
https://lib.uliege.be https://matheo.uliege.be

Development of a Flutter module for ATHLETin

Auteur : Alakhir, Ahmed

Promoteur(s) : Mathy, Laurent; Gain, Gaulthier

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17386

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège - Faculty of Applied Sciences

Development of a Flutter module
for ATHLETin

Student
Ahmed Alakhir

Promoter
Prof. Laurent Mathy

Thesis conducted for obtaining the Master’s degree in
Computer Science Engineering

Academic year 2022-2023

Abstract

Development of a Flutter module for ATHLETin

Ahmed ALAKHIR

Master in computer science engineering
University of Liège - Academic year 2022-2023

Promoter : Prof. Laurent Mathy

ATHLETin is a mobile and web app aiming to help the management of athletes
in order to prevent injuries. The idea of such app emerged from Julien PAULUS,
who believes that injuries could be avoided with better solutions to oversee athletes.
This solution implies more communication between the athletes, the coaches and the
medical specialists.

In practice, ATHLETin is divided into several modules that will handle specific
parts of the solution such as a calendar module to ease the planning and a training
module to manage training session properly. In this thesis, the administrator mod-
ule will be implemented. Its role is to provide to authorized members an overview
of the different data stores such as the list of athletes or their answers to specific
questionnaires. To do so, a Flutter web-app will be implemented.

With the implementation of such module, challenges will appear, the main ones
being the performance of the module, its flexibility and its integration to the existing
architecture of the whole ATHLETin project. To address these, several techniques
were used such as the following of architectural pattern, the pagination of the data
or minimization the server requests. Moreover, the use of the Flutter technologies
allow to have an optimized app by minimizing the screen refreshment using state
management tools such as Provider. Eventually, the designed app will be deployed
using a Docker container.

As this work only constitute a subpart of the global ATHLETin project devel-
oped by professor Laurent MATHY and his team, the module might be subject to
further modification and improvements. This thesis will thus also play the role of
documentation for the future developers working on ATHLETin modules.

i

Acknowledgements

Beforehand, I want to give special thanks to all the people who helped me
throughout the completion of this thesis.

My gratitude goes toward Professor Laurent MATHY who allowed me to work
on a thrilling subject which made me learn many concepts about fields I like in com-
puter science. I am also grateful for his continuous supervision during the year.

I would also like to thank his team, especially Gaulthier Gain who was always
keeping contact with me to ensure I had no problems. His availability and feedbacks
really helped me during the completion of this work.

Obviously, the realization of this thesis would not have been possible without
the different teachings of the professors of the faculty. Among these, I extend my
appreciation to Prof. Guy LEDUC and Prof. Quentin LOUVEAUX for evaluating
this work.

I want to conclude this acknowledgement session with a specific mention for my
family who accompanied during these five years of study. I am truly grateful for
their support which made me able to work under the best conditions.

ii

Contents

I Introduction 1

1 Introduction 2
1.1 The creation of ATHLETin . 2
1.2 Use and functionalities . 3

1.2.1 Admin Module . 3
1.2.2 Training Module . 3
1.2.3 Agenda Module . 4
1.2.4 Medical Module . 4
1.2.5 Communication Module . 4

1.3 Challenges . 4

II Technical background 6

2 Backend tools 7
2.1 PostgreSQL . 7
2.2 Go . 7
2.3 GORM . 8
2.4 REST . 9

3 Frontend tools 11
3.1 Dart . 11

3.1.1 Type safety . 11
3.1.2 Garbage collection . 12
3.1.3 Null safety . 12
3.1.4 Asynchronous operations . 13
3.1.5 Libraries . 14
3.1.6 Platforms . 14

3.2 Flutter . 15

iii

3.2.1 Architectural overview . 16
3.2.2 Widgets . 18
3.2.3 State management . 21
3.2.4 Hot reload . 24
3.2.5 Rendering process . 24
3.2.6 Navigation . 26

III Module implementation 29

4 High level Architecture 30

5 Components 32
5.1 The database . 32
5.2 The REST server . 36

5.2.1 Description . 36
5.2.2 Architecture . 36
5.2.3 Authentication . 39
5.2.4 API . 39

5.3 The Web application . 41
5.4 The mobile application . 41

6 Administrator module 42
6.1 Overview . 42

6.1.1 Questions management . 42
6.1.2 Results management . 43

6.2 Pages . 44
6.2.1 Login Page . 44
6.2.2 Front Page . 44
6.2.3 Try Later Page . 44
6.2.4 Studies Page . 44
6.2.5 Events Page . 46
6.2.6 Results Page . 49
6.2.7 Athletes Page . 51
6.2.8 Athletes/Study Page . 52
6.2.9 Members Page . 52
6.2.10 Profile Page . 53
6.2.11 Page routing . 53

iv

7 Implementation structure 54
7.1 Architectural Pattern . 54

7.1.1 Model View Controller pattern 54
7.1.2 Model View View-Model pattern 56

7.2 Services . 58
7.2.1 Navigation service . 58
7.2.2 Identity service . 58
7.2.3 Network service . 58
7.2.4 Provider Service . 59

7.3 Files organization . 61
7.4 Performance . 61

7.4.1 Caching . 61
7.4.2 Pagination . 62
7.4.3 Searching . 63
7.4.4 Measuring the performance 64

8 Testing 67
8.1 Unit Tests . 67
8.2 Widget Tests . 67
8.3 Integration Tests . 68
8.4 Manual Tests . 68

9 Deployment 69
9.1 Modules encapsulating . 69
9.2 Reverse Proxy role . 70

IV Conclusion 71

10 Conclusion 72

11 Future work 74
11.1 ATHLETin . 74

11.1.1 Session persistence . 74
11.1.2 More languages . 74
11.1.3 Role Management . 74

11.2 Admin Module . 75
11.2.1 Question creation . 75
11.2.2 Event Visualization . 75

v

11.2.3 Improve Performances . 75
11.2.4 Adding features . 75

A Module screenshots 76

Bibliography 90

vi

Part I

Introduction

1

Chapter 1

Introduction

Before going through the technical parts, a first description of the project’s context
is necessary. This introduction will go through the story of ATHLETin from its
creation to the current use. This will be followed by the current challenges that lead
to this project.

1.1 The creation of ATHLETin

Officially created in 2020, ATHLETin’s origin are actually 10 years old. Its concept
emerged from Julien Paulus, physical trainer of the Sart-Tilman’s rugby training
center. The problem faced was simple : as athletes were training both in the train-
ing center and with their respective team, communication between these entities was
necessary for a better management of their training session.

The first solution, developed by a co-worker of Julien Paulus, was MyLBFR, a
web application handling this communication. It managed to solve the issue and
started to add more features to become more complete. Eventually, the app was
cancelled due to a lack of investment.

However, this was not felt as a back to square one for Mr Paulus. Indeed, as
the app made its proof by solving the communication problem and improved the
management of training, he knew that this type of platform was the right solution.
This will to design a better platform will lead him to Xavier Picard, specialist in
management and marketing of sports organizations. With him, they will start a col-
laboration with Laurent Mathy, professor at Liège University, for the development
of what will become the current version of ATHLETin.

2

Chapter 1 – Introduction – Use and functionalities

This leads to the current state of the project, the app is still being developed and
maintained by Laurent Mathy and his team, which includes students.

1.2 Use and functionalities

ATHLETin benefits from being the second version of an athlete management app,
this allow the app to features numerous functionalities that are known as useful for
this management task. These include more targeted fields of the athlete’s manage-
ment such as the follow-up of injuries or the agenda. All these tasks are separated
in different modules [1].

1.2.1 Admin Module

As its name suggests, this module will only be used by administrators. It must be
able to communicate with the different part of the web app. The admins can :

• interact with the calendar

• generate convocations for athletes

• manage training logs and attendance records

• communicates with the athletes

• export data as pdf, Excel or csv

It is also possible to personalize the different authorization. This module is the
one implemented for this thesis.

1.2.2 Training Module

As said in 1.1, the initial goal of the app was to manage the training. It is thus a very
important part of the app. All this management is based on processing data col-
lected directly by asking athletes to answer questionnaires at every training session.
The processed uses semi-automatic algorithms to analyze the results. Athlete’s per-
formances are regrouped there and can be updated and consulted for more detailed
analysis.

3

Chapter 1 – Introduction – Challenges

1.2.3 Agenda Module

The different events are listed on a calendar with all their details. It allows a global
view on competitions, internships, training or treatment sessions and medical con-
sultations. It also checks if the player attends sessions or if he’s absent [2].

1.2.4 Medical Module

All the health tracking of athletes will be handled by this module. Injuries will be
precisely described to get the best possible diagnostics through time. The integration
of this module in the app can allow quick access to injuries specificity such as the
context of the injury when the date is known. It also allows to know what events a
sportsman will miss when he’s injured. Medical professionals will play a major role
as they will not only handle the diagnostics but also communicate with the training
coaches. The platform will also directly allow them to make appointments with the
players [2].

1.2.5 Communication Module

This simply provides a messaging service between all the members.

1.3 Challenges

The numerous functionalities will require a good design to keep the application sim-
ple and ergonomic. As the app can be used in different context, it needs to support
multiples platforms. This is why Laurent Mathy and his team chose to use Dart
and Flutter for the development of the application. The other technical choices were
motivated by the ease of use for the development team to allow a quality mainte-
nance. The team decided to use a REST server implemented in Go and a PostgreSQL
database. More details about the architecture will be provided in the following chap-
ters.

Each module is developed separately into web platforms. On top of that, a mobile
app was created for the athletes to manage their agenda and questionnaires. During
development, some choices made at the beginning need to be revisited for better
compatibility and scale handling. Notably, the structure of the database has been
revisited to allow more flexibility. One of the challenges covered by this thesis is
the reimplementation of the administrator module in order to take in account the

4

Chapter 1 – Introduction – Challenges

different changes as well as keeping this implementation flexible enough for further
changes.

This introduction’s goal was to summarize the general context of this
project to enlight its objectives. Before going through the different tasks
applied during this thesis, a chapter will be dedicated to the technical
details of the app in order to get familiar with the different tools used.

5

Part II

Technical background

6

Chapter 2

Backend tools

2.1 PostgreSQL

App managing data about users will obviously require a database to store its data.
The relational database model presents itself as the most suitable for this man-
agement. There exist many database management system dedicated to relational
databases, the main requirements to handle data from Athletin are :

• Free and open-source : To avoid unnecessary costs for support and mainte-
nance.

• Advanced security features : Medical data can be sensitive so it is important
to guarantee their confidentiality.

• SQL compliant : SQL is one of the most used language and shows many ad-
vantages to handle structured data.

• Scaling: The system must be able to handle complex queries and large amounts
of data.

The features proposed by PostgreSQL [3] correspond more to the needs of Ath-
letin, which is why this system was chosen.

2.2 Go

Go [4], also known as Golang, is a statically typed, compiled, concurrent, garbage-
collected programming language. Designed in 2007 by Google, it was created to

7

Chapter 2 – Backend tools – GORM

handle large scale networked systems and support concurrency and parallelism. In-
deed, Robert Griesemer, Rob Pike, and Ken Thompson, the 3 designers of Go wanted
to benefits from the safety and performance of statically typed compiled languages
(Java, C++) with the expressiveness and convenience of a dynamically typed inter-
preted language (Ruby, Python, JavaScript) [5].

Some of the main benefits of Go include:

• Simple and Easy to Learn: Clean and simple syntax, the language is thus easy
to learn.

• Concurrency Support: Concurrency is supported through the use of Goroutines
and channels, which make it easier to write and maintain concurrent systems.

• High Performance: Go is designed to be fast and efficient, and can handle large
amounts of data and traffic.

• Memory safety : In Go, variables are zero-initialized, indexing is bounds-
checked, it also uses pointer in a safer way than other languages.

• Garbage Collection: Go uses a garbage collector to manage memory automat-
ically, reducing the risk of memory leaks and other related problems.

• Statically Typed: The language is statically typed, which can help prevent
many types of runtime errors.

• Cross-platform: Its code can run on any platform that supports the language,
making it an ideal choice for building cross-platform applications.

Overall, Go offers a balanced mix of simplicity, efficiency, and power, making
it an attractive choice for many types of projects and applications. Another reason
motivating the choice of Go is the GORM framework aiming to simplify the database
interactions.

2.3 GORM

GORM (Golang ORM library) [6] is an Object Relational Mapping (ORM) library for
the Go programming language. It provides a simple way to interact with databases,
allowing to work with databases using Go code instead of writing raw SQL queries.

The main advantages of using GORM are:

8

Chapter 2 – Backend tools – REST

• Abstraction: GORM provides a higher level of abstraction over databases.

• Productivity: The simplicity of the interactions allow a faster and more efficient
development.

• Ease of use: The API is simple and intuitive.

• Active development: GORM is open-source and the community is active, li-
braries are constantly being improved and bugs are fixed quickly.

Moreover, GORM benefits from using models. These are data structures that
follow some conventions allowing an easy storage in the database.

2.4 REST

A RESTful API [7] is a type of web service that follows the principles of the REST
(Representational State Transfer) architectural style. This means that it is designed
to provide a standardized way for different computer systems to communicate with
each other over the internet.

The REST architecture is based on a set of constraints that define how resources
are identified and addressed, and how interactions between clients and servers are
handled. These constraints include:

• Client-server architecture: The client and server are separated from each other,
with each responsible for a specific set of tasks.

• Stateless communication: Each request from the client to the server must con-
tain all the information needed to complete the request. The server does not
keep any information about the client or the previous requests.

• Uniform interface: The API must provide a consistent way of accessing and
manipulating resources, with standard methods and representations for data.

• Cacheable: Responses from the server must be marked as cacheable or non-
cacheable to help reduce the number of requests sent to the server.

• Layered system: A client should not be able to tell whether it is communicating
directly with the server or with an intermediary, such as a load balancer.

9

Chapter 2 – Backend tools – REST

To build a RESTful API, developers must define a set of resources that can be
accessed by clients. Each resource should have a unique identifier and should be rep-
resented in a standard format, such as JSON or XML. The API must also provide a
set of methods for accessing and manipulating these resources, such as GET, POST,
PUT, and DELETE.

Clients can then use these methods to interact with the resources provided by the
API, sending requests to the server and receiving responses in the specified format.
Responses from the server must include a status code that indicates whether the
request was successful or not, along with any relevant data or metadata.

Overall, a RESTful API provides a flexible and standardized way for different
computer systems to communicate over the internet, enabling developers to create
scalable, reliable, and easily maintainable web services.

Figure 2.1: REST API architecture

10

Chapter 3

Frontend tools

3.1 Dart

Created by Google in 2011, Dart [8] is presented as a ”client-optimized language for
developing fast apps on any platform” [9]. It’s an open-source, structured program-
ming language designed for multi-platform development.

3.1.1 Type safety

Type safety in Dart [10] refers to the language’s ability to catch type errors at
compile-time rather than runtime. This is achieved by using a type system that
ensures variables, parameters, and return values have consistent types throughout
the code.

Dart’s type system is similar to Java’s in that it supports both static typing and
dynamic typing. However, Dart allows developers to omit types and rely on type
inference, which makes code more concise.

In comparison to JavaScript, which is dynamically typed, Dart’s type safety pro-
vides better code reliability and can catch many errors before the code is executed.
With dynamic typing, type errors can go unnoticed until runtime, which can cause
unexpected behavior and crashes.

11

Chapter 3 – Frontend tools – Dart

3.1.2 Garbage collection

Garbage collection [11] is automatically handled by the Dart runtime. Dart uses a
generational garbage collector that divides objects into two generations: young and
old. Most objects are created in the young generation, and the garbage collector
periodically collects and frees the memory used by objects that are no longer used.
The old generation contains long-lived objects so the process occurs less frequently.

In contrast to Java, which uses both generational and concurrent garbage col-
lection, Dart’s garbage collector [12] is not concurrent and may cause short pauses
in the application during garbage collection. However, Dart’s garbage collector is
optimized for high performance and low latency, and its simplicity makes it suitable
for many types of applications. Indeed, the garbage collector is designed to receive
an alert when no user interaction happens and the app is idle in order to manage
the memory without impacting the performance.

3.1.3 Null safety

Dart is a programming language that supports null safety, which means it helps de-
velopers avoid null reference errors in their code. Null safety in Dart [13] is achieved
through the use of non-nullable types and optional types. By using these types,
Dart’s null safety feature ensures that variables are always initialized with a non-null
value, and that null values cannot be assigned to variables that are not intended to
hold them.

The benefits of Dart’s null safety feature [14] include:

• Improved code reliability: With null safety, variables can be ensured to be
initialized with non-null values, which reduces the risk of null reference errors
that can cause application crashes or data corruption.

• Enhanced code readability: Differentiating non-nullable types and optional
types already gives a piece of information about the code without having to
add more documentation.

• Better code maintainability: With null safety, developers can make changes to
their code with greater confidence, because they know that null reference errors
are less likely to occur. This reduces the time and effort required to maintain
and update code.

12

Chapter 3 – Frontend tools – Dart

• Code optimization : The Dart compiler [15] will be able to optimise the code.

In summary, Dart’s null safety concept helps developers write more reliable, readable,
maintainable, and productive code by minimizing the risk of null reference errors.

3.1.4 Asynchronous operations

In Dart, asynchronous operations are handled using futures and async/await syn-
tax [16]. Futures represent a value that may not be available yet. They allow
developers to perform asynchronous operations, such as network requests or file I/O,
without blocking the main thread of the application. Instead, the main thread can
continue executing while the asynchronous operation completes in the background.
When the operation completes, the future resolves with a value.

Async/await syntax provides a way to work with futures in a more readable
and intuitive way. With async/await, developers can write asynchronous code that
looks similar to synchronous code. The ’async’ keyword is used to declare a function
that returns a Future, and the ’await’ keyword is used to wait for the result of a
Future.

Here is an example of how asynchronous operations work in Dart:

Figure 3.1: Example of Dart code using asynchronous operation

13

Chapter 3 – Frontend tools – Dart

In this example, the fetchUserData() function returns a Future that completes
with a void value. The async keyword is used to indicate that the function contains
asynchronous code.

The function first defines a URL for a network request. Then it uses the http
library to make a GET request to the URL, and waits for the response to complete
using the await keyword. Once the response is available, it checks the response status
code and either processes the data or throws an exception if the request failed.

By using Futures and async/await syntax, Dart provides a powerful and easy-
to-use mechanism for working with asynchronous operations.

3.1.5 Libraries

Dart includes a large set of core libraries [17] that provide fundamental tools for web
and mobile app development, including HTTP networking, asynchronous program-
ming, and collections. It also has a modular architecture that enables developers to
use only the libraries they need, reducing the size of the application.

3.1.6 Platforms

Dart’s compiler technology allows code to be run in different ways. For mobile
and desktop apps, Dart includes both a Dart VM with just-in-time (JIT) compila-
tion and an ahead-of-time (AOT) compiler that produces machine code [9]. During
development, the JIT compilation, together with incremental compilation, enables
hot-reloading, allowing developers to see the changes they make in real-time. Once
the app is released, the Dart AOT compiler produces native ARM or x64 machine
code, providing better performance and consistent, shorter startup times.

For web apps, Dart includes both a development-time compiler (dartdevc) and a
production-time compiler (dart2js). Both compilers translate Dart into JavaScript,
which is then run in the browser. The dartdevc compiler supports incremental com-
pilation and emits modular JavaScript, enabling a fast developer cycle. On the other
hand, the dart2js compiler aims to compile Dart code into fast, compact, and de-
ployable JavaScript, using techniques such as dead-code elimination.

14

Chapter 3 – Frontend tools – Flutter

Regardless of the platform or compilation method used, executing Dart code re-
quires a Dart VM that provides the Dart runtime, which manages memory through a
garbage collector policy. The Dart runtime is automatically included in self-contained
executables on native platforms. Although the name ”Dart VM” suggests that Dart
is always interpreted or JIT-compiled, it can also be compiled ahead-of-time to native
machine code, providing excellent performance.

Figure 3.2: Dart platforms [9]

3.2 Flutter

The development of technology has led to the rise of different platforms for comput-
ing, including personal computers, the web, and mobile devices. With this increase
in platform diversity, the need for efficient and effective ways to create cross-platform
applications has become increasingly important. This is why in 2017, Google created
Flutter [18], a modern, open-source, and free UI software development kit (SDK).

15

Chapter 3 – Frontend tools – Flutter

Flutter allows to build beautiful, fast, and high-performance applications for all plat-
forms, including iOS and Android, as well as desktop, web, and embedded devices.
With its fast development cycle and attractive, customizable widgets, Flutter has
quickly become one of the most popular frameworks for building cross-platform ap-
plications.

3.2.1 Architectural overview

Flutter uses a layered architecture [19] that separates the UI from the business logic,
allowing to focus on building the UI during the development while the framework
handles the underlying platform differences. This architecture also enables Flutter
to provide a consistent set of widgets across all platforms, which helps developers
create applications that look and feel native on each platform.

The framework

The interaction with Flutter is usually performed through the Flutter framework,
which is a modern, reactive framework written in Dart. The Flutter framework is
relatively small and comprises various foundational libraries that can be extended
using packages. These packages can add extra features and functionality such as
platform plugins, web support, and animations. The framework comprises several
components, including a platform-specific embedder, which provides an entry point
and coordinates with the operating system to access necessary services such as ren-
dering surfaces, accessibility, and input.

The engine

At the core of Flutter is the Flutter engine, which is mostly written in C++ and
provides the essential features and functionality required for all Flutter applications.
This engine is exposed to the Flutter framework through the dart:ui library, which
wraps the underlying C++ code in Dart classes. The engine provides a portable
runtime for executing Dart code, a set of low-level APIs for rendering graphics and
text, and a set of platform plugins that provide access to platform-specific services
such as location, camera, and sensors.

16

Chapter 3 – Frontend tools – Flutter

The embedder

The embedder is a platform-specific library that provides an entry point for the
Flutter application and coordinates with the operating system to access necessary
services such as rendering surfaces, accessibility, and input. The embedder also
provides a platform-specific implementation of the Flutter engine, which is used to
execute Dart code and render graphics and text. The implementation is written in
Java and C++ for Android, Objective-C/Objective-C++ for iOS and macOS, and
in C++ for Windows and Linux.

Figure 3.3: Flutter architectural layers [19]

17

Chapter 3 – Frontend tools – Flutter

Web support

While the general architectural concepts of Flutter apply to all platforms, some
characteristics are specific to Flutter’s web support. Dart has been compiling to
JavaScript for a long time and Flutter is written in Dart, so it is relatively easy to
compile it to JavaScript.

However, the Flutter engine is designed to interface with the underlying oper-
ating system and not the web browser. To solve this problem, Flutter provides a
reimplementation of the engine on top of standard browser APIs to render Flutter
content on the web. Currently, there are two options for rendering Flutter content
on the web: HTML and WebGL.

In HTML mode, Flutter uses HTML, CSS, Canvas, and SVG to render content
on the web, this mode offers the best code size characteristics. With WebGL, Flutter
uses a version of Skia compiled to WebAssembly called CanvasKit. This version pro-
vides the fastest path to the browser’s graphics stack and leads to higher graphical
fidelity with the native mobile targets.

Unlike other platforms on which Flutter runs, there is no need for Flutter to
provide a Dart runtime on the web. Instead, the Flutter framework, along with any
code written, is compiled to JavaScript.

During development, Flutter web uses dartdevc, a compiler that supports incre-
mental compilation and allows hot restart for apps. Conversely, when developers are
ready to create a production app for the web, they use dart2js, a highly-optimized
production JavaScript compiler that packages the Flutter core and framework along
with the application into a minified source file that can be deployed to any web
server.

3.2.2 Widgets

Flutter’s widgets are the building blocks of the UI in a Flutter app [20]. Widgets
represent the various components of the UI, such as buttons, text inputs, and con-
tainers, and can be organized into trees to create complex and dynamic layouts.
Widgets are defined as classes in Dart, and each widget has a build() method that
returns a description of the UI elements that should be displayed on the screen.

18

Chapter 3 – Frontend tools – Flutter

Figure 3.4: Flutter architecture for web [19]

All widgets in Flutter are organized in a tree structure. At the root of the tree
is typically a MaterialApp or CupertinoApp, which represent the starting point of
the application. Underneath this root widget, widgets are added to create the UI.
These nested widgets create a hierarchical structure known as the widget tree.

Stateless and stateful widgets

A StatelessWidget [21] is a widget that does not have any mutable state. It takes
in some data as input, performs some calculations, and renders the result. This
means that a StatelessWidget is immutable, meaning it cannot change after be-
ing created. Because StatelessWidgets are immutable, they can be easily reused,
which is an important characteristic of well-structured Flutter code.
On the other hand, a StatefulWidget [22] is a widget that has mutable state. This
means that it can change its appearance based on data that changes over time, such
as user input or network data. A StatefulWidget consists of two classes: the wid-
get class and the state class. The widget class is immutable, while the state class is
mutable.
When a StatefulWidget is created, it creates an instance of the associated state
class. The state is then used to manage mutable state and provide a build method,
which is responsible for describing how the widget should look based on the current
state. When the state changes, the StatefulWidget calls the setState() method
of its associated state object. This will rebuild the widget tree with the new state
values, effectively updating the UI to reflect the new data.
In addition to the build() method, StatefulWidget also has a dispose() method

19

Chapter 3 – Frontend tools – Flutter

that is called when the widget is removed from the tree. This will clean up any
resources that the widget has allocated, such as stopping animations or closing net-
work connections.
The lifecycle of a StatefulWidget [23] goes through several stages:

1. createState() [24] is called when the widget is first created, and it returns
an instance of the associated state class.

2. initState() [25] is called once when the state is initialized, and is often used
to perform initialization that is required for the widget to function properly.

3. build() [26] is called whenever the widget needs to be rebuilt, which can occur
multiple times during the lifetime of the widget.

4. setState() [27] is called when the widget’s state has changed and it needs to
be rebuilt.

5. didUpdateWidget() [28] is called after a widget has been rebuilt with new
data. It is used to handle any actions or updates that are necessary after the
rebuild.

6. dispose() [29] is called when the widget is removed from the tree, and is used
to clean up any resources that the widget has allocated.

Overall, widgets are a fundamental part of building UIs in Flutter, and under-
standing the differences between stateless and stateful widgets is essential for creating
dynamic and responsive user interfaces. By using the appropriate widget for each
part of an app’s UI, , developers can create complex UIs that are both performant
and easy to maintain.

20

Chapter 3 – Frontend tools – Flutter

Figure 3.5: State lifecycle of a stateful widget [30]

3.2.3 State management

After covering the basics of stateful and stateless widgets, the concept of state man-
agement in Flutter needs to be explored in detail. As seen earlier, stateful widgets
can maintain their own state, while stateless widgets cannot. However, managing
the state of an application can become complex and lead to code that is difficult to
maintain and scale, which is where state management comes in. It provides a way
to manage and update state across the app.

21

Chapter 3 – Frontend tools – Flutter

InheritedWidget

InheritedWidget [31] is a popular approach to state management in Flutter that
allows data to be passed down the widget tree, from parent widgets to their children.
InheritedWidget defines a piece of data as an object that can be accessed by any
child widget, and the widget tree is then rebuilt whenever this data changes, ensuring
that all widgets using that data are updated accordingly. This approach can sim-
plify state management by allowing multiple widgets to access the same data without
needing to pass it explicitly through their constructors, and it can improve perfor-
mance by minimizing the number of widget rebuilds necessary when data changes.

To understand InheritedWidget better, it is important to take a look at the
widget tree. In Flutter, every widget has a parent and zero or more children, form-
ing a tree-like structure where the root is the top-most widget and the leaves are
the lowest-level widgets. When an InheritedWidget is added to a parent widget,
its data becomes available to all of its descendants in the widget tree. Any descen-
dant that depends on this data will automatically rebuild when the data changes,
thereby updating multiple widgets across the app that depend on it while minimizing
unnecessary widget rebuilds.

Provider

Provider[32] is a state management package for Flutter that wraps around the
InheritedWidget class. It provides a simple and scalable way to manage app state
by using a combination of dependency injection and a data stream that notifies the
app when the state has changed.

The core concept of Provider is the concept of a provider, which is simply a widget
that exposes a piece of data to its descendants. This data can be any object or value
that the app needs to manage state, such as a user’s profile information, a list of
items to display, or a theme object. By using providers, widgets can easily access and
update this data without needing to pass it down manually through constructors.

Providers are defined by creating a new class that extends the ChangeNotifier

class [33]. This class represents the data that the provider will expose, and it contains
any necessary business logic for updating that data. When the data changes, the
provider calls its notifyListeners() [34] method to tell all of its descendants that
the data has been updated.

To access the data from a provider, widgets can use the Provider.of() method
to obtain an instance of the provider. This method looks up the widget tree for the
nearest provider of the specified type, and returns the data exposed by that provider.
When the data changes, any widget that depends on it will be automatically rebuilt,

22

Chapter 3 – Frontend tools – Flutter

Figure 3.6: Widget tree using Provider [35]

thanks to the notifyListeners() method.

One of the strengths of Provider is its flexibility. Providers can be defined at
any point in the widget tree, and any widget that is a descendant of that provider
can access its data. This makes it easy to define providers that encapsulate different
parts of the app’s state and business logic [36]. For example, one provider might
manage the user’s authentication status, while another might manage a list of items
that the user has requested.

Provider also supports a variety of advanced features, such as lazy initialization
of data, providing different instances of a provider based on context, and scoping
providers to specific parts of the widget tree.

23

Chapter 3 – Frontend tools – Flutter

3.2.4 Hot reload

Hot Reload [37] is a powerful feature in Flutter allowing to quickly see the effects
of code changes without having to stop the app and restart it from scratch. This
feature speeds up the development process as it allows to experiment with different
code changes, quickly iterate on designs, and fix bugs on the fly.

The Hot Reload system in Flutter works by compiling only the code that has
changed, and then injecting it directly into the running Dart VM [38]. This means
that the effects of the code changes can be seen almost instantly, without having
to wait for the app to fully rebuild and restart. This can be especially useful for
debugging and testing, as it allows developers to quickly identify and fix issues in
their code.

One of the key benefits of Hot Reload is that it allows to work in a more itera-
tive and experimental way. Indeed, seeing the results of code changes immediately,
without having to worry about breaking the app or causing other issues, will help to
streamline the development process and make it more efficient.

However, there are some limitations to the Hot Reload system in Flutter. For
example, it may not work well for large codebases or complex applications, where
rebuilding and reloading can take longer. In addition, Hot Reload may not be suit-
able for certain types of changes, such as changes to the app’s architecture or state
management system [39].

Despite these limitations, Hot Reload remains a powerful feature in Flutter, help-
ing to create apps in less time and with fewer errors.

3.2.5 Rendering process

When a Flutter application is launched, it creates a widget tree, where each widget
is an immutable declaration of a part of the UI. When the UI needs to be rendered,
Flutter calls the build() method of each widget, which returns a subtree of widgets
that render the UI based on the current app state. During this process, the build()
method can introduce new widgets, as necessary, based on its state.

Flutter translates the widgets expressed in code into a corresponding element tree
during the build phase, with one element for every widget. Each element represents
a specific instance of a widget in a given location of the tree hierarchy. There are
two basic types of elements:

1. ComponentElement : host for other elements

2. RenderObjectElement : element that participates in the layout or paint phases

24

Chapter 3 – Frontend tools – Flutter

RenderObjectElements are an intermediary between their widget analog and the
underlying RenderObject .

Figure 3.7: Widget tree rendering [19]

The element for any widget can be referenced through its BuildContext , which is
a handle to the location of a widget in the tree. This is the context in a function call
such as Theme.of(context) , and is supplied to the build() method as a parameter.

Flutter’s widget tree is persistent from frame to frame, and therefore plays a
critical performance role, allowing Flutter to act as if the widget hierarchy is fully
disposable while caching its underlying representation. By only walking through the
widgets that changed, Flutter can rebuild just the parts of the element tree that
require reconfiguration.

Flutter uses a box constraint model to efficiently lay out a hierarchy of widgets.
The base class for every node in the render tree is RenderObject , which defines an
abstract model for layout and painting. During the build phase, Flutter creates or
updates an object that inherits from RenderObject for each RenderObjectElement

in the element tree. Most Flutter widgets are rendered by an object that inherits
from the RenderBox subclass, which represents a RenderObject of fixed size in a
2D Cartesian space. To perform layout, Flutter walks the render tree in a depth-
first traversal and passes down size constraints from parent to child. In determining
its size, the child must respect the constraints given to it by its parent. Children
respond by passing up a size to their parent object within the constraints the parent
established.

25

Chapter 3 – Frontend tools – Flutter

Figure 3.8: Constraints and sizes propagation in the widget tree

The root of all RenderObjects is the RenderView , which represents the total
output of the render tree. When the platform demands a new frame to be rendered,
a call is made to the compositeFrame() method, which is part of the RenderView .

The compositeFrame() method is responsible for generating a bitmap of the
current frame by walking the render tree and issuing a call to each RenderObject’s
paint() method. paint() is responsible for issuing the appropriate draw commands
for rendering to the underlying graphics API, such as OpenGL or Metal.

After all the RenderObjects have been painted, the resulting bitmap is passed to
the compositor, which composites the bitmap with any other layers that are part of
the view hierarchy (such as a navigation bar or a status bar), applies any necessary
effects (such as shadows or blurs), and finally displays the result on the screen.

In summary, Flutter’s rendering engine provides a performant and flexible way
to render complex UIs by using a widget tree and a render tree. The widget tree
is immutable and defines the structure of the UI, while the render tree is mutable
and handles layout and rendering. By passing constraints down from parent to
child, Flutter can efficiently layout objects in O(n) time, and by caching the element
tree from frame to frame, it can rebuild just the parts that require reconfiguration.
Finally, by using the RenderObject class and its subclasses, Flutter can handle a
wide range of use cases and easily interface with underlying graphics APIs to provide
a smooth and performant user experience.

3.2.6 Navigation

Flutter provides a powerful and flexible navigation system for moving between dif-
ferent screens and views in an application [40].

One key feature of Flutter’s navigation system is the concept of named routes.
Named routes allow to navigate to a specific screen or view in the application using

26

Chapter 3 – Frontend tools – Flutter

a predefined name. This makes it easier to manage and organize the application’s
navigation structure and helps to keep the code clean and maintainable.

To use named routes in a Flutter application, they first need to be defined them in
the application’s main.dart file. The MaterialApp widget provides a namedRoutes
parameter to define the routes.

Figure 3.9: Example of routes definition

The Navigator widget’s pushNamed method allows to navigate to a named route.
This method takes two arguments: the BuildContext and the name of the route to
navigate to. Other arguments can be added in order to pass data from a page to
another. This method will also allow to easily handle unknown routes by redirecting
to a specific error page instead of a blank screen as set by default by Flutter.

27

Chapter 3 – Frontend tools – Flutter

In this chapter, the selected tools for implementing the REST server
were presented, with a focus on maintainability and efficiency. The Go
language was chosen for its simplicity and performance, along with the
integration of PostgreSQL as the database technology. Furthermore, a
comprehensive exploration of the Dart language and the Flutter frame-
work was provided, offering insights into these frontend tools.

It is important to note that while the explanations provided in this
chapter offer a solid foundation, the presented overview of these tools is
not exhaustive. Both Go and Flutter are vast and complex ecosystems
with numerous features and capabilities. However, the information cov-
ered so far should be sufficient to grasp the upcoming section that will
review the implementation details of the project.

The next part will cover the implemented work for this project, start-
ing with an overview of the architecture to better understand its goals.
It will then delve into the main components, providing important details
about the parts of the architecture used. Finally, a detailed description
of the implemented module will be presented.

28

Part III

Module implementation

29

Chapter 4

High level Architecture

Before diving into the implementation of the module, a description of the global
architecture is necessary. Indeed, the module built for this thesis is itself a part of
the complete ATHLETin project. By examining the architecture, valuable insights
can be gained into how the various elements work together to achieve the desired
functionality and meet the project’s objectives.

Currently, the architecture allows to gather information relative to athletes under
the care of trainers/doctors. The structure is composed by :

1. a REST server

2. a secure database

3. a web-based administration application

4. a mobile application

Figure 4.1 illustrates the architecture of the system and depicts the various com-
ponents involved, along with their interactions. The REST server (1) serves as the
intermediary between the other components and the database (2). It acts as the sole
entity responsible for direct communication with the database, meaning that any
component wishing to access stored information must go through the REST server.
This design choice enhances security by centralizing and controlling the communica-
tion with the database.

30

Chapter 4 – High level Architecture – High level Architecture

Figure 4.1: Interactions between the different components of the IT architecture [41]

Two components establish network communication with the REST server: the
administration server (3) and the mobile application (4). Both components utilize
JSON format for performing HTTP requests to retrieve and transmit data to the
REST server. Once the information is stored in the system, trainers and doctors can
utilize the administration interface to export data pertaining to individual athletes
or a group of athletes. This functionality enables convenient data exportation for
analysis and reporting purposes.

31

Chapter 5

Components

5.1 The database

In order to securely store various types of information, a PostgreSQL [3] database
has been configured within a docker [42] container. This database is storing the
personal data of athletes. Moreover, it also serves as a central repository for housing
studies, questionnaires, and individual questions. To increase the security of the
database, direct access to the database is limited solely to the REST server. Within
the database, a total of 35 tables have been designed to cover to the diverse needs
of the project. For tables requiring a primary key, a universally unique identifier
(UUID1) has been employed as the identifier. These UUID1 keys are automatically
generated and updated by the ORM layer.

While the database serves as a unified storage solution for the entire project, it
is worth noting that certain tables have been specifically designated for particular
modules. This modular approach ensures that the database remains organized and
optimized for each component’s specific requirements. Indeed, the database formerly
had 17 tables but was updated with new tables in order to handle the requirements
of the calendar and medical modules. As this thesis worked on the administrator
module, it was not impacted by these changes. Moreover, no change in the database
structure has to be performed as all the necessary information was already present.

The structure of the database is presented in Figure 5.1. Table 3.1 will describe
the tables used for the administrator module as it is the one implemented for this
thesis.

32

Figure 5.1: Full database architecture

Chapter 5 – Components – The database

Table Name Description

members Represents a member (e.g., trainer/doctor) which can
access the administration website. The token field repre-
sents a temporary token associated to the member. This
token is used to reset the password of a given member.
The role field describes the privilege associated with a
given member.

users Represents a user (e.g., athlete) which answers questions
using the mobile application. The code field is a 9-digit
code used to identify the athlete. In order to comply
with GDPR, personal fields (e.g., name, first name, and
email address) are encrypted in the database.

studies Represents a study which is defined by a specific label
and description and contains one or several question-
naires. The creator field represents the member who
created the study. The display is a Boolean field used by
the mobile application to show the study on the home-
page. The start date and end date respectively represent
the starting and ending dates of the study. These two
fields are used by the mobile application.

questionnaires Represents a questionnaire which is defined by a spe-
cific label and description and contains one or several
questions. The event field contains a specific temporal
representation in JSON which is used by the mobile ap-
plication.

questions Represents a question which is defined by a specific label
and type and contains one or several values. The type
field is an integer that can have different values: (1) text
input, (2) MCQ (single response), (3) slider, (4) MCQ
(multiple responses), and (5) header/section (delimiter).
The left text, right text, show value, and group fields
are also used for the mobile application. They represent
optional elements that can be used for display.

Table 5.1: Database tables description [41]

34

Chapter 5 – Components – The database

Table Name Description

responses Represents a response of a specific question, user, and
questionnaire. Since there exist recurrent/permanent
questionnaires, questions can appear several times. To
handle this case, several fields are defined. The start
and when fields respectively represent a timespan when
the response has been generated and received by the go
server. These are also used by the mobile application.

values Contains the different values (e.g., MCQ, slider entry)
of a specific question. Each value is represented as a
string.

response values Contains the different responses (e.g., MCQ entries) of a
specific response. Each value is represented as a string.

keywords Contains keywords (e.g., tags) related to questions and
questionnaires. These keywords are related to particular
domains.

rules/actions Contains rules and actions associated with particular
questions and questionnaires. These are used to have
conditional questions and questionnaires, allowing for
”dynamic” studies.

members studies Contains the mapping between members and studies.
users studies Contains the mapping between users and studies.
studies questionnaires Contains the mapping between studies and question-

naires.
questionnaires questions Contains the mapping between questionnaires and ques-

tions.
questionnaires keywords Contains the mapping between questionnaires and key-

words.
questions keywords Contains the mapping between questions and keywords.

Table 5.2: Database tables description [41]

35

Chapter 5 – Components – The REST server

5.2 The REST server

5.2.1 Description

The REST server serves as an intermediary between the database and users, trainers,
and other members such as administrators or moderators. REST provides a set of
conventions and best practices to follow rather than being a standalone technology.
This approach allows clients to access web services by exposing specific parts of a
program to the external world, commonly referred to as an API.

The REST server, developed in Go, adheres to these conventions and offers vari-
ous APIs that expose specific interfaces. The following interfaces are provided :

• creation/modification/deletion/listing of studies

• creation/modification/deletion/listing of questionnaires

• creation/modification/deletion/listing of questions

• creation/modification/deletion/listing of athletes (aka users)

• creation/modification/deletion/listing of members (admin, moderators, ...)

• adding answers (of a athletes) to a specific question

• Listing of answers.

5.2.2 Architecture

The REST server follows the Controller-Model pattern. This architecture allows
to separate the part of the server interacting with the web module and the one
interacting with the database :

• The Controller component focuses on executing high-level procedures when a
request is received. These procedures involve tasks like parsing path param-
eters, decoding JSON, and checking UUIDs. After completing these initial
tasks, the controller delegates remaining responsibilities to the corresponding
model component. Its role is to coordinate the flow of tasks and interactions,
ensuring smooth coordination between the incoming request and the model
component.

36

Chapter 5 – Components – The REST server

• The Model component handles data representation and management, including
SQL tables defined using Go structures with JSON annotations. It defines the
table structure and implements the necessary logic for interacting with them.
Interactions with the PostgreSQL database are facilitated through GORM, a
database access tool.

With this structure, a operation requested by the user is performed following
these steps :

1. From the web app or the mobile app, the user sends its request to the server.

2. The Controller part of the server firsts check if the token are valid. It then
decodes the JSON file an parse the different parameters. If no error occurred,
it sends the data request to the Model part. This is done internally in the
server with a regular function call.

3. The Model uses the parameters to generate to database query using GORM
(for some cases raw SQL request might be performed).

4. The Model returns the response to the Controller.

5. The Controller simply transfers this response to the User.

Figure 5.2: REST Server

37

Chapter 5 – Components – The REST server

The server makes use of different third-party dependencies in order to adequately
implement the different functions. The most notable ones include :

• Mux : Implements a request router and dispatcher for matching incoming
requests to their respective handler [43].

• GORM : Provides an ORM which aims to encapsulate SQL requests and
database interactions [6].

• Swaggo : Generates RESTful API documentation with Swagger 2.0 for Go [44].

• JWT-go : Provides a Go implementation of JSON Web Tokens and is used for
the authentication [45].

On top of the Controller-Model pattern, a good hierarchy of the packages used
must be conducted in order to keep a good modularity. The different packages are
organized following the Table 5.3 definition.

Package Name Description

auth Contains the authentication component of the Go server: manages
JWT tokens and user(s)/member(s) sessions.

controllers Contains the high-level procedures (e.g., JSON decoding, UUID
checking, etc.) which process a request before dispatching it to the
underlying relative model.

docs Automatically generated by Swaggo, it contains the API documen-
tation of the server. (See Section 4.2.7 for further details).

html Contains the HTML code sent by email to a new member after
registration.

models Contains the different representations of the SQL tables (as a Go
structure with JSON notation) and interacts with the database
using GORM.

res Contains sample data that can be used to populate the database
(in debug mode).

routes Manages the different routes and roles to interact with the server.
swaggo Defines additional structures that are only used for the API docu-

mentation.
tests Contains unit and integration tests.
utils Utility functions and structures (e.g., regex check, etc.).

Table 5.3: Packages used by the server [41]

38

Chapter 5 – Components – The REST server

5.2.3 Authentication

To ensure secure authentication, the server uses JSON Web Tokens (JWT) [45].
Once a user successfully logs in, subsequent requests include the JWT token, granting
access to authorized routes, services, and resources. In this architecture, each request
incorporates a ”bearer authentication” header that contains essential information.
The ”Id” field corresponds to the UUID of the user or member. It serves as a
validation mechanism, verifying the existence of the corresponding identifier in the
database. The ”Role” field denotes the current user’s role, which is verified and
assigned by the server. Further details regarding the available role values are provided
in the next subsection. Lastly, the ”sessionId” represents the ongoing session of
the user and is only used with the mobile application. This authentication process
ensures the integrity and security of user interactions, providing controlled access to
various system functionalities based on their assigned roles and session status.

5.2.4 API

Documentation

For the documentation, the server incorporates the use of swaggo [44], a powerful tool
that facilitates the generation of API documentation. By leveraging Go comments
with specific and predefined annotations, swaggo enables the automatic creation of
detailed API documentation. All relevant comments associated with swaggo are writ-
ten in the controllers package. Once the server is launched, the API documentation
becomes accessible online, which helped understanding quickly some specific points
during the back-end development.

39

Chapter 5 – Components – The REST server

Figure 5.3: Example of Swaggo annotation

Testing

The other that eased the development is Postman [46], a user-friendly application
that streamlines the process of making HTTP requests. Postman offers an intuitive
and visually appealing interface that eliminates the need for manually coding each
request to validate the functionality of the API. A dedicated Postman environment
and collection were provided at the beginning of this project to have a better un-
derstanding of the API. During the development of this API, the added functions
could easily be tested while adding them to the collection in order to make it more
complete for further developers.

Roles

To have a separation of responsibilities and access control within the system, the
REST server incorporates a role-based authorization mechanism. As the server pro-
vides various APIs with different levels of functionality, it needs to differentiate the
permissions granted to different types of clients. In order to achieve this, distinct
roles have been defined: ADMIN (1), MODERATOR (2), CONSULTING (3), and
USER (4). These roles are included in each API request, allowing the server to know
the appropriate level of authorization for different clients.

40

Chapter 5 – Components – The Web application

5.3 The Web application

As explained in the section 1.2, ATHLETin is composed of several modules, each
designed for specific tasks. Each module is implemented in Flutter, the way they are
deployed is described in the following Chapter. The administrator module, imple-
mented for this thesis, will be detailed in the next section.

5.4 The mobile application

To answer questions, athletes must install a mobile application developed with the
Flutter framework, compatible with iOS and Android. The application communi-
cates with the REST server to retrieve studies, questionnaires, and associated ques-
tions. Athletes individually answer the questions and submit them to the server,
where the answers are stored in the database.

This mobile application facilitates data collection, allowing athletes to answer
the questions any time (e.g. right before and after a training session). By leveraging
Flutter’s versatility, the application ensures compatibility across different operat-
ing systems and makes the maintaining of the whole project easier with only one
framework for both the web app and the mobile app.

41

Chapter 6

Administrator module

6.1 Overview

As one of ATHLETin’s main goal is to avoid injuries, collecting feedback from the
athletes is a crucial task. Even though the answers are provided using the mobile app,
all the treatment of the questions and results must is managed by the administrator
module. Indeed, as some data must be kept private, only authorized people will
be able to manage such data. Thus, the role of this module will mainly consist of
questions and answers management.

6.1.1 Questions management

For this module, a question is defined by :

• its unique ID

• its label : the module should be able to modify it

• its description : the module should be able to modify it

• its type : it can be a MCQ, a slider question or an open question

As thousands of questions will populate the database, a first layer is introduced :
the questionnaire. As suggested by its name, a questionnaire is a group of questions.
Its properties are :

• its unique ID

42

Chapter 6 – Administrator module – Overview

• its label : the module should be able to modify it

• its description : the module should be able to modify it

• its group of questions : questions can be added/removed

• its event : this will determine when the questionnaire is active (i.e. the athletes
can answers questions with the mobile app)

The questionnaires will then usually be created depending on the time they must
be answered. For example, if a group of questions must be answered before and after
a training session, 2 different questionnaires will be created even if the questions are
the same.

Finally, a study layer is added in order to link questionnaires that must be an-
swered by the same group of athletes. A study is composed by :

• its unique ID

• its label : the module should be able to modify it

• its description : the module should be able to modify it

• its group of questionnaires : questionnaires can be added/removed

• its group of athletes : athletes can be added/removed

• its start and end date : the time zone in which the study is active

Along with their main features, questions, questionnaire and studies are also
characterized by other fields such as their creation date or their creator.

6.1.2 Results management

As explained before, the same question can appear multiple times inside a study. In
order to distinguish the answers, a response is defined using :

• its unique ID

• the ID of the corresponding question

• the ID of the corresponding questionnaire

43

Chapter 6 – Administrator module – Pages

• the ID of the corresponding study

• its value

• the time of the response (i.e the moment the athlete answered the question)

With all these pieces of information, the module must be able to select responses
depending on provided criteria (getting all the responses from a user or from a study)
and export them as a csv file.

6.2 Pages

In order to handle efficiently the different parts of this module, a correct page sepa-
ration must be determined.

6.2.1 Login Page

It is the first displayed page when launching the module. As it is reserved for
administrators, a login form is obviously required. Once connected, the JWT of
the user will be stored to be added in each request.

6.2.2 Front Page

This simple page lists all the other pages of the module. The user might be redirected
to this page in case of error this will depend on the type of error). It also features a
button to logout.

6.2.3 Try Later Page

This page will be displayed only in case of error. More precisely, it will happen when
a request receives an error code of 500 because the server is not available.

6.2.4 Studies Page

All the studies are listed on this page. A search bar is included to easily find a study
if needed. From this page, two other pages are accessible. These two sub-pages are
specific to each study.

44

Chapter 6 – Administrator module – Pages

Figure 6.1: Studies list filtered using search

Study/Athletes Page

This page lists all the athletes in a table their first name, last name and ID. It also
indicates if they are registered to the study with a button allowing to register/un-
register them.

Figure 6.2: Athletes list filtered using search

Study/Questionnaire page

The questionnaires belonging to the study are displayed here. They are structured
as a ListView of ExpansionTile, meaning that only their label is displayed before
expansion. A drawer is included to facilitate the experience by allowing to search for
a specific questionnaire. When selected, the drawer will scroll to the questionnaire

45

Chapter 6 – Administrator module – Pages

Figure 6.3: List of questionnaire from a study

and expand its tile. On top of the page is the creation form. By simply providing
the label and the (optional) description of a questionnaire, a new one is generated
and added to the study. The button to add existing questionnaires opens a dialog
that will list all the questionnaires in a table similar than the one listing the athletes.

When expanded, a questionnaire provides the list of its question. This list is
also a ListView of ExpansionTile. Currently, the question tile only displays their
description when expanded but more features could be proposed in future works.
There a four buttons allowing to update the questionnaire :

• Clone questionnaires : it allows to add a group of question to the questionnaire
by directly copying the ones of another questionnaire. The selection of the
questionnaire to clone is similar to the selection of questionnaire to add to the
study.

• Add questions : will display the list of questions in a table with a button to
add/remove each question to/from the questionnaire.

• Update questionnaire : allows to change the label or the description of the
questionnaire.

• Events : configure the event of the questionnaire. More details will be provided
in the following subsection.

6.2.5 Events Page

Some questionnaires require to be fulfilled only at specific moments. To implement
that, the module generates events. There are multiple ways to chose the time of
activity of a questionnaire. This leads to different types of event.

46

Chapter 6 – Administrator module – Pages

Daily Fixed Event

This is the simplest form of event. It is defined by :

• Time Periods : This corresponds to the start and end time of the event. There
can be multiple time periods for Daily Fixed Events. The number of time
periods will then correspond to the number of occurrence of the event and the
length of a time period will correspond to the duration of the event.

Figure 6.4: Daily fixed event form

Daily Random Event

This type of event occurs at random moments depending on :

• Time Periods : These are the periods during which an event is susceptible to
happen. They must be chosen large enough to fit with the other parameters.
Indeed, if a period is too short, it would be impossible to assign it an event.

• Duration : This is the length of an event. If there are multiple occurrences, all
the event will have the same length.

• Occurrences : The number of time an event happens.

• Guard : If there are multiple occurrences, this is the minimum duration be-
tween the end of an event and the beginning of the next one.

47

Chapter 6 – Administrator module – Pages

Figure 6.5: Daily random event form

Daily Event

Unlike the two previous types of event, Daily Events can be tuned to occur on specific
days. This tuning relies on :

• Weekdays : From Monday to Sunday, the user checks the days where he wants
the event to be active.

• Event : The events happening on selected days can be either Daily Fixed
Events or Daily Random Events.

• Start date : The beginning date of the event.

• Delta 0 : This corresponds to the offset (number of days) added to the start
date to fix the first event.

• Delta F : This offset corresponds to the maximum number of days after the
Start Date where the events can be active.

• not Until : This value is a weekday, it specifies the day from which the events
can start.

48

Chapter 6 – Administrator module – Pages

Figure 6.6: Daily event form

6.2.6 Results Page

This page is responsible for results fetching. As previously explained, the questions
are parts of questionnaires which are themselves grouped into studies. The result
can be obtained for a specific questionnaire of a study. The user simply needs to
provide the id of the study and the one of the questionnaire. Two options are then
available :

• Show the results : this will display the results of the questions in a table with
the row corresponding to the users and the column representing the questions
of the questionnaire.

• Download the results : The table of results having the same structure as the
shown one will be downloaded under the csv format. The user will then be
able to perform specific queries with a dedicated software handling csv files.

To allow some flexibility in the results fetching, a filter with advanced parame-
ters is provided. This filter will be applied on the athletes and has the following
properties :

• Users id : will fetch the results only for questions answered by athletes who’s
id is provided.

• Gender : will fetch the results for men/women.

49

Chapter 6 – Administrator module – Pages

• Birth date min/max : will fetch the results only for athletes born after the min
date/before the max date.

• Studies id : will fetch the results for athletes registered to the study, it won’t
fetch the results of the study except if the same id is provided in the main
study field.

• Questionnaire id : will fetch the results only if the athletes answered the pro-
vided questionnaire. For example getting the results for a questionnaire hap-
pening after a training session only if the athletes answered the questionnaire
before the training session.

• Question id : will fetch the results only for athletes who answered the provided
question.

• Response value : will fetch value only if the athletes gave a specific answer.
For example, getting the results for athletes having a pain in the leg.

• Response date min/max : will fetch the results only if the athletes answered
after/before a specific date.

Figure 6.7: Filter of the result page

50

Chapter 6 – Administrator module – Pages

6.2.7 Athletes Page

The list of all the registered athletes is provided in this page. They are displayed in
a table listing their :

• Id

• Last name

• First name

• Gender

• Email

• Phone Number

• Code

The page features the form to create a new athlete by providing its personal
information.

As the app manages a high number of athletes, pagination is used to lower the
loading time. A search bar is also available to quickly find an athlete from its id,
last name or first name. The implementation details on these mechanism will be
introduced in the following sections.

Figure 6.8: List of athletes filtered (by ID) with searching

51

Chapter 6 – Administrator module – Pages

6.2.8 Athletes/Study Page

While the study page allowed to register multiple users to a study easily, this page
does the opposite by allowing to register one user to multiple studies. All the users
are listed in ListView of ExpansionTile. On expansion, the list of study is displayed
in a table where the athletes can be registered.

A drawer is available to search for an athlete. When selected, it will automatically
scroll to the athlete’s tile and expand it.

Figure 6.9: Expanded Tile to register an athlete

6.2.9 Members Page

Similarly to the users page, this page lists the members. The form allows to create
new members and to attribute them a role between :

• Administrator

• Moderator

52

Chapter 6 – Administrator module – Pages

• Consultant

6.2.10 Profile Page

This page simply shows the information about the user such as its last name, first
name, role,...

6.2.11 Page routing

Figure 6.10 displays the routing of the module. This routing was implemented using
Flutter’s named route. On top of this, every page is able to navigate to FrontPage

and its six sub pages using the app bar.

Figure 6.10: Page routing in the administrator module

53

Chapter 7

Implementation structure

The different pages were designed following specific patterns for the code design. The
widgets used necessitated specific structure in order to correctly fulfill their tasks.
The following chapter will go over the architecture of the code and some technical
details worth mentioning.

7.1 Architectural Pattern

The module mainly operates by fetching data from the database and displaying them.
It also allows to update or create some content. To make these operations efficient
and well organized in order to handle further modifications, a good design pattern
is necessary.

7.1.1 Model View Controller pattern

The Model View Controller pattern [47] aims to distinguish the logic of the applica-
tion from its interface. To do so, 3 components are defined, each having their specific
roles and interactions :

• The Model : It represents the application’s data. It will also integrate the
business logic to ensure data integrity. When a change occurs in the data, it
must notify the View.

• The View : The user interface is under the responsibility of the View. It
obtains the data to display from the model and will relay user’s inputs to the
Controller.

54

Chapter 7 – Implementation structure – Architectural Pattern

• The Controller : It is the intermediary point between the View and the Model.
It will handle the inputs provided by the View in order to adequately update
the Model.

Figure 7.1: Model View Controller pattern

For example, the athletes page of the administrator module would be structured
as follows :

• User.dart : The class User (which represents athletes) is defined with the
different methods involving athletes (get the list of athletes, create a new ath-
lete,...)

• athletes page.dart : This is the implementation of the page described in
the previous chapter. This list of athletes is requested from the file User.dart
and displayed in the table. Moreover, the athlete creation form will call the
controller when an athlete is created.

• athletes page controller.dart : The methods are called by the user when
he interacts with the page. When called, the will call the methods of User.dart
to update the model.

55

Chapter 7 – Implementation structure – Architectural Pattern

Figure 7.2: MVC example applied to the module

This pattern was initially chosen for its simplicity and to keep the same global
design as the server which used a Controller-Model pattern. However, some limita-
tions were met during the development. This lead to a change for the Model View
View-Model pattern that will be described in the next subsection.

7.1.2 Model View View-Model pattern

During the development of the module, the user interactions lead to complex logic in
order to correctly update the view. Indeed, the addition of features like searching or
pagination lead to multiple operations to correctly handle the inputs and update the
view. All these operation would lead to an overloaded Model component while the
Controller would mainly be calling the Model’s methods. As the Models are defined
by Dart classes, only the fields and basic methods would be implemented there. The
complex logic would then be transferred to the Controller as it has access to all the
data from the View and the Model. This new pattern choice actually corresponds to
the Model View View-Model pattern [48] [49].

This pattern is defined by :

• The Model : Like in MVC, the model represents the data of the app and check
their integrity. However, the change in the data will notify the View-Model
(and not the View like in MVC).

• The View : UI is still managed by the View. The only connected component
is the View-Model which will update the View if necessary.

56

Chapter 7 – Implementation structure – Architectural Pattern

• The View-Model : Placed between the View and the Model, it will play an
important role in communication. It must modify the View depending on the
changes in the Model.

Figure 7.3: Model View View-Model pattern

This pattern lead to the following roles for the implemented files (who kept their
initial names) :

• User.dart : This Dart class still defines an athletes with its fields and methods.

• athletes page.dart : This page is now only linked to athletes page controller.dart.
It will get the information on the list of athletes using a watch method of the
package Provider to keep track of the variables stored by athletes page controller.dart.
When receiving an input, it calls the appropriate method of the View-Model
and waits for updates.

• athletes page controller.dart : All the variables used to set up the view
are stored here. Some will be watched by the View while other are only inter-
nally used in order to update the watched variables. After its initialization, it
will wait for input relay from the View and perform the required operation to
update it.

57

Chapter 7 – Implementation structure – Services

Figure 7.4: MVVM example applied to the module

7.2 Services

When developing a web module, some functions are regularly called. In order to
simplify the structure of the code, these recurrent functions are grouped into services.

7.2.1 Navigation service

The management of the GlobalKey of the navigator state is handled by this service.
It will the allow the page to call simpler functions to navigate without worrying
about the GlobalKey.

7.2.2 Identity service

The information about the account logged in are stored by this service. Mainly used
by the Login Page and the Profile Page, this service is also required every time a
request is made by the Network Service.

7.2.3 Network service

All the HTTP request are performed via this service. It performs :

1. Writing of the complete URL

2. Writing of the header including the token authentication process

58

Chapter 7 – Implementation structure – Services

3. Decoding the response from the server

4. Catching exceptions to handle request related errors

7.2.4 Provider Service

To avoid declaring many providers in the main.dart file (using the MultiProvider
class), only one general ProviderVariables is declared (along with the Identity
Provider). All the controllers are referenced by the ProviderVariables that will
create an instance or reference to its existing controller if it already exists.

59

Chapter 7 – Implementation structure – Services

Figure 7.5: Provider and Controller structure for the services

60

Chapter 7 – Implementation structure – Files organization

7.3 Files organization

At the beginning of this thesis, a template was provided in order to set a structure for
the project. The development was performed in adequacy with the initial structure
while adding some folders when necessary. Overall, the MVVM pattern defines the
main packages composing the project. Eventually, the module is divided into several
packages presented in Table 7.1.

Package Name Description

assets Stores the different images used by the app.
components Stores the widgets used recurrently such as the AppBar.
controllers Stores the View-Models of the pages.
models Stores the Models of the pages.
pages Stores the Views of the pages.
services Stores the different services implemented.
theme Stores the constants such as the address and port used in the re-

quests.
tests Stores the unit tests.
utils Stores utility functions.

Table 7.1: Packages used by the module

7.4 Performance

When developing a module, performance should play a fundamental role in the var-
ious choices made throughout the project. Indeed, the app needs to be fluid and
minimize as much a possible the different loading times. To do so, several features
were integrated in the app.

7.4.1 Caching

One of the most common practices to improve the performance of a website is the use
of caching. This thesis was no exception as site caching was implemented in order to
avoid repetitive requests when querying for content used at different places of a page.

Caching is performed as page scale, meaning that the cached data’s lifetime ends
when the user visits another page. The storing being managed by the controllers of
each page, they are reset when a page is visited again.

61

Chapter 7 – Implementation structure – Performance

To reduce the number of interaction, the pages controller directly update the
cached data when the user wants to modify data. To ensure data integrity, the
modification of cached data occurs only when the server sends a message informing
the true data were successfully updated in the database.

7.4.2 Pagination

The fluidity of the app is a crucial point. To minimize the loading time of the pages,
some pages uses pagination. At initialisation, only the data listed in the first page are
requested to the server to have a lighter response and less initialization time. When
the users visits other pages, the request is made to the server for the corresponding
page number. The pagination is also using the caching. Indeed, the controllers store
a Map associating each page number to the data corresponding to the page. With
this, the page content will be requests only once to the server and will then be di-
rectly available when the user comes back to a previous page.

To handle the pagination, the View needs 3 variables. These are obtained and
updated using the watch() method of Provider. For example, in the Athletes

Page, the file athletes pages.dart tracks the values of :

• userList : This is the list of users displayed in the table. Its length will be
lower or equal to the page size (which is fixed for all the app).

• userCount : This is the total number of Users, including the one not displayed.
This variable is used to know the total number of pages to allow the user to go
directly to the last page if needed.

• userPage : This is the current page number. It’s initialized at 1 and will be
updated depending on the user’s actions.

When the user changes the page number, the input will be handled in 3 different
ways depending on the context :

1. Search is active : If the user is using the search bar, the controller won’t need
to request the server for the new page. Indeed, the controller will already have
a list of filtered users (more details in the following subsection) so it only needs
to modify the range displayed by updating the variable userList.

2. The page was already requested : As explained before, the controller uses
caching so previously requested variables are still stored. No request will be

62

Chapter 7 – Implementation structure – Performance

Figure 7.6: Pagination mechanism applied to the Athletes Page

performed and the userList variable will be update by the list stored at the
index pageNumber of the map userPageList.

3. First time the page is loaded : The controller request the list of Users cor-
responding to the page number then stores it in the userPageList. It then
performs the same steps as in case 2.

The page size was set to 20 for this module. It can be updated depending on the
priority in the trade-off between the number of interactions with the server and the
initialization time.

7.4.3 Searching

Unlike caching and pagination, searching functionality is not a feature that will di-
rectly make the app faster by reducing loading time. The true benefit of such tool
is to enhance the user experience by allowing to directly access a specific resource.
Eventually, it will lead to less loading time and server requests as the user wouldn’t
need, for example, to go through all the pages to find the athletes he is looking for.

In the module, two different implementations of searching were used :

63

Chapter 7 – Implementation structure – Performance

• Intern searching : All the data are already present on the page, it will internally
filter the displayed data depending on the search input.

• Server searching : The data is not yet fetched from the server. A request will
be sent by specifying the search input in order to directly receive the data
corresponding to the search criteria.

As the server searching will require to perform requests, the search input need to
be correctly handled to avoid sending too many requests in a short amount of time.
To do so, a cooldown timer of 500 milliseconds is set after each search request.

On the server side, the search is done in 2 steps :

1. Fetch all the elements from the database

2. Use Go routines to filter all the data in parallel

The search couldn’t be operated directly on the database (using the LIKE opera-
tor) because some values need to first be deciphered.

Once a search result is received by the module, the page number is set back to
1 and the total number of pages is updated depending on the length of the received
list. When the input search is fully erased, the page 1 is requested again from the
server to refresh the cache.

7.4.4 Measuring the performance

Flutter DevTools

Dart and Flutter provide tools allowing to get better insights on the way the app is
run [50]. This can enlight problems in the code such as unnecessary operations that
would lead to bad performances.

The tools available for the web application include :

• The Flutter Inspector : It gives the details about the widget tree and the
different rebuild by highlighting the widgets in the app [51].

• The Debugger : Acts as a regular debugger, allows to stop the app on break-
points, to analyze some variables, to execute step by step,... [52]

Other features were implemented by Flutter such as a CPU and Network profiler
but they were not available for this module.

64

Chapter 7 – Implementation structure – Performance

Browser tools

To have more insights about the performance of the app, the browser can be used
to directly analyze the behaviour of the module. Chrome DevTools [53] were used
when analyzing the app.

They allow :

• CPU profiling

• Network profiling

• Frame rate analysis

To have a general rating of the website, Lighthouse [54] was used. This open-
source tool was launched by Google to help developers when they optimize their
website.

It gives a score between 1 and 100 to several aspect of the website such as [55]:

• The performance : It makes several time measures to establish a score on the
general performance of a page. It was not able to score the module but the
performance should be handled internally by Flutter during compilation to
JavaScript code.

• The accessibility : A high score means people using assistive technologies can
still use properly the website.

• The best practices : Checks if the modern standards of web development are
met.

• The SEO (Search engine optimization) score : It checks if the website if opti-
mized for search engines. This will generally mean that the user experience is
optimized too.

Figure 7.7: Lighthouse score for the Study Page

65

Chapter 7 – Implementation structure – Performance

The different tools were mainly used to check if no aberrant value was measured
when the app runs. They should mainly be used when a problem is met or when
the website runs too slowly. Moreover, these tools are more suited to give good
feedbacks to website developed using Javascript. In the context of this thesis, the
module is developed in Flutter, which already performs optimization when compiling
the Dart code. As the website ran normally (no jank, no loading excessively long),
no advanced use of the different profiling tools was needed during development.

66

Chapter 8

Testing

Testing is an essential aspect of software development as it helps ensure the quality
and reliability of applications. This chapter will go over the different types of test
that be applied to a Flutter app [56].

8.1 Unit Tests

Unit tests are focused on testing individual units of code, such as functions, classes,
or methods, in isolation. They help checking that each unit of their app behaves as
expected. In Flutter, unit tests are written using the Flutter test framework and
can be executed using the flutter test command.

Unit tests in Flutter are useful for testing business logic, algorithms, and data
processing operations. Indeed, as they are applied on small part of the code, they
are easy to implement and run quickly.

8.2 Widget Tests

Widget tests in Flutter are designed to test the behavior and appearance of individ-
ual widgets in an app. Unlike unit tests, widget tests focus on testing the interaction
between widgets and their surrounding environment, including rendering, user in-
teraction, and state management. These tests ensure that widgets are rendering
correctly and responding appropriately to user input.

As the components tested are less isolated then the ones tested by units tests,
the widget tests take more time to run.

67

Chapter 8 – Testing – Integration Tests

8.3 Integration Tests

Integration tests are the most complete type of automated test. They focus on
testing the interaction and integration between different parts of an app. These
tests validate the behavior of multiple components working together, including the
UI, business logic, and external dependencies. Integration tests help ensure that all
the components of an app are functioning harmoniously and producing the desired
results.

Integration tests are beneficial for catching issues that may arise due to the in-
teraction between different components of an app. They help identify bugs related
to data flow, API integration, navigation, and overall app behavior. However, due
to their complexity, they take a lot of time to run.

8.4 Manual Tests

For this thesis, a full set of automated set was unfortunately not implemented. Dur-
ing development, the accent was put on the manual test which allowed quicker check
at the cost of less cases coverage. As the app contained many recurrent code struc-
ture (e.g. tables displaying user, questions, questionnaire), some manual test could
be conducted once and validate multiple parts of the module.

Figure 8.1: Test Types hierarchy [57]

68

Chapter 9

Deployment

Once finishing the development of the app comes the deployment part. This chapter
will go over the structure of ATHLETin’s module. It will also explain the mechanism
used to group all the modules to simplify the user experience.

9.1 Modules encapsulating

The different modules of the ATHLETin project (e.g. the medical and calendar
modules) were all encapsulated in containers managing the different dependencies.
All the module are encapsulated in different modules to be able to manage their
dependencies independently. Docker was used to generate the containers.

Docker [42] is a popular containerization platform that allows developers to en-
capsulate their applications and their dependencies into isolated containers. For the
app, it makes the containerization simple. Indeed, once the different dependencies
are correctly listed in the Dockerfile, the the Docker image can be directly built.
This image can then be run on any environment as long as Docker is installed on it.

The image generation was performed in 2 steps :

1. Environment set up : Using a Debian [58] image, it installs the dependencies
necessary to run Flutter.

2. Run-time image creation : The built web application is copied into a Nginx

[59] container.

69

Chapter 9 – Deployment – Reverse Proxy role

9.2 Reverse Proxy role

As ATHLETin is composed of several modules isolated from each other, they must
all be accessible within a single web server. This server was developed using Nginx. It
has been configured as a reverse proxy that will redirect the user to the corresponding
module depending on their request. The modules as distinguished from each other
by their port number, they all have the same domain.

70

Part IV

Conclusion

71

Chapter 10

Conclusion

This thesis described how was designed the administrator module of ATHLETin.
As this work is part of the complete ATHLETin project developed by the professor
Laurent Mathy and his team, a general overview was conducted to clarify the context
of this work.

The ATHLETin module offers several key features, including the Admin Module
for managing user accounts and permissions, the Training Module for creating and
organizing training sessions, the Agenda Module for scheduling and tracking events,
the Medical Module for managing medical information, and the Communication
Module for facilitating communication among users. These functionalities provide a
comprehensive solution for managing training activities efficiently.

A first description of ATHLETin and its goals allowed to understand to main ob-
jective of the project. The ATHLETin modules offer several key features, including
the Admin Module for managing user accounts and permissions. These functionali-
ties provide a good solution for managing training activities efficiently.

To set a common knowledge basis on the tools used for the implementation, a
description of Postgresql, Go, GORM and REST was provided for the backend part.
The Dart language and the Flutter framework were presented for the frontend part.
For every technology, the different reasons leading to their choices were listed. The
main one being the scalability and the flexibility to allow further improvements.

From these technologies, the implementation structure of the module followed
architectural patterns such as the Controller-Model for the backend and the Model-

72

Chapter 10 – Conclusion – Conclusion

View-ViewModel (MVVM) for the frontend. These patterns helped in organizing
the codebase and separating concerns, leading to a maintainable and extensible ar-
chitecture.

With the structure correctly presented, the core of the work was presented by
explaining the different pages of the module. The important features were also de-
scribed along with the way they were implemented.

Once the development part was over, the testing and the deployment were the
next steps of the project. Some generalities were introduced as well as the specific
case of the project. The way the admin module will be linked with other module
was also mentioned.

In conclusion, the development of the ATHLETin Flutter module managed to
met the different challenges. The implementation structure, testing , and deploy-
ment strategies employed have contributed to the overall quality and usability of the
module. As the module can always be improved, room was left for future develop-
ment adding even more features by using flexible and scalable code.

73

Chapter 11

Future work

This final chapter will list several improvements or features that would enhance
the user experience when using the modules. First ideas will be about the general
ATHLETin project then specific improvements for the administrator module will be
presented.

11.1 ATHLETin

11.1.1 Session persistence

As previously explained, the different modules are implemented separately and iso-
lated in containers. When navigating between the different modules, the session
should be maintained active to avoid having to reconnect every time. This feature
will involve cookies management.

11.1.2 More languages

The different modules have a french interface. Adding different language could not
only enlarge the targeted audience of the app, but also help non french speaking
athletes already using the app when they answer questions.

11.1.3 Role Management

The administrator module currently allows to create members and attribute them a
role (Admin, Consultant, Moderator). However, the different authorization implied
by these roles are not completely defined. Moreover, 3 roles might be not enough

74

Chapter – Future work – Admin Module

to handle the different authorizations due the number of possible operations in the
module. A finer role tuning could help the management of athletes throughout the
different modules

11.2 Admin Module

11.2.1 Question creation

Studies and questionnaires can be created but the question creation was not imple-
mented. A simple menu could have been sufficient but as question will be one of the
components of the database that will take a lot of memory, efficiency in the creation
should be taken in account. By efficiency, the goal would be to avoid creating too
many similar questions that would lead to useless duplicates in the database. Cur-
rent features like keywords could be exploited to first search if a question already
exists before creating one.

11.2.2 Event Visualization

The different questionnaires are active depending on the time period of their event.
Adding a visualization feature would help the management by directly allow the user
to know how many questionnaires are active at a specific time period. This can avoid
setting too many questionnaire at the same time which would overload the athletes
with too many questions to answer.

11.2.3 Improve Performances

The different features set up to have a good performance could be improved with
better algorithms. For example, the search method could automatically adapt from
external to internal searching after a fixed number of possible choices. The caching
mechanism might also be implemented differently, by adding a fixed life time instead
of waiting for the page to refresh.

11.2.4 Adding features

The description of the module provided in 1.2.1 lists many features. Some were
implemented in this thesis like the data exportation but many are still to be designed.

75

Appendix A

Module screenshots

Figure A.1: Login Page

76

Chapter A – Module screenshots – Module screenshots

Figure A.2: Homepage

Figure A.3: Profile Page

77

Chapter A – Module screenshots – Module screenshots

Figure A.4: Form to add an athlete

Figure A.5: List of athletes

78

Chapter A – Module screenshots – Module screenshots

Figure A.6: Filtered list of athletes when searching

Figure A.7: Results page

79

Chapter A – Module screenshots – Module screenshots

Figure A.8: Members Page

80

Chapter A – Module screenshots – Module screenshots

Figure A.9: Register an athlete to studies

81

Chapter A – Module screenshots – Module screenshots

Figure A.10: Study Page

82

Chapter A – Module screenshots – Module screenshots

Figure A.11: Register athletes to a study

83

Chapter A – Module screenshots – Module screenshots

Figure A.12: Study Questionnaires Page

84

Chapter A – Module screenshots – Module screenshots

Figure A.13: Add Question Page

85

Chapter A – Module screenshots – Module screenshots

Figure A.14: Add Questionnage Page

86

Chapter A – Module screenshots – Module screenshots

Figure A.15: Daily Fixed Event Page

87

Chapter A – Module screenshots – Module screenshots

Figure A.16: Daily Random Event Page

88

Chapter A – Module screenshots – Module screenshots

Figure A.17: Daily Event Page

89

Bibliography

[1] ATHLETin, agile athlete thinking management. https://athletin.io/index.
php/web-application/.

[2] Lodrini Guillaume. Master thesis : ATHLETin: Web module for the manage-
ment of athletes’ training calendar and medical appointments.

[3] PostgreSQL Documentation. https://www.postgresql.org/docs/current/.

[4] Go Programming Language. https://go.dev/.

[5] Rob Pike. Another Go at Language Design. https://web.stanford.edu/

class/ee380/Abstracts/100428-pike-stanford.pdf.

[6] Jinzhu Zhang. GORM Guides. https://gorm.io/.

[7] Lokesh Gupta. What is REST. https://restfulapi.net/.

[8] Google. Dart programming language. https://dart.dev/.

[9] Sneath Tim and Walrath Kathy et al. Dart Overview. https://dart.dev/

overview.

[10] Google. The Dart type system. https://dart.dev/language/type-system.

[11] Sheldon Robert. What is garbage collection (GC)? https://www.techtarget.

com/searchstorage/definition/garbage-collection.

[12] Sullivan Matt. Flutter: Don’t Fear the Garbage Collector. https://medium.

com/flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30.

[13] Google. Dart Null Safety. https://dart.dev/null-safety.

90

https://athletin.io/index.php/web-application/
https://athletin.io/index.php/web-application/
https://www.postgresql.org/docs/current/
https://go.dev/
https://web.stanford.edu/class/ee380/Abstracts/100428-pike-stanford.pdf
https://web.stanford.edu/class/ee380/Abstracts/100428-pike-stanford.pdf
https://gorm.io/
https://restfulapi.net/
https://dart.dev/
https://dart.dev/overview
https://dart.dev/overview
https://dart.dev/language/type-system
https://www.techtarget.com/searchstorage/definition/garbage-collection
https://www.techtarget.com/searchstorage/definition/garbage-collection
https://medium.com/flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30
https://medium.com/flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30
https://dart.dev/null-safety

Chapter A – BIBLIOGRAPHY – BIBLIOGRAPHY

[14] Bizzotto Andrea. Dart Null Safety: The Ultimate Guide to
Non-Nullable Types. https://codewithandrea.com/videos/

dart-null-safety-ultimate-guide-non-nullable-types/.

[15] Google. dartdevc: The Dart development compiler. https://dart.dev/tools/
dartdevc.

[16] Google. Asynchronous programming: futures, async, await. https://dart.

dev/codelabs/async-await.

[17] Google. Core libraries. https://dart.dev/guides/libraries.

[18] Flutter framework. https://flutter.dev/.

[19] Google. Flutter architecture overview. https://docs.flutter.dev/

resources/architectural-overview.

[20] Google. Introduction to widgets. https://docs.flutter.dev/ui/

widgets-intro.

[21] Google. StatelessWidget class. https://api.flutter.dev/flutter/widgets/
StatelessWidget-class.html.

[22] Google. StatefulWidget class. https://api.flutter.dev/flutter/widgets/

StatefulWidget-class.html.

[23] Abhishek Doshi. Widget lifecycle — Flutter! https://abhishekdoshi26.

medium.com/widget-lifecycle-flutter-3db5d824d033.

[24] Google. createState abstract method. https://api.flutter.dev/flutter/

widgets/StatefulWidget/createState.html.

[25] Google. initState method. https://api.flutter.dev/flutter/widgets/

StatefulWidget/createState.html.

[26] Google. build abstract method. https://api.flutter.dev/flutter/widgets/
State/build.html.

[27] Google. setState method. https://api.flutter.dev/flutter/widgets/

State/setState.html.

[28] Google. didUpdateWidget method. https://api.flutter.dev/flutter/

widgets/State/didUpdateWidget.html.

91

https://codewithandrea.com/videos/dart-null-safety-ultimate-guide-non-nullable-types/
https://codewithandrea.com/videos/dart-null-safety-ultimate-guide-non-nullable-types/
https://dart.dev/tools/dartdevc
https://dart.dev/tools/dartdevc
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/guides/libraries
https://flutter.dev/
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/ui/widgets-intro
https://docs.flutter.dev/ui/widgets-intro
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://abhishekdoshi26.medium.com/widget-lifecycle-flutter-3db5d824d033
https://abhishekdoshi26.medium.com/widget-lifecycle-flutter-3db5d824d033
https://api.flutter.dev/flutter/widgets/StatefulWidget/createState.html
https://api.flutter.dev/flutter/widgets/StatefulWidget/createState.html
https://api.flutter.dev/flutter/widgets/StatefulWidget/createState.html
https://api.flutter.dev/flutter/widgets/StatefulWidget/createState.html
https://api.flutter.dev/flutter/widgets/State/build.html
https://api.flutter.dev/flutter/widgets/State/build.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/didUpdateWidget.html
https://api.flutter.dev/flutter/widgets/State/didUpdateWidget.html

Chapter A – BIBLIOGRAPHY – BIBLIOGRAPHY

[29] Google. Flutter dispose method. https://api.flutter.dev/flutter/

widgets/State/initState.html.

[30] Pankaj Tyagi. Lifecycle of Stateful Widget . https://mobikul.com/

lifecycle-of-stateful-widget/.

[31] Google. InheritedWidget class. https://api.flutter.dev/flutter/widgets/
InheritedWidget-class.html.

[32] Google. Provider. https://pub.dev/packages/provider.

[33] Google. ChangeNotifier class. https://api.flutter.dev/flutter/

foundation/ChangeNotifier-class.html.

[34] Google. notifyListeners method. https://api.flutter.dev/flutter/

foundation/ChangeNotifier/notifyListeners.html.

[35] Ayush Pawar. Exploring State Management in Flut-
ter with Provider. https://cswithiyush.hashnode.dev/

exploring-state-management-in-flutter-with-provider.

[36] Google. MultiProvider class. https://pub.dev/documentation/provider/

latest/provider/MultiProvider-class.html.

[37] Google. Hot reload. https://docs.flutter.dev/development/tools/

hot-reload.

[38] Vyacheslav Egorov. Introduction to Dart VM. https://mrale.ph/dartvm/.

[39] encrypter09. Advantages and Disadvantages of Flutter’s
Hot Reload Feature. https://www.geeksforgeeks.org/

advantages-and-disadvantages-of-flutters-hot-reload-feature/.

[40] Google. Flutter Navigation. https://docs.flutter.dev/ui/navigation.

[41] Prof. L. Mathy, G. Gain, and V. Rossetto. Development of a web module for
ATHLETin: Technical description.

[42] Docker. https://docs.docker.com/get-started/.

[43] Silverlock Matt. Gorilla mux package. https://github.com/gorilla/mux.

[44] Swaggo. https://github.com/swaggo/swag.

92

https://api.flutter.dev/flutter/widgets/State/initState.html
https://api.flutter.dev/flutter/widgets/State/initState.html
https://mobikul.com/lifecycle-of-stateful-widget/
https://mobikul.com/lifecycle-of-stateful-widget/
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://pub.dev/packages/provider
https://api.flutter.dev/flutter/foundation/ChangeNotifier-class.html
https://api.flutter.dev/flutter/foundation/ChangeNotifier-class.html
https://api.flutter.dev/flutter/foundation/ChangeNotifier/notifyListeners.html
https://api.flutter.dev/flutter/foundation/ChangeNotifier/notifyListeners.html
https://cswithiyush.hashnode.dev/exploring-state-management-in-flutter-with-provider
https://cswithiyush.hashnode.dev/exploring-state-management-in-flutter-with-provider
https://pub.dev/documentation/provider/latest/provider/MultiProvider-class.html
https://pub.dev/documentation/provider/latest/provider/MultiProvider-class.html
https://docs.flutter.dev/development/tools/hot-reload
https://docs.flutter.dev/development/tools/hot-reload
https://mrale.ph/dartvm/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-flutters-hot-reload-feature/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-flutters-hot-reload-feature/
https://docs.flutter.dev/ui/navigation
https://docs.docker.com/get-started/
https://github.com/gorilla/mux
https://github.com/swaggo/swag

Chapter A – BIBLIOGRAPHY – BIBLIOGRAPHY

[45] Introduction to JSON Web Tokens. https://jwt.io/introduction.

[46] Postman. https://www.postman.com/.

[47] Glenn E. Krasner and Stephen T. Pope. A Description of the
Model-View-Controller User Interface Paradigm in the Smalltalk-80 Sys-
tem. https://web.archive.org/web/20100921030808/http://www.itu.dk/

courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf.

[48] Josh Smith. Patterns - WPF Apps With The Model-
View-ViewModel Design Pattern. https://learn.

microsoft.com/en-us/archive/msdn-magazine/2009/february/

patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern.

[49] Zimmermann Max. What is the difference between MVC and
MVVM (for Flutter)? https://medium.com/@m-zimmermann1/

what-is-the-difference-between-mvc-and-mvvm-for-flutter-136cb33afc1.

[50] Google. DevTools. https://docs.flutter.dev/tools/devtools/inspector.

[51] Google. Using the Flutter inspector. https://docs.flutter.dev/tools/

devtools/overview.

[52] Google. Using the debugger. https://docs.flutter.dev/tools/devtools/

debugger.

[53] Google. Chrome DevTools Overview. https://developer.chrome.com/docs/
devtools/overview.

[54] Google. Lighthouse: Optimize website speed. https://developer.chrome.com/
docs/devtools/lighthouse/.

[55] Tushar Pol. Google Lighthouse: What It Is How to Use It. https://www.

semrush.com/blog/google-lighthouse/.

[56] Google. Testing Flutter apps. https://docs.flutter.dev/testing.

[57] Mohit Joshi. Testing in Flutter. https://medium.flutterdevs.com/

testing-in-flutter-fd0f82ecddc7.

[58] Debian. https://www.debian.org/index.en.html.

[59] Nginx. https://www.nginx.com/.

93

https://jwt.io/introduction
https://www.postman.com/
https://web.archive.org/web/20100921030808/http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf
https://web.archive.org/web/20100921030808/http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_mvc_krasner_and_pope.pdf
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/february/patterns-wpf-apps-with-the-model-view-viewmodel-design-pattern
https://medium.com/@m-zimmermann1/what-is-the-difference-between-mvc-and-mvvm-for-flutter-136cb33afc1
https://medium.com/@m-zimmermann1/what-is-the-difference-between-mvc-and-mvvm-for-flutter-136cb33afc1
https://docs.flutter.dev/tools/devtools/inspector
https://docs.flutter.dev/tools/devtools/overview
https://docs.flutter.dev/tools/devtools/overview
https://docs.flutter.dev/tools/devtools/debugger
https://docs.flutter.dev/tools/devtools/debugger
https://developer.chrome.com/docs/devtools/overview
https://developer.chrome.com/docs/devtools/overview
https://developer.chrome.com/docs/devtools/lighthouse/
https://developer.chrome.com/docs/devtools/lighthouse/
https://www.semrush.com/blog/google-lighthouse/
https://www.semrush.com/blog/google-lighthouse/
https://docs.flutter.dev/testing
https://medium.flutterdevs.com/testing-in-flutter-fd0f82ecddc7
https://medium.flutterdevs.com/testing-in-flutter-fd0f82ecddc7
https://www.debian.org/index.en.html
https://www.nginx.com/

