalability, with the notable exception of
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the naive solution that suffers from clients synchronization due to the two mapping
resolution that the clients’ xTR must perform.

Figure 6.4: Evolution of the delay perceived by successive clients

6.2.2 Impact on throughput

As Hao et al. measured in their real-life implementation, the IP addressless model
does not have an impact on throughput. This is confirmed by the measurements done
with the ns-3 implementation for both the IP and LISP models. The experiment has
been conducted once for each model, with links of 100mb/s and 5 ms of delay. One
shortcoming of these measurements, however, is that it doesn’t include any kind of
timing model for the passive solution, that has to replace addresses of each packet
coming to/from the server. Due to the lack of data about the impact of Nat devices
on delay in the last few years, this delay is considered negligible.

Solution Throughput (mb/s)

IP Addressless empiric 82.15
IP ns-3 90
IP Addressless ns-3 89.81
LISP models ns-3 88.24

Table 6.1: Measured throughput for each model

The two differences we can notice are the difference between real-life measure-
ment and ns3 measurements, ns-3 values are optimistic due to both the unknown
conditions of the real life measurements and the lacking of timing modeling of all and
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every delay involved. The other noticeable difference is the difference in throughput
between IP and LISP models, which is due to the LISP protocol overhead, both in
packet size and xTR processing.

6.2.3 Implementation complexity and deployability

In terms of implementation complexity, the models are fairly comparable. Using the
xTR to perform an application layer redirection would require a complete internet
stack in the xTR, but nowadays, it is fairly common for routers to have support for
higher layers. Moreover, this would only concern xTRs, which are located on the
border of a LISP site. The passive solution requires processing that are very similar
to NATs, but again, these are often co-located in routers.

Aside from the naive LISP solution, the LISP models are far easier to adopt since
they do not require an additional device in the topology, that must be configured,
maintained, and available at all time. The server does not need to be modified
as address checking is performed by the xTR. Additionally, models that do not
use application layer redirection works for all applications, which makes them very
simple yet interesting to adopt.

6.2.4 Privacy and security properties

In Chapter 2, three types of privacy were defined: identity, location and complete
privacy, which includes both. The addressless model provides both identity and
location privacy, as it protects IP addresses which serve as both the locator and the
identifier of a device in an IP network. As presented in Chapter 4, the LISP models
outlined in this work can provide either identity or location privacy, or both, like the
IP model, by combining the RLOC privacy solution with any of the other models.
When both are provided, the client is only communicating with a service, rather
than a server, and has no knowledge of the service provider’s topology.

In terms of security, the active privacy models presented provide the same fea-
tures, as they function similarly: the IP addresses used to reach the server are
specific to a client’s IP, only obtainable by going through an intermediate device
and are only valid during a certain timeframe. The passive ”redirection”, however,
is made at the network layer which could make it more vulnerable to network scan-
ning. But, as we described in subsection 4.3.4 of Chapter 4, it is not the case thanks
to mechanisms such as port checking in place to mitigate those risks. Besides reduc-
ing server identifiability, both active and passives models are not very well suited for
mitigating server attacks and should be used in combination of other mechanisms
to complement server’s security. As said in the Addressless paper, the usage of
counter-measures at the transport and application layer would be far more efficient
at mitigating these vulnerabilities than both the IP addressless privacy model or the
one LISP model presented here.
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Chapter 7

Conclusion

In this work, we provided an overview of the LISP protocol, which was developed to
address the scalability issues of the current IP architecture. By using two address
spaces to decouple the identifier function from the locator function of an IP address,
LISP addresses the growing RIB size in the DFZ. RLOCs are used to denote attach-
ment points of networks and are allocated with respect to the topology. With their
static nature, they lead to heavy aggregation in the DFZ. With these in place, EIDs
can be more dynamic and allocated according to an organization’s policies without
impacting the Internet core. LISP introduces a facility for translating between these
two spaces, the Mapping System, which can also be used to provide mechanisms for
easily implementing both multihoming and Traffic Engineering.

Privacy

As a network protocol, various aspects of its Data Plane and Control Plane are still
being discussed, such as security. Work has been done to secure both the Data Plane
and Control Plane, but little to none addresses devices’ privacy. With the increasing
amount of data exchanged in the current Internet architecture, privacy has become
a critical concern for the many actors relying on its services.

This work has taken the first step towards providing anonymization to the end-
devices involved in a LISP communication. Since LISP is composed of two address
spaces, we divided privacy in two components: Identity and Location privacy. Build-
ing upon a model designed for server anonymization in IP networks, we presented a
series of models using either passive or active redirection methods to reduce server
identifiability as much as possible. All of these models have been implemented in the
ns-3 network simulator, using and extending the current LISP implementation.

Results

Interesting results were obtained through these simulations. Based on the IP model,
using active redirection mechanisms, we obtained models for identity privacy that are
much easier to deploy and maintain, as they do not require an additional device to
perform the redirection. The delay due to the redirection method is also decreased
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by taking advantage of the LISP mapping system. We showed that redirecting
clients when receiving a Map Request for the server leads to the best results. We
also developed a passive redirection mechanism that does not require redirecting the
client from one IP to another. In addition to the significant decrease in delay, we
showed that, even though the service could be reached using its public IP address,
which was not the case for active redirection mechanisms, the identifiability of the
servers was greatly decreased. Basic port-based rules were also added to the passive
solution to limit its exposure to attacks. The key advantages of this passive model
were a heavily decreased delay, ease of deployment, and the ability to be used for
clients privacy with only a slight modification.

Finally, we introduced a very simple method for location privacy, relying on either
the Mapping System’s Map Server or the xTR to answer specific RLOCs requests.
Even when combining this solution with the passive one to provide complete privacy,
the results were still far better than the other models while maintaining privacy for
both servers and clients.

This work showed that it is possible to achieve privacy at a lower cost than what
was designed for the IP protocol. Clients experience better delays, the models are
easier to deploy and maintain, and they can be easily deployed on the client side.
LISP models do suffer, like any models that use LISP, from LISP mapping delays,
but proper caching mechanisms can limit this delay so that only the first request to
a service experiences it.

Discussion and future works

These results, however, can only be compared with each other and should not be
considered an approximation of the delay a client would experience in a real-life
implementation. Many simplifications have been made, to the mapping system and
the timing models, due to a lack of available data. These results should be considered
as a comparison point between models and not as an indication of the feasibility of
these models in a real-life settings. Simulations remain simulations, and it would
require more data and work to establish an approximation of real life results.

In this work, we mainly explored solutions built on top of the LISP protocol.
These methods have the advantage of being easier to deploy on top of an existing
architecture than built-in solutions, but they do nevertheless add to the overall
complexity of the existing system. They also tend to be limited by the existing
mechanisms. For a protocol that has not yet been deployed, such as LISP, it would
be interesting to consider and study the advantages that could be bought by built-in
solutions, in the same way that has been done for data plane confidentiality.

In conclusion, this work explored the potential of using LISP to provide anonymiza-
tion to end devices in a communication. By implementing and comparing various
models in a simulation environment, we demonstrated the feasibility of using LISP
for this purpose. The LISP protocol presents a promising solution for addressing
the scalability issues of the current Internet architecture while also providing the
opportunity for enhanced security and privacy for end devices.
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Appendix A

Chapter 1: Additional figures

Figure A.1: Address generation and verification process
[12]
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Figure A.2: Topology used for empiric measurements of performance
[12]
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Appendix B

Chapter 2: Additional figures

Figure B.1: Client state machine

Figure B.2: Entrance module state machine

Figure B.3: Server state machine
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Appendix C

Chapter 5: Additional figures

Figure C.1: Map-Request process

Figure C.2: Map-Reply process
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[15] E. Commission, “Regulation (eu) 2016/679 of the european parliament and of
the council of 27 april 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement of such data, and
repealing directive 95/46/ec (general data protection regulation),” OJ, 2016-
04-27.

[16] “Nmap scanning tool..” https://nmap.org/. Accessed: 2022-09-30.

[17] “Zmap scanning tool.” https://zmap.io/. Accessed: 2022-09-30.

[18] L. I. Antoine Fressancourt, “Over-the-top or built-in approaches to improve
privacy at the network layer,” 2021. IETF meeting 112 ; Conference date:
06-11-2021 Through 12-11-2021.

[19] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.” RFC
8446, Aug. 2018.

[20] S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap.” RFC 6071, Feb. 2011.

[21] M. Holdrege and P. Srisuresh, “IP Network Address Translator (NAT) Termi-
nology and Considerations.” RFC 2663, Aug. 1999.

[22] D. T. Narten, T. Jinmei, and D. S. Thomson, “IPv6 Stateless Address Auto-
configuration.” RFC 4862, Sept. 2007.

[23] T. Mrugalski, M. Siodelski, B. Volz, A. Yourtchenko, M. Richardson, S. Jiang,
T. Lemon, and T. Winters, “Dynamic Host Configuration Protocol for IPv6
(DHCPv6).” RFC 8415, Nov. 2018.

[24] L. Zhang, D. Thaler, and G. M. Lebovitz, “IAB Thoughts on IPv6 Network
Address Translation.” RFC 5902, July 2010.

[25] F. Gont, S. Krishnan, D. T. Narten, and R. P. Draves, “Temporary Address
Extensions for Stateless Address Autoconfiguration in IPv6.” RFC 8981, Feb.
2021.

[26] N. Hakiem, A. Priantoro, M. U. Siddiqi, and T. Hashim, “Generation of cryp-
tographic one-to-many mapping IPv6 address using S-AES,” Pages: E18.

[27] N. Hakiem and M. U. Siddiqi, “One-to-many reversible mapping for IPv6 ad-
dress generation: simulation software development,” vol. 47, p. 10.

[28] F. Gont, “A method for generating semantically opaque interface identifiers
with IPv6 stateless address autoconfiguration (SLAAC).” Issue: RFC 7217
Num Pages: 19.

55

https://www.nsnam.org/
https://www.nsnam.org/
https://nmap.org/
https://zmap.io/


[29] S. Han, V. Liu, Q. Pu, S. Peter, T. Anderson, A. Krishnamurthy, and
D. Wetherall, “Expressive privacy control with pseudonyms,” p. 12.

[30] T. Aura, “Cryptographically Generated Addresses (CGA).” RFC 3972, Mar.
2005.

[31] G. Huston, “BGP in 2021 - The BGP Table,” 2022. APNIC annual report.

[32] Y. Rekhter, S. Hares, and T. Li, “A Border Gateway Protocol 4 (BGP-4).”
RFC 4271, Jan. 2006.

[33] B. Hinden, “New Scheme for Internet Routing and Addressing (ENCAPS) for
IPNG.” RFC 1955, June 1996.

[34] “LISP Beta-Network.” https://lisp4.net.cba.upc.edu/beta-network/.
Accessed: 2022-09-29.

[35] T. S. Vinit Jain, Yves Louis, “Lisp architecture,” 2020. Cisco Press.

[36] L. Yue, “Future internet services based on LIPS technology,” 2018.

[37] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis, “Locator/ID Separation Pro-
tocol Alternative Logical Topology (LISP+ALT).” RFC 6836, Jan. 2013.

[38] V. Fuller, D. Lewis, V. Ermagan, A. Jain, and A. Smirnov, “Locator/ID Sepa-
ration Protocol Delegated Database Tree (LISP-DDT).” RFC 8111, May 2017.

[39] D. Saucez, L. Iannone, and O. Bonaventure, “Locator/ID Separation Protocol
(LISP) Threat Analysis.” RFC 7835, Apr. 2016.

[40] D. Farinacci and B. Weis, “Locator/ID Separation Protocol (LISP) Data-Plane
Confidentiality.” RFC 8061, Feb. 2017.

[41] A. Rodriguez-Natal, V. Ermagan, A. Cabellos-Aparicio, S. Barkai, and M. Bou-
cadair, “Publish/Subscribe Functionality for LISP,” Internet-Draft draft-ietf-
lisp-pubsub-09, Internet Engineering Task Force, June 2021. Work in Progress.

[42] T. Henderson, “Ns3 training, session 1.” Ns3 annual meeting 2017, 2017.

[43] L. Agbodjan, “Towards a lisp simulator,” Master’s thesis, Université de Liège,
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