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Abstract

A galaxy-galaxy lens is a phenomenon in which the light of a background distant
galaxy is deflected in the vicinity of a massive foreground galaxy. The occurrence
of this phenomenon is very rare. The advent of big-data surveys is an opportunity
to detect gravitational lenses only if the proper tools are built. This work aims to
build such a tool by testing a set of innovative techniques using parametric and
non-parametric models to identify the presence of lensed galaxies in a dataset. The
dataset used in this work is a simulated dataset combining true galaxy images with
lens simulations also based on true galaxies. Based on this simulated dataset, we use
simple machine learning algorithms like Support Vector Machine (SVM), Random
Forest (RF), or Multi-Layer Perceptron (MLP). This simple method is an asset for
the comprehension of the classification process compared to Convolutional Neural
Networks (CNN) that are commonly used. In this exploratory work, we found that
91.8% of the simulated lenses are reported and classified with a precision of 95.6%.
This work reports thus promising results using MLP that are lower but rather close
to the performances of a CNN. This work can be improved to reach comparable
or even better results than today’s state-of-the-art algorithms by studying residual
image resulting from the substraction of a light profile to the original image.

iii





Acknowledgement

Even if this work is personal work, it involves people who I would like to thank.
First of all, I would like to thank Dominique Sluse and Ludovic Delchambre who
were my two promoters. They were real support in this work, with good advice. I
really appreciated the rigor that they succeeded in transmitting to me and which
I sometimes miss. The next people I want to thank are my parents, my family, my
girlfriend, and my friends who were also a real support in my studies. I especially
grateful to my parents who allowed me to have this incredible academic path without
ever constraining my choices. Finally, I would like to thank all the students, teachers,
researchers, and administrators I have met and who have enriched my personal
journey, my thoughts, and my experience.

v





Contents

1 Introduction 1

1.1 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Physics of Gravitational lenses . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Refraction analogy . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 The lens equation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Einstein Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Images positions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.5 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.6 Properties of the targets . . . . . . . . . . . . . . . . . . . . . 10

1.3 Convolutional Neural Network to the rescue . . . . . . . . . . . . . . 11

1.4 A new approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Data 15

2.1 Origin of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Exploration of the dataset . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Noise and signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methodology 27

3.1 Detection of sources: segmentation maps, threshold, and masks. . . . 27

3.2 Parametric and non-parametric indexes . . . . . . . . . . . . . . . . . 32

3.2.1 Sersic parameters . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.5 Gini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.6 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.7 M20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.8 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



3.3.3 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Performance scores . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Results 43
4.1 Parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Study of the false positives and false negatives populations . . . . . . 47
4.4 Impact of input parameters . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Detect threshold . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 n_pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Discussions & conclusion 53
5.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 59

A Appendix 73

Declaration 83

viii



Introduction 1

A gravitational lens, also known as a cosmic mirage, is a distribution of mass able
to bend the light coming from a distant source. This phenomenon is similar to a
light beam bent through a lens by refraction. This is why we call it gravitational
lensing.

Already in 1704, Isaac Newton speculated that "[...] Bodies act upon Light at a
distance, and by their action bend its Rays; and [...] this action [is] strongest at the
least distance." [1]. Later John Mitchell proposed to Henry Cavendish, a method to
measure the mass of stars by detecting a reduction of the speed of light affected by
gravity [2]. In those letters, Mitchell suggested that a massive enough body could
stop the light: a black hole. This pushed Cavendish to calculate the Newtonian light
deflection. Unfortunately, he never published his manuscript dated around 1784 [3].
Johann Georg von Soldner published the same result in 1801 [4] assuming the light
is a corpuscle. Finally, Einstein calculated the same value thanks to the equivalence
principle only in 1911 [5] and corrected it by twice the value in 1915 [6] in the
frame of General Relativity.

The first observation of light deflection was performed in 1919 by Arthur Eddington
and Frank Watson Dyson by observing a change in the position of stars near the sun
during the solar eclipse of May 29 [7]. Later in 1937, after the new discovery of
Galaxies, Fritz Zwicky speculated that those massive objects could act as both source
and lens with a larger effect much likely to be observed [8]. It was necessary to wait
until 1979 to observe the first gravitational lens. Dennis Walsh, Bob Carswell, and
Ray Weysmann observed two identical QuasiStellar Objects (QSO) using Kitt Peak
National Observatory. The difficulties in describing them as two distinct objects were
highlighted in their paper [9], along with the discussion of the hint suggesting the
observation of two images of the same object formed through gravitational lensing.
SBS 0957+561 was renamed "Twin QSO".
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1.1 Scientific context

Lenses used to be serendipitously found, but nowadays we are looking for gravita-
tional lenses in large amounts thanks to large survey programs. One can cite an
early example of systematic research of gravitational lenses: the Cosmic Lens All-Sky
Survey (CLASS). Twenty-two lensed systems were found using the Very Large Array
(VLA) radio telescope [10].

We generally subdivide lensing into 3 categories: Strong, Weak, and Micro-lensing.
Strong lensing is the case where distortion of the background source is clearly
identified or multiple lensed images are detected. For weak lensing, distortion is
much smaller, and statistical studies are needed in order to find a distortion of about
a few percent. The microlensing does not show any distortion but a variation of the
background source light over time. The lensing object in a microlensing case may be
a star while strong and weak lenses are typically galaxies or even galaxy clusters.
Microlensing is often used to detect exoplanets [11]. In this work, I will focus on
strongly lensed systems.

Studying gravitational lenses has a huge scientific interest. As F. Zwicky already
mentioned in his paper in 1937 [8], they constitute a good source to test general
relativity, they enable us to observe very distant galaxies and they allow us to
determine masses of galaxies. In fact, it has many more applications like the
determination of cosmological parameters (Ω0: density parameter, λ0: cosmological
constant, and H0: the Hubble constant). But the two main fields of interest are
the study of dark matter and dark energy [12] [13], and modern cosmology [14]
by better-determining cosmological distance scales, large-scale matter distribution,
mass distribution in galaxy clusters, physics of quasars and galaxy structure.

With the rise of Large surveys and their ability to store a large amount of data, we
are facing Big Data problems. As an example, the Euclid Consortium website1 asserts
that during the 6-year-long mission, Euclid will collect more than 500,000 visible
and Near-Infrared images. In addition to that, ground-based telescopes will cover
the same sky as Euclid in 4 different filters which represent a total of 7 different
filters. This forms several millions of images that weigth 30 PetaByte of data. About
10 billion galaxies will be imaged during the mission. Other surveys like DES2

(Dark Energy Survey) or LSST3 deal with the same amount of data. About 700
million sources in the last DES data release and 2 million images (60 PetaByte)

1https://www.euclid-ec.org/?page_id=2625
2https://www.darkenergysurvey.org/
3https://www.lsst.org/
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for LSST. Processing this tremendous amount of data requires detecting lensed
systems autonomously. The estimated occurrence of galaxy-galaxy strong lensing
is 10−5[15][16]. In most optimistic forecasts, DES, LSST, and Euclid can discover
up to 2300, 120000, and 280000 lenses respectively [15]. The low occurrence of
the phenomenon forces us to build observational and computational strategies to
maximize the chances of detection. The common strategy adopted today is the rise of
lens candidates from survey data to be followed up later by dedicated ground-based
telescopes. Because observation time is precious we clearly see the need for a robust
autonomous model rising the least possible false positive cases.

1.2 Physics of Gravitational lenses

This section will focus on the mathematical demonstration of the gravitational
lensing phenomenon. To do so, my development is largely inspired by Jean-François
Claeskens and Jean Surdej’s review [17] and Pierre Magain’s lecture [18].

1.2.1 The Refraction analogy

As said earlier, J. von Soldner calculated the deviation angle of light by a spherical
mass M thanks to Newton’s theory of gravitation. This deviation angle α = 2GM

c2b

(where G is the gravitational constant, c the speed of light, and b the impact
parameter.) was corrected later by Einstein thanks to general relativity. In this part,
we will study gravitational lenses in the frame of General relativity.

Gravitational mirages are analogs of atmospheric mirages. This phenomenon arises
when light trajectories are curved (scheme in fig 1.1) which is a consequence of an
anisotropic speed of light along the light path. According to refraction laws, light
rays are bent in an inhomogeneous medium. This is why we can approach this
problem as a refraction problem, with light traveling from vacuum to a material
medium of refraction index nϕ. The refractory analog situation is summarized in fig
1.2.

In vacuum; the speed of light is c, but in a material medium it becomes v = c
nϕ

. As a
consequence of General relativity, spacetime is curved by a gravitational potential
ϕ associated with a massive object. In the weak field approximation ( ϕ

c2 ≪ 1), the
metric is :

1.2 Physics of Gravitational lenses 3



Fig. 1.1.: Deflection of light coming from a distant source (S) in the vicinity of a massive
object (Lens: L) seen by the observer (O).

Fig. 1.2.: Analog situation of light traveling in vacuum from a distant source and propagat-
ing through a medium of refraction index nϕ.

ds2 = −
(

1 + 2ϕ

c2

)
c2dt2 +

(
1 − 2ϕ

c2

)
(dx2 + dy2 + dz2) (1.1)

As the light follows null geodesic, we have that ds2 = 0 such that:

(
1 + 2ϕ

c2

)
c2dt2 =

(
1 − 2ϕ

c2

)
(dx2 + dy2 + dz2) (1.2)

dt2 =
1 − 2ϕ

c2

1 + 2ϕ
c2

(dx2 + dy2 + dz2)
c2 (1.3)

dt2 ≈
(

1 − 2ϕ

c2

)2 (dx2 + dy2 + dz2)
c2 (1.4)
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dt ≈
(

1 − 2ϕ

c2

) √
dx2 + dy2 + dz2

c
(1.5)

√
dx2 + dy2 + dz2

dt
≈ c(

1 − 2ϕ
c2

) (1.6)

equation 1.6 is analog to v = c
nϕ

. We identify nϕ = 1 − 2ϕ
c2 . That being said, let’s

establish the lens equation and the deflection angle.

1.2.2 The lens equation

Fig. 1.3.: Scheme of the general situation of a gravitational lens

To solve this problem we need to link the viewing angle θ to the deflection angle
α. By geometric considerations thanks to figure 1.3 this relation is given by the
following equation :

θs = θ − DDS

DOS
α(b) (1.7)

b = DODθ (1.8)

Now we have to link the deflection angle α to physical parameters like the mass of
the deflector M . In the following, di

dx is the variation of the direction along the x-axis.

1.2 Physics of Gravitational lenses 5



α is thus the deflection angle which is the integration of all direction variations
along x.

α(b) = −
∫ ∞

−∞

di

dx
dx = −

∫ ∞

−∞

1
nϕ

dnϕ

db
dx = 2

c2

∫ ∞

−∞

dϕ

db
dx (1.9)

In this demonstration, we will take as a simple example a point mass deflector. Its
gravitational potential is :

ϕ = −GM

r
= − GM√

b2 + x2
(1.10)

The deflection angle α becomes:

α(b) = 4GM

c2b
(1.11)

We effectively find twice the value obtained with the Newtonian framework. Now
that we find what Einstein predicted, let’s generalize. To do so, we use the thin lens
approximation. This approximation allows us to describe a deflector by its surface
mass density Σ(−→b ) projected in the deflector plane. The deflection angle is then
expressed by :

−→α (−→b ) = 4G

c2

∫
S

Σ(
−→
b′ )(−→b −

−→
b′ )db′

1db′
2

|−→b −
−→
b′ |2

(1.12)

In the case of a circularly symmetric mass distribution, with M(b) the mass inside
the radius b and b = ∥−→

b ∥:
−→α (−→b ) = 4GM(b)

c2b2
−→
b (1.13)

1.2.3 Einstein Ring

Let’s now assume the following circularly symmetric lens mass distribution with M0,
the mass inside a radius b0:

M(b) = M0

(
b

b0

)β

(1.14)

β = 0 correspond to a point mass distribution, β = 1 is the singular isothermal
sphere distribution and β = 2 yield the uniform distribution of matter.

Now that we have the general case, let’s study a particular case which is the Einstein
ring solution. This case corresponds to the simple case when the observer, the
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deflector, and the source are aligned (θs = 0). The Einstein ring is thus defined by
its angular size θE . From equations 1.7, 1.13 and 1.14 we have that:

0 = θE − DDS

DOS

4GM(b)
c2b

= θE − DDS

DOS

4G

c2b
M0

(
b

b0

)β

(1.15)

0 = θE − DDS

DOS

4GM0

c2bβ
0

(DODθE)β−1 = θE

(
1 − DDS

DOS

4GM0

c2bβ
0

Dβ−1
OD θβ−2

E

)
(1.16)

θE = 0 is a solution but not relevant.

DDSDβ−1
OD

DOS

4GM0

c2bβ
0

θβ−2
E = 1 (1.17)

θE =
(

4GM0

c2bβ
0

DDS

D1−β
OD DOS

) 1
2−β

(1.18)

with ME the mass inside the radius bE = DODθE we get the expression of the
Einstein ring angular size:

θE =
√

4GME

c2
DDS

DODDOS
(1.19)

1.2.4 Images positions

By tacking a point mass deflector (M(b) = M0):

θs = θ − DDS

DOS

4GM0
c2b

= θ − DDS

DOS

4GM0
c2DODθ

(1.20)

θθs = θ2 − DDS

DOSDOD

4GM0
c2 (1.21)

with ME = M0

θ2 − θsθ − θ2
E = 0 (1.22)

1.2 Physics of Gravitational lenses 7



we are in the presence of a second-order polynomial with a determinant δ =
θ2

s + 4θ2
E > 0 and its two solutions:

θ1,2 = 1
2

(
θs ±

√
θ2

s + 4θ2
E

)
(1.23)

Let’s now study two interesting properties. By considering a small misalignment ϵ

between the source, the lens, and the observer; at first order, the angular separation
of the image ∆θ is:

θ1 = 1
2

(
ϵ +

√
ϵ2 + 4θ2

E

)
= 1

2ϵ + 1
2

√
4θ2

E = 1
2ϵ + θE (1.24)

θ2 = 1
2ϵ − θE (1.25)

∆θ = θ1 − θ2 = 2θE (1.26)

This means that the angular separation between 2 images increases with the mass of
the deflector or increases when the deflector is closer to the observer.

The second property is about the mean surface density within θE which remains
constant. We define this quantity as the critical surface mass density:

Σ̄(θE) ≡ ME

π(DODθE)2 = c2DOS

4πGDODDDS
≡ Σcrit (1.27)

This property implies that a finite massive object is a gravitational lens that can
produce multiple images if its central mass density Σ > Σcrit

1.2.5 Magnification

Another property of gravitational lenses is the magnification. This quantity µ is
given by the ratio between the surface brightness of the image and the source. In
the following, we will stay in a 1D case but the magnification can be generalized
using Jacobian given by this definition:

µ = dΩimage

dΩsource
=
∣∣∣∣det

(
∂θs

∂θ

)∣∣∣∣−1
(1.28)

Assuming a circular symmetry of the lens as in the figure 1.4: µ = θ
θs

dθ
dθs
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Fig. 1.4.: Illustration of a gravitational lens with magnification for a point source from
[18]. β correspond to the angle between deflector and source which is θs in
the previous demonstration. θ− and θ+ are respectively the demagnified and
magnified images positions. The dotted circle corresponds to the Einstein ring
position.

by considering u = θs
θE

the lens-image separation in units of Einstein ring radius, we
get:

µ± = u2 + 2
2u

√
u2 + 4

± 1
2 (1.29)

The + solution is always magnified while the − solution can be magnified or
demagnified depending on the value of u. If the source is inside the Einstein radius,
µ > 1.34.

Finally, the total magnification gives:

µ = µ+ + µ− = u2 + 2
u

√
u2 + 4

> 1 (1.30)

1.2 Physics of Gravitational lenses 9



For a point-like source, if u → 0, µ → ∞. If u → ∞, µ → 1. In the case of too-small
image separation, the magnification can still be measured. This is used when the
mass of the deflector is too small to dissociate the image from the lens. But it is also
used when the image and the lens separation cannot be resolved and this technique
is called micro-lensing.

1.2.6 Properties of the targets

To better understand the scales of the targets, the distances at stake, and the physical
properties of the object of interest, I will here give some orders of magnitudes that
can help understand the different challenges.

The main targets we are looking for are galaxies or clusters of galaxies but in our
frame of work, we will focus on galaxy-galaxy strong lensing. The total mass of a
galaxies can span from 107 to 1012 solar masses [19] [20]. The distance scale is
often expressed as a redshift value. To have an idea, z = 1 is approximately 20
Billion light years (this is a comoving distance). Typical distances for galaxies are of
the order of z ≡ 1.

To have an idea of the angular separation between 2 images let’s take a deflector
mass of 1012 solar masses and a distance of z ≡ 0.5. For the source let’s consider
a quasar at a distance of z ≡ 2. Thanks to relation 1.19 and 1.26, we have in
arcseconds:

∆θ = 2θe ≈ 1.8
√

ME

1012Msun
(1.31)

which in our case gives ∆θ ≈ 1.8”. This represents approximately 1
20 of the angular

size of Jupiter. Galaxies are very faint objects in the sky and can span a large range
of absolute magnitude, the Andromeda galaxy has an apparent magnitude of 3.5
while the faintest known galaxy has an apparent magnitude of 28 mag.

In other words, our targets are very massive, far-away objects such that the angular
size is about an arcsecond with faint magnitudes. Combined with the occurrence of
10−5, it perfectly illustrates the prowess to find this type of targets

10 Chapter 1 Introduction



1.3 Convolutional Neural Network to the rescue

With the era of large-scale surveys, Astrophysics has to deal with a huge amount
of data and faces similar problems as the Big Data industry. As the amount of data
grows, Machine learning and Deep learning field improved at the same time allowing
the industry to manage the processing of those data.

The main type of data in Astrophysics is images and this is especially the case for the
study of gravitational lenses. Automatically detecting gravitational lenses requires
methods able to detect localized features. Convolutional Neural Networks (CNN)
are well-suited for this task. Convolution layers are able to detect local correlations
with features learned from the data[21].

CNNs have proven their efficiencies in many fields as computer vision and self-driven
cars [22] but also in research fields like medicine [23] and biology [24]. This is
why so many attempts at auto-detection of gravitational lenses use CNNs. Obviously,
there are other methods[25] investigated but CNNs are widely at the core of the
research of strong lensed systems.[16][26][27][28][29].

1.4 A new approach

This work aims to explore innovative techniques to automate the detection of
gravitational lenses. This time, CNNs will be discarded, but parametric and non-
parametric models will be explored and combined with the power of other machine-
learning methods. We will deeply explore one family of methods but we will later
discuss different ones that came to our mind.

One of the shortcomings of the CNN approach results in a loss of interpretability.
Indeed, neural networks are often considered black boxes even if we can intuitively
understand what is going on inside of these black boxes. In this master thesis, I will
first make a data reduction by using models and morphological indexes, and then I
will interpret this data reduction thanks to machine learning algorithms that aim to
classify the images from this data. The model I mostly use among many others is
the Sersic model [30] which has the advantage of being more understandable. We
will also use common non-parametric and morphological indexes like Asymmetry,
Concentration, Gini[31], and many more[32][33]. I will try to interpret these Sersic
parameters plus morphological indexes to see the variations of these parameters in
images containing a lens.

1.3 Convolutional Neural Network to the rescue 11



With the help of machine learning techniques, I will try to classify them in an
autonomous way. During this work, I needed a controlled framework that is not
provided with real data. This control is important in the sense that I want to clearly
know what is the influence of a lens on our parameters. To do so, I will need a lot of
different cases to identify the values that our indexes can span. Unfortunately, too
few real lensed galaxies cases are available nowadays and it can have a significant
impact on our parameters since it can confine in a smaller range of values than
it could span in reality. The next reason is that it is impossible to find the same
lensed and non-lensed galaxy image in real life. This pair of lensed/unlensed galaxy
images are highly relevant to my work because it allows me to check the origin
of a subset of parameters and clarify whether it is caused by the presence of the
lens or if it originates from features present in the non-lensed galaxy image. My
dataset contains both non-lensed and simulated galaxy-galaxy strong gravitational
lensing from true galaxy images. It ensures both control and proximity with true
data. Section 2.1 will go deeply into the conception of the dataset.

One of the tricks in this work is to fit a Sersic model on a galaxy candidate and
detect the presence of a lens thanks to the difference with the non-lensed model.
The Sersic profile is mainly defined by 3 parameters: the amplitude Ie, the effective
radius Reff , and the Sersic index n:

I(R) = Ie exp
(

−bn

[(
R

Reff

) 1
n

− 1
])

(1.32)

From [34], bn = 1.9992n + 0.3271 for 0.5 < n < 10. We will thus constrain the
values of non-lensed Sersic parameters (a "standard" distribution); and in case a
gravitational lens is present, the luminosity in the arms of the galaxy will increase
and these parameters will move away from the "standard" distribution enabling
us to detect the lens. In the parameter space, we should observe a separation of
point clouds allowing us to discriminate non-lensed from lensed galaxies. By using
another data reduction technique, a different parametrization of the light profile
(morphological indexes) will be computed and will be processed the same way. To
well understand the idea of this method, a comparison of 3 fitted Sersic profiles on 3
non-lensed galaxies and the same lensed galaxies and Sersic profiles is displayed in
fig 1.5. Already in this figure, we can notice changes in the amplitude Ie, the Sersic
index n, and the effective radius Reff when the lens is present. We will discuss
expected trends of this changes in section 3.2. As the Sersic model is a smooth
model the variations in the two different cases are not visually striking (even if the
amplitude can be multiplied up to 5 in the fig 1.5), however, the azimutal profile is
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Fig. 1.5.: Comparison between fitted Sersic profiles and azimutal profile in the case of non-
lensed galaxies (left) and lensed one (right). Azimutal profile is the maximum
of the pixel values on a circle of a given radius from the center of the galaxy.
The presence of contaminating source or lens images results in a bump in the
azimutal profile while the Sersic model tries to fit to fit it with a smoother model.
I_e, R_eff, and n stands for the fitted amplitude, effective radius and Sersic index
(respectively).

also scattered for each image to help understand what is going on. The azimutal
profile (as I defined it) is the maximum of the pixel values on a circle of a given
radius from the center of the galaxy (the azimut). We can observe that the azimutal
profile notifies the presence of a contaminating galaxy or just the lens image by a
bump in the curve. And we see, that the Sersic profile attempt to fit as close as
possible to the azimutal profile. For example the presence of multiple bumps in
the azimutal profile number 86690 implies a change in the steepness of the Sersic
profile.

In this report, we will start by describing data. In a second time, we will focus on
the methods used to perform this work. And before a conclusion, we will discuss
our results and the other methods we could have used.
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Data 2
To test my method, I needed simulated data as discussed in section 1.4. Instead of
making self-made simulated data, I worked with a dataset originally made for a CNN-
based study. This dataset is the E. Savary, K. Rojas, M. Maus, et al dataset [28]. Its
design suits our requirements and can be easily transposed to our framework. This
part thus aims to explain the design of the dataset and have a better understanding
of the data. The first step is to know how the dataset was collected and designed.
The second step is to make a sanity check of the dataset and identify the different
possible cases. And the last step is to identify the nature of the signal and the
associated statistics.

2.1 Origin of the Data

A part of the images constituting our simulated dataset was acquired as part of
the Canada France Imaging Survey (CFIS), which is a component of the Ultraviolet
Near Infrared Optical Northern Survey (UNIONS). UNIONS is a Collaboration open
to Canadian, French, and Japanese PhD students, astronomers, and members of
the Pan-STARRS team. This collaboration aims to provide answers about dark
matter, galactic to cluster scaled structures of the Universe, and the assembly of the
Milkyway. This collaboration will contribute to ground-based photometry within the
Euclid ESA space mission1.

CFIS mainly uses the Canada-France-Hawaii Telescope (CFHT) to complete a survey
of 8000 deg² of the northern sky in u photometric band (CFIS-u) and 4800 deg²
in the r photometric band (CFIS-r). CFHT is a world-class 3.6 m optical/infrared
telescope located on top of the Mauna Kea volcano in Hawaii2. It is equipped with
MegaCam which is a wide-field optical imaging device built from 40 2048x4612
pixels CCD cells. MegaCam has a total of 380 Megapixels for a square Field-of-View
(FoV) of 1 deg². The resolution of the telescope is 0.187 arcsecond/pixel.3

1https://www.skysurvey.cc/
2https://www.cfht.hawaii.edu/en/about/
3https://www.cfht.hawaii.edu/Science/CFIS/
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Fig. 2.1.: Redshit distribution of LRG galaxies (blue) and background lensed galaxies (red).
The LRG velocity dispersion is important for Einstein radius computation (see 2.1
for more details). From [28]

The dataset we use is simulated images from real data coming from the CFIS Data
Release 2 and HST/ACS F814W images. The way it is built is the following: CFIS
images are used as deflectors galaxies (fig 2.2) and Hubble Space Telescope (HST)
images lie in background sources that are lensed by software (fig 2.3). Images size
is a square of 44 pixels which represents an FoV of 8.17". Images from CFIS are
exclusively from CFIS-r data and more specifically Luminous Red Galaxies (LRG).
These objects are expected to have the largest lensing cross section due to their bright
and massive properties. Background galaxies were converted in the r photometric
band with HSC ultra-deep stacked images. Images have an FoV of 10" for each side
which corresponds to 0.03" per pixel.

Foreground galaxy images (LRG) have SDSS spectra allowing us to get access to
velocity dispersion σv and a redshift z estimate available in the image headers
(Image headers store metadata of the image). Background images which are all
included in COSMOS2015 [35] and Galaxy Zoo catalog [36] were obtained using
public spectroscopic catalogs or estimated from the best photometric redshift from
[35]. According to figure 2.1, the foreground LRG galaxies spans the ranges 200 <

σv < 500 km s−1 and 0.1 < z < 0.7. It is important to notice that already lensed LRG
galaxies are present in the dataset but the effects on the performances of doubled
lensed or misclassified images are considered negligible knowing the occurrence of
the phenomenon ( 10−5).
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In this work, like in the reference paper, we will perform classification and thus
train machine learning classifiers to identify gravitational lenses. To do so we define
positive cases and negative cases. Negative cases are non-lensed galaxies randomly
drawn from LRG galaxies sample described previously belonging to CFIS-r data.
While positive cases are built from the combination of a foreground galaxy (CFIS)
and a background-lensed galaxy (HST). The main steps of the design of positive
cases follow these main steps:

• Random selection of an LRG

• Assignment of a singular isothermal ellipsoid mass model to the LRG galaxy.

• Random selection of a galaxy from HST sample

• Position of the source is randomly chosen with total magnification µ ≥ 2

• Computation of high-resolution image of the lensed source

• Convolution of the lensed source with the CFIS Point Spread Function (PSF)

• Combination of the deflector and the lensed source images

Let’s go deeper into details about the different steps and the assumption and choices
made during the process. The first assumption is the assignation of a mass profile
model. The model used is the Singular Isothermal Ellipsoid (SIE) model; a general-
ization of the Singular Isothermal Sphere (SIS) model. This model is the simplest
distribution of matter in galaxies. The formula ruling this model is given by:

ρSIS(r) = σ2
v

2πGr2 (2.1)

The angular size of the Einstein radius can be linked to the velocity dispersion by
taking this equation at r = RE and RE = DODθE :

ρSIS(θE) = σ2
v

2πGD2
ODθ2

E

(2.2)

This model can then be generalized to an ellipse and is parameterized by five free
parameters: Einstein radius, center coordinates of the lens, ellipticity, and position
angle. Since every image was designed to host the deflector center at the center of
the image, the center coordinates are a fixed value. The ellipticity and the position
angle (PA) were derived from the second moment of the light profile of the LRG.
In this model, it is assumed that the ellipticity and the PA derived from the light
distribution are the same as the mass distribution profile.
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This being done, a source galaxy is randomly selected within the HST sample. with
the redshift information of both galaxies and the velocity dispersion, the Einstein
radius is computed thanks to the previous relation linking θE to σv. The value of
Einstein’s radius (see equation 1.18) is imposed so that the angular size falls in
the interval 0.8” < θE < 3.0”. The lower limit is chosen to prevent lens-galaxy
blending while the upper limit is set to fit into the image frame. If the angular size
of the Einstein radius is outside the frame of the image, another source is chosen.
After 100 iterations the dispersion velocity of the deflector is increased by 50%. If
the conditions are not met after this process, the deflector is discarded from the
dataset. As explained in the paper [28], this velocity dispersion boost involves a few
objects with small velocity dispersion and it is not expected to introduce a significant
morphological bias.

The next systematic choice made during the building process is the total magnifica-
tion constraint. E. Savary, K. Rojas, M. Maus, et al decided to impose µ ≥ 2 because
it coincides with the threshold for a multiple-image lens[37]. Setting a higher limit
would have increased the number of full Einstein rings among the simulations and
this could lead to an increase of false positives by mistaking ring galaxies.

When all those conditions are met, a high-resolution image of the lensed source is
computed and convolved with the CFIS PSF. Here the HST point spread function is
neglected since it is sharper than the CFIS PSF. Before applying the CFIS PSF one, it
is important to re-sample the PSF to the HST pixel size and then down-sampled to
the CFIS pixel size after the convolution. The final step is the addition of the lensed
source image to the foreground galaxy image.

2.2 Exploration of the dataset

Our dataset is made of multiple files divided into 5 types of data. We have first LRG
only images which are the CFIS-r images visible in fig 2.2. The second type of image
is Lensed source only images which are the lensed images of an HST source galax-
ies as shown in fig 2.3. The third photometric-based images are the combination of
LRG only and Lensed source only images which gives Lens simulation images.
Figure 2.4 represent those images which are the combination of images in fig 2.2
and 2.3. The two other types of data are PSF and RMS files. PSF files contain the
two-dimensional function associated with the response of a focused imaging system
(here the Canada France Hawaii Telescope) to a point source. We only get the PSF
from CFHT but as mentioned in section 2.1 we neglected the HST PSF. Finally, RMS
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Fig. 2.2.: Sample of 9 images from the CFIS-r dataset. Those images are used as lens
galaxies during the design of the dataset. Images are displayed with a linear red
colormap.

files correspond to Root Mean Square errors associated with each pixel. RMS files
were built from weight maps computed from gain and relative normalization of
noise using SWarp4 software. It is important to note that we only get RMS files
associated with LRG only images. We will see later how to generate RMS files for
Lens simulation files. A sample of PSF and RMS files can be found in figures 2.5
2.6.

2.3 Noise and signal

Imaging galaxies is not as simple as taking photographs in daily photography. Imag-
ing deep sky objects implies low light intensity where different noises become
non-negligible. Those noises arise due to different physical phenomena that we
won’t emphasize here because they have been corrected already. However, we
will focus on the photon noise which persists in data and cannot be canceled with
calibration files so it is important to quantify it.

The photon noise is linked to the physical nature of the light and affects the quality of
the data. This phenomenon is not perceptible by the human eye because of the retinal

4https://www.astromatic.net/software/swarp/
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Fig. 2.3.: Sample of 9 simulated lens images from the HST source galaxies dataset. Those
images are used as lens features during the design of the dataset. Images are
simulated lenses according to lens galaxies displayed in fig 2.2.

Fig. 2.4.: Sample of 9 simulated images from the CFIS-r and HST dataset. Those images
are addition of fig 2.2 and 2.3 images.
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Fig. 2.5.: Sample of 9 PSF images from the Canada France Hawaii Telescope.

Fig. 2.6.: Sample of 9 RMS images associated with CFIS-r images. Squares on some images
result from a mask of satellite tracks, cosmic rays or dead pixels.
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persistence that cancels irregularities in the photonic flux. The flux of photons is a
random variable that is associated with a counting problem. The statistics associated
with a counting phenomenon are modeled by Poisson distribution. We can thus
evaluate the noise σphotons by the following equation, where N is the number of
detected photons:

σphotons ∝
√

N (2.3)

Pixel intensities are expressed as ADU units which means Analog-to-Digital-Units.
One can easily switch from ADUs to the number of electrons thanks to the gain
g = number of electrons

ADU . We can thus link the intensity in ADU to the intensity in
electrons Ie− units with the gain g.

IADU = Ie− × g (2.4)

Thanks to equation 2.3, Ie− = σ2
e = RMS2 and we then get the following relation:

RMS2 = IADU

g
(2.5)

In our case, we can consider that the image is made of photons from the object of
interest and photons coming from the background sky IADU = Iobj,ADU + Isky,ADU .
In object regions and their neighborhood, the intensity of the sky is very low or even
negligible compared to the object intensity and IADU ≈ Iobj,ADU And the total Root
Mean Square error is :

TOTAL RMS2 = σ2
obj + σ2

sky ≈ IADU

g
+ σ2

sky (2.6)

It is important to notice that in regions away from an object, Isky,ADU ∼ 0 for
background substracted images and TOTAL RMS2 ≈ σ2

sky

If LRG only images are well background substracted, we expect the relation 2.6 to fit
to the data. In order to check that, let’s fit this linear relation on plotted pixel values
(in ADU) as a function of RMS2 as it can be found in fig 2.7. Before discussing
the results of this graph, let’s focus on the general trend and features of the point
clouds only. As discussed a few lines earlier, lower values of pixels, imply a dominant
background noise and lead to a plateau that is present in fig 2.8. It is common to
find profiles as displayed in fig 2.9 with points away from the point cloud with the
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computed gain (fit) real gain σ2
sky (fit) σ2

sky (plateau) σ2
sky (corner method)

33.27 31.58 13.43 13.56 12.12
42.36 42.36 3.84 3.88 3.19
44.79 44.49 6.77 6.81 4.00
41.43 39.04 3.98 4.11 2.72
53.92 53.97 4.12 4.58 9.35
42.12 41.83 4.29 4.35 3.73
39.16 46.55 4.82 4.86 2.78
52.78 52.75 3.83 3.88 3.53
28.93 29.03 5.36 5.48 4.16

Tab. 2.1.: Comparison of values computed for the gain and the background noise. fit values
stand for values computed thanks to linear regression, plateau by tacking the
mean value of the plateau and corner method by the method described in section
2.3. The real gain is the one available in the image header.

same trend but translated along the y-axis. It is due to one or several masks present
in the RMS file (see fig 2.6) increasing error bars in case of a polluting source like
satellite tracks, cosmic rays, or even dead pixels.

To enhance the accuracy of the fit of relation 2.6 on the scattered points, I discarded
points belonging to the plateau at low pixel values. However, we will also evaluate
the background noise by only considering points of this plateau. So, a sample of 10
fits is displayed in fig 2.7, and values of the computed gain and computed σ2

sky with
different techniques are available in table 2.1.

Fitted gain values are compared to the gain values available in the image headers.
For σ2

sky we compared fitted values with the evaluated mean value of the so-called
plateau. I also evaluated it by another method that I call the corner method. The
corner method consists in taking some pixel values at the 4 corners of the image
where the background is dominant. I took a square kernel of 5 pixels large at each
corner so we have a total of 100 pixels. To obtain the background noise, I took the
squared standard deviation of those pixels.

Coming back to table 2.1 results, we clearly see that the gain values computed
are coherent with the ones found in image headers and we also have the same
evaluations for the background noise. It is particularly true between the fit and
the plateau method. However, corner methods only consider 100 pixels which is
a small sample of the total background sky, and can thus not confidently evaluate
σ2

sky. Moreover, there is a non-zero probability that a contaminating neighbor source
(galaxy or star) is located in the corner (see an example in images fig 2.2) which
should have an effect on this estimation.
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Fig. 2.7.: Linear regression of 9 LRG only RMS2 as a function of pixel intensity in ADU
using relation 2.6.

Fig. 2.8.: RMS2 as a function of pixel intensity in log(ADU) for LRG only images
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Fig. 2.9.: Pixel value in log(ADU) as a function of RMS2 for LRG only images with pollut-
ing source and RMS mask. Here the higher values correspond to the RMS masks
with higher RMS values due to an increase of the error. This error is mainly due
to the presence of a polluting source which can take the form of a satellite track,
a cosmic ray or a dead pixel.

In the following of this work, we will need RMS files for Simulated images, but
we only have RMS files for LRG only images. Now that we know a bit more about
the link between the signal and the noise, it is easy to build a new RMS file for
Simulated images. But before that, I checked that images are a simple addition
of LRG only and Lensed source only images by substracting both files from the
simulated one. So based on equation 2.5, I reconstructed the RMS file with the
quadratic sum of the already existing RMS file and a computed Mean Square error
using the gain value available in the LRG only headers. Here is the expression of
the new RMS:

RMSreconstructed =
√

RMS2 +
IADU,Lensed_source_only

gLRG
(2.7)
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Methodology 3
In this chapter, I will address the process I built to perform an autonomous classifica-
tion of lensed galaxies. The first step in the process is the detection of the source
of interest in order to fit a Sersic model and compute common non-parametric
indexes, as we already mentionned in section 1.4. The next step is the training of
a machine learning algorithm able to differentiate non-lensed and lensed galaxies
from previously computed parameters. This chapter will first discuss the detection
of the main source, next the choice of parameters, and finally the choice of machine
learning models.

3.1 Detection of sources: segmentation maps,
threshold, and masks.

Source detection is an important step in my work since the quality of computed
parameters will influence the performance of the classifier. We will discuss this
influence in chapter 4. In order to detect sources I use photutils [38] which is
an astronomical python package for photometry. This package includes a func-
tion that detects sources above a specified detection threshold value in an image:
detect_sources1. This threshold is an absolute value that needs to be computed for
each image. The detect_source function takes as input the image data, a thresh-
old value that we will explore in the following, and a number of connected pixels
that have to be connected and higher than the threshold value to be considered
as part of the source. detect_sources returns a segmentation map which is a
two-dimensional array of the same size as the image. This segmentation map marks
the position of pixels part of a detected source by a positive integer associated with
a segment while 0 stands for the background. Segmentation files can be found in fig
3.1.

In the documentation of the detect_sources function, it is recommended to use
a built-in deblending function after the use of detect_sources. This deblending

1https://photutils.readthedocs.io/en/stable/api/photutils.segmentation.detect_
sources.html
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Fig. 3.1.: Images of segmentations maps for LRG only images of fig 2.2. A different color
of segment represents a different source

function is used to dissociate 2 different sources that are sufficiently close to be
detected through the same segment. This is highly interesting to report contami-
nating sources like a neighboring galaxy or star. However, in the perfect case of a
lensed galaxy without any contaminating source, the lens would be first detected in
the same segment as the deflector (as expected), but next it would be deblended
from the galaxy as a different source and even sometimes the lens itself can be cut
into several segments as some images from fig 3.2 illustrate it. In this case, we are
facing the same problem as before, which is to identify the nature of the source,
and if all the segments are part of the lens or a contaminating source. And since it’s
more difficult to know whether the deblended sources are lenses or contaminating
sources than detecting them all together, I will omit this step and quantify the
impact of close contaminating sources on the performances later. Nevertheless, a
good enough segmentation should already take into account the lens images inside
the segmentation map while contaminating sources that are not too close to the
source of interest should be detected in another segment. Only the really close
contaminating sources should be part of the main segment and interfere with the
computation of our parameters. This is controlled by the detection threshold that
we have to choose to minimize the effect of contaminating sources on the classifier
performances. An example of a convenient situation is displayed in fig 3.3. So, we
need a low enough threshold able to take into account the lens but a high enough
threshold to avoid the segmentation to take into account contaminating sources.
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I explored multiple methods to determine the threshold, for instance, a manual (trial
and error) method, a MAD-based method, and an automatic threshold determination.
The manual method is obviously not the best method but it has the advantage to
give an idea of the values the threshold can take to have the expected results.
The two main methods I deeply explored and tested were the automatic and the
MAD-based threshold. MAD means Median Absolute Deviation and is defined as
MAD ≡ median(|X − X̃|) with X̃ = median(X) and X the dataset. The MAD will
be used to compute a sharper and robust standard deviation σ by the following
relation: σ ≈ 1.4826 × MAD. We expect this sharper evaluation to keep the
lens while rejecting contaminating sources. The detection threshold will then be
the multiplication of σ and a multiplicative factor to have a more lax or stricter
condition. I used the mad_std function2 from the astropy [39] python package
which is a common package used in astrophysics. The second method I use is the
automatic threshold which is a photutils built-in function: detect_threshold3.
This function takes as input the data, and the number of standard deviation above
the background flux that can be considered as a pixel possibly part of the source.
In addition, it is possible to provide the value of the background and also the value
of the 1-sigma standard deviation of the background or simply the RMS2 array
which is called here the error. If the background and the error are not provided,
they are computed using a sigma clip. The value returned by detect_threshold
is threshold = background + n_sigma × error Again I will test those methods and
different combinations of input parameters and address the results in the next
chapter.

A last thing to build and that we will need in the next step is a mask that will
identify the position of contaminating sources which are not already included in the
main segmentation map if it is the case. At this step, we need a segmentation map
that only contains the main source segment and a mask that contains all the other
sources segments that we want to avoid during our background calculations for
instance. This mask is just a boolean array: True for the pixels we want to eliminate
and False for the rest. To take as an example the figure 3.3, the mask would only
contain the red segment which is labeled with the True statement and False for the
rest of the array while the segmentation map will in the following only contains the
main green segment.

2https://docs.astropy.org/en/stable/api/astropy.stats.mad_std.html
3https://photutils.readthedocs.io/en/latest/api/photutils.segmentation.detect_

threshold.html
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Fig. 3.2.: Sample of deblended lensed images. The deblend of the image detects the
different sources that are mixed within a segmentation map. Here you can see
additional segments that were found by the deblending function and that were
originally included in the main segment in fig 3.1. We note that 3 lensed sources
out of 9 are not deblended from the foreground source while the majority seem
to be.
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Fig. 3.3.: An example of ideal segmentation in the presence of a contaminating source. We
can see both segmentation and the image in transparency. The lens ring and the
deflector galaxy are well detected into a single segment, while the contaminating
source is detected as another segment. The green segment represent the segmen-
tation map while the red segment represents the mask. This example was built
for illustration purposes.
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3.2 Parametric and non-parametric indexes

Now that we have our segmentation map that identifies the position of the source,
and a mask that identifies contaminating sources we can compute a variety of
parameters and indexes. This is performed with statmorph4 [40], a Python package
for calculating non-parametric morphological diagnostics of galaxy images, as well
as fitting 2D Sersic profiles. statmorph takes as input an image, the segmentation
map associated, a weight map or a gain value, a mask, and the psf file. We could
use a gain value but a weight map should increase performance as it associates an
appropriate weight to each pixel of the image in the calculation. An easy way to
build it is to take the inverse of the RMS file.

Statmorph provides parameters from the 2D-Sersic profile as well as morphological
indexes. I choose 8 different techniques to characterize the light distribution. There
is a total of 10 different parameters that will be explained in the coming subsection.
This parameters are :

• Sersic parameters: amplitude, effective radius, Sersic index, ellipticity

• Asymmetry

• Concentration

• Deviation

• Gini

• Intensity

• M20

• Smoothness

3.2.1 Sersic parameters

The Sersic parameters are amplitude Ie, effective radius Reff , Sersic index n,
center coordinates xc and yc, ellipticity e, and rotation angle θ. As a reminder,
the Sersic profile follows this 1D-formula that can be generalized in 2D: I(R) =

Ieexp

(
−bn

[(
R

Reff

) 1
n − 1

])
. The amplitude is the surface brightness at the effective

radius. The effective radius - also known as the half-light radius - is the radius
containing half the luminosity of the galaxy. The Sersic index controls the steepness

4https://statmorph.readthedocs.io/en/latest/
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of the luminosity profile. The center coordinates identify the position of the center of
the galaxy in the image. The ellipticity is defined as

√
1 − b2

a2 with a the semi-major
axis and b the semi-minor axis of the ellipse (e = 0 is a circle). And the rotation
angle θ that is positive from the positive x-axis in trigonometric direction, defines
the rotation of the ellipse on the image.

As discussed earlier, we mainly expect amplitude, effective radius, Sersic index, and
ellipticity to be discriminant parameters. Indeed, the presence of a lens image should
increase the effective radius, but decrease the surface brightness at the effective
radius (amplitude). The lens should also decrease the steepness of the profile by
adding light at the periphery of the galaxy and thus reduce the value of the Sersic
index. Ellipticity should also be affected with higher ellipticities for non-symmetric
lenses and lower ellipticities for ring lenses that should circularize the luminosity
profile of the galaxy. The center coordinates and rotation angle are not expected
to have any impact since there are randomly distributed variables. In addition, our
sources are all centered on images.

However, parameters do not always follow the expected trend. This is the case
for the 2 last examples in fig 1.5. In fact, other factors are at stake, such as the
difference in the area of the segmentation when the lens is added, the magnification
and thus the relative luminosity between the deflector and the lens, or also the gap
between the deflector and the lens.

3.2.2 Asymmetry

Apart from Sersic parameters, statmorph computes a set of morphological indexes
that are commonly used to describe galaxies. I made a selection of 7 different
indexes that could be impacted by the presence of the lens. Let’s first introduce
the asymmetry index. Asymmetry [31] quantifies how rotationally symmetric the
luminosity profile of the galaxy is. It is basically the subtraction between the image
and the 180-degree rotated image around the galaxy’s central pixel. With I(i, j) as
the value of the pixel in position (i,j), I180(i, j) the value of the pixel in position (i,j)
rotated of 180 degrees about the central pixel of the galaxy, and B180 the average
asymmetry of the background; the complete formula is :

A =
∑

i,j |I(i, j) − I180(i, j)|∑
i,j |I(i, j)| − B180 (3.1)
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B180 is computed thanks to the average value of the absolute difference between
background pixels and rotated background pixels. The central pixel is determined
by minimizing asymmetry. As notified in [31], very smooth elliptical galaxies get low
asymmetry while spiral, irregular, or even merging galaxies will get high asymmetry.
The presence of a lens will act like an irregular galaxy and we expect a higher
Asymmetry value while non-lensed galaxies will stay in lower values. In the case
of a full-ring lensed galaxy, the Asymmetry should settle in the lowest values and
we will maybe miss those cases. However, the combination with a large panel of
parameters should compensate for this effect.

3.2.3 Concentration

Concentration [31], is the logarithmic ratio between the 80% total flux radius and
the 20% total flux radius. With r80 the circular or elliptical 80% total flux radius and
r20 the 20% total flux radius, Concentration is expressed as:

C = 5 log
(

r80
r20

)
(3.2)

The central pixel is also determined by minimizing Asymmetry. As the presence of a
lens should decrease the effective radius, r80 and r20 should also be affected and we
thus expect the concentration to be lower.

3.2.4 Deviation

Deviation [32] is a measure of distance between the intensity centroid and the center
of the brightest region. The deviation is a simple Euclidean distance between the
centroid coordinates xcen and ycen and the center of the brightest regions xl(1) and
yl(1). With nseg the number of pixels within the segmentation map, the deviation is
expressed as:

D =
√

π

nseg

√
(xcen − xl(1))2 + (ycen − yl(1))2 (3.3)

And coordinates of the centroid are evaluated with:
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(xcen, ycen) =

 1
nseg

∑
i

∑
j

ifi,j ,
1

nseg

∑
i

∑
j

jfi,j

 (3.4)

We expect the deviation to have greater values in the case of a highly magnified lens
but unfortunately for a low magnification, the deviation will stay near 0. Galaxies
with active star formation or 2 pseudo bulges can mix with the high-magnified
lensed population. Even if I have low expectations with this index, I keep it in case
it could be disentangled thanks to another parameter.

3.2.5 Gini

The Gini index [31][32] was first designed for economics but it can easily be used
in our field of research. The Gini coefficient measures the inequality of light in the
light distribution within the galaxy. This index is based on the Lorentz curve of the
galaxy’s light distribution and does not depend on the spatial position. With n the
number of pixels involved, X̄ the mean value of the pixels, and Xi the ith pixel
value, the classical definition of the Gini coefficient is given by:

G = 1
2X̄n(n − 1)

n∑
i=1

n∑
j=1

|Xi − Xj | (3.5)

Here the Gini index is computed thanks to the following equation:

G = 1
X̄n(n − 1)

n∑
i

(2i − n − 1)Xi (3.6)

G = 0 is a completely equalitarian population that corresponds to a constant
luminosity profile in our galaxy frame of work. In case a pixel contains the total flux
of the galaxy, Gini would be equal to 1. A lower value of the Gini index is expected
with the presence of a lens. Indeed, the lens should input additional light in the
peripherical regions that are in general the faintest regions. This has the effect of
reducing inequalities in the luminosity profile.
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3.2.6 Intensity

The Intensity index [32], is the ratio in flux between the two brightest regions of
the galaxy I = I(2)

I(1)
with I(2) and I(1) the second and first brightest regions fluxes.

The evaluation of these two fluxes is performed by smoothing the luminosity profile
with a Gaussian blur. The region is then defined by following the maximum gradient
path with the calculation of 8 neighbor pixels. The process stops at a local gradient
maximum and the region is made of pixels linked to the maximum. Galaxies with
a single bright bulge approach 0 while lensed galaxies can host a secondary bright
region and approach values close to 1. However, the same remarks as the Deviation
index can be made but I keep it in case a disentanglement can be made thanks to
another index.

3.2.7 M20

The second-order moment is the flux of each pixel multiplied by the squared distance
to the center of the galaxy. We use the M20 index [31][32] which is defined as the
normalized second-order moment of the 20% brightest pixels. By ranking pixels
in order of decreasing flux, the pixels moment is summed while the total of the
summed brightest pixels equals 20% of the total flux:

M20 = log

(∑
i Mi

Mtot

)
, while

∑
i

fi < 0.2ftot (3.7)

With Mi the second order moment of the ith pixel, fi the flux of the ith pixel, ftot

the total flux, and Mtot the total second order moment :

Mtot =
n∑
i

fi

[
(xi − xc)2 + (yi − yc)2

]
(3.8)

The central coordinate xc and yc are determined such that Mtot is minimal. The
M20 index is more sensitive to mergers and also active star-forming regions in the
galaxies. This index is more sensitive than the Concentration index for these two
types of galaxies because it does not take a circular or elliptical aperture and the
galaxy center is a free parameter. It is expected to have higher M20 values when a
lens is present because the second-order moment of a lensed pixel is larger than a
pixel with the same flux in the bulge because of the distance to the center. Again,
low-magnified lenses can be misclassified with non-lensed galaxies, because the flux
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of the lens is not high enough to be in the 20% brightest pixels. Ring galaxies can
also settle in high M20 values.

3.2.8 Smoothness

Finally the smoothness [31] index quantifies the number of small structures. It is
the substraction of the smoothed image to the original one. The definition equation
is given by:

S =
∑

i,j |I(i, j) − IS(i, j)|∑
i,j |I(i, j)| − BS (3.9)

With I(i, j) the pixel intensity at position (i, j), IS(i, j) the intensity of the pixel
at position (i,j) of the smoothed image, and BS the average smoothness of the
background. This index seems to work for high spatial-resolution images. We
know it works for well-resolved images, and the smoothness should increase in the
presence of a lens. Indeed, lenses add small structures at the periphery of the galaxy
that can be found in higher values of smoothness.

3.3 Classifiers

After dimensionality reduction, the next step is the classification. Although, We
substantially reduced the dimensions of the dataset but we still have a multidimen-
sional parameter space. In the parameter space, the distribution of these parameters
piles up and spread on different regions depending on the class of the object (if
lens or not). Sometimes both distributions can overlap in some dimensions while
they are detached from each other in other dimensions. This segregation between
clusters of items is a chance for us to differentiate lensed cases from non-lensed
galaxies. This is where classifiers play a major role, they automate the computation
of a multidimensional border that allows us to identify the category of the galaxy.
There are many classifiers algorithms that we tested but I will mainly focus on 3
main algorithms: Support Vector Machine (SVM), Random Forest, and Multi-Layer
Perceptron (MLP). Before introducing the algorithms, it is important to mention that
I use a widely used Python package: scikit-learn[41]. It is a massive library of
machine-learning tools and where all the algorithms I used were implemented.
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Fig. 3.4.: Representation of the support vector machine algorithm in a 2D parameter space.
Class blue and class green are separated by the red hyperplane. By Larhmam5

3.3.1 SVM

First, let’s explain the Support Vector Machine algorithm. In order to have a better
comprehension of this classifier, a simple classification in a two-dimensional space
is displayed in fig 3.4. This algorithm [42][43] is built with the simple idea of
separating two different classes of parameters by a hyperplane (a line in 2D, a plane
in 3D) such that the distance between the closest points and the hyperplane is the
highest. This hyperplane is represented by the red line in fig 3.4 and the yellow
zone is called the margin. The so-called "support vector" is the closest data from the
hyperplane. In case the limit is not a simple hyperplane, we use the kernel trick.
This trick allows the use of a linear classifier in non-linear situations. The parameter
space is transformed into a higher dimension parameter space that allows a better
separation by a hyperplane. Figure 3.5 is an illustration of the kernel trick.

3.3.2 Random forest

The second algorithm is the random forest. This algorithm [43][44] is in fact a
combination and an optimization of a simpler algorithm which is the decision tree
so let’s explain the decision tree algorithm. The decision tree classifier is able to
make a classification from a succession of decisions that can be represented by a
tree as it is illustrated in fig 3.6. The random forest is just an ensemble learning
method combined with Bootstrap. The ensemble method used in the random forest
algorithm is the bagging that consists in combining multiple Decision trees like a
committee of decisions. During the process of tree building, only k attributes are
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Fig. 3.5.: Representation of a 2D distribution (left) and the reparametrization of this dis-
tribution into a 3D space (right). The green dotted line represents the linear
SVM while the red dotted line is associated with the red plane and represents the
SVM using the kernel trick. The green line does not succeed to separate the two
distributions in a convenient way, while the red plane (and thus the red circle)
perfectly classify the distribution. By Wikimedia6

selected out of n attributes in the random forest algorithm. Each decision tree gets a
random subsample of the dataset (with replacement) as a learning dataset, this is
the bootstrap method. Each classification made by the committee of decision trees is
stored and the final class is attributed with a majority vote. An illustration of the
random forest is available in fig 3.7.

3.3.3 Multi-Layer Perceptron

Finally, the third classifier: the Multi-Layer Perceptron. An MLP [43][45] is a fully
connected network of artificial neurons, called perceptrons. An artificial neuron
is an elementary unit designed to receive one or more inputs that will be linearly
combined with appropriate weights to return an output. Weights are learned by the
algorithm to fit the wanted result. The output of the neuron is usually transmitted to
an activation function (sigmoid, tanh, ReLU...) that will ensure a normalized output.
A Multi-Layer Perceptron is a network of these elementary units arranged in layers
of a few neurons. The architecture of this network is displayed in figure 3.8, the first
layer is the input layer that receives the data, next several fully connected layers
can follow along and are called hidden layers, and finally, we have the output layer.
While a single neuron can handle a simple function, an MLP can deal with highly
non-linear functions with a combination of multiple artificial neurons. In our case, I
expect the MLP algorithm to return the best results, because such a method allows
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Fig. 3.6.: Decision tree that classifies survivors of the Titanic wrecking. Here we clearly see
that survivors were ladies and children less than 9.5 years old with less than 3
siblings. By Wikimedia7

Fig. 3.7.: Example of a decision tree architecture (left), and architecture of a random forest
algorithm (right). The gray zone represents the committee of decision trees
trained on Bootstrapped datasets. The final class is attributed to the majority
class attributed within the committee. By Wikimedia8
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Fig. 3.8.: Architecture of a Multi-Layer Perceptron (MLP)

us to have more complex functions to separate the 2 distributions. Indeed, artificial
neural networks are considered Universal approximators, which means that they
can be viewed as a more sophisticated version of Taylor’s series expansion.

3.3.4 Performance scores

Performance of these classifiers will be presented in the chapter 4 but we first have
to enumerate our requirements to identify what is a nice result. Obviously, a perfect
classifier that returns all the lenses present in the data without any misclassification
would be the best result. In reality, we will not have a perfect classifier so we want it
to return a maximum of lenses with a low rate of false positive cases. To evaluate
the performances of our classifiers we will divide our dataset into a training set and
a test set. The training set represents 60% of the total size of the dataset and the test
set is 40% of the total size. The training set is obviously reserved to train the model
while the test set is reserved to make an unbiased evaluation of the model. Since
positive cases are lensed galaxies (P) and negative cases are non-lensed galaxies (N),
the True Positive instance is thus the number of lensed galaxies that are recovered
by the classifier as lensed galaxies. True Negative are non-lensed galaxies recovered
as non-lensed galaxies, False Positives are galaxies that are recovered as lensed
galaxies but are not lensed in reality. Finaly, False Negative are lensed galaxies
that are recovered as non-lensed ones. When the evaluation is performed we get
the confusion matrix which summarizes the number of True Negative (TN), False
Positive (FP), False Negative (FN), and True Positive (TP) predictions:(

TN FP
FN TP

)
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Performances can be measured with some commonly used quantities: accuracy,
precision, and recall. The accuracy is the fraction of correct predictions. The
accuracy is a quantity that reflects how good the predictions of the classifier are. The
precision returns the fraction of correct positive predictions out of the total positive
predictions. A low precision reflects a high amount of false positive predictions. The
recall returns the fraction of correct positive predictions out of truly positive ones. It
reflects the ability of the classifier to find all the positive cases. Precision and Recall
are sometimes called purity and completeness for these reasons. All these numbers
are computed thanks to the confusion matrix that returns the expression of accuracy,
precision, and recall by :

Accuracy = TP + TN

P + N
, Precision = TP

TP + FP
, Recall = TP

TP + FN
(3.10)

With P = FN + TP and N = FP + TN . The two main quantities we want to
maximize are precision and recall. High precision is required in order to have the
fewest false positive case and then avoid waste of observation time on following-up
telescopes. And then a high recall is interesting because we want to identify the
maximum of lenses present in the dataset. To synthesize these performances in one
single index, it is interesting to consider the F-score which is the harmonic mean
between precision and recall.

Fscore = 2Precision × Recall

Precision + Recall
(3.11)

It is also important to emphasize that accuracy and precision are highly sensitive to
prior. For example, a completely unbalanced dataset will massively impact accuracy
and precision while recall is not affected. In our case, we have a 50/50 dataset.
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Results 4
This chapter is exclusively dedicated to the results of my work and what could be
understood from them. As exposed in the previous part in section 3.2, we want
to maximize the precision, the recall, or just the f-score. In order to get the best
results, we will try to find the right input parameters and thus have the highest
scores. So we will choose our input parameters such that these quantities reach
their maximum values. However, failing cases can happen, for whatever reasons
that I still not understand, statmorph is not always able to process images. This
means that no data is retrieved from images. Hopefully, this represents around 10%
of the dataset and the vast majority is processed. 10% of missing data is anyway
a significant part and we will discuss later solutions that can be implemented to
handle this problem.

In addition to that, the Sersic model fit is not always able to converge or the
computation of morphological indexes can be considered as non-accurate enough.
In that case, a value is returned anyway but a flag is associate to it. There is two flag
parameter, one for the quality of the Sersic fit, and another one for the quality of
the morphological indexes. In the case of the Sersic model, it is a binary flag (0: no
problem, 1: convergence problem). For morphological indexes, the flag can take up
to 4 values according to the severity of the computation (0: good, 1: suspect, 2: bad,
4: catastrophic). In order to get better results I will introduce those flag values in
the parameter matrix. I will nevertheless propose solutions to reduce flagged cases
and increase classifiers scores.

4.1 Parameter space

In this section, the input parameters will be fixed but their influence on the results
will be discussed later in section 4.4. Values of our input parameters are fixed to
values that maximize the F-score. Now that our segmentation parameters are fixed,
statmorph provides us with a parameter space that ensures good performance.
The parameters are described in section 3.2. Again the parameter space is a high-
dimensional space that can’t be seen as a whole within an image. To have a better
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idea of the behavior of indexes in the presence of a lens, we can plot them by pair
of parameters. The distributions are scattered in fig 4.1. Before discussing further
the results of these plots, it is important to know that these figures only represent
perfectly working cases, flagged points follow the same behavior and are established
in the same regions of the parameter space. To not overload the graphic, we only
consider perfectly working cases. As revealed by the scatter plots of amplitude vs
effective radius and n vs ellipticity, Sersic parameters are not the best at dissociating
lensed from non-lensed distributions. However Morphological indexes seem to well
differentiate the two classes. The clearer separation between non-lensed and lensed
distributions is the asymmetry and the concentration indexes as can be observed in
fig 4.1. Other striking plots can be found in the appendix A of this work.

As already discussed the expected trend on Sersic indexes is not always respected
due to external reasons. It can be well observed since lensed and non-lensed
point distributions are massively overlapping each other. As fig 4.1 suggests, the
combination of the Sersic index with the ellipticity is a better-discriminating combo.
Nonetheless, the separation is not that obvious and can still produce misclassification.
On the other hand, asymmetry, concentration, Gini, and M20 indexes seem to be the
most powerful combination of indexes.

In addition to these parameters, I will use a quantity that is computed by statmorph
and that can help the classification. This quantity is the Signal-Noise Ratio (SNR).
This quantity, as its name suggests is the ratio between the signal (source pixels)
and the noise (RMS of the same pixels). Here statmorph returns the mean value of
this ratio. Regarding the figure 4.2, the SNR is higher on average for lensed images
which is coherent with the design of the lensed images. Indeed, lensed images have
an extra signal from the lens image that we added to the foreground galaxy.

The last parameters that will join the parameter matrix are the flag values that can
play a role in the classification. Indeed, we have slightly more flags for non-lensed
galaxies (53% of the non-lensed galaxies) while 49% of the lensed galaxies are
flagged. This can be a nice indicator for some difficult cases. Let’s see next how the
classifier scores are affected by the presence or not of some parameters. Referring
to the table 4.1, we clearly see the importance of the morphological parameters in
the classification process. We can also notice better performance using the SNR.
The fact that the SVM is better without the Sersic parameters is understandable
since those parameters are largely intricated. And finally, we observe that without
flags parameters, the SVM is able to get the highest performances. Including the
flags, maybe is too sophisticated for a SVM. Maybe these parameters will be better
accepted in the random forest classifier since it is a model following sequential
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Fig. 4.1.: Representation of the 11 parameters in 6 different scatter plots.

Accuracy Precision Recall F-score
all 92.00 93.15 92.07 92.61
w/o flags 93.36 93.54 92.46 93.00
w/o SNR 92.16 91.54 92.07 91.80
w/o Sersic 93.27 93.36 92.46 92.90
w/o morph. 86.54 86.53 84.53 85.69

Tab. 4.1.: Scores of an SVM classifier depending on the parameter matrix

decisions. SVM is a classifier attempting to separate classes by hyperplanes that
represent a smooth and continuous border. This implies approximations in the
border that can require a non-continuous border. Decision trees can easily create
such discontinuities. MLP classifiers can also model more complex borders so flags
should be more interesting in the case of both random forest and MLP.

4.2 Classifiers

In this section, we will discuss the performances of all 3 classifiers with their
variations. For instance, SVM can handle multiple kernels so we will test the
different performances. We will then compare the best SVM to the random forest
and MLP. We will also compare the performances without some types of data like in
the previous section. The results can be found in table 4.2.
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Fig. 4.2.: Distribution of the Signal-Noise Ratio (SNR) depending on the class of the image.

Let’s begin with the SVM. We already saw that the best result is found without
flags included in the data. so I kept this dataset and tested SVM with 4 different
kernels. The worst result is given with the sigmoid kernel. With the polynomial
kernel the recall, and the f-score fall below 90% even if the precision reach 95%.
Even if the precision is high the recall drop at 85% and the RBF kernel ensures
better global scores (F-score). It is important to note that this polynomial is the best
polynomial which is a third degree while lower and higher polynomial degrees make
the scores drop even lower. Because the RBF kernel is the default one we get back
the same result as in the previous section which is the best result found with the
SVM classifier.

Next, the random forest outperformed the SVM performances as the table 4.2 report
it. The improvement is only a few tenths of a percent but still an improvement. As
predicted before, the flags indexes have a positive effect when taken into account.
Still, this effect has a limited impact. We again verify the importance of the SNR and
the morphological parameters on the results. To summarize, the random forest gets
its highest scores with all the set of parameters as we predicted before.

Finally, the MLP is the method that reports the best scores (see table 4.2). It still
improves by a few tenths of percent and even a percent in the case of precision. It
uses the ReLU activation function. We can easily make the same remarks as for the
random forest classifier since the best result is given with all the set of parameters.
We can just notice that flags have an even lower impact on the performances than in
the random forest case. Even if the differences are not significant between "all" and
"without flags", it is preferable to have higher precision over the recall so we will
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consider the MLP with all the set of data, the best classifier of this study. To have
faster results, I used for each method a subset of the total data which represents a
sample size of 3000. This model gave the following confusion matrix :(

546 22
36 481

)

4.3 Study of the false positives and false negatives
populations

To have a better view of the difficulties encountered by the MLP to classify some
cases, we will scrutinize the false positives and false negatives classified images. In
figure 4.3 we can identify 3 main causes of the misclassification as lensed galaxies.
The first one is the presence of one or several close contaminating sources. It can be
a merger. The second one is the presence of a high noise in the image and the outer
regions of the galaxy are hidden in the noise, and the noise is then considered as the
lens component. This results in a large bulge that can be classified as a lens due to
an increase in the effective radius for instance. In general, the Sersic parameters are
modified but seem to be close to a blurry classification border. The third reason is
that the galaxy is highly elliptical and has a large and luminous disk.

In false negative cases in fig 4.4, the main reason is the presence of a large gap
between the deflector and the lens image which is not detected inside the main
segment. The second reason is that the flux of the lens images is too low and is
mixed with the background.

4.4 Impact of input parameters

In this part, I will explore all the results associated with the segmentation map and
the impact it has on results. We will discover the sensitivity of the performances to
the input parameters of the detection functions.
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Accuracy Precision Recall F-score
SVM

linear 92.07 92.84 90.33 91.57
polynomial 90.88 95.63 84.72 89.85
sigmoid 85.71 86.79 82.59 84.64
rbf 93.36 93.54 92.46 93.00

random forest
all 94.29 94.87 93.04 93.94
w/o flags 94.01 93.46 94.00 93.73
w/o SNR 93.18 93.01 92.65 92.83
w/o Sersic 93.46 93.55 92.65 93.10
w/o morph. 89.03 89.48 87.23 88.34

MLP
all 94.65 95.63 93.04 94.32
w/o flags 94.38 95.78 92.26 93.99
w/o SNR 93.82 95.36 91.49 93.39
w/o Sersic 93.73 94.81 91.88 93.32
w/o morph. 88.02 88.92 85.49 87.18

Tab. 4.2.: Scores of multiple classifiers with variations on the dataset

Fig. 4.3.: A sub-sample of 8 false positive images. There are mainly 3 scenario: (1) it is
a merger galaxy or there are one or many close contaminating sources (panels
D, F), (2) there is a large bulge or the outer part of the galaxy is mixed in the
background noise (panels A, C, G, H), (3) the galaxy is highly elliptical and/or
have a luminous disk (panels B, E). Segments are displayed on top to identify the
detection.
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Fig. 4.4.: A sample of 8 false negative images. There are 2 main scenarios: (1) the gap
between the deflector and the lens is too large to be detected in one single
segmentation map, (2) the flux of the lens is too faint and is mixed in the
background noise. Segments are displayed on top to identify the detection.

4.4.1 Detect threshold

From the image and the number of sigmas n_sigma above which the function
detect_threshold performs a source detection, this function is able to determine a
convenient threshold value adapted to each image. So, it is important to quantify
the impact of the different input parameters on the performances. In all our tests
the background mean value is evaluated with the corner method, which was already
discussed in part 2.3. For the error parameter, I did 2 tests with two different
methods: (1) the evaluation of the error is computed by the standard deviation
of the background using the corner method and (2) the RMS2 file is given as a
2D array of errors for each pixel. It is also important to know that our results are
performed with the default SVM classifier (with RBF kernel) which we will consider
as our fiducial classifier. Different tests on the classifiers will be performed later.

We have three main cases of data, the first one is the data without any problem,
where the Sersic fit as well as the morphological indexes can be trusted. The second
case is the case where the Sersic fit is not converging and has to be considered with
precautions. This case is reported by a Sersic flag equal to 1. The third class is the
case where the morphological computations are flagged (ie: 0,1,2, or 4). Note that
both Sersic flags and morphological flags at the same time is a possibility. The last
case is the case where no data is provided by statmorph, we call them failing or
defaulting cases. By looking at figures 4.5,4.7, and 4.6, we clearly notice that failing
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Fig. 4.5.: Performance of the fiducial SVM classifier with the detect_threshold method,
mean and standard deviation of the background using the corner method. In
the top panel, we can see the evolution of working cases, Sersic flag cases,
morphological flag cases, and defaulting cases depending on the value of
n_sigma. The bottom panel represents the evolution of the different performance
scores: accuracy, precision, recall, and the F-score. To maximize the score values
and in particular the precision score, and minimize the number of flags and
failing cases, a good value of n_sigma would be 1.5. This value is a good tradeoff
between good precision and a low number of failing and flagged cases.

cases settle around 10%. while the number of morphological flags stays below 5%.
The working cases are slightly above 50% and the Sersic flagged cases are rarely
above 38%.

In figure 4.7, we see the test using the MAD to determine the detecting threshold.
This method has the advantage of only using the data, no mean background and
error need to be given. We clearly see that the scores are about the same order
of magnitude, however, the results are higher in fig 4.6 so the detect_threshold
method with RMS2 files. The method using the corner method for both the back-
ground value and the error (fig 4.5) gets sensible same results as in fig 4.6 but
slightly lower. No matter the method which is used there is a clear necessity of
tradeoff to have good values in working rate and good F-score (see section 3.3.4
for the definition of the accuracy, the precision, the recall, and the f-score). In fig
4.6, with n_sigma = 3.5, the F-score, the accuracy, and the precision are the highest.
But at the same time, the number of working cases are correct, and the number of
morphological flagged cases is still low whether it reached one of its highest value.
The number of failing cases is still high but it is a typical value compared with other
methods. Finally, the number of Sersic flags is reaching a minimum. The recall is not

50 Chapter 4 Results



Fig. 4.6.: Performance of the fiducial SVM classifier with the detect_threshold method,
the mean background is computed using the corner method and the error is
RMS2 file. In the top panel, we can see the evolution of working cases, Sersic
flag cases, morphological flag cases, and defaulting cases depending on
the value of n_sigma. The bottom panel represents the evolution of the different
performance scores: accuracy, precision, recall, and the F-score. To maximize the
score values and in particular the precision score, and minimize the number of
flags and failing cases, a good value of n_sigma would be 3.5. This value is a
good tradeoff between good precision and a low number of failing and flagged
cases.

at its highest value it is preferable to maximize the precision first and next the recall
since we want the lowest false positive rate. It seems that the detect_threshold
method with the RMS2 files and mathrmn_sigma = 3.5 is the best compromise so
I will use these parameters in the following of this work.

4.4.2 n_pixel

The last parameter that can influence the segmentation map is the number of
connected pixels n_pixels above the threshold required to be part of the source.
This parameter step in the detect_sources function. Fig 4.8 reveals the result of
the test performed with the last best parameters. It seems that the best results (ie:
high accuracy, precision, recall, and F-score) are performed at n_pixels=4. With a
value of 4, we have a rather high rate of working cases while flagged and defaulting
cases stay rather low. We also have the best scores with this value. We will then use
n_pixels=4 in the following of this work in order to maximize the quality of the
parameters.
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Fig. 4.7.: Performance of the fiducial SVM classifier with the MAD method. In the top panel,
we can see the evolution of working cases, Sersic flag cases, morphological
flag cases, and defaulting cases depending on the value of n_sigma. The
bottom panel represents the evolution of the different performance scores: ac-
curacy, precision, recall, and the F-score. To maximize the score values and in
particular the precision score, and minimize the number of flags and failing cases,
a good value of n_sigma would be 1. This value is a good tradeoff between good
precision and a low number of failing and flagged cases.

Fig. 4.8.: Influence of the n_pixels parameter in the detect_sources on the performances
with the fiducial SVM classifier. n_pixels controls how many connected pixels
have to get a higher value than the detection threshold to be considered part of a
source.
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Discussions & conclusion 5
The analysis in the previous chapter has enabled us to find that :

1. Thanks to an ensemble of systematic tests, we have been able to identify the
best setup for optimal object detection,

2. Among multiple parameters (Sersic parameters, morphological parameters,
Signal-Noise ratio, Flag values) morphological indexes are the most relevant
parameters that enable a rather clear separation between the different classes,
in particular asymmetry, concentration, and gini,

3. We have compared 3 different classifiers (Support Vector Machine, Random
Forest, Multi-Layer Perceptron) and identified the Multi-Layer Perceptron as
the best classifier mainly based on precision and recall metrics.

5.1 Discussion of the results

First of all, the results are encouraging since this work is original in its approach
and the results were uncertain since no existing work using this approach has been
found yet. Even if we know that contaminating galaxies within the segmentation
map are more likely to arise as a false positive, we cannot quantify this phenomenon.
Is it systematically classified as a false positive lens? To have a better view of this
effect, it would have been nice to have the entire control on the dataset design. We
could have quantified the necessary conditions to detect 2 close galaxies in a single
segmentation. This can be estimated with a Monte Carlo method which chooses
random coordinates, random size, and random luminosity for the contaminating
source, and then the detection is performed. After that, it is easy to determine the
minimum necessary conditions to have a detection of 2 close galaxies in a single
segment.

In the frame of a PhD work, with longer-term deadlines, it could have been in-
teresting to build my own dataset to get higher control over it. Having access to
E.Savary’s dataset was a real gain of time but also a nice data processing exercise.
Again, the control on the dataset would have allowed us to get access to wider
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image stamps. Indeed, too small image stamps can result in too large segmentation
maps and thus too few backgrounds that impact the computation of the Gini index
for example. This is an advantage of my method compared to a CNN method that
accepts preformatted images in a given size. our method can easily scale to different
size of images.

Earlier, I criticized the lack of interpretability of CNNs, but our best performances
are based on an MLP which is also a neural network. However, we can easily draw
the probability density that the MLP computed by meshing the parameter space and
we can thus have a better comprehension. In fact, it is easier to understand why
given variations of parameters betray the presence of a lens, while CNN returns
image features that don’t have a physical explanation which is one of the main goals
of this work.

Now it’s time to compare our results with the results from E. Savary et al. [28].
The paper reports a precision of 100% and recall of ≡ 95%. This means that almost
or even no false positive lens galaxy is returned by the CNN and about 95% of
the lenses available in the dataset will be detected. To take the example of the
Euclid mission, we expect to discover about 280,000 lenses, and the use of such an
algorithm would rise approximately 266 000 quasi-certain lensed candidates. Our
model is a bit less efficient than the CNN model with precision and recall both at
94.4%. The values of precision and recall are always in the same order of magnitude,
while CNN allows more fine-tuning of the parameters to increase or reduce the
precision or recall value. In addition, this value does not take into account the fact
that we have 9% of our dataset that is discarded by statmorph errors, and it has
to be taken into account. By considering this 9% going back in the negative cases,
accuracy = 94.6%, precision = 95.6% and recall = 91.8%.

5.2 Other methods

During the process of research, many other methods came to our mind and I think
they are worth exploring them.

The first method is inspired by a method used in the direct imaging exoplanetology
field. Direct images of exoplanets are preprocessed such that the host star light
is canceled from this image. After this preprocessing it still remains spatially and
temporarily varying thermal noise that results in speckles. The exoplanet signal is
thus hidden inside this thermal noise between those speckles. To reduce this thermal
noise closer to the background limit, the noise can be identified by its principal
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components using PCA [46] and then subtracted from the original image. PCA
stands for Principal Component Analysis [47] and consists in transforming correlated
variables into uncorrelated variables in order to describe the new parameter space
with fewer components (the principal components). By applying PCA to the whole
image, we could describe lensed and non-lensed images with 2 different sets of
principal components that will allow us to categorize them. In fact, we can apply
this method to the parameter space that we computed in this work. You will find
in the sect A 2 graphs representing the 3 principle components of our parameter
matrix. It results in still intricated distributions.

The next innovative method is to use the azimutal profile of the galaxy. The azimutal
profile as I defined it, is the maximum of pixel values on a circle at a growing radius
as already appeared in fig 1.5. One could have taken the average value, the sum,
or the standard deviation for instance. When a lens is present, a bump appears on
the azimutal profile. These different curves can maybe be recognized by one of the
classifiers. Next, a PCA will give the principal components of the non-lensed profile.
The transposition of the lensed profiles in the new vectorial space could result in a
more distinct separation, that will be processed by one of the classifiers. One can
also use the distance between the Sersic profile and the azimutal profile as an index.
We can define this metric in many different ways thanks to the maximum Euclidean
distance, the maximum difference along the flux axis, or the difference between the
area under the curves. Again it is also possible to use all the mentioned quantities in
the same time to process them in classifiers.

And finally, the last method consists in subtracting a luminosity profile from the
original image and studying the residual image. In the presence of a lens, we should
enhance the lens component in the residual image. This can be done by fitting a
Sersic profile, and an example is present in section A. By using the morphological
indexes on the residual image, the separation between lensed and non-lensed
distribution in the parameter space should be enhanced and classifiers would better
classify. But another technique is to train an autoencoder on images and identify
lensed and non-lensed distributions in the latent space, which maybe are better
segregated. An autoencoder is a neural network built from an encoder and a decoder.
The role of the encoder is to represent the image in a smaller dimension space called
latent space. The decoder generates the wanted image from a latent space vector.
Instead of using a traditional autoencoder which encodes images into a set of low-
dimension vectors that stores the most relevant data, we can use a variational
autoencoder, which encodes the image into low-dimension distributions defined
by only 2 parameters (µ, the mean value of the distribution and σ the standard
deviation), next the discrimination between the 2 classes can be done directly in the
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latent space instead of the parameter space computed in this work. Note that this
method removes interpretability since the latent space is an abstract space designed
with highly non-linear functions built by neural networks.

5.3 Improvements

This work is still preliminary work that can be upgraded. We can thus expect better
results. We will then expose improvements that could have been done.

First, the use of the deblending source function discussed in sect 3.1 can be interest-
ing to use but would need a deeper comprehension of the segmentation map. It also
requires building a strategy to really identify separately the differences between a
lens and a contaminating galaxy or merger.

The next improvement that can be done, is the use of ensemble methods and bagging
methods. by combining predictions of multiple base estimators, ensemble methods
improve the robustness and the generalization compared to a single estimator.
The bagging improves the stability, the precision and reduces the variance of the
estimator by aggregating multiple bootstraped subsamples of the original dataset.
It is already used with the random forest because it is a well-known and already
implemented method, but similar techniques can be built. The combination of the
three different methods in an ensemble method can also improve our scores since
different algorithms can make different predictions for the same image and result in
completely different false positive distributions that can be crossed-checked.

Instead of improving this method and the CNN performances separately, it could
be interesting to assemble these two algorithms to build a more robust ensemble
method. This would be interesting to compare the misclassified populations of both
techniques to compare the weaknesses of each method. The combination of both
methods could counter-balance the weaknesses of the other one.

Finally, an obvious improvement is to reduce failing computations by statmorph.
This represents 9% of the dataset which is 852 more images.

5.4 Conclusion

To conclude this work, I would say that the reached performances combined with
the many improvement perspectives positions this technique as a promising one.
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This technique has the advantage of making the classification less mystical than the
deep learning-based methods. Indeed, the classification is based on physical and
geometrical considerations that are easier to understand. The next important step of
this work is to evaluate the performance of this method on real data. Indeed, those
results are theoretical results that are still specific to the simulated images. It could
be interesting to make transfer learning to real data and fine-tune our model. All
the deep learning methods are working well on simulated data but less on real data,
and it represents the real bottleneck in this field of research. In a larger context,
this technique or parts of this technique can be useful for other purposes. The first
one is the use of these morphological parameters in the classification of galaxies.
The Galaxy Zoo collaboration [36] is trying to classify and label a huge amount of
galaxies thanks to volunteers in order to train CNN. These labeled images could be
used to train our model to perform automatic classification of galaxies. The use of
our method can be interesting to automate this work. From a more personal point
of view, this work really allowed me to have a better understanding of the galactic
structure and the gravitational lensing phenomenon. I also learned a lot about the
image-processing techniques.
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Appendix A
The following images were made thanks to optimal object detection. They are
presented here to complete the perception of the multidimensional space parameter
presented in section 4.1. Images displayed below are selected among the best
separated distributions (lensed and non-lensed)

Fig. A.1.: Representation of deviation and asymmetry in the parameter space

These two images represent the projection of the parameters in the new parameter
space provided by a PCA as discussed in section 5.2. This method can be use in
order to improve the performances of the method described in this work.

Here the 2 images displayed below, are the resulting images of the statmorph
computation. The first one is a lensed galaxy while the second one is the same but
unlensed galaxy. There are displayed in order to illustrate a new method that can be
used to improve the results of this work.
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Fig. A.2.: Representation of gini and asymmetry in the parameter space

Fig. A.3.: Representation of m20 and asymmetry in the parameter space
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Fig. A.4.: Representation of concentration and gini in the parameter space

Fig. A.5.: Representation of concentration and m20 in the parameter space
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Fig. A.6.: Representation of Sersic amplitude and ellipticity in the parameter space

Fig. A.7.: Representation of Sersic index and concentration in the parameter space
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Fig. A.8.: Representation of Sersic index and gini in the parameter space

Fig. A.9.: Representation of effective radius and concentration in the parameter space
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Fig. A.10.: Representation of the 2 first principal components of a PCA on all the parameters
used during this work. Blue points stand for lensed galaxies and orange for
non-lensed galaxies.

Fig. A.11.: Representation of the first and the third principal components of a PCA on all
the parameters used during this work. Blue points stand for lensed galaxies and
orange for non-lensed galaxies.
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Fig. A.12.: Summary of the statmorph outputs with a residual image that need to be
compared to the residual image in A.13. It is important to look at the Sersic
residual frame since it provides the result of the substraction of the fitted Sersic
model from the original image. This image is a lensed galaxy.

Fig. A.13.: Summary of the statmorph outputs with a residual image that need to be
compared to the residual image in A.12. It is important to look at the Sersic
residual frame since it provides the result of the substraction of the fitted Sersic
model from the original image. This image represent the same but unlensed
galaxy as the fig A.12.
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