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1. Introduction 
 
1.1. Context and main objective of the thesis 
 

In recent years, portfolio managers and finance practitioners have experienced an increasing 
need to adopt quantitative methods, surpassing any previous levels, as part of their goal to achieve 
superior returns. The range of these methods spans over a wide spectrum, encompassing basic linear 
models that lay the foundation for quantitative analysis, all the way to complex deep-learning 
networks that hold immense potential to revolutionize financial decision-making. This increasing 
dependence on quantitative approaches can be attributed to a selection of factors that have 
profoundly influenced and shaped the modern financial landscape. 
 

Recent advancements in technology and computational power have revolutionized portfolio 
management by enabling efficient processing and analysis of vast amounts of data. This has created 
opportunities to develop sophisticated models that capture complex market patterns. Moreover, the 
availability of historical financial data has expanded, allowing practitioners to comprehensively back-
test and validate investment strategies, refining their portfolio management approaches based on 
empirical evidence. Furthermore, the acknowledgment of behavioral biases in investment decision-
making has forced practitioners to adopt objective and data-driven methods. Quantitative models 
offer a systematic and disciplined approach to mitigating these biases, promoting more consistent and 
rational investment decisions. 
 

D’Hondt et al. (2020) have shown in their paper that AI-managed portfolios can provide 
significant gains for low-education/income investors among a sample of Belgian investors. However, 
these results are mixed if we consider all investor profiles, and the realized gain compared to a passive 
strategy does not appear significant on average. These conclusions raise questions about the 
effectiveness of machine learning approaches in portfolio management as compared to more simple 
methodologies and highlights the need for further investigation and refinement of these models and 
their implementation. 
 

The research conducted in this master thesis will go beyond those conclusions by enlarging the 
investment universe, which was restricted to each investor’s securities for which he/she made a 
transaction in the past two years before the study occurred. By considering a broader definition of the 
range of accessible assets and a more comparable investment universe from year to year, our study 
aims to provide a more comprehensive understanding of the performance of quantitative models in 
different market conditions and across various investment options. 
 

In addition to constraints related to risk aversion, the matter of preferences in terms of the 
sustainability of the investment will be explored. With the increasing focus on environmental, social, 
and governance (ESG) factors in investment decision-making, integrating sustainability considerations 
in the portfolio optimization process has become a crucial aspect of modern portfolio management. 
This master thesis aims to explore how asset allocation suggested by quantitative models can 
incorporate sustainability metrics and preferences to construct portfolios that align with investors' ESG 
goals. 
 

In this master thesis, we aim to explore various regression models with consideration of the 
recommendations and findings from the scientific literature. To determine the most effective 
approach, we will describe and investigate different machine learning models and their possible 
implementation for portfolio optimization, including advanced regression techniques and deep 
learning networks. These models have shown promising results in the context of portfolio 
optimization, as highlighted in the scientific literature. By leveraging these techniques, we aim to 
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access to improved predictive power and ultimately improve the performance of portfolio 
management strategies. 
 

Our primary objective is to compare diverse range of regression models, by examining the 
performance of their respective investment strategies within a defined investment universe. Through 
a comprehensive out-of-sample comparison, we aim to evaluate the returns generated by each 
strategy, ultimately identifying the ones that exhibit the potential to significantly enhance investment 
performance. Also, in the final stages of the portfolio construction process we will suggest, we will 
actively investigate ESG consideration. By integrating these crucial factors into our decision-making 
process, we aim to create portfolios that not only yield attractive returns but also promote positive 
societal and environmental impact. 
 
1.2. Research motivations 
 

The BCG Global Asset Management Market Sizing 2022 study (McIntyre et al, 2022) shows that 
the global assets under management have grown from USD 31 trillion in 2003 to USD 112 trillion in 
2021, at an accelerating growth rate. These figures include all assets professionally managed in 
exchange for management fees. The asset management industry plays a crucial role in the global 
financial ecosystem, providing solutions to the investment needs of individuals, institutions, and 
corporations. 
 

According to the same study, in 2020, two-thirds of these assets were actively managed, 
whereas one-third were passively managed (with methods such as index tracking). While passive 
strategies offer simplicity and low costs, active strategies aim to generate excess returns by leveraging 
market insights, research capabilities, and quantitative models. Given the substantial portion of assets 
actively managed, it is evident that portfolio managers face immense pressure to deliver superior 
performance and justify their fees. 
 

Thousands of investment firms are sharing this market, and it is thus crucial for each of them 
to exhibit better performance in comparison to competitors to stand out and attract investors. In an 
industry driven by competition, the need to generate alpha has never been so tense. Therefore, 
implementing quantitative methods that could help portfolio managers to reach superior performance 
is of crucial importance and the stakes are high.  
 

These professionals are also very attentive to academic breakthroughs in the finance and 
statistical fields, as an investing strategy can lose in performance if it is widely adopted. It has been 
shown that the public knowledge of the factors identified in scientific literature impacts their ex-post 
predictive quality (McLean & Pontiff, 2016). Consequently, identifying and implementing new methods 
for portfolio optimization is key in the asset management industry. 
 

In parallel, ESG considerations have become increasingly important in asset management, as 
investors and regulators recognize the significance of environmental, social, and governance factors in 
investment decision-making. Asset managers are now integrating ESG criteria into their investment 
processes to assess the long-term sustainability and risk profile of their investments. In this context, 
regulatory frameworks like the Markets in Financial Instruments Directive II (European Union, 2014) 
play a vital role. Implemented in 2018, MiFID II requires asset managers to disclose detailed 
information about their investment products, including the potential impact of sustainability factors 
like ESG considerations on investment decisions.  
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1.3. Contributions 
 

The primary goal of this master thesis is to comprehensively investigate various quantitative 
methods, with a particular focus on deep learning models, used by practitioners or proposed by 
academic research. The aim is to measure the extent to which these methods can be useful when 
combined to achieve superior performance compared to passive strategies such as index trackers. To 
achieve this objective, the thesis will address the following research questions: 
 

1. Among a selection of quantitative methods, determine the one which promotes the best asset 
allocation in a pre-defined investment universe, that yields the best out-of-sample portfolio 
performance based on the mean-variance optimization model. 
 

2. For one of the discussed regression models, determine what happens if we introduce ESG 
considerations. We want to understand the return cost or benefit of ESG preferences at asset 
allocation stage and compare it with the realized cost or benefit of ESG preferences and 
understand the predictability of this measure. 

 
By addressing these research questions, this master thesis aims to provide valuable insights 

and empirical evidence to guide portfolio managers and investment professionals in their pursuit of 
superior performance and effective portfolio allocation strategies by describing a comprehensive 
approach that could be used as a reference for sustainable portfolio management in the future. 
 
1.4. Structure of the thesis and general methodology 
 
 The literature review will provide an overview of research on sustainable portfolio 
management and machine learning methods for portfolio optimization. The literature review discusses 
different portfolio management styles and emphasizes the importance of selecting appropriate 
optimization techniques, in particular the Black-Litterman or Markovitz models, to maximize wealth 
and address criticisms against Socially Responsible Investing (SRI) strategies. It also explores the 
application of machine learning models in financial markets to enhance return predictions. 
 

In parallel, the literature review will explore strategies for integrating ESG considerations into 
portfolio construction. Firstly, it will describe the research conducted by Pedersen et al. (2021), which 
introduces the notion of an ESG-efficient frontier. This study provides valuable insights into 
incorporating environmental, social, and governance factors into portfolio management. Furthermore, 
the review will analyze a more recent model proposed by Steuer and Utz (2023). Their model 
introduces the concepts of non-contour efficient fronts and an efficient surface, which seek to 
incorporate ESG preferences into the process of constructing investment portfolios. 
 

The methodology section begins by stating the research objectives of the study. It then 
describes the data sources and programming languages used in the research, including the selection 
of source databases and the programming language utilized. The methodology also explains the 
selection of macroeconomic variables and investment universe for the study, as well as the 
considerations regarding the chosen time window. 
 

The next part of the methodology provides a detailed overview of the linear methods used for 
expected return estimation, including Ridge Regression, Lasso Regression, and Elastic Net Regression. 
A comparison and practical considerations of these methods are also discussed. The methodology 
further delves into non-linear methods such as Multilayer Perceptrons (MLP), Recurrent Neural 
Networks (RNNs), and Long Short-Term Memory (LSTM) networks, explaining their working principles 
and their implementation in investment strategies. 
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The concluding segment of the methodology focuses on the integration of ESG considerations 
during the portfolio construction phase. This section heavily draws upon the insights and principles 
elucidated by Steuer and Utz (2023) and Pedersen et al. (2021). Its primary objective is to measure the 
impact, in terms of return, associated with varying degrees of ESG integration. By quantifying the costs 
related to different levels of ESG integration, this analysis seeks to provide valuable insights into the 
trade-offs involved in incorporating ESG factors into portfolio decision-making. 
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2. Literature review 
 

In this section, we will mainly investigate the current state of research on sustainable portfolio 
management, but also on machine learning methods that can be implemented to achieve portfolio 
optimization. We will thus consider these two aspects in two separate sub-sections that will be 
summarized in a short concluding section describing how we can combine the findings from the two 
main sections of this literature review. 
  
2.1. Current state of research in sustainable portfolio management 
 

This area of study has gained significant momentum in recent years due to the increasing 
awareness of the social, environmental, and governance issues affecting financial markets. We will 
thus go through the main concepts and empirical findings on sustainable investing for the sake of giving 
context to our study. Then, we will cover two promising models that may have a considerable impact 
on investment decisions in the future, which will be implemented further in this thesis with real market 
data. 
 
2.1.1 Sustainable investing: definition and empirical performance 
 

In their book, Marszk and Lechman (2023, p58) define the main feature of sustainable investing 
(investment) as the fact of “taking into consideration ESG factors in the investment decisions including 
but not limited to the selection of securities (or other assets), portfolio management and any associated 
research”. 
 

In terms of performance, we may wonder whether investing only in socially responsible 
securities is a constraint that represents a burden in our portfolio optimization problem, or if it 
represents a winning factor. Numerous studies have tried to compare market performance and 
sustainable investment funds’ performance across various sectors or geographical areas, yielding 
mixed results (Pedersen et al., 2021). Consequently, we will reference one of the most recent and 
comprehensive studies available about this topic at the time of writing, as it effectively builds upon the 
findings of preceding research. 

 
In their study, Dumitrescu et al. (2023) have examined the performance of 121 passive U.S. 

equity SRI ETFs between January 2010 and December 2020, comparing it to a benchmark portfolio 
comprising passive S&P 500 ETFs. The findings drawn for ETFs, a type of investment representing a 
basket of selected securities such as stocks or bonds, can easily be extended to portfolio management 
and as such, we can confidently draw some interesting conclusions from this study. 
 

The research reveals that SRI ETFs do not consistently underperform their passive non-SRI 
benchmark ETFs. In the second half of the sample period (2015-2020), which corresponds to the 
industry's development and growth, there was no statistically significant difference between the 
performance of SRI ETFs and their benchmarks. Interestingly, investors could have potentially gained 
significant value from SRI ETFs in the last two years of the sample (2019-2020). These results remain 
unaffected even when accounting for the effect of fees on SRI ETFs' returns. 
 

These findings have important implications for portfolio managers, as incorporating ESG 
preferences in investment decisions could help investors outperform both markets and passive 
benchmark ETFs. The study also provides insights on the strategies (inclusion or exclusion) that drive 
the under- or over-performance of SRI ETFs compared with their benchmarks. It is found that only the 
SRI ETFs incorporating inclusion (positive screening) and, specifically, those employing the 
environmental inclusion strategy are drivers of abnormal returns. 
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 Dumitrescu et al. (2023) have thus shown that good financial performance and sustainable 

attributes of investments are not always mutually exclusive, and they conclude that SRI ETFs can offer 
transparent and cost-efficient investment opportunities with significant potential to contribute to 
sustainability and sustainable development. They also conclude that for investors looking to integrate 
social responsibility and sustainability into their investment choices, financial underperformance may 
not always be a fatality, especially when selecting investments that incorporate an environmental 
inclusion strategy which has shown to perform best in the last two years of the study’s sample. 
 
2.1.2. Portfolio management styles regarding sustainable investments 
 

We have previously discussed that investors have an increasing interest in investing their 
money into greener financial assets. Now, we will try to understand how asset managers have been 
effectively meeting this demand, and why there is room for improvement. In this literature review, we 
will make with a comprehensive description of the approach suggested by Steuer and Utz (2023) for 
sustainable portfolio management. We will also review the model described by Pedersen et al. (2021), 
which uses a different though interesting approach to tackle the same problem. 
 

In their paper, Steuer and Utz (2023) start by providing a description of the current 
methodology used by asset managers for portfolio construction both if they consider ESG preferences 
of their clients or not. A distinction is also made between portfolio construction approaches that make 
use of a simple ESG screening from those that go further by also implementing a tri-criterion 
optimization model, which we will comment on in-depth as it will be the base of our study. Steuer and 
Utz (2023) distinguish three categories of mutual funds type, that can be regarded as asset allocation 
styles in the context of this master thesis. 
 

2.1.2.1 Conventional mutual funds. 
 

This type of mutual funds refers to traditional funds, for whom ESG considerations are not 
considered at any step in the portfolio construction process. They basically start by defining the 
investment universe. This process is defined as Screening. Stocks, bonds, funds, or any other security 
can be selected based on their historical returns track record, as well as their expected performance 
and future risk, among other criteria such as availability, liquidity, or tax considerations. 

 
Then, the mutual fund must find a tradeoff between risk and return. The method used at this 

stage is to pick a portfolio that lies on the efficient frontier, initially described by Markowitz (1952), as 
part of his Modern Portfolio Theory. Along this frontier, every point shows an optimal portfolio that 
offers the highest expected return for a given level of risk, or the lowest risk for a given expected 
return. The goal is then to pick the portfolio along the efficient frontier that maximizes the ratio 
between return and risk, that is often measured with help of the Sharpe ratio. The selection of the 
optimal portfolio also depends on the investor's risk tolerance and investment objectives. 
 

In summary, conventional mutual funds focus solely on risk and return criteria when 
constructing portfolios, without considering ESG factors. This approach, based on the efficient frontier 
model, has been the standard for portfolio management for decades. However, as investors become 
more aware of the environmental, social, and governance impacts of their investments, there is a 
growing demand for more sustainable investment strategies, which has led to the development of 
ESG-screened and tri-criterion optimization approaches. 
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2.1.2.2 Non-integrated ESG mutual funds. 
 

Non-integrated ESG mutual funds, as discussed by Steuer and Utz (2023), differ from 
conventional mutual funds in that they incorporate an additional ESG screening step in the portfolio 
construction process. This screening is typically applied during the first stage, where the investment 
universe is defined. Securities that do not meet a minimum ESG score or do not comply with specific 
ESG criteria are excluded from the investment universe. However, as demonstrated by Utz et al. (2014), 
after the ESG screening, the portfolio construction process follows the same methodology as 
conventional mutual funds, using the efficient frontier model and focusing only on finding the optimal 
risk-return trade-off. 
 

This approach is referred to as "negative screening" or "exclusionary screening" by the authors, 
as it removes companies or assets that do not meet the ESG criteria, rather than actively selecting 
those with strong ESG performance. As already discussed, it has been shown empirically that exclusion 
strategies perform poorer as compared to inclusion strategies (Dumitrescu et al., 2023). 

 
While non-integrated ESG mutual funds can provide investors with a more sustainable 

investment option compared to conventional mutual funds, they do not optimize the risk-return-ESG 
tradeoff. As a result, serious ESG investors might find this approach insufficient for their sustainability 
objectives. 
 

2.1.2.3 ESG-integrated mutual funds. 
 

Integrated ESG mutual funds, on the other hand, go beyond simple ESG screening by 
incorporating ESG factors into the portfolio optimization process. Steuer and Utz (2023) propose a tri-
criterion optimization model that accounts for risk, return, and ESG performance for portfolio 
construction. This approach results in an "M-V-ESG efficient surface" which represents the set of 
optimal portfolios that offer the best possible trade-offs between risk, return, and ESG performance, 
depending on the investors preferences. 
 

Unlike non-integrated ESG mutual funds, the integrated ESG approach actively selects 
securities based on their ESG performance, in addition to risk and return considerations. This allows 
investors to better align their investments with their sustainability objectives and potentially achieve 
superior long-term risk-ESG-adjusted returns. In addition, as discussed above, implementing an 
inclusion strategy has shown to be driving better financial performance as compared to exclusion 
strategies (Dumitrescu et al., 2023). 

 
According to Steuer and Utz (2023), ESG-integrated mutual funds represent a more advanced 

and comprehensive approach to sustainable portfolio management compared to non-integrated ESG 
mutual funds. By incorporating ESG factors into the portfolio optimization process and utilizing a tri-
criterion optimization model, these funds can better meet the needs of serious ESG investors who seek 
to optimize the risk-return-ESG tradeoff (Figure 1). 
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Figure 1.  
Mutual Funds Types with regard to ESG Criterions Integration. 
 

 
 

Note. Source: Steuer, R.E. and Utz, S. (2023). Non-contour efficient fronts for identifying most 
preferred portfolios in sustainability investing. European Journal of Operational Research, 306 (2), 

742-753. 
 
2.1.3. What optimization model should we consider for sustainable investments? 
 

Oikonomou et al. (2017) highlighted the significance of the optimization process within the 
framework of Socially Responsible Investing.  Their research, based on a significant sample of US 
stocks, showed that the choice of optimization technique has a profound impact on SRI fund 
management, with sophisticated quantitative optimization methods found to lead to maximized 
wealth on a risk-adjusted basis, even after accounting for transaction costs. They further discovered 
that such methods offer more significant advantages for SRI portfolios compared to those portfolios 
constructed from an unscreened sample of stocks. 
 

The research underlined that the optimization process matters, indicating the importance of 
not just the type of "responsible" screening criteria used, but also the optimization technique 
employed in determining optimal investment weights. The findings advocate for the application of 
more sophisticated optimization techniques, like the Markovitz (1952) and Black and Litterman (1992) 
models, which contradict much of the mainstream finance literature that supports naïve or simplistic 
techniques. 
 

According to Oikonomou et al. (2017), the Black-Litterman model (1992) usually emerged as 
the best technique, while naïve diversification was usually the worst, especially in terms of risk, risk-
adjusted returns, diversification, and intertemporal stability of the SRI portfolios. The Mean-variance 
optimization model suggested by Markovitz (1952) appeared to be the second-best choice, with a clear 
margin as compared to more naïve methods. The authors also highlight that, in addition to robust 
performance as compared to more naïve methods, the application of these quantitative optimization 
techniques can indeed answer some of the criticisms against SRI strategies, describing them as too 
qualitative and subjective. 
 

Considering this, the research by Oikonomou et al. (2017) reinforces the importance of 
examining the Markovitz and Black-Litterman models within the context of this master's thesis on 
sustainable investments. This thesis will however primarily focus on the mean-variance optimization 
model of Markovitz (1952) and related models as the core methodology. Indeed, two recent ground-
breaking models in terms of ESG investing were recently presented by Steuer et al. (2023) and 
Pedersen et al. (2021), relying mostly on the initial concept of the efficient frontier, and it has been 
chosen to investigate these two models extensively. While these two sophisticated models only will be 
relied upon for ESG-integrated portfolio construction, further exploration of the Black-Litterman model 
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and the application of machine learning techniques to it for portfolio construction may provide fertile 
ground for additional research, based on the results presented by Oikonomou et al. (2017) (Figure 2).  
In the two next sub-sections, we will describe more in-depth the findings of the two optimization 
models specific to sustainable investing that we just mentioned. 
 
Figure 2.  
Cumulative Wealth for various Optimization Methods in the context of SRI Investment. 
 
 

 
 

Note. Source: Oikonomou, I., Platanakis, E., & Sutcliffe, C. (2017). Socially responsible investment 
portfolios: Does the optimization process matter? British Accounting Review, 50(4), 379–401. 

 
2.1.4. Efficient frontier between ESG score and Sharpe ratio. 
  

In their groundbreaking paper, Pedersen et al. (2021) introduced the concept of the ESG-
efficient frontier, which illustrates the highest achievable Sharpe ratio for each normalized ESG level 
(Figure 3).  
 

The primary objective of this concept is to understand the final costs or benefits associated 
with ESG investing. By utilizing this model, investors can select a portfolio with the highest attainable 
Sharpe ratio based on their ESG preferences. A subsequent comparison can then be made between 
the characteristics of this portfolio and those suggested by the traditional mean-variance optimization 
model, providing insights into the costs or benefits of incorporating ESG considerations into 
investment decisions. 
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Figure 3.  
ESG-Efficient Frontier (Pedersen et al., 2021). 
 

 
 

Note. Source: Pedersen, L.H., Fitzgibbons, S. & Pomorski L. (2021). Responsible investing: The ESG-
efficient frontier. Journal of Financial Economics, 142(2), 572-597 

 
While this concept has paved the way for further research, it has also attracted criticism from 

other scholars. Since its publication, new research has emerged, proposing an alternative model that 
offers a more comprehensive assessment of the implications of ESG investing.  
 
2.1.5. Efficient surface and non-contour efficient fronts 
 

Steuer and Utz (2023) have investigated a novel approach to sustainable investing in their 
study. They suggest that modern investors no longer consider finding their most preferred risk/return 
tradeoff on the mean-variance efficient frontier introduced by Markovitz (1952) and are increasingly 
interested in finding their preferred risk/return/ESG tradeoff, indirectly on the mean-variance-ESG 
efficient surface.  
 

In their paper, the authors define a serious ESG investor as “an investor whose strength of 
interest in ESG makes that consideration a criterion competitive on the playing field of portfolio 
selection with risk and return, thus causing the investor’s efficient frontier to become an efficient 
surface” (Steuer & Utz, 2023, p.742). 
 

The authors argue that mutual funds don’t achieve the maximum that could be done to 
propose an asset allocation that would be in line with the ESG preferences of these serious ESG 
investors as defined above, and that at the time of writing the mutual fund industry does not have the 
necessary knowledge to fully satisfy this type of investors. Indeed, solving this novel tri-fold 
optimization problem can be a real challenge for asset managers. In that regard, the authors propose 
the novel concept of non-contour efficient curves that are stretched over the whole M-V-ESG efficient 
surface to help for better understanding and portfolio selection based on a given investor’s risk 
aversion and ESG preferences characteristics. 
 

The bi-criterion solution presented by Pedersen et al. (2021) as an approach to address the 
same problem has been subject to criticism in the research conducted by Steuer and Utz (2023). 
According to Steuer and Utz (2023). While the conversion of the tri-criterion portfolio optimization 
problem faced by serious ESG investors into a bi-criterion problem enhances comprehension and 
implementation, it does possess a significant drawback.  
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Specifically, the method described by Pedersen et al. (2021) fails to account for the risk 
aversion exhibited by investors, despite attempting to strike an optimal balance between portfolio 
Sharpe ratios and ESG scores. They state that the pursuit of attaining the highest Sharpe ratio 
achievable based on an investor's ESG preferences does not guarantee the selection of low-variance 
portfolios for risk-averse individuals. Likewise, it does not ensure the allocation of investments towards 
more aggressive strategies for those who are willing to assume greater risks to achieve higher returns. 
 

The implementation of the mean-variance-ESG efficient surface model suggested by the 
authors allows to handle these shortcomings. The concept of efficient surface, however, might be 
difficult to grasp. In their paper, Steuer and Utz (2023) suggest a precise methodology to construct and 
interpret the efficient surface of a particular investment universe.  
 

To do so, they introduce the concept of non-contour efficient fronts (Figure 4). Each non-
contour efficient front is characterized by an amount of basis point in terms of return that a serious 
ESG investor is willing to give up to achieve better ESG portfolio performance. The more a serious ESG 
investor is willing to give up on return, the greener his/her investment. Each NC-efficient front 
represents portfolios that provide the best trade-off between return and risk for his specific level of 
allowed basis point relaxation. By displaying all the possible non-contour efficient fronts among the 
investment universe side by side, we can thus construct the mean-variance-ESG efficient surface 
(Figure 4). 

 
Figure 4.  
Non-Contour Efficient Fronts (left) and M-V-ESG Efficient Surface (right) – (Steuer & Utz, 2023). 
 

                    
Note. Source: Steuer, R.E. and Utz, S. (2023). Non-contour efficient fronts for identifying most 

preferred portfolios in sustainability investing. European Journal of Operational Research, 306 (2), 
742-753. 

 
In order to measure the increased ESG performance by making a return tradeoff, the authors 

have developed an interesting approach instead of considering ESG scores only: the ESG integration 
index. 
 

∆𝜐 =
𝜐!𝑥"#,% − 𝜐!𝑥%

𝜈&'( − 𝜐!𝑥%
 

 
In this definition, 𝜐!  is the ESG Coefficient Vector, in which each element is an ESG score that 

corresponds to a security in the investment universe. 𝑥%  is the optimal portfolio as suggested by the 
classical mean-variance optimization model, without consideration of the ESG preferences of the 
investor. 𝑥"#,%  is a portfolio for which a basis point quantity 𝑏𝑝 has been given up by the investor to 
achiever higher ESG performance. 𝜈&'( is the portfolio with the highest attainable ESG score. In most 
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cases, this portfolio is indeed an undiversified investment in the security with the highest ESG score in 
the considered investment universe.  
 

The ESG integration index ∆𝜐 described by Steuer and Utz (2023) provides several advantages 
Firstly, it quantifies the degree of ESG integration in a portfolio, allowing investors to assess the extent 
to which ESG factors are considered. It provides a scalar value that indicates the magnitude of ESG 
improvements achieved by relaxing expected returns by a certain number of basis points. Secondly, 
the index can be used in relative terms, accommodating different ESG metrics used by various financial 
data providers. This allows for meaningful comparisons across different scales and ranges of ESG 
scores. Additionally, the index enables visual representation, as demonstrated below, showing the 
relationship between ESG integration and basis point relaxations in expected returns. It reveals that 
smaller relaxations yield larger gains in ESG integration, while larger relaxations result in diminishing 
returns. 
 

Now that we understand better the concept of non-contour efficient fronts described by 
Steuer and Utz (2023), we can explore their step-by-step approach to construct their efficient surface 
for a particular investment universe and choose a preferred portfolio on it.  
 

1. Perform a classical mean-variance optimization to build the efficient frontier. It involves the 
calculation of expected returns, and the variance-covariance matrix among all available 
securities (𝑥%). The most preferred portfolio 𝑝 is obtained by maximizing the Sharpe ratio, 
which is a key metric to describe risk-return trade-off. 

 
2. Finding the ESG coefficient vector. The ESG coefficient vector contains the ESG scores for 
each of the securities under consideration (𝜐!). These scores can be sourced from ESG rating 
agencies. 

 
3. Constructing the NC-efficient fronts graph. For various 𝑏𝑝 (basis point) values chosen by the 
investor, NC-efficient fronts are constructed. The NC-efficient front represents portfolios that 
provide the best trade-off between return, risk, and ESG score for a particular level of 𝑏𝑝 
relaxation. Each NC-efficient front can thus be represented as a graph showing the different 
trade-offs between risk (variance) and return for a particular investor with specific ESG 
preferences, quantified as the maximum 𝑏𝑝 relaxation tolerated. 

 
4. Evaluating the NC-efficient fronts. Using 𝒱), the variance of the most preferred portfolio 𝑝 
on the efficient frontier with no ESG considerations as a reference, the investor evaluates the 
non-contour efficient fronts to find the most suitable NC-front by making a tradeoff between 
return and ESG preferences only. 

 
5. Selection of the most preferred point. The investor selects his/her most preferred portfolio, 
most likely the one that maximizes the Sharpe ratio, among those on the non-contour efficient 
front selected at the previous step. This selection process allows for personal preference, and 
to account for individual risk tolerance and ESG preferences. 

 
6. Obtaining the optimal portfolio. After taking the inverse image of the selected point (i.e., 
determining the portfolio weights that result in the selected point), the optimal portfolio for 
the decision-maker is obtained. 
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2.2. Current state of research in quantitative methods for portfolio management 
 

As a complement to the previous discussion about the optimization model we should select 
(see 2.1.3.), the subsequent sections of this thesis will present a comprehensive overview of the 
necessary parameters needed for the application of the mean-variance optimization model proposed 
by Markovitz (1952). Primarily, these will involve the estimations of expected return for each stock in 
our investment universe and the construction of the expected variance-covariance matrix. Both 
elements are the center input of our portfolio selection model, influencing the optimization process 
and consequently, the portfolios’ risk and return characteristics. As we proceed, we will discuss the 
specific methods and models employed in the estimation process of these parameters and describe 
how they integrate the mean-variance optimization model and contribute to a more robust portfolio 
selection process. 
 
2.2.1. The mean-variance optimization problem 
 

The mean-variance optimization problem, described by Markowitz for the first time in 1952, is 
described in his Modern Portfolio Theory. It is a quantitative approach that seeks to understand and 
balance the trade-off between risk and return in an investment portfolio. This approach uses statistical 
measures, specifically the level of return measured as the expected returns of assets, and the level of 
risk measured as the portfolio returns expected volatility. 
 

The expected return of a portfolio is calculated by considering all the possible returns that we 
expect the constituting assets will deliver, weighting them by their respective weights, and then 
summing them up. The higher the expected return, the better the portfolio is expected to perform in 
terms of financial returns. The variance, on the other hand, measures the dispersion of the asset's 
returns and corresponds to the expected standard deviation of returns. It is indeed a measure of 
portfolio riskiness. The greater the variance, the higher the risk and uncertainty of the portfolio returns 
in the future. 
 

Markowitz's theory states that by combining different assets with varying expected returns 
and variances, an investor can construct a portfolio that delivers the maximum possible return for a 
given level of risk. This concept leads to the creation of what is known as the 'efficient frontier', along 
which every portfolio has the minimum level of risk for all attainable levels of return, and the maximum 
return for any possible level of risk. In practice, it can be visualized as a graph that plots the expected 
returns against the standard deviation, and the resulting curve represents all the optimal portfolios an 
investor can hold (Figure 5). 
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Figure 5.  
Mean-Variance Efficient Frontier Theoritical Representation (Markovitz, 1952). 
 

 
Note. Source: Hodnett, K., & Hsieh, H. (2012). Capital Market Theories: Market Efficiency Versus 

Investor Prospects. International Business & Economics Research Journal, 11(8), 849-862. 
 

In Markovitz’s Modern Portfolio Theory, investors then choose portfolios along this efficient 
frontier based on their specific risk tolerance. Those with high risk tolerance may choose portfolios 
towards the higher end of the frontier (top-right quadrant), where the expected returns are higher but 
come with more risk. Conversely, risk-averse investors may choose portfolios towards the lower end 
of the frontier (bottom-left) quadrant, where the expected returns are more modest, but the 
associated risk is lower. 
 

This concept revolutionized the field of finance and investment, as it provided a systematic, 
mathematical way to consider risk and return simultaneously when making investment decisions. It is 
important to note, however, that the mean-variance optimization approach relies on several 
assumptions, such as investors being rational and markets being efficient, which do not really hold in 
the real world. 
 

Having gained a deeper understanding of the Mean-variance optimization problem proposed 
by Markowitz, we can now address the most demanding aspect of its resolution: determining the most 
accurate estimations for expected returns and anticipated risk levels to build the efficient frontier. 
Conventional methodologies depend on the utilization of historical return averages to project 
expected returns. Similarly, the computation of the standard deviation of these returns is used to 
estimate the anticipated level of risk. 
 
2.2.2. Future volatility estimation: variance-covariance matrix and more recent developments 
 

The variance-covariance matrix is a pivotal component of the modern portfolio theory, 
particularly in the context of the mean-variance optimization problem framework. This concept was 
introduced by Markowitz (1952). Markowitz's framework seeks to optimize a portfolio to maximize 
expected return for a given level of risk, or equivalently, to minimize risk for a given level of expected 
return. 
 

The variance-covariance matrix provides a measure of risk associated with a set of assets in a 
portfolio. Each element in the i-th row and j-th column represents the covariance between the i-th 
sotck and j-th stock. The elements along the diagonal of the matrix measure the risk associated with 
each individual asset, namely the variance, while the covariances off the diagonal measure the degree 
to which two assets move together. 
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However, the variance-covariance matrix can be highly sensitive to the estimation period and 
can be unstable over time. To tackle this issue, various methods have been proposed to "shrink" the 
variance-covariance matrix towards a more stable target. Ledoit and Wolf (2003) introduced a method 
known as the Ledoit-Wolf shrinkage estimator. This method pulls the estimated covariances towards 
a structure that is more stable and less prone to estimation error. 
 

Another approach, proposed by Friedman et al. (2008), employs a technique known as the 
graphical lasso. This method provides a sparse estimate of the inverse covariance matrix, effectively 
shrinking many off-diagonal elements to zero and therefore leading to a simpler and more 
interpretable covariance structure. At the time of publishing, the authors estimated that the graphical 
lasso method was 30 to 4000 times faster than competing methods. 
 
2.2.3. Estimating expected returns using machine learning models. 
 

Several strategies can be employed to forecast future returns. One straightforward approach 
is using the average of historical returns. However, this seemingly simple method comes with its own 
set of challenges. While it is intuitive and easy to understand, relying on the average of historical 
returns as a predictor for future performance can be problematic. This method assumes that past 
patterns will continue. However, markets are complex and influenced by a multitude of factors such 
as economic cycles, political events, and technological advancements. Consequently, historical returns 
may not accurately reflect future possibilities. 
 

Indeed, relying on historical averages often falls short of accurately reflecting the specificities 
of asset returns, that are observable and have been identified by the finance literature for long. Cont 
(2001) describes a set of stylized statistical properties of asset returns. He characterizes these 
properties, also termed 'stylized empirical facts', as empirically observable statistical features of asset 
returns in the market. In total, he identifies eleven of these stylized statistical properties: 
“      -      Absence of autocorrelation (except for small intraday time scales) 

- Heavy tails 
- Gain/loss asymmetry 
- Aggregational Gaussianity 
- Intermittency 
- Volatility clustering 
- Conditional heavy tails 
- Slow decay of autocorrelation in absolute terms 
- Leverage effect 
- Volume/volatility correlation 
- Asymmetry in time scales” (Cont, 2001, p.224) 

 
These characteristics highlight that stock returns indeed possess several unique traits that we 

can capitalize on to enhance the accuracy of predictions, outperforming the method of using past 
return averages as a metric for forecasting future returns. This is precisely where the recent 
development of machine learning models proves to be very valuable, because of its unrivaled ability 
to identify patterns in large datasets to provide with accurate predictions. 
 

Statistical models can enable us to detect diverse patterns in historical data, extending beyond 
past stock returns to encompass corresponding macroeconomic variables or stock-specific 
characteristics. This can be done for instance with linear regression models in which we select some 
variables that we believe have a high explanatory power for predicting stock returns. The most notable 
studies in that view are most probably: 
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- Fama and French (1992), in their seminal paper, proposed a three-factor model, extending the 
simple Capital Asset Pricing Model (CAPM) by including size and book-to-market factors as 
additional factors to describe past returns and thus predict expected stock returns. 
 

- Carhart (1997) extended the Fama and French three-factor model by adding a fourth factor - 
momentum - to explain the cross-sectional return patterns in mutual fund performance. This 
model, often referred to as the Carhart four-factor model, has been widely used to evaluate 
the performance of mutual funds and other types of portfolios, as the intercept of this model, 
also referenced as Jensen’s alpha, can measure how asset managers have been able to 
generate returns that are not explained by the four factors chosen as independent variables 
in the linear regression model. 

 
We also have the possibility to construct models that incorporate a multitude of independent 

variables other than these described by these authors, chosen from a range of macroeconomic or 
stock-specific factors. To that extent, statistical methods such as Ridge, Lasso, or Elastic Net regressions 
prove to be extremely beneficial. These techniques are regularization methods designed to enhance 
the interpretability of the model and prevent overfitting, particularly when dealing with many 
predictors.  

 
Ridge regression is effective when many predictors contribute to the outcome, as it shrinks the 

coefficients of less important features without reducing them to zero. On the other hand, Lasso 
regression can zero out coefficients, thereby performing variable selection when we believe only a 
subset of predictors influences the output. Elastic Net regression combines these approaches, offering 
a balance between coefficient shrinkage and variable selection. Thus, these techniques help us focus 
on the most influential variables, reducing the impact of less important ones, and thereby enhancing 
the precision and interpretability of our model. 
 

While the current models can perform well and have served as a reference in the financial 
sector for years, there remains potential for enhancement. It is essential to recognize that the financial 
markets systematically operate on non-linear dynamics.  As evidence to support that claim, we can 
refer to Barkoulas and Baum (1996), who highlighted the non-linear nature and temporal dependency 
persistence of stock returns among the contemporary DJIA components.  
 

By leveraging the power of machine learning methods, we can amplify our prediction 
capabilities, thereby augmenting our predictive accuracy through the ability to identify and exploit 
non-linear patterns in the input data. A multitude of machine learning models commonly used for 
times series predictions stands ready to address the inherent non-linear characteristics of financial 
markets. In the scope of this master thesis, we will focus on three types of machine learning methods 
to attempt to make better predictions of expected returns among our investment universe and build 
the efficient frontier more accurately:  
 

- Multilayer Perceptrons (MLP): As an integral type of artificial neural network, MLPs consist of 
a minimum of three layers of nodes, including input, hidden, and output layers. Their structural 
design makes them adept for pattern recognition, classification, and even regression tasks, 
applications of which can be found in various fields including stock return prediction. 
 

- Recurrent Neural Networks (RNN): Specifically designed to recognize patterns in sequential 
data, RNNs are another category of artificial neural networks. Their unique structure is 
particularly suited to time series prediction, making them a valuable asset for predicting stock 
returns, a task that heavily relies on historical and sequential data. 
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- Long Short-Term Memory (LSTM): The LSTM architecture, a specific variant of recurrent neural 
network design, has attracted substantial attention within the deep learning community. Its 
special architecture allows for more robust handling of long-term dependencies in sequence 
data, which is critical in tasks such as stock return prediction, where recognizing patterns over 
extended periods is essential. 

 
2.3. Summary 
 

The research areas of sustainable portfolio management and machine learning for portfolio 
optimization have grown rapidly. This literature review dives into these exciting fields, exploring how 
they have changed over time, the strategies used, and the hurdles faced when trying to meet both 
financial and sustainability goals in investment management. This literature review seeks to dissect 
these complex and evolving fields, focusing on the trends, strategies, and the challenges that investors 
and fund managers face in achieving financial as well as sustainable objectives. 
 

First, the literature review describes the evolution and performance of sustainable investing. 
As revealed in a study by Dumitrescu et al. (2023), SRI ETFs do not consistently underperform their 
non-SRI counterparts. This pattern is especially pronounced when an environmental inclusion strategy 
is incorporated. This significant finding suggests that investors do not need to sacrifice financial gains 
for sustainability goals systematically, and that both sustainability and return performance aspects can 
be beneficially co-existent in investments. 
 

The strategies and approaches in portfolio management are multiple, especially concerning 
sustainable investments. This review outlines three distinct styles, identified by Steuer and Utz (2023): 
Conventional mutual funds, which overlook ESG factors; Non-integrated ESG mutual funds, which 
deliberately exclude poor ESG performers; and ESG-integrated mutual funds, which actively select 
securities based on their ESG performance. Steuer and Utz (2023) argue in favor of ESG-integrated 
funds, stating that these provide an optimal risk-return-ESG trade-off, aligning investments more 
closely with sustainability objectives. Hence, ESG-integrated mutual funds emerge as a promising 
avenue for investors seeking a balance between financial and sustainability goals. 
 

However, the strategies for sustainable investing can be highly complex. The need for 
advanced optimization techniques in SRI is paramount, as highlighted by Oikonomou et al.  (2017). 
They recommend sophisticated models like the Markowitz (1952) and Black-Litterman (1992) models 
over simple methods, asserting their superior capabilities. Pedersen et al. (2021) expand this 
argument, introducing the ESG-efficient frontier to balance Sharpe ratios and ESG scores, further 
refining portfolio optimization. 
 

Despite this progress, Steuer and Utz (2023) push for a more nuanced approach with their 
mean-variance-ESG efficient surface concept. This three-dimensional optimization seeks to address 
the limitations of the bi-criterion solution proposed by Pedersen et al. (2021). They believe this strategy 
allows for better accounting of investor risk aversion, proposing non-contour efficient fronts for 
visualizing and navigating this complex model. This approach could potentially offer a more inclusive 
evaluation of ESG investments, contributing actively to the ongoing conversation on sustainable 
investing strategies. 
 

Modern portfolio management extensively utilizes quantitative methods. The mean-variance 
optimization as proposed by Markowitz (1952), aiming to optimize the trade-offs between risk and 
return, is considered as one of the most performant and comprehensible model in that regard. This 
method depends on the accurate estimation of expected return for each stock and the construction of 
a variance-covariance matrix.  
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This matrix is at the center of the portfolio selection process, but its accurate estimation poses 
challenges, particularly in future volatility prediction. Recent developments, such as the Ledoit-Wolf 
shrinkage estimator (Ledoit & Wolf, 2003) and the graphical lasso (Friedman et al., 2008) have been 
employed to stabilize the variance-covariance matrix by leveraging named shrinkage methods. 
 

The estimation of expected returns has also seen a shift from reliance on historical return 
averages to the incorporation of machine learning models. These models, with their ability to identify 
patterns in large datasets, provide more accurate predictions. Advanced regression models like Ridge, 
Lasso, or Elastic Net regressions are often used to isolate the most influential variables, thereby 
reducing the impact of less important ones. It is possible to go further to increase prediction 
capabilities, by leveraging more sophisticated machine learning methods like Multilayer Perceptrons 
(MLP), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) networks. 
 

In summary, the literature presents a vast range of strategies, methods, and techniques for 
sustainable portfolio management and optimization, providing valuable insights for investors and fund 
managers. With a clear trend towards incorporating machine learning for enhanced prediction and 
optimization, and towards the inclusion of ESG considerations, the future of sustainable investing 
appears promising. 
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3. Methodology 
  
3.1. Research objectives  
 

This master's thesis is driven by two primary goals. The first one was: “Among a selection of 
quantitative methods, determine the one which suggests the best asset allocation in a pre-defined 
investment universe, that yields the best portfolio performance based on the mean-variance 
optimization problem”. 
 

To reach this goal, we will investigate the seven regression models we already discussed in the 
literature review. We also make the distinction between linear and non-linear regression models. 
Linear regression models refer to classical regression models, with or without various penalization 
methods. Non-linear regression models refer to deep learning methods, that are designed to identify 
non-linear patterns among the provided data. 
 

Linear regression models 
- Linear regression 
- Ridge regression 
- Lasso regression 
- Elastic net regression 

 
Non-linear regression models 
- Multilayer perceptrons 
- Recurrent Neural Networks (RNN) 
- Long Short-Term Memory Neural (LSTM) Networks 

 
Each of these models can yield, using a rolling-window approach for training, an expected 

return for every stock in our pre-defined investment universe at any time step, based on the database 
constructed as discussed in the next section.  
 

The level of risk, despite the limitations of the classical variance-covariance matrix and the 
existing solutions to solve these issues already described in the literature review, will be estimated 
with this measure in our approach. This decision is motivated by two arguments: 
 

- Computational cost. Shrinking the variance-covariance matrix, with both linear and non-linear 
methods, significantly increases the computation time. Also, the fact of considering three 
distinct variance-covariance matrixes means that, at each time step iteration, we should 
perform three different Mean-variance optimizations, therefore tripling the overall 
computation time as compared to a single variance-covariance matrix approach. 
 

- Clarity. Our methodology is already quite complex, and it is preferable to base our analysis on 
a single approach to estimate the level of risk to be able to isolate and thus better understand 
the impact of each regression approach used to suggest asset allocation.  

 
For the second research objective, which was: “For one of the discussed regression models, 

determine what happens if we introduce ESG considerations. We want to understand the return cost 
or benefit of ESG preferences both at asset allocation stage and ex-post stages and compare our results 
with these of Steuer and Utz (2023)”, we will discuss a comprehensive procedure, whose goal is to 
quantify the return cost to integrate ESG preferences among investment decision-making. We also 
want to make a link with the first research question and assess to what extent machine learning 
methods could reduce the cost of ESG preferences integration in portfolio management. 
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3.2. Data source, programming languages and investment universe selection 
 

In this subsection, we mainly consider practical considerations such as the data providers we 
will make use of to constitute our working dataset, as well as the choice of the programming languages 
used for modeling, but also the investment universe that has been selected for our research.  
 
3.2.1. Source databases 
 

For conducting this research, finding reliable and accurate financial and macroeconomic data 
is vital. In that regard, the choice of Refinitiv Eikon and the Federal Reserve Economic Data (FRED) 
database as primary data sources appeared as an evidence. These platforms were selected based on 
their global reputation, extensive coverage, data reliability, and user-friendly nature, all crucial to 
ensure robust research outcomes. 
 

Refinitiv Eikon was chosen for stock prices data due to its extensive global coverage, the 
timeliness of its data, and its advanced analytical tools. Known for its accuracy and reliability, Eikon 
provides real-time and historical data, facilitating a comprehensive understanding of stock price 
trends. It is indeed one of the most popular financial providers, widely used by finance professionals. 
Furthermore, its user-friendly interface and its brilliant Excel add-in tool simplifies data collection and 
initial analyses, proving its value in financial research. 
 

On the other hand, the FRED database was selected for macroeconomic variables due to its 
comprehensiveness, reliability, and ease of access. This data provider offers a brilliant R API tool to 
import macroeconomic data easily. Managed by the Federal Reserve Bank of St. Louis, FRED database 
is considered as a reliable data source and is widely used for economic research around the world. 
 
3.2.2. Programming language 
 

The selection of programming languages and tools in research should align with the specific 
needs of data analysis and the employed techniques. In this case, the R programming language was 
predominantly chosen for its robustness, and within the R environment, the TensorFlow and Keras 
packages were utilized for certain machine learning methods, specifically Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) networks. 
 

R was primarily selected for its capabilities in statistical analysis and data visualization. It 
provides a wide range of packages and libraries specifically designed for financial and econometric 
analyses, making it a suitable choice for handling time series data. Additionally, R's syntax is intuitive, 
and its community support is substantial, ensuring the availability of solutions to common issues. 
 

However, when it came to implementing RNNs and LSTMs, Python was preferred over R. This 
choice was driven by Python's superior support for these deep learning techniques, facilitated by the 
powerful libraries TensorFlow and Keras. These libraries, although primarily associated with Python, 
can be used within the R environment, providing robust, flexible, and efficient tools for building and 
training neural networks. 
 
3.2.3. Macroeconomic variables selection 
 

As previously stated, we gathered the macroeconomic variables used as regressors in our 
prediction models from the Federal Reserve Economic Data (FRED) database website, provided by the 
Federal Reserve Bank of St. Louis. These variables exclusively pertain to the United States, which is a 
noteworthy aspect considering that our stock sample consists entirely of US-based companies. The 
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selection of variables has been made in a subjective manner, incorporating a wide range of covariates 
that were judged to likely correlate with stock returns based on their nature (Appendices, Table 1). 
This approach aims to maximize the chances for pattern recognition in our models. 

 
3.2.4. Investment universe selection 
 

The investment universe of our study corresponds to the constituting stocks of the Dow Jones 
Industrial Average (DJIA). As a globally recognized index, the choice of focusing on its constituents 
confers several advantages for this exploration. Selecting these guarantees that the research is built 
upon data from firms that have considerable exposure on both the U.S. market and the global 
economy. These firms are traditionally linked with robust liquidity, reducing the impact of market 
microstructure noise on our conclusions. 
 

The availability of data stand as another compelling reason for this choice. Premium historical 
data for these large-cap companies is easily accessible and similar across various data providers, and 
they are subjects to high standards in terms of financial disclosures. This ensures a high degree of data 
consistency, vital for comprehensive and accurate statistical analyses. 
  

In addition to the benefits already discussed, the Dow Jones Industrial Average (DJIA) exhibits 
a strong level of sector diversification (Appendices, Table 2). This enables a more holistic view of the 
market, as it includes companies from various industries like technology, healthcare, finance, and 
more. This diversification ensures that the effects of sector-specific shocks are diffused, leading to 
more reliable analysis results. 
 

Moreover, these 30 companies have significant exposure to the macroeconomic variables 
contained in our dataset, extracted from the Federal Reserve Economic Data (FRED) database. This 
relationship enhances the relevance and applicability of our statistical models, as the selected 
securities are more likely to display meaningful correlations and responses to macroeconomic trends. 
 

However, it is important to recognize the limitations of using the DJIA. One primary concern is 
the potential bias due to the changing nature of the index. The DJIA is not a static index; its constituents 
can and do change over time, often reflecting the historical success of the included companies. This 
means that the stocks under study are typically “winners”, potentially leading to a survivorship bias in 
our findings. 
 

Moreover, this bias also implies that our research might not be directly extendable to other 
kinds of markets. Markets with different characteristics or those primarily composed of smaller or less 
successful companies may not behave in the same way as the DJIA constituents. Therefore, while our 
findings will provide valuable insights into the behavior of large, successful companies within diverse 
sectors, caution should be exercised when applying these results to broader or different market 
contexts. 
 

We should also stress that the 30 stock constituents of the DJIA will indeed not be included in 
our investment universe sample. Dow, the material science unit of the chemical producer DowDuPont 
Inc., was separated from its parent company on April 1, 2019 (Reuters Staff, 2023). Consequently, this 
stock was not quoted before 2019, which is out of our required 20-years time window (from 2001 to 
2021) quotation requirement. In addition, Visa Inc. and Salesforce Inc. were not publicly traded before 
the start of our defined rolling window, therefore it has been decided to not include these stocks in 
our sample. 
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3.2.5. ESG rating system 
 

Refinitiv's ESG rating system offers valuable insights to assess the sustainability of financial 
securities and is among one of the most comprehensive ESG databases in the industry, covering over 
85% of the global market cap. Their ESG scores are designed to transparently and objectively measure 
a company's relative ESG performance, commitment, and effectiveness based on company-reported 
data. Accessing the ESG scores is made convenient through the Refinitiv Eikon Excel add-in, with a 
similar extraction procedure as for stock prices. On their website, Refinitv define their scale, which is 
displayed on Table 3 in the Appendices. 
 

Refinitiv's ESG scores play a crucial role in constructing the ESG Integration Index later in this 
study. The linear scale from 0 to 100 provided by Refinitiv is well-suited for this purpose, enabling to 
quantify and compare companies' ESG performance easily. Indeed, by leveraging Refinitiv's data, we 
can construct an index that captures the integration of ESG factors into investment processes 
accurately by comparing the aggregate ESG score of a portfolio on a scale ranging from the ESG score 
of the mean-variance optimal portfolio to the highest achievable ESG score in our investment universe.  
 
3.2.6. Time window considerations 
 

In our analysis, we adopted a time window of 20 years, where we partitioned the data into 
distinct subsets for training and prediction purposes. Specifically, we utilized a rolling window 
approach, where 17 years of data were allocated for training our regression models, while the 
remaining 3 years were reserved for making predictions. By allocating 17 years for training, we aimed 
to leverage a substantial amount of historical data to capture underlying patterns and relationships 
among variables and avoid overfitting as we are dealing with over 30 regressors and monthly data. This 
allowed us to build robust regression models that could effectively learn from past observations and 
make strong predictions if fed with unseen data. 
 

At each time step, after the training phase, we used the fitted model to predict the next 
observation of the dataset using a rolling-window approach. This method allowed us to continuously 
update the model by shifting the time window forward at each step, incorporating the most recent 
data while excluding the oldest observation. It helped us evaluate the model's performance over 
multiple time periods and assess its reliability. This approach ensured robust and adaptable forecasts, 
capturing underlying patterns while considering potential changes in variables' behavior over time. 
 
3.3. Detailed overview of linear methods used for expected return estimation. 
 

Penalization methods have become vital tools for portfolio management, particularly when 
dealing with high-dimensional data, multicollinearity, or noisy observations that are the standard in 
finance. We will provide an overview of three popular penalization methods in the context of portfolio 
management: Ridge, Lasso, and Elastic Net. We discuss the theoretical underpinnings of each 
technique, their applications in estimating expected returns and shrinking the variance-covariance 
matrix, and their strengths and weaknesses in the scope of this master thesis. 
 
3.3.1. Ridge Regression 
 

Ridge Regression, proposed by Hoerl and Kennard (1970), is a linear regression method that 
employs an L2 penalty term. Ridge regression effectively deals with multicollinearity by shrinking the 
regression coefficients towards zero, thus reducing the variance of the model estimates. In portfolio 
management, Ridge can be used to stabilize estimates of expected returns in the presence of 
multicollinearity. However, unlike Lasso, Ridge does not perform variable selection, which may limit its 
interpretability in high-dimensional settings. 
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3.3.2. Lasso Regression 
 

Lasso Regression, introduced by Tibshirani (1996), is another linear regression technique that 
incorporates an L1 penalty term. This penalty term leads to both variable selection and continuous 
shrinkage, providing sparse solutions that facilitate model interpretability. In the context of portfolio 
management, Lasso can be applied to estimate expected returns while simultaneously shrinking the 
variance-covariance matrix, enabling more robust portfolio optimization (Friedman et al., 2008) 
 
3.3.3. Elastic Net Regression 
 

Elastic Net Regression, developed by Zou and Hastie (2005), combines the L1 penalty of Lasso 
and the L2 penalty of Ridge regression. This hybrid approach addresses the limitations of Lasso and 
Ridge, particularly in cases with highly correlated features or when the number of predictors exceeds 
the sample size. 
 
3.3.4. Comparison and Practical Considerations 
 

Each penalization method offers unique advantages and drawbacks for portfolio management. 
Ridge is more appropriate for addressing multicollinearity without the need for variable selection, 
while Lasso is well-suited for models requiring sparsity and interpretability, as well as shrinking the 
variance-covariance matrix. Elastic Net provides a balance between the two, offering both shrinkage 
and variable selection. Selecting the appropriate method depends on the specific problem, data 
structure, and the desired trade-off between interpretability and prediction accuracy in portfolio 
management. In the scope of this master thesis, we will thus examine the performance of each method 
within one of the two sustainable finance frameworks that we discussed before. 
 
3.4. Detailed overview of non-linear methods used for expected return estimation. 
 

The notations and the ideas presented in the last section are drawn entirely from the authors 
that are mentioned below. The descriptions given in this section have been included to provide a 
more comprehensive context for the reader interested in the functionality of artificial neural 
networks. They are not claimed to be original thoughts, and their formulation should be attributed to 
the work of the mentioned authors. 
 
3.4.1. Multilayer Perceptrons (MLP) 
 

Multilayer Perceptrons (MLPs) are a specific type of feedforward artificial neural network 
(ANN). MLPs, as compared to the linear regression models we just discussed, have a highly flexible 
architecture and can model complex non-linear relationships, making them suitable for time series 
forecasting, including stock returns prediction. MLPs are trained using a backpropagation algorithm 
that iteratively adjusts the weights between nodes to minimize the difference between the actual and 
predicted output. We attempt to provide a more detailed description of the MLPs below by 
summarizing an extract from Chapter 2 of "Neural Networks and Deep Learning" by Nielsen (2015). 
 

3.4.1.1. How does it work? 
 
Multilayer Perceptrons (MLPs) consist of three layers of interconnected neurons, where each 

layer processes the output from the previous one, applies a set of weights and biases, and passes the 
result through an activation function. The output from the final layer forms the network’s overall 
output. MLPs are said to be feedforward networks, meaning that information flows only in one 
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direction, from the input layer to the output layer and passing by the hidden layer(s), without any 
feedback connections. 
 

MLPs leverage the power of backpropagation, an algorithm introduced by Rumelhart et al. 
(1986). Backpropagation calculates the gradient of the cost function with respect to the network’s 
weights and biases (Figure 6), thus indicating how changes in these parameters impact the cost. This 
information guides the adjustment of the weights and biases to minimize the cost function, enhancing 
the network’s learning capability. 
 

3.4.1.2. The cost function 
 
To train a neural network, we need a measure of how well the network is performing. This is 

traditionally achieved through the usage of a cost function. The cost function quantifies the difference 
between the predicted output of the network and the true output for a given input. The goal is to 
minimize this difference, indicating that the network is accurately capturing the underlying patterns in 
the data. 
 

The choice of the cost function depends on the specific task at hand. For example, in a binary 
classification problem, where the goal is to assign inputs to one of two classes, a common choice is the 
cross-entropy loss function. In regression problems, where the goal is to predict a continuous value, 
the mean squared error (MSE) function is often used. For regression, the mean absolute error (MAE) 
function is similar to the MSE function and may also constitute a good choice, especially for tasks in 
which there is no necessity to attribute an important weight to large errors. 
 

Given a training example with input x and corresponding true output (label) y, the cost function 
C is defined as a function of the predicted output a*, where L represents the index of the output layer. 
The cost function captures the mismatch between the predicted output and the true output: 
 

C = C/a*, y1 
 

The goal of the training process is to find the set of weights and biases that minimize the overall 
cost function across all training examples. 
 
Figure 6.  
Multilayer Perceptrons Model with 3 input nodes, 2 hidden nodes, and 2 output nodes. 
 

 
Note. Source: Python networks library 
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3.4.1.4. Backpropagation algorithm. 
 
Backpropagation, as described by LeCun et al. (2015), is a foundational algorithm used in the 

training of multilayer perceptrons but also other neural networks. According to the authors, it 
functions by applying the chain rule for derivatives in a unique way that efficiently calculates the 
gradient of an objective function in relation to the weights throughout the network. This "backwards 
propagation" of computation starts at the output layer of the network and progresses towards the 
input layer, allowing for the determination of gradients at all layers. Once these gradients are 
established, the corresponding adjustments to the weights of each module can be made, facilitating 
the learning process within the network. LeCun et al. (2015) state that this transformative approach 
was first discovered in the 1970s and 1980s and initially met with skepticism. It has however proven 
to be effective at avoiding issues of local minima in large networks. This groundbreaking algorithm is 
at the heart of deep learning and has been instrumental for various artificial intelligence applications. 
 

3.4.1.5. Multilayer perceptrons and their implementation in investment strategies 
 

Multilayer Perceptrons, which are indeed a specific implementation of Artificial Neural 
Networks (ANN), have been established as a powerful tool for predicting financial market trends. This 
capability was demonstrated by the comparative analysis conducted by Maciel and Ballini (2009) on 
North American, European, and Brazilian Stock Market Indexes. In their study, the authors stress that 
the robustness of ANNs is exhibited in their ability to generalize from noisy data, enabling them to 
predict unseen trends. 
 

This results in a forecasting model that is not only more accurate than the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) model, which was used as a benchmark in that 
study, but is also capable of capturing heteroskedastic phenomena, typical of financial time series data 
(Maciel & Ballini, 2009). Overall, this research has demonstrated the potential of ANNs as a beneficial 
tool for individual investors in their search for superior returns on the financial markets. 
 
3.4.2. Recurrent Neural Networks (RNNs) 
 

In this section, we aim to provide an overview of Recurrent Neural Networks (RNNs), which 
are a type of artificial neural networks specifically developed for identifying patterns within sequential 
data. To achieve this, we will summarize the key points presented by Lipton (2015) in his publication 
titled "A Critical Review of Recurrent Neural Networks for Sequence Learning”. The objective here is 
to grasp the fundamental workings of RNNs, without developing extensive mathematical 
considerations, as it falls beyond the scope of this master's thesis. 
 

3.4.2.1. Activation functions 
 
In the previous section, in which we discovered the architecture of multilayers perceptrons, 

we have seen that each neuron j from any layer 𝑙 has a specific activation value denoted 𝑎+	resulting 
from the application of the activation function σ, which is sometimes called the link function. However, 
this σ is a widely used specific activation function for multilayer perceptrons known as sigmoid. 
 

σ(z) = 1/(1 + e,-) 
 

To understand the functioning of Recurrent Neural Networks, it is important to consider other 
activations functions. Common choices for the activation function of RNNs also include the sigmoid, 
but also and the tanh function, that can be found in various RNN models: 
 

ϕ(z) = (e- − e,-)/(e- + e,-) 
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Another activation which has become widely used for developing Recurrent Neural Networks 
is the rectified linear unit (ReLU) function. 
 

ReLU.(z) = max(0, z) 
 

It should also be noted that it is common standard to use a specific activation function for the 
last layer (output layer). A popular function in that regard is the softmax function. However, this 
function is designed for multi-class classification tasks, which are out of the scope of this master thesis. 
For stock returns prediction, linear activation (such as the identity function) could constitute a good 
choice as the activation function of the output layer. 
 

3.4.2.2. Recurrent Neural Networks specificities 
 
Unlike feedforward neural networks like Multilayer Perceptrons, RNNs maintain an internal 

state that can allow information to persist from an arbitrarily long sequence of previously seen inputs 
(Figure 7). These characteristics make this type of machine learning model very suitable for time series 
analysis and has by nature a strong potential for stock returns predictions. 
 
Figure 7.  
Recurrent Neural Networks Theoritical Representation. 
 

 
Note. Source: Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence learning. 
 

A simple RNN network, just like the Multilayer Perceptrons model we described above, consists 
of an input layer, one or plural hidden layer(s), and an output layer. A key distinction between MLPs 
and RNNs however is that in an RNN, the hidden state at time step t not only depends on the current 
input x(t) but also on the previous hidden state h(t − 1). This recurrent connection allows the network 
to capture temporal dependencies in the data and exhibit dynamic behavior. The hidden state at time 
t, denoted as h(t), can be updated using the current input x(t) and the previous hidden state h(t − 1) 
according to the following equations. In the presented model, the chosen activation function for the 
hidden layers is the tanh function, while the activation function for the output layer is the identity 
function. 

ℎ/ = ϕ(𝑊0( ∗ x(t) +𝑊00 ∗ ℎ/,1 + 𝑏0) 
 

yI/ = /𝑊20 ∗ ℎ/ + 𝑏21 
 

In the above equations, 𝑊0(	and 𝑊00 are the weight matrices for input-to-hidden and hidden-
to-hidden connections respectively, and 𝑏0 and 𝑏2 are bias terms. 
 

In the previous section about Multilayer Perceptrons, we reviewed in detail the main concepts 
and fundamental underlying equations of the backpropagation algorithm. A similar approach has been 
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designed to train Recurrent Neural Networks, named Backpropagation Through Time (BPTT). It extends 
the backpropagation algorithm to handle the temporal nature of RNNs. This allows the RNN to learn 
from and adjust its predictions based on the entire sequence of input data, rather than making 
predictions based on a static pre-trained model. 
 

3.4.2.3. Shortcomings of RNNs 
 
Despite their advantages for time series forecasting we have already discussed, RNNs have 

been known to be difficult to train. The main challenge in training RNNs is the problem of vanishing or 
exploding gradients, which refers to the decay or blow up of gradients as they are propagated back in 
time during the BPTT algorithm. This problem makes it hard for the RNN to learn long-range 
dependencies in the data. Therefore, the standard RNN model we described can only find applications 
for predictions influenced mostly by short-term dependencies. One of the objectives of this master 
thesis is to determine empirically whether this characteristic makes simple RNNs a strong or weak 
candidate for short-term stock returns predictions.  
 
3.4.3. Long Short-Term Memory (LSTM) 
 

Long Short-Term Memory (LSTM) is an advanced type of RNN developed to address the 
vanishing gradient problem we just described, allowing thus mode to learn long-term dependencies in 
data. This section will try to summarize the content of the brilliant blog post written by Olah (2015) on 
“Understanding LSTM Networks”. 
 

3.4.3.1. Structure of Long Short-Term Memory networks 
 

Long Short-Term Memory networks (LSTMs) indeed address the long-term dependency 
problem and the gradient problem shown by standard RNNs, as discussed above. LSTMs, introduced 
by Hochreiter & Schmidhuber (1997), have shown remarkable performance on a broad spectrum of 
tasks, mainly due to their unique ability to retain and manage information over longer periods than 
standard Recurrent Neutral Networks. 
 

LSTMs are composed of a chain of neural network modules, each containing four interacting 
layers that collectively enable the learning of long-term dependencies. The key feature of LSTMs is 
their 'cell state', a vector for information that flows through the network, influenced by subsequent 
'gates'. These gates regulate the flow of information by deciding what information to keep or discard, 
thereby ensuring a well-adjusted balance between the old and the new data (Figure 8). 
 
Figure 8.  
Long Short-Term Memory Networks Theoritical Represention. 
 

 
 

Note. Source: Olah, C. (2015, August 27). Understanding LSTM Networks. 
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The 'cell state' is a horizontal line running through the LSTM structure, often regarded as a 
'conveyor belt' for information. It carries data throughout the network with minimal changes, ensuring 
that relevant information can be accessed over long sequences. 'Gates', which include the forget gate, 
input gate, and output gate, are the control mechanisms for the LSTM. They decide what information 
is retained, discarded, or generated at each time step, using Sigmoid or Tanh activation functions. 
 

The 'forget gate' determines the amount of past information to forget, while the 'input gate' 
decides which new information from the current input should be stored. These gates interact with the 
cell state, effectively mitigating the vanishing gradient problem by preserving the information over 
long periods, enabling the LSTM to learn long-term dependencies. Finally, the 'output gate' filters the 
cell state information to decide the final output, thus regulating the data flowing out of the network 
at each time step. These elements collectively give LSTMs their superior performance in handling 
sequential data with long-term dependencies, which is particularly helpful for stock returns prediction. 
 

3.4.3.2. Application of LSTM networks for financial market predictions. 
 

The literature about the role and performance of LSTM to predict financial time series is vast. 
In their paper, Fischer and Krauss (2018) apply Long Short-Term Memory (LSTM) networks to predict 
financial market performance, specifically focusing on the S&P 500 from December 1992 to October 
2015. The authors make three key contributions: 
 

In that study, the authors found that the LSTM model outperforms standard deep networks, 
logistic regression, and most of the time, the random forest model. They also investigated the "black 
box" nature of LSTMs, finding common patterns of stocks selected for profitable trading. These stocks 
typically exhibited below-mean momentum, strong short-term reversal characteristics, high volatility, 
and high beta – all factors that are related to existing capital market anomalies (Fischer & Krauss, 2018). 
Finally, they implemented a simplified rules-based trading strategy based on the common patterns 
found in the LSTM portfolio. This strategy achieved about 50% of the LSTM returns, further confirming 
the effectiveness of LSTM networks at identifying winning patterns. 
 

The authors conclude that LSTM networks effectively extract meaningful information from 
noisy financial time series data, outperforming other models in terms of prediction accuracy and daily 
returns after transaction costs. Therefore, they state that deep learning, particularly in the form of 
LSTM networks, is a significant advancement in financial markets prediction. 
 
3.4. Detailed methodology for optimal portfolio construction and portfolio analysis 
 

The methodology chosen for solving the mean-variance optimization problem can be broken 
down into several key stages.  Some of the procedures described are repeated for all the considered 
regression models, in particular the data collection and preparation, as well as the portfolio 
optimization and performance analysis compartments. The model development and implementation 
section will however be specific to each model considered in the context of this master thesis: 
 

- Linear regression model 
- Ridge regression model 
- Lasso regression model 
- Elastic net regression model 
- Multilayer perceptrons regression model 
- Recurrent neural networks (RNN) regression model 
- Long Short-Term Memory regression model 
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3.4.1. Data collection and preparation 
 

The first stage involves data collection and preparation. Macroeconomic data is gathered from 
the Federal Reserve Economic Data (FRED) database using the FRED API, with an API key provided for 
this purpose. A selection of economic indicators is chosen based on their relevance given the chosen 
investment universe, namely the Dow Jones Industrial Average Index constituents. These indicators 
encompass a broad array of macroeconomic indicators which are all described in section {4.2.3.}. 
 

The collected data spans from January 1, 2001 to January 1, 2021, ensuring a comprehensive 
overview of economic trends over the last two decades. As we are working with monthly observations, 
it is crucial to work with a considerable time window to construct a large enough sample to train our 
various models. The data is then cleaned, and missing values are filled in, where possible, using the 
Last Observation Carried Forward method (LOCF). Finally, the data is consolidated into a single data 
frame for easier manipulation in later stages. 
 

Additionally, stock price data for all components of the Dow Jones Industrial Average (DJIA) is 
extracted from an Excel spreadsheet which has been constructed with help of the Refinitiv Eikon Excel 
Add-in. The time window considered should be large enough to enable merger with the 
macroeconomic dataset constructed earlier. This data is then filtered to match the same date range as 
the macroeconomic data that was extracted from the FRED database.  
 

Then, the macroeconomic and financial datasets are merged. The macroeconomic data and 
the DJIA component data are joined together, creating a single, unified dataset. This comprehensive 
dataset is split into two separate data frames for further analysis: one for the stock prices and another 
for the macroeconomic covariates. The log returns for the stock prices are then calculated, and the 
comprehensive dataset is updated. Log returns, as opposed to simple returns, are preferred due to 
their time-additive property, making them particularly suited for the subsequent time series analysis. 
 
3.4.2. Model development and implementation 
 

As stated earlier, this step will have a different instance for each regression model considered 
in the context of this master thesis. For each regression type, and for each DJIA component, a new 
regression model is trained and a prediction is made based on an out-of-sample approach to predict 
one-step ahead returns for the last 36 periods in our dataset. This results in a robust set of predictions 
that take into account the unique behaviors and characteristics of each individual stock. 
 

The models are trained using a rolling window approach, meaning that the model training is 
continuously updated as new data becomes available. Each rolling window encompasses a certain 
number of previous periods, taking into account both the most recent data and a sequence of 
preceding data points. This method allows each of our models to effectively capture both short-term 
and long-term temporal dynamics in the data. The output, for each model, is thus a list of predicted 
returns for each stock in the DJIA over the last 36 periods. 
 
3.4.3. Portfolio optimization 
 

The next stage of the methodology involves portfolio optimization using the mean-variance 
optimization framework as suggest by Markovitz (1952). The predicted returns that we estimated at 
the previous step are used as input into this optimization model. Portfolio weights are determined 
using a solver that determines the optimal portfolio weights maximizing the Sharpe ratio, which is a 
measure of the risk-adjusted return. These weights thus represent the proportion of the total 
investment that should be allocated to each DJIA stock to reach the highest achievable Sharpe ratio. 
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Given that financial markets can be highly volatile and that regression models predictions are 
continuously updated, the portfolio's composition may change over time to adapt to new market 
conditions and maintain an optimal risk-return trade-off. This dynamic approach aligns well with the 
unpredictable nature of financial markets, providing a robust strategy. 
 
3.4.4. Strategy Performance Analysis 
 

In this final section, the performance of each of the seven regression models-based strategies 
is evaluated and compared. This involves calculating the realized return for each model in the 36 last 
time steps of our dataset, for each of the components of the Dow Jones Industrial Average (DJIA) index. 
The realized return is computed by multiplying the model-optimized portfolio weights by the actual 
return of each stock in the subsequent period. The same procedure is applied to a simple equal-
weighted (EW) portfolio for comparison purposes. 
 

The calculated realized returns for each strategy are then compounded over time to produce 
cumulative returns, which are displayed in a comparative plot. This visualization provides an overview 
of how each strategy would have performed over the evaluation period. To deepen the performance 
analysis, several key risk and return metrics are calculated for each strategy. These include the Sharpe 
ratio, which measures risk-adjusted performance; the Maximum Drawdown, representing the largest 
drop from peak to bottom; the Sortino ratio, similar to the Sharpe ratio but penalizing downside 
volatility; and the Compound Annual Growth Rate (CAGR), providing the mean annual growth rate of 
an investment over a specified period of time. The computation of these metrics contributes to a more 
comprehensive view of each strategy's performance, taking into account both returns and risks. 
 
3.5. Detailed methodology for the ESG-optimized portfolio construction 
 
3.5.1. Global procedure description 
 

The procedure to integrate ESG considerations in our portfolio construction process follows 
the results obtained in the previous section, as the generated predicted returns are needed in this 
analysis. For the sake of simplicity and clarity, it has been decided to only focus on the impact of 
integrating ESG preferences of investors in the context of the strategy implied by the use of the 
multilayer perceptrons regression model to predict stock returns. 
 

In this section, we will perform a case study on how to integrate ESG considerations in portfolio 
construction at a specific date in the past. Specifically, the investment decision that we will investigate 
could have taken place on November 30, 2020, which corresponds to the penultimate data row of our 
comprehensive dataset. Considering the penultimate data row allows to go even deeper in our analysis 
by performing an ex-post analysis and see what are the realized consequences of integrating ESG 
considerations in portfolio construction. 
 
3.5.2. Integration of ESG considerations from the optimal mean-variance portfolio 
 

We start with the same investment universe as in the previous section: the constituting stocks 
of the Dow Jones Industrial Average (DJIA). For each asset, we append an ESG score, a composite 
measure reflecting the company's performance in environmental, social, and governance matters. For 
this master thesis, the Refinitiv ESG scores have been chosen for the reasons detailed in section 3.2.5. 
The scores are collected into a dedicated vector from the Refinitiv Eikon database using the Excel Add-
In of the application. 
 

While the approach described further is robust, it is important to acknowledge one key 
limitation: the use of static ESG scores. The choice to use static ESG scores was made for simplicity 
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reasons as these scores, by their nature, do not exhibit significant changes over time compared to the 
dynamic nature of other metrics we employ, particularly stock returns and their volatility. This nuance 
however highlights the need for careful interpretation and consideration of the static ESG scores within 
the broader context of our analysis.  
 

First, we start by constructing the mean-variance-ESG efficient surface as described by Steuer 
and Utz (2023). This three-dimensional object helps the investor make an informed investment 
decision by offering an intuitive visualization of the trade-off he/she has to make in terms of risk, 
return, and portfolio ESG impact. In a first time, we will not apply any ESG constraint on the 
computation of the efficient surface. 
 

Then, we will attempt to understand the features of the optimal mean-variance portfolio, in 
particular its Sharpe ratio and ESG aggregate score. This will be the starting point of our ESG integration 
procedure. From there, we will attempt to understand how much return an investor has to give up in 
order to achieve a desired level of ESG integration. This ESG integration will be measured with help of 
the ESG Integration Index proposed by Steuer and Utz (2023), and thoroughly described in section 
2.1.5. of the literature review. This index aims at characterizing the ESG score improvement of a 
portfolio, by placing it on a scale that ranges from the mean-variance optimal portfolio (ESG Integration 
Index = 0) to the portfolio that provides the highest attainable ESG score (ESG Integration Index = 100). 
 

We can already comment at this stage that our approach is the inverse of the one described 
by Steuer and Utz (2023): in their study, the authors try to characterize the achievable ESG score 
improvement based on the number of basis points that the investor is willing to give up to obtain a 
greener portfolio. On the other hand, our approach is an attempt to understand, for a desired level of 
ESG integration, how much a serious ESG investor needs to give up both at portfolio allocation stage 
but also in terms of ex-post realized returns. One of the research objectives of this master thesis is to 
check whether the same conclusions can be drawn by using this different but coherent approach. 
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4. Development and empirical results 
 
4.1. Financial data description 
 

In order to provide context for our empirical analysis, it is important to describe our stocks 
dataset. In this section, we will examine the relationships between the returns of the assets within our 
investment universe. We will visualize this relationship through a variance-covariance matrix, which 
will help us map the positioning of each asset in terms of return and risk. Additionally, we will evaluate 
the risk and return levels and Sharpe ratio of each stock to gain insights about the risk-return tradeoff 
they present. By considering these factors, we can better understand the characteristics and 
performance of our stocks before diving into the results of our empirical analysis. 
 
4.1.1. Variance-covariance matrix 
 

The variance-covariance matrix is a square matrix that summarizes the variances and 
covariances between the individual stocks in the portfolio (Figure 9). It provides valuable information 
about the risk and diversification potential of the portfolio. The diagonal elements of the matrix 
represent the variances of the individual stocks, indicating their individual risk levels. Any off-diagonal 
element represents the covariances between a combination of two stocks, reflecting the extent to 
which their returns move together. By analyzing the variance-covariance matrix, we can assess the 
overall risk of the portfolio and make informed decisions about asset allocation and diversification to 
optimize their risk-return trade-off. 
 
Figure 9. 
Variance-Covariance Matrix of the Defined Investment Universe. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
The variance-covariance matrix is a fundamental component of our methodology, particularly 

in the portfolio optimization process. It serves as the primary measure of portfolio risk, allowing us to 
calculate the Sharpe ratios for various portfolios within our predefined investment universe. By 
utilizing the matrix, we can identify the optimal portfolio with the highest Sharpe ratio.  
 

From the provided information, it is evident that there is a positive correlation among the 
returns of all stocks, with higher correlation observed among stocks within the same industry sector. 
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This understanding of correlations helps our portfolio optimization algorithm to make informed 
decisions about portfolio construction and diversification. 
 
4.1.2. Risk/return profiles of the considered stocks 
 

Figure 10 compares the average historical levels of return and risk for each asset within our 
investment universe over a 20-year time window. The line running through the plot represents the 
coefficient of a linear regression between the vector of risks and the corresponding vector of returns, 
with a slope of 0.070528.  
 
Figure 10. 
Risk/Return Trade-Off of the Investment Universe Constituents. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
4.1.3. Sharpe ratios of the considered stocks 
 

Figure 11 illustrates the Sharpe ratios of the constituents within our investment universe. It is 
worth noting that a risk-free rate of -0.05% was used for these calculations, based on the ECB interest 
rate at the end of the selected prediction window (2018-2021). From the graph, it can be inferred that 
Apple Inc. (AAPL.O) offers the most favorable return-to-risk tradeoff, indicating superior risk-adjusted 
performance compared to other constituents. On the other hand, Walgreens Boots Alliance, Inc. 
(WBA.O) demonstrates the weakest performance, as it barely achieves positive Sharpe ratio despite 
the consideration of a negative interest rate. These observations highlight the differing risk-return 
characteristics and relative performance of the stocks within our investment universe. 
 
Figure 11. 
Sharpe Ratios of the Investment Universe Constituents. 
 

 
Note. Source: Refinitiv Eikon, FRED 
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4.2. Investment strategies performance analysis 
 

In this section, we aim at making an in-depth comparison of the out-of-sample returns implied 
by the seven selected investment strategies, and ultimately to identify the one which stands out. As a 
reminder, each of these strategies rely on a different regression method to predict future stock returns, 
impacting the asset allocation suggested by the mean-variance optimization problem: 
 

- Linear regression  
- Ridge regression 
- Lasso regression 
- Elastic net regression 
- Multilayer perceptrons (MLP) regression 
- Recurrent Neural Networks (RNN) regression 
- Long Short-Term Memory (LSTM) neural networks regression 

 
4.2.1. Cumulative returns 
 

Cumulative returns refer to the total return or gain for a given investment over a specified 
period. It represents the aggregate performance of the investment, considering the compounding 
effect of returns over time. For this master thesis, as explained earlier, it has been chosen to compare 
the selected investment strategies using a 3-years wide out-of-sample prediction approach. 
 
Figure 12. 
Comparison of Cumulative Returns for the different Investment Strategies. 
 

 
Figure 12 clearly demonstrates that the Multilayer Perceptron (MLP) strategy outperforms the 

other strategies in terms of cumulative returns. The MLP strategy shows the highest cumulative returns 
at the end of the considered window, indicating its effectiveness in capturing investment opportunities 



 46 

and delivering consistent gains over time. Following MLP, the elastic net model implied strategy 
demonstrates a relatively strong performance. Linear Regression, LSTM, Ridge, and RNN implied 
strategies show varying degrees of cumulative returns. However, it is important to note that the lasso 
implied strategy is the only one that underperformed the buy-and-hold (equal weight) strategy. This 
underperformance can be explained partially by a poor choice of asset allocation right before the 2020 
sanitary crisis crash. The results of this section highlight the potential advantages of employing the 
MLP strategy for investment decision-making. 
 
4.2.2. Compound annual growth rate 
 

The compound annual growth rate, often abbreviated as CAGR, is a measure used to calculate 
the average annual growth rate of an investment over a specified time period, assuming that the 
investment grows at a constant rate each year. CAGR accounts for compounding effect, meaning that 
this metrics considers the reinvestment of returns to generate higher growth. This characteristic makes 
the CAGR a good candidate for performance comparisons across diverse investment strategies. 
 
Figure 13. 
Strategies Comparison based on CAGR. 
 

 
 

The investment strategies examined in the study exhibited different Compound Annual 
Growth Rates (CAGR) as we can see on Figure 13, and we can see that their rank in terms of this metric 
could also have been deducted by reading the cumulative returns graph (Figure 12). The RNN strategy 
achieved a CAGR of 8%, while Linear Regression and LSTM strategies both recorded a CAGR of 7%. The 
MLP strategy demonstrated the highest CAGR at 12%, followed by the elastic net strategy with 9%. The 
ridge strategy attained a CAGR of 5%, while the lasso strategy exhibited the lowest CAGR at 2%. 
 
4.2.3. Maximum Drawdown 
 

Maximum Drawdown refers to the largest decline or loss experienced by an investment or 
portfolio during a specific period, measured from its highest value to the lowest value before a 
recovery takes place. It represents the maximum percentage drop in value from a previous peak to the 
subsequent trough. This metric helps investors assess the magnitude of the worst decline suffered by 
an investment before it starts to regain value. Maximum Drawdown is a common risk measure used 
to evaluate the potential downside and volatility of an investment strategy or asset. 
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Figure 14. 
Strategies Comparison based on Maximum Drawdown. 
 

 
 

Figure 14 shows that lasso strategy yields the maximum drawdown of 25%, indicating a 
relatively higher level of downside risk. Linear regression and ridge strategies exhibit maximum 
drawdowns of 19% and 18% respectively, implying a slightly lower degree of volatility. Moving towards 
the MLP and LSTM strategies, their maximum drawdowns stand at 17% and 15% respectively, 
suggesting a comparatively reduced level of risk. Both the Elastic Net and RNN strategies demonstrate 
the lowest maximum drawdowns, with values of 15% and 14% respectively, implying a higher level of 
stability and lower downside risk. Overall, while lasso presents the highest risk in terms of maximum 
drawdown, RNN stands out as the strategy with the lowest maximum drawdown, offering potentially 
more stable returns, and potentially demonstrating as the less vulnerable strategy in case of extreme 
events. 
 
4.2.4. Sharpe ratio 
 

The Sharpe ratio is a measure used to evaluate the risk-adjusted return by quantifying the 
excess return generated by an investment in relation to its volatility or risk. It is calculated by 
subtracting the risk-free rate of return from the investment's average return and dividing the result by 
the investment's standard deviation. The Sharpe ratio allows investors to assess whether the returns 
achieved by an investment compensate for the level of risk undertaken. A higher Sharpe ratio indicates 
a better risk-adjusted performance, suggesting that the investment has provided higher returns 
relative to its level of risk. 

 
Figure 15. 
Strategies Comparison based on Annualized Sharpe Ratio. 
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On Figure 15, it can be observed that among the considered strategies, the elastic net 
technique demonstrates the highest Sharpe ratio of 2.35, indicating a favorable risk-adjusted return. 
Following closely is the recurrent neural network (RNN) approach, with a Sharpe ratio of 2.31, 
indicating a strong risk-adjusted performance as well. The multilayer perceptron (MLP) strategy also 
exhibits a respectable Sharpe ratio of 2.2. On the other hand, the long short-term memory (LSTM) 
model achieves a Sharpe ratio of 2.01, indicating a slightly lower risk-adjusted return compared to the 
previous strategies. Linear regression presents a Sharpe ratio of 1.85, while the ridge regression 
approach achieves a Sharpe ratio of 1.55, reflecting a lower risk-adjusted return compared to previous 
strategies. Finally, the lasso method exhibits the lowest Sharpe ratio among the strategies analyzed, at 
0.73, indicating a poor risk-adjusted performance as a Sharpe ratio smaller than 1 is often considered 
as bad. 
 
4.2.5. Sortino ratio 
 

The Sortino ratio is also a risk-adjusted performance measure that focuses on downside risk, 
specifically the level of downside deviation. The ratio measures the excess return of an investment or 
portfolio relative to its downside deviation, taking into account only the negative returns. Similar to 
the Sharpe ratio, a higher Sortino ratio indicates a better risk-adjusted performance. It is calculated by 
subtracting the risk-free rate of return from the investment’s average return and dividing the result by 
the investment’s downside deviation. The Sortino ratio is particularly useful for investors that exhibit 
high risk aversion and who are more concerned about minimizing downside risk and preserving capital 
rather than overall volatility. It provides a more focused assessment of an investment’s performance 
in unfavorable market conditions. 
 
Figure 16. 
Strategies Comparison based on Sortino Ratio. 
 

 
 

Among the strategies examined on Figure 16, the MLP (Multilayer Perceptron) approach 
presents the highest Sortino ratio of 1.91, indicating a strong risk-adjusted return. The RNN (Recurrent 
Neural Network) method follows closely with a Sortino ratio of 1.41. The LSTM (Long Short-Term 
Memory) model achieves a Sortino ratio of 1.27. Both linear regression and ridge regression techniques 
exhibit similar Sortino ratios of 1.29 and 1.24, respectively, showcasing still decent risk-adjusted 
performances. The elastic net technique demonstrates a Sortino ratio of 1.11. Finally, the lasso method 
exhibits the lowest Sortino ratio of 0.66, indicating a relatively poorer risk-adjusted performance as 
compared to the other strategies analyzed. 
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4.2.6. Treynor ratio 
 

The Treynor ratio is another financial performance measure used to evaluate the risk-adjusted 
return of an investment or portfolio by accounting for systematic risk, often measures as beta, the 
coefficient of the market returns regressor in a linear regression with the returns of the portfolio under 
consideration as the dependent variable. It quantifies the portfolio return generated per unit of 
systematic risk undertaken. The ratio is calculated by subtracting the risk-free rate of return from the 
investment return and dividing the result by the beta of the investment. A higher Treynor ratio suggests 
a better risk-adjusted performance, indicating that the investment has generated more excess return 
for each unit of systematic risk. It is commonly used to assess the performance of investment portfolios 
in relation to their exposure to market risk. 
 
Figure 17. 
Strategies Comparison based on Treynor Ratio. 
 

 
 

Figure 17 evaluates the performance of different investment strategies by analyzing their 
Treynor ratio values. Among the strategies examined, the RNN and LSTM methods achieve the highest 
Treynor ratio of 0.19, indicating the best risk-adjusted returns in the strategies sample. The elastic net 
technique, linear regression and ridge regression techniques exhibit Treynor ratios of 0.18 and 0.17 
respectively. The MLP and lasso methods exhibit a Treynor ratio of 0.15, suggesting relatively poorer 
risk-adjusted performances compared to the other strategies analyzed. 
 
4.2.7. Information ratio 
 

The information ratio is also a risk-adjusted performance measure, used to evaluate the excess 
return generated by an investment or portfolio relative to the level of risk undertaken. It compares the 
investment return over a benchmark or risk-free rate, divided by the volatility of that excess return. A 
higher information ratio indicates better risk-adjusted performance, implying that the investment 
manager has generated more excess return per unit of risk. It is commonly used to assess the 
performance of actively managed portfolios and strategies, which particularly relevant in the context 
of this study. The benchmark used to compute the excess returns is the portfolio implied by the buy-
and-hold strategy. 
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Figure 18. 
Strategies comparison based on Information Ratio. 
 

 
 

From Figure 18, it can be understood that the MLP method demonstrates the highest 
Information ratio of 0.15, indicating that it is the strategy with the strongest risk-adjusted return 
according to this metric. The elastic net technique follows with an Information ratio of 0.11, followed 
by the RNN method which exhibits an Information ratio of 0.07. The linear regression and LSTM 
approach achieve respectively Information ratio of 0.05 and 0.04. The ridge regression technique 
demonstrates a marginal Information ratio of 0.01, reflecting a minimal risk-adjusted performance. In 
should be noted that the lasso method exhibits a negative Information ratio of -0.08, which is not 
surprising as it underperformed the benchmark buy-and-hold strategy. 
 
4.2.8. Performance analysis synthesis 
 

The Multilayer Perceptron (MLP) strategy consistently stood out as a robust performer across 
multiple measures, making it an informed choice for the succeeding section. With the highest 
cumulative returns and Compound Annual Growth Rate (CAGR) of 12%, along with the top Sortino 
ratio of 1.91 and Information ratio of 0.15, the MLP strategy demonstrated remarkable efficiency in 
generating returns, compensating for risk taken, and delivering risk-adjusted performance relative to 
the buy-and-hold benchmark. 
 

The Elastic Net Regression model also presented notable performance, achieving the second-
best CAGR of 9% and the highest Sharpe ratio of 2.35, reflecting a favorable risk-adjusted return. This 
strategy additionally exhibited lower downside risk with a maximum drawdown of 0.15. 
 

Meanwhile, the Recurrent Neural Networks (RNN) and Long Short-Term Memory Neural 
(LSTM) Networks strategies displayed balanced performance across the board. Both techniques shone 
in terms of their Treynor ratios of 0.19, indicating efficient risk-adjusted returns considering their 
systematic risk (beta). 
 

The Linear Regression method exhibited mixed results, with a CAGR of 7% and respectable risk-
adjusted performance metrics, including a Sharpe ratio of 1.85, a Sortino ratio of 1.29, and a Treynor 
ratio of 0.17. 
 

In contrast, the Ridge and Lasso Regression strategies demonstrated weaker performances 
compared to the other methods. Ridge Regression registered modest returns with a CAGR of 5%, 
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alongside average risk-adjusted metrics. Lasso Regression, however, was behind all the strategies in 
terms of return generation and risk management. With the lowest CAGR of 2%, the highest maximum 
drawdown of 0.25, and the smallest Sharpe, Sortino, Treynor, and Information ratios, Lasso Regression 
showed the greatest downside risk and poorest risk-adjusted returns. 
 

In a nutshell, while most strategies hold their unique strengths and weaknesses, the MLP 
strategy seems to offer the most compelling balance of strong return generation and efficient risk 
management. Consequently, we will be proceeding with the MLP strategy for further investigation and 
implementation in the next section. 
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4.3. Inclusion of ESG preferences 
 
 In this section, we study portfolio optimization beyond the traditional mean-variance 
optimization problem, by exploring an alternative procedure to account for ESG considerations in the 
portfolio optimization process. 
 
4.3.1. The Mean-Variance-ESG Efficient Surface 
 
 Our analysis begins by establishing a foundation for subsequent discussion, by outlining the 
framework that will guide our exploration. This framework, mainly inspired by the work of Steuer et 
al. (2023), adopts the concept of an efficient surface extending in a three-dimensional space, where 
the axes represent risk, return, and ESG score. The efficient surface visualizes the portfolio with the 
maximum attainable ESG score for any combined level of risk and return. 
 
 The efficient surface displayed below in figure 19 represents the trade-off that a rational 
investor should consider in his/her asset allocation decisions with regard of our defined investment 
universe, on November 30, 2020. At this stage, ESG constraints are not accounted for in the efficient 
surface as the objective is to make an initial ESG-naive investment decision, that will be used as a 
starting point further in our study. 
 
Figure 19. 
Mean-Variance-ESG Efficient Surface (Steuer and Utz, 2023). 
 

 
 

Note. Source: Refinitiv Eikon, FRED 
 

For an investor more familiar with the traditional mean-variance efficient frontier concept, and 
eager to draw parallels with it, the Mean-Variance-ESG efficient surface can be visualized as shown 
below using a color scale (Figure 20). Nevertheless, due to the density of portfolios along the mean-
variance efficient frontier, this representation is less appealing than the efficient surface. 
Consequently, we will not be utilizing this visual representation in our ongoing analysis, and rather 
prefer the efficient surface representation. 
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Figure 20. 
M-V-ESG Efficient Surface, 2D Representation (Steuer & Utz, 2023). 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
 
4.3.2. ESG-naive investment decision-making 
 

On Figure 21, we show the ESG-efficient frontier as proposed by Pedersen et al. (2021), 
enhanced by a color scale indicating a measure of risk for any portfolio in the ESG-efficient frontier to 
mitigate its primary shortcoming identified by Steuer and Utz (2023): the unique focus on the problem 
aiming at maximizing Sharpe ratio and subject to ESG constraints, while overlooking the investor's risk 
profile. With this additional specification, the investor can make a more informed investment decision 
that is more coherent with its risk profile. 
 
 The red dot on Figure 21 shows the portfolio that a non-serious ESG investor would select. It 
is the optimal portfolio based on the mean-variance model, providing the highest achievable Sharpe 
ratio. The maximal attainable Sharpe ratio, surprisingly, stands at 0.32 on a monthly scale, resulting in 
an annualized Sharpe ratio of 1.14. Earlier in section 4.2., we noted that the Sharpe ratio for the MLP 
model's implied strategy under study was 2.2. This surprising mismatch may push the reader to 
question the consistency of our results. 
 

Various elements contribute to this apparent discrepancy. During this phase of the ESG 
integration analysis, the efficient surface and ESG-efficient frontier are constructed based on the 
predicted returns provided by our MLP regression model. However, when analyzing the performance 
of different strategies, we used the realized returns implied by each investment strategy to calculate 
the respective performance metrics. Furthermore, in the evaluation of strategies suggested by 
machine learning models, we utilized a three-year window of monthly actual returns to compute the 
Sharpe ratio. In contrast, for the present ESG integration analysis, we're considering only a one-step 
ahead asset allocation. 
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Figure 21. 
ESG-Efficient Frontier (Pedersen et al. 2021) with Color Scale to account for Risk Level. 
 

 
Note: the Sharpe ratio scale is expressed at a monthly frequency. 

Source: Refinitiv Eikon, FRED 
 

In the context of this specific investment decision, the optimal portfolio, represented by the 
red dot in Figure 21, is structured with stock weights as displayed in Figure 22. 
 
Figure 22. 
Portfolio Optimal Weights, ESG Inegration Index = 0. 
 

 
 

Note. Source: Refinitiv Eikon, FRED 
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4.3.3. ESG Integration Index and chosen approach 
 

By visualizing the ESG-efficient frontier (Pedersen et al., 2021), we could identify and describe 
the most preferred portfolio for a non-serious ESG investor. Now, let’s dive into the subject of ESG 
integration in portfolio management: what if the investor is an ESG-serious investor? As a reminder, 
Steuer and Utz (2023) describe an ESG-serious investor as “an investor whose strength of interest in 
ESG makes that consideration a criterion competitive on the playing field of portfolio selection with risk 
and return, thus causing the investor’s efficient frontier to become an efficient surface”.  
 

To quantify the extent of ESG integration this ESG-dedicated investor might choose, we'll 
employ the ESG Integration Index as proposed by Steuer and Utz (2023), but with minor adjustments 
to suit our study. This index calculates the degree of ESG integration using the formula: 
 

∆𝜐 =
𝜐!𝑥"#,% − 𝜐!𝑥%

𝜈&'( − 𝜐!𝑥%
 

 
where 𝜐!  is the ESG Coefficient Vector and 𝑥%  is the optimal portfolio without consideration of the ESG 
preferences of the investor.  𝑥"#,%   is a portfolio for which a basis point quantity 𝑏𝑝 has been given up 
by the investor to achieve higher ESG performance, and 𝜈&'( is return of the asset allocation that 
maximizes portfolio ESG score.  
 

As stated earlier, in this study, we will use a slightly different approach to evaluate the impact 
of ESG integration in the asset allocation process. Instead of trying to describe the level of ESG 
Integration improvement that diverse pre-defined levels of expected returns relaxation can yield, we 
will rather attempt to characterize the needed return sacrifice to achieve a desired level of ESG 
integration improvement. Thus, the following formula corresponds better to our research objective, 
which is to describe the evolution of 𝜐!𝑥"#,%  for different values taken by ∆𝜐. 
 

𝜐!𝑥"#,% 	= 		 𝜐!𝑥% +	∆𝜐	𝜈&'( −	∆𝜐	𝜐!𝑥%  
 
4.3.4. The trade-off of the ESG serious investor 
 

The optimal mean-variance portfolio, which is the preferred portfolio of a non-serious ESG 
investor, serves as a starting point for ESG integration. By definition of the efficient surface and the 
serious ESG investor, both provided by Steuer and Utz (2023), such an investor does not have any 
incentive to opt for a portfolio with a lower ESG score than the portfolio which maximizes the Sharpe 
ratio. Thus, the ESG score of the portfolio that maximizes the Sharpe ratio sets the minimum optimal 
portfolio ESG score. Reading from figure 21, this portfolio exhibits an ESG score of 77, setting the 
required minimum ESG score at this level (Figure 23). 
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Figure 23. 
M-V-ESG Efficient surface, ESG Integration Index = 0 (Steuer and Utz, 2023). 
 

 
 

Note. Source: Refinitiv Eikon, FRED 
 

To make a practical use of the efficient surface representation for ESG investment decision-
making, we need a clearer understanding of the investor's ESG preferences. A serious ESG investor 
might be willing to only drop a few basis points for a greener portfolio in terms of return performance, 
while others might set ESG integration as an absolute priority, regardless of return cost. To quantify 
this tendency to integrate ESG considerations, we will use the ESG Integration Index discussed above. 
 

The ESG integration index is defined over a range that goes from 0 to 100. A value of 0 means 
that the portfolio is characterized by the same ESG score as the optimal mean-variance portfolio, 
whereas an ESG integration index worth 100 corresponds to the portfolio with the highest attainable 
Sharpe ratio, which corresponds to a full investment in the stock that has the highest ESG score (which 
is the company Johnson & Johnson in our study). 
 

Therefore, we will examine various ESG integration levels to comprehend their risk and return 
implications. Specifically, we will observe the evolution of expected return and risk as the ESG 
Integration Index increases. Each ESG Integration level is, by definition, associated with a minimum 
required ESG score. 
 

ESG Integration Index 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
Minimum Required ESG Score 77.1 78.6 80.1 81.6 83.1 84.6 86.1 87.5 89.0 90.5 92.0 

 
For any ESG Integration level, we construct a new efficient surface (Figure 24) that only displays 

portfolios meeting or exceeding the corresponding minimum required ESG score. The plot below 
shows the case of the mean-variance-ESG efficient surface for an arbitrarily chosen ESG Integration 
Index of 87%, with a corresponding minimum required ESG score of 90. 
 
 
 



 57 

Figure 24. 
M-V-ESG Efficient surface, ESG Integration Index = 87% (Steuer and Utz, 2023). 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
On this plot, it's evident that the efficient surface is considerably limited compared to the initial 

case, which did not consider any minimal ESG score. Concurrently, it's unsurprising that the 
corresponding ESG-efficient frontier (Figure 25) advises investing in the portfolio meeting the 
minimum required ESG score (90.5% in this case), as further increasing the ESG score would 
significantly reduce the portfolio's Sharpe ratio. 
 
Figure 25. 
ESG-Efficient Frontier, ESG Integration Index = 87% (Pedersen et al., 2021). 
 
 

 
Note: the Sharpe ratio scale is expressed at a monthly frequency. 

Source: Source: Refinitiv Eikon, FRED 
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4.3.5. The cost of ESG integration in asset allocation 
 
Let's now provide a more general approach to understanding the impact of ESG integration, 

by considering the spectrum of ESG integration levels from 10% to 90%. We will discuss the influence 
of setting the corresponding minimum required ESG score on returns, risk, and ESG score. The results 
that will be presented in this sub-section are not specific to a particular investment decision-making 
instant as we proceeded so far but represent the aggregate results of the last 36 prediction periods 
from our previously discussed time window. 
 

As expected, on Figure 26, as the ESG Integration Index increases, so does the portfolio's ESG 
score proportionally. This feature can be attributed to the strictly negative slope of the ESG-efficient 
frontier after the ESG score that maximized the Sharpe ratio (Figure 21). 
 
Figure 26. 
Portfolio ESG Score as a function of ESG Integration Index. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
In terms of portfolio risk, the results may seem more surprising. One might assume that as the 

minimum required portfolio ESG score increases, and with the number of eligible assets decreasing, 
the diversification opportunities would diminish as the ESG Integration Index rises, leading to an 
increase in non-systemic risk in our portfolio impacting portfolio expected volatility. 
 

However, as the Figure 27 shows below, selecting the portfolio that maximizes the Sharpe ratio 
results in a decrease in portfolio risk (measured as expected volatility) for most ESG integration index 
values. This result may be due to the fact that in our stock sample, the stocks with higher ESG scores 
typically exhibit lower risk than those with lower ESG scores. Future research could investigate whether 
this trend persists among a broader group of stocks, or whether this result occurred by chance in this 
case study. 
 
Figure 27. 
Portfolio Risk as a function of ESG Integration Index. 
 

 
Note. Source: Refinitiv Eikon, FRED 
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In terms of return performance, we observe a negative impact on portfolio performance with 
increased ESG Integration level. Figure 28 shows the return implied by the portfolio with the maximum 
Sharpe ratio for each ESG Integration Index level. Figure 29 and Figure 30 show the same phenomenon, 
but with the y-axis showing the absolute return loss compared to the mean-variance optimal portfolio 
and the percentage this loss represents, respectively. 
 
Figure 28. 
Optimal portfolio Expected Return as a function of ESG Integration Index. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
Figure 29. 
Optimal portfolio Expected Return Absolute Loss as a function of ESG Integration Index. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
Figure 30. 
Optimal portfolio Expected Return Percentage Loss as a function of ESG Integration Index 
 

 
Note. Source: Refinitiv Eikon, FRED 
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From these graphs, we can conclude about the impact of integrating ESG considerations in 
terms of portfolio performance. It appears that until a certain threshold, the cost of integrating ESG 
preferences is low. For instance, the return cost of integrating ESG preferences at a level of 30% is 
around 12%, whereas the cost of integrating ESG preferences at a level of 60% is around 25%. However, 
after an integration level of 70%, the slope of the curve sharpens and it becomes increasingly expensive 
to integrate ESG preferences. For instance, the return cost of integrating ESG preferences at a level of 
30% is around 90%. 
 

Having considered the impact of ESG integration at the asset allocation stage extensively, we 
might now want to see how these results translate empirically, considering what has happened ex-
post once the stocks returns have been realized (Figure 31). The extent to which these realized returns 
align with those predicted directly depends on our regression model's accuracy. The higher the 
predictive power, the more the ex-post curve will look similar as the one generated using predicted 
expected returns. 
 
Figure 31. 
Optimal Portfolio Ex-Post Realized Return as a function of ESG Integration Index. 
 

 
Note. Source: Refinitiv Eikon, FRED 

 
Although the scales of returns are very different, as our predicted values may have been overly 

optimistic for this particular time step, we notice that the curve has a similar aspect to the curve drawn 
at the asset allocation time. This observation could be attributed to the fact that the MLP predictions 
that we are using here are the ones which implied the best investment strategy. This good performance 
is directly linked to the MLP model's predictive power for this particular task. The same conclusions as 
in the previous sub-section can thus be drawn, but with more nuance as the loss is less significant both 
in absolute or percentage terms for the ex-post results for extreme values in ESG integration levels. 
 
 To go even further in our study, it is interesting to measure to what extent the predictions 
generated by our multilayer perceptrons regression model can help a serious ESG investor to 
incorporate ESG preferences at a lower realized return cost as compared to more naive methods. 
Figure 32 illustrates the out-of-sample actual return in relation to the ESG Integration Index, which is 
implied by a strategy for which we employed the historical average of stock returns within the rolling 
window as predictions for future returns in our optimization process. 
 

As compared to the scenario in which we use the predictions generated by the MLP model, it 
turns out that for a same level of ESG integration, the out-of-sample returns are systematically lower 
for the historical average implied strategy, thus confirming empirically the benefits of making use of 
machine learning models for ESG serious investors in their quest of greener portfolios. 



 61 

Figure 32. 
Historical Average Implied Strategy Realized Return as a function of ESG Integration Index 
 

 
Note. Source: Refinitiv Eikon, FRED 
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5. Discussion 
 

In the initial section of this master thesis, we presented two primary research questions that 
this study aims to address. Now, in this discussion section, we will revisit these questions to provide 
our final answers in light of the findings we explored in the results section. These conclusions will be 
compared with the findings from the scientific literature highlighted in the literature review. In the 
process, some nuances will be given to our results and we will evaluate to what extent they can be 
extended outside of our study. The limitations of our methodology will also be discussed extensively. 
 
5.1. Quest for the optimal regression model for portfolio optimization 
 

Moving from our initial conclusion that Multilayer Perceptron (MLP) implied strategy is indeed 
the optimal strategy among these considered, we now discuss the key factors that influenced this 
outcome. We'll examine the defining metrics, importance of risk profiles, and potential limitations we 
should be aware of while reading the results of this study. 
 
5.1.1. Key components in addressing the research question 
 

The first research question we wanted to address was the following: “Among a selection of 
regression models, determine the one which promotes the best asset allocation in a pre-defined 
investment universe, that yields the best out-of-sample portfolio performance based on the mean-
variance optimization model”. 
 

Based on the thorough performance analysis of various regression models and their impact on 
asset allocation within a predefined investment universe, it is evident that the Multilayer Perceptron 
(MLP) strategy emerges as the optimal choice. This conclusion is driven by the robust performance of 
the MLP strategy across several out-of-sample measures when integrated in the mean-variance 
optimization model. 
 

The MLP strategy produced the highest cumulative returns and exhibited the most impressive 
CAGR (12%). Exhibiting superior risk-adjusted performance for other metrics as well, such as the 
highest Sortino ratio of 1.91 and Information ratio of 0.15, the MLP strategy demonstrated an unrivaled 
capability to generate returns and provide an excellent risk-return trade-off. 
 

While other strategies like Elastic Net Regression, Recurrent Neural Networks (RNN), Long 
Short-Term Memory Neural (LSTM) Networks, and Linear Regression showed respectable results in 
some areas, none matched the overall performance of the MLP. For instance, Elastic Net Regression 
presented a respectable risk-adjusted return with the highest Sharpe ratio of 2.35 but fell short with a 
lesser CAGR of 9%. Similarly, RNN and LSTM performed well in terms of their Treynor ratios, indicating 
efficient risk-adjusted returns considering their systematic risk (beta), but were unable to rival the 
MLP's overall performance. 
 

Ridge and Lasso Regression strategies were found to be inferior to other methods. Ridge 
Regression showcased average returns and risk-adjusted metrics, while Lasso Regression lagged 
behind all the strategies, displaying the greatest downside risk and poorest risk-adjusted returns. 
 

The MLP strategy thus appears as the most promising for achieving the best out-of-sample 
portfolio performance in the defined investment universe using the mean-variance optimization 
model. Nevertheless, this result is to take with caution as an investor may have a risk profile so that 
one or more particular metrics should have a more consequent weight in the final decision to adopt a 
specific regression model to predict future stock returns. 
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5.1.2. Limitations 
 

First, it should be noted that the historical variance-covariance matrix was used throughout 
the study to allow for portfolio risk quantification. A possible enhancement of this methodology could 
have been the inclusion of linear and non-linear shrinkage methods, which might have potentially 
offered a more accurate estimate of the future variance-covariance matrix. This enhancement could 
have influenced the efficiency of the portfolio allocation, thereby impacting the overall performance 
of the regression model chosen. 
 

Additionally, the defined investment universe was limited to the components of the Dow Jones 
Industrial Average (DJIA) index. This suggests that the performance of the regression models may not 
remain consistent with different asset selections or if applied to other indexes or broader markets. 
Therefore, the results of this study should be cautiously extended to other asset classes or geographical 
locations. 
 

The use of the DJIA index also introduces a potential survivorship bias into the study. By 
including only surviving companies, the estimated performance might be artificially inflated and the 
effects of risk diminished, leading to a strong bias. This could influence the accuracy of the portfolio 
performance, and it's possible that a different regression model might prove to be optimal when 
considering a universe of assets that also includes companies that have failed. 
 

A further point of consideration is the selection of macroeconomic variables. The choices in 
this study were made arbitrarily and could have been based on a more rigorous review of existing 
scientific literature. Different selections might have led to differing performances of the regression 
models and thus, the results may be dependent on the chosen macro-variables. 
 

Finally, this study did not incorporate stock-specific metrics such as size (SMB) and value (HML) 
as in the Fama and French model (1992). Inclusion of these factors could provide a more granular 
insight into the risk and return characteristics of individual stocks, which in turn could have an effect 
on the effectiveness of the regression models. Therefore, the absence of these metrics may pose a 
limitation to the precision of the portfolio optimization and the generalizability of the superior 
performance of the Multilayer Perceptron (MLP) strategy. 
 
5.1.3. Connections with the existing literature 
 

While being revealing in many respects, this study contrasts with existing literature on some 
aspects, particularly regarding the performance of certain regression models. Particularly, the 
performance of the Recurrent Neural Networks (RNN) implied strategy and especially the Long Short-
Term Memory Neural Networks (LSTM) implied strategy, though having shown respectable out-of-
sample performance with Sharpe ratios of 2.31 and 2.01 respectively, were anticipated to perform 
significantly better as compared to other strategies given their architecture's inherent suitability for 
stock returns prediction. 
 

The underlying principle of LSTM should theoretically make it an ideal candidate for tasks like 
stock return prediction. The neural network's design allows it to remember past information and utilize 
it in making future predictions, a characteristic that is precious for the financial markets where 
historical prices and returns often play a crucial role. 
 

However, the results of our study showed a different reality. The LSTM's performance was 
surpassed by the Multilayer Perceptron (MLP), which denotes with the literature’s conclusions that 
seem to agree about LSTM's superior abilities in the context of month-ahead stock returns prediction 
for DJIA constituents. 
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One plausible explanation for this unexpected outcome might reside in the feature selection 
methodology employed in this study. The features were chosen on an ad hoc basis, with the optimal 
combination determined via trial and leading to the best 3-year cumulative return we could find. 
Although practical, this method might not necessarily yield the best set of features for LSTM or RNN 
models, potentially compromising their ability to fully exploit their capabilities for processing 
sequential data. 
 

A more systematic approach, such as grid search, coupled with a time-series cross-validation 
technique like walk-forward validation at every prediction step, could potentially offer a more effective 
selection of features. However, such a method would be substantially more computing-intensive and 
might not be feasible given the computational resources available for the study. 
 

Moreover, it's important to remember that conventional k-fold cross-validation could disrupt 
the temporal structure of the time-series data, which could potentially lead to suboptimal or 
misleading model performance. Thus, its application for feature selection in time-series analysis with 
LSTM or RNN models should be approached with caution, leading to our decision not to use these 
methods in this study. 
 
5.2. Description and impact assessment of an ESG integration procedure 
 

Having extensively explored and assessed a possible ESG integration procedure in the previous 
section, we move on and attempt to identify the critical elements that guided our investigation. We'll 
briefly come back on the visual tools and methods that helped us understand the ESG integration's 
implications on portfolio optimization, and the costs associated with integrating ESG preferences 
implied by the use of these models. We will also discuss limitations, connections with the literature 
review, and areas for future research. 
 
5.2.1. Key components in addressing the research question 
 

The second main research question that we have decided to investigate was: “For the most 
performant regression model, determine what happens if we introduce ESG considerations. We want 
to define a procedure for their integration in the investment decision-making process and understand 
the return cost or benefit of the inclusion of these preferences both at asset allocation stage and ex-
post”. 
 

We have discussed in-depth the introduction of ESG factors into the portfolio optimization 
process, moving beyond traditional mean-variance optimization. To do so, we were mainly inspired by 
the work of Steuer and Utz (2023), who introduced a three-dimensional framework visualizing the 
portfolio with the maximum attainable ESG score for any combined level of risk and return. This 
efficient surface helps an investor visualize the trade-off between risk, return, and ESG performance.  
 

We have made use of the concept of the ESG-efficient frontier, another visualization tool that 
helps an investor select a portfolio that aligns with their risk and ESG preferences. We have enhanced 
this model with a color scale indicating a measure of risk for any portfolio on the ESG-efficient frontier, 
addressing the shortcoming identified by Steuer and Utz (2023) of the initial method proposed by 
Perdersen et al. (2021), whom focus was only on finding the maximal the Sharpe ratio for any given of 
risk. 
 

We have investigated a method to quantify ESG preferences by using the ESG Integration 
Index, also proposed by Steuer and Utz (2023). This index helped us understand the return level that a 
serious ESG investor must sacrifice to enhance the ESG performance of their portfolio for different 
levels of ESG integration. The results demonstrate that as the ESG Integration Index increases, the ESG 
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score of the portfolio also increases proportionally unsurprisingly, while portfolio risk decreases for 
most ESG integration index values. However, there is a negative impact on portfolio performance, with 
portfolio returns decreasing as the ESG Integration level increases, especially after a certain threshold 
that lies among the highest possible values of the ESG Integration Index. 
 

We also demonstrated empirically that using predictions generated by a machine learning 
model, and in particular the multilayer perceptron regression model, can lower the realized return cost 
associated with integrating ESG preferences into portfolio management, compared to more naive 
methods to predict future returns, in particular the historical average of returns among a rolling 
window. Overall, this study indeed provides significant insights into the potential costs associated with 
integrating ESG preferences into portfolio management, highlighting the potential for a trade-off 
between ethical considerations and portfolio performance. 
 
5.2.2. Limitations 
 

Undoubtedly, the major limitation in this part of our study, as previously explored, resides in 
our usage of static ESG scores. Despite the simplicity and convenience that this method affords, it may 
not accurately capture the temporal variability of ESG factors. This lack of dynamism might describe a 
wrong picture of these scores' impact, as they can evolve and fluctuate based on changing social, 
environmental, and corporate governance realities among the considered stocks. 
 

More than ever, companies are progressively increasing their ESG efforts, implementing 
changes that aren't reflected in static scores. These continuous adaptations to better business 
practices, increased transparency and focus on sustainability goals are better captured by dynamic 
scoring mechanisms that reflect the true status and trajectory of ESG initiatives. Moving forward, 
adopting an approach that utilizes dynamic ESG scores could potentially enhance the richness of the 
proposed analysis and provide a more comprehensive understanding of ESG integration impacts.  
 

Another potential limitation to our study could come from the relatively modest sample size 
we employed to assess the cost of integrating ESG preferences in investment decision-making. This 
cost was derived from the 36 periods for which we generated predictions from our multilayer 
Perceptron regression model. To enhance the robustness and consistency of our findings, it might have 
been beneficial to consider a more substantial sample size.  
 
5.2.3. Connections with the existing literature 
 

Drawing parallels between our empirical findings and those of Steuer and Utz (2023) study 
presents a challenge, due to the deviations in our respective methodologies. They conducted a 
somewhat analogous study on the S&P500 constituents over a five-year time horizon, yet with a few 
distinguishing aspects. 
 

One crucial element of their approach was the application of a filter to exclude 50% of the 
S&P500 stocks that scored below the median ESG rating. This selection strategy was intended to 
replicate the practices of non-integrated ESG mutual funds as discussed in the literature review. In 
contrast, our study incorporated merely all the stocks of the DJIA index, leading to a significant 
distinction between the two studies. They also applied upper bounds on portfolio stock weights, a 
feature absent from our methodology. These divergent elements are potentially the primary source of 
discrepancies between our respective outcomes. 
 

Another point worth mentioning is that Steuer and Utz (2023) study adopted the ESG score 
proposed by Sustainalytics. This should, by the definition of the ESG Integration Index as set by Steuer 
and Utz (2023) themselves, have a minimal effect on the comparability of results. Their ESG Integration 
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Index served as a core component of our study as well. To enhance the comparability of our findings, 
we selected a problem size of 100, a size also used among others by Steuer and Utz when conducting 
a similar analysis. 
 

The key finding of Steuer and Utz (2023) research suggests achieving an ESG Integration Index 
of 10 requires a 1 basis point (bp) sacrifice, 20 requires a 5bp sacrifice, 29 necessitates a 10bp sacrifice, 
and 41 demands a 20bp sacrifice. Interestingly, our research revealed the ability to reach these ESG 
integration levels for similar basis point sacrifices. However, as Steuer and Utz (2023) did not reveal in 
their study what level of ESG integration is achievable for higher sacrifices in basis point, it is not 
possible to firmly state that we reached similar results with our slightly modified approach. 
 

Nevertheless, we were able to corroborate the observation that incremental improvements in 
portfolio ESG integration become progressively costlier as we move further along the ESG Integration 
Index. According to the results described in both studies, a same 10% enhancement in relative ESG 
performance will require a higher return sacrifice when originating from the mean-variance optimal 
portfolio, compared to a portfolio already incorporating ESG factors to a certain level. In other terms, 
if Steuer and Utz (2023) had constructed a similar curve as presented in our figure 28 based on their 
empirical results, they would have similarly observed an increasingly steep negative slope. 
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6. Conclusions 
 

In this concluding section, we reflect on the dual exploration of asset allocation strategies and 
the integration of ESG considerations into portfolio management. The detailed analysis of multiple 
regression models revealed the Multilayer Perceptrons (MLP) as the superior model, providing optimal 
out-of-sample performance. Furthermore, the investigation into the application of ESG factors in 
investment decision-making offered nuanced insights into the dynamic between ESG performance and 
financial returns. These findings carry significant implications for asset managers and paths for future 
research in sustainable investment practices. This conclusion aims to summarize the key findings, 
managerial and theoretical implications, and providing suggestions for future research. 
 
6.1. Short summary 
 

This research has examined several regression models to determine the best asset allocation 
strategy in portfolio management. The Multilayer Perceptrons (MLP) model has emerged as the most 
efficient approach, providing superior out-of-sample performance. This finding implies that MLP 
regression models can potentially offer the best allocation strategy in the mean-variance optimization 
problem, thereby enhancing portfolio performance and effectively balancing the risk-return trade-off. 
However, the optimal strategy may depend on specific factors, including investor risk profile, 
investment objectives, and market conditions. 
 

Moreover, the research has explored the integration of ESG considerations into investment 
decision-making. Findings indicate that including ESG factors adds a third dimension to the 
conventional risk-return trade-off, enabling a more comprehensive investment decision-making 
framework. However, as the ESG Integration Index increases, portfolio returns decrease, indicating a 
trade-off between ESG performance and financial performance. Using MLP regression models can help 
minimize the return cost associated with ESG integration, which has significant implications for asset 
managers. This research encourages an ongoing review of portfolio optimization techniques and ESG 
scoring methodologies, as well as the need for clear communication with clients about the costs and 
benefits of ESG integration. 
 
6.2. Managerial implications 
 

Based on the above findings, there are significant managerial implications for the asset 
management industry, especially in the discussions to determine the optimal regression model for 
portfolio management, and the integration of ESG considerations into the investment decision-making 
process. 
 

We have concluded that statistical predictions built upon a multilayer perceptrons (MLP) 
model were suggesting the best allocation strategy in the mean-variance optimization problem, 
yielding superior out-of-sample performance according to multiple metrics. It implies that managers 
should consider leveraging this strategy to optimize portfolio performance and balance the risk-return 
trade-off efficiently. 
 

However, it's crucial for asset managers to understand that while MLP demonstrated the best 
overall results, the optimal strategy might depend on the specific risk profile and investment objectives 
of the investor. For instance, an investor emphasizing risk-adjusted returns might prefer the Elastic Net 
Regression strategy due to its highest Sharpe ratio, even though it has a lower CAGR compared to the 
MLP. Thus, the decision for asset managers should be context-specific and driven by the investor's risk 
tolerance, investment horizon, and overall investment objectives. It is also essential for managers to 
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constantly monitor and evaluate the effectiveness of these regression models as financial markets 
evolve. 
  

The second part of the research described a procedure to integrate ESG considerations into 
portfolio management. The research we processed suggested the integration of ESG factors into the 
portfolio optimization process to add a third dimension to the traditional risk-return trade-off, creating 
a more holistic framework for investment decision-making. 
 

The integration of ESG preferences has shown to have an impact on portfolio performance. As 
the ESG Integration Index increases, there is a decrease in portfolio returns, demonstrating a trade-off 
between ESG performance and financial performance. This suggests that asset managers must be 
transparent with their clients about the potential cost of ESG integration and work with them to find 
the balance that best aligns with their ethical convictions and financial objectives. 
 

Furthermore, the research indicates that utilizing a machine learning model, particularly the 
MLP regression model, can mitigate the return cost associated with ESG integration. This insight opens 
a new avenue for asset managers to leverage machine learning techniques to enhance the ESG 
performance of their portfolios while minimizing the adverse impact on returns. 
 

Ultimately, the integration of ESG considerations into portfolio management is a complex 
process that requires a nuanced approach. Asset managers must keep up with the latest advancements 
in portfolio optimization techniques and ESG scoring methodologies, while also maintaining clear and 
open communication with their clients about the costs and benefits associated with ESG integration. 
 
6.3. Theoretical implications 
 

The theoretical implications of this master thesis are vast and applicable to a broad spectrum 
of portfolio management topics. The primary goal was set to explore various quantitative methods, 
particularly deep learning models, commonly used by practitioners or proposed by academic research. 
The overarching intention was to understand these methods' usefulness to provide superior 
performance against passive strategies. This aim was concretized through two main research 
questions: 
 

1: “Among a selection of regression models, determine the one which promotes the best asset 
allocation in a pre-defined investment universe, that yields the best out-of-sample portfolio 
performance based on the mean-variance optimization model.” 
 

2: “For the most performant regression model, determine what happens if we introduce ESG 
considerations. We want to define a procedure for their integration in the investment decision-making 
process and understand the return cost or benefit of the inclusion of these preferences both at asset 
allocation stage and ex-post.” 
 

The successful investigation of these questions has led to insightful conclusions that can be 
used to as a key starting point for future research. The findings regarding the optimal regression model 
for portfolio optimization notably challenge the conclusions of the literature review. The empirical 
evidence demonstrated the superior performance of the Multilayer Perceptron (MLP) strategy over 
models that the literature finds superior like Recurrent Neural Networks (RNN), Long Short-Term 
Memory Neural (LSTM) Networks in the context of stock returns prediction. 
 

Furthermore, the research provides a detailed insight into the procedure for integrating ESG 
considerations into investment decision-making. The thesis bridges the gap between sustainability 
considerations and portfolio performance, revealing a tangible cost for integrating ESG preferences 
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into investment decision-making. The findings highlight that using predictions generated by a machine 
learning regression model, in particular multilayer perceptrons, can lower the realized return cost 
associated with integrating ESG preferences, thereby enabling to increase the propension of certain 
investors to integrate ESG considerations in their investment decisions. 
 

Moreover, the identification of limitations and potential improvements in the study's 
methodologies indicates avenues for further research and refinements. These can be valuable for 
researchers who aim to advance further the research of juxtaposing the fields of portfolio optimization 
and sustainable investment practices. 
 
6.4. Limitations and suggestions for future research 
 

The results of the study pertaining to the identification of the most suitable regression model 
to predict stock returns highlighted the MLP implied strategy superior performance. It is the somewhat 
surprising underperformance of RNN and LSTM, given their theoretical advantages, that warrants 
further research. Future studies may need to further investigate feature selection methods and 
perhaps attempt a more systematic approach, despite the computational challenges, to ascertain 
whether the LSTM and RNN models can indeed outperform other regression models in portfolio 
optimization. 
 

The presented research has shown a surprising result: as the ESG Integration Index increases 
(meaning a portfolio has higher ESG scores), the risk (as measured by expected volatility) decreases. 
This result defies the conventional assumption that limiting the investment universe by increasing ESG 
criteria would lead to less diversification and therefore more risk. Further research can be focused on 
validating this result with larger and diverse samples. For instance, we could extend the study to 
include stocks from different geographies or sectors. It would be interesting to see if this inverse 
relationship between ESG score and risk holds for all types of equities or if there are certain sectors, 
markets, or types of companies where the relationship doesn't hold or even reverses. In addition, more 
granular analysis could be performed by breaking down ESG scores into their Environmental, Social, 
and Governance components, to determine if one aspect drives these results more than the others. 
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7. Appendices 
 
Table 1.  
Selected Macroeconomic regressors. 
 

FRED Ticker Dataset Name 
GDPC1 Real Gross Domestic Product 
DEXUSEU U.S./Euro Foreign Exchange Rate 
DEXMXUS U.S./Mexico Foreign Exchange Rate 
DEXCAUS U.S./Canada Foreign Exchange Rate 
DEXCHUS U.S./China Foreign Exchange Rate 
DCOILWTICO Crude Oil Prices: West Texas Intermediate (WTI) 
DHHNGSP Henry Hub Natural Gas Spot Price 
DPROPANEMBTX Propane Prices: Mont Belvieu, Texas 
PNRGINDEXM Global price of NG 
APU000072610 Gasoline, All Types 
PMETAINDEXM Global price of a metal 
CSUSHPINSA S&P/Case-Shiller U.S. National Home Price Index 
CPIAUCSL Consumer Price Index for All Urban Consumers 
NASDAQCOM NASDAQ Composite Index 
WILLLRGCAPPR Wilshire US Large-Cap Price Index 
WILL2500INDGR Wilshire US Mid-Cap Growth Index 
WILL2500INDVAL Wilshire US Mid-Cap Value Index 
VXDCLS CBOE DJIA Volatility Index 
M2REAL Real M2 Money Stock 
M2V M2 Money Stock Velocity 
BOPGSTB Goods, Value of Exports, Balance of Payments Basis 
FRBKCLMCIM Industrial Capacity Utilization Rate for France 
MNFCTRIRSA Manufacturers: Inventories to Sales Ratio 
BOGZ1FA895050005Q Nonfinancial Business; Debt to Equity Ratio 
MNFCTRSMSA Manufacturing Sector: Real Output 
GAFDFSA066MSFRBPHI Philadelphia Fed ADS Business Conditions Index 
NEFDFSA066MSFRBPHI Philadelphia Fed Coincident Index 
TB3MS 3-Month Treasury Bill: Secondary Market Rate 
AAAFF Moody's Seasoned Aaa Corporate Bond Yield 
BAAFFM Moody's Seasoned Baa Corporate Bond Yield 
KCFSI Kansas City Financial Stress Index 
FEDFUNDS Effective Federal Funds Rate 
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Table 2.  
Dow Jones Industrial Average Sectors Exposure. 
 

 
Note. Source: Standard & Poor’s, https://www.spglobal.com/spdji/en/indices/equity/dow-jones-
industrial-average/#data 
 
 
 
 
 
Table 3.  
Refinitiv ESG Score Scale Interpretation table 
 

0 to 25 First Quartile Scores within this range indicate poor relative ESG performance 
and insufficient degree of transparency in reporting material ESG 
data publicly. 

> 25 to 50 Second Quartile Scores within this range indicate satisfactory relative ESG 
performance and moderate degree of transparency in reporting 
material ESG data publicly. 

> 50 to 75 Third Quartile Scores within this range indicate good relative ESG performance 
and above average degree of transparency in reporting material 
ESG data publicly. 

> 75 to 100 Fourth Quartile Scores within this range indicate excellent relative ESG 
performance and high degree of transparency in reporting 
material ESG data publicly. 

Note. Source: https://www.refinitiv.com/en/sustainable-finance/esg-scores#t-score-range 
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Executive summary 
 
 

This master thesis, through the integration of deep learning models and the inclusion of ESG 
preferences, presents a comprehensive approach to portfolio management that can serve as a 
reference for sustainable investing in the future. By providing insights into the complexities and trade-
offs involved in portfolio optimization and ESG integration, this research facilitates more informed 
decision-making for portfolio managers, enabling them to balance performance goals with ethical 
considerations effectively. The integration of these key components reinforces the thesis's primary 
goal and substantiates its significant contribution to the fields of portfolio management and 
sustainable investing. 
 

Building upon these findings, the research discovered the Multilayer Perceptrons (MLP) model 
to be an especially powerful tool in asset allocation. Its robust performance promises to increase the 
efficiency of portfolio management, effectively managing the risk-return trade-off. However, it is of 
the utmost importance for asset managers to align the choice of regression models with specific 
investor profiles and market conditions, highlighting the need for flexibility in strategy implementation. 
 

In relation to ESG integration, our study underscored the importance of balancing ethical 
considerations with financial performance. The trade-off observed between ESG performance and 
portfolio returns prompts asset managers to approach ESG integration with caution. However, the 
research also demonstrates that the application of strategies implied by machine learning models like 
the MLP can potentially mitigate the return cost associated with ESG integration, paving the way for 
more sustainable investing while limiting the compromise on returns. 
 

This research not only offers practical insights for portfolio managers but also opens up exciting 
paths for future exploration. With the ongoing evolution of financial markets and sustainable investing, 
this study underscores the importance of continual review and innovation in portfolio optimization 
techniques and ESG integration. As such, this master thesis contributes to the current discourse in the 
field of portfolio management and sustainable investing, serving as a key starting point for more 
advanced and comprehensive approaches to sustainable portfolio management in the future. 
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