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Introduction

Ice sheets in the climate system
The Earth climate system is a complex and global system which includes five major components:
the atmosphere, the lithosphere, the hydrosphere, the cryosphere, and the biosphere. All these
components are interconnected such that a change in the state of one influences the state of the
others. This field is of interest of many scientists as it contains tipping points. Tipping points are
states which, when slightly perturbed, bifurcate towards another state. As the climate system is
global, a bifurcation related to the state ofone of its components will affect the others which could
lead to a cascade of change of states in the global system. The identified tipping points in the
climate system are represented in Fig. 1.

Figure 1: Tipping points in the climate system. Taken from Potsdam (2022), based on
Armstrong McKay et al. (2022).

As it can be seen, some of the most critical tipping points concern the cryosphere, especially
West Antarctica and Greenland ice sheets. Ice sheets are large-scale masses of ice that flow under
the influence of their own weight. Two zones can be distinguish in an ice sheet: the grounded part
where ice is in contact with the bedrock, and the floating part where ice is floating above water.
These two zones are separated by the grounding line. This is illustrated in Fig. 2.
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Figure 2: Ice-scheet schematic. Taken from Huybrechts (2009)

These ice sheets are characterized by several instabilities which lead to large ice loss. Among
these instabilities figure

1. the marine ice-sheet instability (MISI), which concerns the potential irreversible retreat of
the grounding line (i.e. the separation between the grounded part and the floating part of
marine ice-sheets), which leads to ice losses (Schoof (2007));

2. the marine ice-cliff instability (MICI), which concerns the instability of the floating parts of
the ice sheet that eventually fracture (Pollard et al. (2015)).

Currently, sea-level rise is dominated by water thermal expansion. However, due to tipping
points, sea-level rise due to losses in marine ice sheet are expected to gain in relative importance,
which makes of marine ice sheets key components in future sea-level rise predictions. Marine
ice-sheet contribution to the sea-level rise is not only expected to be important, but is also highly
uncertain (see Fig. 3). These uncertainties have several causes: (i) some parts of the physics are
still poorly understood (e.g. MICI, nature of the friction between ice and the bedrock) ; (ii) some
parameters cannot be measured and are uncertain (e.g. friction parameters). There is therefore an
interest in assessing and reducing these uncertainties.
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Figure 3: Contribution of Greenland ice sheet, Antarctic ice sheet, and glaciers to sea-level rise
prediction. Taken from IPCC (2019).

Objectives of this thesis
This work is concerned in the identification of uncertain friction parameters from partial obser-
vations of the velocity. Such problems are referred to as inverse problems, as the equations that
model the physics are travelled in the inverse direction, that is, from the solution to some of the
parameters that led to the solution. Typically, such inverse problems are computationally expensive
and mathematically ill-posed.

This field of research gains in interest, and is an active research area. In this thesis, this
glaciological inverse problem will be solved in the probabilistic framework that allows to quantify
the uncertainty on the identified parameters, which is crucial for sea-level rise predictions. Classical
state-of-the-art methods will be implemented to solve this inverse problem. On the top of that,
recent deep learning methods will be used to identify the potential contribution of deep learning to
this research field, which is a strong novelty of this thesis.

This thesis will be divided in three parts

1. Forward problem formulation. Basic notions of continuum mechanics will be reviewed in
Sec. 1. These notions will be particularized for the case of bidimensional marine ice sheets
in Sec. 2, and a reduced model model will be described. The friction field will be modelled
in Sec. 3, and a computationally inexpensive surrogate model will be built in Sec. 4;

2. Inverse problem formulation. The current state-of-the-art for the inverse problem in the
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glaciology context will be described in Sec. 5, and methods for solving such inverse problem
in a probabilistic framework will be reviewed in Sec. 6 and 7. The way these methods will
be applied for solving the inverse problem is explained in Sec. 8;

3. Results. The expressiveness of the implemented methods will be assessed by solving a simple
bidimensional problem in Sec. 9. Once the expressiveness of the methods are assessed, they
are used to solve a more realistic inverse problem where the friction field has to be inferred
from local observations of the ice velocity in Sec. 10.

Finally, conclusions will be drawn concerning the potential use of deep learning into the field,
as a function of the results.
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Part I

Forward problem
In this part, the forward problem will be formulated. The physical principles that are needed for
the description of ice flow will be described starting from general continuum mechanics equations,
towards specific governing equations of ice flows. Reduced-order models will then be introduced,
and the shallow-shelf approximation (SSA) will be detailed. Uncertainty in the friction field that
appears in these governing equations will be introduced by modelling the friction as a random field.
A parametrization of this random field will be developped, which will make the friction field suited
for the establishement of an input-output surrogate model.

1 Continuum mechanics

1.1 Notations
Let Ω be a material volume that deforms continuously in a time interval T = [t0, tf]. Let its
configuration at time t = t0 be a reference configuration Ω0 and its configuration at a time t ∈ T
be the current configuration Ω(t). This situation is illustrated in Fig. 4.

X x(t)

Ω0
Ω(t)

P (X) P (X, t)

O

ϕ

Figure 4: Schematic of the deformation of a continuous material volume Ω in time.

At any current time t ∈ T , and with respect to the origin O, the position of a particle is noted
x(t) and is linked with its reference position x = x(t0) through the one-to-one mapping ϕ in the
following way:

x(t) = ϕ(X, t) ⇔ X = ϕ−1(x(t)). (1.1)

One can therefore distinguish the Eulerian quantities that are attached to a point of space x(t) and
the Lagrangian quantities which are attached to a particle that was at X at t = t0. The velocity
of a particle that is at position x at a time t is noted u, and can be obtained by differentiating the
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current position wi respect to time:

u(x, t) =
dx
dt

=
dϕ(X, t)

dt
=

∂ϕ(X, t)

∂t
. (1.2)

The strain rate tensor D is a symmetric second-order tensor defined as the symmetric part of the
velocity gradient. It is written as

D =
1

2

(
∇xu+ (∇xu)

T) . (1.3)

The forces that are applied to the material volume Ω are separated into two categories. The
volumic forces (or body forces) f are applied to particles located inside the material volume
(x ∈ Ω), and the surface forces t are applied to particles that are located at the material volume
boundaries (x ∈ ∂Ω). Let us consider a facette oriented towards a direction n, inside the domain,
on which is applied a traction force t. The Cauchy stress tensor σ is a second-order tensor that is
linked with t through

σ · n = t. (1.4)

1.2 Conservation laws
In this section, the conservation laws that will be necessary for the description of the ice flow will
be established.

1.2.1 Reynolds transport theorem

The Reynolds transport theorem is used to differentiate an integrated quantity over a domain Ω(t)
with boundary ∂Ω(t) that change with time. This is not a conservation law in itself, but rather a
tool that is used to derive the conservation laws in their local form. In a one dimensional case, let
Ω1D = ]x1(t), x2(t)[ be the domain over which a quantity F (x, t) is integrated. Its total derivative
can be computed by using the Leibnitz integration rule

d
dt

∫ x2(t)

x1(t)

F (x, t) dx =

∫ x2(t)

x1(t)

∂F (x, t)

∂t
dx+

[
F (x, t)

dx
dt

]x2

x1

. (1.5)

This can be applied to a material volume Ω with boundary ∂Ω that deform continuously in a time
interval T = [t0, tf]. The multidimensional generalization of Leibnitz integration rule can be
written as

d
dt

∫
Ω(t)

F (x, t) dV =

∫
Ω(t)

∂F

∂t
dV +

∫
∂Ω(t)

Fu · n dS. (1.6)

By using the divergence theorem, one obtains

d
dt

∫
Ω(t)

F (x, t) dV =

∫
Ω(t)

(
∂F

∂t
+∇x · (Fu)

)
dV, (1.7)

which is known as the Reynolds transport theorem.
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1.2.2 Mass conservation

Let Ω be a material volume of mass M and density ρ, that deforms continuously in a time interval
T = [t0, tf]. At any time t ∈ T , mass conservation can be written as

d
dt
M(t) = 0 (1.8)

⇔ d
dt

∫
Ω(t)

ρ dV = 0 (1.9)

⇔
∫
Ω(t)

(
∂ρ

∂t
+∇x · (ρu)

)
dV = 0 (1.10)

⇔
∫
Ω(t)

(
∂ρ

∂t
+ ρ∇x · u+ u · ∇xρ

)
dV = 0, (1.11)

where the Reynolds transport theorem has been used. Eq. (1.11) is valid for any material volume
Ω; therefore one can write the mass conservation in a local form

∂ρ

∂t
+ ρ∇x · u+ u · ∇xρ = 0, x ∈ Ω, t ∈ T. (1.12)

If the material is incompressible, one has

∂ρ

∂t
+ u · ∇xρ = 0, x ∈ Ω, t ∈ T, (1.13)

such that the mass conservation equation is reduced to the following divergence-free condition

∇x · u = 0, x ∈ Ω, t ∈ T. (1.14)

1.2.3 Linear momentum conservation

The second law of Newton states that for any material point of mass m and velocity u subjected to
an external force f ,

f =
d
dt
(mu). (1.15)

This can be generalized for a material volume Ω subjected to volumic forces f and surface forces t

d
dt

∫
Ω

ρu dV =

∫
Ω

ρf dV +

∫
∂Ω

t dS. (1.16)

By definition of the Cauchy stress tensor σ, one has σ · n = t for all x ∈ ∂Ω, where n is the
outward pointing normal vector to ∂Ω. Applying Reynolds transport theorem to the left hand side
of Eq. (1.16) and the divergence theorem to its right hand side, one obtains:∫

Ω

(
∂(ρu)

∂t
+ u · ∇x(ρu)

)
dV =

∫
Ω

(ρf +∇x · σ) dV

⇔
∫
Ω

(
u

dρ
dt

+ ρ
du
dt

)
dV =

∫
Ω

(ρf +∇x · σ) dV. (1.17)

Since Eq. (1.17) is valid for any material volume, one can write it in a local form:

u
dρ
dt

+ ρ
du
dt

= ρf +∇x · σ, x ∈ Ω, t ∈ T. (1.18)

10



1.2.4 Angular momentum conservation

Let us define the angular momentum of a material volume Ω with respect to the origin O by

HO =

∫
Ω

x× (ρu) dV. (1.19)

In the case where there is no internal angular momentum, conservation of angular momentum states
that the variation of angular momentum of the material volume Ω is due to applied (volumic and
surfacic) angular momenta, that is,

d
dt

∫
Ω

x× (ρu) dV =

∫
Ω

x× (ρf) dV +

∫
∂Ω

x× t dS

=

∫
Ω

x× (ρf) dV +

∫
Ω

∇x · (x× σ) dV. (1.20)

By using simple algebra, one could show from Eq. (1.20) that the Cauchy stress tensor should
be symmetric, that is,

σ = σT , x ∈ Ω, t ∈ T. (1.21)

1.3 Constitutive equations
The above conservation equations are not sufficient to describe the dynamics of the material volume
Ω. The relationship between the Cauchy stress tensor σ and the strain rate tensor D has to be
modelled. Such relationships are referred to as constitutive equations.

In general, the Cauchy stress tensor is written as

σ =
1

3
tr(σ)I + τ , (1.22)

where tr(σ)I/3 is a pressure term that is often written as −pI , and τ is the deviatoric part of the
Cauchy stress tensor. In the case of viscous material, constitutive equations link the deviatoric part
of the stress tensor to the strain-rate tensor. The choice of a constitutive equation must reflect the
rheology of the material and is therefore problem-dependent.

2 Ice-sheet governing equations
In this section, the equations that have been expressed in a general way in Sec. 1 will be particularized
to the case of marine ice sheet, based on Greve and Blatter (2009) and Schoof and Hewitt (2013).
The full Stokes model will first be introduced, and reduced order models will then be described.

2.1 Full Stokes problem
Let us consider a bidimensional ice sheet in the x–z plane, x being the horizontal axis and z the
vertical one. A schematic of a 2D ice-sheet is shown in Fig. 5.
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As it is illustrated, the ice sheet is separated into two parts: (i) the part where ice is grounded
(i.e. in contact with the bedrock) x ∈ Ωg; (ii) the part where ice is floating x ∈ Ωf. The whole
spatial domain Ω is the union of the grounded part and the floating part: Ω = Ωg ∪ Ωf. The ice
devide shows a zero velocity. There are three types of media which are in contact with the ice sheet.
Let us denote the interface between the ice sheet and the bedrock by Γb, the interface between the
ice sheet and water by Γw, and the interface between the ice sheet and the air (that is comonly
referred to as the free interface) by Γf. The separations between the interfaces will be usefull to
establish of boundary conditions. In the following, the upper part of the ice-sheet will be denoted by
s(x, t), the lower part by l(x, t), and the ice thickness will be denoted by h(x, t) = s(x, t)− b(x, t).
The bedrock profile will be noted b(x), and is assumed to not vary with time. Thus, l(x, t) = b(x)
for x ∈ Ωg. The velocity vector u can be decomposed in horizontal and vertical directions as
u = uex + wez.

u = 0

Bedrock

Ice

Water

Ωg Ωf

Figure 5: Ice-sheet schematic in 1D. The arrows represent typical flow lines. The ice sheet is
separated into two zones : the grounded part where the ice is in contact with the bed, and the
floating part where the ice floats. This schematic is inspired from Greve and Blatter (2009).

2.1.1 Governing equations

Let us recall here the local form of the balance laws that have been established in the previous
section:
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dρ
dt

+ ρ∇x · u = 0, x ∈ Ω, t ∈ T,

u
dρ
dt

+ ρ
du
dt

= ρf −∇xp+∇x · τ , x ∈ Ω, t ∈ T.
(2.1)

Since the scale of the problem is large (L⋆ = 1000 km), fluctuations of the density are neglected
and ice is considered incompressible such that dρ/dt = 0. In the case of ice-sheets, the volumic
force is given by the volumic weight (Schoof and Hewitt (2013)). That is

f = ρg, (2.2)
where g is the gravity (|g| ≈ 9.81 m/s2). A constitutive law for τ is still required to close the
system. In glaciology, one typically consider viscous relationship between τ and D

τ = 2η(D)D, (2.3)
where η is a function of D which highlights the fact that ice is considered as a non-Newtonian
fluid. Most of the models use a power law for η:

η =
1

2
BD−1+1/n, (2.4)

where n is a constant, D =
√

D : D/2, and B captures the temperature dependancy through an
Arrhenius law (B ∼ exp(1/T )). In the rest of this work, the temperature effects will be disregarded
and B will be a constant. This power law is known as the Glen’s flow law. Experimental results
suggest that n = 3 (Glen (1955)). The system of equations (2.1) can therefore be written ∇x · u = 0, x ∈ Ω, t ∈ T,

ρ
du
dt

= ρg −∇xp+ 2∇x · ηD, x ∈ Ω, t ∈ T.
(2.5)

Now, let us show that the inertia term can be neglected with respect to the pressure gradient. For
this purpose, one will introduce typical quantities which will be used to approximate the different
terms of System (2.5) as in Greve and Blatter (2009)

Typical horizontal length scale L⋆ = 1000 km, (2.6)
Typical vertical length scale H⋆ = 1 km, (2.7)

Typical horizontal velocity U⋆ = 10−6 m/s, (2.8)
Typical vertical velocity V ⋆ = 10−9 m/s, (2.9)

Typical pressure P ⋆ = ρgH⋆ ≈ 10MPa, (2.10)
Typical time scale t⋆ = L⋆/U⋆ = 1012 s. (2.11)

The Froude number Fr is the ratio between the inertia and the pressure terms, that is

Fr =
ρU⋆/t⋆

P ⋆/L⋆
≈ 10−16, (2.12)

which confirms that the inertia term can be neglected. Therefore, System (2.5) becomes{
∇x · u = 0, x ∈ Ω, t ∈ T,

−∇xp+ 2∇x · ηD = −ρg, x ∈ Ω, t ∈ T,
(2.13)

which is known as the full Stokes model.
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2.1.2 Boundary conditions

System (2.13) requires boundary conditions to be solved. These boundary conditions can be
separated into the kinematic boundary conditions (that are applied to the velocity), and the dynamic
boundary conditions (that are applied to the stress).
Kinematic boundary conditions:
In the following, the extreme left of the domain (which will correspond to the location x = 0)
will be assumed to be the ice devide. Therefore, a homogeneous Dirichlet boundary condition is
applied for the velocity

u = 0, at x = 0. (2.14)

The upper surface is an interface that moves with velocity us (see Fig. 6) that could be expressed
as

Fs(x, z, t) ≡ z − s(x, t) = 0. (2.15)

Fs ≡ z − s(x, t) = 0

n
us

Ice

Air

Figure 6: Free surface interface Fs that moves with velocity us. Adapted from Greve and Blatter
(2009).

Boundary condition for the ice flux at the interface can be expressed as

(us − u) · n = an, (2.16)

where us is the interface velocity, and an is the net accumulation rate of snow normal to the
interface. Moreover, the definition of Eq. (2.15) implies that the total derivative of Fs should be
zero, that is

dFs

dt
=

∂Fs

∂t
+ us · ∇xFs = 0. (2.17)

By combining Eq. (2.16) and Eq. (2.17), one obtains the following relationship

∂Fs

∂t
+ u · ∇xFs = −|∇xFs|an (2.18)

⇔ −∂s

∂t
− u

∂s

∂x
+ w = −

√
1 +

(
∂s

∂x

)2

an, at z = s(x, t). (2.19)
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The net accumulation rate a is assumed to be vertical, such that

an =
a√

1 +

(
∂s

∂x

)2
. (2.20)

Therefore, one obtains
∂s

∂t
+ u

∂s

∂x
− w = a, at Fs = 0. (2.21)

The grounded surface is a fixed interface that is shown in Fig. 7

Fb ≡ z − b(x) = 0

n

Bedrock

Ice

Figure 7: Fixed grounded surface interface Fb. Adapted from Greve and Blatter (2009).

The boundary condition associated with the ice–bedrock interface is a impermeability condition,
that is

u · n = 0. (2.22)

The normal n can be expressed as

n =
∇xFb

|∇xFb|
=

−∂b/∂x ex + ez√
1 + (∂b/∂x)2

. (2.23)

By substitution of Eq. (2.23) in Eq. (2.22), one finds

−u
∂b

∂x
+ w = 0, at Fb = 0. (2.24)

Dynamic boundary conditions:
At the free surface, i.e. at z = s(x, t), or equivalently at Γf, a stress free condition is assumed such
that

σ · n = 0, at Γf. (2.25)

As represented in Fig. 8, the part of the ice-sheet that is in contact with water (the ice shelf) is
submitted to water pressure such that

σ · n = ρwgzn, at Γw. (2.26)
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Water

p = −ρwgz

p = −ρwg l(x, t)

Ice

Air

Figure 8: Floating interface. The water pressure acts on the ice shelf perpendicularly.

At the base of the ice sheet, i.e. at z = l(x, t), or equivalently at Γb, a tangential basal stress is
assumed such that

σ · tb = τb, at Γb, (2.27)

where tb is a unitary vector tangential to the bedrock profile. Various friction laws exist for τb.
In the following, this is the Weertman friction law that will be used. The Weertman friction law
(Weertman (1957)) expresses the basal stress as a power law of the basal velocity, that is

τb = −νb|ub|m−1ub, (2.28)

where νb is a friction coefficient, m is a constant, and ub is the basal velocity. Typically, m = 1/3
is chosen. A lot of other models for the friction law could have been used, as the Budd friction law
(Budd et al. (1984)) or the Schoof friction law (Schoof (2005)) but they will not be detailed in this
thesis.

2.1.3 Ice thickness equation

Now that the governing equations as well as the boundary conditions have been described, one can
establish an equation for the ice thickness h(x, t). Let us integrate the mass conservation equation
along the z–axis:

∂u

∂x
+

∂w

∂z
= 0 (2.29)

⇔
∫ s(x,t)

b(x)

∂u

∂x
dz +

∫ s(x,t)

b(x)

∂w

∂z
dz = 0 (2.30)

⇔
∫ s(x,t)

b(x)

∂u

∂x
dz + w|z=s − w|z=b = 0. (2.31)
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By using the Leibniz rule Eq. (1.5), one obtains

∂

∂x

∫ s(x,t)

b(x)

u dz −
(
u|z=s

∂s

∂x
− u|z=b

∂b

∂x

)
+ w|z=s − w|z=b = 0. (2.32)

By injecting the boundary conditions on the free surface and on the grounded surface, it comes

∂s

∂t
+

∂

∂x

∫ s(x,t)

b(x)

u dz = a. (2.33)

By noticing that ∂s/∂t = ∂h/∂t, the ice thickness equation finally writes

∂h

∂t
+

∂

∂x

∫ s(x,t)

b(x)

u dz = a. (2.34)

2.2 Shallow-shelf approximation
The Full Stokes model provides a mathematical description of the physics involved in ice-flow.
However, it is computationnaly expensive to solve. In this subsection, the shallow-shelf approxi-
mation (SSA) will be presented.

Initially proposed by Morland (1987) and MacAyeal (1989), the SSA considers that ice moves
in a sliding mode, that is, ∣∣∣∣∂u∂x

∣∣∣∣≫ ∣∣∣∣∂u∂z
∣∣∣∣ , (2.35)

and that the vertical stress is hydrostatic. Formally, the SSA is valid in the floating part of the
ice sheet, and in grounded regions close to the grounding line. It is a strong model assumption.
The implications of the SSA on the mass conservation equation as well as on the momentum
conservation will now be derived.

2.2.1 Implication on mass conservation

As the ice sheet is considered to move according to a sliding mode, the variation of horizontal the
velocity u is assumed to be negligible in the vertical direction, that is

∂u

∂z
≈ 0. (2.36)

The integrated form of the mass conservation equation Eq. (2.34) becomes

∂h

∂t
+

∂

∂x
(hu) = a. (2.37)

2.2.2 Implication on linear momentum conservation

Let us project the linear momentum equation on x and z axis:
−∂p

∂x
+

∂τxx
∂x

+
∂τxz
∂z

= 0,

−∂p

∂z
+

∂τxz
∂x

+
∂τzz
∂z

= ρg.

(2.38)
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In ice sheets, |τxx|/L⋆ ≫ |τxz|/H⋆ and |τzz|/H⋆ ≫ |τxz|/L⋆, which suggests to simplify Sys-
tem (2.38) into 

−∂p

∂x
+

∂τxx
∂x

= 0,

−∂p

∂z
+

∂τzz
∂z

= ρg.

(2.39)

By integrating along the z–axis, one has

p− τzz = ρg(s− z). (2.40)

Since τzz = −τxx (τ is deviatoric), Eq. (2.40) can be substituted in the first equation of System (2.39)
which leads to

−2
∂τxx
∂x

= ρg
∂s

∂x
. (2.41)

By integrating Eq. (2.41) along z, one has

2

∫ s

b

∂τxx
∂x

dz =

∫ s

b

ρg
∂s

∂x
dz (2.42)

⇔ 2
∂

∂x

∫ s

b

τxxdz − [τxx]
s
b = ρgh

∂s

∂x
(2.43)

⇔ 2
∂

∂x

{
hA−n

∣∣∣∣∂u∂x
∣∣∣∣m−1

∂u

∂x

}
+ Igτb = ρgh

∂s

∂x
, (2.44)

where A = B−1/n, and

Ig =

{
1, x ∈ Ωg,

0, otherwise.
(2.45)

Moreover, in the floating part (i.e. at x ∈ Ωf), Archimède’s principle writes

ρh = −ρwl ⇔ s =

(
1− ρw

ρ

)
h, (2.46)

which allows to write

2A−n

∣∣∣∣∂u∂x
∣∣∣∣m−1

∂u

∂x
= ρg

(
1− ρw

ρ

)
h. (2.47)

Finally, the SSA equations write

∂h

∂t
+

∂

∂x
(hu) = a, x ∈ Ω, t ∈ T,

2
∂

∂x

{
hA−n

∣∣∣∣∂u∂x
∣∣∣∣m−1

∂u

∂x

}
+ Igτb = ρgh

∂s

∂x
, x ∈ Ωg, t ∈ T,

2A−n

∣∣∣∣∂u∂x
∣∣∣∣m−1

∂u

∂x
= ρg

(
1− ρw

ρ

)
h, x ∈ Ωf, t ∈ T,

+ Boundary & Initial conditions.

(2.48)

In what follows, a numerical implementation of the SSA equations with the Weertman friction law
will be used. For more informations on this numerical implementation, please refer to Bosten et al.
(2019); Gregov et al. (2022). Parameters of the SSA equations and the geometry of the bedrock
are summarized in Appendix A.
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3 Modelling the friction field
Spatially uncertain quantities are often described in a probabilistic framework as random fields. A
spatial dependent random field can be seen as a collection of random variables that are indexed by
spatial coordinates. In this section, notions of random fields will be introduced following Pavliotis
(2014) and Ghanem and Spanos (2003). Afterwards, this framework will be applied to the friction
field and the advantages of this description will be highlighted.

3.1 Notions of random fields
Let

{Ξ(x) : x ∈ Ω}, Ω ⊂ R (3.1)

be a one-dimensional space dependent second order stochastic process. Ξ is therefore a collection
of random variables indexed by the position x ∈ Ω. Moreover, if Ξ is a Gaussian random field, it
is fully described by its mean E(Ξ(x)) = ξ(x) and its covariance function CΞ(x, x

′).

3.1.1 Gaussian random fields

A second-order random field Ξ : Ω → R is Gaussian if for any x ∈ Ω, the corresponding random
variable Ξ(x) is Gaussian. The covariance matrix of Ξ(x) and Ξ(x′) should be symmetric and
positive semi definite. There exists several models for the such covariance function. Most of them
can be summarized by the Matérn covariance functions expressed as

Cν(x, x
′) = σ2 2

1−ν

Γ(ν)

(√
2ν|x− x′|

lc

)ν

Kν

(√
2ν|x− x′|

lc

)
, (3.2)

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind, lc is
the correlation length and σ2 is the variance of the random field. The parameter ν controls the
smoothness of the resulting random field, as Cν is ⌊ν⌋ times differentiable.

According to Mercer’s theorem, such symmetric positive definite covariance kernels can be
expressed using their spectral representation

CΞ(x, x
′) =

∞∑
k=1

λkϕk(x)ϕk(x
′), (3.3)

where {(λk, ϕk)}k=1,...,∞ is the collection of eigen-values and eigen-functions of the covariance
kernel, that are solutions of the Fredholm equation∫

Ω

CΞ(x, x
′)ϕk(x

′) dx′ = λkϕk(x). (3.4)

Particular values of ν for the Matérn covariance functions lead to well-known covariance
kernels. For ν = 1/2, the exponential covariance kernel is retrieved:

C1/2(x, x
′) = σ2 exp

(
−|x− x′|

lc

)
. (3.5)
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The limit case ν → ∞ results in the infinitely differentiable Gaussian covariance function

C∞(x, x′) = σ2 exp

(
−(x− x′)2

2l2c

)
. (3.6)

In Fig. 9 are shown both C1/2 and C∞ in Ω× Ω for xc = 1800 km and lc = 200 km.

(a) ν = 1/2 (b) ν → ∞

Figure 9: Particular cases of Matérn covariance functions for lc = 200km.

Mercer’s theorem allows to approximate these covariance kernels by truncation of Eq. (3.3).
Let us define ĈK

ν as the truncated spectral expansion of Cν , that is

ĈK
ν (x, x′) =

K∑
k=1

λkϕk(x)ϕk(x
′). (3.7)

One could now represent ĈK
1/2 and ĈK

∞ graphically, as it is done in Fig. 10 for K = 5.

(a) Ĉ5
1/2(x, x

′) (b) Ĉ5
∞(x, x′)

Figure 10: Particular cases of truncated Matérn covariance functions for K = 5 and lc = 200 km.
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It could be observed that the amount of information of C1/2 that is covered by Ĉ5
1/2 is less

important than the one of C∞ that is coverred by Ĉ5
∞. This is because the eigen-value spectrum of

C∞ decays faster than the one of C1/2, as it is shown in Fig. 11.

Figure 11: Eigen-value collapse of the Matérn covariance kernels C1/2 and C∞ with lc = 200 km.
For the case of C1/2, the eigen-values decay asymptotically as n−1, whereas for the case of C∞, the
eigen-values decay exponentially.

The more rapidly the eigen-value spectrum decays, the less terms are needed in Ĉν to carry the
principal informations of Cν . As C1/2 is not smooth at x = x′, the eigen-value spectrum cannot
collapse that rapidly since the non-smoothness at x = x′ cannot be represented with a sum of
smooth eigen-functions unless their respective frequencies tend to the infinity which is only the
case of ϕ∞(x). Therefore, random fields represented with C1/2 as the covariance kernel are non
smooth and are difficult to generate. For this reason, CΞ = C∞ is often chosen for the representation
of Gaussian random fields. The eigen-value collapse of Matérn covariance kernels depend not only
on ν, but also on the correlation length lc. In Fig. 12 the eigen-value collapse of C∞ is represented
for lc ∈ {50, 100, 200} km. It can be observed that the higher is the correlation length, the faster
is the eigen-value decay. This result is intuitive since a small correlation length induces a higher
fluctuations frequencies in the random field, such that higher frequency eigen-functions are needed
to describe the field. First four eigen-functions of C∞ with lc = 50 km are shown in Fig. 13 in
order to illustrate the frequency increase in the successive eigen-functions.
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Figure 12: eigen-value spectrum of C∞ for different correlation lengths and unit variance.

Figure 13: First four eigen-functions of C∞ with lc = 50 km.
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3.1.2 Karhunen-Loève expansion

As a consequence to Eq. (3.3), the random field Ξ of mean ξ and covariance CΞ can be represented
using a spectral expansion, known as the Karhunen-Loève (KL) expansion (Lévy (1965)):

Ξ(x) = ξ(x) +
∞∑
k=1

θk
√
λkϕk(x), (3.8)

where {θk}k=1,...,∞ is a collection of uncorrelated random variables with zero mean and unit
variance, and that are Gaussian in the case of Gaussian random fields. Therefore, given the mean
field and the set of eigen-values and eigen-functions of the covariance function, realisations of such
random fields can be generated by sampling from the joint probability density of {θk}k=1,...,∞.

What is really advantageous in such representations is that the random field Ξ can be approxi-
mated by its K−th term trunction Ξ̂K

Ξ̂K(x) = ξ(x) +
K∑
k=1

θk
√

λkϕk(x). (3.9)

Formally, Ξ̂K is a second order random field of mean ξ and covariance function ĈK
Ξ . The truncation

error between Ξ and Ξ̂K is therefore related to the truncation error between CΞ and ĈK
Ξ . The rapid

collapse of the eigen-values of CΞ ensures that this truncation is optimal, as it minimizes the mean
square error term between Ξ̂K and Ξ for K fixed (Ghanem and Spanos (2003)). This property
allows to carry most of the information of Ξ in Ξ̂K for small to moderate K.

3.2 Friction field as a random field
In the previous subsection, Gaussian random fields have been introduced. Here it will be explained
why such representations are not suited for the friction field by application of the maximum entropy
principle. This principle will then be used to modify the previous representation of such random
fields.

3.2.1 Maximum entropy principle

Introduced by Jaynes (1957), the maximum entropy principle is a method that finds the most appro-
priate probability density function for a given random variable, given its structural informations.
The given structural informations of a random variable constrain the set of possible probability den-
sity functions, and the maximum entropy principles states that among all the remaining densities,
the one that is appropriate is the one that maximizes the entropy.

Formally, the entropy associated with a random variable X ∈ X with unknown probability
density function πX(x) is defined as

S(πX) = −
∫
X
πX(x) log(πX(x))dx. (3.10)

The structural informations of the random variable are typically informations on its support,
and on its moments. The maximum entropy principle can therefore be seen as an optimization
problem with associated constraints:
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max S(πX)

s.t. structural constraints on X,

which is commonly solved with a Lagrange multiplier method.

3.2.2 Application to the friction field

Let
{νb(x) : x ∈ Ω}, Ω ⊂ R (3.11)

be a one-dimensional space dependent random field second-order an strictly positive stochastic
process. That is, νb is a collection of strictly positive random variable of unknown probability
density function πνb , indexed by the position x ∈ Ω and provided with a mean field ν(x) and a
covariance function Cν(x, x

′). The underlying structural informations of this definitions allow to
write the maximum entropy principle for the friction field as

max S(πνb) (3.12)
s.t. πνb(ζ) = 0 for ζ ≤ 0, (3.13)∫

R+

πνb(ζ) dζ = 1 (3.14)∫
R+

ζπνb(ζ) dζ = ν (3.15)∫
R+

log(ζ)πνb(ζ)dζ = c. (3.16)

which finally leads to
πνb(ζ) = Gamma(ζ; ν, σ2(ν, c)), (3.17)

where the variance σ2 can be deduced from the mean and the log-mean. The friction parameter νb
should therefore not be described by a Gaussian random field, but by a gamma one.

3.2.3 Transformation from a Gaussian random field

A non Gaussian random field such as νb can be expressed as a non-linear transformation f of a
Gaussian random field Ξ, such that

νb(x) = f(Ξ(x)). (3.18)

The transformation f can be seen as the composition of two transformations: f = f2 ◦ f1.
The first transformation f1 can be taken as the cumulative distribution function of the normal
distribution, that is,

f1(x) =
1

2

(
1 + erf

(
x− ξ√
2σΞ

))
, (3.19)

where ξ and σΞ are respectively the mean and the standard deviation of the Gaussian random field
Ξ. Therefore, the random field resulting of the transformation f1(Ξ(x)) is uniformly distributed

24



with support [0, 1]. This uniform random field can be now transformed by the inverse cumulative
distribution function of the non Gaussian random field νb, which is a gamma random field here.
The function f2 can thus be expressed as

f2(x) = Inv-Gamma(x; ν, σ2
ν). (3.20)

One can finally express the gamma friction field as

νb(x) = f2 ◦ f1 ◦ Ξ(x). (3.21)

This sequence of transformations allows to generate a gamma random field by transformation
of a Gaussian random field.

3.2.4 Realization of the friction field

It has been seen that realizations of the friction field could be generated based on a Gaussian random
field of arbitrary mean and variance. However, the covariance functionCΞ and its correlation length
lc have to be specified to generate realizations of the Gaussian random field, and the mean field ν
and the field variance σ2

ν have to be specified to apply the transformation f2.
The Gaussian covariance function is a common choice, and allows to represent smooth

fields. Moreover, it has been shown that its eigen-value spectrum decays rapidly which allows
to parametrize the corresponding random field with a small to moderate number of parameters. For
these reasons, CΞ(x, x

′) = C∞(x, x′) will be kept. The corresponding correlation length will be
chosen as lc = 100 km, as it is not expected to be arbitrarily small, but smaller than the characteristic
length of the ice-sheet which is here xc = 1000 km. The mean field will be set to νb = 7.624× 106

[Pa m1/3 s−1/3] by following the work of Pattyn et al. (2012). The standard deviation of the field
will be set to 70 % of the mean field to allow large fluctuations. In Fig. 14 is shown some realization
of the corresponding friction field.

Figure 14: Realizations of {νb(x) : x ∈ Ω} for CΞ(x, x
′) = C∞(x, x′), lc = 100 km, νb =

7.624× 106 [Pa m1/3 s−1/3] and σν = 0.7νb.
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4 Surrogate model
The finite-element model of the ice flow (under the Shallow Shelf Approximation) is time consum-
ing. Typically, a simulation of the forward problem requires O(103) [s] to converge which makes
MCMC methods such as M-H intractable as they typically require O(105) iterations to converge.
An inexpensive surrogate model will be constructed based on polynomial chaos (PC) expansion.

4.1 Polynomial chaos surrogate model
A PC surrogate model is an approximation gp(m) of a function g(m) that takes into account the
prior uncertainty on its set of parameters m. Formally, it can be expressed as

gp(m) =

p∑
i=0

ciPi(m), (4.1)

where p is the polynomial order of the surrogate, {ci}pi=0 is a set of unknown coefficients, and
{Pi(m)}pi=0 is a basis of polynomials that are orthogonal with respect to the prior probability
density of m over its support M, that is,∫

M
Pi(m)Pj(m)πprior(m) dm = δij. (4.2)

By multiplicating Eq. (4.1) by Pj(m)π(m) and by integrating over M, we obtain∫
M

gp(m)Pj(m)π(m) dm =

∫
M

p∑
i=0

ciPi(m)Pj(m)πprior(m) dm (4.3)

=

p∑
i=0

ci

∫
M

Pi(m)Pj(m)πprior(m) dm (4.4)

= cj (4.5)

where the orthogonality property of the polynomial basis (Eq. (4.2)) has been used. Therefore,
the set of unknown coefficients can be computed by approximating the remaining integral with an
appropriate quadrature rule

cj ≈
∑
α

g(mα)Pj(mα)wα, (4.6)

where mα is the αth node of integration, and wα is its associated weight. The choice of polynomial
basis depends of the nature of the uncertain parameter m and on its probability density function.

4.2 Application to the SSA ice-flow model
In the framework of this thesis, an input-output model (where the inputs characterize the friction
parameters, and the outputs characterize the observable velocity) of the ice-flow is needed. The
friction field is parametrized by the unknown coefficients θ = {θ1, ..., θN} of the KL expansion.
Therefore, the surrogate model will be a function gp : RN → (R+)m that inputs a set of KL
parameters θ ∈ RN and outputs a set of velocitiesu ∈ (R+)m that correspond to a set of observation
points x ∈ Ωm. According to Eq. 3.9, the prior probability density function over the KL parameter
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space πprior(θ) is a multivariate Gaussian with zero-mean and identity covariance matrix. Therefore,
the appropriate polynomial basis to describe the model is the Hermite polynomial basis (Xiu and
Karniadakis (2002)). The four first Hermite polynomials are shown in Fig. 15.

Figure 15: Four first Hermite polynomials over x ∈ [−2, 2].

The surrogate model can therefore be expressed as

gp(θ) =

p∑
i=0

ciHi(θ), (4.7)

where the set of coefficient is found by approximating integral of Eq. (4.5) with the Gauss-Hermite
quadrature rule

cj ≈
∑
α

g(θα)Hj(θα)wα. (4.8)

The integration grid is theN−dimensional extension of the roots of the rth order Hermite polynomial
Hr (where r is referred to as the level). That is, for a level r > p, the integration grid will
be composed of rN points with associated grid weights that are obtained by multiplying the
corresponding one-dimensional roots. A schematic of a bi-dimensional integration grid chosen
with respect to the 5th order surrogate model is shown in Fig.16.

As it can be observed, the number of integration nodes scales exponentially with the dimen-
sionnality of the problem which makes the construction of a surrogate model challenging for large
dimensional input space. To tackle this problem, sparse grid quadrature methods have been devel-
opped which makes the integration cheaper (Le Maître and Knio (2010)) but will not be described
in detail here.

Surrogate models of order p with level r can therefore be constructed. For the purpose of
illustration, let us show the construction of a surrogate model with level r = 8 with varying
the order p. The surrogate will output a single velocity observation (m = 1) uobs at location
xobs = 500km, and input the two first KL coefficients θ1 and θ2. This surrogate model is shown in
Fig. 17 for p ∈ {1, 3, 5, 7}.

It could be observed that the surrogate model accuracy increases with p at high density regions
of πprior(θ), but simple observations cannot conclude about the global accuracy of the surrogate
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Figure 16: Integration grid based on H5(x) shown with the contour plot of the bivariate normal
distribution of zero mean and identity covariance. The corresponding weights are the largest for
nodes close to the origin.

model with respect to p. Let us define the weighted error Rw between the surrogate and the true
model with respect to πprior(θ) as

Rw =

∫
RN

|gp(θ)− g(θ)|2πprior(θ) dθ (4.9)

≈
∑
α

wα(g
p(θα)− g(θα))

2, (4.10)

which can be evaluated as a function of the polynomial order p to check that it indeed decreases.
As shown in Fig. 18, Rw does indeed decrease with p. In order to avoid overfitting, the order is
chosen smaller than the level (p < r), so that p = r − 1 will be kept.

28



(a) p = 1 (b) p = 3

(c) p = 5 (d) p = 7

Figure 17: Surface plot of the surrogate model gp(θ) ≈ g(θ) = u|500km for r = 8 and varied order
p. Discrete points denote the true model evaluations g(θ).

Figure 18: Weighted error Rw as a function of the surrogate model order p, with corresponding
scaling. The input dimensionality and the level are respectively N = 2 and r = 8, as in Fig. 17.
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Part II

Inverse problem
5 Generalities on inverse problem
In this section, the inverse problem will be formulated using different approaches. At first, the
context and notations that are necessary to understand how the forward and inverse problems are
linked are briefly described. Afterwards, the inverse problem will be formulated in a general
way based on, among others, Tarantola (2005) and Stuart (2010). The deterministic approach
will be first introduced. The inverse problem will be subsequently formulated in the Bayesian
framework, and the similarities between these two approaches will be highlighted. Finally, the
general formulations will be particularized to the glaciology problem of the inversion of the friction
field given observations of the surface velocity.

5.1 Context and notations
Let us consider a model f : X × M → Rp which, given a set of parameters m ∈ M, has as a
solution a state x ∈ X that verifies

f(x;m) = 0. (5.1)

The model f is commonly a system of partial differential equations with associated boundary
conditions. The solution state x gives rise to an observable d ∈ D defined generally as

d = h(x), (5.2)

where h : X → D is a state to observable mapping. In the framework of inverse problems, one is
interested in the parameter to observable mapping g : M → D that given any set of parameters
m ∈ M finds the corresponding observable d ∈ D such that

d = g(m). (5.3)

The evaluation of the parameter-to-observable mapping therefore requires the evaluation of the
model and of the state-to-observable mapping, as it is illustrated in Fig. 19.

m
f(x;m) = 0

x
h(x)

d

g(m)

Figure 19: Input output schematic of the parameter-to-observable map g, and its equivalence in
terms state-to-observable map h and of model f .

In general, an inverse problem consists in, from a set of (possibly noisy) observations dobs ∈ D,
retrieving the informations about the set of parameter m that led to these observations. In practice,
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such problems are ill-posed (i.e. their solution is not guaranteed to exist nor to be unique, and is
not stable with respect to perturbations in the given observations). These problems are therefore
solved in frameworks that are able to ensure the well-posedness of the problems.

5.2 Deterministic framework
The first framework in which an inverse problem can be solved is the deterministic one. In the
deterministic framework, the inverse problem is formulated as an optimization problem which has
as a solution the set a set of parameter m⋆ ∈ M.

In general, the observations dobs are noisy (i.e. contain error). Thus, they can be expressed as

dobs = d+ ϵ

= g(m) + ϵ, (5.4)

where ϵ includes (i) model errors, which are due to the incapacity of the model to represent the true
process that links the observable quantity to the set of parameter; (ii) measurement errors which
are due to the imperfection of the measurement instrumentation; (iii) numerical errors which are
introduced by the numerical methods used for the model to be solved. These errors imply that it is
likely that no set of parameter m ∈ M allow the observable d to fit exactly the observation dobs.
For this reason, the problem has to be formulated as an optimization problem, that is

m⋆ = arg min
m∈M

J (m;dobs), (5.5)

where J is a cost function. In practice, the cost function is often chosen as a least-squares error
between observable and observation

J (m;dobs) =
1

2
||g(m)− dobs||2D, (5.6)

where || · ||D denotes the l2−norm defined in the D space and the factor of one half is added for
convenience. Such least-squares formulations are often ill-posed, as their solution is not guaranteed
to be unique nor stable. These formulations have therefore to be regularized. The regularization of
such ill-posed problems can be done by adding a penalization term to Eq. (5.6) (Tikhonov (1963)).
A common choice for the regularization term is proportional to the norm of the differences between
the parameters to be inferred and a reference value for these parameters, which leads to

JR(m;m0,d
obs) =

1

2
||g(m)− dobs||2D +

αR

2
||m−m0||2M, (5.7)

where αR controls the magnitude of the regularization, prior knowledge can be incorporred through
m0 ∈ M such that value of the set of parameter that are far from m0 are penalized, and || · ||M
denotes the l2−norm defined in the M space. The solution of Eq. (5.5) with the cost function
defined in Eq. (5.7) therefore exists for sufficiently large αR, and is a point estimate m⋆ ∈ M,
which achieves a balance between being sufficiently close to m0 and minimizing the error between
the observations and the model predictions.
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5.3 Bayesian frame work
In the Bayesian framework, the solution to the inverse problem is not a set of parameter m⋆ but
a probability density function (pdf) for the parameters m given the observations dobs, that is the
conditional pdf πpost(m|dobs). The Bayes’ rule reads as

πpost(m|dobs) =
πlike(d

obs|m)× πprior(m)∫
M πlike(dobs|m)πprior(m) dm

, (5.8)

where πlike(d
obs|m) is the likelihood, πprior(m) is the prior pdf, and the denominator is the normal-

ization constant. Equation (5.8) should be interpreted as an update of the prior knowledge on m
given the observations dobs, that leads to a posterior pdf ρ(m|dobs), as it is represented in Fig. 20.

(a) Prior pdf (b) Likelihood (c) Posterior pdf (in blue)

Figure 20: Illustration of the Bayes rule. In (c), the posterior pdf (that is proportional to the product
of the prior and the likelihood) can be seen as un update of the prior, given the observations taken
into account by the likelihood.

The inverse problem in the Bayesian framework can be solved with sampling methods which,
given the likelihood and the prior, will explore the posterior. However, exploring the posterior pdf
is challenging for large scale inverse problems, as the space to be explored increases exponentially
with the number of variables. Alternatively, from this problem can be defined an optimization
problem that is to maximize the posterior (or equivalentely, to maximize the product between the
prior and the likelihood without having to compute the normalization constant in Eq. (5.8)). The
set of parameter that solves this optimization problem is refered to as the maximum a posteriori
(MAP) mMAP ∈ M and follows

mMAP = arg max
m∈M

πpost(m|dobs)

= arg max
m∈M

{
πlike(d

obs|m)× πprior(m)
}
. (5.9)

A common (but questionnable) assumption is that the noise in Eq. (5.4) follows a centered
normal distribution, ϵ ∼ N (0,Σnoise), where Σnoise is the noise covariance matrix that is diagonal
if the noises are independent, and directly proportional to the identity matrix if the noises are iid
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(Σnoise|iid = σ2I). Under the assumption of Gaussian noise, one has

πlike(d
obs|m) ∝ exp

(
−1

2

(
g(m)− dobs)T Σ−1

noise
(
g(m)− dobs))

= exp

(
−1

2
||g(m)− dobs||2

Σ−1
noise

)
. (5.10)

Then, if the prior is uniform with infinite support (i.e. non-informative), the optimization problem
of Eq. (5.9) is reduced to

mMAP = arg max
m∈M

{
exp

(
−1

2
||g(m)− dobs||2

Σ−1
noise

)}
= arg max

m∈M

{
−1

2
||g(m)− dobs||2

Σ−1
noise

}
= arg min

m∈M

{
1

2
||g(m)− dobs||2

Σ−1
noise

}
, (5.11)

which shows how maximizing the likelihood in the Bayesian framework is equivalent to the inverse
problem of Eq. (5.5) from the deterministic framework, with the cost function defined in Eq. (5.6).
If the prior is chosen as Gaussian centered at m0 with a given covariance matrix Σprior such that

πprior(m) ∝ exp

(
−1

2
(m−m0)

T Σ−1
prior (m−m0)

)
= exp

(
−1

2
||m−m0||2Σ−1

prior

)
, (5.12)

so that Eq. (5.11) becomes

mMAP = arg min
m∈M

{
1

2
||g(m)− dobs||2

Σ−1
noise

+
1

2
||m−m0||2Σ−1

prior

}
, (5.13)

which shows how maximizing the posterior with informative prior is linked with the regularized
deterministic inverse problem.

5.4 Litterature review of inverse problem in glaciology
The governing equations of ice-sheet flows contain both phenomenologically uncertain parameters
(e.g. ice rheology, friction law) and parameters that are non-available due to the impossibility
of measuring them directly, such as the friction parameter field. If physical reasonings allow to
constrain the phenomenologically uncertain parameters, the non measurable quantities have to be
inferred from observation data through an inversion process. For this reason, the inverse problem
which consists in inferring the friction field from observations of the surface velocity has garnered
considerable interest among numerous scientists. In this subsection, the work of some of these
scientists will be reviewed. The deterministic approach will be addressed first, and will be followed
by the Bayesian approach.
Deterministic approach: As the parameter to be inferred is a bounded function from Ω to R+, the
underlying inverse problem is an infinite-dimensional inverse problem where to each local point
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x ∈ Ω, a value νb(x) ∈ R+ has to be inferred. In a deterministic framework, this leads to the
following least-squares minimization problem

ν⋆
b = arg min

νb(m)

{
||uobs − g(m)||2

Σ−1
noise

+R(m)
}
, (5.14)

where R is a regularization term, often taken to penalize large gradients in the friction field which
smoothens it (Petra et al. (2012); Morlighem et al. (2010)), or to penalize friction fields that are far
to an expected prior field. This inverse problem is formulated as an optimization problem that can
be solved with gradient descent methods. Such methods require the computation of the gradient
of a cost function with respect to the set of parameter at each iteration. The most basic method
to compute these gradients relies on forward finite differentiation (Larour et al. (2012)) which
is computationaly expensive as it requires N + 1 forward model evaluation for N−dimensional
problems. There exist methods allowing to compute these cost function gradients in a more
efficient way. A common approach is to analytically derive an adjoint problem where only one
single additional forward model evaluation is needed for the computation of the gradient (MacAyeal
(1993); Vieli and Payne (2003); Morlighem et al. (2013)). Automatic differentiation (AD) can be
used as an alternative to compute gradients (Larour et al. (2014)).
All of these methods require the set of parameters (here the friction field) to be finite dimensional.
The friction field will therefore be discretized, and expressed in a general form:

νN
b (x) =

N∑
k=1

mkϕk(x) = mTϕ(x), (5.15)

where {ϕk(x)}Nk=1 is a finite-dimensional set of pre-determined shape functions, and {mk}Nk=1

is a finite-dimensional set of parameter that can be inferred from observations. Finite-element
discretizations of νb are common (e.g. MacAyeal et al. (1995); Goldberg and Sergienko (2011)),
but lead to large scale inverse problems as the number of elements is usually large in ice-sheet
numerical models. It has been shown that Newton’s methods should be used instead of basic
gradient descent methods for large scale inverse problems, as its convergence rate is insensitive to
the problem dimensions (Petra et al. (2012)). Such methods use the information of the hessian to
accelerate the convergence. As the computation of the Hessian is intractable for computationally
expensive forward model evaluations, a low rank approximation of the Hessian can be used instead
as its eigen values often collapse rapidly to zero (Villa et al. (2021)).
Other types of discretizations can be used in order to decrease the problem dimensionality. For
example, a finite element discretization with a reduced number of degrees of freedom is often used.
Fourier modes have been used in MacAyeal (1993).
Bayesian approach: This inverse problem can be solved in the Bayesian framework in order to
quantify the uncertainty associated with the inferred parameters. Mathematically, this leads to the
proportionnality relationship

πpost(m|uobs) ∝ πprior(m)πlike(u
obs|m), (5.16)

where the finite set of parameter to be inferred m is derived from the general discretization of the
friction field Eq. (5.15). Under Gaussian observation noise and Gaussian prior assumptions, one
has

πpost(c|uobs) ∝ exp

(
−1

2
||g(m)− uobs||2

Σ−1
noise

− 1

2
||m−mprior||2Σ−1

prior

)
, (5.17)
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with mprior and Σprior are the mean and the covariance matrix of the Gaussian prior respectively,
and Σnoise is the noise covariance matrix. Note that, as the mapping g(m) is non linear, the
Gaussianity of πprior does not imply πpost to be Gaussian. The posterior is therefore likely to be a
complex distribution that cannot be fully discribed by its two first moments (that are its mean and
its covariance matrix). Sampling methods such as Monte Carlo Markov Chain methods (MCMC)
are typically used to explore the posterior pdf in the parameter space, as they only require the prior
information and the likelihood to be pointwise evaluable. These methods generate a Markov chain
of states in the parameter space by, at each step, sampling a proposal around the current state and
accepting it with a probability that requires the evaluation of a likelihood to be computed. These
methods are popular but are facing two major issues. The first is that the more parameters there are
in the space, the harder it is to explore it, which makes these methods challenging for large-scale
inverse problems. The second is that, as these methods require the evaluation of the likelihood
(and therefore, of the forward model) at each step and as the number of steps is typically of the
order of the million for these methods to converge, such methods are intractable for computationaly
expensive forward models such as ice sheet numerical models. Such methods can however be
accelerated. Isaac et al. (2015) have proposed a Gaussian approximation of the posterior, centered
at the maximum a posteriori with a covariance matrix derived from a low rank approximation of
the hessian of the misfit expressed in Eq. (5.6) at the MAP point. The creation of a surrogate
model, constructed through a fixed number of forward model evaluations, can render the likelihood
evaluation tractable which strongly accelerates the MCMC-based methods (Marzouk et al. (2007)),
which have been applied in the case of computationally expensive ice-sheet models in Bulthuis
et al. (2019).

35



6 Sampling methods
As it has been mentionned in Sec. 5.3, the computation of the posterior requires, according to
Eq. (5.8), the computation of a non tractable integral. Therefore, the analytical direct computation
of the posterior is generally not an option. Alternatively, Markov chain Monte Carlo (MCMC)
sampling methods can be used to estimate the posterior. The idea of MCMC methods is to build a
Markov chain which explores the parameters space in accordance to a target posterior In this section,
the Metropolis-Hastings (Metropolis et al. (1953); Hastings (1970)) algorithm will be introduced
and a procedure to enhance the convergence of this method will be described.

6.1 Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm generates a Markov chain (i.e. a chain whose state depend
exclusively on the previous state). At each step of this method, a candidate statem⋆ is sampled from
a pre-defined proposal distribution q. Since the target posterior πpost can be pointwise evaluated,
one can evaluate how likely is the candidate state compared to the previous one. The new candidate
has a probability α to be accepted. This procedure is defined properly in Algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm
1: Define proposal density q(m1|m2)
2: Initialize state m(0)

3: for k = 1 to Nmax do
4: Sample m⋆ ∼ q(m⋆|m(k−1))
5: Compute α = πpost(m

⋆)q(m⋆|m(k−1))/πpost(m
(k−1))q(m(k−1)|m⋆)

6: Sample u ∼ U[0, 1]

7: if u < α then
8: Set m(k) = m⋆

9: else
10: Set m(k) = m(k−1)

11: end if
12: end for=0

A key point in the performance of M-H MCMC is the choice of proposal density q. A common
choice of proposal is the Gaussian pdf centered in the current state m, that is

q(m⋆,m) =
1√

(2π)d det[Σ]
exp

(
−1

2
(m−m⋆)T [Σ]−1(m−m⋆)

)
, (6.1)

where d is the dimensionality of m. Such symmetric proposals (i.e. proposals for which
q(m⋆,m) = q(m,m⋆)) lead to the particular case of the random walk Metropolis-Hastings
(RWMH) algorithm. The choice of covariance matrix [Σ] will strongly affect the exploration of the
target posterior as it will dictate how the proposal is confident (locally concentrated) or conservative
(diffused). If the proposal density is too confident, the posterior might be badly explored and the
Markov chain might be stuck in local modes. If the proposal density is too conservative, the accep-
tion rate might be too low which leads to bad performance of the algorithm. Several methods can
be proposed to choose appropriate proposals. The first is to rely on prior knownledge, which can
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come from a previous burn in phase. For instance, the RWMH algorithm can be performed with
an arbitrarily tuned covariance matrix, and statistics can be assessed from the generated Markov
chain such as its covariance matrix and its MAP point. RWMH can therefore be performed starting
from the previously found MAP point, with the so found covariance matrix. This method has been
shown to work, and does indeed lead to a Markovian process as the burn in phase is separated from
the final phase. The finally generated Markov chain is shown to verify some ergodicity properties,
which guarantee that it will converge towards a stationnary distribution that is the posterior.

6.2 Adaptive methods
More systematic methods have been proposed for tuning the proposal properties. Adaptative
proposal (AP) have been proposed in Haario et al. (1999). They proposed Gaussian proposals
with a covariance matrix that is computed from the U last states where U is a memory length.
This method therefore produces a non-Markovian chain as the proposal depends on the history and
not only on the current state. However, this method has been shown to not verify the ergodicity
property that is requires for the chain to converge towards a stationnary distribution. It is two years
later that the authors have proposed the Adaptive Metropolis (AM) algorithm which verifies the
ergodicity property for bounded posterior with a bounded support (Haario et al. (2001)). Its idea is
to update the proposal by taking into account the whole history. Formally, the proposal covariance
matrix at the k–th point of the chain is given by

[Σ](k) =

{
[Σ](0), k ≤ k0

sd cov(m(0), ...,m(k−1)) + sdϵId, k > k0,
(6.2)

where sd depends exclusively on the dimensionality, Id is the d–dimensional identity matrix, k0 is
the length of the initial period, and ϵ > 0 is a parameter that ensures the positive definiteness of
the covariance matrix. It is typically chosen very small compared to the size of the support. A
common choice for sd is

sd =
2.42

d
, (6.3)

from Gelman et al. (1996). Here again, one can rely on prior informations or on a previous burn-in
phase for the choice of [Σ](0).
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7 Neural posterior estimation
Instead of using MCMC methods to sample from the pointwise evaluable posterior p(θ|x), an
estimator q ∈ Q of the posterior from which it is possible to draw samples can be learned with
neural posterior estimation (NPE). Inference process with such posterior estimators is referred to as
likelihood-free inference, as once the estimator is constructed, there are no need for the simulator
to be evaluated. Moreover, NPEs are powerful as they are amortized estimators, i.e. estimators
that approximate a general posterior that is not pre-conditionned on a given x. In this section,
the construction of such posterior estimator will be turned into an optimization problem through
the concept of variational inference, and normalizing flows will be introduced to parametrize the
family Q according to Papamakarios et al. (2021); Kobyzev et al. (2020).

7.1 Variational inference
Variational inference methods turn the search for an estimator q ∈ Q of a posterior p into an
optimization problem. This optimization problem will be to minimize the discrepancy between
q(θ|x) and p(θ|x), with respect to the parameters that parametrize q. Therefore, this discrepancy
has to be quantified. The most usual way of quantifying the discrepancy between two distributions
is to compute their Kullback-Leibler divergence, written DKL, that is

DKL(p(θ|x)||q(θ|x)) = Eθ∼p(θ|x)

{
log

(
p(θ|x)
q(θ|x)

)}
. (7.1)

However, in the present case, samples from the posterior are not available. Thus, it is the expected
Kullback-Leibler divergence D̃KL that is used instead, that is

D̃KL(p(θ|x)||q(θ|x)) = Ex∼p(x)Eθ∼p(θ|x)

{
log

(
p(θ|x)
q(θ|x)

)}
. (7.2)

The chain rule of probability writes

p(θ,x) = p(x)p(θ|x) = p(θ)p(x|θ), (7.3)

such that Eq. (7.2) becomes

D̃KL(p(θ|x)||q(θ|x)) = E(x,θ)∼p(θ,x)

{
log

(
p(θ|x)
q(θ|x)

)}
. (7.4)

The expected Kullback-Leibler divergence D̃KL can therefore be evaluated if sampeles of the
joint distribution p(θ,x) are available. According to Eq. (7.3), samples (θ⋆,x⋆) ∼ p(θ,x) can
be sequentially drawn by first sampling θ⋆ ∼ p(θ), and then sampling x⋆ ∼ p(x|θ⋆). In the
framework of variational inference, optimal estimator q⋆ can be found by minimizing D̃KL which
leads to the following optimization problem

q⋆(θ|x) = argmin
q∈Q

D̃KL(p(θ|x)||q(θ|x)) (7.5)

= argmin
q∈Q

E(x,θ)∼p(θ,x)

[
log

(
p(θ|x)
q(θ|x)

)]
(7.6)

= argmin
q∈Q

E(x,θ)∼p(θ,x) (− log q(θ|x)) , (7.7)

38



which shows how minimizing the Kullback-Leibler divergence is equivalent to maximizing the data
likelihood in the context of variational inference. In the following, the negative data likelihood will
be referred to as the loss.

7.2 Normalizing flows
The principle of variational inference allows to turn the search for an estimator q(θ|x) of a
posterior p(θ|x) into an optimization problem. However, the choice of estimator family Q still
needs to be specified. The choice of such families will be seen as parametrizations of q, such
that the optimization problem can be solved with gradient descent methods in the space of these
parameters. Normalizing flows (Tabak and Vanden-Eĳnden (2010); Tabak and Turner (2013)) can
be used to constrain the family Q in the context of variational inference (Rezende and Mohamed
(2015)). In this subsection, the general principle of normalizing flows will be described, and a
particular architecture will be reviewed.

7.2.1 General principle

Let z be a d–dimensional vector in Rd from which we would like to know the joint probability
density function pZ(z). The vector z can be expressed as a function of another vector u ∈ Rd

sampled from a known distribution pU(u) by using an invertible transformation T such that

z = T (u) ⇔ u = T−1(z). (7.8)

The joint probability density of z, noted pZ(z) can be expressed with respect to pU(u) since
z = T (u), which leads to

pZ(z) = pU(u) |det JT (u)|−1 (7.9)
= pU(T

−1(z))
∣∣det JT−1(T−1(z))

∣∣ (7.10)

where JT is the jacobian of the forward transformation (JT = ∂T (u)/∂u), and JT−1 is the
jacobian of the inverse transformation (JT−1 = ∂T−1(z)/∂z). The jacobian determinent is here
a normalization constant, which will account for the change of volume due to the transformation.
The transformation of the probability densities therefore require T and its inverse T−1 to be
differentiable. Such differentiable invertible transforms are known as diffeomorfism. An important
property of diffeomorphism is that they can be defined as a composition such that

T = TN ◦ ... ◦ T1, (7.11)

where T1, ..., TN are diffeomorphisms as well. The determinent of JT can therefore be expressed
as

det JT = det JT1(u) · det JT2(T1(u)) · ... · JTN
(TN−1(...(T1(u)))). (7.12)

Formally, a normalizing flow is the transformation of a simple base distribution (such as pU(u))
into an arbitrarily complex distribution pZ(z) through a sequence of invertible and differentiable
transformations {Tk}k=1,...,N . This process is illustrated in Fig. 21.

The final density qN(z) can be sampled from by sampling from the base distribution and by
applying the successive transformations to the samples, and can be evaluated through Eq. (7.10). To
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T1 T2
TN

T−1
1 T−1

2
T−1
N

z0 ∼ q0(z0) z1 ∼ q1(z1) zN ∼ qN(zN)

Figure 21: Schematic of the normalizing flow mechanism. A simple base distribution q0(z0)
(equivalent to pU(u)) is successively transformed by a sequence of well defined transformations

into a complex distribution qN(zN) (equivalent to pZ(z)). Samples zN ∼ qN(z) can be drawn by
sampling z0 ∼ q0(z0) and by applying successive transformations such that

zN ∼ TN ◦ ... ◦ T1(z0).

summarize, in practice, the transformations inside a normalizing flow shoud be (i) differentiable
since the determinent of the jacobian has to be computed for sampling, and determinent of the
inverse jacobian has to be computed for evaluating the density; (ii) invertible since T is needed
for sampling and T−1 is required for evaluating the density; (iii) computationally efficient in terms
of forward and reverse transformations, and in terms of jacobian determinent computation; (iv)
sufficiently expressive for the final density qN(z) to be a good estimator of the target posterior. In
what follows, autoregressive transformations will be described as transformations which satisfy the
above conditions.

7.2.2 Autoregressive flows

Autoregressive flows are normalizing flows composed of autoregressive transformations. Autore-
gressive transformations are transformations of the form

zi = T (ui, ϕi(u1, ..., ui−1)) = T (ui, ϕi(u1:i−1)), (7.13)

where T is called the transformer, and ϕi is the conditionner of the i–th transform. The correspond-
ing inverse transformation is given by

ui = T−1(zi, ϕi(u1:i−1)). (7.14)

Conditionners expressed as ϕi(u1:i−1) highlight the fact that zi depends exclusively on com-
ponents of u that have lower indices, which is the idea of an autoregressive transformation. Such
transformations have a triangular jacobian as

[JT (u)]ij =
∂zi
∂uj

=
∂T (ui, ϕi(u1:i−1))

∂uj

= 0, ∀ i < j. (7.15)

The determinent of such triangular matrices is the product of its diagonal elements

det JT (u) =
d∏

k=1

∂T (uk, ϕk)

∂uk

. (7.16)
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The autoregressive property can be seen in the inverse direction to Eq. (7.13). Indeed, one could
express

zi = T (ui, ϕi(z1:i−1)), (7.17)

so that the i–th conditionner depends on z1:i−1 instead of u1:i−1. Normalizing flows with autore-
gressive transformations formulated as Eq. (7.13) and Eq. (7.17) have been respectively proposed in
Papamakarios et al. (2017) where they introduce masked autoregressive flows (MAF), and Kingma
et al. (2016) where inverse autoregressive flows (IAF) are introduced. Both MAF and IAF use
affine autoregressive transforms

z = α⊙ u+ β, (7.18)

where αi = αi(ui, ϕi(u1:i−1)) and βi = βi(ui, ϕi(u1:i−1)) in the case of MAF, and αi =
αi(ui, ϕi(z1:i−1)) and βi = βi(ui, ϕi(z1:i−1)) in the case of IAF. The conditionners ϕi are typi-
cally multilayer perceptrons (MLPs). Such MLPs can be made autoregressive by applying masks
(Germain et al. (2015)). The idea of masked MLPs is simple: a degree between 1 and d is assigned
to each unit of each layer of the MLP, and a mask is applied such that for a given layer, no unit
feeds into units of lower or equal degree (Papamakarios et al. (2021)). Such autoregressive flows
are differentiable, invertible if α ̸= 0, and their jacobian determinant computation is simply

det JT =
d∏

i=1

αi. (7.19)

A great expressivity can be achieved with MAF by stacking several transformations of type
Eq. (7.18). However, it is an open question if MAF are universal approximators Papamakarios
et al. (2017). In the present work, the architecture of normalizing flows that will be used is the
MAF, which are implemented using Zuko library (Rozet (2022)).
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8 Formulation of the inverse problem
In this section, all the material that has been reviewed so far will be used to formulate properly
the inverse problem which will be tackled in this thesis, as well as the underlying methodology.
Here, the inverse problem consists in inferring a friction field from a collection of m noisy velocity
observations uobs ∈ Rm, taken at predefined observation points xobs ∈ Ωm. In this work, the
observations will be synthetic. A realization of {νb : x ∈ Ω} will be drawn (see Sec. 3), and the
corresponding observed velocity uobs will be synthesized using the numerical implementation of
the SSA equations. A Gaussian noise η ∈ Rm will be added, where η ∼ N (0, σηI), ση = 10−7

m/s.

8.1 Friction inversion
As the complete inversion of νb leads to an infinite dimensional problem, a truncated field {νb : x ∈
Ω} will be inferred instead by truncation of Eq. (3.9), so that θ = {θk}k=1,...,K define the truncated
gaussian field Ξ̂K , and ν̂b = f2 ◦ f1(Ξ̂K). The Bayesian inference problem is then be formulated
as follows: Given noisy observations uobs generated by the friction field ν, find the conditional
distribution (i.e. the posterior) πpost(θ|uobs), where θ represents the parameters defining ν̂b.

8.1.1 Prior and likelihood

The inversion methods require the prior and likelihood to be specified.

1. The prior pdf πprior(θ) represents the a priori knowledge in the realization of θ. Friction field
realizations are drawn by sampling an infinite sequence {θk}k=1,...,∞ where θk ∼ N (0, 1).
Thus, the prior for the finite set of parameters θ is chosen as

πprior(θ) = N (0, I). (8.1)

2. The likelihood πlike(u|θ) is implicitly defined by the simulator. However, the bayesian in-
version process requires a large number of forward model evaluation. Since the numerical
implementation of the SSA equations is time consuming (this numerical implementation re-
quiresO(100) [s] to be evaluated), it is intractable for bayesian inference. A computationally-
inexpensive surrogate model is built instead, as presented in Sec. 4. Such surrogate models
g take finite set of parameters θ and return the velocity u at the observation points xobs

g(θ) = u. (8.2)

Given the observation velocity uobs, the likelihood is defined with respect to the Gaussian
noise model

πlike(u|θ) = exp

(
− 1

2σ2
η

||u− uobs||2
)
. (8.3)

No normalization constant is needed in πlike as it is not contrained to be a probability density
function in itself.
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8.1.2 Methods

The Bayesian inference problem will be solved with both sampling methods and variational methods
involving deep learning.
Adaptive Metropolis: For the AM method to be used, the initial point θ(0) has to be defined, as
well as the initial covariance matrix [Σ](0) and the initial period t0 before the initial covariance
matrix is updated. Here, 

θ(0) = 0,

[Σ](0) = [I],

t0 = 20.

(8.4)

The expressiveness of this method will be assessed on a toy problem where the posterior is known
and complex, and the choice of proposal covariance matrix [Σ](0) will be discussed. Afterwards,
the methods will be applied to a multidimensional problem for the inversion of a friction field.
Neural posterior estimation: The neural posterior estimation method that will be used estimates
the posterior by a masked autoregressive flow (MAF), whose transformation parameters are tuned
by maximizing the loss which is here the data negative log-likelihood. The optimization is per-
formed with a stochastic gradient descent algorithm. Here, the Adam optimizer with weight decay
(AdamW) will be used, with a learning rate γ = 0.001. The parameters of the dataset are sampled
with respect to the prior: θ⋆ ∼ πprior(θ). The corresponding velocities are generated with the sur-
rogate model: u⋆ = g(θ⋆). The dataset will be separated into three parts: (i) the training dataset is
the dataset with respect to which the loss will be minimized through a stochastic gradient method;
(ii) the validation dataset is the dataset on which the loss will be evaluated in order to obtain an
unbiased estimate. The best estimator will be considered as the one that minimizes the loss over the
validation dataset. This dataset allows to select an estimator during the stochastic gradient descent
process; (iii) the testing set will be over which the quality of the chosen estimator will be assessed.
To quantify the quality of the posterior estimator, the expected coverage probability (ECP) will
be computed (see Hermans et al. (2021)). The parameters of the MAF such as the number of
transformations, the number of layers in each masked MLP, and the number of units in each hidden
layer have to be specified. The number of transformations in the MAF as well as the size of the
dataset used to train the MAF parameters are expected to have an influence which will be studied,
but the number of layers and units in the masked MLPs will be fixed during the whole study.

8.2 Methodology
The problem that has been defined will be solved by using both sampling methods and variational
inference with normalizing flows. Two different inverse problems will be solved: (i) a two-
dimensional toy problem in which the target posterior is known and renderred complex enough so
that the expressivity of the methods can be assessed. This will consist in a validation phase; (ii)
a five-dimensional problem which will involve an unknown posterior, but where the quality of the
results will be assessed, among others, in terms of inverted friction field compared to the one that
gave rise the the observed data. This will consist in a testing phase.
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8.2.1 Validation phase

For the validation phase, a two dimensional surrogate model is generated to implicitly represent the
likelihood. For this, a 8× 8 integration grid suited for the Gauss-Hermite quadrature is generated
(see Sec. 4). The construction of this surrogate model requires 64 evaluations of the numerical
implementation of the SSA equations. The order of the surrogate model is p = 7. In this phase,
a single point observation at xobs = 500 km is considered. The surrogate model takes as input the
bidemensional set of parameter θ and outputs the corresponding velocity u at x = 500 km, that is
g(θ) = u|x=500 km. In fig. 22 is shown the corresponding surrogate model.

Figure 22: 2D Surrogate model for the validation phase, r = 8, p = 7. This surrogate model takes
in input two parameters θ1 and θ2, and outputs the velocity at xobs = 500 km.

As it can be observed, the fit between the surrogate model and the discrete point (i.e. the
evaluations of the numerical implementation of the SSA equations) is great close to the origin
but gets worse far from the origin, as the Gauss-Hermite quadrature rule is built to be precise for
θ ∼ N (0, I). However, one could observe that close to the origin, the surrogate model is linear.
Since the noise and the prior are both Gaussian, this will lead to a Gaussian posterior, which is not
a complex enough problem to conclude on the expressiveness of the methods that will be used. For
this reason, and exclusively in the context of this validation phase, the prior will be taken as

πprior(θ) = U[−5, 5]×[−5, 5], θ = {θ1, θ2}. (8.5)

The conservativeness of this prior ensures that non-linear regions of the surrogate model are
not penalized. From a physical reasoning, this choice of prior is bad as the surrogate model is
built for normally distributed parameters, but this inverse problem will be used for evaluating
the expressiveness of the methods exclusively. By evaluating the surrogate model in a grid in
θ ∈ [−5, 5] × [−5, 5], the posterior can be drawn. Fig. 23 shows the target posterior for an
observation uobs = 96.7 m/y.
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Figure 23: Target bidimensional posterior for an observation uobs = 96.7 m/y.

As it can be observed, this distribution is complex and multimodal. This is due to the fact that
the surrogate model is not injective.

8.2.2 Testing phase

For the testing phase, a five dimensional surrogate model is generated on a 4 × 4 × 4 × 4 × 4
integration grid. The construction of this surrogate model therefore involves 45 = 1024 evaluations
of the numerical implementation of the SSA equations. The order of this surrogate model is
p = 3. Ten equally spaced observation points are considered between 50 km and 600 km (xobs =
{50, 100, ..., 600} km). The surrogate model g is therefore a vectorial function that outputs the 12
corresponding velocities given a five dimensional set θ. For the observations to be synthesized
with the SSA equations implementation, the target friction field is generated and shown in Fig. 24a.
This friction field leads to the observation shown in Fig. 24b

(a) (b)

Figure 24: (a) Target friction field ν⋆
b sampled from Eq. (3.21); (b) Synthetized velocity u at xobs,

a noise η is applied so that uobs = u|xobs + η.
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Part III

Results
In this part, the Bayesian inverse problems that have been established in the previous part will be
solved. At first, the two dimensional inverse problem described in Sec. 8.2.1 will be solved to
validate the methods. Afterwards, the five-dimensional inverse problem described in Sec. 8.2.2
will be solved to infer the friction field. Both MCMC methods and normalizing flows will be used,
and the advantages of both methods will be discussed.

9 Validation phase

9.1 Sampling methods
The two sampling methods that have been described in Sec. 6 are used here. The one that performs
the best will be kept for solving the five-dimensional inverse problem.

9.1.1 Metropolis-Hastings algorithm

Let us begin with the MH algorithm with a gaussian proposal density. Let the first state of the
Markov chain be at the origin (θ(0) = 0), and let us study the impact of the proposal covariance
matrix [Σ]. For this purpose, two different proposal covariance matrices will be tested: (i)
[Σ] = 0.1× [I] ; (ii) [Σ] = [I]. The algorithm will be performed until the chain contains 200000
states, and its convergence will be assessed by showing the statistics of the chain. In Fig. 25 are
shown the evolution of the states during of the MH algorithm, for the first and last ten thousand
iterations (Complete evoution of the states are shown in Fig. 44, Appendix B). One observes that
the number of iterations is higher when [Σ] = 0.1 × [I] to reach the number of 200000 states. In
terms of acceptance rate, one observes 6% of accepted states for [Σ] = 0.1 × [I] versus 10% for
[Σ] = [I]. Moreover, one could notice that regions close to θ1 ≈ 5 are more frequently explored
with [Σ] = [I], which suggests that some regions are poorly explored when [Σ] = 0.1× [I].

In order to evaluate if the chain has converged towards a stationary distribution, it is common
to represent graphically some of the statistics of the chain such as the mean states of the chain with
respect to the number of accepted samples. In Fig. 26 is shown the evolution of the mean states of
the chain. As it can be observed, the convergence behavior of the mean states is better for [Σ] = [I]
than for [Σ] = 0.1× [I]. Moreover, one could notice that the mean states do not converge towards
the same values for [Σ] = 0.1× [I] that for [Σ] = [I], which suggests that the generated chains do
not converge towards the same distribution.

The part of the chain that corresponds to the converged states can be shown in the parameter
space to conclude to which distribution the MH algorithm has converged. In Fig. 27 is shown the
posterior estimated from converged MH samples, together with a target posterior level curve. As
expected, the choice of proposal covariance matrix influences the stationary distribution to which
the generated chain converges. For [Σ] = 0.1× [I], MH does not explore the two modes as the steps
generated by the proposal is small compared to the gap between the two modes. The approximate
posterior is satisfying for [Σ] = [I].
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(a) [Σ] = 0.1× [I] (b) [Σ] = 0.1× [I]

(c) [Σ] = 0.1× [I] (d) [Σ] = 0.1× [I]

(e) [Σ] = [I] (f) [Σ] = [I]

(g) [Σ] = [I] (h) [Σ] = [I]

Figure 25: Chain of states for the Metropolis-Hastings (MH) algorithm. On the left column, the
first ten thousand iterations of the MH algorithm are shown whereas on the right column it is the

last ten thousand.
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(a) (b)

Figure 26: Mean statistics of the states in the markov chain generated by the MH algorithm with
[Σ] = 0.1× [I] (in blue) and [Σ] = [I] (in red).

(a) [Σ] = 0.1× [I] (b) [Σ] = [I]

Figure 27: Posterior estimated from converged samples of the MH algorithm. Light blue
correspond to density regions where πMH

post(θ|uobs) < 0.01. Dark blue correspond to density
regions where πMH

post(θ|uobs) ≥ 0.01. Dashed-dot black curve correspond to the target posterior
level curve πpost(θ|uobs) = 0.01.

9.1.2 Adaptive-Metropolis algorithm

The same two-dimensional validation problem can be solved with the AM algorithm, starting the
chain at the origin. Two starting proposal covariance matrices [Σ](0) will be tested as for the case
of the MH algorithm. Since this method is adaptive, the choice of starting covariance matrix is not
expected to change the stationary distribution, except if the choice of starting covariance matrix
influences the converged covariance matrix. In Fig. 28 is shown the evolution of the states over the
first and last ten thousand iteration of the AM algorithm (Evolution over all the iterations is shown
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in Fig. 45, Appendix B). One observes that once the covariance matrices have adapted (after a large
number of iterations), regions where θ1 is close to 5 are greatly explored. Moreover, the acceptance
rate seems to decrease once the proposal covariance matrices are adapted.

(a) [Σ](0) = 0.1× [I] (b) [Σ](0) = 0.1× [I]

(c) [Σ](0) = 0.1× [I] (d) [Σ](0) = 0.1× [I]

(e) [Σ](0) = [I] (f) [Σ](0) = [I]

(g) [Σ](0) = [I] (h) [Σ](0) = [I]

Figure 28: Chain of states for the adaptive Metropolis (AM) algorithm. On the left column, the
first ten thousand iterations of the MH algorithm are shown whereas on the right column it is the

last ten thousand.

As it can be observed in Fig. 29, the mean states converge towards the same value for both
initial covariance matrices. This suggests that, in this case, the stationary distribution to which the

49



chain converges is not impacted by the initial covariance matrix. However, the convergence of the
mean states is faster for [Σ](0) = [I]. The convergence property of the chain is thus impacted by the
choice of initial covariance.

(a) (b)

Figure 29: Mean state θ as a function of the number of states in the chain, using AM algorithm.
Grey areas approximate the 95% confidence interval, according to the central limit theorem.

The fact that both initial proposal covariance matrices led to the same stationary distribution is
illustrated in Fig. 30. It can be observed that the target posterior is retrieved.

(a) [Σ] = 0.1× [I] (b) [Σ] = [I]

Figure 30: Posterior estimated from converged samples of the AM algorithm. Light blue
correspond to density regions where πAM

post(θ|uobs) < 0.01, dark blue correspond to density
regions where πAM

post(θ|uobs) ≥ 0.01. Dashed-dot black curve correspond to the target posterior
level curve πpost(θ|uobs) = 0.01.
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9.2 Neural posterior estimation
In this section, samples will not be drawn directly from the posterior, but an neural posterior estima-
tor (NPE) from which we can sample will be created with masked autoregressive flows (MAF). The
neural network parameters that led to the transformations are optimized with a stochastic gradient
descent algorithm (AdamW) over a training dataset. After training, the NPE that is kept is the one
that minimizes the negative log-likelihood over the validation dataset (which is referred to as the
validation loss) to avoid overfitting. The final performance of a NPE is assessed by the expected
coverage probability (ECP) which is computed over the testing dataset. The sizes of the validation
dataset and the testing dataset are respectively Nvalid = 30000 and Ntest = 3000. The quality of
the NPE will be evaluated as a function of the number of transformations and of the size of the
dataset on which the NPE is trained. The architecture of each of the masked MLPs behind each
transformation is fixed. Each masked MLP contains 4 hidden layers of 64 units.

9.2.1 Number of transformations

For NPE with MAF to be expressive, several transformations should be stacked. Therefore it is
expected for the NPE to be of reduced quality if the number of transformations is too low. In this
subsection, the size of the training dataset is fixed to Ntrain = 80000. Figure 31 shows the evolution
of the training loss and the validation loss during the training for various number of transformations.

(a) 3 transformations (b) 4 transformations (c) 5 transformations

(d) 6 transformations

Figure 31: Evolution of the training loss (in blue) and of the validation loss (in red) with respect to
the number of epochs, for various number of transformations. The minimum of the validation loss

is indicated for each.

As it can be observed, the minimum of the validation loss is significantly higher for NPE with 3
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transformations than for the others. Four, five and six transformations give similar results in terms
of minimum loss, which suggests that 4 transformations are sufficient for MAF to be expressive
enough for the current target posterior. In Fig. 32 are shown the NPEs for these various number of
transformations.

(a) 3 transformations (b) 4 transformations

(c) 5 transformations (d) 6 transformations

Figure 32: NPE for various number of transformations compared with target posterior level curve.
Light blue corresponds to density regions where πNPE

post (θ|uobs) < 0.01, dark blue corresponds to
density regions where πNPE

post (θ|uobs) ≥ 0.01. Dashed-dot black curve corresponds to the target
posterior level curve πpost(θ|uobs) = 0.01.

As expected, the NPE with 3 transformations encounters difficulties in representing the target
posterior, whereas comparable satisfying results are found with 4, 5 and 6 stacked transformations.
The ECP is shown in Fig. 33. It can be seen that the calibration is great in any case, but the
estimator seems to be slightly conservative in the case of 3 transformations, which can be observed
in Fig.32a.
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Figure 33: Expected coverage probability for various number of transformations. ECP below the
perfect diagonal indicates an overconfident posterior, whereas an ECP above the diagonal

indicates a conservative posterior.

In the following, the number of transformations of the NPE will be fixed to 6 to ensure a
sufficient expressivity.

9.2.2 Size of the dataset

In this subsection, the NPE will be created with six different training set sizes. The size of the
validation dataset and the testing dataset are respectively fixed to Nvalid = 30000 and Ntest = 3000.
In Fig. 34 is shown the evolution of both the training loss and the validation loss with respect to the
number of epochs for different size of training dataset.

53



(a) 10000 training data (b) 20000 training data (c) 40000 training data

(d) 80000 training data (e) 160000 training data (f) 320000 training data

Figure 34: Evolution of the training loss (in blue) and of the validation loss (in red) with respect to
the number of epochs. The minimum of the validation loss is indicated for each training dataset

size.

As it can be observed, the minimum of the validation loss seems to decrease with the size of the
training dataset. However, the relative change in the minimum validation loss seems to decrease
which suggests that it eventually converges.

For all sizes of training dataset, the model which minimizes the validation loss can be used to
evaluate the posterior estimator and to compare it with the target posterior. Figure 35 shows the
posterior estimator for all training dataset sizes.
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(a) 10000 training data (b) 20000 training data (c) 40000 training data

(d) 80000 training data (e) 160000 training data (f) 320000 training data

Figure 35: Posterior estimator with MAF πMAF(θ|uobs) for different training dataset sizes. Light
blue corresponds to regions where πMAF(θ|uobs) < 0.01; dark blue corresponds to regions where
πMAF(θ|uobs) ≥ 0.01. The target density level curve πpost(θ|uobs) = 0.01 is shown in black.

One observes that even for a small dataset, the global tendency of the posterior is retrieved.
However, as expected, the quality of the posterior estimator seems to increase with the training
dataset. In order to quantify the quality of the posterior estimator rigorously, the ECP is shown
in Fig. 36. As it can be observed, the ECP is close to the diagonal even for small datasets which
indicates that great estimators can be built without having to generate a lot of data. One notices
however that the larger is the training dataset, the better is the posterior estimator.
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Figure 36: Expected coverage probability (ECP) for several training dataset sizes. ECP below the
perfect diagonal indicates an overconfident posterior, whereas an expected coverage above the

diagonal indicates a conservative posterior.

10 Testing phase
Now that the methods have been successfully validated, they can be used to solve the five-
dimensional problem described in Sec. 8.2.2 to infer the friction field.

10.1 Adaptive Metropolis
The sampling method that will be used is the AM algorithm as it has been shown to be less
dependent on the choice of initial proposal covariance matrix, which contains arbitrariness. The
initial proposal covariance matrix is set to [Σ](0) = [I]. In Fig. 37 is shown the states of the chain
with respect to the iterations of the AM algorithm. As it can be observed, the acceptance rate
is extremely small for the first few thousands iterations. This is due to the fact that (i) the chain
starts at the origin which is likely to be a low density region of the posterior; (ii) the adaptive
covariance matrix needs a large number of states to converge. Figure 38 shows that, for the testing
problem, ten thousand states are sufficient for the convergence of the AM algorithm. This is one
order of magnitude below what was observed during the validation phase despite the increased
dimensionality. This suggests that the five-dimensional posterior is less complex than the two-
dimensional one, which could be due to the choice of prior. Once the convergence is reached, the
states can be considered as samples from the posterior distribution. Results of this sampling are
shown in Sec. 10.3 together with neural posterior estimation results.
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(a)

(b)

(c)

(d)

(e)

Figure 37: Evolution of the states with the iterations of the AM algorithm for the five-dimensional
problem, with [Σ](0) = [I].
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(a) (b) (c)

(d) (e)

Figure 38: Mean statistics of the states in the chain generated by the AM algorithm applied to the
five-dimensional testing problem. Grey area estimate the 95% confidence interval, based on the

central limit theorem.

10.2 Neural posterior estimation
The five-dimensional testing problem being totally different from the validation problem, the
training has to be reiterated. The same procedure will be followed, starting from the minimization
of the validation loss for several size of training set, towards the evaluation of the ECP. The number
of transformations in the MAF is fixed to 6 as it has been shown during the validation phase that
such number of transformations are sufficient to render the NPE highly expressive. Figure 39 shows
the minimization of the loss during the training of the neural networks. Here again, the minimum
reached value of the validation loss seems to decrease as the size of the training set increases.
However, the relative decrements of the minimum validation loss between two successive training
set sizes decreases, which suggests that it eventually converges. The models that minimize the
validation loss for all training set sizes can be retrieved and their quality can be assessed with the
ECP. In Fig. 40 is shown the ECP for all the training set sizes that have been considered. As it can
be seen, the posterior estimator is slightly overconfident for small training set, but converge towards
perfectly calibrated estimator as the training set size increases. In the following, the MAFs that
correspond to the training dataset of 10000 data and of 320000 data will be sampled from. They
will be compared together with the sampling resulting from the AM algorithm.
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(a) 10000 training data (b) 20000 training data (c) 40000 training data

(d) 80000 training data (e) 160000 training data (f) 320000 training data

Figure 39: Evolution of the training loss (in blue) and of the validation loss (in red) with respect to
the number of epochs for the five-dimensional problem. The minimum of the validation loss is

indicated for each training dataset size.

Figure 40: Expected coverage probability (ECP) for several training dataset sizes for the
five-dimensional problem. An ECP below the perfect diagonal indicates an overconfident

posterior, whereas an ECP above the diagonal indicates a conservative posterior.
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10.3 AM and NPE results
In this subsection, the samples resulting from the AM and the NPE methods will be shown and
compared. This can be done by representing the bivariate plot, that is, samples in each bidemen-
sional parameter space {θi, θj}. This is shown in Fig. 41. Plots that are in the diagonal correspond
to the marginal probability estimations (πpost(θi|uobs), i = 1, ..., 5). Lower diagonal plots are the
bivariates (πpost(θi, θj|uobs), i = 1, ..., 5, j ̸= i). As it can be observed, the sampling leads to very
similar distributions for the three cases. However, one could notice that with only 10000 training
data, some of the marginals are slightly overconfident (see πpost(θ3|uobs) and πpost(θ5|uobs)), and
some of the bivariates are slightly shifted (see πpost(θ2, θ3|uobs) and πpost(θ2, θ5|uobs)).

Figure 41: Estimated bivariate distributions from samples drawn with AM and NPE.

All of these samples are directly related with friction fields ν̂b. During the AM algorithm, the
posterior is evaluated at the samples. The maximum a posteriori (MAP) can therefore be estimated
by the state which maximizes the posterior among all the samples. Similarly, NPEs can not only
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be sampled from, but also their density can be evaluated. The MAP can therefore be estimated by
the sample which maximizes the NPE density. In Fig. 42 is shown the MAP friction field ν̂MAP

b for
AM and NPE, with confidence intervals estimated from Monte Carlo samples.

(a) AM

(b) NPE (10000 training data)

(c) NPE (320000 training data)

Figure 42: Inverted friction field from samples drawn with AM and NPE. Grey areas represent
respectively (from the darker to the lighter) 33%, 50% and 95% confidence intervals, estimated

from 100000 Monte carlo samples.

As it can be seen, the inversion of the friction field gives similar results for AM than for NPE.
Moreover, NPE related to the training dataset of 10000 data leads to similar results than for 320000
data. One could notice that the friction field is uncertain for small x. This is because the noise is
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absolute, that is, the noise is independent of the velocity. Since the velocity is small for small x,
the noise destroys the informations of observations at small x.
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Conclusion
This work was concerned with the inference of a space dependent friction field from partial obser-
vations of the ice velocity. In this context, an inverse problem has been formulated in a probabilistic
framework that allows to quantify uncertainty.

The inversion of a continuous space dependent field such as the friction field leads to an infinite-
dimensional inverse problem which cannot be solved in practice. This infinite dimensional inverse
problem has been turned into a low dimensional one by considering the friction field to be a random
field parametrized by the Karhunen-Loève expansion parameters.

Both sampling and deep-learning based methods have been used. Metropolis-Hastings (MH)
and adaptive Metropolis (AM) algorithms, as well as neural posterior estimators (NPE) based on
normalizing flows have been studied. These methods require the forward model to be evaluated a
large number of times, which is challenging as the forward model is computationally expensive de-
spite being based on the shallow-shelf approximation. An inexpensive polynomial chaos surrogate
model has been constructed to render the methods computationally tractable.

A validation phase has shown that the AM algorithm provides a better robustness than MH.
The performances of the NPE has been shown to be dependent on the size of the dataset, as well as
on its intrinsic architecture.

A testing phase, in which a five-dimensional inverse problem has been formulated to infer the
friction field from observations of the ice velocity, has been solved with AM and NPE.

The AM algorithm required O(105) calls to the forward model to converge. This suggests
that MCMC-based methods such as AM are intractable if the forward model is computationally
expensive.

The construction of a NPE requires calls to the forward model exclusively during the creation
of the dataset. As it has been observed, satisfying NPEs can be constructed with small datasets
(O(104) data), and can then be sampled from without the forward model. Such estimators can
therefore be constructed directly with the SSA forward model, without having to build a polyno-
mial chaos surrogate. Moreover, such estimators are robust to any changes in the observations as
they are amortized estimators.

In terms of inverted friction fields, the NPE trained with 10000 training samples, NPE trained
with 320000 training samples and AM gave similar and satisfying results. NPE has therefore
required less calls to the forward model than AM to attain satisfying results, in addition of allowing
to draw an arbitrarily large number of samples once trained, irrespective of the complexity of the
forward model.

It is concluded that the current state-of-the-art of inverse problem in glaciology can greatly
benefit from deep-learning tools such as NPE.

Future work: A non exhaustive list of future work that could be considered to improve the current
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work is listed below:

• Extend the current work to realistic large-scale implementations of ice sheet dynamics such
as f.etish (Pattyn (2017)). This would require to extend the friction model to two dimensions;

• Assess the impact of mismatch between the ground truth correlation length (the correlation
length of ν⋆

b) and the correlation length of the truncated field ν̂b that is inferred;

• Study the effect of the choice of friction law;

• Explore other normalizing flow architectures.
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A Parameters in the SSA equations
The parameters in the SSA equations are listed in Tab. 1.

Physical quantity Symbol Value Units
Ice density ρ 910 kg m−3

Water density ρw 1028 kg m−3

Exponent in Glen and Weertman’s laws m, n 1/3 –
Ice accumulation rate a 0.3 m y−1

Rate factor in Glen’s law A 4.9× 10−25 Pa−3 s−1

Gravity acceleration g 9.81 m s−2

Table 1: Physical quantities in SSA equations.

Figure 43 shows the geometry of the bedrock.

Figure 43: Geometry of the bedrock in the interval x ∈ [0, 1000] km (Schoof (2007)).

B Complementary results
Figure 44 shows the complete evolution of the states with respect to the MH algorithm iterations,
for two different proposal covariance matrices.
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(a) [Σ] = 0.1× [I]

(b) [Σ] = 0.1× [I]

(c) [Σ] = [I]

(d) [Σ] = [I]

Figure 44: Chain of states for the Metropolis-Hastings (MH) algorithm. (a) θ1 with
[Σ] = 0.1× [I]; (b) θ2 with [Σ] = 0.1× [I]; (c) θ1 with [Σ] = [I]; (d) θ2 with [Σ] = [I].

Figure 45 shows the complete evolution of the states with respect to the AM algorithm iterations,
for two different initial proposal covariance matrices.
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(a) [Σ] = 0.1× [I]

(b) [Σ] = 0.1× [I]

(c) [Σ] = [I]

(d) [Σ] = [I]

Figure 45: Chain of states for the adaptive Metropolis (AM) algorithm. (a) θ1 with
[Σ] = 0.1× [I]; (b) θ2 with [Σ] = 0.1× [I]; (c) θ1 with [Σ] = [I]; (d) θ2 with [Σ] = [I].
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