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1 Introduction

The prevailing ecological issues confronting the globe, along with the growing traffic congestion
and the exponential surge in fuel costs, as well as accessibility issues faced by people with limited
mobility, have led to a mounting inclination towards shared transportation systems. Furthermore,
contemporary advancements in technology are facilitating new transportation options and serve as
a springboard towards a more eco-conscious future. Indeed, advanced computational technologies
combined with mathematical models are exploited to optimize mobility plans. As stated in Mourad
et al. (2019), there are various modes of shared mobility available, with some focusing on package
delivery, others on transporting individuals, and some providing a combination of both. This
analysis will specifically examine the Dial-a-Ride problem (DARP) within the realm of shared
mobility for people transportation, which aims to develop the most efficient vehicle routes and
schedules based on user-provided pick-up and delivery requests, as described in the earlier study by
Cordeau and Laporte (2003).

Nevertheless, due to the continuous growth of the global population and increasingly intricate
demands, the need to satisfy various requirements such as timing and comfort while also remaining
cost-effective often takes precedence. The well-established pair of conflicting objectives remains
ever-present: how to guarantee the fulfilment of as many needs as possible, while maintaining an
adequate level of service quality? Despite public transportation serving a substantial number of
passengers, it is not accessible in rural areas and installing it would be financially unfeasible.

Moreover, the population of individuals who are unwell, elderly, or experiencing restricted mo-
bility is rising (Kovacs et al. (2014)), and such individuals may not always possess the capability to
utilize these public transportation modes. Combined with the increased availability of home care
services (Paquette et al. (2012)), there is a strong need for customized on-demand transportation
services, even if they come at a high cost and have negative environmental impacts. There is thus a
search for solutions that provide door-to-door transportation while prioritizing environmental sus-
tainability at a reasonable expense (Ho et al. (2018)). All of these objectives are aligned with the
11th Sustainable Development Goal (SDG) established by the United Nations, which aims to "make
cities and human settlements inclusive, safe, resilient and sustainable" (Nasri et al. (2022), p.1).

The primary objective of this thesis is to centre on people transportation. The tension between
maximizing profitability and ensuring people’s comfort is investigated. This analysis considers not
only the comfort of patients but also the fairness in workload distribution among drivers, also called
route balancing (Feng and Wei (2022)). It is important to ensure that the patients’ comfort is not
prioritized at the expense of inadequate workload distribution among drivers. Therefore, the study
addresses the need to strike a balance between these factors to promote both passenger satisfaction
and driver well-being.
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The introduction of this thesis begins with a general overview of the DARP, followed by a
detailed discussion of the specific elements that have been added to the problem formulation for the
purpose of this study.

1.1 General problem description

Based on the existing literature (Cordeau and Laporte (2003); Cordeau and Laporte (2007); Cordeau
et al. (2007); Molenbruch et al. (2017b)), the traditional DARP involves creating routes and sched-
ules for a fleet of vehicles in order to satisfy patients’1 requests over a single day. Typically, the
patients are elderly or disabled individuals who require transportation for medical appointments,
with outbound requests to reach their appointments and inbound requests to return home. The
fleet of vehicles can either be homogeneous, with identical capacities and characteristics, or het-
erogeneous, with different types of vehicles. The vehicles’ routes can either originate and end at
a single depot or be split across multiple depots. Moreover, the vehicles are generally assumed to
travel at a constant speed throughout the whole day. This shared transportation service enables
multiple patients with different transportation requests to be accommodated in the same vehicle
simultaneously. In most cases, patients are given the opportunity to specify their desired pick-up
and delivery locations and time windows2, indicate the number of accompanying individuals if there
are any, and indicate the potential use of a wheelchair or stretcher. Some patients may also have a
maximum travel time they can tolerate, such as those undergoing dialysis (Yazawa et al. (2020)).
Drivers may also specify a maximum duration for their route according to their working schedules.
Figure 1.1 depicts a basic instance of a DARP.

Figure 1.1: Example of DARP with 3 vehicles. The letter "P" stands for pick-up locations, where
patients begin their travel, while "D" denotes delivery locations, where patients want to arrive. The
central location represents the depot from which 3 vehicles leaves at the beginning of the working
day. Each of them visits various locations to fulfil patients’ requests. The numerical value indicates
the patient associated with each location.

1Since the study focuses on the transportation of individuals, the term "customer" will be consistently replaced
by "patient" throughout the remainder of the research.

2Earliest and latest times between which a patient wants to be loaded or unloaded at a specific location (Ho et al.
(2018)).
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The objectives of this transportation service can be categorized as either operational-oriented or
user-oriented. In the former case, the primary objective is usually to minimize costs while satisfying
all demands and side constraints or to maximize demand satisfaction subject to vehicle availability
and side constraints. In the latter case, the aim may be to minimize the total ride time or the overall
waiting time of patients, which could result in increased operating costs such as the requirement for
additional vehicles. Indeed, these two objectives are always in conflict and cannot be simultaneously
optimized. Thus, a conventional objective function can only prioritize one of these objectives, or
both with a specific weighting factor (Ho et al. (2018)).

It should be noted that such DARPs have already been implemented in many major cities around
the world, including Berlin, Hong Kong, London, New York, Paris, Stockholm, and many others (Pa-
quette et al. (2009)). In Belgium, comparable transportation services are already in place through
organizations such as the Red Cross, Public Social Welfare Centres, non-profit organizations, as
well as some healthcare insurance companies.

The DARP is an extension of existing Vehicle Routing Problem (VRP)s, including the Pick-
up and Delivery Vehicle Routing Problem (PDVRP) and the Vehicle Routing Problem with Time
Windows (VRPTW) (Cordeau and Laporte (2003)), and is also included in the Transportation On
Demand (TOD) problems’ classification (Paquette et al. (2009)). Due to its NP-hard complexity
(Molenbruch et al. (2017b)), it cannot be solved in polynomial time with exact methods. Thus,
heuristics3 are commonly used to provide solutions for problems of realistic sizes. This allows for
the generation of high-quality solutions within reasonable time frames.

1.2 Choice of specifications to integrate into my thesis

Chapter 2 of this thesis will provide a more detailed analysis of the literature that has already been
conducted in this area, primarily focusing on the classic DARP. However, the problem specifications
that will be addressed in this study involve challenges that have not been deeply explored in the
existing literature. The proposed approach in this thesis seeks to integrate driver consistency
into a Multi-period Dial-a-Ride problem (MP-DARP), with a significant emphasis on
promoting fairness among drivers4. These aspects have not been jointly considered before in
previous problem definitions.

The DARP is a specific type of VRP that places a strong emphasis on the human aspect. This
means that the well-being and comfort of patients are considered to be of utmost importance in
this type of mobility service. The intensifying competition in the mobility services sector and the
emergence of more demanding customers have made it imperative for companies to differentiate
themselves based on the service quality they provide. Relying solely on competitive pricing is no
longer sufficient. Furthermore, maintaining favourable working conditions for employees not only
promotes high productivity but also leads to enhanced profitability (Kovacs et al. (2014)). Figure
1.2 is a possible representation of this service-profit chain.

3A heuristic is an algorithm allowing one to solve complex optimization problems without requiring formal
modelling. The obtained solutions may be sub-optimal (Ho et al. (2018)).

4Fairness among drivers can be defined in various ways, which will be detailed in section 2.4
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Figure 1.2: Service-profit chain: relationships between profitability, customer and employee satis-
faction and productivity (reproduced from Kovacs et al. (2014)).

1.2.1 Integration of driver consistency

Studies and research conducted by Paquette et al. (2009) and Paquette et al. (2012) have shown
that patients often associate the quality of their service with having a dedicated driver for each
appointment, rather than seeing different drivers each time. This concept is referred to as driver
consistency (Braekers and Kovacs (2016)), and it will be a key component of the problem for-
mulation under study. The problem being studied involves analyzing the correlation between each
patient and the overall number of drivers required to fulfill all their requests during a five-day pe-
riod in a multi-period Driver Consistent Dial-a-Ride Problem (DC-DARP) (Braekers and Kovacs
(2016)). Indeed, most studies conducted on DARP currently only focus on a single day. However,
in this scenario, it is imperative to extend the analysis over multiple days, which will enable the
examination of the relationships between patients and drivers over a more extended period.

In addition, it should be mentioned that driver consistency is advantageous for both patients and
drivers. Patients can establish stronger relationships with their drivers and benefit from customized
services, while drivers can achieve greater productivity by frequently visiting the same areas to serve
the same patients. Moreover, it enhances driver satisfaction by eliminating the need for irregular
routing plans (Kovacs et al. (2014)).

1.2.2 Integration of route balancing

In this thesis, the exploration of fairness among drivers, also called route balancing, will be
undertaken. Given that the problem being studied spans multiple days, it is crucial that all drivers
operate their vehicles in a fair and equitable manner. Fairness in this context can be defined in
various ways:

• One approach involves ensuring that each driver has an equal number of working days over
the entire week;

• Alternatively, fairness can be measured in terms of the total travel time for each driver, with
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the requirement that all drivers drive the same number of hours over the course of the week
(without regard to the distribution of those hours across days);

• Finally, another way to approach fairness is to assess the number of patient requests each
driver fulfills throughout the week.

Having considered these different approaches, this thesis will concentrate on evaluating fairness
among drivers by analyzing their total travel time over an entire week. This method provides a
highly accurate and reliable measure that significantly reduces the likelihood of any unfair treatment
among drivers. To achieve this, the total travel time for each driver will be treated as a variable,
and any deviation from the ideal scenario in which all drivers have the same amount of work time
will be minimized in the objective function.

1.2.3 Other specifications of the problem under study

The research problem will involve a multi-period DC-DARP with a single depot, where the
fleet of vehicles is heterogeneous since each vehicle will have a dedicated capacity limit. The
vehicle’s speed will be assumed to stay constant throughout the day and the week. Patients will
specify time windows for each request, along with a maximum ride duration and the option
to include accompanying individuals. Furthermore, patients requiring special assistance
will be able to be transported in a wheelchair.

It is essential to note that the problem formulation will remain static and deterministic.
This implies respectively that all decisions will be made beforehand, without any modifications of
the planning during the week, and that all information will be fully known at the time of decision-
making, with no random or uncertain elements involved (Ho et al. (2018)).

The objective function of the problem aims to optimize driver consistency as the primary ob-
jective and route balancing as the secondary objective. The optimization process thus involves
finding an improved solution regarding driver consistency, which will be set as an upper bound for
the constraints. The aim is then to optimize the route balancing without worsening the best level
obtained for driver consistency. This approach, where a high-level objective is optimized first, and
a lower-level objective is optimized when possible, is known as a lexicographic objective function.

In the majority of DARP studies, the objective function typically prioritizes the minimization
of total distance traveled. While the optimization process under study may not directly focus on
minimizing distance, it inherently occurs as patient requests are inserted into routes in a way that
minimizes the overall road distance.

The present static and deterministic DARP will be solved through a Simulated Annealing
(SA). The justification for this meta-heuristic choice and its features will be thoroughly explained
in Section 3 of this thesis.

1.3 Thesis structure

To evaluate the existing literature on the topic, a literature review will be conducted in Chapter 2.
This review will cover various aspects of VRPs in general, as well as static and deterministic DARPs.
Additionally, it will analyze customer-oriented objectives that have been previously considered in
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both VRPs and DARPs. It will also focus on route balancing and the extent of work done in
this area. Furthermore, the review will summarize the commonly used meta-heuristics for solving
DARPs.

Chapter 3 will present a more precise formulation of the problem at stake, with a particular
emphasis on the objective function and the metrics used to assess driver consistency and route
balancing.

Subsequently, the choice of the SA will be discussed in Chapter 4 along with its constituent
elements: the selection of the initial solution method, the choice of the neighbourhoods and the
parameters identification.

Chapter 5 will encompass a description of the dataset used, implementation details, and a deep
analysis of the results obtained.

Then, Chapter 6 will provide an answer to the research question, which is to evaluate the extent
to which driver consistency and route balancing can be incorporated into a multi-period DARP.
Finally, it will summarize the findings of the research as well as its limitations, and outline potential
avenues for future research on this topic.

12



2 State-of-the-art

Given that the objective of this investigation is to solve a static and deterministic DARP using a
meta-heuristic method, the state-of-the-art analysis will be confined to this specific research domain.
Consequently, the review and comparison of existing techniques will be limited to those developed
for comparable static and deterministic DARPs. Prior to that, a summary of the existing work
related to the broader topic of VRPs will be conducted in Section 2.1.

Furthermore, the forthcoming literature review will be organized to clarify the previous research
conducted on the main topics selected for this thesis, which are driver consistency in Section 2.3.2
and route balancing in Section 2.4. An initial analysis will be conducted on how consistency1 more
generally is currently defined and utilized in both VRPs and DARPs. The primary objective is to
highlight the scarcity of research conducted on driver consistency in the context of a MP-DARP.
Moreover, the aim is to establish that among the limited work carried out in this area, none has
incorporated fairness among drivers, or route balancing, as an additional focus.

In Section 2.6, a comprehensive survey to investigate the various meta-heuristics that have been
utilized to address DARPs is conducted.

2.1 VRPs in general

A complete literature review on the topic of VRPs at large has been conducted recently by Zhang
et al. (2021). Their review involved categorizing VRPs based on their characteristics and potential
applications, and providing an overview of the different resolution methods that are available for
each type.

The first VRP problem was introduced by Dantzig and Ramser (1959) and used to assess a
routing optimization problem of oil tankers. More generally, any kind of VRP always involves
meeting the demands of a set of customers with a fleet of available vehicles while minimizing
distance, cost, and time consumption.

According to the work conducted by Zhang et al. (2021), VRPs can be classified into five main
different categories:

• Capacitated Vehicle Routing Problem (CVRP), which incorporates capacity constraints
for each vehicle in the fleet. These capacities can be uniform for all vehicles in the fleet, which
is known as a homogeneous fleet, or different for each vehicle, referred to as a heterogeneous
fleet.

1As it will be explained in the literature review, there are several types of consistency: time consistency, territory
consistency, delivery consistency, and driver consistency (Kovacs et al. (2014)).
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• Vehicle Routing Problem with Time Windows (VRPTW), which adds a time window
constraint to each customer point. It means that each delivery point has a specific time window
during which it can be serviced, with both the earliest and latest start time for delivery.

• Split Delivery Vehicle Routing Problem (SDVRP), which differs from traditional VRPs
in that a single customer’s demand can be completed by more than one vehicle.

• Pick-up and Delivery Vehicle Routing Problem (PDVRP), which involves the pickup
of goods at one location and the delivery of those goods to another location. It differs from
traditional VRP in that it requires vehicles to make two distinct stops for each customer.
It can also imply the consideration of both pickup and delivery time windows, adding an
additional layer of complexity to the problem.

• Dynamic Vehicle Routing Problem (DVRP), which takes into account dynamic factors
such as traffic conditions, unpredictable changes in customers’ demands, accidents, or weather
conditions, which can impact previously established routes.

It has to be noted that combining these aspects in a single VRP can increase the complexity
of the problem but also make it more realistic and practical, as it takes into account real-world
factors such as capacity limitations, time windows, dynamic conditions, and pickup and delivery
requirements.

In addition to the five main classes cited above, there are other derivatives that incorporate
additional constraints or objectives. One example is the Green Vehicle Routing Problem (GVRP),
which takes into account ecological factors such as reducing carbon emissions, fuel consumption, or
other environmental impacts in the optimization process. Another is the Consistent Vehicle Routing
Problem (ConVRP), which will be detailed in Section 2.3.2.

2.2 DARPs in general

This section of the literature review draws heavily upon the works of Ho et al. (2018) and Molenbruch
et al. (2017b), which provide the latest state-of-the-art analyses of DARPs. These papers serve as
a robust foundation for this investigation and offer valuable insights that can be further customized
to the problem at hand. This research aims to build on the previous studies by including additional
findings, which will help to advance the understanding of the driver-consistent DARP and route
balancing.

The DARP is a variant of the VRP that focuses on the transportation of people rather than
goods. It is a generalization of both the PDVRP and the VRPTW, as it requires the scheduling of
pickups and drop-offs of passengers within specific time windows, and is part of the more general
TOD problems (Paquette et al. (2009)). In DARPs, a fleet of vehicles serves a set of passengers
who have specific pickup and drop-off locations, along with time windows in which they need to be
picked up and dropped off. The objective is to minimize the total travel distance while adhering
to various constraints such as vehicle capacity, time windows, and passenger preferences (Cordeau
and Laporte (2003)).

The DARP has various real-life applications, including non-profit transportation services for
elderly, disabled, or injured people. The main goal of DARP in this context is to minimize the cost of
providing transportation services while respecting operational constraints, just like in the VRPs (Qu
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and Bard (2013), Qu and Bard (2015) and Karabuk (2009)). Other potential applications of DARP
exist, such as airport transportation for the same type of patients, intra-hospital transportation of
patients, supplies or equipment, and integration of dial-a-ride services into public transportation
systems. This thesis will primarily focus on exploring the practical implementation of DARP within
the context of non-profit transportation services for elderly, disabled, or injured individuals.

2.2.1 Problem characteristics

According to Cordeau and Laporte (2003), the classical definition of the DARP involves a directed
graph containing nodes that represent pickup and delivery locations of patients, and arcs that
connect nodes and are associated with a travel time and cost. Each route in DARP starts and
ends at a depot, and the network of nodes can include one or several depots. The length of each
route is limited by a maximum duration, either set by the driver or based on available working
hours in a day. The vehicles’ capacity cannot be surpassed either. In a single patient request, it is
mandatory to visit the pickup location before the delivery location to ensure route feasibility, and
both of these locations must be visited by the same vehicle. Additionally, each patient is associated
with a specific service duration, which represents the time required to load or unload the patient at
its pickup or delivery location. Each patient can specify time windows within which they prefer to
be picked up or delivered to their desired location. Finally, each patient has a maximum ride time
limit for their convenience, which cannot be exceeded. This last constraint, unique to the DARP,
adds complexity to the problem compared to traditional VRPs. This complexity is further increased
when considering smaller time windows in the DARP scenario.

2.2.1.1 Types of constraints

In the context of static and deterministic DARPs, most of the literature focuses on problems fea-
turing a homogeneous fleet of vehicles, pickup and delivery time windows, maximum ride time for
users, maximum route duration, and vehicle capacity. These constraints can be approached in two
distinct ways:

1. As hard constraints, where any deviation from the constraints is not allowed. This is the
approach taken in articles such as Chassaing et al. (2016) and Ritzinger et al. (2016).

2. As soft constraints, where violations are permitted, but a penalty is incurred in the objective
function, proportional to the degree of the deviation, in order to discourage such occurrences.
An example of this approach can be found in Urra et al. (2015).

2.2.1.2 Heterogeneity

Many problem definitions assume that patients and vehicles in DARP are homogeneous. This
means that all patients have the same demand characteristics and cannot specify any additional
requirements such as the need for wheelchair or stretcher transportation. Similarly, all vehicles are
assumed to have the same properties and capacity. However, in real life, patients may have specific
physical needs that require more customized transportation services (Parragh (2011)). To address
these requirements, new heterogeneous problem formulations have been created that allow
for customized patient requests and a fleet of vehicles with configurable options to become more
demand-responsive.

With regards to the heterogeneity of users’ demands, some patients may have specific require-
ments or expectations regarding the service provided, as discussed in Ilani et al. (2014). Other
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papers, such as Zhang et al. (2015) and Liu et al. (2015), consider the potential requirement of
accompanying people for patients. Additionally, research has explored the combination of hetero-
geneous patients with heterogeneous drivers, as in Malheiros et al. (2021), Molenbruch et al. (2017)
and Masmoudi et al. (2017).

The emergence of various research papers that concentrate on the heterogeneity of patients’
demands has led to an increased focus on heterogeneous vehicles in research. Articles such as
Parragh (2011), Parragh et al. (2012) and Detti et al. (2017) have investigated the challenge of
ensuring compatibility between drivers and patients. There are some studies that take into account
both regular and extra vehicles, with the objective of reducing the fixed cost associated with the
additional vehicles required (Guerriero et al. (2013). These studies assume that the patients are
similar and do not explore the compatibility between them. In an effort to reduce the environmental
impact of shared-mobility systems, mixed fleets of vehicles are increasingly being considered, as
discussed in a study by Masmoudi et al. (2020). These mixed fleets involve the use of two different
types of vehicles, such as conventional vehicles with unlimited fuel supply and alternative fuel
vehicles.

Other studies sequence the picking up and delivering of different types of patients in accordance
with the layout of the vehicle and decisions on the vehicle configuration for each trip (Qu and Bard
(2013), Qu and Bard (2015), Braekers et al. (2014) and Braekers and Kovacs (2016)), but at the cost
of increasing complexity. In Tellez et al. (2018), the authors suggest a variant of the heterogeneous
DARP that allows for en-route modifications of the vehicle’s inner configuration. This means that
during the vehicle’s route, its capacity and other features can be adjusted to accommodate changing
demands or operational requirements.

2.2.1.3 Routing properties

In the traditional DARP model, a patient is transported in a single vehicle throughout their entire
trip. However, some more recent studies explore the possibility of transferring a patient from
one vehicle to another during the same journey, with the aim of minimizing waiting times and
ensuring synchronization (Reinhardt et al. (2013), Schönberger (2017)). While this may not always
be feasible, such considerations can improve the overall efficiency and reduce the total distance
traveled by the system, as demonstrated by Cortés et al. (2010) and Masson et al. (2014).

Instead of being transferred to another vehicle, users can also be transferred to public transit
services during their journey, which can reduce the operating costs of the overall system. Molenbruch
et al. (2021), Posada et al. (2017), Ronald et al. (2015) and Häll et al. (2009) have extensively
studied this possibility, along with its benefits and drawbacks. This approach can also increase
the productivity of the system but may come at the cost of decreased patient convenience due to
increased waiting times. Moreover, Melis and Sörensen (2022) conducted a recent study that proved
the effectiveness of a network of on-demand buses compared to traditional public transportation
systems.

Some papers, like Parragh et al. (2015), have explored the concept of dividing multi-load requests
into multiple rides, which has been shown to enhance efficiency from a wider operational standpoint.

The Fixed Route Dial-a-Ride Problem (FRDARP) is a variation of the DARP where patient
requests are restricted to terminals located on a predetermined route. This variant enables the

16



grouping of patients and the generation of more efficient schedules. Although this problem has not
been extensively studied, recent work by Grinshpoun et al. (2022) has focused on simplifying the
process of constructing optimal predetermined routes.

2.2.1.4 Workforce requirements

Since DARPs are designed to cater to people with restricted mobility, these patients may have
specific requirements regarding their drivers. These requirements can be addressed in various ways:

• Patients may prefer to have the same driver over multiple time periods, which is known as
driver consistency and is the primary focus of this thesis. This topic has been extensively
studied by Braekers and Kovacs (2016)) and will be a major challenge in this research.

• Patients may also request to have accompanying individuals with them on the vehicle
(studied by Parragh (2011) and Parragh et al. (2012)). This can lead to additional concerns
regarding loads of these staff members, studied by Lim et al. (2017) and Zhang et al. (2015).

2.2.1.5 New insights for DARPs

The primary objective of shared-mobility systems is to reduce gas emissions and combat global
warming, and as a result, these systems, including the DARP, are continually evolving. The devel-
opment of new systems is aimed at achieving this objective by promoting sustainable and eco-friendly
transportation solutions. One such emerging system is the Electric Autonomous Dial-a-Ride Prob-
lem (E-ADARP), which involves a fleet of autonomous electric vehicles. In addition to the typical
DARP constraints, the E-ADARP also incorporates a partial recharging policy to account for the
vehicles’ limited battery life. A recent study by Su et al. (2022) delved further into this topic.

2.2.2 Objective functions

Most objective functions in DARPs contain only a single objective, which is cost minimization by
minimizing the total distance traveled (D’Souza et al. (2012)). This is because transportation costs
are often directly linked to the distance covered by a vehicle. However, some problems may consider
other objectives, such as minimizing the number of vehicles used or maximizing their efficiency
(Garaix et al. (2011)), or even minimizing staff workload (Lim et al. (2017)). In some cases, the
goal may even be to maximize profit rather than simply minimize costs (Parragh et al. (2015), or
to maximize system reliability (Pimenta et al. (2017)). Other problem formulations minimize users’
inconvenience metrics, such as their total travel time and waiting times. Some papers also deal
with ecological measures, such as vehicle emissions (Chen et al. (2022), Atahran et al. (2014) and
Chevrier et al. (2012)).

Other applications deal with multiple objectives where different goals are taken into consid-
eration simultaneously, which are called Multi-Objective Dial-a-Ride Problem (MO-DARP). Re-
searchers working on MO-DARP have identified three major types of approaches to manage the
multiple objectives:

1. A weighted sum of different measures, as proposed in Mauri and Lorena (2006), Mauri
et al. (2009), Jorgensen et al. (2007), Kirchler and Calvo (2013) and Melachrinoudis et al.
(2007). To ensure that the weights are comparable and add up to one, some authors normalize
them between 0 and 1, as in Hu et al. (2019). This weighted sum has the advantage of reducing
the post-solution efforts required to make a final decision. However, this method requires that
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all objectives have common units and that the relative importance of each objective can be
quantified.

2. A lexicographic objective function with objectives classified in the order of importance,
as realized by Garaix et al. (2010). This approach involves optimizing a higher-level objective
first and then, if possible, a lower-level objective. This method is particularly useful when
objectives cannot be represented by the same unit and when one objective is significantly
more important than the other. However, this hierarchical structure can prevent the final
decision-maker from analyzing possible trade-offs between different objectives.

3. A Pareto frontier of the problem, which consists of a set of solutions that are not domi-
nated by others, as realized in Zidi et al. (2012). The Pareto frontier represents the set of
all feasible solutions that cannot be improved in one objective without worsening at least one
other objective. In other words, it defines the trade-off between different conflicting objec-
tives. Similar to the lexicographic approach, this method does not require finding weights or
converting different measures into a common unit. In the end, the decision-maker can choose
among several solutions that all provide the same level of objective function but favor one
objective over the other (Parragh et al. (2009)). This approach is relevant when the relative
importance of criteria is uncertain and helps to analyze trade-offs between opposing objectives
(Paquette et al. (2013)).

All three approaches employ distinct metrics based on their respective objectives. However, except
for Lehuédé et al. (2014), none of the authors have considered the interactions between them.

A study by Guerreiro et al. (2020) provides an overview of the various algorithmic techniques
that can be specifically used to solve MO-DARPs, as well as the corresponding available literature.

2.2.3 Taxonomy

Before delving into the specific variant of the DARP being considered in this study, a brief expla-
nation of the various existing categories of DARP will be provided.

According to Ho et al. (2018), DARPs can be classified according to two different aspects:

• Whether the decisions are made a priori and cannot be changed anymore, or if they can be
made even after the start of operations when new information is received and can be changed
through the entire process. The former is referred to as static DARP, while the latter is
referred to as dynamic DARP.

• Whether the information received is known with certainty at the moment decisions are made,
which is called deterministic DARP, or if the decisions have to be made with still undeter-
mined information, which is called stochastic DARP.

These two classifications give rise to four possible combinations, as shown in Table 2.1.

It should be emphasized that in practice, the majority of real-world DARPs are dynamic and
stochastic in nature. This is due to the fact that many factors can be unpredictable, such as traffic
congestion, unexpected patient no-shows, vehicle breakdowns, and adverse weather conditions. As
a result, drivers may need to modify their plans and adjust their initial schedules to cope with the
coming changes.
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Information known with
certainty (at time of

decision)

Information not known
with certainty (at time of

decision)
Decisions cannot be

modified after the start of
operations

Static and
deterministic Static and stochastic

Decisions can be modified
in response to new

information received after
the start of operations

Dynamic and
deterministic

Dynamic and
stochastic

Table 2.1: Taxonomy of Dial-a-Ride Problems, reproduced from Ho et al. (2018).

However, the majority of the research on DARPs has focused on static and deterministic sce-
narios. Similarly, for the purposes of this study, the problem being addressed will also be static and
deterministic. This is because in order to optimize driver-patient relationships and ensure fairness
among drivers in a MP-DARP, information about patients’ requests over multiple periods must
be analyzed in advance. This necessitates careful planning and precludes the decision-maker from
accepting new information during the week. Due to the aforementioned factors, the upcoming sec-
tion will exclusively concentrate on the research conducted in the field of static and deterministic
DARPs. The existing body of work in this area is more applicable to the problem at hand.

2.3 Focus on patient satisfaction

In the field of DARPs and VRPs, there is a growing emphasis on taking customer satisfaction into
consideration (Paquette et al. (2009), Paquette et al. (2012)). With rising customer expectations,
problem definitions must now include service quality considerations in order to stay competitive.
The paper by Nasri et al. (2021) provides a comprehensive review of existing research on service
quality in DARPs. Based on the findings of a study by Paquette et al. (2009), there is no universally
accepted definition of quality. Instead, quality is seen as a combination of various factors, including
safety, comfort, and reliability. The study also found that driver characteristics were important to
users when considering quality.

2.3.1 Time windows and maximum user ride time

In their study, Molenbruch et al. (2017a) investigate the relationship between service quality levels
and operational costs in DARPs. Their objective is to minimize the maximum deviation from the
patients’ preferred time. The study also highlights two important specifications in DARP services
that directly affect the service experience of patients. These are:

• Time window width at pickup or delivery locations: This specification measures the
deviation from the patient’s chosen departure or arrival time and affects the waiting time of
the patient. Increasing the width of time windows in DARP services gives greater flexibility
for the service provider, but at the same time, it results in lower service quality for patients.
In order to address the trade-off between time window width and service quality in DARPs,
some authors, such as Melachrinoudis et al. (2007) and Jorgensen et al. (2007) have suggested
adjusting time windows through a relaxation process - if the time windows are violated, they
are then penalized in the objective function.
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• Maximum user ride time: This specification sets a maximum time limit that patients
should not exceed and corresponds to the total time spent by a patient in the vehicle, riding
or waiting. The maximum user ride time can be the same for all patients, as in the study
of Cordeau and Laporte (2003), or differ among patients, as assumed in Molenbruch et al.
(2017a), Chassaing et al. (2016) and Parragh et al. (2009), who argue that this information is
highly specific to each of them. This maximum user ride time can also be enforced by imposing
time windows for each patient, both for the pickup and the delivery, as in Wolfler Calvo and
Touati-Moungla (2011), Parragh et al. (2015) and Atahran et al. (2014). In contrast to the
approach of setting user ride time and waiting time as upper bounds in constraints, Pfeiffer
and Schulz (2022a) and Pfeiffer and Schulz (2022b) take a different approach and focus on
minimizing these factors, specifically user ride time and waiting time, as the primary objectives
in their optimization models. Fahmy (2022) concentrates on minimizing extra ride times,
among other objectives, allowing this constraint to be relaxed.

The model proposed by Nasri and Bouziri (2017) specifically addresses service quality in depth
in DARPs. The problem addressed in this model involves minimizing travel costs and total travel
time for all vehicles while penalizing time window violations. Additionally, the model provides more
customized routes for patients with patient-dependent constraints. In Nasri et al. (2022), the goal
is to minimize total travel costs, which includes penalties for waiting times.

The studies of Dong (2022) and Dong et al. (2020) focus on defining patients’ utilities, which
are directly related to the satisfaction of time windows and maximum ride times. The studies allow
for violations of these constraints but aim to keep patients’ utilities within predefined limits. The
utility function is then used as a constraint to ensure that the solutions generated are acceptable
based on patients’ preferences.

2.3.2 Consistency in VRPs in general

Kovacs et al. (2014) demonstrate that providing a consistent service is also essential to reach cus-
tomer satisfaction in VRPs. Customers prefer to be serviced at regular times of the day and by
the same driver each time. While ensuring consistency may lead to higher operating costs, compa-
nies that can achieve a high level of consistency at a reasonable cost have a significant competitive
advantage over their competitors. This finding is supported by Braekers and Kovacs (2016), who
emphasize the importance of balancing consistency and cost-effectiveness in transportation services.

Kovacs et al. (2014) define three types of consistency in multi-period VRPs:

• Arrival time consistency, which is achieved when a driver visits each customer at similar
times of the day in the long run. This ensures that customers can anticipate when the driver
will arrive, which can improve customer satisfaction.

• Person-oriented consistency, also known as driver consistency from the customer’s point of
view. It aims to reduce the number of different drivers that serve a customer. From the driver’s
perspective, it is called territory consistency, which means that each driver is assigned to the
same region repeatedly, allowing the driver to become familiar with the area and potentially
improve efficiency.

• Delivery consistency, which is particularly relevant for goods delivery. It means that a
customer is replenished at regular intervals with similar delivery quantities or maintains a
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stable inventory level. This can help ensure that the customer always has sufficient inventory
and can plan their operations accordingly.

The problem formulation with a focus on consistency is referred to as the Consistent Vehicle
Routing Problem (ConVRP) in the literature, as highlighted in the study of Lespay and Suchan
(2021). It is important to note that consistency requirements must link different days in the planning
horizon, and each day cannot be treated as an independent one-day period problem, as assumed by
Lespay and Suchan (2021), Goeke et al. (2019), Kovacs et al. (2015) and Groër et al. (2009).

In the context of this study and focusing on DARP, the concept of driver consistency is of
utmost relevance. This is because patients are picked up and delivered based on their scheduled
appointments, making the arrival time consistency less significant in comparison. Additionally, since
DARP primarily deals with the transportation of individuals, delivery consistency does not hold
relevance in this context.

Paquette et al. (2012) demonstrate that driver consistency is one of the most important service
quality criteria for elderly and disabled people. Woodward et al. (2004) emphasize the importance of
having personnel with knowledge and skills regarding patients and services required. It is beneficial
to have a staff who is familiar with the patients’ preferences, culture, and routines, as this can make
patients feel more comfortable and simplify communication between parties.

Recent research on driver consistency in the static DARP is limited, with the most recent work
conducted by Braekers and Kovacs (2016). However, more recent studies have investigated driver
consistency in the context of VRPs, such as those conducted by Yang et al. (2022) and Rodríguez-
Martín and Yaman (2022).

There are various ways to model driver consistency:

• The common approach is to assign each patient to a single driver through a constraint.
However, this approach can result in increased operational costs, as drivers may not be opti-
mally assigned based on their availability and location. This approach can be seen in Groër
et al. (2009), Lespay and Suchan (2021), Coelho et al. (2012), Coelho and Laporte (2013),
Francis et al. (2006), Francis et al. (2007), Kovacs et al. (2014), Tarantilis et al. (2012) and
Rodríguez-Martín and Yaman (2022).

• This constraint is relaxed, allowing more drivers per patient, but bounding this num-
ber by a predefined parameter equal or larger than 1 (Braekers and Kovacs (2016),
Kovacs et al. (2015), Luo et al. (2015), and Zhong et al. (2007)).

• Yang et al. (2022) define a clear driver consistency measurement to be minimized in
the objective function. This is a measurement logarithmically linked to two factors: the
number of days a patient requests service during the planning period and the number of drivers
assigned to provide service to that patient.

Specifically, in Braekers and Kovacs (2016), the maximum number of different patients that
could transport a driver over a multi-period planning horizon was limited, and different values were
tested as upper bounds. The objective was to minimize the total routing costs. Specifically, upper
bounds of 1, 2, and 3 were tested, and the cost of driver consistency was found to be more expensive
when restricting the upper bound to 1. This resulted in cost increases ranging between 8,52% and
11,96% compared to the situation where driver consistency was not included as a constraint. On
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the other hand, allowing a maximum of 2 drivers per patient resulted in a cost increase of only
0,91% to 1,67%. Moreover, it was proven that allowing up to 3 drivers did not significantly reduce
costs. This assumption is also proved in Kovacs et al. (2015).

Several authors have approached the issue of improving driver consistency by penalizing unde-
sired driver-patient pairs in the objective function of the problem. Studies by Coelho et al. (2012),
Zhong et al. (2007), Coelho and Laporte (2013), Eveborn et al. (2006), and Smilowitz et al. (2013)
have implemented this approach to tackle the problem. Particularly, in Smilowitz et al. (2013), it
has been demonstrated that giving slight importance to driver consistency in the objective function
does not result in a significant increase in costs. However, it leads to a considerable improvement
in the regularity of the routing plan, as demonstrated in Braekers and Kovacs (2016).

In the studies by Smilowitz et al. (2013) and Feillet et al. (2014), driver consistency is improved
in a two-phase approach. In the first phase, initial routes are created without considering driver
consistency. Then, in the second phase, driver consistency is improved, and each route is assigned to
the driver who is the most familiar with the patients on the respective route or the region through
which the route is going.

2.4 Focus on route balancing

The research conducted by Azad et al. (2016) sheds light on the fact that not a lot of VRP formu-
lations take the issue of fairness into consideration. However, fairness considerations are critical for
ensuring that the workload is distributed equitably among workers, and any transportation problem
must take this dimension into account. Azad et al. (2016) also provides a review of the fairness
issues that arise in VRPs.

For two decades, authors have started to deepen the issue of fairness among drivers, and some
progress has been made in this area. However, these findings have only been incorporated into VRPs,
and there has not been any study that has included route balancing in DARPs. A comprehensive
literature review of such Vehicle Routing Problem with Route Balancing (VRPRB) can be found
in Matl et al. (2018).

There are various ways to define the workload for a driver in the context of delivery or trans-
portation services currently used in the literature. One possible approach is to consider the total
distance traveled by each driver, which is often correlated with the total route duration. In
their work, Feng and Wei (2022) draw attention to the difference between the total distance traveled
and the total route duration. While the former only accounts for the physical distance covered, the
latter includes the time spent on servicing each patient. Therefore, even if two vehicles cover the
same total distance, their respective route duration can differ depending on the number of patients
on board and the time needed to serve them. Another way is to quantify the workload based on
the number of units delivered or the number of satisfied patients.

Here is a reformulation of the list of objective functions to minimize unfair treatments among
drivers, based on Lozano et al. (2016) and Matl et al. (2018):

• Range: minimize the difference between the maximum and the minimum indicator value2

2This particular indicator value is selected among the various workload definitions mentioned above: total distance
traveled, total route duration, number of units delivered or number of satisfied patients.
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among all drivers;

• Maximum value: minimize the maximum indicator value among all drivers;

• Variance or standard deviation: minimize the variance or the standard deviation of indi-
cator values among all drivers, representing the spread of the indicator values;

• Relative deviation: minimize the sum of the relative deviation of each indicator value for
each driver from the maximum value of the same indicator among all drivers;

• Cumulative difference: minimize the cumulative differences overall drivers between their
respective indicator values and the minimum indicator value among all drivers;

• Mean absolute difference: minimize the mean absolute difference between each indicator
value and the mean of indicator values among all drivers;

• Gini coefficient: minimize the Gini coefficient of indicator values among all drivers, which
represents the inequality of the indicator distribution;

• Ratio between the maximum workload and minimum workload of drivers: minimize
the quotient obtained by dividing the indicator value of the driver with the highest indicator
by the indicator value of the driver with the lowest indicator (introduced by Jingjing et al.
(2022)).

According to experiments conducted by Lozano et al. (2016), the variance, standard deviation,
mean absolute difference, and Gini coefficient objective functions are more effective than the others
in minimizing unfair treatment among drivers. These indicators consider the distribution differ-
ences among all drivers, rather than solely comparing them with the maximum or minimum value.
Therefore, they provide a more comprehensive view of the fairness issue in workload distribution.
Individuals not only strive to improve their own welfare but also value being treated fairly in com-
parison to others. The importance of fairness in addition to personal gain is a recognized aspect of
human behaviour, as highlighted by the findings of Sánchez et al. (2022) in their recent study. In this
thesis, the standard deviation is chosen as the specific indicator for measuring route balancing.

2.5 Integration of driver consistency with route balancing

According to the explored literature, there is only one research article that combines the
concept of driver consistency with route balancing in a single problem formulation for
the VRP (Mancini et al. (2021)). However, there is currently no research that has attempted to
combine these concepts in the context of the DARP. The authors of this study suggest that these
objectives can be included in the same objective function without incurring significant additional
costs. This finding was influential in the decision to pursue a similar approach in the current study.

2.6 Meta-heuristics used

The DARP is an NP-hard problem, as explained in Section 1.1. Although smaller instances of the
DARP can be solved using exact methods such as the branch-and-cut algorithm or the column
generation technique, these methods can be time-consuming and may not be adaptable to larger
instances. Nevertheless, to counter these weaknesses, meta-heuristic algorithms are commonly used
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to solve DARPs. Therefore, this thesis will focus on reviewing the literature on meta-heuristic
algorithms that are commonly used to solve DARP.

According to Sörensen and Glover (2013), meta-heuristic is an algorithmic framework that is
problem-independent (as opposed to traditional heuristics that are problem-dependent) and operates
at a high level to guide the development of heuristic optimization algorithms. The main goal of a
meta-heuristic is to identify the best feasible solution among all possible solutions in an optimization
problem. The authors also propose various classifications for meta-heuristics:

• Local search algorithms attempt to find relatively good solutions to an optimization prob-
lem by iteratively changing the current solution through a single move, known as a neigh-
borhood search. This process generates a set of new solutions, called the neighborhood of
the current solution, and the current solution is replaced iteratively by one of its neighbors
based on a move strategy. Variable Neighborhood Search (VNS), Simulated Annealing (SA),
Deterministic Annealing (DA), Tabu Search (TS) and Large Neighborhood Search (LNS) are
examples of local search meta-heuristics.

• Constructive algorithms build solutions by incrementally adding elements to a partial
solution. Once a complete solution is obtained, constructive algorithms are often combined
with a local search method to improve the solution. Examples of constructive meta-heuristics
include Greedy Randomized Adaptive Search Procedure (GRASP), Ant Colony Optimization
(ACO), and the Pilot method.

• Population-based algorithms aim to identify good solutions by combining existing solu-
tions from a set, known as a population. Genetic Algorithm (GA), Scatter Search, and Path
Relinking (PL) are examples of population-based meta-heuristics.

• Hybrid algorithms combine two or three different types of meta-heuristics in an attempt to
leverage the strengths of each component algorithm. One example of a hybrid meta-heuristic
is the Memetic Algorithm (MA), which incorporates local search algorithms within a genetic
algorithm framework.

As mentioned in Zidi et al. (2012), population-based algorithms can be computationally expen-
sive and memory-intensive as they generate and evaluate a large number of solutions in the search
process. This can result in longer execution times compared to local search algorithms. Given that
the DARP often needs to be solved in real time, the current literature tends to prioritize the use of
local search algorithms, which can quickly generate solutions and provide satisfactory results.

According to Braekers et al. (2014), meta-heuristics offer a more extensive exploration of the
objective space than traditional heuristics. This is due in part to their ability to generate and
consider deteriorating or infeasible intermediate solutions during the search process. As a result,
meta-heuristics are less likely to become trapped in local optima, which is a common issue with
traditional heuristics. In this thesis, the SA algorithm, specifically a local search approach,
will be employed. The rationale behind this choice will be thoroughly explained in Section 4.1.

2.7 Summary and thesis contribution

Table 2.7 summarizes the literature on static and deterministic DARP from 2006 to the present.
Each reference in the table indicates the characteristics of the problem formulation, including the
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number of depots (single, S or multiple, M), the fleet of vehicles homogeneity (homogeneous (HO)
or heterogeneous (HE)), the inclusion of vehicle capacity constraints, patient time windows and
maximum ride times, driver maximum route duration, and the presence of a single (S) or multiple
(M) objective(s) in the objective function. Additionally, if the authors used a meta-heuristic or
heuristic to solve the problem, the name of the method is mentioned in the last column. References
marked with a "/" only discuss exact solution methods.

The main objective of this thesis is to investigate the feasibility of incorporating driver
consistency and route balancing into a single problem formulation for the MP-DARP.
This is a totally new research direction as no prior work has explored the integration of these aspects
in the DARP context. Although driver consistency and route balancing have been studied to some
extent in the VRP literature, there is very little research on these topics in the DARP domain,
particularly any research regarding route balancing. Furthermore, only one article has dealt with
the integration of both features in the VRP. To address this research gap, a meta-heuristic
approach will be adopted, and more specifically, the SA algorithm will be utilized.
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Reference Depot(s) Fleet Cap. TW Ride time Route duration Obj. Algorithm
Mauri and Lorena (2006) M HE X X X X M SA
Jorgensen et al. (2007) S HO X X X X M GA

Melachrinoudis et al. (2007) M HE X X M TS
Häll et al. (2009) S HO X X X X S /
Karabuk (2009) M HE X X X X S Heuristic

Mauri et al. (2009) M HE X X X X M SA
Parragh et al. (2009) S HO X X X X M VNS and PL
Cortés et al. (2010) M HO X X S /
Garaix et al. (2010) M HE X X X M /
Garaix et al. (2011) M HE X X X S /

Parragh (2011) S HE X X X X S /
Wolfler Calvo and Touati-Moungla (2011) S HO X X M TS

Chevrier et al. (2012) S HE X X X X M GA
D’Souza et al. (2012) S HO X M SA and GA
Parragh et al. (2012) S HE X X X X S

Zidi et al. (2012) S HE X X M SA
Guerriero et al. (2013) S HE X X X X S TS and GRASP

Kirchler and Calvo (2013) S HO X X X X M TS
Paquette et al. (2013) S HE X X X X M TS
Qu and Bard (2013) S HE X X S LNS

Reinhardt et al. (2013) M HE X X X M SA
Atahran et al. (2014) S HE X X X M GA
Braekers et al. (2014) M HE X X X X S DA

Ilani et al. (2014) M HE X X X S Shortest path
Masson et al. (2014) M HO X X X X S LNS
Lehuédé et al. (2014) M HO X X X X M LNS

Liu et al. (2015) S HE X X X X S /
Parragh et al. (2015) S HO X X X X S VNS
Qu and Bard (2015) S HE X X X X M /
Lehuédé et al. (2014) M HO X X X X M LNS

Urra et al. (2015) S HO X X X X M Hyper heuristic
Zhang et al. (2015) S HO X X X X M GA

Braekers and Kovacs (2016) S HE X X X X S LNS
Chassaing et al. (2016) S HO X X X X S Evolutionary local search
Ritzinger et al. (2016) S HO X X X X S LNS

Detti et al. (2017) M HE X X X M TS and VNS
Masmoudi et al. (2017) S HE X X X X S GA
Molenbruch et al. (2017) S HO X X X X M VNS

Pimenta et al. (2017) S HO X X S GRASP
Posada et al. (2017) S HE X X X S /
Schönberger (2017) M HE X X X S MA

Ho et al. (2018) S HO X X X X M Multi-atomic annealing
Tellez et al. (2018) M HE X X X M LNS

Alisoltani et al. (2019) M HO X X S Cluster-based approach
Belhaiza (2019) S HE X X X X S GA and LNS
Hu et al. (2019) S HO X X X X M /

Dong et al. (2020) S HE X X X X S /
Masmoudi et al. (2020) S HE X X X X S LNS

Souza et al. (2020) S HE X X X X S VNS
Malheiros et al. (2021) M HE X X X X S Heuristic
Rist and Forbes (2021) S HO X X X X S /

Chen et al. (2022) S HO X X M LNS
Dong (2022) S HE X X X X S /
Fahmy (2022) S HO X X X X M GA and VNS

Grinshpoun et al. (2022) S HE X X X S Shortest path
Melis and Sörensen (2022) S HO X S LNS

Nasri et al. (2022) S HE X X X X S Evolutionary descent
Pfeiffer and Schulz (2022a) S HO X S LNS
Pfeiffer and Schulz (2022b) S HO X S /

Su et al. (2023) M HE X X X X M DA
Ham (2023) S HE X X S /

Hubert (2023) S HE X X X X M SA

Table 2.2: Literature review on static and deterministic DARP, based on Ho et al. (2018) until
2018. The letter "S" represents the term "Single", while "M" stands for "Multiple". In addition,
"HO" denotes "Homogeneous" and "HE" indicates "Heterogeneous".
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3 Problem description

This chapter formally defines the problem in terms of parameters, variables, and constraints. The
objective function is discussed, along with the indicators used to measure driver consistency and
route balancing, and how they are integrated.

In this thesis, the aim is to solve the heterogeneous MP-DARP using a meta-heuristic
approach. Parameters, variables, and constraints required for the problem were formulated by
drawing on relevant theories and insights from various sources, including Mitrović-Minić and Laporte
(2004), Cordeau and Laporte (2007), Kovacs et al. (2014), Molenbruch et al. (2017b) and Paquay
et al. (2020).

3.1 Parameters

• Network:

– A set of locations that represent patients’ homes, medical centres, and the depot;

– Distances and travel times between each pair of locations.

• Time horizon:

– Total number of working days;

– Total duration of each working day.

• Requests of patients:

– A list of request types to satisfy over the time horizon. A single patient may have
varying request types over the whole time horizon, and some of these requests may be
repeated on multiple days. For instance, a patient may require transportation for dialysis
appointments on certain days and transportation for physical therapy appointments on
other days. Each of these request types contains:

∗ A departure and a delivery location;
∗ Days over which the request type is repeated throughout the entire time horizon;
∗ A load, split into different resource types. Resource types can, for example, include

normal seats, people in wheelchairs, or accompanying people;
∗ Time windows for the pickup and the corresponding delivery;
∗ A maximum ride time;
∗ A service time, which represents the time needed for the patient to be loaded or

unloaded.
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• Drivers:

– Total number of drivers, which is equal to the total number of available vehicles (through-
out the rest of the study, these terms will be used interchangeably);

– Starting and ending times of the working day for all drivers;
– Total capacity of each resource type in each vehicle;
– Maximum route duration for each driver.

3.2 Variables

There are two main types of variables: decision variables and auxiliary variables. Decision variables
are those that are subject to decisions and are adjusted to obtain the best solution to the problem.
On the other hand, auxiliary variables are derived from the values of decision variables and are used
to model the constraints of the problem.

3.2.1 Decision variables

• Sequence of requests that will be satisfied by each driver on each day, enabling the evalu-
ation of driver consistency;

• Schedule of all routes: arrival time, start time of service and leaving time at each location.

3.2.2 Auxiliary variables

• Routes of each driver on each day:

– Load of the vehicle after each visited location for each resource type;
– Earliest and latest arrival time and departure time at each location;
– Slack time at each location, which is defined as the difference between the latest departure

time and the earliest departure time from the location (as in Mitrović-Minić and Laporte
(2004));

– Working load of the route, corresponding to the difference between the arrival time of the
driver at the final depot location and its corresponding departure time from the initial
depot.

• Total travel time for each driver over the entire time horizon, which refers to the cumulative
duration of all their routes combined. It represents the sum of the working loads of all routes
assigned to each driver and allows the measurement of route balancing.

3.3 Constraints

The problem must satisfy various constraints, including patient constraints, driver constraints,
routes feasibility and schedule constraints. All of these constraints will be considered to be hard
in the problem being studied, meaning that no violations are allowed. The aim is to prioritize the
satisfaction and comfort of both patients and drivers. Hence, meeting their requirements without
any violation is of utmost importance.
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• Patient constraints:

– Each request is satisfied exactly once;

– Each patient is served within its specified time windows;

– The riding time of each patient does not exceed the corresponding maximal duration.

• Route feasibility constraints:

– A pickup and its corresponding delivery have to be performed by the same driver;

– A pickup is always performed before its corresponding delivery.

• Drivers constraints:

– Each driver starts and ends its route at the depot location;

– Each driver starts and ends its route within the depot opening hours;

– The capacity of each resource type is respected for each vehicle on each day after each
visited location;

– The duration of each route does not exceed the maximum route duration imposed by
each driver.

• Schedule constraints:

– The arrival time at each location is always before the service starting time, for each
vehicle at each location on each day;

– The departure time from each location is always after the starting time of the service
plus the service time of each related patient for each vehicle at each location on each day;

– There is sufficient time for the vehicles to travel from one location to the next based on
the distance between them and the speed of the vehicles.

3.4 Objective function discussion

The purpose of this section is to provide a detailed explanation of how the objective function of the
problem is formulated and how it incorporates both the objectives of achieving driver consistency
and route balancing simultaneously.

3.4.1 Driver consistency assessment

The literature, as discussed in Section 2.3.2, has already explored different approaches to define
driver consistency. Assigning a single driver to each patient was found to be too restrictive and
significantly increases operational costs. Furthermore, in the problem being studied, enforcing one-
to-one relationships between patients and drivers would have compromised route balancing and led
to sub-optimal solutions.

Although limiting the number of drivers per patient could have been considered as a potential
solution to the problem, as in the work realized by Braekers and Kovacs (2016), such an approach
may lead to violating certain constraints to obtain feasible solutions. As highlighted in Section 3.3,
it is crucial to ensure maximum patient and driver comfort in the problem under investigation, and
thus no constraints can be violated in the pursuit of feasible solutions.
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In this thesis, the approach chosen to address the driver consistency issue is to minimize a
measurement in the objective function. Various possibilities were considered, including:

• Summing up the number of different drivers that serve each patient over the entire time
horizon;

• Computing the mean number of drivers seen per patient over the entire time horizon;

• Determining the maximum number of drivers seen by any patient over the entire time horizon.

The second possibility was ultimately chosen among the considered options. This is more represen-
tative of the overall situation compared to the first option which only considers all drivers without
distinguishing their distribution among the patients’ journeys; in the same way, this is also more
representative than the third option which only considers the maximum number of drivers for a
single patient.

The driver consistency indicator can be mathematically represented as follows:∑P
p=1 dp

P

where the parameter P denotes the total number of patients and dp refers to the count of distinct
drivers serving each patient p throughout all the working days considered.

3.4.2 Route balancing assessment

The definition of workload in this thesis is based on the total route duration of each driver
over the entire time horizon, which takes into account not only the distance traveled but also
the service times required for loading or unloading patients, as described in Section 2.4. This can
be computed by adding up the route duration of each driver over the number of days considered.
Furthermore, relying solely on the total number of satisfied patients as the objective function can
result in some drivers having to cover longer distances if a patient is located far away from the
others, leading to an unfair distribution of working times.

The objective function chosen to assess route balancing, as proposed by Lozano et al. (2016),
is the standard deviation among the total route duration of all drivers. The advantage
of using standard deviation as a measurement is that it reflects how the workload is distributed
among drivers, and hence provides a more comprehensive evaluation of the balance among drivers
compared to other metrics that only consider the workload of a single driver among the others.
Other options like variance or mean absolute difference could have also been considered.

The route balancing indicator can be mathematically represented as follows:√√√√ 1

n

n∑
i=1

(xi − x)2

In this formula, n refers to the total number of drivers, while xi represents the total route
duration of driver i over the entire time horizon. More specifically, xi can be calculated by summing
up the route duration of driver i for each day in the time horizon. Finally, x represents the mean
of the total route duration among all drivers over the entire time horizon.
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3.4.3 Relation between both objectives

As explained in Section 2.2.2, when dealing with a MO-DARP with dual objectives like in this case,
there are three main ways to integrate them. In this study, the chosen approach is the lexicographic
optimization method, where the driver consistency objective is given priority over the route
balancing objective. The decision to prioritize driver consistency over route balancing is grounded
in the principle of prioritizing patient comfort and well-being. Additionally, the optimization of
route balancing is consistently addressed as a lower-level objective in the existing literature on this
topic.

The idea of using a weighted sum to combine the driver consistency and route balancing indi-
cators was not appropriate, mainly because these indicators are not expressed in the same units,
and determining the appropriate weights would have been challenging. The weights chosen would
have significantly influenced the results and their relative importance compared to each other. The
possibility of using a Pareto frontier was also considered, but ultimately not pursued in this work.
Although it would have provided a set of solutions that would have allowed decision-makers to
choose based on their preferences, it would have required more computational effort to generate the
entire set of solutions.
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4 Methodology

This chapter outlines the methodology followed in this thesis to solve the problem at stake. The
choice of the Simulated Annealing (SA) algorithm is addressed, including the selection of the initial
solution method, parameters choice, and neighborhood structures definition. Finally, the structure
of the final solutions is provided.

4.1 Choice of the Simulated Annealing

A study conducted by Baugh Jr et al. (1998) shows that among all meta-heuristics commonly used
to solve DARPs in the current literature, including TS, SA, DA, GA, VNS, and LNS, SA appears
to be suitable for several reasons:

• The technique can be easily adapted for problems with a well-defined neighborhood structure;

• It has desirable theoretical convergence properties and can find near-globally optimal solutions
in a reasonable amount of time with a suitable annealing schedule;

• Other meta-heuristics, such as TS or LNS, can be easily integrated in a SA to create effective
hybrid meta-heuristics.

As demonstrated in Section 2.6, the literature has examined the use of the SA to solve the
DARP problem, but its application has been less frequent compared to other meta-heuristics such
as LNS or TS. Therefore, this thesis seeks to demonstrate the effectiveness of the SA and apply it
to a new problem, thus contributing to the advancement of the field of meta-heuristics for solving
optimization problems.

The SA is a meta-heuristic algorithm based on the annealing process of metals in metallurgy. The
algorithm starts with an initial solution and iteratively searches the solution space by accepting
new solutions that are either better or worse than the current one, based on a probability function
that depends on the temperature of the system. The algorithm starts with a high temperature
that allows it to accept a large number of worse solutions in order to explore the solution space.
This is done to prevent the algorithm from being stuck in local optima, compared to traditional
descent algorithms that iteratively update the current solution by seeking a slightly better one at
each step until certain stopping conditions are met (Pirlot (1996)). In the SA, as the temperature
is decreased over time, the algorithm becomes more selective and only accepts new solutions that
improve the objective function.

At each iteration, a random perturbation is applied to the current solution to generate a new
candidate solution. This perturbation is usually defined by a neighborhood structure that deter-
mines which solutions can be reached from the current solution by a single move. The probability
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of accepting a new solution is calculated based on a parameter called the acceptance probability,
which is a function of the difference between the objective function value of the new solution and
the current solution, as well as the temperature of the system. This function is designed to allow
the algorithm to accept worse solutions with a decreasing probability as the temperature decreases,
while still allowing for some exploration of the solution space. The temperature is usually decreased
gradually over time, according to a cooling schedule, until a stopping criterion is met, such as a
maximum number of iterations or a desired level of solution quality (Pirlot (1996)). A more detailed
description of how the SA algorithm works can be found in Algorithm 1.

Algorithm 1 Simulated Annealing algorithm.
Input: Initial solution s, temperature T0, cooling rate r, plateau length L, stopping criterion,

neighborhood structure
Output: Best solution found s∗

s∗ ← s ; // Initial best solution is the starting solution
T ← T0 ; // Set the initial temperature
while stopping criterion not met do

for i← 1 to L do
Choose randomly a new solution s′ in the neighborhood of s
∆I(f(s′)− f(s))← compute the objective indicator difference between s′ and s
if ∆I < 0 then

s← s′

if f(s) < f(s∗) then
s∗ ← s ; // Update best solution found so far

end
end
else

p← acceptance probability based on ∆I and current temperature T
Choose a random number u between 0 and 1;
if u < p then

s← s′

end
end

end
end
T ← r · T ; // Cool down the temperature
return s∗

Algorithm 1 takes as input an initial solution s, an initial temperature T0, a cooling rate r, a
plateau length L, a stopping criterion and a neighborhood structure, and returns the best found
solution s∗. The iterative process involves generating a new solution s′ in the neighborhood of s,
computing the objective indicator difference ∆I between s′ and s which can compare either the
driver consistency indicator or the route balancing indicator, and accepting or rejecting the new
solution based on the acceptance probability and the current temperature T . After a certain number
of iterations, which is equal to the plateau length, the temperature is gradually decreased to enable
the algorithm to converge towards a solution of higher quality.

The stochastic nature of the solution acceptance in SA can result in different solutions being
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obtained in various runs of the algorithm, which is a potential drawback. Therefore, to ensure
confidence in the quality of the obtained solutions, it is necessary to run the algorithm multiple
times. This issue is highlighted by Baugh Jr et al. (1998) in their study on meta-heuristics for
solving DARPs.

As described in Algorithm 1, implementing a SA requires making some decisions regarding
the initial solution method, the neighborhood structure, and various parameters such as the initial
temperature, the cooling rate, the plateau length, and the stopping criterion. The following sections
will delve into how these choices were made for the specific problem addressed in this thesis.

4.2 Choice of the initial solution method

In contrast to many other studies where the initial solution is typically generated randomly, this
study adopts a different approach by using an insertion heuristic to construct the initial solution.

The primary objective of the initial solution creation method is to prioritize optimizing driver
consistency to the greatest feasible extent, as it represents the higher-level objective. This
objective is achieved by clustering requests based on the patients they belong to and examining
patients individually. To maximize the likelihood of assigning all requests from each patient to a
single driver, patients are considered in descending order based on the total number of requests
they have throughout the entire time horizon. This sorting approach significantly increases the
probability of efficiently allocating all transportation needs for each patient to a single driver, thus
enhancing feasibility and improving overall efficiency. The ultimate objective is therefore to
allocate each patient and their associated requests to a single driver’s route, considering
all days in the schedule. However, as there are usually more patients than drivers, some drivers
may end up taking multiple groups of patients on their routes. Therefore, once all drivers already
have the requests of a particular patient, drivers will be ranked in ascending order based on their
total route duration over the entire time horizon. Then, they will be considered in this order, and
the first driver on the list who can accommodate all of the patient’s requests will take them all.
This approach takes route balancing into account to some extent. If no single driver is
capable of accommodating all of a patient’s requests, the requests will be divided among multiple
drivers’ routes. Each request will thus be assigned to the first driver, in ascending order of total ride
time, who can accommodate it. As the SA algorithm progresses, these initial allocations of patients
to drivers’ routes are expected to improve. Algorithm 2 illustrates this initial solution creation
method.

With this method, the algorithm will always begin from the same solution since the order in
which patients and drivers are considered is predetermined and fixed.

It is worth noting that the initial solution generated by this insertion heuristic is always feasible
for the dataset under consideration (described in Section 5.1). This means that all requests can be
successfully accommodated without violating any constraints. As a reminder, all constraints are
considered to be hard, as described in Section 3.3, and are checked at each step of the solution
construction. Furthermore, when a request can be inserted at multiple positions along a driver’s
route, the position that minimizes the total route duration is selected. This approach aims to reduce
the total distance traveled to a certain extent.
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Algorithm 2 Initial solution creation method.
Input : List of all patients p in P with all their respective requests pr over the entire time hori-

zon, available drivers D
Output: Initial routes on each day for all drivers in D

Order all patients in P in descending order based on the number of requests they have through-
out the entire time horizon;

foreach driver d in available drivers D do
Create empty routes for the vehicle on each day;

foreach patient p in ordered patients P do
Rank drivers in ascending order of total ride times;
foreach driver d in ordered drivers do

if driver d can accommodate all r in pr over all days then
Assign all r in pr to the routes of d over all days;

if all requests r in pr have not been assigned to any driver then
foreach request r in pr do

foreach driver d in ordered drivers do
if driver d can accommodate the request r in its schedule on all days then

Assign r to the routes of d on all days;
Rank again drivers in ascending order of total ride times;

In order to create route schedules, this study drew on insights from Paquay et al. (2020) and
Mitrović-Minić and Laporte (2004) to compute the earliest and latest arrival and departure times
for each location. If the initial depot is denoted by 0 and the final location by l, the scheduled
arrival time Ai at location i can be any time between the earliest arrival time Ai and the latest
arrival time Ai. Similarly, the scheduled departure time Di from any location i must fall between
the earliest departure time Di and the latest departure time Di. The earliest arrival time Ai (resp.
the earliest departure time Di) represents the earliest time at which location i can be reached
(resp. left), assuming that all preceding locations have been served at the earliest moment within
their respective time windows. These earliest arrival and departure times are thus determined by
performing a forward pass through the requests along the routes. Mathematically, it means that the
following equations hold (equations 4.1 to 4.3, where t represents the time when the vehicle leaves
the initial depot, ti,j denotes the time required to travel from location i to location j, ai indicates
the earliest arrival time requested by the patient at location i, and si demonstrates the service time
required by the patient at location i):

A1 = t+ t0,1, (4.1)
Di = max{ai, Ai}+ si,∀i ∈ [1, ..., l], (4.2)

Ai = Di−1 + ti−1,i,∀i ∈ [2, ..., l]. (4.3)

The latest departure time Di from location i (resp. the latest arrival time Ai to location i) is the
latest possible moment at which the vehicle can leave location i (resp. arrive at location i) to be able
to serve on time all locations following i. These values are computed by performing a backward
pass through the requests along the assigned routes, meaning that the following equations hold
(equations 4.4 to 4.6, where bi denotes the latest arrival time requested by the patient at location
i):
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Al = bl − sl, (4.4)
Di = Ai+1 − ti,i+1,∀i ∈ [1, ..., l − 1], (4.5)

Ai = min{Di − si, bi},∀i ∈ [1, ..., l − 1]. (4.6)

During the initial solution creation process, as well as for all computations made in the study
more generally, a waiting strategy was selected. Two main waiting strategies are discussed in
Mitrović-Minić and Laporte (2004):

• The drive-first waiting strategy requires vehicles to drive as soon as it is feasible, leaving
each location at the earliest possible departure time. This strategy is considered to be the
most suitable for static VRP problems (as stated by Mitrović-Minić and Laporte (2004)).

• The wait-first waiting strategy requires vehicles to wait at their current location for as
long as it is feasible, leaving each location at the latest possible departure time.

To ensure compliance with the maximum ride times of patients and maximum route duration
of drivers, the drive-first waiting strategy is chosen in this study. This means that when a
patient is loaded, a driver continues its route without any waiting at the location. However, to
ensure compliance with the maximum route duration constraints for drivers and enable a later
arrival at the first location, the wait-first waiting strategy is utilized when departing from the
initial depot. This strategy involves waiting at the depot until the latest possible departure time is
reached, thus aiming to reach the first location as late as possible. By adopting this strategy, the
algorithm minimizes the overall time spent throughout the entire route.

4.3 Choice of the neighborhood structures

As a reminder, the goal is to optimize two objectives using a lexicographic objective function: one to
evaluate driver consistency and the other to evaluate route balancing. In order to achieve this, the
algorithm requires at least two distinct neighborhood structures. One should be designed to
primarily optimize driver consistency, even at the expense of route balancing, while the other should
aim to improve route balancing without compromising the achieved level of driver consistency.

Insights from Zidi et al. (2012), Mauri and Lorena (2006), and Braekers et al. (2014) suggest
that there are several elementary local search operators that can be used to create neighbors of a
current solution. These operators can be categorized into two types: intra-route operators and
inter-route operators. Intra-route operators modify only one route in the neighborhood process,
while inter-route operators modify multiple routes simultaneously. The following is a summary list
of the most used local search operators:

1. Intra-route operators:

• The re-order route operator: selects a location in a route, which can be either a pick-up
or a delivery location, and changes its position to a new one in the same route, ensuring
that a pick-up is always before its corresponding delivery;

• The k-opt operator: removes k arcs from a route and tries to reconnect the remaining
segments in all possible ways.
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2. Inter-route operators:

• The relocate operator: removes a request from its current route and tries to insert it into
another vehicle route, at the best possible position;

• The exchange operator: swaps two requests of two different routes or swaps the vehicles
of two routes;

• The 2-opt* operator: removes an arc from two routes and recombines the resulting parts,
which means the first part of route one with the second part of route two, and vice versa.

In the context of this study, using intra-route operators may not be as effective in improving
both driver consistency and route balancing. This is because it would still assign the same requests
to the same routes, which would not reduce driver consistency since the same drivers would still
serve the same requests. Additionally, it could alter the route balancing indicator since the total
duration of a route would change. Since the initial positions of the requests are always determined
to minimize the total route duration, altering the positions of some requests may only result in an
increase in the total route duration without necessarily ensuring better route balancing. Therefore,
inter-route operators will be used to reach the objectives of this study.

The relocate operator has been chosen among the inter-route operators. This choice is mo-
tivated by the fact that it has a higher potential to improve both driver consistency and route
balancing at the same time, compared to the exchange operator. While the latter may improve
these objectives in some cases, it may also worsen them in many situations. In contrast, the relocate
operator allows requests to be moved from one route to another, potentially balancing the workload
of drivers and reducing the overload of drivers with too many requests, while increasing the work-
load of drivers with fewer requests. By reallocating requests to different drivers, the operator can
also improve driver consistency. The 2-opt* operator was also considered, but it was not selected
because it may not improve driver consistency and route balancing as much as the relocate operator.

The relocate operator will be applied strategically to improve both driver consistency and route
balancing indicators over the entire time horizon. This means that the operator will not be applied
randomly. Instead, it will be used to analyze the indicators over the entire time horizon
and choose the requests to relocate and their new routes accordingly. The approach will
differ depending on the objective being taken into consideration, as explained in the next two sub-
sections. For each neighborhood structure, a destroy and a repair operator will be defined. The
former defines how the locations will be removed from a route, and the latter determines how these
same locations will be reinserted into their new routes (as seen in Kovacs et al. (2015)).

4.3.1 Neighbor 1: focus on driver consistency

As a reminder of what was detailed in Section 3.4.1, the goal related to driver consistency is to
minimize the average number of drivers that each patient sees throughout the entire time horizon.
To improve this metric, it is important to pay attention to the extreme values, particularly the
highest one, in order to reduce the mean value as much as possible.

The destroy operator identifies a selected patient, who is the patient that sees the largest
number of drivers over the entire time horizon. Then, the operator selects an initial selected
driver at random from the set of drivers that the selected patient sees over the time horizon. It
then removes all the requests related to the selected patient on the daily roads of this selected driver.
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A list of requests that need to be relocated to another driver’s daily routes is generated as a result.
It should be noted that all of these requests must be reassigned to the routes of a single driver,
as assigning them to multiple drivers would often worsen driver consistency.

Choosing the appropriate driver to reassign the requests is critical, as it directly affects the
driver consistency indicator. To prevent any counter-effects, it is crucial to select a driver that the
selected patient already sees during the time horizon while avoiding the initially selected driver.

To achieve this, drivers are split into two groups. The first group includes those seen by the
selected patient during the time horizon, excluding the initially selected driver. The
second group consists of all the others, including the initially selected driver. The drivers
in both groups are further sorted based on their total route duration in ascending order,
which helps to consider route balancing to a certain extent.

The repair operator plays a crucial role in relocating the requests to a single driver while adhering
to all constraints. The operator starts by examining the drivers in the first group. If any driver in
this group can accommodate all the requests without violating any constraints, then the requests
are assigned to that driver. However, if no driver in the first group can accommodate all the
requests, the second group of drivers is considered in the same order, with requests being assigned
to the first driver who can take them all, but stopping when the initially selected driver is
reached. This is because assigning the requests to drivers with longer total route duration will
not improve driver consistency or route balancing. However, assigning requests to a driver with a
shorter total route duration can lead to better route balancing, even if it does not improve driver
consistency. Therefore, drivers who are ranked after the initially selected drivers are not considered,
while all drivers ranked before are taken into account. Furthermore, in any case, it will always be
possible to insert the requests onto the initially selected driver’s roads as they were already inserted
there previously, ensuring feasibility, even if no improvements are made to either objective.

As in the initial solution creation method, during the request insertion, if a request can be
added to a driver’s road at multiple positions, the position that results in the minimum total route
duration is chosen. Algorithm 3 describes these destroy and repair operators in order to create the
neighborhood structure.

Since this neighborhood structure contains a random factor, which is related to the choice of
the initially selected driver, the final algorithm will need multiple runs in order to ensure the quality
of the final solution obtained.

Using this particular neighborhood structure, when starting from a current solution s with P
patients and D drivers, the size of the neighborhood is determined by the number of drivers
that are initially assigned to the selected patient in the current solution s. It should be
emphasized that the selected patient will change throughout the process due to the redistribution
of drivers among patients by the relocate operator. As a result, the total route duration of the
drivers will also be altered. Consequentially, the order in which they will be considered for the next
neighbors’ computations will also change. This dynamic nature of the algorithm ensures that each
iteration explores new possibilities by continually adapting the assignment of drivers and evaluating
alternative configurations.
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Algorithm 3 Neighbor structure focused on driver consistency.
Input : Current solution s, list of patients P , list of drivers D
Output: Neighbor solution s′

s′ ← s;
Find the selected patient p ∈ P who sees the largest number of drivers over the entire time hori-
zon;

Choose the initial selected driver dinit at random from the set of drivers that patient p sees over
the time horizon;
R′ ← ∅;
for each day t do

Remove all requests related to p on the daily routes of dinit and add them to R′;
D1 ← drivers seen by p during the time horizon, excluding dinit;
D2 ← D \D1;
Sort drivers in D1 and D2 based on their total route duration in ascending order;

assigned← False;
for each driver d ∈ D1 do

if d can accommodate all the requests included in R′ then
Add all the requests included in R′ to the daily routes of d, ensuring that their insertion
position result in the minimum possible total route duration;
assigned← True;
break;

if assigned = False then
for each driver d ∈ D2 until dinit is reached do

if d can accommodate all the requests included in R′ then
Add all the requests included in R′ to the daily routes of d, ensuring that their inser-
tion position result in the minimum possible total route duration;
assigned← True;
break;

return s′

4.3.2 Neighbor 2: focus on route balancing

The aim of the route balancing indicator, as described in Section 3.4.2, is to minimize the standard
deviation among the total route duration of all drivers throughout the entire time horizon. To
improve this metric, it is essential to target the extreme values, whether they are the highest or
lowest, and make them converge towards a common value to minimize the standard deviation as
much as possible.

In this case, the destroy operator works by identifying a selected driver who has the longest
total route duration over the entire time horizon. Then, the operator randomly chooses a selected
request from the set of requests that are serviced by the selected driver over the entire period of
time. To account for driver consistency to a certain extent, if the selected request is an outbound
travel, the corresponding inbound travel will also be chosen if it is on the selected driver’s routes1,

1In the current problem formulation, drivers are not explicitly required to handle both outbound and inbound
requests from a single patient. However, it is important to emphasize that during the initial solution creation process,
where driver consistency is prioritized, it is common for drivers to be assigned both outbound and inbound requests
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and vice versa. The operator then removes these requests from all the daily routes of the selected
driver if they are on the driver’s routes over several days, constructing a list of daily requests to be
replaced. These requests are then to be reallocated together to another driver’s routes.

Since the workload of the most heavily loaded driver is decreased, the workload of the least
occupied driver has to be increased in order to minimize the standard deviation. For this reason,
drivers are sorted in ascending order of their total route duration over the entire time
horizon. The repair operator will then evaluate the feasibility of inserting the requests onto the
drivers’ routes, starting from the driver at the top of the list and moving downwards, until a driver
capable of accommodating all the requests for the entire planning period is found. As
for the first neighborhood structure explained in the last section, a driver is considered capable of
accommodating the requests only if all constraints are met, which ensures that the construction of
the routes remains feasible. If none of the other drivers can accommodate the requests, they will
be returned to the selected driver’s routes, which will be placed last on the list. Each insertion is
made in such a way that the total route duration is minimized, as in the initial solution creation
method and the first neighborhood structure.

Algorithm 4 describes these destroy and repair operators in order to create this second neigh-
borhood structure.

Algorithm 4 Neighbor structure focused on route balancing.
Input: Current solution s, list of drivers D
Output: Neighbor solution s′

Identify the selected driver ds with the longest total route duration over the entire time horizon;
Randomly select a request rs from the set of requests that are serviced by ds over all days;
if rs is an outbound travel then

Select the corresponding inbound travel, rs′ , if it is on ds’s routes;
end

if rs is an inbound travel then
Select the corresponding outbound travel, rs′ , if it is on ds’s routes;

end
Remove rs and rs′ (if applicable) from all daily routes of ds to construct a list of daily requests to
be replaced, L;

Sort all drivers in D by ascendant total route duration, ensuring that ds is at the last position;
for each d in ordered drivers do

if d can accommodate all r in L then
Create a new solution s′ by inserting all r in L into d’s daily routes in a manner that mini-
mizes the total duration of each route;

end
end
return s′

Similarly to the neighborhood structure detailed in Section 4.3.1, this one contains a random
factor which is related to the choice of the request to remove from the selected driver’s routes.
Thus, the final algorithm will need multiple runs in order to ensure the quality of the final solution
obtained.

from the same patient.
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In this neighborhood structure, the size of the neighborhood for a current solution s with D
drivers is determined by the number of requests served by the selected driver throughout
the planning horizon. Specifically, it is influenced by the count of pairs of outbound and
inbound requests associated with the same patient in the solution s. Since the workload
of drivers is redistributed in a different way through the relocate operator, the algorithm is able to
explore a large number of possibilities by changing the selected driver during the process.

Initially, an alternative approach was considered for the destroy operator, which involved remov-
ing all request types related to a specific patient from the selected driver’s routes, rather than just
one single request type repetition over the total number of days. This was done to ensure driver
consistency since the same patient can have different request types over the time horizon. However,
after multiple tests, it became apparent that this approach was too restrictive and constrained the
algorithm to a too small number of possibilities, resulting in very limited improvement. Indeed, pro-
ceeding this way resulted in a higher total number of requests that needed to be accommodated by
a new driver, making it difficult to find a feasible solution. Therefore, this approach was abandoned,
and the current neighborhood structure was chosen instead.

4.3.3 Integration of both neighborhood structures

In practice, the proposed approach involves running two successive iterations of the SA
algorithm. The first SA algorithm starts from the initial solution described in Section 4.2 and will
utilize the neighborhood structure that prioritizes the improvement of driver consistency described
in Section 4.3.1. The resulting solution from the first SA algorithm is an intermediary solution that
will then be used as the initial solution for the second SA algorithm. The second SA algorithm
employs the second neighborhood structure that focuses on enhancing route balancing, described in
Section 4.3.2, without allowing any deterioration in the best level of driver consistency achieved in
the first SA. This ensures that the driver consistency achieved during the first iteration is maintained
while seeking to improve the overall balance of routes. This process is illustrated in Figure 4.1.

Figure 4.1: Integration of both neighborhood structures in two successive iterations of the Simulated
Annealing algorithm. "DCI" stands for Driver Consistency Indicator, while "RBI" stands for Route
Balancing Indicator.
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4.4 Details about the insertion and deletion operators

The initial solution method and the neighborhood structures defined for this study involve two main
operations on the routes: inserting a request into a route, and deleting a request from a
route. These operations are performed during the SA algorithm to obtain the best solution. The
subtleties and differences in the results come from the order in which the requests are considered
for insertion or deletion, as well as the order in which the drivers are considered. The following two
sections will provide detailed information on how these operators are implemented in the code and
the key steps involved in inserting or deleting a request from a route.

4.4.1 Inserting a request into a route

To insert a request into a route, the first step is to test the feasibility of inserting the pick-
up location. Once all the possible positions to insert the pick-up location are found and if at
least one exists, each possible pick-up insertion is considered. All the possibilities for the
corresponding delivery location insertion are then computed, considering only positions after
the inserted pick-up location. This ensures that the pick-up and the delivery of a request are always
satisfied by the same driver and that the pick-up location is visited before the delivery location.
In practice, regardless of whether the considered location to insert is a pick-up or a delivery, the
process to find the most suitable insertion position is the same.

To determine feasible insertion positions for pick-up or delivery locations within a given route,
the system initially computes a shift value. This shift value represents the additional time
required to serve the new patient at a specific pick-up or delivery location, compared
to the scenario where the location is not inserted into the route. The shift value serves as a metric
for evaluating the impact of inserting a pick-up or delivery location at a specific position within the
route and helps identify the best insertion point. This shift is computed as follows:

shifti = ti−1,newloc + servicetimenewloc + tnewloc,i+1

Here, i − 1 and i + 1 represent respectively the locations immediately preceding and following
the insertion point. ti,j represents the travel time between locations i and j, while servicetimei
represents the time needed to serve the patient at location i. The resulting shift value, shifti,
represents the amount of extra time needed to serve the patient at its pick-up or delivery location
if it is inserted at position i on the route.

Once the shift is computed, an insertion position is tested only if all subsequent loca-
tions have slack times greater than or equal to this shift. As a reminder, the slack time of a
location refers to the time difference between the latest possible departure time and the earliest pos-
sible departure time from that location. It indicates the flexibility available at a specific location,
allowing for adjustments and accommodating additional requests without violating time window
constraints. This initial filtering step reduces the number of positions that need to be considered
and makes the algorithm more efficient.

However, the identified insertion possibilities are not guaranteed to be feasible at this stage
since only the time window constraints are taken into consideration. Other constraints must be
verified, such as the vehicle capacity constraints, the maximum route duration for the drivers, and
the maximum ride times for each user, among others (cited in Section 3.3). Therefore, for each
insertion possibility, all of the constraints are checked, and if an insertion is not feasible, it will
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be discarded. On the other hand, if an insertion is feasible, the new total route duration will be
calculated and recorded. After trying all the possible insertion positions, the one that results in
the minimum total route duration will be selected as the optimal insertion position.

After an insertion is performed, the schedule of the route is adjusted accordingly. This includes
updating the earliest and latest arrival and departure times, as well as slack times, to account for the
new insertion. Additionally, the effective arrival and departure times at each location are updated,
still based on the drive-first strategy described in Section 4.2. The starting time of service at
each location is also updated accordingly. Finally, the loads of all resource types are also updated
between the pick-up and delivery insertions.

While most studies on the DARP aim to minimize total distance or route duration, this study
prioritizes driver consistency and route balancing over distance or duration. Nonetheless, this
insertion strategy still ensures that the resulting routes have relatively short distances. Moreover,
given that the constraints of maximum route duration for drivers and maximum ride times for users
are always satisfied without any violation, it can be guaranteed that the total distance traveled or
total route duration will never violate the preferences of the patients and drivers.

4.4.2 Removing a request from a route

Removing a request from a route is less challenging than the insertion process because no feasibility
check needs to be performed. If a route is feasible with a given set of requests, it will still be
feasible with a removed request. Removing a request will shorten the total route duration and
increase slack times, making the route more flexible for future insertions. The only necessary
adjustment is to update the schedule and loads at each location to reflect the removal of the
request.

4.5 Choice of parameters for the SA implementation

This section aims to define the initial temperature T0, the cooling rate α, the plateau length
L and the stopping criterion, controlled by two parameters, which are K and ϵ. Before discussing
the chosen parameters for this study, here is a brief overview of the role of each parameter (Pirlot
(1996) and Baugh Jr et al. (1998)):

• The temperature function regulates the likelihood of accepting bad moves during the search
process by controlling the degree of randomness. This function is defined as a non-increasing
function of time, and it allows for the computation of the probability p (p = e−

△C
T , where △C

represents the difference in the objective function value), which represents the probability of
accepting a solution that worsens the objective function. The temperature function is
characterized by an initial temperature T0, defined by an initial acceptance probability
p0, and a cooling rate α. The former represents the starting temperature of the algorithm
and should be defined in a way that almost all transitions are accepted at the beginning of
the optimization process. The latter determines the rate of temperature decrease throughout
the algorithm and typically ranges between 0,8 and 0,99.

• The plateau length L is equal to the number of iterations during which the temperature
is maintained constant before being decreased. After L iterations, T = α × T . This number
of iterations L should be big enough in order to explore most of the neighboring solutions
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at each temperature level and to reach quasi-equilibrium, and should thus be based on the
neighborhood size.

• The stopping criterion is determined by a number K of plateau lengths L to consider
before deciding whether to continue the algorithm or not. The work of Pirlot (1996) integrates
two different stopping criteria once the algorithm reaches K × L iterations:

– The algorithm continues if the proportion of accepted moves during the preceding K1×L
iterations is greater than or equal to ϵ1 × L;

– If the best solution found so far has not been improved by ϵ2% after K2 consecutive sets
of L iterations, the algorithm stops.

The research conducted by Baugh Jr et al. (1998) and Braekers and Kovacs (2016) specifically
use the first stopping criterion, where K is set to 3. In Baugh Jr et al. (1998), ϵ1 is assigned
a value of 0, while in Braekers and Kovacs (2016), ϵ1 is set to 5%.

To ensure the algorithm’s effectiveness in exploring a broader range of solutions and avoiding being
stuck within a limited solution space, a combination of the two stopping criteria will be
integrated into this study. By utilizing both criteria, the algorithm will be able to make in-
formed decisions on whether to continue or terminate based on different aspects of its performance.
This approach aims to strike a balance between accepting sufficient moves and seeking substantial
improvements in the best solution found so far.

The choice of parameters for a SA algorithm greatly affects its success, as they define the entire
shape of the optimization process. The set of parameters selected for this study is inspired by
Baugh Jr et al. (1998) and Braekers and Kovacs (2016). They are presented in Table 4.1.

α T0 L K1/K2 ϵ1 and ϵ2
0,8 − △C

log 0,5 D 1 ϵ1 = 5%, ϵ2 = 0%

Table 4.1: Set of parameters used.

In this table, the variable D represents the total number of available drivers. Initially, other
parameters were tested such as α = 0,99, K1 = K2 = 3, L = D ×R (where R is the total number
of different request types across all patients), and p0 = 0,9. However, it was observed that the
algorithm took a significantly long time to run without any improvement in the objective function.
To address this issue, the values of α, L, and p0 were reduced, which resulted in a substantial
reduction in the running time without any degradation in the quality of the obtained solutions.
Similarly, the value of ϵ2 was set to 0 in order to stop the algorithm as soon as any improvement is
made after K2 × L iterations.

4.6 Solution representation

The final solutions obtained for the problem are a series of T daily solutions (T represents the
number of working days considered in the planning period), with each daily solution containing D
routes, where D is the number of available drivers. A specific driver’s route for a given day is
represented by a vector of vectors, and each sub-vector represents a specific location that is
visited. These sub-vectors contain relevant information about the visited location, such as:
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• The location that is visited (represented by a number, 0 representing the depot);

• The patient served at that location (represented by a number);

• The earliest and latest arrival times at the location;

• The earliest and latest departure times from the location;

• The slack time at each location, which corresponds to the difference between the latest
departure time and the earliest departure time;

• The effective arrival time at the location, which has to be between the earliest and the
latest arrival times;

• The effective departure time from the location, which has to be between the earliest and
the latest departure times;

• The start time of service, which can be after the effective arrival time at the location and
depends on the time windows specified by the patient;

• The service time, which represents the time needed to load or unload the patient at the
given location;

• The load of each resource type in the vehicle after having visited the location;

• Whether the location is a pick-up or delivery point (respectively 1 or 2).

This information is stored in a vector of size 17x1. Locations, patients, and requests are assigned
unique identification numbers, enabling their accurate identification and representation. Time is
represented using numbers from 0 to 720, which correspond to the available minutes in a 12-hour
working day. Therefore, all vectors have the following structure:

(Stop number, Location number, Patient number, Earliest arrival time, Effective arrival time,
Latest arrival time, Starting time of service, Service time, Earliest departure time, Effective

departure time, Latest departure time, Load of resource type A2, Load of resource type B, Load of
resource type C, Number of the associated request, Pick-up (1) or Delivery (2) location)

Here is a numerical example of a route representation:

((1,0,0,0,0,0,0,0,0,185,185,185,0,0,0,0,0)
(2,1,1,15,200,200,200,5,20,205,205,185,2,1,0,1,1)
(3,2,1,34,219,219,219,5,209,224,389,180,0,0,0,1,2)
(4,2,1,209,224,389,374,5,379,379,685,306,2,1,0,2,1)
(5,1,1,394,394,700,394,5,399,398,705,306,0,0,0,2,2)

(6,0,0,414,414,720,0,0,0,0,0,360,0,0,0,0,0))

This example involves a route that includes 6 locations, which serves two requests from the patient
n°1. The route includes both outbound (request n°1) and inbound (request n°2) trips, starting from
location 1 (which represents the home location) and going to delivery location 2, before returning to
location 1. These request types consist of one seated patient accompanied by one person, resulting
in a service time of 5 minutes. The depot is represented by the first and last lines of the route, with

2As it will be explained in Section 5.1, the problem under consideration contains 3 resource types.
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the identification number equal to 0. Thus, the starting depot (stop number 1) is provided only
with information regarding departure times, while the final depot (stop number 6) is provided only
with information regarding arrival times.
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5 Computational experiments and results

In this chapter, the dataset used in this study is explained, as well as the implementation details.
Finally, the final results obtained are presented and analyzed.

5.1 Dataset

To implement the model presented in this study, the benchmark dataset developed by Braek-
ers and Kovacs (2016) was utilized1. This choice was made after a thorough analysis of the
existing literature, which revealed that the benchmark instances proposed by Braekers and Kovacs
(2016) are the most relevant for the problem at hand. This is because all the other studies in the
literature have focused on static versions of the single-period DARP, meaning without considering
the multi-periodicity of the problem. In contrast, the instances developed by Braekers and Kovacs
(2016) include a realistic set of requests and drivers over a five-day time horizon, making them
well-suited for the purposes of this study.

This dataset originally comprised 432 instances of the problem, with each instance solved for
three levels of driver consistency (the number of drivers seen per patient over the time horizon
is bounded by the authors to respectively 1, 2 and 3). Therefore, a total of 1296 instances were
considered. To ensure maximum diversity in the dataset, Braekers and Kovacs (2016) used four
characteristics for constructing the instances:

• h(0) for a heterogeneous fleet of vehicles or h(1) for a homogeneous fleet ;

• t(0) for each user having only one request type over the week (that can be repeated) or t(1)
for each user being able to have up to 2 different request types per week (with a probability of
20%);

• f(0) for low frequency regarding trips of the same type, f(1) for medium frequency, and f(2)
for high frequency ;

• c(0) for randomly distributed locations, c(1) for randomly distributed home locations but
clustered destination locations, and c(2) for both clustered home and destination locations
(these clusters levels are represented in Figure 5.1).

Each instance has thus a possible combination of all these characteristics. Moreover, the dataset
contains 12 levels in terms of the number of users, ranging from 5 to 50 by steps of 5, with
75 and 100 additionally.

1Available at http://alpha.uhasselt.be/kris.braekers/.
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Figure 5.1: The top figures display the pickup and drop-off locations, while the bottom figures show
how the locations are paired. The left, center, and right images correspond to the c(0), c(1) and
c(2) hypotheses, respectively (Braekers and Kovacs (2016)).

To narrow down the scope of the study, only 24 instances out of the 432 available were
selected for implementation. Initially, all instances falling under h(0) assumption were elimi-
nated, leaving only instances with a heterogeneous fleet of vehicles. Next, to ensure a representative
sample, two instances were chosen from each of the 12 user number levels. For each user number
level, one instance followed the t(0) assumption, while the other followed the t(1) assumption.
The selection was further refined by choosing instances that represented a mix of the 3 levels of
frequency and clustering, as shown in Table 5.1. The names of the 24 final chosen instances can
be found in Appendix A. The instances were initially downloaded in TXT format and subsequently
converted into the XLSX format for easier manipulation.

8 inst. under c(0) 8 inst. under c(1) 8 inst. under c(2)
8 inst. under f(0) 3 inst. under f(0)-c(0) 3 inst. under f(0)-c(1) 2 inst. under f(0)-c(2)
8 inst. under f(1) 3 inst. under f(1)-c(0) 2 inst. under f(1)-c(1) 3 inst. under f(1)-c(2)
8 inst. under f(2) 2 inst. under f(2)-c(0) 3 inst. under f(2)-c(1) 3 inst. under f(2)-c(2)

Table 5.1: Instances selection based on frequency and clustering levels.

Here are the parameters defined in the dataset by Braekers and Kovacs (2016):

• The time horizon considers 5 days;

• Working days are considered to last 12 hours (from 8 a.m. to 8 p.m.);

• All the locations are confined in a region of 20 km2;
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• There is a single depot located at the centre of the region;

• The number of available vehicles is imposed and is considered sufficient to serve all re-
quests;

• The maximum route duration for each driver is equal to 8 hours;

• All vehicles have an average speed of 40km/h and it is assumed that drivers go from one
location to another in a straight line;

• Time windows of 15 minutes are imposed on all the delivery locations for outbound
requests, and on the pickup location for inbound requests;

• Maximum user ride time for a request is two times the direct ride time, which cor-
responds to the direct travel time between the pick-up and the delivery locations, with a
minimum of 20 minutes to ensure efficient planning flexibility;

• Each user has a home location;

• Each user has a capacity requirement for each resource type, and the available resource
types are regular users and users transported in a wheelchair. Additionally, the problem also
takes into account accompanying people;

• Each user specifies their requests types and their frequency of occurrence throughout
the week;

• Each user has a service time of 5 minutes for regular users and 10 minutes for users using
a wheelchair.

An additional clarification is needed regarding the different resource types mentioned in the
article. Although the use of a stretcher was mentioned as a possibility, it was excluded for sim-
plification purposes as it would have primarily impacted the feasibility of the routes rather than
the driver consistency or route balancing assessment. Thus, this study deals with three types of
resources, each requiring a specific number to be fulfilled by each patient:

1. Type A resources which include both staff or patient seats;

2. Type B resources which include patient seats only (count included in resource type A);

3. Type C resources which are dedicated to accommodating wheelchairs.

For instance, if a patient’s request specifies a capacity requirement of 2 for Type A, 1 for Type B,
and 1 for Type C, it implies that the patient requires two seats, one for a patient (since the capacity
requirement for Type B is equal to 1) and the other for an accompanying person, as well as space
for a wheelchair in the vehicle.

5.2 Implementation details

The SA algorithm was implemented in Julia Programming Language (Version 1.7.2), which is
a high-level, dynamic programming language designed for numerical and scientific computing, data
analysis, and visualization. All the computations were carried out on a personal laptop (Acer Aspire
A515-55G) with an Intel Core i5-1035G1 processor running at 1.00 gigahertz, with 8.0 gigabytes
of RAM, and a 64-bit Windows 10 operating system. To ensure fair and consistent computational
results, no other applications were running in the background while the instances were being solved
and all instances were solved under the same conditions.
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5.3 Initial solution

Even before the improvement phase is applied, the creation of the initial solution process can offer
valuable insights and enable analysis.

It should be emphasized that the method used imposes various conditions. Firstly, all constraints
are considered hard, as explained in Section 3.3. Secondly, requests are systematically processed
in a predetermined order, prioritizing patients based on the number of requests they have over the
entire time horizon. Similarly, drivers who handle each request are selected in a specific order based
on their accumulated ride time over the entire time horizon. Consequently, this insertion heuristic
does not incorporate randomization or exploration of alternative possibilities. This characteristic
implies that the algorithm will always start from the same initial solution, which restricts
the solution space and may limit the potential for finding better solutions.

Table 5.2 presents the values of both the Driver Consistency Indicator (DCI) and Route Bal-
ancing Indicator (RBI) for the initial solutions of each instance. Additionally, this table not only
indicates the average number of drivers seen by each patient represented by the DCI but also high-
lights the minimum and the maximum number of drivers encountered by any individual patient in
Column 3. Furthermore, the DCI is compared to the mean number of requests per patient over the
entire time horizon.

It is noteworthy that the employed method yields a low initial level of the DCI across
all instances. Specifically, the indicator is consistently lower than the average number of requests
per patient over the entire time horizon and always ranges between 1 and 2. Upon closer analysis
of the obtained values, it becomes evident that a significant majority of patients, ranging from 72%
in instance 20 to 100% in instance 2, already have the opportunity to be loaded by only one driver
throughout the entire time horizon. However, there is a small proportion of patients who encounter
a relatively large number of drivers. In most cases, only one patient experiences the maximum
number of drivers, while there are a few instances where multiple patients share this maximum.
Still, when considering the overall ratio relative to the total number of patients, the occurrence of
reaching the maximum number of drivers remains minimal. It is expected that the SA algorithm
will reduce this maximum number since the objective is to minimize the mean number of drivers
required.
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Instance DCI Min. - Max. drivers seen RBI Mean nb. of requests/cust.
1 1,2 1 (80%) - 2 (20%) 48,98 3,6
2 1 1 (100%) 53,13 4,4
3 1,2 1 (90%) - 3 (10%) 131,03 7,8
4 1,3 1 (80%) - 3 (10%) 40,83 3,8
5 1,07 1 (93,3%) - 2 (6,7%) 94,15 4,8
6 1,47 1 (86,7%) - 5 (6,7%) 162,07 6,3
7 1,4 1 (85%) - 4 (10%) 130,16 8,4
8 1,2 1 (85%) - 3 (10%) 109,38 6,5
9 1,12 1 (88%) - 2 (12%) 232,17 4
10 1,48 1 (80%) - 5 (4%) 105,69 7,44
11 1,67 1 (83,3%) - 7 (3,3%) 115,54 8,6
12 1,13 1 (86,7%) - 2 (13,3%) 229,26 4,8
13 1,54 1 (77,1%) - 6 (2,8%) 105,49 6,3
14 1,54 1 (74,3%) - 6 (2,8%) 227,26 9,31
15 1,58 1 (80%) - 6 (5%) 170,48 8,1
16 1,9 1 (62,5%) - 6 (2,5%) 89,32 6,45
17 1,29 1 (73,3%) - 3 (2,2%) 76,29 3,5
18 1,29 1 (91,1%) - 5 (6,7%) 104,90 8,62
19 1,54 1 (78%) - 6 (2%) 100,51 6,28
20 1,48 1 (72%) - 4 (8%) 102,83 4,32
21 1,33 1 (80%) - 8 (1,3%) 122,36 3,71
22 1,56 1 (81,3%) - 7 (1,3%) 193,31 8,3
23 1,06 1 (98%) - 4 (2%) 317,64 8,2
24 1,35 1 (84%) - 4 (7%) 183,61 6,22

Table 5.2: Indicators for the initial solutions. In this table, Column 1 represents the instance, while
Column 2 (resp. Column 4) displays the DCI (resp. the RBI) of each initial solution. Additionally,
Column 3 includes the minimum and maximum number of drivers seen per patient in the initial
solution, along with the corresponding frequency of encountering this specific number of drivers.
The mean number of requests per patient in the instance is shown in Column 5.

5.4 Results obtained

In this section, the final results obtained are presented and analyzed.

As previously mentioned, the initial solution method does not involve random factors and does
not lead to multiple possibilities. However, both neighborhood structures defined in Sections 4.3.1
and 4.3.2 utilize random factors. In the first neighborhood structure, which focuses on driver
consistency, the random factor is linked to the number of available drivers, while in the second
neighborhood structure focusing on route balancing, randomness is based on the number of unique
request types. To fully explore the solution space and account for the random factors in each
neighborhood structure, multiple runs of the SA algorithm are necessary. In this study, each
instance has been run 8 times. The selection of this number is not based on any specific criteria
or requirement but rather chosen in a way that aims to find a middle ground between exploring
various potential solutions and minimizing the need for extensive computational resources.

53



Table 5.3 presents the best-achieved value of the DCI as well as the average results obtained for
both DCI and RBI over the 8 runs for each instance. Additionally, it includes the average running
time observed among all conducted runs, as well as the standard deviation of these times. It is
worth reminding that the instances were solved using a lexicographic objective function, with driver
consistency being prioritized and route balancing considered as a secondary objective. Consequently,
among all the solutions obtained for each instance, the best solution selected was the one with the
lowest DCI. In cases where multiple solutions had the same DCI, the one with the smallest RBI
was chosen. These best outcomes are compared to their respective initial values for reference.
The cases where the best value found of an indicator represents an improvement compared to the
initial solution appear in bold. The detailed results from all runs for each instance can be found in
Appendix B.

Inst. Init. DCI Best - Mean DCI Init. RBI New - Mean RBI Mean - Std. dev. of time (sec.)
1 1,2 1 - 1,1 48,98 58,91 - 92,20 0,06 - 0,03
2 1 1 - 1 53,13 53,13 - 53,13 0,04 - 0,01
3 1,2 1,1 - 1,1 131,03 159,02 - 159,02 0,82 - 0,21
4 1,3 1,2- 1,2 40,83 40,83 - 147,25 0,43 - 0,21
5 1,07 1 - 1 94,15 121,63 - 121,63 0,55 - 0,12
6 1,47 1,4 - 1,4 162,07 157,72 - 185,42 2,00 - 0,17
7 1,4 1,35 - 1,35 130,16 137,35 - 144,78 4,90 - 0,74
8 1,2 1,15 - 1,15 109,38 127,65 - 128,55 2,15 - 0,52
9 1,12 1,12 - 1,12 232,17 232,17 - 232,17 2,09 - 0,74
10 1,48 1,44 - 1,44 105,69 98,92 - 120,37 4,42 - 0,07
11 1,67 1,63 - 1,63 115,54 112,84 - 150,53 9,62 - 1,86
12 1,13 1,13 - 1,13 229,26 151,62 - 151,62 5,13 - 0,96
13 1,54 1,51 - 1,51 105,49 100,69 - 128,60 6,50 - 1,44
14 1,54 1,51 - 1,51 227,26 145,40 - 145,40 14,55 - 4,66
15 1,58 1,55 - 1,55 170,48 133,40 - 133,40 15,19 - 1,46
16 1,90 1,88 - 1,88 89,32 85,02 - 88,78 17,53 - 3,72
17 1,29 1,27 - 1,27 76,29 62,76 - 62,85 5,09 - 0,71
18 1,29 1,27 - 1,27 104,90 99,37 - 103,28 18,01 - 2,21
19 1,54 1,52 - 1,52 100,51 99,22 - 102,41 28,24 - 2,92
20 1,48 1,46 - 1,46 102,83 107,63 - 122,64 13,92 - 0,78
21 1,33 1,31 - 1,31 122,36 128,09 - 128,09 7,53 - 0,72
22 1,56 1,55 - 1,55 193,31 155,28 - 155,28 107,40 - 9,53
23 1,06 1,05 - 1,05 317,64 316,58 - 317,16 49,35 - 4,35
24 1,35 1,33 - 1,33 183,61 186,55 - 186,55 22,81 - 2,78

Table 5.3: Results obtained. Column 1 represents the considered instance. Columns 2 and 4 contain
the initial indicators obtained from the initial solution. Column 3 displays the minimum DCI
achieved, along with the mean DCI across all runs. Similarly, Column 5 contains the new RBI
included in the solution that achieves the best DCI value mentioned in Column 3. The last column
illustrates the average running times across all runs, as well as the standard deviation of these times.

5.4.1 Exploration of the solution space

An initial observation from the 8 runs conducted for each instance reveals that all runs yielded
consistent levels of DCI (with the exception of the first instance, where 50% of the runs yielded
a DCI of 1, while the remaining 50% resulted in a DCI of 1,2). This is evident from the fact
that the best DCI obtained in each instance is always equal to the mean DCI across all runs. In
contrast, when considering the RBI, it appears that the same value is observed in 45,8%
of the instances. In the remaining 54,2% of instances, the comparison between the new RBI to
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the mean of all RBI values from all runs indicates that there is relatively low variability among the
obtained RBI values, except for instance 4. These findings reveal that the selected parameters and
neighborhood structures consistently resulted in solutions with similar values for both indicators,
despite the inherent randomness of the algorithm. This observation suggests that the algorithm
extensively explores the entire available solution space multiple times.

Furthermore, upon examining the moves performed during the algorithm runs for instances
where the RBI varies, it is observed that the SA algorithm explores a restricted set of
feasible solutions due to the chosen neighborhood structures. As a result, in each iteration, the
algorithm frequently revisits previously encountered solutions. This repetitive exploration allows
certain parameters to be significantly reduced, as discussed in Section 4.5.

5.4.2 Comparison with the initial solutions

Based on the comparison of the best values obtained with the initial values of DCI and RBI for all
instances, it can be observed that the DCI does not show any significant decrease during
the improvement phase, and does not even change for 12,5% of the instances. The
maximum improvement achieved is only 0,2 in instance 1, and then 0,1 in instances 3 and 4. In
the remaining instances, the improvement is lower than 0,1. This observation suggests that the
potential improvement in DCI is limited by the method employed to generate the initial solution,
as it significantly impacts the starting point of the optimization process. However, it is important
to note that this starting point already optimizes the DCI to a certain extent by attempting to
assign each patient to a single driver. The subsequent SA algorithm may not have the capacity to
substantially enhance this indicator.

Table 5.4 provides a comparison between the initial solution and the best solution found regard-
ing the minimum and the maximum number of drivers assigned to a single patient. It also includes
the frequency of occurrence for these values among all patients in each instance. Any decrease in
the minimum or maximum number of drivers compared to the initial solution or an increase in the
frequency of the minimum number of drivers is highlighted in bold.

Compared to the initial solution, the analysis reveals that more patients are served by
only one driver throughout the entire time horizon. However, it is worth noting that even
though the maximum number of drivers assigned to patients decreases in most cases,
it remains relatively high (meaning greater than 2) in over two-thirds of the instances.
Among these instances, the maximum number of drivers is observed for three patients in 18,7% of
cases, for two patients in 25% of cases, and for only one patient in the remaining 56,3% of cases.
This highlights that although the majority of situations involve a single patient, this high
maximum number of drivers cannot be ignored. A comprehensive distribution of all patients
with their respective number of encountered drivers, including the full distribution for both the
initial solutions and the best solutions found, can be found in Appendix C.
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Instance Min. - Max. - Initial solution Min. - Max. - Best solution
1 1 (80%) - 2 (20%) 1 (100%)
2 1 (100%) 1 (100%)
3 1 (90%) - 3 (10%) 1 (90%) - 2 (10%)
4 1 (80%) - 3 (10%) 1 (80%) - 2 (20%)
5 1 (93,3%) - 2 (6,7%) 1 (100%)
6 1 (86,7%) - 5 (6,7%) 1 (86,7%) - 4 (13,3%)
7 1 (85%) - 4 (10%) 1 (85%) - 4 (5%)
8 1 (85%) - 3 (10%) 1 (85%) - 2 (15%)
9 1 (88%) - 2 (12%) 1 (88%) - 2 (12%)
10 1 (80%) - 5 (4%) 1 (80%) - 4 (4%)
11 1 (83,3%) - 7 (3,3%) 1 (83,3%) - 6 (10%)
12 1 (86,7%) - 2 (13,3%) 1 (86,7%) - 2 (13,3%)
13 1 (77,1%) - 6 (2,8%) 1 (77,1%) - 5 (2,8%)
14 1 (74,3%) - 6 (2,8%) 1 (77,1%) - 6 (2,8%)
15 1 (80%) - 6 (5%) 1 (85%) - 6 (5%)
16 1 (62,5%) - 6 (2,5%) 1 (62,5%) - 5 (5%)
17 1 (73,3%) - 3 (2,2%) 1 (73,3%) - 3 (2,2%)
18 1 (91,1%) - 5 (6,7%) 1 (91,1%) - 5 (4,4%)
19 1 (78%) - 6 (2%) 1 (78%) - 5 (2%)
20 1 (72%) - 4 (8%) 1 (72%) - 4 (6%)
21 1 (80%) - 8 (1,3%) 1 (81,3%) - 7 (1,3%)
22 1 (81,3%) - 7 (1,3%) 1 (81,3%) - 7 (1,3%)
23 1 (98%) - 4 (2%) 1 (98%) - 4 (1%)
24 1 (84%) - 4 (7%) 1 (86%) - 4 (6%)

Table 5.4: Column 2 (resp. Column 3) shows the minimum and maximum number of drivers as-
signed to patients in the initial solution (resp. best solution found), with the frequency of occurrence
for each of these values among all patients.

On the other hand, the analysis reveals that the RBI demonstrates varying patterns of improve-
ment. Specifically, the RBI is enhanced in 54,2% of the instances, worsened in 33,3% of
the instances, and remains unchanged in the remaining 12,5%.

In cases where the DCI improves but the RBI worsens, the decision-maker faces a choice between
the routes established in the initial solution, which have a lower RBI but a higher DCI and the routes
obtained through the SA algorithm, which have a lower DCI but a higher RBI. This situation occurs
for 33,3% of the instances, as indicated in Table 5.5. When considering the number of available
drivers in these instances, it can be observed that the increase in RBI is relatively minor compared
to the available driver capacity, resulting in a relatively modest impact on workload imbalance.
Similarly, the decrease in DCI is not significantly substantial. Ultimately, the decision rests with
the decision-maker, who must weigh the trade-off and make a choice based on their specific priorities
and considerations.
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Instance △ DCI △ RBI Number of drivers
1 - 0,2 + 9,93 2
3 - 0,1 + 27,99 6
5 - 0,07 + 27,48 6
7 - 0,05 + 7,19 12
8 - 0,05 + 18,27 10
20 - 0,02 + 4,8 16
21 - 0,02 + 5,73 21
24 - 0,02 + 2,94 65

Table 5.5: Trade-off between the best DCI achieved and the worsening of the RBI.

5.4.3 Running time

There can be variations in running times to obtain the results of Table 5.3, mainly due to the
inherent randomness of the neighborhood structures. Figure 5.2 provides a visual representation
of the minimum and the maximum running time achieved per instance, put in comparison with
the mean running time and the standard deviation across all runs for each instance. Additionally,
the figure demonstrates how the running time increases as the dataset size grows, indicating the
augmentation of computational requirements with larger datasets.

The data presented in Figure 5.2 indicates that the standard deviation remains consistently low
across different instances. This implies that the duration of the 8 runs for each instance was relatively
similar. More generally, the variability does not exhibit a specific pattern and is not particularly
influenced by the instance size. This observation can likely be attributed to the inherent randomness
present within the neighborhood structures.

It is important to note that the majority of instances can be solved within a relatively
short running time on average. However, it is noteworthy to mention that there is one particular
instance, namely instance 22, which stands out with a running time of approximately 1,5 minutes.
This instance seems to be an exception, as the rest exhibit much shorter average running times. The
longer running times observed for this specific instance can likely be attributed to several factors.
One possible element is a higher number of requests compared to the available number of drivers,
which can lead to increased complexity in integrating them efficiently. Additionally, there may be
specific characteristics or constraints within this instance that contribute to its long running time.
To gain a deeper understanding, further examination and analysis of this specific instance should
be conducted.

In a broader context, these data demonstrate the efficiency and feasibility of solving the prob-
lem at hand. Moreover, the results suggest that the problem could be effectively addressed even
for instances with more than 100 patients, utilizing the parameters outlined in Section 4.5. The
algorithm exhibits the capability to handle large instances and generate satisfactory solutions within
reasonable computation times. Therefore, based on the observed performance, it can be concluded
that the algorithm is scalable and reliable for solving instances of considerable size.
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Figure 5.2: Comparison between the minimum, the maximum, and the mean running times for each
instance. This figure illustrates how the running time increases as the dataset size grows.

5.4.4 Neighborhood structures

This section will perform a comprehensive analysis of the efficiency of the two neighborhood struc-
tures used in the algorithm. Specifically, a comparison will be made between the mean number
of iterations needed to optimize the higher-level objective (driver consistency) during the first SA
algorithm run and the mean number of iterations needed to optimize the lower-level objective
(route balancing) during the second SA algorithm run. This comparison will be conducted for each
instance, allowing for an assessment of which neighborhood structure was more effective in the op-
timization process.

Figure 5.3 shows the mean number of iterations required to optimize driver consistency and the
number of iterations required to optimize route balancing among all executed runs for each instance.
The abbreviation "DC" corresponds to the Driver Consistency indicator, while "RB" corresponds
to the Route Balancing indicator. The specific values of these means for each instance can be found
in Appendix D.

A first deduction from the data is that, in 37,5% of the instances, a higher number of iterations
is required to optimize driver consistency compared to route balancing. Conversely, in 8,3% of the
instances, a higher number of iterations is needed to optimize the route balancing objective. For
the remaining 54,2% of the instances, the number of iterations needed to optimize both objectives
is equal.
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Figure 5.3: Mean number of iterations used to optimize driver consistency in the first SA and route
balancing in the second SA for each instance.

Further examination of the obtained values reveals a logical and significant finding. In 71%
of the instances, the best solution is achieved immediately after optimizing the driver
consistency objective. This finding aligns with the repair operator of the neighborhood structure
described in Section 4.3.1, which takes into account drivers and their total route duration across all
days. Consequently, route balancing is inherently optimized to some extent during the optimization
of the driver consistency objective. As a result, it can be deduced that during the optimization of
the driver consistency objective, an optimal or nearly optimal level of route balancing
is already achieved. Therefore, in the second phase of the optimization process, there is limited
potential for further improvement in the route balancing objective, leading to a smaller number
of iterations. Thus, it can be concluded that the neighborhood structure described in Section
4.3.1, which primarily focuses on driver consistency, is highly effective in optimizing both driver
consistency and route balancing in the majority of cases.

The neighborhood structure described in Section 4.3.2, which specifically targets route balanc-
ing, is only necessary for 29% of the instances to further enhance the optimization of route balancing.
Therefore, this additional neighborhood structure plays a valuable role in fine-tuning the optimiza-
tion process and attaining better results in approximately one-third of the cases.

In Appendix E, the achieved results for the DCI and the RBI are presented for both the first
and second runs of the SA algorithm. These results provide an assessment of the effectiveness of
both SA algorithms and correspond to the best solutions obtained across all runs conducted for
each instance.
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5.4.5 Comparison of the results obtained with the characteristics of the in-
stances

This section aims to compare the results obtained based on the characteristics of the instances
to determine if some characteristics result in better outcomes compared to others. The goal is to
investigate if any predefined conditions lead to improved results in terms of driver consistency and
route balancing.

5.4.5.1 Number of request types per patient

As explained in Section 5.1, the number of request types per patient can follow two scenarios. In the
first scenario (t(0) assumption), each patient is allowed to have only one request type throughout
the week, which can be repeated. In the second scenario (t(1) assumption), patients are allowed to
have up to two different request types per week, with a probability of 20%.

Figure 5.4 illustrates the comparison of both DCI and RBI levels between the instances under
the t(0) assumption and the instances under the t(1) assumption.

Figure 5.4: Comparison of DCI and RBI for instances under t(0) and t(1) assumptions.

The analysis reveals that the mean DCI is better under t(0) assumption (1,29) compared
to t(1) assumption (1,36). However, the average RBI is better under t(1) assumption
(132,36) compared to t(0) assumption (147,74).

These findings align with logical expectations. Under t(0) assumption, where patients are limited
to one request type over the week, there are fewer total requests per patient. As a result, fewer
drivers are needed to handle the requests of single patients, leading to better driver consistency.
However, this can lead to an imbalanced workload among drivers if some drivers have to serve more
patients compared to others, also depending on their respective level of request repetition. The
allocation of drivers to patients during the driver consistency optimization phase plays a crucial
role in determining the workload distribution among drivers in this case. On the other hand, under
t(1) assumption, where patients can have up to two different request types per week, the number
of total requests per patient increases. This higher demand necessitates potentially more drivers to
fulfill the requests of single patients, resulting in worsened driver consistency but improved route
balancing since it potentially addresses workload imbalances.
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5.4.5.2 Frequency of request types repetition per patient

As a reminder, the frequency of request types per patient can be categorized into three scenarios.
In the first scenario (f(0) assumption), each patient has a low frequency of trips of the same type.
In the second scenario (f(1) assumption), this frequency is moderate. Finally, in the third scenario
(f(2) assumption), this frequency is relatively high.

Figure 5.5 illustrates the comparison of both DCI and RBI levels between the instances under
the f(0) assumption, the instances under f(1) assumption and the instances under f(2) assumption.

Figure 5.5: Comparison of DCI and RBI for instances under f(0), f(1), and f(2) assumptions.

Based on the data and a closer analysis of the values, it can be observed that the DCI is, on
average, better under f(0) assumption (1,20) compared to f(1) assumption (1,40) and f(2)
assumption (1,38). This suggests that when patients have a lower frequency of trips of the same
type, the driver consistency tends to be higher. In contrast, the RBI is, on average, better
under f(1) assumption (124,23) compared to f(0) assumption (132,31) and f(2) assumption
(163,61). This indicates that when patients have a moderate frequency of trips of the same type,
the RBI tends to be minimized.

The frequency of each request type directly influences the total number of requests per patient.
When the frequency of each request type is lower as under f(0) assumption, there will be fewer total
requests per patient. This lower demand provides more opportunities to optimize the DCI since
there is a smaller pool of requests per patient to be assigned to single drivers. However, it can result
in a more imbalanced workload distribution among available drivers. In such cases, some drivers
may encounter a higher number of requests to serve compared to others, due to the specific patient
assignments made during the driver consistency optimization and the nature of their requests.

Conversely, if the frequency of all request types is higher as in f(2) assumption, it will result in
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a higher total number of requests. This increased demand, when combined with driver consistency
optimization, can potentially lead to imbalances in workload distribution among drivers. If the
demand exceeds the available capacity of drivers, some drivers may be assigned a disproportionately
high number of requests compared to others, depending on the patients they are associated with
through the driver consistency optimization phase. It can also negatively impact driver consistency
as there will be a greater number of requests to assign, potentially causing more variations in driver
assignments. To achieve the best RBI, a moderate frequency of request types is necessary. This
allows for a more balanced workload distribution among drivers, which optimizes the utilization of
resources.

5.4.5.3 Clustering level of home and destination locations

As a reminder, the datasets considered in this study exhibit three different levels of clustering among
locations. In the first scenario (c(0) assumption), all locations, including both home and destination
locations, are randomly distributed. In the second scenario (c(1) assumption), home locations are
still randomly distributed, but destination locations exhibit clustering patterns. Finally, in the
third scenario (c(2) assumption), both home and destination locations are clustered. These varying
levels of clustering provide insights into the spatial distribution of locations and can impact the
optimization of driver consistency and route balancing objectives.

Figure 5.6 illustrates the comparison of both DCI and RBI levels between the instances under
c(0) assumption, the instances under c(1) assumption and the instances under c(2) assumption.

Figure 5.6: Comparison of DCI and RBI for instances under c(0), c(1) and c(2) assumptions.

Upon comparing the data across the three clustering scenarios, it appears that the average
DCI is better under c(2) assumption (1,28) compared to c(1) assumption (1,39) and c(0)
assumption (1,31). This suggests that when both home and destination locations are clustered,
there is a higher level of driver consistency achieved. On the other hand, the average RBI is
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better under c(0) and c(2) assumptions (136,94 for c(0) and 137,08 for c(2)) compared to
c(1) assumption (146,12). This indicates that when either all locations are randomly distributed or
both home and destination locations are clustered, there is a more balanced distribution of workload
among drivers, leading to a better RBI.

When both home and destination locations are clustered (c(2) assumption), it means that there
is a concentration of requests in specific areas. This clustering can facilitate the optimization of
both driver consistency and route balancing. By assigning drivers to specific geographical areas
with concentrated demand, travel times between destinations are reduced, improving both driver
consistency and route balancing. On the other hand, when all locations (c(0) assumption) are
randomly distributed, the requests are more evenly spread across the geographic area. This can
result in some cases in a more balanced workload distribution among drivers, contributing to better
route balancing. However, this random distribution of locations also leads to challenges in driver
consistency, as it may take longer for drivers to travel between various locations, making it harder
to fulfill all the requests of individual patients.

In summary, clustering of both home and destination locations tends to improve both driver
consistency and route balancing. Random distribution of locations can contribute to good route
balancing in some cases, but it may come at the cost of reduced driver consistency.

5.4.5.4 Summary

After analyzing the findings for each characteristic of the instances, two main conclusions can be
drawn.

1. In the analyzed instances, it is observed that driver consistency tends to be better,
on average, when the frequency of requests per patient is the lowest (under f(0)
assumption). This can be attributed to two main factors. Firstly, when patients have a
low number of request repetitions, it becomes relatively easier to assign all of their requests
to a single driver, resulting in improved driver consistency. Secondly, as the total number of
requests per patient increases, the limited number of available drivers becomes a constraint,
leading to a decrease in driver consistency. It is important to note that the availability
of additional drivers could positively impact both driver consistency and route
balancing. The key advantage would be the ability to distribute requests more evenly among
the drivers, which in turn would lead to a more balanced workload distribution. In addition,
the allocation of patients among a larger pool of drivers would have a positive impact on
driver consistency. Indeed, it would enable the assignment of all the requests from patients
who have the highest number of requests or are currently assigned to the largest number of
drivers to the newly available driver.

2. Furthermore, the findings indicate that clustering both home and destination locations
can lead to improvements in both driver consistency and route balancing. When
locations are clustered, drivers can be assigned to specific geographical areas, allowing them
to focus on serving a dedicated set of patients within their assigned cluster in order to im-
prove driver consistency. This clustering also reduces the travel distances between locations
within each cluster. However, it is important to ensure a similar number of requests in each
geographical area to distribute the workload evenly among drivers to optimize route balancing
to the best extent.
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5.5 Integration of driver consistency and route balancing

The computational experiments conducted in this study demonstrate the potential to simul-
taneously optimize driver consistency and route balancing within the same problem
formulation.

In the ideal scenario, each patient is assigned to a single driver who will fulfill all its requests
throughout the entire time horizon, thereby optimizing driver consistency. To achieve an optimal
level of route balancing, it is necessary for drivers to have a similar distance to travel over the
entire time horizon. By prioritizing the improvement of driver consistency initially in the employed
method, it becomes feasible to assign the requests of each patient to a minimum number of drivers,
even if the ideal scenario cannot be reached. This was proved since the majority of patients only
require the services of a single driver throughout the entire time horizon in the obtained results.
Even more, the obtained DCI is equal to 1 for some instances. In a subsequent phase, the workload
among the drivers was balanced to ensure that each driver has a comparable ride time over the
time horizon, thus enhancing route balancing to the best possible extent. This integrated approach
allows for the attainment of solutions that not only ensure a minimal distribution of drivers among
patients but also minimize workload imbalances among the drivers themselves. Although some
instances pose challenges, the utilized approach offers substantial opportunities for optimization.

However, it is important to acknowledge the challenge posed by the limited number of
available drivers in the analyzed dataset. Even in the best solution found, some patients
still encountered a relatively high number of different drivers over the time horizon. Having one or
more additional drivers (according to the instances) could have been beneficial in reducing the DCI
and the RBI even further. To determine the optimal number of drivers needed, a comprehensive
analysis considering the costs associated with hiring or laying off drivers, as well as the costs of
patients’ inconvenience and workload imbalances, could have been conducted. This analysis would
have helped in evaluating the trade-offs between the benefits of improved driver consistency, route
balancing and the associated costs.

5.6 Managerial implications and limitations

Once the optimal number of drivers is determined to optimize both driver consistency and route
balancing in a specific instance, the practical challenge lies in having this exact number of drivers
available, since achieving the optimal number of drivers may not always be feasible in
practice. It highlights the need to consider practical constraints and potential trade-offs between
driver consistency, route balancing, and the availability of resources in real-world implementations.
Two scenarios can occur:

• In some scenarios, a shortage of available drivers can arise, negatively impacting both
driver consistency and route balancing. The limited number of drivers creates less flexibility
in managing their schedules to maintain driver consistency, and as a result, the workload
assigned to each driver increases, potentially leading to an unfair distribution. This shortage
can also lead to the violation of constraints related to both patient and driver satisfaction.
These circumstances undermine the ability to achieve the desired objectives and can result in
a sub-optimal allocation of resources.

• On the other hand, there may be a situation where more drivers are available than
initially planned, which can result in the need to lay off or dismiss certain drivers. This
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can lead to dissatisfaction among these drivers, as they may have anticipated a consistent
workload and stable employment. Such workforce reductions can have adverse effects on
morale, motivation, and overall driver satisfaction.

Furthermore, the optimal number of drivers varies inevitably depending on the week
considered and the requests that need to be fulfilled. Given that it is not feasible to engage
or lay off drivers based on short-term needs, it becomes essential to define an optimal number of
drivers that minimizes the negative externalities associated with having an excessive
or insufficient number of drivers. This requires implementing proactive management strategies
that align the number of drivers with long-term potential demand, taking into account factors such
as workload distribution and driver consistency. By effectively managing this balance, it is possible
to optimize the allocation of resources, improve overall service quality, and foster a positive working
environment for drivers. This approach aims to enhance operational efficiency, patient satisfaction,
and the well-being of staff members.

In addition to the limited availability of drivers, budgetary constraints pose a crucial limita-
tion when aiming to achieve an optimal number of drivers. These constraints encompass expenses
related to driver recruitment, training, vehicle maintenance, fuel consumption, insurance coverage,
and unforeseen costs. As such, they can significantly impact the ability to attain the desired number
of drivers.

Effective planning and managing staff capacity in the context of patient transportation neces-
sitates having sufficient advanced knowledge of patients’ requests. However, in practical
terms, some patients may not be able to determine the exact day and time of their medical appoint-
ments well in advance due to factors beyond their control, such as medical facility schedules and
availability. This introduces a challenge in aligning patient requests with driver availability and ne-
cessitates flexibility in the planning process to accommodate dynamic and changing circumstances.

In conclusion, reaching the ideal scenario of establishing one-to-one relationships be-
tween drivers and patients while maintaining an optimal level of route balancing is
often infeasible in real-life situations. The dynamic nature of patient requests, unpredictable
changes in scheduling, and varying driver availability pose challenges to achieving such an ideal-
ized scenario. It is important to acknowledge these practical constraints and focus on finding a
balance that maximizes efficiency, as well as patients’ and drivers’ satisfaction within
the limitations of the system. This requires ongoing evaluation, adaptation, and optimization
to achieve the best possible outcomes in patient transportation.
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6 Conclusion and future research

In this chapter, the study findings are summarized, including a discussion of the potential limitations
encountered. Additionally, potential directions for future research are highlighted.

6.1 Purpose and findings of the study

The rising concerns about the environment, traffic congestion, fuel costs, and limited mobility for
individuals have led to an increased need for shared mobility systems. As the population continues to
grow and age, there is a significant growing need for on-demand transportation services, accompanied
by higher patient expectations regarding service quality. In addition, in a world with abundant
job opportunities but recurring labor shortages, it becomes crucial to prioritize and address the
working conditions of employees. To organize it, advancements in computational technologies offer
opportunities to enhance digital mobility planning systems.

The DARP focuses on the transportation of individuals, particularly elderly and disabled people,
which sets it apart from traditional VRPs. More precisely, the MP-DARP involves generating routes
and schedules for a fleet of vehicles to fulfill patients’ transportation requests over multiple working
days while adhering to various constraints related to route feasibility, schedule feasibility, and the
requirements of both patients and drivers. The inherent human aspect of the DARP makes it a
distinctive and increasingly relevant problem in today’s context.

An increasing number of studies focus on patients’ satisfaction in the context of DARP and strive
to incorporate it either as a constraint or directly in the objective function. It has been demon-
strated that patients attach great importance to having a consistent set of drivers fulfilling their
transportation requests over the time horizon. This enables them to establish stronger relationships
with the drivers who, in turn, can better understand and cater to their individual needs. This
aspect is called driver consistency. Some previous studies, such as the recent work by Braekers
and Kovacs (2016), have considered this aspect in the MP-DARP.

The well-being and productivity of drivers are influenced by factors such as fair treatment and
equal distribution of workload. Achieving a balanced allocation of routes among drivers over the
entire time horizon is a critical aspect known as route balancing. This ensures equitable working
hours and helps promote driver satisfaction and engagement. To date, no study has incorporated
route balancing in any formulation of the DARP.

The main objective of this thesis was to investigate the integration of driver con-
sistency and route balancing aspects within a unified problem formulation for the
MP-DARP. Proposed solutions were obtained using a SA algorithm.
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To achieve this goal, the study utilized the dataset created by Braekers and Kovacs (2016),
and the proposed algorithm was implemented using the Julia Programming Language (Version
1.7.2). The initial solution for the problem was generated using an insertion heuristic method, and
two distinct neighborhood structures were defined to facilitate the exploration and optimization
process.

The study demonstrated that significant improvements can be achieved by optimizing driver
consistency and route balancing together. Although reaching the absolute minimum values for both
DCI and RBI together may not be achievable, the results showcased the potential to substantially
enhance both indicators simultaneously. The findings emphasize the importance of considering these
objectives jointly and striving for optimal solutions that strike a balance between them.

6.2 Limitations of the methodology applied

Regarding the methodology employed in the study, several limitations need to be acknowledged and
considered.

Regarding the meta-heuristic utilized in the study, it is important to note that alternative
meta-heuristics, such as Tabu Search (TS) or Large Neighborhood Search (LNS), could have
been explored and analyzed to determine if they would yield improved results. Additionally,
the study could have explored hybridization approaches by integrating the SA with LNS
or Variable Neighborhood Search (VNS), allowing for the consideration of several move possibil-
ities during the local search process and potentially reaching better solutions. These alternative
methodologies and hybridization techniques could have provided valuable insights and potentially
improved the overall optimization process.

In addition, while the study considered all constraints as hard constraints to maximize patient
and driver satisfaction, it could have been beneficial to allow for the possibility of violating
some constraints during the optimization process. By incorporating a flexible constraint
violation mechanism, the study could have explored a larger set of solutions while ensuring that the
final solution obtained complies with all constraints. This approach would have allowed for a more
comprehensive search of the solution space, potentially leading to the identification of better and
more diverse solutions that still adhere to the necessary constraints.

Testing the impact of increasing the number of available drivers would have been
valuable for exploring potential improvements and determining the optimal number
of drivers. However, by keeping the number of drivers as a parameter in the tested dataset, the
analysis provided a more realistic representation of real-life situations. This approach acknowledges
the constraints and challenges faced in managing driver availability, allowing for a more accurate
evaluation of the proposed solutions within practical limitations.

Furthermore, it is important to note that the specific dataset used in this study confined
all patients within a square region of 20km2. As a result, the total route duration for each
driver became heavily dependent on the number of requests they had on their routes within this
limited area. To explore the boundaries and challenges of the problem, it would be beneficial for
future studies to examine scenarios with dispersed demand across a larger geographical area. This
way, researchers could better understand the impact on driver allocation, route planning, and overall
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system performance. This analysis would provide insights into the scalability and adaptability of
the proposed solutions, considering different demand patterns and their effects on driver consistency
and route balancing.

Lastly, it is important to note that while the algorithm code may have demonstrated its effi-
ciency in providing results, it was only suited for the specific tested instances. The scalability
and performance of the algorithm on larger, more complex instances with different constraints may
differ and could introduce additional challenges. Therefore, the applicability and generalizability of
the algorithm to real-world scenarios with larger datasets should be further investigated to ensure
its effectiveness in practical implementation.

6.3 Future research

Further research on the topic could be conducted to delve deeper into the possibility of enhancing
both patient and staff well-being within a single DARP formulation.

To enhance the problem at hand, an option that could be considered is the inclusion of the
territory consistency concept, as described by Tellez et al. (2022). Territory consistency involves
dividing drivers into specific geographic areas where they exclusively operate, resulting in higher
driver consistency. Assigning drivers to patients within their designated areas improves familiarity
with the region and leads to more efficient service delivery. When determining the boundaries of
these geographic areas, careful thought needs to be given to the locations of medical facilities. The
division should aim to create sections with comparable sizes and travel times to the facilities. This
ensures that the workload distribution is balanced among drivers, ultimately enhancing operational
efficiency and patient service.

With sufficient time, it would have been valuable to establish contact with individuals
working in the field to understand their real-life operational constraints. This would
have helped to determine if considerations such as driver consistency and route balancing are al-
ready incorporated into their planning strategies. By engaging with industry professionals and
gathering insights from their experiences, it would have been possible to gain a deeper understand-
ing of the practical challenges faced in implementing these strategies and identify potential areas
for improvement in the proposed solutions.

To further align shared mobility systems with environmental goals, additional experiments could
be conducted by incorporating ecological measures into the objective functions. These eco-
logical measures can include minimizing fuel consumption, reducing carbon emissions, or promoting
the use of electric or hybrid vehicles. By conducting experiments that incorporate ecological consid-
erations, it becomes possible to identify and promote solutions that strike a balance between opera-
tional efficiency, patient satisfaction, and environmental responsibility. This approach supports the
broader objective of creating shared mobility systems that are both socially and environmentally
sustainable.

To better reflect real-life operational constraints, another valuable approach would be to incor-
porate the impact of expected congestion during peak hours on the speed of vehicles.
This variation in vehicle speed can be addressed by exploring time-dependent DARP models, as
demonstrated in previous research such as Ichoua et al. (2003). By incorporating time-dependent
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constraints, the models can better capture the actual travel conditions experienced by drivers on the
route. By comparing the results obtained from this approach to those obtained under the assump-
tion of constant vehicle speed, it becomes possible to evaluate the impact of considering congestion
on driver consistency and route balancing. This analysis would provide insights into the potential
differences and improvements that arise when realistic speed variations are incorporated into the
optimization process, leading to more accurate and effective solutions for shared mobility systems.

In line with the previous suggestion, the study primarily focused on static and deterministic
DARPs. However, as mentioned in Section 2.2.3, the dynamic aspect is more representative
of real-life scenarios. Therefore, it would be beneficial to incorporate dynamic considerations into
the problem at hand, taking into account various unpredictable events such as patient no-shows,
delays in medical appointments, accidents on the route, or deviations. To address these dynamics, a
clear framework should be established to outline the necessary adjustments in planning to maintain
driver consistency and route balancing. Moreover, in the case in which one or more patients cannot
be served due to unforeseen circumstances, it is crucial to incorporate mechanisms for adjusting
the planning and adapting between days. This requires integrating feedback and information about
missed requests into the system, allowing for informed decisions and efficient resource allocation in
subsequent scheduling.

In conclusion, this thesis represents the pioneering integration of driver consistency
and route balancing considerations within a unified MP-DARP formulation. As the first
work in this area, it is essential to acknowledge its potential limitations. Nonetheless, this study
serves as a foundation for a broad range of topics that warrant further analysis and exploration.
Future research can build upon this initial work to delve deeper into the subject.
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Appendices

A. List of the 24 chosen instances from Braekers and Kovacs (2016)

• dcdarp-5-t(0)-f(0)-h(1)-c(0)

• dcdarp-5-t(1)-f(1)-h(1)-c(2)

• dcdarp-10-t(0)-f(2)-h(1)-c(0)

• dcdarp-10-t(1)-f(0)-h(1)-c(1)

• dcdarp-15-t(0)-f(0)-h(1)-c(2)

• dcdarp-15-t(1)-f(1)-h(1)-c(1)

• dcdarp-20-t(0)-f(2)-h(1)-c(1)

• dcdarp-20-t(1)-f(1)-h(1)-c(0)

• dcdarp-25-t(0)-f(0)-h(1)-c(0)

• dcdarp-25-t(1)-f(1)-h(1)-c(2)

• dcdarp-30-t(0)-f(2)-h(1)-c(2)

• dcdarp-30-t(1)-f(0)-h(1)-c(1)

• dcdarp-35-t(0)-f(1)-h(1)-c(1)

• dcdarp-35-t(1)-f(2)-h(1)-c(0)

• dcdarp-40-t(0)-f(2)-h(1)-c(1)

• dcdarp-40-t(1)-f(1)-h(1)-c(0)

• dcdarp-45-t(0)-f(0)-h(1)-c(0)

• dcdarp-45-t(1)-f(2)-h(1)-c(2)

• dcdarp-50-t(0)-f(1)-h(1)-c(2)

• dcdarp-50-t(1)-f(0)-h(1)-c(1)

• dcdarp-75-t(0)-f(0)-h(1)-c(2)

• dcdarp-75-t(1)-f(2)-h(1)-c(1)

• dcdarp-100-t(0)-f(2)-h(1)-c(2)

• dcdarp-100-t(1)-f(1)-h(1)-c(0)
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B. Obtained values from all runs for each instance

Instance Run Obtained DCI Obtained RBI Time elapsed (seconds)

1

1 1 58,91 0,13
2 1,2 48,98 0,05
3 1,2 48,98 0,07
4 1 160,92 0,04
5 1 160,92 0,05
6 1,2 48,98 0,04
7 1,2 48,98 0,04
8 1 160,92 0,09

2

1 1 53,13 0,02
2 1 53,13 0,01
3 1 53,13 0,04
4 1 53,13 0,05
5 1 53,13 0,04
6 1 53,13 0,05
7 1 53,13 0,05
8 1 53,13 0,05

3

1 1,1 159,02 0,59
2 1,1 159,02 0,88
3 1,1 159,02 0,74
4 1,1 159,02 0,81
5 1,1 159,02 0,56
6 1,1 159,02 0,83
7 1,1 159,02 0,88
8 1,1 159,02 1,23

4

1 1,2 134,70 0,45
2 1,2 231,83 0,45
3 1,2 134,70 0,25
4 1,2 40,83 0,45
5 1,2 134,70 0,78
6 1,2 134,70 0,15
7 1,2 231,83 0,34
8 1,2 134,70 0,36

5

1 1 121,62 0,50
2 1 121,62 0,55
3 1 121,62 0,59
4 1 121,62 0,73
5 1 121,62 0,48
6 1 121,62 0,41
7 1 121,62 0,42
8 1 121,62 0,70

6

1 1,4 184,30 2,36
2 1,4 215,36 1,88
3 1,4 184,30 1,88
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4 1,4 157,72 2,00
5 1,4 157,72 1,82
6 1,4 215,36 2,03
7 1,4 184,30 2,02
8 1,4 184,30 2,03

7

1 1,35 148,21 4,42
2 1,35 139,53 4,09
3 1,35 148,21 4,18
4 1,35 137,35 4,54
5 1,35 148,21 4,71
6 1,35 151,14 5,52
7 1,35 148,21 5,71
8 1,35 137,35 6,00

8

1 1,15 127,65 1,72
2 1,15 127,65 1,59
3 1,15 127,65 3,13
4 1,15 130,05 1,77
5 1,15 130,05 2,44
6 1,15 130,05 2,51
7 1,15 127,65 2,17
8 1,15 127,65 1,85

9

1 1,12 232,17 2,23
2 1,12 232,17 2,11
3 1,12 232,17 2,54
4 1,12 232,17 2,39
5 1,12 232,17 0,35
6 1,12 232,17 2,62
7 1,12 232,17 2,47
8 1,12 232,17 1,99

10

1 1,44 129,16 4,42
2 1,44 119,05 4,28
3 1,44 103,79 4,52
4 1,44 129,16 4,42
5 1,44 124,55 4,45
6 1,44 129,16 4,35
7 1,44 98,92 4,47
8 1,44 129,16 4,42

11

1 1,63 147,06 8,91
2 1,63 182,11 8,86
3 1,63 152,68 8,84
4 1,63 152,68 9,23
5 1,63 122,12 9,03
6 1,63 152,68 9,05
7 1,63 152,68 9,05
8 1,63 182,11 14,20

12

1 1,13 151,62 4,39
2 1,13 151,62 5,24
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3 1,13 151,62 4,57
4 1,13 151,62 3,91
5 1,13 151,62 4,59
6 1,13 151,62 5,94
7 1,13 151,62 6,82
8 1,13 151,62 5,61

13

1 1,51 132,85 6,45
2 1,51 100,67 4,02
3 1,51 130,12 4,93
4 1,51 132,85 6,83
5 1,51 132,85 7,90
6 1,51 165,91 8,22
7 1,51 132,85 6,26
8 1,51 100,69 7,42

14

1 1,51 145,50 13,84
2 1,51 145,50 15,86
3 1,51 145,50 16,81
4 1,51 145,50 14,69
5 1,51 145,50 17,00
6 1,51 145,50 14,59
7 1,51 145,50 3,95
8 1,51 145,50 19,67

15

1 1,55 133,40 18,37
2 1,55 133,40 13,59
3 1,55 133,40 15,38
4 1,55 133,40 14,89
5 1,55 133,40 15,74
6 1,55 133,40 14,97
7 1,55 133,40 14,06
8 1,55 133,40 14,52

16

1 1,88 89,32 10,90
2 1,88 85,02 13,76
3 1,88 89,32 22,07
4 1,88 89,32 18,84
5 1,88 89,32 20,03
6 1,88 89,32 20,33
7 1,88 89,32 18,21
8 1,88 89,32 16,09

17

1 1,27 62,76 4,63
2 1,27 62,76 5,06
3 1,27 63,52 5,23
4 1,27 62,76 4,06
5 1,27 62,76 5,10
6 1,27 62,76 6,28
7 1,27 62,76 4,55
8 1,27 62,76 5,79

18

1 1,27 99,37 14,87
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2 1,27 106,25 17,44
3 1,27 101,99 22,48
4 1,27 106,25 19,34
5 1,27 101,99 16,90
6 1,27 106,25 18,39
7 1,27 101,99 17,22
8 1,27 101,99 17,43

19

1 1,52 101,45 26,98
2 1,52 101,45 30,53
3 1,52 105,42 33,80
4 1,52 102,21 26,63
5 1,52 102,21 26,26
6 1,52 101,95 29,99
7 1,52 99,22 26,61
8 1,52 105,42 25,14

20

1 1,46 110,26 15,29
2 1,46 110,26 14,21
3 1,46 131,89 13,33
4 1,46 131,89 13,18
5 1,46 125,44 13,60
6 1,46 107,63 14,12
7 1,46 131,89 14,64
8 1,46 131,89 13,02

21

1 1,31 128,09 7,00
2 1,31 128,09 8,09
3 1,31 128,09 8,66
4 1,31 128,09 7,58
5 1,31 128,09 8,25
6 1,31 128,09 6,78
7 1,31 128,09 6,87
8 1,31 128,09 7,01

22

1 1,55 155,28 97,90
2 1,55 155,28 122,36
3 1,55 155,28 102,46
4 1,55 155,28 106,08
5 1,55 155,28 122,05
6 1,55 155,28 100,02
7 1,55 155,28 105,80
8 1,55 155,28 102,52

23

1 1,05 316,58 44,99
2 1,05 317,45 48,02
3 1,05 316,58 47,58
4 1,05 317,45 47,32
5 1,05 316,58 56,78
6 1,05 317,45 47,35
7 1,05 317,45 55,68
8 1,05 317,45 47,08
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24

1 1,33 186,55 20,70
2 1,33 186,55 21,95
3 1,33 186,55 19,90
4 1,33 186,55 23,18
5 1,33 186,55 21,05
6 1,33 186,55 28,76
7 1,33 186,55 22,69
8 1,33 186,55 24,22
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C. Comparison of the number of drivers assigned to each patient
between the initial solutions and the best solutions found

Instance Initial solution Best solution
1 1 (80%) - 2 (20%) 1 (100%)
2 1 (100%) 1 (100%)
3 1 (90%) - 3 (10%) 1 (90%) - 2 (10%)
4 1 (80%) - 2 (10%) - 3 (10%) 1 (80%) - 2 (20%)
5 1 (93,3%) - 2 (6,7%) 1 (100%)
6 1 (86,7%) - 4 (6,6%) - 5 (6,7%) 1 (86,7%) - 4 (13,3%)
7 1 (85%) - 3 (5%) - 4 (10%) 1 (85%) - 2 (10%) - 4 (5%)
8 1 (85%) - 2 (5%) - 3 (10%) 1 (85%) - 2 (15%)
9 1 (88%) - 2 (12%) 1 (88%) - 2 (12%)
10 1 (80%) - 3 (16%) - 5 (4%) 1 (80%) - 3 (16%) - 4 (4%)
11 1 (83,3%) - 3 (13,4%) - 7 (3,3%) 1 (83,3%) - 3 (6,7%) - 6 (10%)
12 1 (86,7%) - 2 (13,3%) 1 (86,7%) - 2 (13,3%)
13 1 (77,1%) - 2 (8,6%) - 3 (2,9%) - 4 (8,6%) - 6 (2,8%) 1 (77,1%) - 2 (8,6%) - 3 (2,9%) - 4 (8,6%) - 5 (2,8%)
14 1 (74,3%) - 2 (8,6%) - 3 (5,7%) - 4 (8,6%) - 6 (2,8%) 1 (77,1%) - 2 (8,6%) - 3 (2,9%) - 4 (8,6%) - 6 (2,8%)
15 1 (80%) - 2 (5%) - 3 (5%) - 4 (2,5%) - 5 (2,5%) - 6 (5%) 1 (85%) - 2 (5%) - 3 (2,5%) - 5 (2,5%) - 6 (5%)
16 1 (62,5%) - 2 (10%) - 3 (10%) - 4 (12,5%) - 5 (2,5%) - 6 (2,5%) 1 (62,5%) - 2 (10%) - 3 (10%) - 4 (12,5%) - 5 (5%)
17 1 (73,3%) - 2 (24,5%) - 3 (2,2%) 1 (73,3%) - 2 (24,5%) - 3 (2,2%)
18 1 (91,1%) 2 (2,2%) - 5 (6,7%) 1 (91,1%) - 2 (2,2%) - 4 (2,2%) - 5 (4,4%)
19 1 (78%) - 2 (6%) - 3 (4%) - 4 (10%) - 6 (2%) 1 (78%) - 2 (6%) - 3 (4%) - 4 (10%) - 5 (2%)
20 1 (72%) - 2 (16%) - 3 (4%) - 4 (8%) 1 (72%) - 2 (16%) - 3 (6%) - 4 (6%)
21 1 (80%) - 2 (17,3%) - 6 (1,4%) - 8 (1,3%) 1 (81,3%) - 2 (16%) - 6 (1,3%) - 7 (1,3%)
22 1 (81,3%) - 2 (2,7%) - 3 (5,3%) - 4 (4%) - 5 (4%) - 6 (1,4%) - 7 (1,3%) 1 (81,3%) - 2 (2,7%) - 3 (5,3%) - 4 (4%) - 5 (4%) - 6 (1,3%) - 7 (1,3%)
23 1 (98%) - 4 (2%) 1 (98%) - 3 (1%) - 4 (1%)
24 1 (84%) - 2 (4%) - 3 (5%) - 4 (7%) 1 (86%) - 2 (5%) - 3 (3%) - 4 (6%)

Table 6.2: Column 2 (resp. Column 3) shows the number of drivers assigned to each patient in the
initial solution (resp. best solution found), with the frequency of occurrence for each of these values
among all patients.
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D. Average iterations count among all runs in both simulated an-
nealing algorithms for each instance

Instance Mean number of iter. first SA Mean number of iter. second SA
1 3 2,75
2 3,25 2
3 12 9
4 9 6
5 12 9,75
6 16 16
7 24 24
8 20 13,75
9 20 10
10 28 28
11 38 38
12 28 28
13 32 26
14 48 48
15 46 46
16 38 38
17 24 25,5
18 54 54
19 44 44
20 32 32
21 44,63 21
22 88 88
23 168 168
24 130 186,55

Table 6.3: Column 2 (resp. Column 3) shows the average number of iterations needed by the first
SA algorithm (resp. second SA algorithm) to optimize the driver consistency objective (resp. route
balancing objective).
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E. Comparison of the DCI and RBI values obtained after each sim-
ulated annealing algorithm in the best solutions found

Instance DCI first SA RBI first SA DCI second SA RBI second SA
1 1 160,92 1 58,91
2 1 53,13 1 53,13
3 1,1 159,02 1,1 159,02
4 1,2 40,83 1,2 40,83
5 1 121,62 1 121,62
6 1,4 157,77 1,4 157,77
7 1,35 137,35 1,35 137,35
8 1,15 127,65 1,15 127,65
9 1,12 232,17 1,12 232,17
10 1,44 98,92 1,44 98,92
11 1,63 112,84 1,63 112,84
12 1,13 229,26 1,13 151,62
13 1,51 100,69 1,51 100,69
14 1,51 240,65 1,51 145,40
15 1,55 169,62 1,55 133,40
16 1,88 85,02 1,88 85,02
17 1,27 79,81 1,27 62,76
18 1,27 99,37 1,27 99,37
19 1,52 99,22 1,52 99,22
20 1,46 107,63 1,46 107,63
21 1,31 128,09 1,31 128,09
22 1,55 192,10 1,55 155,28
23 1,05 316,58 1,05 316,58
24 1,33 186,55 1,33 186,55

Table 6.4: Column 2 (respectively, Column 3) represents the achieved level of DCI (respectively,
RBI) for the best solutions found during the first SA algorithm, which prioritizes optimizing driver
consistency. Column 4 (respectively, Column 5) displays the obtained level of DCI (respectively,
RBI) also for the best solutions found during the second SA algorithm, which focuses on enhancing
route balancing.
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Executive summary

The classic Dial-A-Ride Problem (DARP) is commonly encountered in door-to-door transportation
services catering to elderly or disabled individuals (Cordeau and Laporte (2003)). In the DARP,
the goal is to plan a set of routes and associated schedules for a fleet of vehicles in order to fulfill
outbound and inbound requests from patients while adhering to various constraints. The objective
function of the DARP can vary depending on the specific application, encompassing economic and
service-level considerations.

The DARP has been extensively studied in the research community for several decades; some
notable recent comprehensive surveys on the topic can be found in Ho et al. (2018) and Molenbruch
et al. (2017b).

The primary objective of the Dial-A-Ride Problem (DARP) is to fulfill the transportation re-
quirements of patients while ensuring their comfort and satisfaction. However, it is equally im-
portant to consider the well-being of the drivers who provide these services. To date, no research
has focused on investigating the satisfaction of both patients and drivers within the context of the
DARP. Specifically, only a few studies have explored the preference of patients to be served by a
consistent set of drivers over multiple time periods, known as driver consistency (Braekers and Ko-
vacs (2016)). Additionally, the concept of route balancing, which ensures an equitable distribution
of workload among drivers, has not been extensively studied in the existing literature, except in the
context of Vehicle Routing Problems (VRPs) (Matl et al. (2018)),

This thesis is dedicated to the development and implementation of a Simulated Annealing (SA)
algorithm specifically tailored for the Multi-Period Dial-A-Ride Problem (MP-DARP). The primary
focus is on minimizing the number of distinct drivers encountered by each patient. As a secondary
objective, the algorithm aims to achieve a balanced distribution of workload among drivers. The
main goal of this research is to demonstrate the feasibility of simultaneously optimizing patient
satisfaction and ensuring fairness among drivers within a unified problem formulation for the MP-
DARP. The dataset used in this study was initially created by Braekers and Kovacs (2016) and
serves as the foundation for the testing and evaluation of the algorithm.

The results obtained from this study shed light on the potential advantages of integrating both
patient satisfaction and driver fairness in transportation systems. These findings contribute to
improving the overall quality of service in the context of DARPs. While further research is needed
to explore the potential limitations of the proposed system, this pioneering work reveals new avenues
for investigation in the field of DARPs.
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