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Abstract

This master’s thesis explores the feasibility and potential of knowledge
graph technologies, with a specific emphasis on the Shapes Constraint Lan-
guage (SHACL), for validating declaration forms in the Belgian Social Security
domain. The study focused on validating DmfA declarations which are reports
describing the work of employees done during a quarter sent by an employer to
the government. The study first created a vocabulary for a knowledge graph
based on DmfA declarations and the mapping of diverse data sources into Re-
source Description Framework (RDF) format. The heart of the work lies in the
declaration of SHACL constraints for complex business rules, many of which
were implemented via SPARQL, highlighting SHACL’s scalability and versa-
tility in addressing challenging validation tasks. Despite obstacles concerning
data transformation while generating RDF representations of the declarations,
the research demonstrates that SHACL provides a richer application profile
and exceeds the expressiveness of XML Schema Definition (XSD) constraints
in implementing complex validation rules. These findings illustrate the po-
tential of knowledge graph technologies and SHACL for managing intricate
validation tasks in social security systems and hint at the prospect of their ap-
plication in future work, such as evolving document integration and validation
report integration using named graphs and provenance information.



Acknowledgement

I would like to express my sincere gratitude to my supervisor, Professor Christophe
Debruyne, for his invaluable guidance and encouragement throughout my thesis.
His expertise and support have been crucial in this academic endeavor.

I also wish to extend heartfelt thanks to my family. Their persistent encouragement,
unwavering support, and enduring faith in my abilities pushed me to strive for and
achieve the highest goals.



Contents

1 Introduction 5

2 Theoretical Background 6
2.1 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Direct Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 R2RML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 RML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 SHACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Social Security Background 17
3.1 Social Security and its roles . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 E-government . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 DmfA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Related Work 23

5 Approach 24
5.1 DmfA Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Reasons to build a vocabulary . . . . . . . . . . . . . . . . . . 25
5.1.2 Generating the DmfA vocabulary . . . . . . . . . . . . . . . . 25

5.2 Mapping DmfA XML to RDF . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Generating mappings . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 IRI strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.3 Storing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Integrating DmfA Annexes . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Integration of Annexes Overview . . . . . . . . . . . . . . . . 34
5.3.2 Data transformation . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3 IRI strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 SHACL rules development . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.1 Rules generation . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.3 Design considerations . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.4 Extending rules to other quarters and declarations . . . . . . . 49

5.5 Validation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Discussion 55
6.1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



6.3 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 SHACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Conclusions 60
7.1 Summary and Achievements . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References 62

A CONSTRUCT query for mappings with reference and file naming 65

B Benchmark 65
B.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Storage strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.3 SPARQL-based constraint optimization . . . . . . . . . . . . . . . . . 66

B.3.1 Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.3.2 Code Existence . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.4 Target selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4



1 Introduction

In an era where digital transformation becomes increasingly important, the demand
for advanced data management techniques echoes across all sectors. This is partic-
ularly true in social security, a domain marked by intricate regulations and diverse
data structures. Knowledge graph technologies emerge as a solution to these com-
plexities.

To better evaluate these technologies, particularly the Shapes Constraint Language
(SHACL), a Knowledge Graph was constructed with a focus on validating social
security declarations. This evaluation forms the primary crux of this thesis, guiding
our exploration of SHACL’s potential and our creation of the knowledge graph itself.

The thesis starts by establishing a robust theoretical foundation, and familiarizing
the reader with core concepts such as knowledge graphs, RDF, RML, SHACL, and
other related technologies. This is followed by a deep dive into the Belgian social
security, delving into the intricacies of e-governments and DmfA declarations. A
section dedicated to related work grounds the research within the larger academic
discourse.

At the core of the thesis is the Approach Section, which offers a detailed explo-
ration of the methodologies adopted during the study. This includes steps such as
generating a dedicated vocabulary, mapping DmfA declarations to RDF, developing
SHACL rules, and setting up a thorough validation process.

Subsequently, the discussion section delves into critically evaluating of our approach
and the knowledge graph technologies employed. We assess the advantages and dis-
advantages of our method in creating and maintaining the knowledge graph, under-
lining the strengths and challenges associated with SHACL and related technologies
for validating data.

To conclude, the final chapter provides a succinct summary of the thesis, recounting
the key steps and achievements of our work. The conclusion also looks forward,
highlighting potential improvements and areas for future exploration that could
continue to advance this field of study.
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2 Theoretical Background

For the reader’s convenience, the following chapter will present and describe all the
theoretical terms linked to knowledge graph technologies that will be mentioned in
this thesis. These terms will be broadly explained but they should be sufficient to
understand the remainder of the thesis.

2.1 Knowledge Graph

In the literature, many have suggested definitions for knowledge graphs (KGs) that
vary from general and inclusive definitions to technically detailed definitions. In [1],
Hogan et al. reviewed existing definitions, and similarly to Noy et al. in [2], define
KG as a "graph where nodes represent entities, and edges represent relationships
between those entities". This is a general definition to which they add three criteria
that are optional but that most KG should meet:

• An ontology (cf. 2.2) formally describes the relationships and the types of
entities.

• Knowledge is integrated from various sources.

• New facts can be inferred from the graph thanks to a formal representation.

In this thesis, these three criteria should be considered compulsory for a KG.

2.2 Ontology

Etymologically the word ontology comes from the two Greek words óntos meaning
being and lógos meaning study. Thus, its etymological meaning is the study of being
in the world. Attempting to describe the world and its concepts echoes the computer
science definition of an ontology proposed by Studer et al. in [3] as "a formal,
explicit specification of a shared conceptualization". A conceptualization is an
abstract representation of things or phenomena in the real world. Formal means
that an ontology should be specified based on some mathematics or logic to be
computer-readable and allow reasoning. Explicit refers to the fact that an ontology
should be described by an external document to be shared and accessed by computer
agents. To be useful, the symbols used in the formalism and the representation of
the conceptualization in this formalism must be shared among a group rather than
depicting specificities of individuals.

Depending on the formalism that is used to build ontologies, one can distinguish vo-
cabularies from fully-fledged ontologies. While the term "ontologies" usually refers
to highly-axiomatized ontologies, the term "vocabulary" is used to describe ontolo-
gies with only a few axions such as class hierarchies, domains, and ranges. Hence,
vocabularies are a subset of ontologies.
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All types of ontologies aim to achieve semantic interoperability by defining and
describing concepts of a particular domain. This semantic interpretability is a nec-
essary condition to achieve semantic interoperability which is the ability to exchange
data between information systems in such a way that all systems interpret the data
with the correct meaning.

2.3 RDF

The Resource Description Framework (RDF) is a W3C standard framework used to
represent information on the Web [4]. The framework mainly provides an abstract
graph-data model for data representation which is the base of many KG technolo-
gies such as RML and SHACL. This model defines two structures: RDF graphs and
RDF datasets. Whereas RDF is an abstract model, there are multiple RDF serial-
izations. Some serializations only support RDF graphs (e.g., RDF/XML, Turtle),
others support named graphs, i.e., RDF datasets (e.g., TriG, N-Quads).

An RDF graph is a set of RDF triples consisting of a subject, a predicate, and an
object. This graph can be viewed as a directed and labelled graph where the subject,
predicate, and object are, respectively, the source vertex, arc from source to target
vertices, and target vertex.

Two representations of a simple RDF graph are illustrated in Figure [1]. On the
left, the graph is visually represented. While on the left, the equivalent graph is
serialized in Turtle [5], a terse serialization format of RDF. Lines 3-4 describe a
triple stating that the resource identified by <ex:davanchiemdao> is related to the
literal "Davan" by the relationship <ex:firstname>. One can guess that the first
name of the resource <ex:davanchiemdao> is Davan. However, this assumption
cannot be confirmed solely from the graph as RDF is only a data model. We need
to rely on ontology languages such as RDFS [6] and OWL [7]. These languages
allow us to represent and thus provide ontological information on the semantics of
the <ex:firstname> predicate. In other words, RDF allows us to represent and
store data as a graph, and ontology languages add a meaningful "layer" allowing
both humans and computers to interpret it. That layer is also represented and
stored as a graph.

Figure 1: RDF example, graphical representation (left) and TURTLE
serialization (right)
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Some additional specifications can be mentioned about the RDF model. Different
sets of terms can act as subjects, predicates, and objects (see Table 1). These
sets are a combination of Internationalized Resource Identifier (IRI), blank node,
and literal. IRIs, as its name suggest, identify resources on the Web meaning that
resources sharing the same IRI are the same resource. Blank nodes, on the other
hand, refer to anonymous resources; resources that cannot be identified or for which
we do not know the identifier. Nevertheless, some concrete RDF syntaxes introduce
blank node identifiers which are artificial identifiers that locally identify blank nodes.
Thus, these identifiers are not portable across systems. They are not even portable
across RDF graphs within an RDF dataset. Literals do not refer to resources but
to constants. They are either plain strings with an optional language tag or strings
with a type identified by an IRI.

Table 1: Allowed term for RDF triple component

IRI Blank node Literal
Subject Yes Yes No
Predicate Yes No No
Object Yes Yes Yes

The second data structure, the RDF dataset, is a set of RDF graphs. This set
contains a single default graph which is an RDF graph and zero or more named
graphs which are pairs of a graph name and an RDF graph. In other words, RDF
datasets are a set of named RDF graphs. They are also viewed as a set of quadruples
made of a triple (as in an RDF graph) and the optional name of the graph the triple
belongs to. The N-Quads [8] format notably encodes RDF datasets using these
quadruples.

2.4 Direct Mapping

The W3C Recommendation "A Direct Mapping of Relational Data to RDF" [9]
defines a direct mapping as the representation of data in a relational database as an
RDF graph. The purpose of this standard is to provide an automated way of sharing
relational data on the Web of Data. It focuses on relational databases as they are
the most common kind of databases and thus constitute an important source of
data. However, this idea can be extended to the more general idea of representing
the data in any specific format to an RDF graph.

The main disadvantage of this transformation method is that it reflects the structure
of the source data and its particularities data such as the use of abbreviations,
special encodings, or typos which are carried out to the RDF graph. This may
hinder sharing capabilities, but it is sufficient if only an RDF graph is required.
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2.5 R2RML

The Relational Database (RDB) to RDF Mapping Language (R2RML) is a W3C
standardized language to express customized mappings of data from relational data-
bases to an RDF dataset [10]. Compared to direct mapping, R2RML offers the
ability to annotate the data with existing ontologies which favors interoperability.

The main concepts of R2RML will be illustrated with the example depicted in Figure
[2]. It illustrates the source RDB, a custom mapping of this source in R2RML, and
the resulting RDF graph. As the goal is to obtain an RDF graph, an R2RML
mapping is a set of rr:TriplesMap instances which are resources describing how
"things" of the RDB should be mapped into triples. Thus, the source data as well
as mapping to the subject, predicate, and object must be described.

Figure 2: R2RML mapping example, RDB (top), R2RML mapping (mid-
dle), resulting RDF graph (bottom)

The rr:logicalTable predicate states which logical table serves as a sufficient
subset of the RDB to produce the desired triples. These tables are the result of an
SQL query to the RDB. Allowing an arbitrary SQL query result to be used as a
logical table provides high flexibility in the mapping as some data transformations
can be performed. In the example, both triples map considers the raw RDB tables
as a logical table.
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The rr:subjectMap predicate states how the subject of the triple should be gener-
ated. It mainly describes what the IRI or blank node is like. In the example, the
resulting IRI is based on the template string where the substring "Id" is replaced by
the value of the Id column in the logical table. Moreover, the type of the generated
resources can be mentioned with the rr:class predicate.

The rr:predicateObjectMap predicate states how to generate predicates and ob-
jects. It characterizes the IRI of the predicate and uses data from the logical table
to generate the object literal by mentioning the column name. When an object map
references the result of the subject map of another triples map, this referenced triples
map should be mentioned with the rr:parentTriplesMap predicate. Conceptually,
the logical table of the triples map containing the referencing map is left joined with
the logical table of the referenced triples map where only the lines respecting the
optional rr:joinCondition are inserted.

2.6 RML

The RDF Mapping Language is an extension to R2RML which provides terms to
express mapping from various sources of data [11]. Most RML processors support
relational databases, relational data (e.g., CSV), and document models (e.g., XML,
JSON). This is not an official specification standard but rather a community ef-
fort to extend mapping possibilities to RDF from different structured data, and
not uniquely from RDBs as R2RML. A mapping from data model to RDF can be
expressed with RML but RML processors may not support all kinds of formats.

Two components of the R2RML syntax are specific to RDBs. First, there is the
way the data source is expressed by defining a logical table. Secondly, the data is
accessed via the logical table’s column names. RML generalizes these components
with more generic concepts:

• rml:logicalSource: A predicate indicating a logical source which is a subset
of a source of data is necessary to generate the desired triples.

• rml:reference: A predicate indicating which pieces of information are re-
ferred to.

Figure [3] exemplifies a mapping of an XML file to RDF with RML. The logical
source depicted can be understood as a table of XML elements resulting from the
XPath expression /group/person in the data.xml file. XPath is also the formulation
of the references to pieces of information of these XML elements. For instance, con-
sider lines 2-5 of the data source representing an XML element, the string "Davan"
is referred to as the XPath firstname from this element. Line 22 of the mapping
expresses this reference.
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2.7 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) is a W3C Recom-
mendation used express queries to RDF data [12]. The queried data can be queried
across multiple data sources either natively or virtually stored as RDF. The results
of these queries are either data sets or RDF graphs. In the following, an overview
of the SPARQL syntax, inspired by Feignbaum and Prud’hommeaux’s tutorial [13],
will be presented.

The general structure of a SPARQL query is shown by Listing [1]. It consists of five
parts: prefix declarations, a result clause, a dataset definition, a query pattern, and
query modifiers.

# prefix declarations (optional)
PREFIX foo: <...>
PREFIX bar: <...>
# result clause
SELECT ...
# dataset definition (optional)
FROM ...
FROM NAMED ...
# query pattern
WHERE {
...
}
# query modifiers (optional)
GROUP BY ...
HAVING ...
ORDER BY ...
LIMIT ...
OFFSET ...
BINDINGS ...

Listing 1: SPARQL query structure

• Prefix declarations are used to abbreviate IRIS resulting in more condensed
queries for the user’s convenience.

• The result clause determines what is returned and is one of the keywords
SELECT, ASK, DESCRIBE, or CONSTRUCT:

– SELECT queries return "selected" variables in a table format of data
matching the query pattern.

– ASK queries checks if there is at least a result matching the query pattern
and returns a Boolean value.

– DESCRIBE queries return an RDF graph that describes all the resources
matching the query pattern.

– CONSTRUCT queries return an RDF graph from a template specified in the
result CONSTRUCT clause by using the data matching the query pattern.

• The dataset definition determines the RDF dataset that is queried.
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• The query pattern determines the graph pattern that needs to be matched.
In essence, a graph pattern is a set of triple patterns. Multiple graph pat-
terns can be combined with some patterns being optional, others being united,
negated, or filtered out and subqueries are also possible.

• Query modifiers determine how to rearrange the query result. For example,
aggregation of values is achieved with the GROUP BY keyword or sorted in a
particular manner with the ORDER BY keyword.

The previous description of the SPARQL syntax focused on querying data from
RDF data sources. Another part of the syntax can be used to update an RDF store.
Actions such as insertion, deletion of triples, and creation or deletion of named
graphs are expressed with this syntax.

2.8 SHACL

The Shapes Constraint Language (SHACL) is a W3C standardized language to
express conditions that RDF graphs should respect [14]. These conditions are also
referred to as shapes because they impose that parts of an RDF graph must have
a certain shape. This language is an RDF-based language thus the shapes form an
RDF graph called a "shapes graph". On the other hand, the RDF graph that is
validated against the shapes graphs is called a "data graph".

The validation process of a data graph against the shapes graph is illustrated in
Figure [4]. For each shape, some nodes of the data graph are selected based on its
target. These nodes are referred to as focus nodes. Then, a verification of these
focus nodes against the shape’s constraint is performed. When a node does not
conform, a validation result will explain the cause of the error. If all nodes are valid,
then the data graph is said to conform, and the validation report informs as such.
Whereas if at least one node fails, the validation report states that the data graph
does not conform and for each failing node the cause of the error is reported.

Figure 4: SHACL validation process steps

Figure [5] is an example of the validation with SHACL. The data graph contains
information on two people, John, and me. The shapes graph states that every person
must have a first name and a valid Social Security Number (SSN). In this case, the
validation fails because John1 does not have a first name and he has a wrong SSN.

1To be precise it is the resource describing John which does not have a first name
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These errors are reported in the validation report.
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Moreover, the shapes graph in this figure illustrates how shapes are described with
SHACL. The description of shapes can be divided into four parts: the shape anno-
tations, the target definition, the constraints, and the validation annotations.

The shape annotations are optional properties that may be used as metadata of a
shape. These properties are not part of the validating properties and are ignored
by SHACL processors. Lines 7-10 of the shapes graphs show metadata naming and
describing the shape. Other metadata, such as group and order, may be employed
to print RDF files in a predictable manner.

The target definition determines the target of the shape, which are the focus nodes
that must respect the shape’s constraints. This target can be a specific node, nodes
of a specific class (as in the example), subjects, or objects of a specific predicate.

The constraints are the rules that each focus node must respect. Many types of
constraints can be expressed such as value type constraints, cardinality constraints,
and value range constraints, among others. Lines 16-23 can be translated into
natural language as "focus nodes must have exactly value node reached through the
foaf:firstname predicate. This value node must be a string literal". This rule is
a shape-based constraint which indicates that value nodes must respect the given
shape. This illustrates how shapes can describe nodes linked to the focus node that
themselves can also describe other nodes linked. As a result, a shape can describe a
whole graph or sub-graph.

The validation annotations modify the reported result in case of an erroneous val-
idation for a focus node. For instance, one can mention the severity of a shape or
modify the message reported. In the example, the results of the errors in the SSN,
both have a sh:Warning severity and the custom sh:resultMessage.

The previous explanation constituted the core part of SHACL also referred to as
SHACL-CORE. A second part of the specification called SHACL-SPARQL provides
mechanisms to create custom constraints or constraint components using SPARQL
queries.

Listing [2] is an example of a SPARQL-based constraint which ensures that the
values reached from the focus node following a particular path are all different.
One can observe that a SPARQL-based constraint is defined by a SPARQL query
following a specific syntax. Indeed, only a subset of SPARQL may be used in this
context. For instance, some variables are pre-bound such as $this variable being
bounded to a focus node. Furthermore, the MINUS, SERVICE, and VALUES keywords
are prohibited, but more importantly only ASK (only for constraint components) and
SELECT queries are allowed.
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ex:valueIsUnique a sh:SPARQLConstraint;
sh:prefixes <> ;
sh:select """

SELECT $this
WHERE {

{
SELECT $this (COUNT(?v) as ?vOcc)
WHERE {

$this $PATH ?v.
}
GROUP BY ?v $this

}
FILTER(?vOcc > 1)

}""" ;
.

Listing 2: SPARQL-based constraint example

A SHACL engine uses the result of these queries to determine if the focus node is
valid depending on whether the result set (which is tabular) returned by the SELECT
query is empty or not. If the result set is not empty a validation result reports an
error for each row.

Constraints using SPARQL-based constraint components work similarly to SPARQL
based constraints. These components work as template SPARQL queries which allow
the use of parameters. Note that in a case of an ASK query the shape is valid if the
return value is true meaning that the query pattern was matched as opposed to a
SELECT query being invalid if the query pattern matched.
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3 Social Security Background

The previous chapter presented the technical background necessary to comprehend
this thesis. In this chapter, we present the domain in which we conducted our study.
This chapter will present the Belgian social security, its role, and some insight into
how they operate. This chapter is mostly based on the brochure "Everything you
have always wanted to know about social security" [15].

3.1 Social Security and its roles

The Belgian social security is the set of all provisions aiming at guaranteeing the
financial autonomy of citizens whenever they are exposed to social risks. Depending
on the risk to which one is exposed, the social security will financially support them
accordingly. Specifically, the three functions of the social security are:

• Provide a replacement income in the event of loss of employment income such
as unemployment, retirement, or work incapacity.

• Provide an income supplement for additional social burdens such as raising
children or medical expenses.

• Provide a living wage to those deprived of professional income.

The social security is divided into seven branches to distribute social rights to achieve
one or several of the functions above. These seven branches are:

• Old-age pension and survivors’ pension

• Unemployment

• Insurance for accidents at work

• Insurance for occupational diseases

• Family allowance

• Illness and disability insurance

• Annual holiday

The funding of these social rights is done by collecting contributions from active
citizens proportionally to their wages. Hence, the role of the social security is to
redistribute collected through the different branches.

3.2 Organization

The organization of the Belgian social security is complex with many institutions
working together. Figure [6] shows the whole network of institutions involved in the
social security.
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Figure 6: Social security institution network [15]

Most of these institutions correspond to one of the Belgium’s social security branches.
For instance, the Federal Pension Service (FPS) is responsible for pension, the Na-
tional Employment Office is responsible for unemployment, and the National Office
for Annual Leave (NOAL) for annual leave. Others are responsible for collecting
contributions such as the National Office of Social Security Office (NOSS) for em-
ployee and employer contributions and the National Institute for Social Insurance
of Self-Employed (NISSE) for self-employed people.

3.3 E-government

The electronic government (e-government) is the expansion of government services
using information technology. Its goal in the social security domain is to reduce
the number of filled-out forms, reduce the number of contacts between the social
security and employers/employees, and reduce the time necessary to complete forms
by limiting the number of fields.

To attain this goal, the social security developed three electronic declarations that
employers send to the NOSS to communicate information about employees.

• The Déclaration immédiate/onmiddelijke aangifte (Dimona) is a declaration
that contains information concerning the start and end of an employment
relationship.

• The Déclaration des Risques Sociaux (DRS) declares that an employee en-
countered a social risk during the employment relationship. Social risks are
events that change an employee’s social position, such as being fired, being a
victim of an accident at work, or suffering an illness for an extended period.

• The Déclaration multifonctionnelle/ multifunctionele Aangifte (DmfA) is a
declaration that contains more general information about an employment re-
lationship. That information is required by the multiple branches of the social
security. We will describe this declaration in more detail in Section 3.4.
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One could represent these declarations on a timeline on which the Dimona deter-
mines the edges, the DmfA describes the period between these edges, and the DRS
describes some one-time events that may occur. (See Figure [7])

Figure 7: Timeline of social security declarations

3.4 DmfA

One of the goals of this thesis is to prove that KGs can facilitate and improve certain
aspects of e-government. More specifically, this thesis focuses on data validation of
declarations. The DmfA was selected as the subject of this study as it is the most
complex electronic declaration. It is the one with the most fields with a variety of
rules to respect. Thus, it could reveal to what extent KGs and their technologies can
potentially improve processes supported by the existing information system. This
section goes into the details of the DmfA and how it is currently validated.

First, the DmfA is, as its French-Dutch name suggests, a multifunctional declara-
tion that employers send to the NOSS. It is multifunctional because all institutions
use it within social security for their function, such as determining the amount of
contribution a company owes and allocating social rights and indemnity payments.
Thus, knowledge graphs are an interesting way of representing and storing DmfA
information because the information from heterogenous sources (in this case, the
different institutions) can be integrated into these graphs.

Concerning the kind of information transmitted, it includes salary data and the
employee’s working time. It can either be sent via the Web by manually filling in an
online form or via file transfer, for which the information is contained in an XML
file. The Web interface covers many data validation aspects, though filling those in
manually can be tedious for companies employing multiple people. XML is used for
communicating information about multiple employing in batch. The Belgian social
security has made available the XSD schema and a simple Java application to do
some "superficial" data validation, though we will explain how this is limited. This
latter format for a DmfA will be the input source of the validation process. This
thesis "assumes" no Web information system exists and starts from the XML file.
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Figure 8: DmfA 2022/3 ERD [16]

A glossary provided by the NOSS details the content of the XML file [17]. It
gives information on the various entities, relationships, and attributes of the DmfA.
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The entity-relationship diagram (ERD) of the DmfA in Figure [8] illustrates these
entities, relations, and attributes. In this ERD using Crow’s Foot Notation, one can
see 29 entities (also called functional blocks) and 28 relationships between entities.
These relationships are always one to (optionally) one or (optionally) many. This
indicates a hierarchy between the entities. Thus, this diagram is a tree that suits
well the XML format. One can even argue that the ERD was designed with an XML
in mind. Whereas all the entities are represented on the diagram even if they are
currently forbidden, only the allowed attributes (also called zones) are represented.
Nevertheless, a total of 215 attributes are described in the glossary.

The fact that some entities, relationships, or attributes can become prohibited high-
lights that the DmfA is changing over time. Indeed, as the regulations change, the
DmfA must reflect these changes. Hence, there are different versions, each corre-
sponding to a particular quarter. When an employer sends a DmfA for a particular
quarter it must respect the rules of that quarter. This temporal aspect should be
taken into consideration when designing a validation process.

To show how rules are described in the glossary, an example is provided in Figure [9].
It illustrates the glossary’s HTML version, but PDF and XML versions also exist.
One can observe that some rules are structured, such as the compulsory presence
of an attribute or the maximum length of a value, which both can be expressed in
XSD. Nevertheless, most rules are expressed in natural language, such as respecting
a checksum. While some of these rules could also be expressed in XSD, such as a
regular expression for 0 or 10 digits, many of them cannot and require to be validated
by an application (e.g., computing the checksum).

Currently, there are two validation processes put in place by the NOSS. Both pro-
cesses will be briefly presented in the following.

The simplest validation process consists of a lightweight Java program. This pro-
gram is made available to employers to verify a DmfA before submitting it to the
NOSS. This program verifies that the input DmfA file is a well-formed XML and
its conformance against the XSD of the DmfA. Hence, only the rules expressed and
present in the XSD are verified. Additionally, only two rules outside the expressivity
of XSD are verified: the unicity of the Identification Number of the Social Security
and the amount owned declared corresponds to the one computed. The details of
these rules are not important at this point. However, it highlights that the valida-
tion of rules beyond XSD’s expressivity requires software. Moreover, these complex
rules are written in Java which, unlike XSD, is not interoperable.

The other validation process occurs upon the submission of a DmfA. The NOSS
runs a non-disclosed program that validates all the rules a DmfA should respect.
However, the validation result can take up to ten days to be sent. This can slow
down the formation of a valid DmfA, as corrections could only be possible after this
variable delay.
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Figure 9: DmfA glossary example. This page describes the enterprise-
number block. It not only contains a definition of that concept but also
information about its permitted values — both structured and unstruc-
tured. Some rules about the permitted values cannot be captured in
XSD. [17]

These explanations have highlighted some key issues with the current situation.
Many rules fall outside the expressivity of XSD and are described in natural lan-
guage and thus cannot be processed by a computer agent or are written in a non-
interoperable format (i.e., Java code or non-disclosed). The current validation pro-
cesses are either partially complete or not directly available for employers, increasing
the required time to fill the declaration. Hopefully, knowledge graph technologies
can overcome these problems by creating a set of interoperable data validation rules.
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4 Related Work

In public administrations there have been some use-cases where SHACL was imple-
mented to express constraints to which data must comply. In the European Union
(EU), these constraints are used as part of an application profile. An application
profile is the description of how to apply a standard to a specific application [18]. In
other words, it is the specification of an application which is based on a standard.
Thus, it may specify how the data should be, its constraints.

The European Data Portal is a key example of such an application. It provides
176 catalogs for a total of 1,601,899 datasets [19]. To facilitate the interchange of
metadata describing these catalogues and datasets, the DCAT Application Profile
for Data Portals in Europe (DCAT-AP) was developed as a shared data model [20].
This model is detailed in various formats including a natural language PDF, a UML
diagram, and SHACL shapes [21]. The EU also provides an online validator for
DCAT-AP, enabling the metadata, represented as an RDF graph, to be validated
against these SHACL shapes.

At a local level, the Flemish Government in Belgium developed the Open Stan-
daarden voor Linkende Organisaties (OSLO) specification [22]. It is a collection of
specifications meant to exchange data between organizations. Among those specifi-
cations are some application profiles that specify constraints on data concerning, for
example: addresses, persons, roads, buildings, public decision, etc. Most of these
application profiles are expressed in SHACL among other formats. Similarly to the
EU, an online SHACL validator is available for most of the application profiles.

The SHACL shapes in these application profiles describe the "simple" integrity
constraints such as cardinality, datatype, and node type. There are also a few
instances of ’or’ operators used to combine shapes into a more complex shape. This
shows that SHACL can be used to validate simple data models. In this work, we
try to express more complex shapes by using more of the SHACL-core vocabulary
and even more complex shapes with SHACL-SPARQL vocabulary.
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5 Approach

In this chapter, we delve into the practical aspect of our research by presenting
the approach taken to contextualize and validate DmfA declarations with graph
technologies, specifically RML and SHACL. The various steps involved in the process
can be seen in Figure [10]. We will outline the engineering process followed for each
step of the validation process.

Figure 10: DmfA validation with KG technologies overview

This experiment along its sub-experiments attempts to answer the following ques-
tions.

• Is it possible to validate social security declarations with knowledge graph
technologies?

• How difficult is it to develop a validation process with these technologies?

• What are the pros and cons of this method compared to existing validation
process?

• How computationally intensive is this validation process?

• Is the validation process maintainable?

All the scripts and documents used for this experiment can be found at the following
GitHub repository: https://github.com/Ikeragnell/dmfa.

24

https://github.com/Ikeragnell/dmfa


5.1 DmfA Vocabulary

If the sole purpose of this experiment was to validate a DmfA, using a direct map-
ping of the DmfA XML to an RDF graph validated with SHACL would have been
appropriate. However, as this experiment tries to go beyond this goal and reach in-
teroperability between the social security institutions, a vocabulary was generated.
In this section, the reason why and how the DmfA vocabulary was generated, as
well as its current limitations will be presented.

5.1.1 Reasons to build a vocabulary

A vocabulary is a light-weight ontology, with only a few axioms such as class hi-
erarchies, domains, and ranges. We decided to construct a DmfA vocabulary as
we deemed it more suited for our needs compared to a fully-fledged ontology. This
decision was driven by several key reasons.

Primarily, our project did not necessitate support for complex reasoning tasks that
would typically call for a highly-axiomatized ontology. Instead, our primary need
was the semantic annotation of data contained in a DmfA, and infer some additional
information via the class and property hierarchies, for example. This would also
bring semantic interpretability between different information systems at stake, being
the several institutions of the NOSS and the companies making the declarations.

In addition, managing integrity constraints in an ontology with OWL presents com-
plexity and potential difficulties that we wanted to avoid. OWL’s open world as-
sumption is an important challenge. For example, it necessitates declaring that
entities are explicitly distinct.

Finally, evaluating SHACL capabilities is one of the main goals of this thesis. Thus,
some reasoning tasks that could be achieved with an ontology such as cardinality
constraints were omitted to not overlap with SHACL rules developed (cf. Section
5.4).

5.1.2 Generating the DmfA vocabulary

The actual generation of the vocabulary can be regarded as lifting the ERD to the
vocabulary. The lifting process mainly consisted of mapping entities, relations, and
attributes to their respective classes, object properties, and data properties. To
do so, the XML documentation of the entities and the attributes issued from the
glossary were processed by a Python script. Figures [11] and [12] show how a class
and a data property were generated from these XML files.

As there was no computerized documentation of the relationships, a CSV was cre-
ated with the domain, range, and their corresponding identification code from the
XML documentation of entities. The file had to be additionally annotated with the
French label of these relationships before generating them with a Python script (See
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Figure 13). English translation of the labels could have been used for the IRI of the
relationships (e.g., #employs, #dispose_of). However, many relationships shared
the same label and would have resulted in relationships being synonymous while
they are not. In addition, the development of rules would be more complex because
the domain and range of these synonymous relationships would be a union of classes.
Nevertheless, rules depend on a specific pair of subject and object classes and thus
we would need to distinguish this specific pair from the union of classes. To make
the distinction possible, the IRIs were built as a combination of the identification
code of the domain and range. Note that another solution could have been to refine
the vocabulary with domain experts by precisely defining and distinguishing the
relationships.

Figure 13: Object properties generation, CSV of relationships (top),
Python script (middle), generated object properties (bottom)
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Figure 11: Class generation, XML glossary (top), Python script (middle),
generated class (bottom)
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Figure 12: Data property generation, XML glossary (top), Python script
(middle), generated data property (bottom)
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5.2 Mapping DmfA XML to RDF

In this section, we discuss how DmfAs as XML can be transformed to RDF through
RML mappings. We explain how the mappings were generated, how we developed
an IRI strategy and investigate storage strategies.

5.2.1 Generating mappings

5.2.1.1 Generating mappings for a particular DmfA XML

In Section 2.6, we presented RML which is a language to define mappings from any
semi-structure data. To generate the mappings, we consider the example of a DmfA
XML provided by the NOSS in their technical library as the input source. Although
this file respects the DmfA XSD, it is not a valid declaration which will be shown
in Section 5.5.1.

As the vocabulary is on the ERD of the XML’s structure, the generation of map-
pings can be bootstrapped. A triples map instance was created for each class of
the vocabulary by a Python script. Figure [14] shows an example of the mapping
generated for a class. Each triples map defines a logical source based on the XML
file to transform and the XPath of the element corresponding to the class. The
subject map is also defined and determines how the subject is generated. In this
case, the IRI is a Uniform Resource Name (URN) with the class name in it. More
details will be explained in Section 5.2.2.

The mappings of data properties were straightforward to generate with the script
because these properties have a corresponding element in the XML. In addition, the
datatypes are determined using the ones in the XSD.

While generating triples maps and mapping rules for subjects and data properties
were straightforward, the mapping rules of the object properties were more complex.
In fact, it is currently impossible to correctly generate them because there is a loss
of information with the way the data is represented2. As a reminder, the logical
source from an XML can be understood as a table of XML elements resulting from
the XPath expression. These logical tables do not contain information on the actual
structure of the XML. As an example, Figure [15] shows and XML file and two
logical tables based on XPath. One can observe that there are no columns matching
which would indicate the relationship between John and his siblings. In short, these
tables lack primary and foreign keys.

To solve this issue, some preprocessing was done to add these keys. An id and
parent attribute, which corresponds to a primary and a foreign key, was added to
each XML attribute. The mappings of the object properties (Figure [15]) could then
be generated automatically. The object map references the result of the subject map

2The RML community is aware of this issue and are currently investigating potential solutions.
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Figure 14: DmfA XML to RDF mapping example

Figure 15: XML data (left) and table view of XPaths (right)

of another triples map and the join condition determines the resources that follow
this predicate (the object property).

Having the mappings of the DmfA XML example fully generated, its RDF graph
can be produced with any RML processor. For this thesis, the RMLMapper [23]
program was chosen as processor. It is the reference implementation of RML written
in Java but is only suitable for small datasets. Hence, the RDF generation may not
scale properly.

5.2.1.2 Generating mappings for any DmfA XML

In the previous section, the mappings for a particular DmfA were presented. How-
ever, in practice, both companies and the social security manipulate multiple DmfAs.
Thus, the specific mappings must be generalized.

There are two straightforward solutions, both with their downsides. First, the DmfA
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XML files that need to be transformed could be renamed into the file name of the
previous mappings. However, this would make the distinction between the files
cumbersome. The other solution is to modify the Python script such that it takes
as input the DmfA file name. Not only would the whole mappings be generated for
each declaration, but it is also not interoperable as it requires specific technologies
(in this case, Python).

While more complex, our proposed solution is declarative and relies uniquely on KG
technologies. The previously generated mappings are stored in a quad store in their
own named graphs. To generate the mappings for a specific file, a CONSTRUCT query
is sent to the quad store (See Listing [3]).

PREFIX rml: <http://semweb.mmlab.be/ns/rml#>
CONSTRUCT {

?s ?p ?o.
?LogicalSource rml:source "filename"

}
FROM <http://kg.socialsecurity.be/mappings/dmfaxml/>
WHERE {

{
?s ?p ?o.
FILTER (?p != rml:source)

}
UNION
{

?LogicalSource rml:source ?source.
}

}

Listing 3: CONTRUCT query for DmfA to RDF mappings

In this query, a SPARQL endpoint is instructed to look for triples of DmfA mappings
which are stored in <http://kg.socialsecurity.be/mappings/dmfa/>, a named
graph. This query contains two parts. In the WHERE clause, the first part fetches
all the triples that do not have rml:source as the predicate. In the CONSTRUCT
clause, the second part creates for the subjects of rml:source triples with the same
predicate but the desired file name. The filename is filled in by the script.

5.2.1.3 Prototype Deployment

As a proof of concept, a Jupyter Notebook was developed as prototype of user
interface for the generation of RDF from DmfAs. The program takes as input the
DmfA file name, RDF graph file name and the URL of the SPARQL endpoint where
the reference mappings are stored. The SPARQL server storing the mappings is an
Apache Jena Fuseki [24] server.

The program sends the query in Listing [3] with the input file name to the SPARQL
endpoint. Then, it launches RMLMapper with the response and stores the result
with the desired file name.
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5.2.2 IRI strategy

Initially, blank nodes identifiers were considered for resources in the DmfA RDF.
The reason being that there was no obvious way to identify a resource from its
corresponding XML element apart from using the whole subtree. The combination
of the class and the occurrence number could not be used to identify resources either,
as two XMLs with permutations of their elements would be transformed into two
RDF graphs with resources having inconsistent names. Thus, using blank nodes
seemed more appropriate as resources cannot be identified.

Nevertheless, blank nodes identifiers had a more impactful downside because they
represent different resources across systems and even RDF graphs. In fact, in RDF,
the same blank node identifier in different name graphs of the same triples store
does not refer to the same entity. This is by design when RDF was standardized;
a blank node merely declares the existence of something. Hence, when validating a
DmfA RDF against shapes with a SHACL processor, erroneous resources in the val-
idation report would not have the same blank node identifiers. This would make the
correction process more tedious because the source of the error cannot be identified.

To address this issue, we adopted a naming strategy inspired by Uniform Resource
Names (URNs) resources as they follow patterns to identify resources. The structure
of a URN is urn:{nid}:{nss} where {nid} is a namespace identifier registered by
the Internet Assigned Numbers Authority (IANA) and {nss} is a namespace-specific
string. This format can be used internally to the social security without registering
the namespace to the IANA. In this case, the {nid} is ss which stands for social
security.

The proposed IRI strategy and resulting IRIs are named by urn:ss:{ref}-{class}
{id} (e.g., urn:ss:012abcDEF-Form0) where ref is the reference of the declaration
class, {class} is the class of the resource and {id} is an identifier. These three
components form the {nss} component of the URN and allow us to differentiate
the data within a declaration ({class} and {id}) and between declarations ({ref}).

The reference is a 20-character long alphanumerical string that uniquely identifies
a declaration. From the perspective of the social security, the reference should be
known before creating the RDF graph and used in the subject map template to
make the distinction between stored declarations possible. A variation of the query
in Listing [3] could be used to retrieve the mappings to create such a graph (See
Annex A). From the perspective of companies who are testing the validity of a
declaration without knowing its reference should use the special reference NOREF.

Note that this naming scheme uses the occurrence number and thus problems with
inconsistent naming in case of XML permutations still exist. This should be clearly
documented and taken into consideration when querying the knowledge base.
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5.2.3 Storing strategy

When strategizing on how to store the RDF declarations, one should bear in mind
how the graph is going to be queried. For instance, some use-cases are computing the
contributions due for the NOSS, computing the number of paid leave for the NOAL,
and computing pension rights for the FPS. These usages have different requirements
and thus different storing strategies must be considered.

To compute the contributions due for a quarter the NOSS needs the whole decla-
ration. Storing each declaration in a named graph makes their retrieval faster than
storing all of them in the default graph. To confirm this claim, a small benchmark
was conducted, and the results are presented in Figure [16]. The details of this
benchmark can be found in Annex B.2. One can observe that querying a storage
with the default graph strategy is nearly always slower than querying one with the
named graph strategy. The scale of this discrepancy is minor since response times
are in the order of milliseconds, but we hypothesize that it may be more significant
in larger datasets.

Figure 16: Storing strategy benchmark

Other institutions do not require the whole declaration. Hypothetically, the NOAL
may only require information on the employees’ working days and the FPS may
only require salary data. Developing multiple triple-stores which only store relevant
information for each institution may speed up data access, as it allows the insti-
tutions to retrieve only the data that they need, rather than having to access and
filter through the entire dataset. This approach can be seen as a form of caching,
as it stores the relevant data in a more easily accessible location in order to speed
up future access to the same data.
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5.3 Integrating DmfA Annexes

Some rules concerning the DmfA are based on information contained in annexes.
Hence, these annexes must be integrated to be used in the validation process. This
integration is similar to the transformation of DmfA XML to RDF. In this case,
annexes as XML are transformed into RDF graphs. In this section, we will provide
a general overview of the integration of the annexes and then delve into the specifics
of certain aspects.

5.3.1 Integration of Annexes Overview

The integration of the annexes followed a process similar to transforming DmfA XML
to RDF. A small vocabulary was built for each annex, mappings were developed, and
an RML processor generated the graph. As most annexes share a similar structure,
we will exemplify the integration process with an annex titled Annexe numéro 7:
Codification des rémunérations.

All annexes are available in five formats: PDF, DOCX, XLS, CSV, and XML.
Whereas RML mappings can be written for XML and CSV files, the XML format
was chosen because it is the same format as DmfA. Each of the annexes contains
data on an entity and its attributes. Annex 7 describes remuneration codes with
attributes such as a value, description, and validity period (See Figure [17]).

Figure 17: Annex 7: Codification of salaries XML [17]

The created vocabulary consists of a class and some data properties. It was gen-
erated manually to obtain IRIs for class and data properties that are readable and
convey some of its semantics rather than using the XML label. Annexes describe
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the validity period with dates, quarters, or both. Data properties for valid quar-
ters were added if they were not initially present to obtain a consistent temporal
representation. The whole vocabulary of Annex 7 can be seen in Figure [18]. For
instance, it shows that a data property has the IRI :validCodeDMFA3 instead of
simply DMFA as in the XML.

Figure 18: Annex 7 Vocabulary3

The mappings were simple to generate as most properties have a corresponding
element in the XML. Nevertheless, some properties required some data transforma-
tions. This will be discussed in more detail in Section 5.3.2. As for DmfA XML files,
the mappings were passed to RMLMapper and the Annex 7 graph was generated.

This integration process is valid for any annex, but not all the annexes were inte-
grated as part of this thesis. The excluded annexes are either the ones that are no
longer required to validate the current version of the DmfA or those that require do-
main experts to clarify aspects. Indeed, one annex seemed unclear and complex, and
we preferred deferring the integration over the integration of potentially nonsensical
data. These annexes should still be integrated for retro-compatibility and complete-
ness, but that is for future work. It is believed that the exercise will be similar to
the other annexes once a domain expert can clarify its structure and meaning, and
excluding them will not impact the conclusions we can draw from this study. The
status of the annexes’ integration is summarized in Table [2]. Of the 24 annexes,
only five were excluded; four are currently irrelevant, and one unclear.

3Base IRI: http://kg.socialsecurity.be/ressources/annex7#
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Table 2: Integration of Annexes status

Name Integrated Reason (If no) Addition of
valid quarters

1 - Codes communes - Code INS No Not needed /
2 - Liste des codes travailleurs pour lesquels
des cotisations sont dues

Yes / No

3 - Valeurs autorisées pour le "type de cotisa-
tion" en fonction des codes travailleurs cotisa-
tions

No Too complex /

4 - Liste des codes déductions Yes / No
5 - Liste des codes pays No Not needed /
6 - Activité par rapport au risque Yes / Yes
7 - Codification des rémunérations Yes / Yes
8 - Codification des données de temps de tra-
vail

Yes / No

9 - Numéros de fonction du personnel déclaré
au forfait suivant l’indice de catégorie de
l’employeur

Yes / Yes

10 - Codification des indemnités pour les caté-
gories employeurs 027 et 028

Yes / Yes

11 - Identification du formulaire Yes / Yes
21 - Liste des valeurs autorisées pour le statut
du travailleur

Yes / No

23 - Liste des codes postaux et communes en
30 positions

No Not needed /

24 - Table de conversion - ASCII - codepage
850

No Not needed /

27 - Catégories d’employeurs Yes / Yes
28 - Code travailleur APL Yes / Yes
31 - Liste des codes NACE Yes / Yes
35 - Mesure de promotion de l’emploi Yes / No
42 - Nomenclature des types d’institutions du
secteur public

Yes / No

43 - Nomenclature des catégories de personnel
du secteur public

Yes / No

44 - Mesures de réorganisation du travail Yes / No
45 - Nomenclature des Classes du personnel Yes / Yes
46 - Détail secteur Yes / Yes
dmfas02 - Détail des données pour les déduc-
tions

Yes / No

5.3.2 Data transformation

When analyzing the annexes, one can observe that some attributes are formatted
in a "human-readable" way rather than in an XML datatype. These attributes
were transformed such that a computer agent could perform operations on them.
For instance, the annexes use Yes/No values instead of boolean values and the
dd/mm/yyyy format instead of yyyy-mm-dd.

As a reminder, rr:logicalTable represents the SQL query that an engine will
send to an RDB and then transform into RDF. The advantage of SQL is that the
Data Query Language (DQL) allows us to declare data transformations in the SQL
query. Examples of such transformations include data formatting, string formatting,
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and concatenation. This cannot be done with RML when the data source is not
relational. For XML, for instance, the logical source of a mapping uses an XPath
expression to iterate over the XML resulting XML sub-documents. Hopefully, the
Function Ontology (FnO) can be used to describe the data transformations in an
interoperable way. In short, this ontology is a way to semantically describe functions
and related concepts such as parameters and executions [25]. Note that an RML
processor must support FnO to take the transformations into account.

In Figure [19], we present an example of an RML mapping that uses FnO. The map-
ping illustrates how to generate the predicate and object of a triple. The predicate
is ont:validFrom, and the object is generated by applying the grel:array_join
function (1) applied on the grel:p_string_sep (2) and grel:p_array_a (3) pa-
rameters. The latter is itself the returned value of another function. All in all,
the object is the result of the pseudocode in Listing [4]. The begin_geldigheid
(start validity date) is split into an array based on the "/" separator. This array
is reversed and joined with the "-" separator. This changes the format of the date
from dd/mm/yyyy to yyyy-mm-dd.

data = array_join(array_reverse(string_split(begin_geldigheid,"/")),"-")

Listing 4: FnO function pseudocode

This shows that the generation of an RDF graph with some data transformation is
possible with RML and FnO. While it is possible to define these transformations
in an interoperable way, there are some limitations to this approach. In particular,
the set of functions supported by a specific RML-FnO processor may be limited,
which can make it challenging to express certain transformations, even if they are
relatively simple. As an example, the transformation of the date format using just
three functions already takes up a lot of space. To reduce its size, one could de-
fine a single function transforming dates in the dd/mm/yyyy format to yyyy-mm-dd
format. Nevertheless, this function should not have an implementation in any RML-
FnO processor. Thus, one would also require providing an implementation that the
processor can utilize to generate the graph.

Due to these limitations, only one annex was integrated with FnO data transforma-
tions as a proof of concept. The other annexes were processed using Python scripts
to handle the necessary transformations.
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Figure 19: RML-FnO mapping example
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5.3.3 IRI strategy

Resources of the annexes are named by http://kg.socialsecurity.be/resource/
{annexId}/{ref} where {annexId} is the annex identifier and {ref} is an identifier
of the resource. {ref} follows the scheme {class}{id}-{quarter} where {class}
is the vocabulary class, {id} is a code assigned by the NOSS to the resource, and
quarter is the start of the validity of the resource (i.e., from when it can be used in
declarations)

Several considerations were taken into account when creating this IRI strategy, in-
spired by Tim Berners-Lee’s guidelines on building IRIs [26]. One important factor
was that resources from the same annex should be grouped together. To achieve
this, {annexId} was used to create subdirectories for each annex. This also allows
users to easily navigate between annexes by modifying the annex identifier, which
is designed to be somewhat human-readable (e.g., annex7).

Even though the annexes that have been integrated only consist of a single class,
other annexes or future annexes may have multiple classes. The {class} component
is included in the IRI to avoid conflicting resource naming between these potential
classes.

The annexes have an attribute that is a code used to identify a resource (i.e., {id}
component), but this code is only unique at a particular point in time. To ensure
that each resource can be uniquely identified, the code must be combined with a
temporal aspect. The quarter from which the resource is valid (i.e., {quarter}
component) was chosen as the temporal aspect. This choice of attribute allows the
IRI to be permanent as the starting quarter is not subject to change. If a resource
becomes invalid, the only change that will occur is the end of validity quarter being
updated to the expiration quarter instead of being set to "end of times".
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5.4 SHACL rules development

This section covers the process of creating SHACL rules for the DmfA. It covers the
generation of the rules, common patterns that emerged, design considerations, and
the extension of these rules to other declarations.

5.4.1 Rules generation

The base shapes for a class and data property were created by processing the XSD.
Figure [20] shows these basic shapes. The starting point for a class’ shape is a rule
stating that each instance of the class should have valid data properties. Other
shapes describe criteria that these data properties must meet, such as specified
datatypes, value and length constraints, and patterns. These criteria are the SHACL
equivalent of XSD constraints.

Figure 20: Basic DmfA rules

These rules do not cover all the constraints that the declaration should respect.
Thus, they were manually verified and refined. The glossary of each class, data
property and object property were consulted to determine missing rules. Missing
rules concerning classes and data properties were added to the base shapes, whereas
object properties’ rules were added to the shape of their domain. Figure [21] shows
how the rules concerning the Quarter field were refined. Some of the missing rules
can be expressed with the SHACL-core component, others had to be expressed with
a SHACL-SPARQL constraint. Both cases represent rules that SHACL was able to
support, and this already demonstrates that SHACL is more expressive than XSD.

This refinement process was tedious as the number of classes, data properties and
object properties were vast. For each shape, some test cases were designed to verify
the correctness of the rules. Nevertheless, as the number of implemented shapes
increased, some patterns emerged and will be discussed in the next section.
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5.4.2 Patterns

In this section, we will present and explain the patterns that were identified during
the development of the SHACL rules. Our aim is to provide rules that can be applied
in contexts beyond the social security domain, or to serve as a model for creating
other rules, by presenting the structure of the developed rules.

5.4.2.1 Checksums

Checksums can be used to verify the correctness of identifiers such as a company ID,
identification number of the social security (INSS), or NOSS registration number.
Checksums can be distinguished by the algorithm used for the verification. Each
of the checksums can be expressed with a rule implementing the algorithm. Listing
[5] illustrates a checksum rule where the 97 minus the last two digits must be equal
to the modulo 97 of the number before the last two digits. (e.g., 123427: (1234
mod 97) ?= 97 – 27). Despite expressing a specific checksum, this constraint can
be reused as is for numbers of any length.

[
sh:message "Checksum is wrong." ;
sh:prefixes <> ;
sh:select """

SELECT $this ?value
WHERE {

$this $PATH ?value .
BIND( FLOOR(?value / 100) AS ?number )
BIND( ?value - (100 * FLOOR(?value / 100)) AS ?check )
BIND( ?number - (97 * FLOOR(?number / 97)) AS ?rest )
BIND( 97 - ?rest AS ?check2 )
FILTER ( ?check != ?check2 )

}""" ;
] .

Listing 5: SHACL-SPARQL checksum constraint example

5.4.2.2 Existing code w.r.t annexes

Some annexes define values that specific fields can accept. Listing [6] illustrates the
validity checking for the ont:PositionCode field with a set of permitted values de-
fined by Annex 9. This rule checks if at least one resource of type an9:PositionCode
with a code equal to the field’s value. The main advantage of this rule is that it is
up to date with the current state of the annex.
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[
sh:message "Invalid code for a position, code does not exist" ;
sh:prefixes <> ;
sh:select """

SELECT $this ?value
WHERE {

$this ont:PositionCode ?value.
OPTIONAL{

?pc a an9:PositionCode ; an9:Code ?value.
}
FILTER(!BOUND(?pc))

}""" ;
] .

Listing 6: SHACL-SPARQL existing code constraint example

5.4.2.3 Code within valid period w.r.t annexes

The annexes defining values for certain fields also define their validity period. As
explained in Section 5.3.1, data properties concerning the starting and ending quar-
ter of the validity of a code were added to annexes specifying them with dates. This
addition made the rules checking the temporal validity of a code follow the same
pattern. It also eases the checking as the quarter of declaration must not be trans-
formed into a date before being compared to a validity period. An example of this
type of rule is presented in Listing [7]. The quarter of the declaration is reached
through the inverse path from a resource and compared to the starting and ending
quarter of the code matching the value of the ont:PositionCode data property.
Like the previous rule, being up to date with the current state of the annex is the
main advantage of this rule.

[
sh:message "Invalid ont:PositionCode, code is out of valid quarter range." ;
sh:prefixes <> ;
sh:select """

SELECT $this ?value
WHERE {

$this ont:PositionCode ?value.
OPTIONAL {

?pc a an9:PositionCode;
an9:Code ?value;
an9:validFromQuarter ?startQuarter;
an9:validToQuarter ?endQuarter;

.
$this ^ont:R_90012_90015/

^ont:R_90017_90012/
^ont:R_90007_90017/
ont:Quarter ?quarter.

FILTER( ?startQuarter < ?quarter && ?quarter < ?endQuarter)
}
FILTER(!BOUND(?pc))

}""" ;
] .

Listing 7: SHACL-SPARQL code within valid period constraint example
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5.4.2.4 Field presence w.r.t annexes

Two annexes specified the presence of fields based on the value of a particular field.
Listing [8] illustrates a rule verifying the correct presence of the ont:ReplacedINSS
data property. A subquery counts the data property’s number of occurrences.
This number is compared to the expected count which depends on the value of
ont:DeductionCode.

[
sh:message "Wrong cardinality for ont:ReplacedINSS." ;
sh:prefixes <> ;
sh:select """

SELECT $this
WHERE {

{
SELECT $this (SUM (?occ) as ?nbrOcc)
WHERE {

$this ?p ?o.
BIND( IF(?p = ont:ReplacedINSS, 1, 0) AS ?occ)

}
GROUP BY $this

}
$this ont:DeductionCode ?code.
?dc a an4:DeductionCode;

an4:Code ?code;
an4:ReplacedINSSSPresence ?presence;

.
BIND( IF(?presence = "Obligatoire"@fr, 1,

IF(?presence = "Interdit"@fr, 0,
IF(?presence = "Optionnel"@fr, ?nbrOcc, -1))) AS ?expectdNbrOcc)

FILTER(?expectdNbrOcc != ?nbrOcc)
}""" ;

] .

Listing 8: SHACL-SPARQL field presence constraint example

5.4.2.5 Unicity

Some rules described in the glossary state that some values of an entity must be
unique. Listing [9] illustrates a rule expressing the unicity of natural person sequence
numbers in an employer declaration. This rule counts the number of occurrences for
a sequence number. The sequence number is not unique if this number is greater
than one.

This pattern can be applied to a combination of fields, as illustrated in Listing [10].
Elements are cast as strings and concatenated to represent a combination. Then,
the unicity checking is done by counting the combinations’ number of occurrences.
Note that two distinct combinations may appear as the same concatenated strings.
For instance, the concatenation of the pairs (123, 45) and (1, 2345) are both equal
to 12346. Nevertheless, this exception will not occur if elements are of a fixed
length, which is the case for the developed rules. If the elements are not of fixed
length, separators could be used but at the cost of doubling the number of string
concatenations.
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[
sh:message "Each ont:NaturalPersonSequenceNbr must be unique for a ont:EmployerDeclaration." ;
sh:prefixes <> ;
sh:select """

SELECT $this
WHERE {

{
SELECT $this (COUNT(?seqNbr) as ?seqNbrOcc)
WHERE {

$this ont:R_90007_90017/ont:NaturalPersonSequenceNbr ?seqNbr .
}
GROUP BY ?seqNbr $this

}
FILTER(?seqNbrOcc > 1)

}""" ;
] .

Listing 9: SHACL-SPARQL unicity constraint example

[
sh:message "A combination of ont:RemunCode, ont:PercentagePaid and ont:BonusPaymentFrequency

must not appear several time for the same ont:Occupation." ;↪→
sh:prefixes <> ;
sh:select """

SELECT $this
WHERE {

{
SELECT $this ?combination (COUNT(?combination) as ?combinationOcc)
WHERE {

$this ont:R_90015_90019 ?r .
?r ont:RemunCode ?rc;

ont:PercentagePaid ?pp;
ont:BonusPaymentFrequency ?bpf;

.

BIND(
CONCAT( STR(?rc),
CONCAT( STR(?pp),

STR(?bpf)))
as ?combination)

}
GROUP BY $this ?combination

}
FILTER(?combinationOcc >1 )

}""" ;
] .

Listing 10: SHACL-SPARQL combination unicity constraint example

5.4.3 Design considerations

During the implementation of SHACL rules, various design choices were made. In
this section, we will present these choices and the considerations that led to their
implementation. We will also compare the trade-offs and potential impacts of each
choice on the effectiveness and efficiency of the SHACL rules. These considerations
should be taken into account as they can have significant impacts on the usability
and maintenance of the SHACL rules.

The performance of the validation can vary depending on the SHACL processor used.
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For this experiment, we only used the TopBraid SHACL processor [27]. However,
we expect that other processors should give similar results. The mean time required
for one hundred validations was used as the metric to compare the implementation
of the rules.

5.4.3.1 SPARQL-based constraint optimization

When developing SPARQL-based constraints, some optimization was made on the
SPARQL query they are based on. In the section, we will give two examples of
queries that were optimized.

Checksum A first implementation of a checksum constraint splits the number using
type casting and the substring function. However, string manipulation is often slower
than operating on integers. Thus, this query was improved by performing a modulo
operation to split the number. A reduction of 200 milliseconds was achieved on 5000
numbers to verify. We refer to Appendix B.3.1 for the explicit SPARQL query and
benchmark results.

Code existence The two implementations for a code existence constraint involve
either counting the number of resources with a matching code matching the value
or checking if a resource with a matching code is bound. The former involves ag-
gregation, which can create an overhead. Empirical results show a reduction of 330
milliseconds when verifying 5000 codes. We refer to Appendix B.3.2 for the explicit
SPARQL query and benchmark results.

5.4.3.2 Selecting the target of a rule

We explain in Section 5.4.1 that the rules described by the glossary concerning a
class are regrouped into a single shape. These shapes express all the constraints that
instances of this class must respect. However, strict adherence to this approach may
significantly slow down the validation process. In fact, it is possible to use SPARQL
queries to navigate through the graph and express constraints from any resource
because the declaration’s graph does not have isolated vertices. Thus, adapting a
rule to target another class may be more efficient.

An example of a data graph respecting unique ont:NaturalPersonSequenceNbr
value for a ont:EmployerDeclaration is illustrated in Figure [22]. The unic-
ity constraint can either be placed at the ont:EmployerDeclaration level or the
ont:NaturalPerson level. The former is more efficient as only a single query verifies
that no children have the same sequence number. The number of queries involved
in the latter increases linearly with the number of natural persons, which negatively
impacts the validation time.
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Figure 22: Valid data graph with unique sequence number

Figure [23] presents empirical evidence supporting these claims. One might expect
the validation time for a constraint at the child level to increase quadratically since
each child node compares its sequence number to all its siblings. However, the
results show a linear increase of the validation time. This can be explained by the
fact that the increase in complexity of the query (i.e., comparing to more natural
persons) does not significantly affect the query time. The increase is mostly due to
the increase of queries’ amount. Similarly, for a constraint at the parent level, the
validation time remains nearly constant rather than increasing linearly. We refer to
Appendix B.4 for the explicit SPARQL query and benchmark results.

Figure 23: Validation time for a uniqueness constraint as a function of
the number of natural persons

5.4.3.3 Redundancy

A shape’s constraints may have overlapping checks. For example, consider the shape
of an ont:Quarter shown in Figure [24]. If the length constraints are not met, the
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pattern constraint also fails. Similarly, if the value is less than 20031, both the
minimum value constraint and the SPARQL-based constraint will fail.

While the length and minimum value constraints are redundant, they offer a more
specific reason for failure. An error indicating a violation of the minimum length
directly reflects a missing character, whereas a mismatching pattern error does not.
For this reason, redundant but more precise constraints were favored. Nevertheless,
this choice comes with a decrease in efficiency as more checks must be performed.

Figure 24: Quarter Shape

5.4.3.4 Clarity vs. efficiency

When developing the rules, expressing rules in a clear and easily understandable
manner was favored other making them as efficient as possible. Clear rules are often
the result of a combination of simple constraints that make them easier to maintain.
As they are fragmented, parts of these rules can be reused for other purposes. On
the other hand, efficient rules are more likely to be complex and harder to maintain.

To illustrate this point, Figure [25] presents a clear and efficient version of a shape for
a ont:NOSSRegistrationNbr. The constraints on the left are easy to understand:
the registration number must either be in the range [100006; 199999934] and
respect a checksum, or it must be equal to 0 when the company ID is known.
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Whereas the left version expresses rules with two SPARQL queries, the right version
achieves the same results more efficiently with a single SPARQL query but is harder
to understand. However, if the number can no longer be equal to 0, the left version
can be easily adapted by removing the second condition of the sh:or. On the other
hand, the right version would require modifying several parts of the SPARQL query
in a non-obvious manner to achieve the same change.

Figure 25: kg:NOSSRegistrationNbrShape, clear version (left) and effi-
cient version (right)

5.4.4 Extending rules to other quarters and declarations

Up to this point only the rules of a DmfA for the 2022/3 quarter were developed.
However, there are many more declarations, each with their own set of rules. Apart
from the three main declarations (DmfA, Dimona, and DRS), there are declarations
linked to the main ones such as modification and consultation request declarations.
Moreover, each of these declarations have multiple versions, one for each quarter. In
this section, we present how the rules for the main DmfA declaration were extended
to validate other declarations and their different versions.

By comparing the several declarations, many similarities were found. They share
classes, object properties and, data properties which must respect nearly identi-
cal constraints. For example, Figure [26] highlights the only difference for the
Identification property between the glossary of an original DmfA (left) and a
DmfA consultation request (right).

To avoid expressing nearly equivalent shapes repeatedly across declarations, con-
straints common to all declarations were regrouped into a common shapes graph.
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Figure 26: Glossary of Identification for an original DmfA (left) and a
DmfA consultation request (right)

In addition, constraints specific to a declaration were stored into a specific shapes
graph. Thus, combining the common and specific shapes graph results in a shapes
graph expressing all the rules for a declaration. In fact, this combination is only
valid because specific rules are more restrictive and thus being a valid declaration
implies respecting the common rules. The resulting separation of constraints for the
Identification property can be seen in Figure [27].

Extending to other quarters was more complex as previous and future constraints
can be more inclusive or restrictive. Therefore, the previous method of separation is
not suitable in this case. It might have been possible to identify the shapes related
to a specific quarter by adding some additional annotations to the shapes, but this
would require additional computation to retrieve the shapes and it was not clear how
to best organize them. The proposed solution is to include all the shapes related to
a quarter in a single graph, resulting in each quarter having its own shapes graph.
The simplicity of this solution makes it easier to maintain at the cost of a slight
increase in memory usage.

In short, if Q is the number of quarter and D the number of declarations, the number
of different shapes graph would be (Q * (D + 1)). For each of the Q quarter, there
are D specific shapes graph and 1 common shapes graph.
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Figure 27: Example of constraints separation into common shape, DmfA
specific shape and DmfAREQ specific shape
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5.5 Validation process

As a proof of concept, a Jupyter Notebook was developed as prototype of user
interface for the validation of declarations. Currently, this program can validate two
types of declaration, DmfA and DmfAREQ, for the quarters between 2022/1 and
2022/3, both included. This notebook communicates with a SPARQL server storing
the annexes and the 94 shapes graphs required for the validation. Its capabilities
can be extended to other declarations and quarters by storing their shapes graphs
on the server.

The program starts by taking user input for the file to validate and the declaration to
validate against. Then, it sends the SPARQL query in Listing [11] to the endpoint.
This query fetches all the RDF graphs of all the annexes from their respective named
graph. The result is appended to a copy of the input file and forms the data graph.
A second query with the selected declaration type and quarter, shown in Listing
[12], is sent to the endpoint to retrieve the shapes graph. This shapes graph is the
combination of a common and a specific shapes graph. The last step is launching
the TopBraid SHACL processor with the data and shapes graphs as parameters and
saving resulting validation graph into a file.

CONSTRUCT{
?s ?p ?o.

}
FROM <http://kg.socialsecurity.be/resource/annex2/>
FROM <http://kg.socialsecurity.be/resource/annex4/>
FROM <http://kg.socialsecurity.be/resource/annex6/>
FROM <http://kg.socialsecurity.be/resource/annex7/>
FROM <http://kg.socialsecurity.be/resource/annex8/>
FROM <http://kg.socialsecurity.be/resource/annex9/>
FROM <http://kg.socialsecurity.be/resource/annex10/>
FROM <http://kg.socialsecurity.be/resource/annex11/>
FROM <http://kg.socialsecurity.be/resource/annex21/>
FROM <http://kg.socialsecurity.be/resource/annex27/>
FROM <http://kg.socialsecurity.be/resource/annex28/>
FROM <http://kg.socialsecurity.be/resource/annex31/>
FROM <http://kg.socialsecurity.be/resource/annex35/>
FROM <http://kg.socialsecurity.be/resource/annex42/>
FROM <http://kg.socialsecurity.be/resource/annex43/>
FROM <http://kg.socialsecurity.be/resource/annex44/>
FROM <http://kg.socialsecurity.be/resource/annex45/>
FROM <http://kg.socialsecurity.be/resource/annex46/>
FROM <http://kg.socialsecurity.be/resource/dmfas02/>
WHERE{

?s ?p ?o.
}

Listing 11: CONSTRUCT query to fetch all annexes

4By using the formula (Q * (D + 1)) from Section 5.4.4, 9 = (3 * (2 + 1))
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CONSTRUCT{
?s ?p ?o.

}
FROM <http://kg.socialsecurity.be/resource/shapes/common/quarter/>
FROM <http://kg.socialsecurity.be/resource/shapes/declarationType/quarter/>
WHERE{

?s ?p ?o.
}

Listing 12: CONSTRUCT query to fetch shapes graph for a specific declaration and
quarter

5.5.1 Examples

We provide two examples of DmfA RDF declarations that can be used to tryout
the validation process. Both examples are validated against the shapes graph of a
DmfA for the 2022/3 quarter.

The first example was generated from the transformation of the DmfA XML example
provided by the NOSS in their technical library. It is an invalid declaration and
stored into the file named invalid_dmfa.ttl. Parts of the validation report can
be viewed in Figure [28]. Apart from an error caused by an incorrect totalization
of the contribution amount, all errors are due to invalid codes, either non-existent
or outdated. Although this declaration respects the DmfA XSD, it does not respect
the SHACL rules. This provides empirical evidence that SHACL is more expressive
than XSD.

The second example is a corrected version of the first one for which each error of
the validation report was removed. This file is named valid_dmfa.ttl As a result,
the validation report for this example states that the declaration conforms to the
shapes graph, as shown in Figure [29].

Figure 29: valid_dmfa.ttl validation report
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Figure 28: invalid_dmfa.ttl validation report
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6 Discussion

The previous chapter outlined the steps taken to validate social security declarations
using knowledge graph technologies, including the development of a vocabulary,
mapping of data, and the creation of SHACL rules. In this chapter, we will reflect
on the strengths and limitations of our approach.

6.1 Glossary

The glossaries of the declarations provided by NOSS served as the primary source of
documentation to develop the validation process. They provided the rules that dec-
larations must respect and the annexes describing additional information. However,
some issues were encountered during the development.

First, not all the rules were well-documented and thus some additional research
was necessary to find missing information. For example, the glossary states that
some numbers must respect a checksum but does not state how the checksum is
computed. The specifications of some checksums were found on the social security
website, but one had to be found on a website unrelated to social security. Finding
how to compute the total amount of contribution a company owes to the NOSS was
even harder as no documentation specifying the computation was found. We knew
that the Java validator (cf. Section 3.4) checks its validity and resorted to analyze
the source code the validator to understand how to express this rule. While the
SHACL shapes we developed formalize these rules, we could foresee a knowledge
management approach to complement those with glosses and even pointers to the
various definitions (e.g., using the rdfs:isDefinedBy predicate).

Moreover, some rules were unclear. As we are not domain experts, these rules
expressed with domain specific knowledge could not be developed. For example,
Annex 3 was not comprehensive as it used a nomenclature which was not speci-
fied. Thus, the rules based on this annex could not be expressed in SHACL. It
even seems that there are some inconsistencies between the rules. For instance, a
ont:EmployerDeclaration may have an unlimited number of ont:CompanyVehicle5

but these instances must all have different ont:CompanyVehicleSequenceNbr in the
[1;99999] interval which restricts the amount of allowed ont:CompanyVehicle.

Modifying the glossaries could solve these problems but our approach already pro-
vides some solutions. The SHACL rules that were developed provide a more com-
plete expression of the rules that a declaration must respect as they centralized
information from multiple sources. SHACL also provides a formalism that expresses
the rules in a clear and precise manner that can capture the domain specific knowl-
edge to be understood to anyone with some training in SHACL and SPARQL.

5To be precise, each ont:EmployerDeclaration can be linked to an unlimited number of
ont:CompanyVechicle instances through the ont:R_90007_90294 predicate.
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6.2 Vocabulary

The creation of a vocabulary from the glossaries served as the foundation for both
mapping the data and developing SHACL shapes. Despite the fact that this vo-
cabulary was sufficiently to semantically annotation of data in a DmfA, there were
some limitations that could hinder the semantic interpretability between the differ-
ent information systems.

The first limitation concerns the language used for the various annotation properties.
For most of these properties, only a French string was included in the vocabulary.
However, Belgium has three official languages (French, Dutch, and German) thus the
people managing the information systems involved in the DmfA most likely do not
understand all of them. Although a French and Dutch version of the document used
to generate the vocabulary exists, only the French one was considered as we are not
sufficiently proficient in Dutch to assess the quality of the translations. Nevertheless,
the scripts used to generate the vocabulary can easily be extended to incorporate
the Dutch version as it follows the same structure but requires to be validated by a
domain expert. The same process applies for any future German version. Note that
this limitation pertains to human understanding of the vocabulary. For computer
agents, those human-readable labels are not important as long as the domain is
formally captured in an adequate way.

Secondly, there are a couple of "semantic incoherences" in the vocabulary. An on-
tology is supposed to approximate a domain. We have generated a vocabulary from
an XML schema which annotates data. The vocabulary can thus be considered
more "data-centric" rather than "true to the domain". These incoherences pertain
to the object properties (i.e., relationships). For example, one could say from the
information in the vocabulary: "An employer declaration has a company vehicle."
or "An occupation receives a remuneration.". These statements would be more
semantically correct if they said, "An employer declares an employee having a com-
pany vehicle." and "A natural person receives a remuneration for an occupation."
However, to achieve the latter statements, one would not only require modifying
the relationships but also the entities that relationship links. I.e., the vocabulary
had to be overhauled. If we were to do this, we could potentially include additional
semantic errors as we had no access to domain experts. Since trying to fix the se-
mantic incoherences was too complex, they were left out and should be understood
as something linking two entities. This, however, had no impact on the study. As
we wanted to validate the data contained in employer declarations, it did not really
matter whether there was a direct link between a company vehicle and an employee
or indirectly via employer declaration.

Another limitation concerns the naming we chose for these object properties. As
many relationships were shared between entities (e.g., has), we have chosen to give
opaque IRIs for those relationships (e.g., ont:R_90007_90294) to make them distinct
and avoid giving them names The vocabulary could be refined by renaming these
predicates with the help of domain experts. This bore little impact as the core of the
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thesis is data validation and only certain predicates in the mappings and SHACL
rules would need to be replaced.

6.3 Mappings

Transforming data from social security declarations and annexes into RDF necessi-
tated the creation of mappings. The annexes were available in both CSV and XML
formats. The CSV data could have been processed as relational data by an R2RML
processor. However, the declarations were only available in XML, requiring a more
expressive language such as RML. To maintain consistency across the entire pro-
cess, we chose to use RML for mapping all data sources. We chose RMLMapper as
the RML processor as it was the reference implementation and the most accurate
processor according to the RML implementation report [28].

Nevertheless, the expressivity of RML presented some limitations. One noticeable
limitation was the loss of information during the mapping of XML6 files (cf. Section
5.2.1.1). The problem arises from the way RML uses XPath to represent XML
elements as logical tables; these tables lack primary and foreign keys that would
link an element to its sub-elements. This representation results in a loss of the
hierarchical information found in the tree structure of XML.

Another challenge we faced was data transformations. They could not be expressed
with RML apart from transformation with an SQL query for RDB data. Thankfully,
RMLMapper supported the Function Ontology (FnO), which provides the capability
for expressing data transformations (cf. Section 5.3.2). However, these transforma-
tions can be verbose, making them hard to develop and maintain. This verbosity
issue might be mitigated by developing better tools for writing and managing FnO
transformations, improving the accessibility and usability of RML.

Alternatively, data transformation could be performed using SPARQL, particularly
with the help of extensions like SPARQL-Generate [29]. SPARQL-Generate allows
for data transformations to be expressed using SPARQL functions and operators.
This approach provides a more straightforward and less verbose way of handling
data transformation. The downside of SPARQL-Generate, however, is that the
mappings are not encoded as RDF and can, therefore, not be part of the knowledge
graph. Another advantage of RML over SPARQL-Generate is that it supports data
governance tasks such as data lineage; one can inquire where data comes from.

Comparatively, an R2RML processor like R2RML-F [30] seems to offer capabilities
that could have mitigated some of these limitations. It provides an iteration counter
for CSV files, which could have helped with primary keys. Additionally, R2RML-
F encapsulates ECMAScript functions within the mapping process, offering a less
verbose way to perform data transformations compared to FnO.

Reflecting upon this, it seems that the RMLMapper implementation of RML may
not be fully mature. However, the challenges we encountered were simple to over-

6Although it was not shown in this thesis, a similar observation can be made for JSON files.
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come with some Python scripts. Moreover, the ability to map data from a wider
range of sources, such as XML, CSV, and JSON, is a significant upside. This capa-
bility is particularly important in the context of the Belgian social security, where
multiple companies and NOSS institutions are involved.

6.4 SHACL

The main goal of this thesis was to assess the capabilities of SHACL in comparison
to XSD for data validation tasks. We aimed to determine the extent to which
SHACL is more expressive than XSD, its scalability for handling validation tasks,
the difficulty of expressing shapes, and their maintainability.

We have shown in our study that SHACL is more expressive than XSD. All the XSD
constraints that we encountered had an equivalent representation in SHACL-core.
Moreover, SHACL enables the creation of more complex rules through the use of
logical operators (part of SHACL-core) or SHACL-SPARQL constraints. Despite
being able to express all the most complex rules for a DmfA with SHACL-SPARQL
constraints, this achievement prompts us to question the expressivity of SPARQL
itself. While the shapes can be used to validate individual declarations, we have yet
to explore the validation of declarations against previously submitted ones and/or
external information such as information for other social security institutions, which
would require access to a knowledge graph incorporating this extra information.
However, the declaration’s validation does incorporate information from annexes,
demonstrating the feasibility of validating declarations using external data sources.

Interoperability is a notable advantage of SHACL. The SHACL shapes we have
developed are part of the knowledge graph, expressed in a machine-readable format
rather than natural language or bespoke code. SHACL processors exist for different
software ecosystems, such as Python, Java, .NET, Scala, and others. However,
it is important to note that the maturity of these processors may vary. During
our investigation, we encountered certain bugs in the Python processor, pyshacl
[31], which resulted in invalid reports for valid declarations. Although we identified
patterns within the shapes, they were expressed in a domain-specific manner. Future
work could explore the use of SPARQL-based constraint components to achieve
higher levels of abstraction and develop more generalized and widely applicable
shapes.

Building effective SHACL rules was a complex task as it involved considering three
important factors: performance, maintainability, and reusability. In some cases, it
was possible to improve one factor without compromising the others. For example,
using integer operations instead of string operations for checksum calculations can
enhance performance. However, there was often a trade-off among these factors.
For instance, rewriting a rule from the perspective of a related entity rather than
strictly adhering to glossary specifications, prioritizes performance over maintain-
ability. Similarly, favoring logical operators over complex SPARQL rules enhances
maintainability and reusability at the expense of potential performance gains. This
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shows that developing effective SHACL rules requires profound knowledge in RDF,
SHACL, SPARQL, and computer science principles.

Another challenge was the organization of the rules in order to validate the multiple
declarations and their multiple versions.

To deal with the multiplicity of the declarations, our solution was separate shapes
into common shapes that apply to any declaration and specific shapes that apply
to a specific declaration. While this separation was relatively simple as we only
created shapes for two declarations, we hypothesize dealing with more declarations
may increase the complexity of the separation, but it may be mitigated by domain
expertise.

Moreover, we created near copies of the shapes graph for a declaration to manage
the time multiplicity. This approach created a lot of repetitions which can make
corrections harder as multiple shapes must be changed. However, it made the man-
agement of the shapes graph easier as there is a version for each quarter. We also
explored another solution with its own sets of problems. The idea was to use deltas
to encompass the differences between versions such as Git, but it would create a
computation overhead to retrieve shapes graph and modifications in the "middle"
of the history may be harder.

By organizing the shapes into named graphs based on the declaration and the cor-
responding quarter, we achieved a simpler retrieval of a particular shapes graph.
The query to retrieve a particular shapes graph retrieved all the triples from the
common and specific named shapes graph for a quarter. Comparatively, storing all
the shapes into a default graph required additional annotations to differentiate their
domain of applicability, and we found no significant benefits to store the shapes in
this manner.

In summary, this discussion emphasizes the advantages of using SHACL as a more
expressive and interoperable language for data validation. However, it also highlights
that building effective rules with SHACL is a complex engineering task. It requires
in-depth knowledge, proper tools, and a meticulous approach to successfully design
and implement SHACL rules.
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7 Conclusions

7.1 Summary and Achievements

Throughout this thesis, we demonstrated the feasibility and potential of using knowl-
edge graph technologies, specifically SHACL, for validating social security declara-
tions. We embarked on creating a prototype knowledge graph and examining how
SHACL performs in validating complex constraints.

In the early stages, we crafted a vocabulary for our knowledge graph, informed by
glossaries of the declarations provided by NOSS. The initial challenge of incomplete
or unclear rules in the glossaries was addressed by using SHACL in later stages. In-
corporating the SHACL rules into our knowledge graph provided a complete, precise,
and centralized expression of the validation rules. This achievement underscores the
capability of our approach to represent complex rules expressed in natural language
(and jargon). We even formalized rules for which the documentation lacked clarity.

Moving forward, we embarked on the development of a mapping process that trans-
formed DmfA declarations (stored as XML documents) and annexes (stored as CSV
documents) into RDF. Despite encountering challenges with RML due to the loss
of structural information of data sources and verbose data transformation, we suc-
cessfully mapped data from diverse sources using RML and simple Python scripts.
Being able to map from various sources is particularly significant considering the
Belgian social security context, which involves multiple companies and institutions,
each potentially providing data in different formats.

At the core of our work, we successfully developed SHACL shapes and a process for
validating DmfA XML files. We have identified some patterns to build rules that
may be used in a context beyond social security. Moreover, we showed that building
effective SHACL rules was a complex engineering task that requires a profound
understanding of RDF, SHACL and SPARQL in order to balance performance,
maintainability, and reusability.

These developed rules highlight SHACL’s expressiveness, showing that it is more
expressive than XSD constraints. All the encountered XSD constraints in our study
had an equivalent SHACL constraint and one can even express more complex rules
through logical operators or SHACL-SPARQL constraints. Thus, a more complete
DmfA data validation can be achieved by sharing them with employers.

Furthermore, the SHACL shapes are also more interoperable because they are ex-
pressed in a machine-readable format rather than natural language or bespoke code.
They are also integrated within the knowledge graph and SHACL processors exist
for different software ecosystems.

Reflecting on the work, our achievements showcase the applicability of knowledge
graph technologies for data validation in the social security domain. Through care-
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ful evaluation, we have identified SHACL as a capable tool for addressing complex
validation tasks, paving the way for future work in this area. On a personal note,
I am immensely proud that this work has gained recognition in the academic com-
munity. It was accepted as a presentation based on a peer-reviewed non-published
abstract at the ENDORSE2023 conference and subsequently invited for a paper for
the ENDORSE2023 post-proceedings.

7.2 Further Improvements

During the development of this project, we identified several ideas and challenges
which can improve the developed system. We discuss a few of them in this section.

Despite the existence of some proprietary software integrating various knowledge
graph tools, we opted for open-source tools only to make our project reproducible.
Developing our solution with these non-integrated tools required substantial manual
intervention, indicating the need to create and improve open-source knowledge graph
tools in an integrated manner. For example, integrating an editor with a SHACL
processor and a triple-store into a single software could simplfy shapes development.
One could load the data and shapes graph in the triple-store, the editor could allow
testing a single shape at a time and show the validation report. It could also
provide some syntactic sugar for constraints such as sh:exactCount for sh:minCount
and sh:maxCount.

Similarly to Debruyne and McGlinn in [32], the patterns that were identified in this
project could be published according to Linked Data [33] principles in order to share
and make them reusable. As these patterns were domain-specific, they needed to be
rewritten with a higher level of abstraction. This could probably be achieved with
SHACL-SPARQL constraint components.

On another note, extending our approach to validate all types of declarations over
time presents an interesting challenge. We have shown that we could provide a
validation report for a declaration in isolation, but there may be some different
rules that span across different quarters and declarations. Assessing whether our
knowledge organization strategy can adequately or efficiently support such validation
processes would require further study and more substantial experiments.

Finally, a limitation was the scarcity of declaration examples that were available
online. The declarations found were simple, did not exemplify all possible fields,
and were, unfortunately, invalid (despite conforming to the XSD). Thus, testing with
authentic data may yield more realistic observations. However, given the sensitive
nature of the data, this would necessitate collaborating with the ONSS.
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A CONSTRUCT query for mappings with refer-
ence and file naming

PREFIX rml: <http://semweb.mmlab.be/ns/rml#>

CONSTRUCT {
?s ?p ?o.
?LogicalSource rml:source "filename".
?sm rr:template ?newtemplate

}
FROM <http://kg.socialsecurity.be/mappings/dmfaxml/>
WHERE {

{
?LogicalSource rml:source ?source.

}
UNION
{

?tm rr:subjectMap ?sm.
?sm rr:template ?template.
BIND ( REPLACE(?template, "NOREF", "ref") as ?newtemplate)

}
UNION
{

?s ?p ?o.
FILTER (?p != rml:source)
MINUS {{

?tm rr:subjectMap ?s.
?s rr:template ?o.

}
}

}

Listing 13: CONSTRUCT query for DmfA to RDF mappings with reference and
file naming

B Benchmark

B.1 Hardware

Table 3: Hardware configuration

CPU Intel(R) Core(TM) i7-10700KF
RAM Corsair Vengeance(R) LPX (2 x 8GB) DDR4 DRAM 3200MHz
Motherboard MSI Z590 PRO WIFI
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B.2 Storage strategies

Table 4: Storage strategies experiment setup

Default graph strategy Named graph strategy
Endpoint Apache Jena Fuseki
Number of queries 100

Query

CONSTRUCT{
?s ?p ?o.

}
WHERE{

<urn:ss:000-DmfAOriginal0>
(<>|!<>)* ?s .

?s ?p ?o .
}

CONSTRUCT{
?s ?p ?o.

}
FROM <urn:ss:000>
WHERE{

?s ?p ?o .
}

Dataset size 5862000 triples 5862000 quadruples

Table 5: Storage strategies experiment results

Response time (ms) Default graph strategy Named graph strategy
Mean 43.6522 36.5589
Standard deviation 2.9888 1.8716

B.3 SPARQL-based constraint optimization

B.3.1 Checksum

Table 6: Checksum experiment setup

Integer version Substring version
Endpoint TopBraid SHACL Processor
Number of runs 100
Shape’s select Listing [14] Listing [15]
Number of triples to verify 5000

SELECT $this ?value
WHERE {

$this $PATH ?value .
BIND( FLOOR(?value / 100) AS ?number )
BIND( ?value - (100 * ?number) AS ?check )
BIND( ?number - (97 * FLOOR(?number / 97)) AS ?rest )
BIND( 97 - ?rest AS ?check2 )
FILTER ( ?check != ?check2 )

}

Listing 14: Integer version of SELECT query for checksum shape
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SELECT $this ?value
WHERE {

$this $PATH ?value .
BIND( STR(?value) as ?stringvalue )
BIND( xs:integer(SUBSTR(?stringvalue, 1, STRLEN(?stringvalue) - 2)) AS ?number )
BIND( xs:integer(SUBSTR(?stringvalue, STRLEN(?stringvalue) - 1)) AS ?check )
BIND( ?number - (97 * FLOOR(?number / 97)) AS ?rest )
BIND( 97 - ?rest AS ?check2 )
FILTER ( ?check != ?check2 )

}

Listing 15: Substring version of SELECT query for checksum shape

Table 7: Checksum experiment results

Response time (s) Integer version Substring version
Mean 2.8994 3.1042
Standard deviation 0.0905 0.1348

B.3.2 Code Existence

Table 8: Code existence experiment setup

Bound checking version Counting version
Endpoint TopBraid SHACL Processor
Number of runs 100
Shape’s select Listing [16] Listing [17]
Number of triples to verify 5000

SELECT $this ?value
WHERE {

$this $PATH ?value.
OPTIONAL{

?awr a an6:ActivityWithRisk;
an6:Code ?value;

.
}
FILTER(!BOUND(?awr))

}

Listing 16: Bound checking version of SELECT query for code existence shape
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SELECT $this ?value
WHERE {

{
SELECT $this ?value (SUM (?match) as ?nbrMatch)
WHERE {

$this $PATH ?value.
?awr a an6:ActivityWithRisk;

an6:Code ?allowedvalue;
.
BIND (IF (?value = ?allowedvalue, 1, 0 ) AS ?match)

}
GROUP BY ?value $this

}
FILTER(?nbrMatch = 0)

}

Listing 17: Counting version of SELECT query for code existence shape

Table 9: Code existence experiment results

Response time (s) Bound checking version Substring version
Mean 3.2291 3.5601
Standard deviation 0.1181 0.1164

B.4 Target selection

Table 10: Target selection experiment setup

Parent target Child target
Endpoint TopBraid SHACL Processor
Number of runs 100
Shape’s select Listing [18] Listing [19]

SELECT $this
WHERE {

{
SELECT $this (COUNT(?seqNbr) as ?seqNbrOcc)
WHERE {

$this ont:R_90007_90017/ont:NaturalPersonSequenceNbr ?seqNbr .
}
GROUP BY ?seqNbr $this

}
FILTER(?seqNbrOcc > 1)

}

Listing 18: Parent target SELECT query for unicity shape
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SELECT DISTINCT $this ?value
WHERE {

$this ont:NaturalPersonSequenceNbr ?value .
$this ^ont:R_90007_90017 ?employerDeclaration .
?employerDeclaration ont:R_90007_90017 ?other .
?other ont:NaturalPersonSequenceNbr ?valueOther .
FILTER ($this != ?other && ?value = ?valueOther)

}

Listing 19: Child target SELECT query for unicity shape

Table 11: Unicity Shape with parent target experiment results

Response time (s) Number of natural persons
1000 2000 3000 4000 5000

Mean 2.3119 2.3802 2.4456 2.5146 2.5520
Standard deviation 0.0599 0.0559 0.0725 0.0560 0.0822

Table 12: Unicity shape with child target experiment results

Response time (s) Number of natural persons
1000 2000 3000 4000 5000

Mean 3.8965 6.9950 12.9321 20.5664 31.5331
Standard deviation 0.2048 0.3275 0.3498 0.6771 1.2384
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