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Abstract

In the recent years, object detection models have leveraged deep learning architec-
tures to improve performance in many problems. However, these techniques require
a large amount of high quality labelled data in order to reach their full potential,
and obtaining such data may prove to be an arduous task. In this context, this
work explores the possibility of using entirely synthetically generated and labelled
images to train an object detection model. In particular, we examine which factors
of variations in the synthetic data best transfer to real data. Unsurprisingly, models
trained on synthetic data only perform significantly worse than models trained on
real data. We explore whether the synthetic images can be enhanced using filtering
and generative models, but find the results to be inconclusive. In a setting where
both real and synthetic data are available, we experiment to find out how these
should be combined to improve performance in the real domain. We find that the
synthetic and real datasets should be combined into a single training dataset, and
that the object detection model trained in this fashion significantly outperforms the
model trained on real data only.
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Chapter 1

Introduction

1.1 Context
In the past, computer vision relied on successive handcrafted filters to process im-
ages in order to identify human understandable components such as edges using the
Sobel filter [1], corners using the Harris corner detector [2] and blobs1 using meth-
ods such as MSER [3] and FAST [4]. In the same spirit, more complex algorithms
were also designed to extract sets of features from images, for instance in order to
use them as descriptors for matching pair of points between objects taken in differ-
ent poses and scales such as in SIFT [5] and in its later, more robust version SURF[6].

Building upon techniques that output features from an image, it was possible to
use them as the inputs for traditional machine learning models. A straightforward
approach to object detection consisted in sliding a variable size window across an
image and computing features using a chosen feature extractor. These could sub-
sequently be fed to a traditional classifier which had been preemptively trained to
discriminate between feature vectors of different objects, or lack thereof.

While these approaches had demonstrated successful results in the variety of
problems they were trying to solve, they suffered from a critical drawback : the de-
veloped methods were ad hoc procedures which did not allow for effortless reusabil-
ity. This showed to be problematic as research carried out when tackling a new
problem required timely and costly development from particularly knowledgeable
field experts, making it hardly accessible and perhaps even unaffordable. Moreover,
maintaining a reliance on handcrafted methods would inevitably be a limiting factor
if super-human performance was sought, as the computed features would arise from
what humans thought of as important in the different components of images. In this
context, a more flexible, sustainable and ideally learnable approach to computer
vision would be highly valuable.

In parallel, a specific branch of machine learning dedicated to the study and de-
sign of neural networks had been increasingly gaining traction among the research
community. While the foundations had been set long ago by F. Rosenblatt who
designed the hierarchical composition of neural units [7] to form neural networks
in an effort to imitate the human brain’s reaction to visual stimuli [8], it took sev-

1In image processing, blobs are sets of visually consistent and spatially connected pixels.
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CHAPTER 1. INTRODUCTION

eral decades for deep learning to grow into the buzzing field it is today. Reasons
for the recent flourishing of deep learning include the availability of computational
resources and adapted hardware, open-source libraries providing complete modules
with enough abstraction to avoid getting lost in the intricacies of deep learning while
still allowing fine-grained control, and combined efforts which have made available
many quality datasets for numerous tasks, simplifying the benchmarking of new
proposed network architectures and training procedures.

In the recent years, research in deep learning has been steadily growing and has
yielded state-of-the-art performance in various fields such as natural language pro-
cessing and computer vision. While part of these achievements can be attributed to
the ingenious design of new architectural blocks such as convolutional and attention
layers that introduce appropriate inductive biases for the target task, it is undeni-
able that the surge in model size and depth has also largely contributed to these
successes. However, this is not the only explaining factor of the recent successes of
deep learning. Indeed, neural networks and large models especially severely depend
on having access to large datasets. Roughly speaking, it is likely that a simpler
model trained with enough data will perform better than a larger model trained
with insufficient data, although defining exactly what is and isn’t enough data is
a challenging task that often is case-specific. In practice, the relationship between
model capacity2 and dataset size is difficult to establish, but it has been empirically
observed that to benefit the most from an increase in capacity, the amount of train-
ing data should also increase, and conversely.

In 2017, Sun et al. [9] observed that while the available computational power
and the capacity of computer vision models had consistently been increasing, the
size of available datasets had remained fairly constant and argued that part of the
focus in research should shift towards data collection. Their findings pointed out
the importance of having access to large quantities of relevant data to train deep
learning models. However, data collection is often a time-consuming and costly
process, especially in a supervised learning setting where the data must be carefully
labelled by humans, with the incurred risk of mislabelling. The costs and difficulties
associated to data collection may in practice be strong deterrents for companies
and organisations to launch deep learning projects. For these reasons, approaches
to overcome or somewhat bypass data hungriness could lower barriers to entry and
allow more participants to compete on a level playing field by giving them access to
deep learning methods.

1.2 Problem statement
The present work aims to tackle the issue of data hungriness through the use of
synthetic data, in the context of the object detection task. A loose definition in
the context of images could consider common image augmentations such as flipping,
cropping, blurring and shifting the colour palette to be synthetic data. These trans-
formations have clearly become part of the standard training procedure as they have
demonstrated improvements to the models’ generalisation capabilities, but they are

2The capacity of a model refers to how complex it can become, and thus its representation
capability.
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CHAPTER 1. INTRODUCTION

ultimately distortions of available data and thus need data to be indeed used. While
they are certainly interesting and it is entirely possible additional augmentations
could be engineered and help in the learning process, these light-weight syntheses
won’t be studied in this work.

Rather, the focus here will be to create data from the ground up. For this pur-
pose, we will make use of three dimensional rendering tools which allow to generate
scenes to include foreground objects to be detected, as well as different background
layouts. These scenes can then be captured to produce images alongside the localisa-
tion information of the foreground objects which have been included. The resulting
data is therefore suited to train an object detection model. This work will analyse
how synthetic data can be used as a substitute or alongside real data. In particular,
the following questions will be considered :

- What is the performance loss observed when training a model purely on syn-
thetic data instead of real data? Which factors of variations in the synthetic
data help towards achieving better performance in the real domain?

- Apart from visual inspection, can we characterise what distinguishes synthetic
images from real ones?

- Can further enhancements be made to the synthetic data such that it is better
suited to train models evaluated on real data?

- Is it interesting to mix both synthetic and real data when training a model,
and how should it be done?

The goal here is to examine the effectiveness of synthetic data, but not to get
the absolute best performance by scaling model size as much as possible. Rather,
the approach taken is to attempt different configurations and procedures in order to
understand what works best and how synthetic data should be crafted and used.

3



Chapter 2

Background

In this chapter, some concepts are explained to ensure that the relevant theoretical
background is introduced. Machine learning basics are promptly recalled in Section
2.1, and deep learning essentials are presented in Section 2.2. In particular, we briefly
present the general structure and training procedure and detail relevant tweaks
which are used in this work. In Section 2.3, some characteristics of images and deep
learning building blocks which leverage them are explained. Then, object detection
and underlying computer vision tasks are described from a deep learning perspective
in Section 2.4. Finally, some deep object detection models are described in Section
2.5, with a particular attention to the one used in this work.

2.1 Machine learning
In the recent years, data in many shapes and forms has been generated and recorded
at an ever increasing pace. This massive availability calls for automated techniques
that can extract value from data by learning from it. These techniques are broadly
regrouped under the term machine learning, which can be defined as “a set of meth-
ods that can automatically detect patterns in data, and then use the uncovered pat-
terns to predict future data" [10]. As such, machine learning methods are designed
to be able to learn a model from examples. If these examples are pairs of inputs and
outputs, supervised learning methods are used to learn a mapping between them. If
there are no such pairs, unsupervised learning methods can be exploited to unveil
patterns in the data and attempt to learn the distribution that generated it. Both of
these paradigms will be found in this work : object detection is a supervised learn-
ing task where the inputs are images and the outputs are labels indicating class and
localisation in the image, and unsupervised learning will be used through generative
models when attempting to revamp synthetic images into ones which more closely
resemble real images.

2.1.1 Supervised learning
In all generality and employing the formalism found in [11], the settings of super-
vised learning entail access to a dataset of finite size N consisting of inputs xi ∈ X
and outputs yi ∈ Y , i = 1, ..., N , where the nature of the sets X and Y depends on
the particular learning task. Each of these samples is generated i.i.d1 according to

1Independently and identically distributed
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CHAPTER 2. BACKGROUND

an unknown distribution P (X, Y ).

The goal of supervised learning is then to learn a function f : X → Y , often
called the model, in order to perform inference on unseen inputs. The model is
obtained through a learning algorithm by constraining the set of functions f that
can be produced to an hypothesis space F , and defining a error measure l often
called loss. The loss is a function l : Y × Y → R+ which allows to measure how
close a prediction f(x) and corresponding ground truth y are. The loss of a perfect
prediction is thus 0, and increases as the prediction becomes worse.

The best possible function f∗ in F would therefore ideally minimise the expected
risk over all possible unseen data, called the generalisation error :

f∗ = arg min
f∈F

R(f) (2.1)

where
R(f) = E(x,y)∼P (X,Y ) [l(y, f(x))]

However, given that only a finite size dataset is available, we resort to empirical
risk minimisation by minimising the average risk over the training data in order to
obtain an approximation f̂∗ :

f̂∗ = arg min
f∈F

R̂(f) (2.2)

where
R̂(f) = 1

N

N∑
i=1

l(yi, f(xi))

It must be mentioned that aiming for the lowest possible empirical risk during the
learning process is however not recommended. Indeed, it is very likely that this would
lead to overfitting, especially if the training data is scarce and not representative of
the entire population. Overfitting occurs when the learned model is too fit to the
training data, such that its generalisation ability is diminished. Several strategies
exist to prevent this phenomenon from arising. In this work, we will hold out a
fraction of the data as a validation set, and use it to evaluate the model at each
learning step in order to select the model that would supposedly fare best when
confronted to unseen data.

2.1.2 Unsupervised learning
In the case of unsupervised learning, the data provided is not structured into inputs
and outputs. Many different families of problems exist depending on the desired
goal, such as clustering, dimensionality reduction, density estimation and learning
to draw samples from a distribution [12], making it difficult to adopt a common
formalism for all problems.

2.2 Deep learning
For many applications, basic models such as linear or logistic regressions which heav-
ily restrict the representation capabilities are too constraining, and a more complex

5



CHAPTER 2. BACKGROUND

hypothesis space is required. Loosely inspired by the way information is processed
in the brain, the idea of neural networks is to compose layers of basic units called
neurons in a hierarchical manner and connect them through tunable weights. Hence,
deep learning is a framework in which the internal structure appropriate for the task
is found by composing multiple representation levels. These are learnt by repeatedly
adjusting the model’s parameters through correcting them proportionally to their
contribution to the error made on training examples. In this section, we cover deep
learning fundamentals.

2.2.1 Neuron
The elementary building block of any neural network is the neuron unit. A sin-
gle neuron can be viewed as a simple linear model followed by a non-linearity. It
transforms an input vector x ∈ Rp into an output o ∈ R through

o = g(wT x + b) (2.3)

with weights w ∈ Rp and bias b ∈ R the parameters of the neuron, and g(·) a
non-linear function also called activation function.

Activation functions

The purpose of activation functions is to introduce non-linearities into neural net-
work models. Over the years, many different functions have been proposed to al-
leviate the shortcomings of previous ones. In the past, commonly used functions,
shown in Figure A.1, included the sigmoid

σ(x) = 1
1 + e−x

(2.4)

and the hyperbolic tangent

tanh(x) = ex − e−x

ex + e−x (2.5)

These however suffered a critical issue, which is that the saturation they exhibit
towards their extremities imply that their derivative shrinks to 0 as |x| → +∞.
Since neural networks use gradient based optimisation to find their parameter set,
this proved to be problematic to build deep networks as vanishing gradients eventu-
ally blocked the optimisation process.

To overcome this problem and driven by the will to shift models towards sparse
activations which are more biologically plausible, a new activation function called
Rectified Linear Unit was proposed by Glorot et al. [13] :

ReLU(x) = max(0, x) (2.6)

Its derivative being 0 for x ≤ 0 (it is actually undefined at x = 0 but set to 0 in
practice), and 1 for x > 0, it indeed both induced sparsity and solved the vanishing
gradient issue.

Since then, many other activation functions have been proposed, often motivated
by better empirical performance in particular tasks or for particular models. In this

6



CHAPTER 2. BACKGROUND

work, we pay a special attention to the Sigmoid Linear Unit, also called the swish
activation, because it is used in our object detection model. It was successively
suggested by Elfwing et al. [14] in the context of reinforcement learning, followed
by Ramachadran et al. [15] who showed it matched or outperformed ReLU across a
variety of tasks and datasets in deep networks. It is defined as

SiLU(x) = x · σ(x) (2.7)

and, similarly to ReLU, is bounded below and unbounded above. Unlike ReLU,
it is non-monotonic and non-zero for negative inputs, which Ramachadran et al.
claim to improve gradient flow. Their graphs are comparatively shown in Figure
2.1.

Figure 2.1: ReLU(x) and SiLU(x)

2.2.2 Layers and the multi-layer perceptron
Stacking neurons in parallel forms what is referred to as a layer. Following the
formalism found in [16], the output o ∈ Rq of a layer with q neurons is

o = g(WT x + b) (2.8)

with W ∈ Rp×q and b ∈ Rq, and g is a non-linear activation function applied
element-wise. Composing L of these layers in series, the input can be successively
processed as follows :

h0 = x
h1 = g(WT

1 h0 + b1)
...

hL = g(WT
LhL−1 + bL)

f(x; θ) = ŷ = hL

(2.9)

where f(x; θ) denotes the output of the model parametrised by
θ = {Wk, bk, ... | k = 1, ..., L}.

7



CHAPTER 2. BACKGROUND

This gives rise to the multi-layer perceptron model, also referred to as the fully
connected feedforward network. This is the starting point of deep learning mod-
els, and can be enhanced with more advanced architectural designs adapted to the
model’s purpose.

2.2.3 Training

Optimisation

In deep learning, the optimisation process which intends to find the parameter set
deemed best for the target task is often referred to as the training step. It consists
in finding the parameters θ∗ of the model f(· ; θ) which minimise the total loss L(θ)
over the training data :

L(θ) = 1
N

N∑
i=1

l(yi, f(xi; θ)) (2.10)

θ∗ = arg min
θ

L(θ) (2.11)

where l(· , ·) is some loss function.

In general, a closed-form analytical solution to the minimisation problem is not
available, and we must resort to numerical optimisation techniques. In deep learning,
the method of gradient descent is used and can be applied to any differentiable loss
function. It is worth noting that a neural network may be seen as a composition
of functions, and as such, the partial derivatives of the loss with respect to each
parameter can be computed using the chain rule. Starting from a parameter set θ0,
gradient descent iteratively updates the parameter values using

θt+1 = θt − γ∇θL(θt) (2.12)

where γ is a chosen step size referred to as the learning rate in this context, and

∇θL(θt) = 1
N

N∑
i=1

∇θ l(yi, f(xi; θt))

is the gradient of the total loss at the current time step with respect to the param-
eters of the model. This procedure is referred to as batch gradient descent, as it
uses the entire dataset at each parameter update. The computational complexity
of an update therefore scales linearly with the size of the training dataset, which is
very prohibitive for even remotely large ones, and in practice would often lead to
unacceptable training times.

An alternative to batch gradient descent is stochastic gradient descent, in which
an individual example is picked from the dataset at each step. The gradient of the
loss used to update the parameters depends on that example only, rather than the
entire dataset. The update rule is then

θt+1 = θt − γ∇θ l(yi(t+1), f(xi(t+1); θt)) (2.13)

8
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The sample loss ∇θ l(yi(t+1), f(xi(t+1); θt)) is an unbiased estimate of the batch
loss although of great variance. The stochastic nature of the process {θt | t = 0, 1, ...}
is actually desirable to help escape local minima in the parameter space, which is
high-dimensional in deep learning.

This time, the iteration complexity is independent of the dataset size. A draw-
back of stochastic gradient descent is that it does not use computational resources
to their fullest potential : namely, it cannot benefit from batch processing, which
is the processing of multiple examples in parallel and is possible on most modern
architectures.

A middle ground between batch gradient descent and stochastic gradient descent
is called minibatch stochastic gradient descent. In this case, the training examples
are grouped in batches of size B, and the update rule now writes

θt+1 = θt − γ
1
B

B∑
b=1

∇θ l(yn(t,b), f(xn(t,b); θt)) (2.14)

Setting an appropriate batch size depends on the desired trade-offs in the opti-
misation process, and the characteristics of available computational resources. Some
observations towards smaller or larger batch sizes, and possible adjustments to the
optimisation procedure are mentioned hereafter, inspired by the observations made
by Goodfellow et al. [17, p. 276] and Russel & Norvig [18, p. 765-766].

While large batch sizes provide gradient estimate with less variance and would
intuitively be preferable, it must be noted that smaller batch sizes which introduce
greater variance in the learning process have a regularising effect, and that the
generalisation error is often best for smallest batch sizes. Therefore, the batch size
should be small enough to retain the regularising effect of stochastic optimisation,
while utilising the available computational resources to benefit from the speed-up of
batch processing.

Learning rate

Generally, strategies which are more elaborate than using a constant learning rate
are preferred. In particular, the learning rate is usually scheduled to be annealed
over time to favour convergence and avoid oscillations. Conversely, it is usually ad-
vised to start with a large learning rate in order to speed up training and escape
spurious local minima. That being said, choosing the best learning rate value and
schedule remains more of an art than a science since the precise interactions with
other optimisation hyper parameters are still unclear, and therefore is a matter of
trial and error.

A common strategy for learning rate scheduling involves decaying the learning
rate by starting from an initial value γ0 and multiplying it at the end of each epoch2

by a factor that decreases as the training progresses. Denoting this factor by ζt

where t is the current epoch number, many different ways of computing this factor
exist, such as :

2An epoch is an entire pass through the training data during the optimisation procedure.

9



CHAPTER 2. BACKGROUND

- Step-based decay, where the learning rate is divided by k every n epochs :
ζt =

(
1
k

)⌊ t
n⌋

- Time-based decay, where the learning rate decreases inversely proportionally
to the epoch number : ζt = 1

1+kt

- Exponential decay, where the learning rate decreases exponentially across
epochs : ζt = e−kt

- Linear decay, where the multiplying factor linearly decreases from 1 to lf over
the duration of the training : ζt = (1 − t

E
)(1 − lf ) + lf where E is the total

number of epochs

These are illustrated in Figure A.2 in an hypothetical setting of 100 epochs.

Beyond these schedules, another idea that can be introduced in the optimisation
process is the so-called warm-up. It involves using a lower learning rate at the
very start of training to overcome troubles that may be encountered early on in the
optimisation. Indeed, when minibatch stochastic gradient descent is used, the first
examples being observed by the model will have a large impact on the optimisation as
it is likely that the initial parameter values are inappropriate and induce significant
corrections. Thus, if these examples happen to be somewhat unrepresentative of
the training data as a whole, the parameter set will move towards an inappropriate
direction and will need later iterations to correct it, hence lengthening the time
needed for the optimisation process to converge. To address this issues, Goyal et al.
[19] proposed a warm-up which starts with a small learning rate that is progressively
increased over the first few training steps to reduce the primacy effect of early
training examples, before shrinking according to a chosen schedule such as the ones
previously outlined. This idea will be used in the training procedure, and an example
is provided in Figure 2.2.

Figure 2.2: Learning rate which is linearly warmed up to γ0 = 0.01 in the first 5
training steps before being linearly decayed with lf = 0.01

Momentum

In the gradient descent methods described thus far, only the gradient at the current
training step is used in order to update the parameters. In certain cases, the loss

10
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curvature may be such that the optimisation oscillates between the two ridges of
a ravine, or significantly slows down in flat regions. While second order methods
such as Newton’s method may give information about the curvature and provide
adapted learning steps, they require the computation of the Hessian matrix, which
is intractable for deep learning models as it would involve computing |θ|2 partial
derivatives. Instead, we resort to a heuristic that guides the optimisation by incor-
porating information about the past behaviour of the gradient, adding inertia to the
update direction at each training step. This approach is called momentum and is
implemented by the following equations:

gt = 1
B

B∑
b=1

∇θ l(yn(t,b), f(xn(t,b); θt)) (2.15)

ut = αut−1 − γgt (2.16)
θt+1 = θt + ut (2.17)

where α > 0 is the momentum coefficient. The dynamics of the optimisation
process are therefore modelled through an exponentially decaying average of the
past gradient steps.

A clever alternative related to momentum is the so-called Nesterov momentum
[20], which approximately looks one optimisation step ahead in order to preemptively
adapt the direction of the next parameter update. Indeed, since it is known that
the momentum term αut−1 will be used to update the parameters, then θt + αut−1
roughly gives the position of the next parameter set. Hence, the look-ahead is
implemented by computing the gradient with respect to the approximate future
parameters:

gt = 1
B

B∑
b=1

∇θ l(yn(t,b), f(xn(t,b); θt + αut−1)) (2.18)

ut = αut−1 − γgt (2.19)
θt+1 = θt + ut (2.20)

It is also worth mentioning that other optimisers which incorporate the idea of
momentum, alongside an adaptive mechanism that allows the learning rate to be
tuned for each parameter instead of using the same one for all parameters, since
the loss curvature is most likely not isotropic in the parameter space. These include
RMSProp [21] and Adam [22], the latter being the most widely used optimiser in
deep learning nowadays.

Batch normalisation

In a continued effort to improve the efficiency of neural network training, Ioffe and
Szegedy [23] proposed in 2015 a mechanism to alleviate the consequences of a phe-
nomenon that significantly slowed down training. This phenomenon, which they
referred to as internal covariate shift, is the fact that the distribution of the net-
work’s activations changes as the network parameters are updated during training,
causing instabilities in the training process and requiring the use of smaller learning
rates. To address this issue, they suggested to normalise the layer inputs by using
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batch normalisation in order to fix their mean and variance. To this end, each d-
dimensional input xi = (x(1), x(2), ..., x(d))i, i = 1, ..., B of a layer in the network for
a minibatch of size B is re-centred and re-scaled through

x̂
(k)
i = x

(k)
i − µ(k)

√
σ2(k) + ϵ

· γ(k) + β(k) (2.21)

where γ(k) and β(k) are learnable parameters, ϵ is a small constant which ensures
numerical stability, and µ(k) and σ2(k) are respectively per-dimension mean and
variance computed over the minibatch examples. At inference time, the mean and
variance used to normalise are instead computed over the entire training population
to ensure that the model is deterministic.

Weight decay

Deep learning models can be quite prone to overfitting when naively trained, without
proper regularisation methods included in the training process. Among these, weight
decay is frequently used. It consists in penalising the magnitude of the parameters
in the model, hence encouraging smaller parameter values and simpler models. Gen-
erally, the penalty concerns the weight but not the bias parameters of the model.
Denoting the weights of the model by w, weight decay is usually implemented by
adding a fraction of the l2 norm of w to the loss function to form the weight-decayed
loss L̃(θ):

L̃(θ) = L(θ) + λ∥w∥2 (2.22)
where λ > 0 controls the strength of the penalty.

2.3 Deep learning for computer vision
Over the years, deep learning models have proven to be outstanding at carrying out
computer vision tasks, often yielding state-of-the-art performance. However, these
achievements could not have been possible if fully connected feedforward networks
had simply been thrown at these tasks without any refinements. Indeed, images are
a particular type of data whose characteristics can and should be exploited. In this
section, these particularities will be presented, as well as the adapted architectural
blocks.

2.3.1 Images as structured data
In Section 2.2.1, the input to a unit of a neural network was in all generality referred
to as a vector x, implying that any permutation of its values would not alter its
meaning. This does not hold in the case of an image, as the numerical values in
the input represent pixels whose particular arrangement constitute visual coherence.
Rather than a vector, an image is naturally represented as H × W matrix, where H
and W are the image’s height and width respectively. Images often have an addi-
tional dimension C representing its channels. A coloured image is often represented
through its RGB3 components, hence possessing 3 channels.

3Stands for Red-Green-Blue, a color model in which an image is represented as the addition of
shades of red, green and blue
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While the channel index is only the consequence of a representation choice and
usually has no meaning, the height and width indexes are of utmost importance
because images have a spatial structure. Moreover, they are high dimensional and
can exhibit extreme variability for a same output, which would require very high
capacity models to make sense of if proper inductive biases were not included in the
architecture. As such, it would be naive and inefficient to use a fully connected archi-
tecture : for instance, if a flattened 256×256 pixels coloured image, hence described
by 256 × 256 × 3 = 196608 values, was fed as input and fully connected to a hid-
den layer containing as many units, it would already require over 38 billion weights
and as many biases. Building a model in this fashion would therefore be impractical.

Instead, a more clever approach that capitalises on the spatial structure of images
and induces the model to hierarchically process their components while also reducing
the number of parameters should be taken. Architectural components which achieve
this are described in Section 2.3.2.

2.3.2 Architectural components

Convolution

A convolution is a particular linear operation in which a convolutional kernel is slid
across a signal. In the case of images, the kernel slides across its spatial dimensions.
Mathematically, following the formalism found in [24], an input feature map x ∈
RC×H×W convoluted by a kernel u ∈ RC×h×w produces an output feature map
o ∈ R(H−h+1)×(W −w+1) such that

oj,i = bj,i +
C−1∑
c=0

h−1∑
n=0

w−1∑
m=0

xc,n+j,m+i · uc,n,m (2.23)

where the bias bj,i and the kernel u are learnable parameters. An illustration of
such a convolution is provided in Figure 2.3, in a simplified single channel setting.

Figure 2.3: A 4 × 4 input feature map convoluted by a 3 × 3 kernel produces a
2 × 2 output feature map (Credits : Dumoulin & Visin [25])

A unit in the output is connected only to a subset of the input, known as the
unit’s receptive field, which is why they are said to be sparsely connected. More-
over, since the kernel is slid across, its weights are shared rather than specific to each
output unit. Hence, the number of parameters is drastically reduced compared to a
fully connected layer. Moreover, the locality principle is enforced since each output
unit is the consequence of a local region of the input only, and weight sharing ensures
that the output is equivariant to a translation of the input.
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Multiple convolutions can be stacked in the same fashion, each with its own pa-
rameters, to form a convolutional layer of depth D and produce an output feature
map o ∈ RD×(H−h+1)×(W −w+1). In this case, each convolution can be seen as a filter
that locally detects a learnt pattern in the input feature map. Convolutional layers
can also be composed in series to successively process the feature maps. Intuitively,
this makes sense as this induces the model to deal with the input image as a hierar-
chical composition of features, each successive layer dealing with a more and more
global context. Indeed, the effective receptive field of a unit is larger the deeper it
is in the architecture. This is illustrated in Figure 2.4.

Figure 2.4: Growth of a unit’s effective receptive field (Credits : Lin et al. [26])

Some parameters may also be specified to a convolutional layer to slightly alter
its behaviour. Padding may be used to add a blank frame around the input to
artificially increase the spatial dimension of the output feature map. Stride may
be used to specify the step size used by the kernel when sliding across the input in
order to reduce the spatial dimension of the output feature map. Dilation may also
be used to specify if the kernel points should be spaced, hence increasing the size of
resulting units’ receptive field without increasing the number of parameters. These
different behaviours are illustrated in Figure 2.5.

Pooling

Pooling is an operation which usually follows one or multiple convolutions to reduce
the spatial dimension of the feature map. It summarises subsets of spatially adjacent
units in the input through a statistic computed over them. The most commonly used
statistic is the maximum of the values found in the subset. Indeed, in computer
vision the existence of a feature in a region is often more important than its exact
location, and summarising small regions by their maximum allows the model to be
approximately invariant to local translations. As in convolutional layers, padding,
stride and dilation may also be specified. An example is given in Figure 2.6.

Convolutional neural networks

Using the building blocks presented previously in this work, simple yet already
quite powerful convolutional neural networks can be designed. Such a model can
be designed by combining convolutional layers, activation functions and pooling
layers to form a backbone whose role is to extract features from the image. These
features can then be processed, typically by fully connected layers as described in
Section 2.2.2, to produce an output that depends on the computer vision task. Such
architectures constitute the foundations of deep learning models in computer vision
and have been incrementally improved over time. Since then, several architectural
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(a) (1,1) padding adds a border of 0 values around the spatial dimensions of the input

(b) (2,2) stride slides across the input with a step size of 2 in both spatial directions

(c) (2,2) dilation increases the units’ receptive field by 2 in both spatial directions

Figure 2.5: Convolution variants (Credits : Dumoulin & Visin [25])

tweaks have been designed to surpass previous performance or solve new tasks, but
the groundwork remains relevant.

2.4 Computer vision tasks
In order to understand how deep learning models carry out object detection, it can
be interesting to dissect it into individual tasks. Namely, object detection can be
described as the localisation and classification of objects in an image. Classification
will first be described, followed by what the localisation task entails in the case of
a single object, and finally how these can be combined to formulate multiple object
detection.

2.4.1 Classification
Classification is a statistical task which exists in various fields and involves associat-
ing an input to a class, which is chosen among a predefined, finite set of classes. In
the context of computer vision, the input is an image supposedly representing one
of these classes. This image is processed by a model which extracts its features and
uses them to predict which class it belongs to.

In convolutional neural networks, this prediction comes in the form of a vector z
representing a categorical probability distribution where each index corresponds to a
class, and the class prediction corresponds to the highest probability in that vector.
Assuming a setting where C classes are possible, this vector is produced by having
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Figure 2.6: 3 × 3 max pooling with no padding, unit stride and dilation (Credits
: Dumoulin & Visin [25])

the network output C real values in the last layer of its fully connected component.
To convert these C real values into C class probabilities, a softmax activation is
used, which transforms these values as follows :

softmax(z)i = ezi∑C
j=1 ezj

, i = 1, ..., C (2.24)

This ensures that the vector z contains only values between 0 and 1 such that
their sum is equal to 1.

To train convolutional neural networks to perform classification, one must define
a loss function with respect to which they will be optimised. Denoting by (p1, ..., pC)
the components of z, a quadratic loss is sometimes used :

l(z, y) =
C∑

i=1
(yi − pi)2 (2.25)

where y is a one-hot vector encoding the true class of the input image, i.e. it
has value 1 at the index of that class and 0 elsewhere. However, the preferred and
by far most commonly used loss is the cross entropy loss, which is equal to

l(z, y) = −
C∑

i=1
yi log pi (2.26)

Hence, the cross-entropy loss increases steeply as the predicted probability of the
ground truth class decreases to 0 and heavily penalises large errors.

2.4.2 Localisation
In classification tasks, a class frequently refers to a real-life object which more often
than not occupies only part of the whole image. Localisation consists in delimiting a
rectangular area around the object, often referred to as a bounding box, such that it
is as tight as possible. A bounding box is characterised by a 4-tuple t = (x, y, w, h),
where x and y are the Cartesian coordinates of the bounding box centre, and w
and h are its width and height respectively. Predicting this tuple can therefore be
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formulated as a regression problem. Ordinarily, a quadratic loss is used to train
localisation models :

l(t, t̂) = (x − x̂)2 + (y − ŷ)2 + (w − ŵ)2 + (h − ĥ)2 (2.27)
where t is the ground truth and t̂ is the prediction of the model. While this

is a straightforward and simple formulation of the loss, it has a major flaw in that
it is not scale invariant. To mitigate this issue, a common workaround consisted
in taking the square root of the width and height terms when computing the loss.
While effective, it still did not achieve scale invariance, which prompted the research
community to design an alternative.

The quality of a localisation is usually measured by its intersection over union
score, often denoted by its acronym IoU. This metric measures the overlap between
the ground truth and the predicted bounding box, respectively A and B. As its
name suggests, it is defined as

IoU(A, B) = |A ∩ B|
|A ∪ B|

(2.28)

While it is scale invariant, lIoU = 1 − IoU cannot be used as a loss function.
Indeed, if A and B are disjoint, it has a constant value of 0 and it would therefore halt
the gradient-based optimisation process. The design of an IoU based loss function
was incremental. First, Rezatofighi et al. [27] proposed the Generalised Intersection
over Union and the corresponding loss lGIoU = 1 − GIoU where the GIoU is

GIoU(A, B) = IoU(A, B) − |C − (A ∪ B)|
|C|

(2.29)

where C is the smallest box enclosing both A and B. While it undeniably
remedied the case where bounding boxes were non-overlapping, Zheng et al. [28]
showed it converged quite slowly because it did not incorporate the distance between
bounding boxes. They subsequently introduced the Distance-Intersection over Union
and loss lDIoU = 1 − DIoU such that

DIoU(A, B) = IoU(A, B) − d2

c2 (2.30)

where d is the distance between the central points of A and B, and c is the
diagonal length of the smallest box enclosing A and B and is used to maintain scale
invariance. Then, Zheng et al. [29] added onto the DIoU by proposing the Complete
Intersection over Union, which integrated a term capturing aspect ratio :

CIoU(A, B) = IoU(A, B) − d2

c2 − αV (2.31)

where V = 4
π2

(
arctan wA

hA − arctan wB

hB

)2
in which wA and hA indicate the width

and height of A, and where trade-off parameter

α =
0 if IoU < 0.5

V
(1−IoU)+V

if IoU ≥ 0.5
(2.32)

is designed such that the loss lCIoU = 1 − CIoU ignores the aspect ratio until
the bounding boxes overlap enough, before taking it more and more into account
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as the bounding boxes’ IoU increases. The authors found this loss to improve both
convergence speed and final performance.

2.4.3 Object detection
The task of object detection involves predicting the bounding box and class of all
the objects in the input image that belong to a predefined set of classes. In the
simplified setting where it is known that there is exactly one object per image, an
object detection model could be trained using a loss that combines the localisation
and classification losses by summing them up. However, the number of objects is
generally not known beforehand, and the model should be able to adjust its number
of predictions based on the input image.

Generally, object detection models predict a large number of bounding boxes in
predefined regions before merging them. This is usually done through non-maximum
suppression (see Appendix B).

2.5 Object detection models
Different approaches may be taken in order to implement object detection models.
A first one could consist in sliding a window across the input image and classifying
each crop using a convolutional neural network. However, it would prove to be either
ineffective if a fixed-sized window was used as objects may appear at many different
scales, or inefficient if windows of varying scales were used as an input image of
n × n pixels could hold O(n4) axis-aligned rectangular windows and thus require
just as many evaluations by the classifier. Instead, modern object detection models
seek less computationally expensive approaches. Two main families exist and will
be presented in Sections 2.5.1 and 2.5.2, with a particular attention to the model
which will be used in this work.

2.5.1 Two-stage detectors
This family of models performs object detection by first extracting candidate regions
which likely contain an object before classifying them. The first breakthrough was
a model called R-CNN [30], which relied on a region proposal algorithm, namely
selective search, to extract 2000 regions in the image that were likely to contain an
object. It then processed each region using a convolutional neural network to extract
one feature vector per region. Finally, these features were fed into C class-specific
linear support vector machines to classify the object, and a linear regression model
to predict the bounding box. While this model showed substantial improvements
compared to previous state-of-the-art, it was quite slow since extracting the features
required 2000 passes through the CNN.

Following this, Fast R-CNN [31] introduced improvements that significantly
boosted the detection speed. Instead of computing the feature vector for each region
proposal, it computed a single feature map for the entire image and matched each
region proposal to a fixed-size feature vector by using a region of interest (RoI) pool-
ing layer. This feature vector was then fed into fully connected layers that branched
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into two output layers to predict class and bounding box. This change made object
detection 213 times faster than R-CNN, while also improving performance.

Finally, since the quality of object detection was tied to the quality of the re-
gion proposal algorithm which took most of the compute time, Faster R-CNN [32]
proposed to use another convolutional network to generate the region proposals. It
introduced the Region Proposal Network, which reduced the time needed for region
proposal by a factor 200 compared to selective search.

2.5.2 One-stage detectors
Instead of formulating object detection as a two-stage process, one-stage detectors
rather frame object detection as a regression problem. The predictions of both
bounding boxes and class probabilities are made using a single model and do not
rely anymore on separate region proposals, and can thus be optimised end-to-end
on the detection task.

Among notable models, the Single Shot Multibox Detector (SSD) [33] performs
object detection by predicting class probabilities and bounding box coordinate off-
sets relative to default boxes on feature maps at different scales. The predictions
are then merged using non-maximum suppression. The model’s architecture is illus-
trated in Figure 2.7.

Figure 2.7: Architecture of SSD (Credits : Liu et al. [33])

In this work, we will use an evolution of another popular one-stage detector. Pro-
posed in 2016 by Redmon et al., You Only Look Once (YOLO) has since then been
successively enhanced to integrate the latest innovations. YOLO and its relevant
subsequent modifications are described hereafter.

YOLO [34]

YOLO is a convolutional neural network which outputs both bounding boxes and
class probabilities in a single forward pass through a unified model. It proceeds by
dividing the input image into an S × S grid, and predicting B bounding boxes and
confidence scores as well as C class probabilities for each grid cell, hence making
the assumption that each cell contains the centre of a single object at most. Each
bounding box B is predicted through a 4-tuple (x, y, w, h) where x and y are the
bounding box central coordinates relative to the bounds of the grid cell, and w and
h are the width and height relative to the whole image. The confidence score as-
sociated to each bounding box reflects both the model’s confidence that it contains
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an object and how accurate it is, and is thus defined as P (Object) · IoU(truth,
pred) where truth and pred are the ground truth and predicted bounding boxes
respectively. This formulation makes the model strive for 0 confidence predictions
when no objects are contained the cell, and confidence equal to the IoU with the
corresponding ground truth bounding box when there are.

The bounding boxes are associated to the predicted class of the grid cell that
produced them to yield the detections. These are then combined through non-
maximum suppression to avoid multiple detection of the same object. An overview
of the system is provided in Figure 2.8.

Figure 2.8: Object detection with YOLO (Credits : Redmon et al. [34])

YOLO takes a fixed size 448 × 448 input image and is composed of 24 convolu-
tional layers followed by 2 fully connected layers that produce the final output tensor
of shape S ×S ×(B∗5+C). The first 20 convolutional layers were pre-trained on the
ImageNet classification dataset, while the last 4 convolutional and the 2 fully con-
nected layers were trained on the PASCAL VOC 2007 [35] object detection dataset.
In this case, the authors used S = 7 and B = 2 to detect the C = 20 classes of
the PASCAL VOC dataset, yielding the architecture and 7 × 7 × 30 output tensor
shown in Figure 2.9.

YOLO pioneered the one-stage detection approach to strive towards real-time
object detection. It achieved detection at 45 frames per second which was must faster
than contemporary two-stage detectors, but lagged slightly behind them in terms of
performance. In particular, only predicting a single vector of class probabilities and
a small number of bounding boxes per grid cell imposed strong spatial constraints
which severely limited the number of nearby objects that could be detected by the
model.

YOLOv2 [36]

In YOLOv2, the same authors bring in new innovations, some being taken from or
inspired by other contemporary works. Among others, these include using batch
normalisation and anchor boxes, which are sets of bounding boxes with predefined
width and height. The network predicts offsets to the anchor boxes’ centre, width
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Figure 2.9: Architecture of YOLO (Credits : Redmon et al. [34]), where optional
-s-2 after convolution or max pooling operations indicate that a stride 2 was used

and height instead of predicting raw values, which eases the learning process as prior
dimensions can be readily used instead of learnt from the ground up. While pre-
vious works often used handpicked ones, YOLOv2 formulates the choice of anchor
boxes as a preliminary learning step. It runs k-means clustering on the training set
bounding boxes using 1-IoU(G, C) as the distance metric, where G is any ground
truth box and C any centroid. YOLOv2 uses k = 5 bounding box priors. Moreover,
instead of predicting a single class probability vector per grid cell, YOLOv2 predicts
one per anchor box and therefore has a S × S × B ∗ (5 + C) output tensor.

YOLOv2 changes its convolutional feature extractor to an architecture of their
own called Darknet-19 that allows fast processing while maintaining performance.
It also removes the fully connected layers at the end of the model, and instead uses
a convolutional layer to produce the final output tensor. Inspired by Faster R-CNN
and SSD which rely on multiple feature maps at various resolutions to produce
their detections, YOLOv2 includes passthrough connections which stack adjacent
high resolution features into different channels to match the shape of low resolution
features before concatenating them. Thus, both high resolution and low resolution
features can be used by the final convolutional layer to output the model’s detections.

YOLOv3 [37]

The main contributions of YOLOv3 are the introduction of a new feature extrac-
tor called Darknet-53, a deeper hybrid between YOLOv2’s Darknet-19 and He et
al. residual networks [38], and multi-scale predictions. The latter is achieved by
predicting bounding boxes at 3 different scales. This is done by upsampling feature
maps at given depths before concatenating them with feature maps of earlier layers,
and using the results to output detections such that these benefit both from coarser
but semantically meaningful feature maps as well as finer-grained ones. YOLOv3
uses this at 3 different depths and combines the resulting detections as usual through
non-maximum suppression to produce its final predictions.

YOLOv5 [39]

YOLOv5 is an evolution of YOLOv3, despite its misleading name that would sug-
gest it follows YOLOv4 [40]. YOLOv4 was released a few months prior to the first
release of YOLOv5, both works improving YOLOv3 by incorporating some of the
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latest innovations. To avoid giving both models the same name, which would lead
to even more confusion, the authors decided to use YOLOv5 even though their work
only partially builds upon YOLOv4.

YOLOv5 is a model developed by Ultralytics, a company whose main activity
is to implement YOLO architectures in the PyTorch framework such that the mod-
els can easily be trained, integrated and shared in common formats. YOLOv5 was
initially released by Ultralytics in May 2020, and has since then undergone small
changes in subsequent major releases, which are available on GitHub4. This work
uses the version 6.1 of the model to perform object detection, described hereafter.

YOLOv5 uses a CSP-Darknet as its backbone, where CSP indicates cross-stage
partial connections. This mechanism proposed by Wang et al. [41] partitions the
feature maps into two parts such that one is processed by the current stage of the
model, while the other is transmitted as-is. Both parts are then concatenated before
moving on to the next stage of the model.

Before being transmitted to the prediction head, the feature map resulting from
the backbone passes through what is often referred to as the model’s neck. In
YOLOv5, the neck is composed of PANet-like5 [42] passthrough connections, and a
SPP6 block [43]. The PANet-like connections’ purpose is to aggregate features from
different backbone levels in a bottom-up fashion. The SPP-block was adapted to
fully convolutional YOLO architectures by Huang et al. [44] and produces an output
feature map of constant spatial size by pooling the input feature map at different
scales and concatenating the results along the channel dimension.

Finally, the detection head of YOLOv5 is the same as the one used in YOLOv3.
Namely, it still uses learnt anchor-based detection at 3 different resolutions by ex-
ploiting the upsampling and concatenation mechanism described earlier. Objects
are detected by using 3 anchor boxes per grid cell at each resolution.

The network is trained end-to-end by minimising a 3-part loss function capturing
localisation using a CIoU-based loss, and class prediction and confidence using cross-
entropy based-losses, and which can be written

∑
r∈R

λbox

Sr×Sr∑
i=1

B∑
j=1

1
o
i,j

(
1 − CIoU(To, P̂i,j)

)

− λrλconf

Sr×Sr∑
i=1

B∑
j=1

(ci,j log(ĉi,j) + (1 − ci,j) log(1 − ĉi,j)

− λcls

Sr×Sr∑
i=1

B∑
j=1

1
o
i,j

C∑
c=1

po,c log(p̂i,j,c) + (1 − po,c) log(1 − p̂i,j,c)


(2.33)

4https://github.com/ultralytics/yolov5/
5Path Aggregation Network
6Spatial Pyramid Pooling : a pooling technique which produces fixed-length representations

out of variable size inputs by pooling subregions in a fixed number of local spatial bins whose sizes
are proportional to the input’s size
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Each ground truth label in the input image is assigned the anchors whose aspect
ratios best match with the ground truth bounding box, as explained in Figure 2.10.
With this in mind, the notations used in the expression of the loss are defined as
follows :

- 1
o
i,j is equal to 1 if the anchor j of cell i is assigned to the ground truth

bounding box of any object o, and 0 otherwise;

- To is the ground truth bounding box for object o;

- If anchor j of cell i is assigned to any ground truth bounding box, ci,j is equal
to the IoU between this ground truth bounding box and predicted bounding
box derived from that anchor. Otherwise, ci,j is 0;

- po,c is equal to 1 if the ground truth class of object o is c, and 0 otherwise;

- P̂i,j is the predicted bounding box obtained by offsetting the anchor j of cell i;

- ĉi,j is the predicted confidence of the bounding box obtained from anchor j of
cell i;

- p̂i,j,c is the predicted probability that the bounding box obtained from anchor
j of cell i contains an object of class c;

Figure 2.10: Matching anchor templates to ground truths. In Yolov5, the
threshold anchort is set to 4.

The loss is computed for each resolution r ∈ R, and the results are summed
up. The parameters λr allow to weigh the contribution of the confidence to the
loss differently based on the resolution at which the detections were output. The
parameters λbox, λconf and λcls allow to weigh the contribution of each part of the
loss and are set to ensure that training progresses smoothly.
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Chapter 3

Related work

Synthetic data generation for machine learning is a fairly recent technique which has
been increasingly used to circumvent the time, cost and potential privacy issues that
real data collection entails. Each field has come up with its own solutions depending
on the nature of the required data. In this chapter, we focus on visual tasks and
review relevant works which synthetically generate training data for computer vision
models.

Photo-realistic synthetic data

A possible approach consists in generating synthetic images which are visually sim-
ilar to the real images on which the models will ultimately operate. These usually
require to simulate environments with a high degree of photo-realism. To avoid the
time-consuming process of creating such a simulator, Richter et al. [45] exploited
a popular open-world modern computer game to create pixel-level semantic labels
of scenes. These scenes included realistic first person footage in different ambient
conditions such as driving through both urban and rural landscapes or walking on
sidewalks. They showed that the same semantic segmentation performance could
be reached by using only a fraction of the real data supplemented by their synthetic
data. Following this work, the authors subsequently released a benchmark suite for
a variety of visual perception tasks [46], notably useful for autonomous driving re-
search. Compelled by the prospects of self-driving cars and their dire need for high
variety training footage, other authors have put up datasets [47] or open-source sim-
ulators [48] for use.

For object detection, creating synthetic data often involves composing scenes
with the foreground objects of interest, and different backgrounds meant to repli-
cate plausible situations in which these objects could be found. Georgakis et al.
[49] showed these scenes can for instance be created by composing crops of real
foreground objects taken from some dataset, and backgrounds of other datasets.
Dwibedi et al. [50] showcased a similar approach and demonstrated that integrating
foreground objects without any form of blending created local boundary artifacts
which models learned to identify rather the visual appearance of the objects, hence
failing to generalise well to real images. When these foreground objects are very
specific, similar-looking models may not be available at all. In such cases, 3D repli-
cas can be created through photogrammetry techniques1 and used in the synthetic
data generation process, as demonstrated by Wong et al. [51].

1Photogrammetry involves reconstructing a 3D surface from several 2D images
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Domain randomisation

Photo-realistic scene composition is not trivial and usually requires careful adjust-
ments. Moreover, some simulators may compose scenes in such a way that they
fool the human eye to appear realistic, but may not reflect reality and therefore
provide neural networks with exploitable features which do not generalise to real
data. Another radically different approach to synthetic data generation is domain
randomisation, which consists in making the synthetic training data exhibit extreme
variability with much less concern for coherence. The underlying premise is that if
there is enough randomisation in the training data, then the model should learn
how to discriminate between relevant and irrelevant image features and thus gener-
alise well, since the reality would appear to the model as just another randomisation.

Among the first to bring this approach to deep neural networks, Tobin et al.
[52] trained a detector using synthetic images constructed with random camera and
object positions and unrealistic textures, and successfully deployed in a simple but
real environment. Tremblay et al. [53] extended their work to detection with non-
trivial backgrounds by including various distractors alongside objects of interest in
their synthetic images, and showed that these could be used as a pre-training step
when real images are available. Capitalising on the principle of distractors, Hin-
terstoisser et al. [54] cluttered the background with objects scaled to appear with
approximately the same size as foreground objects, and included occluders to par-
tially cover them up.

Instead of full-on domain randomisation, a less drastic approach consists in ran-
domising scenes while preserving contextual properties of the objects appearing.
Known as structured domain randomisation, the objects and distractors are placed
according to problem-specific distributions rather than uniform ones. Prakash et
al. [55] reported slightly better results in vehicle detection, but the approach is
admittedly more involved.

Domain adaptation

Yet another method to integrate synthetic data, domain adaptation is a technique
involving the transformation of the synthetic data to make it better suited to the
real domain in which the model will operate. Usually, the environment in which
the synthetic data is generated is referred to as the source domain, and the real
environment is referred to as the target domain. There exist models which learn
mappings from one domain to another through labelled pairs, such as pix2pix [56].
However, the unsupervised method requiring only unpaired images of source and
target domains is simpler and applicable to many more practical situations, hence
why this approach only is reviewed.

Unsupervised GAN-based domain adaptation have exhibited promising results.
Bousmalis et al. [57] use a pixel-based content similarity loss on the foreground ob-
jects to learn how to change objects in a consistent way that preserves shape. Thus,
it assumes that the difference between the domains are low level features such as
noise, resolution or illumination, but not high level features such as geometric vari-
ations. A looser formulation such as the one of Shrivastava et al. [58] allows more
flexibility in the domain adaptation, while preventing artifacts to appear through a
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local adversarial loss which enforces realism separately onto local patches.

One way to consider the problem of domain adaptation is through the prism
of cycle-consistency, which enforces that the mapping from source to target back
to source should approximate the identity function. Hoffman et al. [59] showed it
could achieve state-of-the-art results in a variety of adaptations tasks. CycleGAN
[60] jointly learns two generative networks constrained to produce roughly inverse
mappings through cycle-consistency. CUT [61] reformulates the cycle-consistency
to be patch-wise rather than a complete bijection, and uses contrastive learning to
ensure correspondence of patches in the same spatial locations.

Training strategies

While the characteristics and the quality of the synthetic data is of foremost im-
portance, the way it is employed crucially matters too. Training procedures can
be adapted to accommodate for synthetic data and use it as effectively as possi-
ble. Hinterstoisser et al. [62] observe that recent architectures are often composed
of feature extractors pre-trained on large datasets followed by task-specific layers.
Postulating that these feature extractors are already rich enough for visual tasks and
do not need further training, especially on data which may perturb them due to the
domain shift, the authors argue that their weights should be frozen when training
on synthetic data. They show that object detectors trained this way outperform
those who are fully re-trained, almost reaching the performance of detectors trained
on real data. However, these findings must be tempered as Tremblay et al. [53] find
this method to decrease performance in their experiments, hence the benefits of this
approach may be data-dependent.

When both synthetic and real data are available, finding the most effective way
to combine them may not be obvious. Nowruzi et al. [63] provide an analysis which
compares a training procedure which mixes both types of data to a transfer learning
approach which pre-trains the model on the synthetic data before fine-tuning on the
real data. They find that the latter generally yields better models, with especially
improved recall.

Domain-invariant representations

Although it won’t be used in this work, another idea worth mentioning involves
designing models such that the representations in the synthetic and real domains
are shared. For instance, Bousmalis et al. [64] use an architecture and training pro-
cedure separating the representation components which are specific to each domain
from the ones common to both, such that the downstream task can then be learnt on
the shared representation only. Ganin et al. [65] describe domain-adversarial train-
ing, which inserts a domain classification head to any model and backpropagates the
reverse classification loss throughout the entire network such that the learnt repre-
sentation cannot be used to distinguish one domain from another. A similar idea
suggested by Tzeng et al. [66] backpropagates a loss which intends to maximise the
entropy of the distribution output by the domain classification head, such that the
learnt representation is directed towards one that yields a uniform probability over
the domains.
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Dataset and methodology

In this chapter, we present in Section 4.1 the dataset on which the experiments
were carried out, and in particular which changes were made with respect to the
original dataset. Then, the model and the settings used for training and evaluation
are described in Section 4.2.

4.1 Dataset
The dataset used in this work is provided by the data science & artificial intelligence
department of NRB and consists of objects classified according to the waste cate-
gory they belong to. The images were mostly collected by taking photographs of
the different objects being held or lying on different surfaces. The bounding boxes
were then manually annotated. The initial dataset consisted of 11 482 images, out of
which 10 453 contained labels. While this could have been due to background-only
images being present in the dataset, a manual check revealed that these were actually
images who contained objects but had simply not been annotated yet. Therefore,
these 1029 images were removed from the dataset. The initial dataset contains 12
classes, which are unevenly represented in the labels. Their distribution among
classes is illustrated in Figure 4.1.

As it is, the dataset has some notable flaws. Since the classes are based on waste
categories, some classes have visual overlap, which makes it prominently difficult to
correctly classify detected objects. Notably, DSM, FR and Huile de friture objects
are very similar to Bout./flac. en plastique < 8L, as illustrated through handpicked
samples in Figure E.3. Other visual overlaps exist, for instance between Bout./flac.
en plastique > 8L and PDP as illustrated in Figure E.1, but these are not frequent
enough to warrant a merge. Lastly, the class Emballage métallique suffers from la-
bels being quite arbitrary. Indeed, as illustrated in Figure E.2, most backgrounds
are cluttered with metallic objects, but these were not consistently labelled. This
could both confuse the model during training, and produce misleading metrics dur-
ing validation and testing.

Considering the previous observations, DSM, FR and Huile de friture are merged
under the Bout./flac. en plastique < 8L label to avoid unpredictable impacts on the
performance that these similarities may bring when observing the benefits of syn-
thetic data. To carry out the experiments that will follow, a reduced set of classes
was considered such that these exhibit enough visual consistency and are sufficiently
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Figure 4.1: Class distribution of labels in the original dataset

distinct from one another, have steady labels, and for which enough 3D models can
be freely found on common asset marketplaces. The set of classes was thus fixed
after scraping through these marketplaces, and is admittedly somewhat arbitrary,
but finds its rationale in the above observations. The resulting distribution of labels
is depicted in Figure 4.2.

In the vast majority of cases, images containing the label of a given class do
not contain labels of other classes. Hence, to break down the images into training,
validation, and test sets, we consider the first label of each image and perform a
stratified split according to it, allocating 60% of the images to training, 20% to
validation and 20% to testing. Doing so, the class-wise proportions of labels in each
set are roughly equal to the ones of the reduced dataset. The proportions are shown
in Table 4.1.

Bout./flac. en plastique < 8L Aerosol Verre coloré PDP
Reduced dataset 83.01 9.77 4.02 3.20

Training set 83.70 9.59 4.01 2.70
Validation set 81.86 9.92 4.03 4.19

Test set 82.08 10.15 4.03 3.74

Table 4.1: Proportions (in %) of labels in the reduced dataset and in the
training, validation and test set obtained through stratified sampling
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Figure 4.2: Class distribution of labels in the reduced dataset

4.2 Model, training and evaluation

Model

The object detection model used in this work is YOLOv5. Specifically, the open-
source Ultralytics implementation [39] is used. YOLOv5 comes in differents sizes,
which differ by depth and number of filters used in convolutional layers. YOLOv5s,
the second smallest model which nonetheless comprises 7.2 million parameters, was
chosen to ensure acceptable training times. Its architecture is detailed in Appendix
C. Models are not trained from scratch; rather, the initial parameters are those
obtained by pre-training the model on the 2017 version of the Common Objects in
Context (COCO) dataset [67], which comprises 118 287 training images spanning
80 objects classes.

Hyper-parameters

Unless stated otherwise, the models in this work are trained using the procedure and
hyper-parameters described hereafter. These are mostly kept to the default values
provided by Ultralytics’ implementation, which were found to perform best on the
COCO dataset.

The training is warmed up for the first 100 batches. During this phase, the
learning rate of the weights are linearly increased from 0 to 0.01, while the learning
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rate of the biases are linearly decreased from 0.1 to 0.01. Following warm-up, both
learning rates are linearly decreased from 0.01 to 0.0001 over the remainder of the
training.

The parameters are optimised using minibatch stochastic gradient descent using
batches of size 32, on which the statistics are computed for the batch normalisations
which follow convolutions. The optimiser uses Nesterov momentum, with momen-
tum coefficient α being linearly increased from 0.8 to 0.937 during warm-up, and
then kept constant for the remainder of training.

It uses the loss function described in equation (2.33), with parameters λbox =
0.05, λcls = 0.5 and λconf = 1. Since images are resized to 640 × 640, detections are
output at resolutions R = {20 × 20, 40 × 40, 80 × 80}, and their contributions in the
confidence loss are respectively weighed by λr = {0.4, 1.0, 4.0}. Finally, the weights
of convolutions are decayed with weight decay parameter λ = 0.0005. Neither the
weights of batch normalisations nor any biases are decayed.

Data augmentation

Several common data augmentation techniques are used to slightly alter the training
data. The colors of input training images are modified in their HSV1 representa-
tion, by positively or negatively modifying uniformly at random the hue, saturation
and value by respectively 0.015, 0.7 and 0.4 times their initial value. Once again
uniformly at random, images are horizontally and vertically translated up to 10% of
their size, and are scaled up or down up to 50% of their initial size. Images have a
50% chance of being horizontally flipped. Finally, mosaic data augmentation is used,
which combines 4 input images at different scales into a single one. An example is
given in Figure 4.3.

Figure 4.3: Mosaic data augmentation

Evaluation

All models trained are evaluated at each epoch on a validation set. During this eval-
uation, several performance metrics are computed. These are detailed in Appendix
D. To determine what constitutes the best model, we use the mean average precision
metric mAP0.5. The model which, during training, achieved the best mAP0.5 on the
validation set is then evaluated on the test set. During validation and testing, the
final bounding boxes are obtained through non maximum suppression with thresh-
old NMSt = 0.6. Validation and test metrics are computed using thresholds conft =

1Hue-Saturation-Value color model, an alternative to the RGB representation
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0.25 and IoUt = 0.5.
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Chapter 5

Synthetic data for object detection

In this chapter, we describe how we crafted the synthetic dataset in Section 5.1, and
highlight the performance discrepancy between models trained synthetic and real
data in Section 5.2. We analyse the frequency content of synthetic and real images
to find out whether or not a filter could be applied to enhance our synthetic data in
Section 5.3, and explore domain adaptation in Section 5.4. Finally, different training
strategies are compared in Section 5.5.

5.1 Image synthesis
Synthesising images to train object detection models can be done in multiple ways,
depending on the desired degree of synthesis. Applying data augmentations can be
seen as a form of synthesis, as well as creating images by composing patches of real
images. However, this requires real, annotated images to be available in the first
place. In this work, the approach taken does not assume access to real data, but
creates fully synthetic scenes using a 3D engine.

To generate our synthetic data, several general purpose 3D engines could be
used. We chose to use Unity since they had recently released a package called Unity
Perception [68], which greatly facilitates synthetic data generation. The package
provides scripts which allow to label captures of generated scenes with perfect ac-
curacy, and save them in easy to handle JSON files. Depending on the desired type
of data, different types of labelers are available, such as semantic and instance seg-
mentation, keypoints for pose estimation, or 2D and 3D bounding boxes. We will
make use of the 2D bounding box labeler to create our synthetic object detection
dataset. Conveniently, Unity Perception is also equipped with tools which support
domain randomisation, which will be detailed in Section 5.1.2.

5.1.1 Asset collection
The creation of synthetic scenes requires access to 3D models and textures to be ren-
dered. Background composition can be done using fairly generic assets, especially
when taking advantage of the domain randomisation principle. When it comes to
the foreground objects, these require more attention as they should intuitively have
appropriate shapes, sizes, and textures such that the model can learn useful features
and transfer to the real world. While, in theory, we could fabricate these assets from
scratch, the design of quality models and textures has a steep learning curve and
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requires substantial artistic talent and time. In practice, we collected assets from
existing projects which were suited to our use-case.

The SynthDet project [69] includes generic shapes such as cubes, cylinders and
spheres which can be cluttered together to form irregular backgrounds. To cover
these shapes, the project also provides textures obtained by cropping pictures of
different fruits found in supermarket crates. We worked with these assets to create
our backgrounds.

On the other hand, foreground models and textures which are a good fit to
our dataset can hardly be found in a single project, and require a more thorough
search. To this end, we manually scraped through 3D models marketplaces such as
Sketchfab1, CGTrader2, Turbosquid3, Free3D4, and the Unity Asset Store5 to find
free assets. In total, 37 models and their textures were downloaded and rebuilt in
Unity. Out of these, 20 of them corresponded to Bout./flac. en plastique < 8L, 4
to Aerosol, 4 to Verre coloré, and 9 to PDP. These are shown in Appendix F.

5.1.2 Simulation scenarios
To efficiently generate our synthetic data, the scene composition and capture should
be automated. Unity Perception provides a scenario script which allows to create
a given number of scenes and capture their appearance and labels. Scenarios are
customised by adding components which successively place objects in the scene,
and possibly modify them depending on the specified randomisations. In this work,
we will start by using the domain randomisation principle and create increasingly
randomised synthetic data. Each configuration described in the following section will
be separately used as training data to our object detection model to determine which
randomisation settings are useful to transfer as well as possible to the real domain.
Regardless of randomisation settings, foreground objects are randomly placed at
positions within a placement area using Poisson disk sampling, and randomly rotated
around their axes by uniformly sampling an angle between 0° and 360° for each axis
independently.

Default background

Our first and most simple iteration of synthetic data places the foreground objects in
front of the default Unity scene background, without any distractors, as illustrated
in Figure 5.1.

Background shape

Next, instead of having a constant background, we clutter it with randomly rotated
shapes (Figure 5.2), producing edges which serve as primitive distractors.

1https://sketchfab.com/store
2https://www.cgtrader.com/3d-models
3https://www.turbosquid.com/Search/3D-Models
4https://free3d.com/3d-models/
5https://assetstore.unity.com/3d
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Figure 5.1: Synthetic data with default background

Figure 5.2: Synthetic data with a coarse background

Background texture

Still exploiting domain randomisation, we use the textures provided by SynthDet
and apply them to the background clutter. Their hues are completely randomised
(Figure 5.3).

Figure 5.3: Synthetic data with textured background

Foreground object depth

Then, we uniformly vary the depth of the foreground objects relative to the camera
instead of keeping it constant (Figure 5.4). This should help the model learn to
detect objects at different scales, which is essential as the real images are not taken
at a constant distance from the objects.

Lighting colour and intensity

Finally, since the lighting conditions may vary in the real data, we randomise them
in the synthetic data. While the previous white-yellowish light was set to intensity
1 and RGB components (1, 0.96, 0.84), the new light source takes an intensity
uniformly distributed between 0 and 1 and RGB components taken uniformly at
random between 0.4 and 1 (Figure 5.5).
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Figure 5.4: Synthetic data with objects placed at varying depths

Figure 5.5: Synthetic data with varying lighting conditions

5.2 The sim-to-real gap

5.2.1 Baseline
We start by establishing our baseline performance by training on real data only, using
the reduced dataset presented in Section 4.1 and the training settings described in
Section 4.2. The number of epochs was initially arbitrarily set to 500, and found to
be more than enough for the training to stabilise. We can observe in Figure 5.6 that
the training loss decreases rather smoothly, and that the validation mAP0.5 increases
with some oscillations for, roughly, the first 200 epochs, before stabilising. Further
training does not improve the validation metric, and even slightly degrades it.

(a) Training loss (b) Validation mAP0.5

Figure 5.6: Baseline training

The best performing model on the validation set is evaluated against the test
set, for which the metrics are presented in Table 5.1.

5.2.2 Synthetic training data
In the following experiments, we will use fully synthetic data to train our object
detection models. For a fair comparison with the baseline, the number of images
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Training data mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88

Table 5.1: Test metrics of the baseline

and label proportions should match those of the real training data. To this end and
similarly to what we did in Section 4.1, we associate each image to a class and count
the number of images per class. We generate as many class-wise synthetic images,
placing each time between 1 and 2 foreground objects such that the number of labels
in the real data is approximately matched. The validation and test datasets are the
same as the ones used for the baseline.

We generate a training dataset for each variation of synthetic data listed in
Section 5.1.2. We train the models using the same procedure, and present the
training progress in Figure 5.7. We observe that the losses decrease in a stable
fashion over the duration of the training, regardless of synthetic configuration. They
reach values significantly below the baseline training loss, perhaps indicating that
some features of the synthetic domain make it easier to learn. On the other hand,
the models trained on synthetic data exhibit very poor performance on real data as
captured by the validation mAP0.5, regardless of synthetic data configuration. We
observe that the 3 most basic configurations yield models with worse performance,
and that in their case training on synthetic data is actually detrimental to their
performance on real data. Varying the depths of the foreground objects brings a
significant performance increase, while randomising the lighting conditions slightly
degrades it.

(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.7: Synthetic and baseline training

We evaluate the best performing model of each configuration on the test dataset
and summarise the results in Table 5.2. Unsurprisingly, the test metrics of models
trained on synthetic data are abysmal compared to the baseline. The configuration
with varying object depth still performs best according to the mAP0.5 metric, and
has a marginally lower mAP0.5:0.95 than the randomised lighting. We ultimately
use the former to discriminate between the configurations’ performances. In the
remainder of the work, all further transformations of synthetic data will be done on
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the varying object depth configuration only, as it was deemed best according to the
chosen metric.

Training data mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88
Default background 4.24 1.72
Background shape 5.59 1.86

Background texture 7.66 2.44
Object depth 8.09 2.69

Lighting 7.23 2.74

Table 5.2: Test metrics of the baseline and the different synthetic data
configurations

5.3 Image content analysis and filtering
Following the observed discrepancies between models trained on real data and mod-
els trained on synthetic data, we want to investigate if the synthetic data can be
enhanced to at least partially bridge this gap. Inspired by Frank et al. [70] who
compared the frequency contents of real images and images synthetically created by
generative adversarial networks, we examine the frequency contents of our synthetic
data. If our analysis reveals that usual filters can alleviate shortcomings of our syn-
thetic data to make it closer to real data in the frequency domain, we will apply
these and use the resulting data to train our object detection model.

To explore the content of our images in the frequency domain, we apply the
Discrete Cosine Transform, denoted DCT, to our training images. Mathematically,
the DCT expresses a finite sequence of data points as a sum of cosine functions
oscillating at different frequencies. In the case of an image I = {Ix,y} of width W
and height H, its DCT is given by D = {Dkxky} where

Dkxky = 2
W −1∑
x=0

H−1∑
y=0

Ix,y cos
[

πkx

W

(
x + 1

2

)]
cos

[
πky

H

(
y + 1

2

)]
(5.1)

with kx = 0, ..., W − 1 and ky = 0, ..., H − 1. To compare the spectra of real
and synthetic images, we will apply this transform to all synthetic training images
and real training images. We will then average the transforms of the images of each
domain separately.

Before applying the DCT, all RGB images are first converted to grayscale using a
weighted average of the channels6. Then, they are resized to 640×640 using bilinear
interpolation to reflect the way YOLOv5 pre-processes input images. Their DCT’s
are computed using SciPy’s implementation, and averaged element-wise. The mean
magnitude of synthetic and real spectra are depicted in Figure 5.8, where the origin
is located in the top-left corner of the plot, and the horizontal direction corresponds
to frequencies in the horizontal direction of the image, and likewise for the vertical

6Y = 0.299R+0.587G+0.114B where Y is the grayscale value.
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direction. The plots are log-scaled since low values would skew the colour map and
lead to poor visual representation.

Figure 5.8: Synthetic and real spectra

The synthetic spectrum is quite concentrated towards low frequencies while the
real spectrum appears to span low as well as higher frequencies, as indicated by
the brightness being more evenly distributed. Unlike the synthetic spectrum, the
real spectrum exhibits some high frequency components revealed by the bright dots
which stand out from their neighbourhood. These observations entail that standard
filters could hardly be used on the synthetic data to make their spectrum match the
real spectrum, and in fact it is unlikely that any custom, carefully designed filter
could reliably be applied. This being said, given the spectra observed in Figure 5.8,
an interesting experiment could consist in training a model purely on synthetic data
and apply a low pass filter to the real data at inference time to address the domain
shift in the frequency domain. However, in this work we focus on enhancements that
can be made to the synthetic training data, hence this remains future work.

Then, inspired by Dwibedi et al. [50] who highlighted the existence of boundary
artifacts when integrating foreground objects in their synthetic data and filtered
their images to blend them in, we filter our synthetic images before using them as
training data and observe the performance of the resulting model. For that purpose,
we use a 3-by-3 Gaussian kernel

k =

0.0625 0.125 0.0625
0.125 0.25 0.125
0.0625 0.125 0.0625


and convolve it with the synthetic images. Admittedly, filtering an image with
a Gaussian filter amounts to applying a low pass filter, and our observations in
Figure 5.8 imply that this does not make the synthetic spectrum match the real
one. However, we still elect to experiment it to see whether or not we observe
improvements as Dwibedi et al. did, despite not making sense from a frequency
perspective. Using the same training settings, we train a model with the filtered
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synthetic images. The results are presented in Figure 5.9 alongside the baseline
and the unfiltered images. We observe that there are no noticeable differences or
trends in the performance evolution of the filtered and unfiltered images, apart from
the usual instability in the beginning of the training, and the validation mAP0.5’s
stabilise at very similar values.

(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.9: Baseline, object depth and object depth followed by Gaussian filtering

Once again evaluating the best performing model on the test dataset, we present
the results in Table 5.3. Gaussian filtering yields an ever so slightly higher mAP0.5:0.95
metric, but a significant relative drop in mAP0.5. Ultimately, this brings us to
the conclusion that applying Gaussian filtering to our images does not improve
performance, unlike Dwibedi et al. observed.

Training data mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88
Object depth 8.09 2.69

Object depth + Gaussian filtering 6.66 2.82

Table 5.3: Test metrics of the baseline, object depth and object depth followed by
Gaussian filtering

5.4 Unsupervised image-to-image translation
Carrying on with our investigations, we slightly change the settings in which we as-
sume the training of the object detection model to take place. Indeed, while previous
experiments assumed access to synthetic data only, this section slightly adds onto
this premise by granting access to unlabelled real data. To exploit unlabelled data,
we will try to train a model to adaptively transform synthetic images to real-looking
ones. Since the available synthetic and real images are unpaired, meaning that there
are no direct correspondence between any two images where one would represent an
object in the synthetic domain and the other would represent that same object in
the real domain, we must select a model which does not required paired inputs to
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train. As mentioned in Chapter 3, such models include generative adversarial net-
works such as CycleGAN [60] and CUT [61], and we will attempt image-to-image
translation with both of them. Both models are trained on all available synthetic
and real images for 200 epochs using the default settings of the open-source imple-
mentations78, which are also the ones used by the authors in their respective papers.

We visually present some representative samples of image adaptations using CUT
in Figure 5.10. Indisputably, CUT fails to perform adequate domain adaptation.
The foreground objects are either not found, displaced or deformed and modified
beyond recognition, while the backgrounds do not exhibit any coherence with chaotic
shapes and colours, as if patches had been somewhat randomly assembled. Moreover,
CUT may adjust the size of objects to better match the training distribution, as
illustrated in the leftmost image where the foreground object is tentatively scaled
up. While a desirable property for some cases where domain adaptation entails
changing the scale of objects, it is a significant drawback in our application as it
invalidates bounding boxes. All in all, we find CUT to be unsuitable for image-to-
image translation for object detection datasets.

Figure 5.10: Samples of adaptations using CUT

We then present the failures, arguable successes and apparent successes of image-
to-image translation using CycleGAN in Figures 5.11, 5.12 and 5.13 respectively.
Additional samples can be found in Appendix G. The failed adaptations mostly
include the foreground objects, albeit deformed or not prominently apparent, but
surround them with incoherently mixed backgrounds. The arguable successes allow
to distinguish quite distinctly the foreground objects, but these do not have clear-cut
edges and seem to be leaking onto their surroundings. Finally, the apparent suc-
cesses, produce quite coherent backgrounds and have well defined edges, although
not perfect. While failures, arguable and apparent successes are illustrated here in
equal proportions, it must be noted that failures actually severely outnumber suc-
cesses when adapting the synthetic images. Hence, it is unlikely that the adapted
images can serve as enhanced synthetic data and yield a better object detection

7https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
8https://github.com/taesungp/contrastive-unpaired-translation
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model than the raw synthetic data.

Figure 5.11: Samples of failed adaptations using CycleGAN

Figure 5.12: Samples of arguably successful adaptations using CycleGAN

Nevertheless, we train our object detection model using the CycleGAN-adapted
synthetic data. The training progress is illustrated in Figure 5.14. As foretold, the
model is harder to train and performs significantly worse than the model trained on
raw synthetic data. Test results are presented in Table 5.4, and are unsurprisingly
awful for CycleGAN-adapted synthetic data. The models trained with raw syn-
thetic data with varying object depth outperforms models trained with tentatively
enhanced synthetic data; hence, further experiments will be carried out using the
former type of synthetic data.

Discussion

In this section, we have found generative adversarial networks to degrade the quality
of our synthetic data rather than improve it, as they more frequently fail than succeed
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Figure 5.13: Samples of seemingly successful adaptations using CycleGAN

(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.14: Baseline, object depth and object depth followed by CycleGAN
adaptation

to perform domain adaptation. It arguably could have been tried to handpick what
we consider to be successful domain adaptations, use these only as training data and
observe the performance of the resulting object detection model. However, even if
this endeavour did yield improved results compared to raw synthetic data, it would
still imply that we cannot perform large-scale domain adaptation reliably since it
would require timely human supervision. It is also worth noting that they would
likely perform more consistently with photo-realistic synthetic data as the domain
shift should be less extreme.

5.5 Training strategies
In the upcoming sections, we explore approaches to training object detection model
in different settings. Section 5.5.1 assumes access to synthetic data only, while
Sections 5.5.2 and 5.5.3 assume access to both synthetic and real, labelled data.
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Training data mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88
Object depth 8.09 2.69

Object depth + CycleGAN 2.59 0.91

Table 5.4: Test metrics of the baseline, object depth and object depth followed by
CycleGAN adaptation

5.5.1 Freezing the backbone
A common practice in deep learning involves transferring knowledge by starting from
weights which are pre-trained on another relevant task or dataset, and fine-tuning
them on the downstream task and dataset. As mentioned in Section 4.2, this is
the approach we take as we start from weights pre-trained on the COCO dataset
before fine-tuning them. However, when training on synthetic data, we may wonder
if fine-tuning the whole network is actually detrimental to the model’s performance
on real data. Indeed, weights pre-trained on large and varied real datasets such as
COCO usually extract generic features which can be reused, and modifying these
when training on synthetic data may perturb the features extractors and lead to
decreased performance on real data. In the following experiment, we train YOLOv5
on synthetic data while freezing9 its backbone and observe how the performance is
affected compared to training the entire network.

The training progress is depicted in Figure 5.15. We can see that the training
loss decreases less when freezing the backbone, indicating that the overall model
is less fit to the synthetic data. The validation mAP0.5 is slightly higher than its
unfrozen counterpart, but still significantly lower than the baseline. The test metrics
in Table 5.5 indicate that we cannot however conclude that freezing the backbone
when training on synthetic data consistently yields better results, as the mAP0.5:0.95
is slightly higher, but the mAP0.5 is lower, making it difficult to draw any conclusion.

(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.15: Baseline, object depth and object depth with frozen backbone

9Freezing parameters entails that their values remain unchanged, and only unfrozen parameters
are updated during training
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Training configuration mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88
Object depth 8.09 2.69

Object depth, frozen backbone 7.43 2.96

Table 5.5: Test metrics of the baseline, object depth and object depth with frozen
backbone

5.5.2 Using mixed data

We now jointly use synthetic and real data during training. In the following exper-
iments, we combine the synthetic and real training datasets together, such that the
model is exposed to both types during training. We train one model using a frozen
backbone, and another with an unfrozen one. The training results are presented in
Figure 5.16, and indicate that using mixed data with a frozen backbone degrades
performance, but allowing to fine-tune the whole network yields a higher validation
mAP0.5 compared to the baseline. We presume that mixing synthetic data adds
variability and enhances the model’s robustness.

(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.16: Baseline, mixed data and mixed data with frozen backbone

5.5.3 Pre-training using synthetic data

Rather than mixing both synthetic and real data during training, the following
experiments start by training the model on the synthetic dataset only. The model
which performed best on the validation set during training is then trained on the real
dataset. We attempt this with one model having its backbone frozen, and another
with its backbone unfrozen during synthetic data training. When re-training on
real data, the backbone is always allowed to be fine-tuned. The training results
are presented in Figure 5.17. The loss curves are nearly indistinguishable, and the
validation mAP0.5’s are too intertwined to reach any definite conclusion even though
freezing the backbone on synthetic data does seem to bring slight improvements.
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(a) Total training loss for each
configuration

(b) Validation mAP0.5 for each
configuration

Figure 5.17: Baseline and re-training

5.5.4 Best training strategy with synthetic and real data
We now summarise the test results in Table 5.6 to conclude as to which training
configuration is best when both synthetic and real data are available.

Training configuration mAP0.5 mAP0.5:0.95

Real data baseline 72.55 56.88
Mixed data 77.19 61.97

Mixed data, frozen backbone 65.64 47.41
Object depth + re-train 73.83 58.21

Object depth, frozen backbone + re-train 75.71 60.09

Table 5.6: Test metrics of the baseline and different training configurations

It appears that exploiting both the synthetic and real data is almost always
favourable compared to using the real data only, except if these are mixed and
trained with a frozen backbone. Mixing them and allowing the whole model to be
fine-tuned significantly boosts performance, leading to a relative increase of 6.49%
in mAP0.5 and 8.95% in mAP0.5:0.95 compared to the baseline. We further detail
the comparison by providing per-class and average precision, recall and F1-score in
Figure 5.18. The average metrics are all improved, and it is especially noticeable
for precision. This may be due to the hugely randomised backgrounds found in our
synthetic data, which could bring robustness to the model by making it less likely
to falsely detect background as foreground objects, hence decreasing the number of
false positives.
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(a) Baseline (b) Mixed data

Figure 5.18: Baseline and mixed data detailed comparison
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Chapter 6

Conclusion

In this work, we created synthetic data and investigated how it could be used on its
own or alongside real data to train an object detection model. We created incremen-
tally complex domain randomised synthetic data and found out that the configura-
tion which varied the background’s shape, texture and colour and the objects’ depth
was the one which transferred best when training on synthetic data and evaluating
on real data. We compared the spectra of real and synthetic data and found that no
obvious filtering could be done on the synthetic data to match the spectra. We then
attempted to perform domain adaptation using generative adversarial networks, and
found that these failed more often than not, making them unreliable for that pur-
pose. Finally, we explored different training strategies : we found out that when
using purely synthetic data, freezing the backbone did not reliably improve perfor-
mance on real data, and that when both real and synthetic datasets are available,
those should be combined and used to train the entire model without freezing any
parameters. We acknowledge that these conclusions were reached for the specific
dataset at hand and using our crafted synthetic data and that these may not neces-
sarily always apply. However, we are fairly confident that the strategy consisting in
mixing both types of data when available should hold true on other datasets.

Generalisation of the approach

The approach taken in this work in order to craft synthetic data was to scrape
through marketplaces in order to find appropriate assets, which has a significant
drawback : if the desired objects are very unusual or specific, they may very likely
not be found in marketplaces, or at least not as free assets. In case these should
be purchased, one should carefully assess whether the associated costs are worth it.
Indeed, these could alternatively be invested to hire 3D artists to handcraft tailor-
made assets, or into photogrammetry equipment if one has physical access to the
objects which one aims to detect. Such a service is offered by Unity1, although the
pricing is not explicitly stated.

Future work

Regarding the generation of synthetic data, a few things could be explored in future
work. First, the meshes of the 3D models representing the foreground objects could
be deformed in order to vary the objects’ shapes and make them appear crumbled,

1https://blog.unity.com/technology/supercharge-your-computer-vision-models-
with-synthetic-datasets-built-by-unity
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crushed or squashed. This would have been especially interesting for our waste de-
tection dataset. However, performing these manually proved to be laborious and
never quite gave satisfactory results, hence why they were not considered in this
work. No mesh deformation plug-in could be found either, and the creation of such
a plug-in would undoubtedly prove to be very challenging to make it work with any
kind of object. Then, although there were some cases of partial occlusion in our
synthetic data when two objects found themselves to be placed very close together,
these remained rare, and crafting more of these would most likely help models detect
objects surrounded by distractors or other objects. Finally, moving away from syn-
thetic data crafted through 3D engines, we wonder if recent text-to-image diffusion
models such as DALL-E2, Midjourney3 or Stable Diffusion4, which have exhibited
impressive visual results, could be used to create synthetic data. This is for instance
what is done in the work of Ge et al. [71].

While we chose to generate domain randomised synthetic data, the creation of
photorealistic synthetic data should also be explored when possible. In particular,
photorealistic synthetic data may ease domain adaptation using generative adver-
sarial networks, although failures would probably still occur. Future work could
also explore other enhancements or domain adaptation techniques, as well as care-
ful optimisation of training parameters. Indeed, we chose to set these and keep
them unchanged throughout the different experiments, but it is entirely possible
some tweaks to the hyper-parameters could yield better performing object detection
models.

2https://openai.com/dall-e-2/
3https://midjourney.com/home
4https://stability.ai/blog/stable-diffusion-public-release
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Appendix A

Background figures

(a) σ(x) (b) tanh(x)

Figure A.1: Sigmoid and hyperbolic tangent activations
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(a) Step-based decay with k = 2 and n = 10 (b) Time-based decay with k = 0.1

(c) Exponential decay with k = 0.1 (d) Linear decay with lf = 0.01

Figure A.2: Common learning rate decay factors
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Appendix B

Non maximum suppression

The predictions of an object detection model may detect an object multiple times
through different bounding boxes, and as such be redundant. To mitigate this issue,
models often rely on non-maximum suppression to avoid multiple detections of the
same object. Non-maximum suppression merges detections which hold the same pre-
dicted class and have significant overlap. Greedy non maximum-suppression, which
is the standard implementation found in most object detection models, proceeds in
the following way for each class :

1. Let the set B hold all predicted bounding boxes of the class, and S the corre-
sponding predicted confidences. Let the set D, initially empty, hold the final
detections.

2. The predicted bounding box with highest confidence is removed from B and
added to D. The IoU scores of that bounding box with all other bounding
boxes left in B are computed. If an IoU score is greater than a threshold NMSt,
then the corresponding bounding box is removed altogether from B.

3. Step 2 is repeated until B is empty.
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Appendix C

Object detection model summary

Figure C.1: Summary of YOLOv5s. Credits to Wu Zhe from which the
illustration was adapted.1
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YOLOv5 takes an input image and outputs detections at 3 resolutions which
are respectively 8, 16 and 32 times smaller than the resolution of the input image.
Figure C.1 illustrates the model’s inner workings for a 640 × 640 input image, and
hence outputs detections at resolutions R =

{
80×80, 40×40, 20×20

}
. In practice,

inputs can have any resolution and are resized through bilinear interpolation before
being fed to the model.

Convolutional layers are denoted by ConvBNSiLU to indicate that the convo-
lutions are followed by batch normalisation and SiLU activation. The letters and
numbers correspond to the parameters of the convolution layer. For instance, (k3,
s2, p1, c64) indicates that the layer comprises 64 convolutional filters with 3 × 3
kernels, (2,2) stride and (1,1) padding.

The architecture’s backbone alternates convolutions which progressively decrease
the spatial dimension and increase the depth of the feature maps, and C3 blocks
which are simplified CSP bottlenecks. While the idea of concatenating creating
2 paths for feature maps and concatenating the results at the end of these paths
is certainly inspired by CSPNet, YOLOv5 does not actually split the feature map
channels in 2, but rather duplicates them. C3 blocks include one or more residual
bottleneck blocks BottleNeck 1 in series.

The neck’s SPPF block is mathematically equivalent to an SPP block, but its
implementation is optimised to use less floating point operations and is consequently
much faster. The PANet-like passthrough connections allow to concatenate feature
maps from earlier layers in the backbone with feature maps from the neck by up-
sampling the latter through nearest-neighbour interpolation.

Finally, the detection head uses feature maps at different stages of the neck to
output detections at 3 different resolutions. The 3 detection layers use convolutional
layers with 1 × 1 kernels, unit stride and no padding, and 3 × (5 + C) filters as there
are 3 anchor boxes per grid cell, followed by sigmoid activations.

YOLOv5 comes in multiple sizes, which differ by the number of filters used in
convolutional layers, and the number of BottleNeck blocks in C3 blocks.

1https://github.com/ultralytics/yolov5/issues/6998
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Appendix D

Object detection metrics

In a binary classification task, one usually computes the amount of true positives
TP, true negatives TN, false positives FP and false negatives FN to evaluate a
model. These 4 values together form what is referred to as the confusion matrix.

Predicted
Positive Negative

Actual Positive TP FN
Negative FP TN

Table D.1: Confusion matrix in binary classification

Extending to multi-class classification, the same table can be computed for each
class separately. In object detection, the same principle can be used, but determining
TP, FP, TN and FN is slightly more involved.

D.1 TP, FP, TN, and FN for bounding boxes
These different quantities are computed per class. For each class, any detection
such that the predicted probability is the highest for that class, and such that the
associated confidence is larger than a chosen threshold conft, is considered.

- TP : A correct detection, i.e. such that the IoU between the ground truth
and the predicted bounding box is ≥ IoUt

- FP : An incorrect detection, i.e. such that the IoU between the ground truth
and the predicted bounding box is < IoUt

- FN : A ground truth for which no predicted bounding box has an IoU ≥ IoUt

- TN : Not applicable in object detection, because it would represent the back-
ground regions that were correctly not detected as objects, and one could
define an infinite number of bounding boxes around background regions

D.2 Precision, recall and F1-score
Different metrics can be defined to capture different aspects of the model’s perfor-
mance by combining the quantities previously defined.
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Precision

Precision portrays the ability of the model to detect relevant objects, and those only.
As such, it is given by

Precision = TP

TP + FP
(D.1)

Recall

On the other hand, recall portrays the ability of the model to detect all relevant
objects and is therefore given by

Recall = TP

TP + FN
(D.2)

F1-score

The F1-score is the harmonic mean between the precision and recall :

F1 = 2 Precision · Recall
Precision + Recall (D.3)

It represents the trade-off implicitly decided by setting the confidence threshold
to its value, since precision and recall are inversely affected by changes in this thresh-
old, i.e. a high confidence threshold favours high precision and low recall, while a
low confidence threshold favours low precision and high recall.

D.3 Average precision
Average precision, denoted AP , is a metric based on the precision-recall curve. A
concise summary of the curve can be obtained by computing the area under it. This
area is the average precision, and allows clear comparison of the general performance
of different object detection models.

The precision recall curve is obtained by sorting every detection of the model
in decreasing order of confidence. Precision and recall can then be computed for
each detection in decreasing order of confidence, by accumulating the previous TP
and FP . The average precision is then computed by interpolating the precision at a
predefined, discrete number of equally-spaced recall levels. In YOLOv5, the average
precision is computed under the COCO guidelines, by interpolating the precision
pinterp at 101 recall levels r, such that

AP = 1
101

∑
r∈{0,0.01,...,1}

pinterp(r) (D.4)

with

pinterp(r) = max
r̃≥r

p(r) (D.5)

and where p(r) denotes the precision at recall r.
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The average precision can be computed for each class. Averaging over all classes
yields the mean average precision, denoted mAP. This metric is the most widely
used in object detection, but several versions of it coexist. Indeed, the mean average
precision depends on the threshold IoUt used to discriminate correct from incorrect
detections. The most straightforward one is the mAP0.5, which uses IoUt = 0.5.
Another popular version is the mAP0.5:0.95, which is computed by taking the mean
average precision at 10 equally spaced thresholds IoUt = [0.5, 0.55, ..., 0.95], and
averaging these.
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Dataset

(a) PDP (b) Bout./flac. en plastique > 8L

Figure E.1: Similarity between PDP and Bout./flac. en plastique > 8L

Figure E.2: Arbitrary labels for Emballage métallique
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(a) Bout./flac. en plastique < 8L (b) Bout./flac. en plastique < 8L

(c) DSM (d) DSM

(e) FR (f) FR

(g) Huile de friture (h) Huile de friture

Figure E.3: Similarity of some classes with Bout./flac. en plastique < 8L
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3D models of foreground objects

Figure F.1: 3D models for Bout./flac. en plastique < 8L

Figure F.2: 3D models for Aerosol
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Figure F.3: 3D models for Verre coloré

Figure F.4: 3D models for PDP
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Appendix G

Additional samples of adaptation
using CycleGAN

Figure G.1: Additional samples of failed adaptations using CycleGAN
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APPENDIX G. ADDITIONAL SAMPLES OF ADAPTATION USING
CYCLEGAN

Figure G.2: Additional samples of arguably successful adaptations using
CycleGAN
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APPENDIX G. ADDITIONAL SAMPLES OF ADAPTATION USING
CYCLEGAN

Figure G.3: Additional samples of seemingly successful adaptations using
CycleGAN
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