
https://lib.uliege.be https://matheo.uliege.be

Master thesis : On the Design and Implementation of an ETL Configuration DSL

for Non-programming Experts

Auteur : Duchateau, Jakub

Promoteur(s) : Debruyne, Christophe; 17378

Faculté : Faculté des Sciences appliquées

Diplôme : Master en sciences informatiques, à finalité spécialisée en "computer systems security"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17649

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège

School of Engineering and Computer Science

On the Design and Implementation of an ETL
Configuration DSL for Non-programming Experts

Master’s thesis completed in order to obtain the degree of
Master of Science in Computer Science by

Jakub Duchateau

Supervisor Christophe Debruyne
Montefiore Institute
University of Liège

Industrial Supervisor Frédéric Duquenne
FundProcess
CoFunder and CEO

Academic year 2022-2023
9 June 2023

Abstract

Extract-transform-load (ETL) tools are used in the business to ingest external data into
their operational database. The design of an ETL process can be achieved through either
code and libraries or a graphical tool featuring a graph of operations. However, the former
is only accessible to programmers, while the latter lacks extensibility. This thesis proposes
an approach to ETL configuration, based on a projectional domain-specific language (DSL),
implemented with JetBrains MPS, and targeting ETL.NET. The ETL process is designed
using a language that represents data as tables manipulated through sequences of operations.
A prototype implementation is evaluated with a small user study, which shows that the DSL
is accessible to non-programmers, and programmers prefer it over a tool based on graphs.

Résumé

Les outils Extract-Transform-Load (ETL) sont utilisés dans les entreprises pour importer
des données externes dans leur base de données opérationnelle. La conception de processus
ETL, se fait principalement avec du code textuel et des bibliothèques logicielles ou avec
des interfaces graphiques présentant un graphe d’opérations. La première convient bien
aux programmeurs tandis que la seconde est plus difficile à étendre en fonctionnalité. Nous
proposons ici une méthode intermédiaire basée sur un langage de programmation spécifique
(DSL) projectionnel, implémenté avec JetBrains MPS, et intégré à ETL.NET. Le processus
ETL est exprimé dans un langage qui modélise les données sous forme de tableaux qui
sont transformés avec des séquences d’opérations. Le prototype est évalué avec une petite
étude utilisateur, qui montre que le DSL est accessible aux non-programmeurs, et que les
programmeurs le préfèrent à une interface basée sur des graphes.

ii

ii

Acknowledgements

I would like to thank my supervisor, Christophe Debruyne, for his guidance, support, and
meticulous proofreading throughout this thesis. I would also like to extend my heartfelt
thanks to the team at FundProcess, namely Frédéric Duquenne, Stéphane Royer, and Moyra
Bonjean, who not only facilitated the selection of this thesis subject but also dedicated their
time to testing various stages of the prototype and providing valuable feedback. I extend
my sincerest gratitude to all the testers of the prototype for generously dedicating their time
and providing valuable feedback without expecting anything in return. Lastly, I would like to
extend my heartfelt thanks to my family and friends for their support and encouragement
throughout this journey.

iii

iii

Contents

1 Introduction 1
1.1 Business Problem . 1
1.2 Research Question and Objectives . 2

2 Related works 4

3 Language design 7
3.1 From Context to Guidelines . 7
3.2 Methodology . 8

3.2.1 Our Design Activities . 9
3.2.2 Case study . 9

3.3 ETLang Type System . 11
3.3.1 Table Type . 11
3.3.2 Types Descriptions . 12

3.4 ETLang Concepts . 13
3.4.1 Macro . 13
3.4.2 Operator . 14
3.4.3 Transform Block . 15
3.4.4 Statements . 15
3.4.5 Expressions . 16
3.4.6 Structure definitions . 16

3.5 Operators to Build ETLs . 16
3.6 Expressions to Build ETLs . 19

4 ETLang Implementation 22
4.1 Choosing an Implementation Framework . 22

4.1.1 Utility Tools . 22
4.1.2 Language Workbenches . 23
4.1.3 Metalanguages in .NET Ecosystem 24
4.1.4 Choosen Implementation Method . 25

iv

iv

4.2 Language Design Adaptations . 25
4.2.1 Transform Blocks and Operators . 26

4.3 Implementing ETLang . 26
4.3.1 Concepts . 27
4.3.2 Editors . 30
4.3.3 Type System . 31
4.3.4 Scope System . 32
4.3.5 Migration . 32
4.3.6 Building the IDE . 33
4.3.7 Code generation . 33

4.4 Web Version of the Editor . 34

5 Evaluation 35
5.1 Evaluation Quality Model . 35
5.2 User Study of Ease of Use . 37

5.2.1 Evaluation Methods . 37
5.2.2 User Evaluation Findings . 39

5.3 Evaluation of Functional Adequacy . 43
5.4 Discussion . 45

6 Conclusion and Future Works 47
6.1 Conclusion . 47
6.2 Future Works . 49

6.2.1 Improving the Prototype . 49
6.2.2 Other Research Directions . 51

Glossary and Acronyms 53

Bibliography 55

A Questionnaire 58

B Getting started 59
B.1 Getting started tutorial . 59

B.1.1 Step 1: Create a new solution . 59
B.1.2 Step 2: Declare your file structure 60
B.1.3 Step 3: Read the file . 61
B.1.4 Step 4: Modify the table . 62

v

v

B.1.5 Step 5: Save the table . 63
B.1.6 Bonus Step 6: Defining symbols . 65

vi

vi

Introduction 1
The ability to empower individuals without programming skills to perform programming tasks
is a significant challenge in the field of human-computer interaction. This master’s thesis
aims to address the question of how non-programmers can be enabled to undertake the ETL
(Extract Transform Load) design task effectively. In order to explore potential solutions to this
challenge, it is essential to establish the context in which this question arises. Subsequently,
the objectives and research questions of this thesis will be presented.

1.1 Business Problem

FundProcess is a company that develops software for the financial industry. They developed
an integrated approach for the Asset Management Industry, and within their toolkit, they
have an ETL tool.

ETL, an umbrella term encompassing a variety of tools, is instrumental in the movement
and transformation of data. These tools differ in multiple aspects, such as data loading
capabilities, performance, configuration options (code-based or not), extensibility, range of
operations, supported data formats, and modularity of the ETL architecture.

The need for an ETL tool is to be able to import data from external partners into their
database in a standardized format. Financial institutions provide data in diverse formats,
ranging from simple CSV files to complex PDF files.

To accommodate the diverse range of data sources, FundProcess has developed ETL.NET, a
powerful tool that allows developers to define their import processes using .NET. The library,
ETL.NET, was created to be able to handle the variety of data sources and to be able to
write the import process in a programming language that integrates into the usual developer
workflow, instead of visual approaches taken by other ETL tools. Its other main feature is its
modular architecture, which allows one to choose only what is needed and to easily add new
modules and ETL operators, enabling large extensibility.

1

1

However, due to its developer-centric nature, ETL.NET requires programming skills and a solid
understanding of computer science concepts. Consequently, non-programming experts face
challenges when attempting to configure and execute ETL processes using ETL.NET, even
though they possess valuable domain knowledge about the data being processed. Currently,
the responsibility of designing ETL processes lies with programmers, who are expected
to possess both programming expertise and domain knowledge. Although complex ETL
processes may necessitate specialized skills, FundProcess desires to delegate the configuration
of simpler ETL processes to non-programming experts. This delegation would empower them
to configure and execute ETL processes without the need for long programming training to
acquire the knowledge.

To enable non-programming experts to configure and run ETL processes without programming
skills, a new DSL (Domain Specific Language) can be created. Other viable approaches
include using visual ETL tools that provide drag-and-drop or forms-based interfaces for
configuring ETL processes. However, these approaches may not be as flexible or customizable
as a DSL, and may not be suitable for more complex ETL processes. This thesis aims to
create such a DSL to facilitate the ETL process configuration for this new user group.

Next, we will outline the objectives and research questions that the thesis will seek to
answer.

1.2 Research Question and Objectives

The primary objective of this master’s thesis is to address the following research question:

What DSL (Domain Specific Language) would enable non-programming experts to design
and execute ETL (Extract Transform Load) processes efficiently and effectively?

Therefore, our overarching objective of this master’s thesis is to design and implement a DSL
tailored to the needs of non-programming experts to design ETL processes in an approachable
way. By doing so, we aim to reduce the time users spend importing data into their database.
To achieve this primary objective, we propose to decompose it into these sub-objectives:

1. Facilitate the learning curve of programming an ETL process.

2. Develop a system that is accessible to a wider range of users with limited programming
expertise.

1.2 Research Question and Objectives 2

3. Ultimately, reduce the time spent by users on importing data into their database.

4. Propose a solution integrable with the existing ETL.NET library.

To reach these objectives, the thesis will be structured as follows:

The next chapter explore existing interfaces and proposed solutions for configuring ETL
processes with a focus on proposition targeting non-programmers. This chapter will provide
an overview of related work and highlight approaches addressing similar problems.

Then, Chapter 3 will outline the methodology employed to create our DSL, inspired by human-
centered design, as an attempt to reach our second objective of accessibility. Additionally,
the chapter will present the proposed DSL modelisation. And already from the design phase,
we will try to reach our fourth objective of integration with the existing ETL.NET library, with
an analysis of a sample an ETL scripts written with it.

Chapter 4 will present the implementation of the DSL and the IDE (Integrated Development
Environment) to support it. This chapter emphasizes the evaluation of the language and its
implementation as distinct entities, to enable a distinct analysis of the language’s design and
its implementation.

Subsequently, Chapter 5, will introduce the quality model adopted for evaluation purposes.
The chapter will present the evaluation methodology employed to assess the DSL’s design and
prototype. Findings from the evaluation will be discussed in relation to each objective, including
the learning curve (third objective) and efficiency (time reduction, fourth objective).

Finally, the Chapter 6 will conclude the thesis with a reflection on the whole process and, more
personal notes and discuss future work, concerning this thesis and other potential research
directions.

1.2 Research Question and Objectives 3

Related works 2
Previous attempts have been made to propose simple interfaces for business users to design
ETL processes. For example, FundProcess developed ETL.NET because they found other
tools to be insufficiently developer-oriented. In this chapter, we will examine other interfaces
that have been proposed for non-developers to design and model ETL processes. Additionally,
we will explore data preparation tools that offer interesting interfaces to facilitate parts of the
ETL process, such as the extraction or transformation steps.

EtlScript

Trying to solve the same problem, Julien Wauthoz presents EtlScript [Wau22], an external
DSL enabling to design of ETL processes. It is a textual language with a syntax inspired
by COBOL and SQL. With this language, users manipulate streams of data and can apply
operations to them. The set of operations in EtlScript is determined by the parser, which
parses each operation differently based on a combination of keywords.

1 FROM distinctMinBenchmarkComposStream

2 DELETE BenchmarkComposition

3 WHERE FundCode = Portfolio.InternalCode AND Date>=Date

4 AS deleteNewerExistingBenchMarkCompoStream

Listing 2.1: Example of EtlScript

However, EtlScript has two shortcomings: it is hard to extend because it is built with ANTLR,
and it is not possible to add new operations without modifying the parser, because of the
keyword-based syntax. It has no IDE; the user has to modify the raw text file.

We could imagine a language with a similar syntax, but with a more modular design, allowing
to add new operations without modifying the parser, and with an IDE to ease the edition of
the script. We will evaluate this idea in Chapter 4.

4

4

BPMN4ETL

El Akkaoui presents a conceptual and graphical DSL to model ETL processes based on BPMN
(Business process model and notation) [El 14; El +12]. As we explicitly are excluding purely
graphical languages, the interesting part was not the prototype itself but the way it was
evaluated and the proposed quality framework. We will reuse part of the quality model while
building our own in Chapter 5.

SSIS

SSIS (SQL Server Integration Services) has an graphical intrface with SSIS Designer [@Gu+23].
It also supports programming the process with C# via a specific API. The graphical editor has
the data flow component, which features an ad-hoc graphical language with a drag-and-drop
interface to configure the ETL process. SSIS was previously evaluated by FundProcess and
they rejected it because it was difficult to adapt to their use case, due to the complex
extension system, and it was not well integrable into their development workflow.

Arktos

Even if it is not the most recent work, it is still interesting to mention it because it features
up to 3 interchangeable interfaces: a graphical language, a declarative textual language, and
XML-based descriptive language. They provide two textual languages because they aime
the XML-based language for reading as it is more verbose and the SQL-like for writing as it
is more compact. We have taken inspiration from this idea of an alternative language for
reading and another for writing by providing alternative syntax for some constructs of the
language.

Enso

ETL.NET take advantage of being a C# library, to have a strong integration with the C#

general purpose language. This allows users to switch between standard C# data structures
and ETL.NET streams as needed within their ETL processes. Additionally, ETL.NET provides
a visualization of the ETL data flow.

5

Enso � is a dual representation general-purpose programming language. One representation
is a functional-style textual language, the other a visual language. It may be interesting for
future work to explore the possibility of a dual representation for ETL.NET or instead of
creating a new language specialized language, provide specialized editor support for ETL.NET

within the .NET ecosystem.

Wrangler

Within an ETL, there are the transformation and loading parts where you combine multiple
data source, but one part of the ETL process is to extract the data from messy sources. Data
preparation is then used to clean the data and make it usable for the ETL process.

During our research, we discovered “Wrangler � , an interactive tool for data cleaning and
transformation”(adapted from their website). It was proposed by Kandel et al. [Kan+11]
and was considered the state-of-the-art tool in data cleaning. Now it is integrated into the
commercial tool Trifacta and is still considered one of the most advanced tools in 2020
[HN20].

At its core proposition, the tool provides a large tabular pre-visualization of a sample of the
data, which can be used to propose a modification of the data. From the manually edited
data, the tool proposes guesses of how to formalize the action, and the user continues to
edit the data until the tool finds the intended action. The sequence of action script of a
sequence of transform operations. The interaction model is menu-driven and is operated in a
Programming-by-Demonstration or Programming-by-Example style, since before selecting the
guessed operation to apply, a demonstration of the operation is previewed. And to generate
the operations, the user makes example modifications to the data.

It could be interesting to see in future work to propose to the user a sample preview of the
data and see if programming by examples would also be doable in the ETL.NET context.

Closing word of Related works With this small overview of what is done in terms of human-
computer interfaces in the field of ETL, we will be able to move on to the design of our
proposed interface for ETL.NET. We shall not forget to avoid the problems of architectural
extensibility of the previous proposals and although a graphical interface is potentially a
long-term goal of FundProcess, we will focus on a text-like interface as planned.

6

https://enso.org
http://vis.stanford.edu/wrangler/

Language design 3
A language is produced in a context; therefore, it is important to understand the context
in which it will evolve. In this chapter, we will discuss the context of the language, and the
methodology used to design it. After that, we pursue the general ideas that have guided the
conception of the language. And finally, we will present the language design, with its type
system, concepts, and aimed user experience.

3.1 From Context to Guidelines

The language is designed to be used by people with no prior programming experience. As
observed by Green [Gre89], the alignment of the language with the domain greatly influences
the ability to effectively express facts in that domain. In the case of ETL.NET, the language
concepts and semantics are mapped to C# and suffer from the duality of its syntax, which
introduces a gap between the conceptual view of the ETL process and its encoding in C#.
According to Green, this duality entails an arduous cognitive dimension [Gre89] for the ETL
designer.

We can take advantage of our users having an extensive experience with spreadsheets, we
aim to make the language as familiar as possible in terms of naming conventions. By relying
on standard language, we can facilitate the learning process and reduce the learning curve for
users [El 14; Gre89].

Also, we will try not to introduce new concepts but rather reuse existing ones. And our
ETL will work with CSV as a source of data and a relational database as the destination. A
common property of both is that they can be modeled as tables. We will see whether we can
exploit this representation in our language.

On a technical side, the guides were the possibility to extend the language with new operators
and to be implemented with ETL.NET. Extensibility is already one of the main features of
ETL.NET, and we want to keep it. We have a sample of ETL processes written with ETL.NET,
and frequently these processes use custom operators specific to FundProcess. Also, users

7

7

do not define these custom operators, it is the developer of the language that will need to
register.

It should be a DSL, generating C# with ETL.NET, for users who have significant experience
with spreadsheets, and having an extensible operator set.

3.2 Methodology

Initially, established methodologies are examined, followed by an exploration of the specific
process that led to the creation of our language.

Designing a DSL begins by developing a solid comprehension of the underlying domain
concepts. The next step is to identify the concepts that are relevant to the domain and to
define the language concepts that will be used to express them. Two approaches compiled
from Barišić [Bar17] and Kleppe [Kle08] :

top-down approach with an extensive evaluation of domain, “discarding any existing imple-
mentation and focusing only on the complete description and categorization of the class
of problems from which its users will use our new DSL” [Bar17, p. 14]. The top-down
approach generally leads to horizontal DSL, and also called business oriented DSL.

bottom-up approach starts with the analysis of the existing API, namely ETL.NET, and
identifies frequent patterns to infer a language design. Also called technical oriented
DSL, it generally leads to vertical DSL.

In practice, Barišić [Bar17] says that DSLs are usually built with a mix of both approaches.

An iterative approach, influenced by the field of Human-Centered Design, has been proposed
by Borum et al. [BNS21]. This approach proves particularly relevant in our study, considering
the limited availability of domain experts and users, which poses challenges for conducting a
large-scale user study. In our specific context, the objective is to extend the use of the ETL
activity to a novel user group, namely non-programmers, who are not currently utilizing the
ETL.NET’s C# library.

The proposed approaches split the design process into two phases. First, an exploration phase,
where the designer explores low-validity prototypes, does interviews with domain experts.
The second phase is design validation phase. It is a phase where the designer will use a more
mature prototype to validate the design with more users.

3.2 Methodology 8

3.2.1 Our Design Activities

Our design activities involved several key steps:

1 Domain Analysis An analysis of the domain was conducted to gain a comprehensive
understanding of the relevant concepts, requirements, and how the ETL.NET library is
used.

2 Language Exploration Low-fidelity prototypes were developed to explore different individ-
ual design ideas and validate their relevance alone.

3 Low-fidelity Design Validation The complete low-fidelity design was validated to assess
the coherence and orthogonality of its ideas, as well as their alignment with the overall
goals of the project.

4 Prototype Validation The prototype was further evaluated in the context of its intended
use, involving different groups of users. More details about the evaluation can be found
in Chapter 5.

To mitigate potential risks and ensure the success of our design activities, we drew upon
previous work and experiences documented in the literature. By adopting an iterative approach
and combining top-down and bottom-up perspectives, we aimed to create a well-informed
and user-centered DSL that effectively addressed the needs of non-programming experts in
the ETL domain.

3.2.2 Case study

In this part, we describe a case study on our experience using a mix of top-down, bottom-up,
and two phases approaches to design our language. It would be misleading to say that we
followed a strict methodology from the start. Instead, we found that given what we were
doing, we identified some risks, and we searched previous work to mitigate them.

1 Domain analysis We started by analyzing the domain, with our theoretical and practical
knowledge of ETLs. And to get acquainted with ETL.NET, we started to implement
some ETL processes with it. We also did some interviews with Stéphane Royer, the
creator and maintainer of ETL.NET, with FundProcess, on how they use the tool, and
what they would like to see improved. We also analyze a sample of ETL processes
written with ETL.NET to identify common patterns, part of the result will be exposed

3.2 Methodology 9

in Table 3.2. Also, this was not a purely linear process, we get back to this activity
when we needed some more information.

2 Languages exploration We started to explore the language by creating some very low-
fidelity prototypes, analogous to paper prototypes. Initially, we started with the syntax
proposed with EtlScript by Wauthoz [Wau22], and with Moyra Bonjean tested variations
keeping the one that was the most readable and appreciable.

For example, we experimented with different naming for operations and different
representations.

One risk was to have a language that was too similar to EtlScript on the abstract
concepts. To mitigate this risk, we have done a bottom-up analysis to try to identify
frequently used patterns in ETL.NET processes, more on that while presenting the
design and the set of operators Section 3.5. Additionally, we used also a top-down
approach starting from the opportunities of the domain and input from the domain
expert. For example, instead of just naming operations following spreadsheet naming,
we tried tables as well, it was one of the demands, what if we could just add remove
columns, bring information from another table and just add these columns on the side
of the table. To be able to just add or remove columns, we need a strong data model
than streams of any type, the table idea comes from this need.

3 Low-fidelity design validation After gathering a series of low-fidelity for different parts of
the language, we conducted a design validation process to assess their effectiveness
put together. This involved utilizing the paper prototypes to perform various tasks,
both individually and with the participation of non-programmers. In these collaborative
sessions, we simulated the editing of code using the envisioned syntax, guided by the
users’ instructions. The objective was to evaluate the expressiveness, consistency, and
orthogonality of the core concepts embedded within the prototype. Based on the
insights gained from this paper validation activity, we refined and further explored the
design.

4 Prototype validation As the iterative design process progressed and the low-fidelity proto-
types stabilized, while also considering the reduction in time, we proceeded to develop
a minimum viable prototype. This allowed us to comprehensively evaluate the aspects
that were not fully explored in the low-fidelity prototypes, including the actual editing
experience and code generation. You will read more about the making of this proto-
type in Chapter 4. Then with this minimal working implementation, we get as many

3.2 Methodology 10

participants as feasible to comment on it.1 The evaluation of these user comments will
be discussed in detail in Chapter 5.

This section presented the case study of our design process toward an easier-to-use language
for ETL processes. The next sections present the results of this process: the language design.
Then the following chapters present the implementation of the prototype and its evaluation.

3.3 ETLang Type System

In the context of ETLs, it is essential to define the data type that will be manipulated, maybe
even before defining how it will be manipulated. This section presents the type of system
that dictates what the data looks like. In the following section, we will present the concepts
of the AST (Abstract Syntax Tree).

Our ETL system concentrates on a subset of ETL.NET capabilities. Namely, we focus on
extracting data from CSV files, which ETL.NET support as TextFile and on the loading
side the destination is a relational database.

Given that ETL.NET operates on sequences of C# entities and our objective is to generate C#

content, we will employ types that possess similar characteristics or can be converted into C#

types in order to ensure compatibility with their functionality.

3.3.1 Table Type

During our research, we found that users prefer to think of tables as a whole, and not as a
stream of rows. Table 3.1 presents a representation of our table type.

Table 3.1: Table type representation

Table <table name>
<column name 1> … <column name N>

<value type 1> … <value type N>

1As note Borum et al. “it is unlikely that someone ends up with the possibility of performing too many
usability tests when creating ADSLs”[BNS21].

3.3 ETLang Type System 11

Tables represent well, the supported TextFile from ETL.NET. It models the ordered columns
with headers we frequently find in CSV files. Tables also imply ordered lines. And each table
has a name. This is not the case for CSV tables, but it is the case for the destination of the
ETL process, a relational database. Also, names are mandatory but note enforced unique, as
in the language we have other means of uniquely identifying a table other than by its name,
for example, the operator that produced it. The name of the table is good for communication
with the user via messages or when loading the data in a database, to identify the table or
entity it refers to. Column names are also mandatory, and their name is enforced uniquely
within a table, as their name is used as a way to reference it from a table since we do not
want to have to deal with ambiguities where we would need to specify the index in addition.

Column type can be of any simpler type, not a nested table. We considered the case where
we could have a table as a column type, this would have a clean visualization but neither the
source nor the destination data model supports it. It may be useful during the transformation
phase of the ETL process when merging tables side by side or with data that can naturally be
grouped together, such as address fields. Grouping data could be supported as a second-class
citizen with tuples.

Next, are presented the types part of the core language, and potential extensions.

3.3.2 Types Descriptions

Primitive types

Boolean maps to C# bool.

Integer maps to C# integers. Implicitly convert to Number.

Number represents decimal numbers, and maps to C# double.

String is another first-class citizen type. We do not have specific charters except as
strings of length 1.

Datetime are represented as C# DateTime type. And are placed in the core as dates
and times are frequently used in the financial world.

Optional is a type that can wrap any other primitive or composite type, adding to the
wrapped type an explicit empty value. It then can be used in the same way as the
wrapped type but with the possibility of being empty.

3.3 ETLang Type System 12

Composite types

List is a list of values of the same type. They can contain any of the primitive types.
They should behave like C# List<T> where T is the type of element in the list.
They are not implemented in the core language and need an extension.

Abstract types

Table A table has a (non-unique) name and a predefined list of columns. Columns
consist of a name and a primitive or composite type.

Potential extensions Implementations could imagine extending the language with more types.
Record or Tuple, to store a composite type of different values in a column, could be an
interesting extension to Composite types.

3.4 ETLang Concepts

In this section, we present the concepts that should be present in the language and that will
be used to define the AST. We will not consider technical design constraints in this section,
as the implementation framework influences the design of the DSL. However, we will discuss
constraints on how to generate the C# code with ETL.NET, as they are part of the initial
constraints.

Previously, we define the types that will be used in the language. With these types, we can
now present the concepts of the language.

The list of concepts is as follows:

3.4.1 Macro

A Macro is a concept representing the processing done to a NAVPack to get it imported into
the database. Given the NAVPAck, it will define how to interpret it, transform it and store it
in the destination database. In other words, it is the whole ETL process.

3.4 ETLang Concepts 13

Top symbol The Macro provide scope for global symbols, appearing as they are bound. A
symbol is available in the scope after it is bound.

The term, Macro, comes from the naming of this concept by FundProcess, and also it is
the name of small scripts in spreadsheets software programs. The Microsoft Office Excel
documentation defines it as “A macro is an action or a set of actions that you can run as
many times as you want.” Microsoft [@Mic].

3.4.2 Operator

Operators are a concept that represents a family of operations on a table. For example,
restructuring the table is a kind of operation parametrized by how the new structure is
computed. They are equivalent to the ETL.NET operators and will transform the table
parametrized by expressions.

To compose operators, one can simply list them sequentially. They will execute their effect in
order, on the table provided by the previous operator if any. An operator exposes its result as
a table, meaning the next operator arguments can access the table exposed by the previous
operator.

In the following snippet if Operator1 exposes the table Table1 and Operator2 exposes
the table Table2, then Operator2 arguments has in its scope Table1 and Operator3

arguments can access Table2 but not Table1.

1 Operator1

2 Operator2

3 Operator3

Table 3
Operator 3

Table 2
Operator 2

Table 1
Operator 1

Figure 3.1: Operator sequence and table passing.

Based on this logic, we can identify two types of operators:

Source operators initialize the sequence and expose the first table. They have no previous
operator to consume a table from.

Middle operators are all the operators after the source. They have access to the previous
operator’s exposed table.

We can also distinguish operators by the effect they have on the table:

3.4 ETLang Concepts 14

Use operators uses the result built until now, as any other middle operator and performs
action of the loading phase of the ETL process. An example would be saving the table
to a file, or the database, or printing it to the standard output. We may expect them
to be placed toward the end of the sequence. However, they may also appear as Source
operator, if they initialize and uses the table directly. The purpose is to facilitate data
path analysis.

To have a list of operators, see Section 3.5.

3.4.3 Transform Block

A transform block represents a consecutive list of operations. It must start with a source
operator and it ends either with an explicit end of the transform block that may bind the
output table to a top symbol.

This concept is inspired by the stream concept from EtlScript proposed by Wauthoz [Wau22].
It comes from the common pattern in ETL.NET:

1 var OutputStream = InputStream

2 .Operator1()

3 .Operator2()

4 .Operator3();

3.4.4 Statements

Is an abstract concept that regroups multiples of previously described concepts, by the fact
they modify the global state of the Program, they have side effects.

Except for the already defined Operator and Transform block concepts, we will define the
Bind symbol concept.

Bind symbol to an expression value is called in other languages variable declaration with
initializer. The name of the symbol must be unique within a scope, but within nested scopes,
a newly declared symbol can shadow the parent scope value.

3.4 ETLang Concepts 15

3.4.5 Expressions

Expressions are concepts that resolve to value and a type. One of their uses is to parametrize
operators. For example, the operator that restructures a table will take as a parameter an
expression that will compute the new structure of the table. Expressions do not have side
effects affecting the global state of the Pipeline in itself.

Composition of expression is done by imbricating them in a tree-like structure.

Notation is specific to each expression; they can be prefixed postfixed or infixed to ease
readability and match usual notation.

To have a list of expressions, see section 3.6.

3.4.6 Structure definitions

To initialize a data source, basically a file, the compiler would benefit from knowing its
structure, to be able to generate the C# code to read the file and to be able to check the rest
of the user code and propose code completion and other analysis.

3.5 Operators to Build ETLs

In the previous section about operators, we described them as a concept without specifying
the effect they have on the manipulated table. In this section, we will detail the effect of
built-in operators. In addition, many more operators could be built and the design is open to
new operators, mainly middle operators.

To select the operators to design as built-in, we will use a bottom-up approach. We analyze
the usage of operators in a sample of ETL processes implemented in ETL.NET. From there,
we will define the operators that will be implemented in the language.

Sample ETL.NET scripts Our sample is composed of 30 C# files, counting a total of more
than 4163 lines of codes according to cloc � . With 365 lines of comments, this low number
of comments (8%) may be explained by the fact that each ETL.NET operator (represented
by C# function) takes a description string as its first parameter, and many comments are
commented-out code.

3.5 Operators to Build ETLs 16

https://cloc.sourceforge.net/

Table 3.2: Standard operators of ETL.NET with their usage in the example set.

ETL.NET

operator
Description

Occurrence in

CSV PDF Excel Total

Select Extended projection, modify the schema 84 36 17 137

Fix Update conditionally attributes 1 1 1 3

Lookup Left join 46 2 2 50

LeftJoin Like a regular SQL left join 0 0 0 0

Union Concatenate rows as they come 5 1 0 6

UnionAll Concatenate all rows from one stream after
the other

0 0 0 0

Where Filter an array by a condition keeping only
one succeeding at the condition

36 38 24 98

OfType Filter rows based on a type 0 0 0 0

First Get the first element of an array 7 22 14 43

Last Get the last element of an array 3 16 7 26

Top Take a number of elements from the start 0 4 0 4

Skip Complement of top, pass a number of records 1 0 0 1

Distinct Filter the sheet by keeping only distinct value 46 10 10 66

GroupBy Group records on equal attributes into a list 0 2 0 2

Aggregate Group records on equal attributes and do
arbitrary reduce operations

7 0 1 8

Pivot Aggregate values on equal attributes into a
single record with aggregation operations

0 0 0 0

OrderBy Sort the table by attributes 1 1 0 2

ToList Convert the table to a list or records 0 24 11 35

EnsureSingle Ensure the stream only contains one element 11 0 3 14

LookupCur-
rency

Specialized Lookup to provide currency from
a text column

28 4 3 35

Continued on next page

3.5 Operators to Build ETLs 17

Table 3.2: Standard operators of ETL.NET with their usage in the example set. (Continued)

EfCoreSave Save the table to a database 78 14 11 103

EfCoreSelect Read a table from a database 37 2 1 40

Ef-
CoreLookup

Lookup a table from a database 3 3 2 8

From the previous table analyzing the operators in use in the sample, we propose the following
list of operators to implement in the language, see Table 3.3.

Table 3.3: Operations available in core ETLang

ETLang operator Description Translated into
ETL.NET

Restructure Replace the table with an extended projection Select

Add column Add a column to the table, compute value from
the previous line values

via Restructure

Update column Update a column value, compute value from the
previous line values

via Restructure
or Update

Rename column Rename a column of the table via Restructure

Remove column Remove a column from the table via Restructure

Merge into Merge two tables into a newly structured table
by accessing records from both sides

Lookup
or LeftJoin

Merge side by side Merge two tables side by side by prefixing column
names

Lookup
or LeftJoin

Merge new column Merge two tables by adding new columns to the
table

Lookup
or LeftJoin

Concatenate Concatenate two tables by adding rows Union
or UnionAll

Filter lines Filter the table rows by a condition Where

First Get the first row, produce a single-line table First

Continued on next page

3.5 Operators to Build ETLs 18

Table 3.3: Operations available in core ETLang (Continued)

Last Get the last row, produce a single-line table Last

Top Get the first n rows Top

Skip Keep the lines after an arbitrary number of
skipped lines

Skip

Remove duplicates Remove rows with duplicate attributes, option-
ally merge partial rows

Distinct

Aggregate and re-
duce

Form groups of rows and perform reduce opera-
tions

Aggregate

Aggregate Form groups of rows and perform aggregate op-
erations on a list of values

Pivot
or via Aggregate
and reduce

Read files Read a text file as a table at the provided path CrossApply-
TextFile

Read database Read a database table with some constraints EfCoreSelect

Merge with database Merge a table with a database table EfCoreLookup

Save to database Save a table to a database table EfCoreSave

3.6 Expressions to Build ETLs

The preliminary catalog of expressions was based on observation of the same C# sample used
to analyze operations usage. Then we refined it with the help of our expert users, to see
which kind of expressions they would use for each type of data.

The Table 3.4 presents the main expressions grouped by types.

Table 3.4: Expressions in ETLang

ETLang Expression
Signature Description

Group Expression

Continued on next page

3.6 Expressions to Build ETLs 19

Table 3.4: Expressions in ETLang (Continued)

Value Boolean Integer
Number String
Table

* ^-> Constant Expr Construct con-
stant values

Table reference ^-> Table Reference a table

Previous

Aggregate

Merge

Dot Table, ColumnDef ^-> Expr Access a table col-
umn value

Let in Expr, VariableDef ^-> Expr Define a variable
in an expression

Flow Control

Alternative Boolean, Expr, Expr ^-> Expr

When WhenBranch* ^-> Expr

Unary Not Floor Ceil Neg
Abs

Expr ^-> Expr

Binary and add sub div
mul pow abs

Expr, Expr ^-> Expr

String Using

concat String* ^-> String

substr String, Integer, Integer ^->

String

Take the substring
specified by the
range of intergers

template TemplateArg* ^-> String

Regexp Using Regex, String ^->

extract ^-> String

match ^-> Boolean

split ^-> one-line Table

Continued on next page

3.6 Expressions to Build ETLs 20

Table 3.4: Expressions in ETLang (Continued)

replace ^-> String

3.6 Expressions to Build ETLs 21

ETLang Implementation 4
With the design of the previous chapter, we will now implement a prototype of the language.
We will see how the design can be implemented, and what are the challenges of implementing
a DSL. Starting with the exploration of different implementation methods. A comparison of
these methods already exists. Instead, we will discuss considered implementation methods
and see how they could apply to our DSL, in Section 4.1. Since each tool will have an impact
on the language design, in Section 4.2, we will see what has changed from the design to the
materialized implementation. Afterward, we will get into the implementations comments of
the DSL in Section 4.3.

4.1 Choosing an Implementation Framework

In this section, we evaluate different implementation methods with the needs of our DSL
design. We have first considered approaches to build out the combination of utility tools,
such as parser generator, AST transformations library, code generator, etc. Due to the
need for editing support, we have also considered language workbenches that provide a
complete environment for language implementation. And we also considered the possibility
of implementing ETLang with a metalanguage of the .NET ecosystem.

4.1.1 Utility Tools

To construct a textual DSL with utility tools, we would need to combine at least a parser
generator, an AST transformation library, a code generator, and a way to have editor support.
From the textual representation we need to build an AST, and then either with model-to-model
transformation or with a code generator, we can generate the code in the target language.
Our preference goes to C# tools since it is the ecosystem in which ETL.NET gravitates.

22

22

Initially, we considered ANTLR � , the major industry-grade parser generator. With its fourth
version, ANLTR 4 stops trying to generate AST1, instead, it generates a parse tree, from
which we can continue processing with visitors or listeners.

We experimented with the C# ANTLR implementation as our goal is to generate C# code
in the end and multiples libraries ease the C# code generation. Some of them are: T4
Templates � , CodeGenCS � a hybrid mix of code and text template, and Roselyn � for C#
analysis and compilation.

The missing part of transforming the parse tree into an AST, manipulating the AST, may be
filled with StarLasu � family of libraries. StarLasu is meant to be the link between the parse
tree and structure to build and manipulate the AST. Its main implementation Kolasu � , in
Kotlin, is still in development but already provides usable structures to build an AST from
the parse tree, manipulate an AST, automatically track node location, generate text from
the AST, and EMF interoperability.

From the two quick prototypes we made, it seems clear that using a composite of utility tools
will lead to a lot of boilerplate code, without needing that level of control, we would probably
take advantage of a language workbench.

4.1.2 Language Workbenches

Many language workbenches exist, and we started with the state of the art of 2013 [Erd+13].
From 2013, many of these tools evolved, and some also disappeared. We already talked
about Enso in Chapter 2, but we have also analysed more closely XText � , textX � , Rascal
MPL � , Spoofax � , and MPS � .

Based on their documentation, we estimated that MPS and Xtext were the most mature
and complete tools. Xtext has the interesting feature of being able to generate a language
server or web editor. MPS does not yet have an official web editor system, however, projects
like LIonWeb � seem promising. The advantage of MPS is elsewhere, and results from its
projectional (or structural) editing system. Projectional editing means the user is editing the
AST directly, instead of editing a text that will be parsed into an AST, they therefore avoid
the parsing step. First, they can support syntax that cannot be easily parsed by text-based
editors, such as tables or diagrams. Second, they can support language composition, typically

1“Because most ANTLR users don’t build compilers, I decided to focus on the other applications for ANTLR
v4: parsing and extracting information and then translations. For compilers, we need to convert everything
into operations and operands – that means ASTs are easier.” [@Par12]

4.1 Choosing an Implementation Framework 23

https://www.antlr.org/
https://learn.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
https://learn.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
https://github.com/CodegenCS/CodegenCS
https://docs.microsoft.com/dotnet/csharp/roslyn-sdk/
https://github.com/Strumenta/StarLasu
https://github.com/Strumenta/kolasu
https://www.eclipse.org/Xtext/
https://textx.github.io/textX/
https://www.rascal-mpl.org
https://www.rascal-mpl.org
https://spoofax.dev
https://www.jetbrains.com/mps/
https://github.com/LIonWeb-org/

language extensions, and mixing unrelated languages. These two features are very interesting
for ETLang, as it would be a way to solve custom operator extensions, and to compose
ETLang with other languages like regexp or even SQL. Projectional editing may come at a
cost as described in an experiment [Ber+16]. Still, a big part of the language remains textual,
expressions are an example; and the projectional editing may be less intuitive for the user, as
they are not editing a text anymore. Fortunately, work has been done with Grammar Cells
[Völ+16] in that direction, providing a way to mix in parsed text experience.

4.1.3 Metalanguages in .NET Ecosystem

Several metalanguages have been developed in the .NET ecosystem. They could allow us to
add additional layers of abstraction to ETL.NET C# interface while retaining the flexibility of
a general-purpose language and taking advantage of the .NET ecosystem. However, most of
these metalanguages appear to be inactive, raising concerns about their suitability for new
projects.

Among these metalanguages, Nemerle � is a statically-typed, multi-paradigm language.
Although it has been described as such, its development has significantly slowed down, with
the last commit dating back to 2020. Nitra � , a related project by JetBrains, was a Language
Workbench released in 2014, but it appears to be abandoned as well.

Another metalanguage in the .NET ecosystem is Boo � , which is also statically typed and
features a syntax similar to Python. It provides capabilities for creating DSL, adding keywords,
and generating code.

In contrast, F# stands out as another language within the .NET ecosystem. “F# allows you to
write uncluttered, self-documenting code, where your focus remains on your problem domain,
rather than the details of programming.” [@Car+22]. While using F# for ETL processes
in conjunction with ETL.NET may seem promising, it may not be a solution that will help
non-programmers.

In summary, the .NET ecosystem offers various metalanguages, However, the lack of activity
and questionable suitability for new projects raises doubts about their viability. On the other
hand, F# demonstrates the potential for clean code development, we do not feel it will help
substantially non-programmers by itself, but may be interesting to evaluate in conjunction
with other aids.

4.1 Choosing an Implementation Framework 24

https://github.com/rsdn/nemerle
https://github.com/JetBrains/Nitra
https://github.com/boo-lang/boo

4.1.4 Choosen Implementation Method

In selecting the implementation method for our project, several factors were taken into
consideration. Ultimately, we opted to implement ETLang with JetBrains MPS for a variety
of reasons.

First and foremost, MPS offers a projectional editor. This means that instead of relying on
traditional text-based parsing, MPS allows for the direct manipulation and visualization of
AST. This unique feature provides a flexible development experience, enabling us to define
first the AST shape, thus the semantic, and only after, the syntax.

Additionally, MPS is known for its ‘batteries included’ approach. It provides a comprehensive
set of tools and functionalities out of the box, such as code editors, generators, type systems,
and scope management, which can significantly expedite the development process. This
ready-to-use ecosystem minimizes the need for additional configuration or reliance on external
libraries, streamlining the overall implementation effort.

Furthermore, one of the motivations behind choosing MPS is to leverage its projectional
capabilities to create a more user-friendly and visually-oriented language for our project,
while avoiding the downsides of a fully visual DSL. This decision aligns with our objective
of developing a language that is accessible to non-programmers, as it allows for a more
interactive and intuitive way of interacting with the language’s constructs, and reduces
syntactical errors.

In summary, the decision to employ MPS as our implementation method was driven by its
projectional nature, which is justified by our non-programmers user group, as well as its
comprehensive toolset and active ecosystem, which facilitates development.

4.2 Language Design Adaptations

Now that we have chosen MPS, and as for any implementation, we need to make choices
where the design leaves open possibilities, and adaptations to the design to take into account
the constraints and opportunities of the technology. In this section, we will discuss the choices
and adaptations we made for this particular implementation with MPS.

4.2 Language Design Adaptations 25

4.2.1 Transform Blocks and Operators

With MPS, the user is modifying the AST directly. The designed AST concepts were not
initially designed for this use way of editing, and we may need to relax some constraints.

Transform blocks and operators are two strongly linked concepts: a list of consecutive
operators implies a transform block. The design also implies that it is the responsibility of the
transform block to declare the symbol (or variable) name to which it will be bound. However,
we may reconsider this design.

The input table is provided by the first operation (of type Source operator). To bind the
output table to a symbol, we could let the transform block do it at its level, or add an
operator that will bind the table of the preceding operator to a top symbol.

The second option allows the user to never have to manipulate transform blocks. A transform
block in this design is implied by the I IPiplineStart operator that marks the start of a
transform block. The block ends with the last operation, which can be a C ToSymbolPipe.
Since C ToSymbolPipe is an operation (A BasePipelineStmt), by its semantics, it should
provide a table as output. This has the implication, we can add directly after other operations
that will consume the table. This is not possible with the first design, since the transform
block is a concept that is not an operation and thus cannot be used as an operator.

The second design is more flexible. It, however, needs a bit more work on the generator part
since we will need to reintroduce the transform blocks in the AST.

4.3 Implementing ETLang

This section presents the implementation of ETLang using MPS. It is important to note
that familiarity with MPS is an advantage for understanding this section. We will begin by
presenting the general architecture of the prototype, followed by various aspects such as the
editor system, type system, scope system, and migration. We will then discuss the process of
building the IDE and code generation.

4.3 Implementing ETLang 26

Note on the MPS conventions Implementing a DSL with MPS is done with special DSL
mixed with the Java language. Therefore, many conventions are borrowed from Java. MPS
has different kinds of concepts, and each concept can have multiple aspects. An aspect may
be the structure of the concept in the AST, the editor used to display and manipulate it, the
type it has, etc. Concepts may be R Rootable, meaning they can be the root of a DSL tree,
or A Abstract, meaning they cannot be instantiated, similar to an abstract class in Java.
I Interfaces are also available and can be implemented by concepts. And C Concepts may
have properties, made of Java primitive types, children nodes, and relations, which are links
to a node in the tree.

4.3.1 Concepts

It is noteworthy that not all concepts will be implemented as part of this prototype. We
have decided to implement a bit of every type of concept and aspect, starting with the most
used ones. The objective is to explore the attainable outcomes rather than having a singular
component that functions flawlessly while others remain nonexistent.

You will find a pruned version of the concepts tree in Tree 4.1, and a list of interfaces
Tree 4.2.

4.3 Implementing ETLang 27

Tree 4.1: Partial inheritance tree illustrating the concepts in ETLang, demonstrating the overall
logical structure of the tree.

R Macro the top of the tree
A BaseStatment

C ExpressionBindingStmt
C FileTypeBindingStmt encapsulate a C TableTypeDecl and bind it to a symbol.

A BasePipelineStmt is the base concept for all operators.

A BaseExpression
A BaseValueEx is the base concept for all value constructor expression,

for example, int, string, or table.

A BaseTableReferenceEx is the parent for all table references,
defines a default editor, constrains and type.

A BaseBinaryEx will define an editor, type, and generation for binary expression,
including +, −, ∗.

C DotAccess
C LetExpression
…

C TableTypeDecl declares how to read a table in a file. It contains the columns declara-
tion C ColumnTypeDecl with their name and type.

A BaseType serve as a type for all types. It should not be used as a node in the tree.
Implemnts the MPS built-in I IType.

4.3 Implementing ETLang 28

Tree 4.2: Complete tree diagram of the interfaces ETLang.

I INamedConcept Built-in MPS for concept having a name.
I ISymbolDefinition Interface implemented by all concepts defining symbols.

I IValueSymbolDefinition For symbols holding a usable value like (an expression
or a table), for example, C LetBinding.

I ITopSymbolDefinition Symbols defined in the global scope, checked for
uniquness.

I ISymbolReference
I IConcreteSymbolReference Could be used to share the generated variable name

access. Implemented by:
• C TopSymboleReferenceEx
• C LetSymbolReferenceEx
• A BaseTableReferenceEx

I ITableDefinition
I IColumnDefinition
I IFileTypeDecl

I IFileTypeUse
I IColTypeDecl implemented by the options to read a column of a file
I IPiplineStart in the design was named Source operator.
I IPiplineMiddle
I IPiplineUse

4.3 Implementing ETLang 29

Patterns In the interface tree (Tree 4.2), several patterns are observed:

Define and Reference This is a straightforward pattern where a concept defines a value, and
another concept references it for its usage. For instance, the concept C LetBinding
defines a value, which is referenced by C LetSymbolReferenceEx. Incorporating inter-
faces for this behavior facilitates the sharing of editors or typing, as concepts sharing
the interface can be used interchangeably.

Inline Definition This pattern allows users to define a structure in-place or use a pre-defined
reference to the structure. It is commonly used in programming languages, where classes
can be defined at the top level or as anonymous inner classes, and lambda expressions
serve as anonymous inline functions. In the context of domain-specific languages, this
pattern offers flexibility for language users to define certain elements inline, right where
they are used, instead of separating them into distinct blocks [@Koš21]. It is used for
example for the file definition as illustrated by Figure 4.1.

IFileTypeDeclI

FileTypeReferenceC

InitFromFilePipeC

FileTypeBindingStmtC FileTypeInlineC

IFileTypeUseI

has 1 child

has 1 reference

implements

Figure 4.1: A file can be defined inline or as a reference to a named file definition beforehand. This
adds flexibility for the user when using the file definition in a C InitFromFilePipe that
reads a text file with a structure.

As the language continues to expand, it will be necessary to refactor the interfaces to make
better use of sharing behavior.

4.3.2 Editors

With the structure aspect, the editor is the second most important aspect of concepts. Editors
define how the AST is presented to the user and how the user can interact with it.

4.3 Implementing ETLang 30

Interestingly with projectional editing, we may define multiples editor for the same concept,
then the user may choose between the default editor or one of the alternatives. For example,
for C TableValueEx that creates a table, we have a default editor that resembles structs in
C for their compactness, but the user may choose to use a table. Both are fully usable in
visualization and edition, Screenshot 4.1.

a: Struct-like editor for a C TableValueEx.

b: Table editor for a C TableValueEx.

Screenshot 4.1: Alternative editors for SimplePerson a C TableValueEx.

Usually with projectional editing, we need to construct the ast from root to leaves, which
may be cumbersome to write expressions with infix visualization. For example, by default,
to create an addition expression, the user has to create the addition by writing + and then
the left and right operands. To allow fluent writing, we need to create the operands first
and then when writing the addition charter, transform the tree and introduce the addition
expression. This fluent writing behavior can be achieved with a side transformation, or by
introducing an MPS Extensions, grammarcells will momentarily parse the user input with
the available grammar, and construct the corresponding AST, and like any good parser, it
handles priority and associativity.

4.3.3 Type System

With this prototype, the implementation of the type system started from the ground up
because it is crucial to the language as it is based on inference and we do not ask the user to
provide types.

Our type system is embarked with the primitive types: integer, boolean, and string as a
starting point for this prototype. Then it has the table and column type. These are a bit

4.3 Implementing ETLang 31

special because they track their origin. When we create a reference, we need a node to point,
and when we do a reference to a column value, one needs to point to the column definition.
When referencing the table exposed by the previous operator, the reference is computed and
not stored in the reference node. Instead of trying to find in children of the previous sibling
operation, it is easier to simply let the type track its origin. With the origin, we then can
provide column completion when accessing a table.

When comparing table types, both the non-name attributes and the columns are compared.
If the reference table lacks columns, the columns of the compared table are not verified. This
functionality is useful, for instance, to simply validate whether a type is indeed a table or to
validate only the table’s attributes. Column comparison is based on their respective names
and the type of content they contain.

In addition to assigning and verifying the types of AST nodes, the type system ensures
compliance with other constraints of the AST that cannot be enforced solely through
the AST structure. For example, it verifies that the transform block commences with an
I IPipelineStart, or that symbol names are unique.

4.3.4 Scope System

The scope system is rather simple. The top symbols are defined in the top-level scope
provided by C Macro and are available for use only after their definition, in following siblings
and following siblings’ children. C LetBinding defines a scope, where the symbol defined by
the C LetBinding is available for use in the C LetExpression and hides any existing symbol
with the same name in the parent scope.

4.3.5 Migration

An unanticipated yet beneficial aspect of MPS is the capacity to migrate user code to a novel
version of the language. Although not initially a primary concern, this functionality proved
to be handy in deprecating a concept with ease and converting it to a more appropriate
representation.

In contrast to general-purpose languages, where breaking changes are typically avoided, in
DSLs, they are more commonly utilized [BS22]. By providing this feature, MPS significantly
mitigates the expenses associated with breaking changes.

4.3 Implementing ETLang 32

4.3.6 Building the IDE

To build the IDE, we needed to build a plugin with ETLang and ship our dependencies as
well. MPS provides the building aspect to ease the generation of Apache Ant � build files for
our language and is capable of generating a plugin or a standalone IDE.

To be able to combine our dependencies, namely grammarcells and plaintextgen, we have
used Gradle. Gradle with mps-gradle-plugin � , have been used to manage the dependencies
and coordinate the Ant tasks.

This process is then automated with GitLab CI, which builds the plugin and IDE and then
publishes them to a package registry.

Users are then able to download and run the IDE on their machine, provided they have Java
11 installed, following the instructions available on ETLang install page � .

4.3.7 Code generation

When we reached a minimal working state in terms of functionality, we stopped the develop-
ment without having reached a complete implementation of the design. It was also desirable
to prove the technical feasibility of code generation targeting ETL.NET.

MPS provides two-ways to generate code, via MMT (Model-to-Model Transformation) or
directly TextGen. The concept of MMT is to have a model of the target language and to
transform the actual high-level model into the target model, optionally using intermediate
models. The TextGen aspect defines a model-to-text transformation. It works by appending
lines of text to a buffer, with special support for indentation, and by calling the TextGen of
the children nodes.

An additional way, contributed by MPS Extensions is to use Plain Text Gen, a model-to-model
transformation, where the target model is a plain text matrix model. This approach enables
the generation of text with a template-based approach, in contrast with TextGen.

The standard way in MPS is to use MMT. Officially supported languages are Java and Kotlin.
C# is supported thanks to a school project in Charles University from 2019, with mpscs � .

C# generation seems the most elegant approach, but some features like implicitly typed
variables or anonymous types are not supported by mpscs, and these features are much used
by ETL.NET code. Due to time constraints, we decided to use the Plain Text Gen approach,

4.3 Implementing ETLang 33

https://ant.apache.org/
https://github.com/specificlanguages/mps-gradle-plugin
https://etlang.gitlabpages.uliege.be/etlang/install/
https://github.com/vaclav/mpscs

which still brings use the benefits of the template-based approach. We were able to directly
output text from our model without having to create an intermediate model for ETL.NET,
because using a bottom-up approach during the design phase, the model is still fairly close to
the target language. ETLang brings, however, some abstractions that will need an additional
transformation to be outputted in ETL.NET.

In most cases, the concepts in the ETLang are converted directly into text, including the
conversion of C TableValueEx into C# anonymous types. As mentioned earlier, we need to
explicitly introduce transform blocks in order to easily convert the AST into text. Because
these transform blocks best represent the variable assignment of ETL.NET streams. This is
made with a pre-processing script transforming the AST before the generation. A second
transformation is needed to transform single-column table operations (e.g. C AddColumnPipe)
into C RestructurePipe operation, that directly matches the Select operation in ETL.NET.

Furthermore, special consideration must be taken when referencing another variable. Since
we are generating a text matrix, one cannot use the MPS reference mechanism. Instead, once
a variable name has been generated, we store it in the source concept in a property prefixed
with gen_. Then, when occurs a reference to the variable, we use the reference to the source
concept again and use the previously generated variable name.

4.4 Web Version of the Editor

The zeitgeist has been to port applications to the Web. This is also true for development
tools, and we have seen code editors being ported to the web, such as VSCode or JetBrains
IDE. And the same goes for MPS multiple projects have attempted at bringing MPS to the
web, with varying degrees of success, but non at this stage is considered the standard way to
use MPS.

Different parties have started individually to deploy MPS on the Web [@Völ21]. Then they
joined forces into Languages Interfaces on the Web organization, in short, LIonWeb � .

While demonstrations showcasing MPS running on the Web exist, it is worth noting that
this area remains under active development. Unfortunately, due to issues related to version
compatibility and acquiring necessary dependencies, we were unable to present demonstrations
of ETLang on the web. This remains an area of future exploration.

4.4 Web Version of the Editor 34

https://github.com/LIonWeb-org/

Evaluation 5
This chapter presents an evaluation of ETLang, focusing on the two main requested charac-
teristics: ease of use and the reduced time it takes for users to become operational. While the
notions can be subjective and open to various interpretations, we have developed a quality
model that encompasses specific sub-characteristics related to these aspects. Additionally,
we address the issue of extensibility, which was a particular concern given the limitations
identified in previous research [Wau22]. Lastly, as one of the objectives was to integrate the
ETL.NET ecosystem, we had to generate C# code using ETL.NET from ETLang. Therefore,
we will also evaluate the generated code quality to ensure the functional appropriateness of
our language.

In the following sections, we will first introduce our quality model, which outlines the sub-
characteristics used to assess ETLang. Subsequently, we will elaborate on the methodology
employed to evaluate our language, providing a clear understanding of the approach undertaken.
Finally, we present our findings based on the evaluation and discuss these.

5.1 Evaluation Quality Model

While the characteristics we propose to evaluate ETLang are frequently cited in the literature,
we have not found an established standard quality model for DSLs, and each article seems
to pick its subset of quality characteristics. Indeed this is a field that is still in development
[Pol+21], to build our usability framework we take inspiration from the one proposed by Zineb
with BPMN4ETL [El 14] which targets business users and ETLs. But since BPMN4ETL
is a graphical language we need to adapt to our projectional language. During the design
phase we cited cognitive dimensions but using them now seems unpractical given the number
of dimensions [Gre89; Bla00] and the limited time we have to conduct such an extensive
experiment for this master’s thesis. We may use some of them to justify our choices. We can
also look at the internal properties of languages as proposed by Borning [@Bor02].

35

35

Tree 5.1: We propose to concentrate on the following characteristics, defined in conjunction with
FundProcess and on the previously mentioned inspiration from the literature:

Quality model
Ease of Use is the main charcteristic asked by FundProcess.

Readability needed when they show it to new users without fearing them with the
C# syntax.

Learnability as they needed business users to be quickly operational, which is one
of the pain points of the C# syntax.

Expressiveness comes with many studies, including [El 14; BNS21; Gre89; @Bor02;
Pol+21]. Indeed we want to express our intentions with adequate
language constructs, or “Expressiveness is defined as the ability of
the language to describe all relevant aspects of the problem at hand”
[El 14].

Editing efficiency can be evaluated by measuring the perceived efficiency of partici-
pants during a controlled experiment using projectional editing
[Ber+16]. In our study, we will focus on the perceived efficiency
of participants as well as the completion speed of the proposed
task.

Functionally adequate seems the second requirement that needs at least a partial
answer in a prototype. While we tried to improve usability, it
evaluates whether we have succeeded to keep ETL.NET core
functionality.

Extensibility via modularity ETL.NET enable extensions of every stadge of the ETL.

Generated Code Quality is not directly visible by end users. Nevertheless, users
are indirectly affected by it, as insufficient generated code
quality can undermine the intended abstractions, forcing
users to confront their conceptual model with the under-
lying structures instead of relying on the convenience of
higher-level abstractions.

Correctness of generated code, does the code compiles, and behave as intended.

Readability of the generated code.

5.1 Evaluation Quality Model 36

5.2 User Study of Ease of Use

5.2.1 Evaluation Methods

In order to evaluate the subset of characteristics related to the ‘ease of use’ of our prototype,
we primarily employed quantitative methods. These methods allowed us to gain insights and
understanding of issues with a smaller group of testers. We complemented the quantitative
approach with a qualitative method, namely the UMUX (User Metrics Usability Experience)
[Fin10], which is a lightweight usability Likert scale test. However, due to time constraints, we
acknowledge that the results obtained from this test may not be fully conclusive by themself
taken alone.

There is a wide range of quantitative methods available for evaluating DSL. For a compre-
hensive list, we refer to Barišić’s Ph.D. Thesis [Bar17] and the analysis of commonly used
methods presented by Poltronieri et al. [Pol+21].

The utilization of triangulation in our evaluation process enhances the reliability and validity
of our findings [Wil06]. By combining qualitative and quantitative methods, as well as
considering the perspectives of different user groups, we can obtain a more comprehensive
and robust understanding of the characteristics and usability of our prototype.

To conduct our evaluation, we employed the following methods:

Task solving Test participants were given two series of tasks to solve using our prototype.
The first series is described and explained with a tutorial, the second without a tutorial.
During the whole process, participants were encouraged to think aloud, providing
insights into their cognitive processes and we observed their interactions with the
system through screen sharing.

The tutorial goes through the basic concepts of defining a file structure, reading a
file with the file structure, modifying the table and saving it to the database. These
initial tasks have been chosen because they are the first steps that a user would take
when designing a macro for ETL.NET. The tutorial consists of explicative text, video
screen captures, and textual visualization of the code.1 You can find the getting started
tutorial online � , in the documentation website of the prototype, or in Appendix B.

1The original code is structural, therefore the textual representation cannot be pasted into the editor, the
tutorial contains an approximate representation of how the code looks like in the editor.

5.2 User Study of Ease of Use 37

https://etlang.gitlabpages.uliege.be/etlang/getting-started/
https://etlang.gitlabpages.uliege.be/etlang/getting-started/

Then, as a second part, we asked participants to solve tasks without a tutorial, instead
they may ask questions to the observer. The tasks involved reading a second file with
a distinct file structure. Then they had to merge the two tables, based on a column,
into a unified table that adhered to a specific structure, which was then to be saved to
the database.

Semi-structured interviews At the end of the evaluation session, we conducted one-to-one
semi-structured interviews with the participants. This allowed us to delve deeper into
their experiences, gather feedback, and address any additional aspects that were not
covered during the task-solving phase.

UMUX scale test We orally ran a modified UMUX scale test (see Appendix A) with the
participants after the interviews. Along with the rating, we encouraged them to provide
justifications for their responses, providing further qualitative insights.

Retrospective think-aloud exercise After one week without touching the prototype, testers
were asked to re-explore their code and think aloud about what it does.

One-week-after refactoring After the retrospective think-aloud, we proposed a task involving
modifying the code and adding operations to their ETL process.

Then, we used open coding to analyze the qualitative data obtained from the observations
notes, the interviews and the justifications of the UMUX scale test.

Since the aim of ETLang is to facilitate ETL creation for business operators who are not
necessarily programmers, we required a user group that could represent this target audience.
Additionally, we wanted to ensure that the system remained accessible to programmers for
simple ETL tasks that fall within the scope of working with tabular data. Consequently, we
identified three user groups for our study:

1. Business operators: These users are non-programmers, although they may have had
some exposure to SQL and basic programming concepts. Their familiarity lies primarily
in working with spreadsheets. We included two users, one from FundProcess and a
student with experience in Excel, in this group.

2. Programmers: These users possess general programming skills but are not specifically
familiar with ETL.NET. In order to maintain a balanced representation, we conducted
the study with two computer science master’s students to counterbalance the business
user group.

5.2 User Study of Ease of Use 38

3. ETL.NET experts: These users are programmers who are actively using ETL.NET and
possess expertise in ETLs. We had one user belonging to this category. This user group
is relatively rare.

5.2.2 User Evaluation Findings

A total of five participants were interviewed for our research, all of whom were either University
of Liège students or employees at FundProcess. To ensure anonymity, we assigned them
pseudonyms throughout the study. Within the group, U1 and U3 identified themselves as
business operators, while U4 and U5 were programmers. U2 possessed expertise in ETL.NET.
We took the liberty of translating their quotations from French to English.

In this section, we present the findings of our user evaluation process regarding the ease of
use. The objective was to assess whether our proposed solution achieved the goals outlined
in our thesis and adhered to our quality model.

We will commence by discussing the positive aspects, followed by the issues encountered.
One can note that some of these issues may be related to language design, while others may
stem from implementation bugs or architectural choices.

Positive Aspects

Learning Our participants were commenting positively on the learning curve of ETLang,
they found the tutorial and the ability to ask questions during the second phase of task
solving a great help to learn the language. And after the session feel confident to use the
language on their own. Non-programmers commented that they would need more resources
in the form de video or manual with each operation, the form that these additional resources
should take depends on the interviewee.

Autocompletion Was mostly considered helpful, only programmers explicitly commented
that it was slowing them down sometimes when they have to use the completion due to the
lack of allowing temporary erroneous code. A user commented (U2): “When you do not
know what to do, you press Ctrl+Space and you are guided.”

5.2 User Study of Ease of Use 39

Template effect A non-programmer commented (U3): “it helps compared to C#, we have
choices, it’s not like starting from a blank page, it’s logical to put things in the boxes”. It
probably comes from the absence of syntactical noise to write (separators are however visible
in the editor) and it is not possible to have syntactical issues. A programmer commented,
that it is nice to not have to care about the syntax, (U4) “like in other languages you have
to end [statments] with a semicolumn, but it is cool to be able to forget it”.

Multiple visualisations Being able to choose the visualization of table values (see Screen-
shot 4.1) seems to be appreciated, users commented that they would see themselves using
the tabular visualization when re-reading their code.

Debugging types The ability to see the type of data in the editor was appreciated by the
users, they commented that it was helpful to understand what was going on in the code, and
they used it mainly to see the table structure as showcased in the tutorial.

Issues

Screenshot 5.1: You partially write read

structured file and select
from the completion, then the
node is added to the AST and
with the correction shown as
on the second line

We attempt to present the issues encountered during our
evaluation process in an order that reflects their frequency,
while also grouping them thematically.

Closeness of naming and typing The initial testers found
it disorienting, adding friction, that what they had writ-
ten was too different from their projection in the editor.
For example, they asked whether read structured files

and initialize from files were the same things. Ini-
tially, you had to write the first, and the second would
be displayed in the editor. This was corrected for subse-
quent testers and now displays as read file from <file

pattern> with structure <file structure>, similar
changes were made for other operators.

5.2 User Study of Ease of Use 40

Screenshot 5.2: File structure definition of a Per-
son bound to the symbol Person-
FileStructure, with 7 columns.

Optional parameters All participants asked about the mean-
ing of <no optionalFrom> parameter in the file structure
definition (for example Screenshot 5.2). Some participants
simply asked the question and continued without dwelling on
it, while others revisited the tutorial. Some participants posed
the question again during the second phase. Although not
an issue yet, this approach proved effective in highlighting
features and allowing users to discover them. However, it is
important to strike a balance and avoid excessive use of such
techniques, as it may lead to verbose syntax and reduced
readability, as mentioned by some users.

File structure definition Three users found it unclear why two
different names were needed for the file structure definition
and the table it defines.

Previous Table Access Except for our ETL.NET expert, all users had difficulty encoding
access to the previous table. They tended to write #Person directly instead of #table to
access the previous table, assuming the previous table was named ‘Person’.

Another issue arose when users created a reference to the previous table; to select a column,
they had to add a dot and then select the column as explained in the tutorial. However, a
bug caused the cursor (represented by ‘|’) to be placed at #|Person instead of at the end
of the expression, making it disturbing for users.

Empty lines between operators Except for one tester, all participants instinctively inserted an
empty line between their first two operators. Non-programmers paused and asked about the
red underlining, while programmers initially disregarded it. However, when they encountered
difficulties with accessing the previous table as described in the tutorial, they also paused
and attempted to identify the error. Both user groups agreed that the error message was
not clearly formulated, as it employed implementation-specific terminology, in this case, the
message was ‘Error: Previous statement is not a pipeline producing a Table, try adding an
initialize on the previous line.’

5.2 User Study of Ease of Use 41

Error messages The error messages were not always clear, especially the ones encountered in
the two previous issues. Users expressed that these messages contained unfamiliar terminology,
consisting of implementation-specific concept names. Furthermore, the proposed solutions
provided by the error messages were not helpful or relevant. The inclusion of quick fixes is a
potential enhancement that could be considered for the language prototype, although it was
not implemented in the early prototype stage.

Selection and Navigation Participants from various backgrounds reported being surprised by
the selection and navigation in the editor. Further investigation would be needed over the
long term, as even we, as developers of ETLang, were initially surprised but found it quite
pleasant with practice. Participants also noted that they would appreciate the ability to copy
and paste code from outside the editor, such as from the tutorial.

Merge The first users who tested the merge operation found it confusing and unclear. It
has four fields to fill, and the field names alone were not sufficient to understand what to do.
A second version with partially pre-filled fields greatly helped subsequent users. In any case,
the concept of symbols has to be explained beforehand and said that they need to bind the
table they want to merge with a symbol.

Symbols Programmers had no issues and found the term ‘symbol’ acceptable once they
understood that it was equivalent to variables in other languages, specifically constants.
Non-programmers had more difficulty understanding the concept of symbols. The term
‘variable’ was unfamiliar to them, ‘constant’ was clearer. They suggested the term “value
container” instead. Binding expression to a symbol seems intuitive for our testers, however,
the need to bind a table to a symbol was not as intuitive as some remarked that tables are
already named.

Implicite Transform blocks As we have seen the transform blocks have been made implicit
in the prototype, to have a more flexible and line-based edition. However, based on the
comments about the empty lines between operators, or the table-to-symbol binding, it seems
that making the transform blocks simple may not be the best idea. It moves the validity
checking to the type system instead of being directly constrained by the AST. An A/B test
could be conducted to determine which approach is the most intuitive.

5.2 User Study of Ease of Use 42

Autocompletion and programmers Programmers found autocompletion useful but occasion-
ally felt it slowed them down. Sometimes, they missed the option of being able to write
incorrect code and then correct it, which is impossible in this prototype due to the chosen
projectional technology. This should be further assessed over time with a smoother prototype
to determine if it remains perceived as a problem.

In conclusion, it should be noted that users may be more inclined to comment on defects rather
than positive aspects, due to a phenomenon known as negativity bias [@Lor16]. However,
many of the issues mentioned are related to the prototype rather than the language itself. A
detailed discussion of the ease of use will be presented in the Section 5.4.

5.3 Evaluation of Functional Adequacy

In this section, we will assess the functional adequacy of the system based on two key
requirements: extensibility and code generation quality, as outlined in our quality model.

Extensibility

Extensibility of languages comes at a low cost with MPS. However, we must be careful not
to break it, as with any other object-oriented programming language.

Adding a new operator that corresponds to an operation in ETL.NET is a straightforward
process. To illustrate this, we will use the example of the ‘Distinct’ operator, which can be
implemented in less than 5 minutes. The steps involved are as follows:

1. Create a new language that extends ETLang.

2. Define a concept for the new operator, such as ‘DistinctPipe’.

This concept should extend the appropriate concept from the base language and
implement the necessary interfaces. Additionally, define any child nodes required, such
as the key on which the distinct operation will be performed.

3. Define the editor, system, and generation aspects for the new operator. With these
defined, the minimal implementation is complete.

5.3 Evaluation of Functional Adequacy 43

Generating code out of the stream of operators is not currently possible with the prototype
architecture. To enable this functionality, the language would need to define another concept
that generates the out-of-the-flow code. This concept could then be inserted at the appropriate
location in the AST using a pre-mapping script. In addition to operators, the prototype is
open to extensions of new expressions and types, including both primitive types and compound
types such as lists or tuples.

Code Generation

Among the three sub-characteristics associated with code generation, our evaluation will
focus solely on correctness and readability. It is important to note that the primary objective
of this prototype was to demonstrate the feasibility of generating code, rather than fully
optimizing the output.

In terms of readability, our ETL.NET expert determined that the generated code was sufficient
for understanding. The variables generated by the system maintain a resemblance to the
original concept names, with changes in capitalization, the addition of underscores, or the use
of prefixes and postfixes. Although the indentation may not adhere to strict C# standards, it
is present in the generated code.

To ensure, the production of correct code, ETL.NET would need to enforce stricter AST. We
have identified two notable issues that require attention:

• First, column names are not transformed and used as C# identifiers, the motivation
for that choice is to be compatible with externally defined tables via anonymous types
or classes. To solve this issue, we would need to check the column names to be valid
identifiers.

• The second issue pertains to the handling of features that are currently not implemented
in the code generation aspect. Specifically, when defining a key for a table in merge
or aggregate operations, the AST allows for an arbitrary number of columns to be
considered as keys. However, the code generation aspect currently considers only the
first specified column. A potential solution would involve implementing code generation
for each of these operators individually, although a more robust and generic approach
is desired for future improvements. This would involve designing a concept capable of
supporting multiple key columns and generating the corresponding code accordingly.

5.3 Evaluation of Functional Adequacy 44

5.4 Discussion

In terms of ease of use, the testers seem to be overall satisfied, although some bugs and
early-stage improvements have slightly tarnished their experience.

Readability was evaluated rather positively in the qualitative data. Due to the limited number
of respondents in our questionnaire, we cannot provide a definitive conclusion concerning the
qualitative data.

The learning curve was considered to be good, with the tutorial and the ability to ask
questions, in the second phase of the task solving, being a great help to learn the language.
Testers declared that they feel able to do it alone next time, with a manual for more complex
operations such as aggregate or merge. We have verified with some of them the learnability
during the one-week-after session, they seem and perceived that it was “easier” (U1) or
“smoother” (U3).

The evaluation of expressiveness did not encompass complex or complete ETL macros.
The prototype did not include all the necessary expressions to develop complex macros.
However, the testers were able to easily express the simple macros they were tasked with.
The abstraction layer and concepts proposed by ETLang were generally well-received. One
aspect that testers appreciated was the ability to add a column to a table without the need
to specify all the existing columns of the table, as in a restructure operation. When asked
to keep only certain columns, some users instinctively wanted to delete the columns they did
not need, while others preferred to select the columns to retain. Although these syntactic
sugar operators were not implemented in the prototype, the language concept is open to their
inclusion.

When it comes to the editing experience, the computer scientists were the most critical
concerning projectional editing. They tried to write a full line of code without using the
completion system, therefore without constructing a valid AST incrementally. During the
interview, they expressed (U4) “I am used to being able to write code with errors and correct
them afterward instead of having to rewrite everything.”

Other testers initially struggled with navigation and deletion, but by the end of the session,
they expressed appreciation for the ease of editing provided by the templated approach, where
they only need to fill in the required information.

Even if users had the error once and then do not repeat it, empty lines between operators
should probably be allowed to reduce the first friction with the language, and maybe redesign

5.4 Discussion 45

how operators are linked together to make it more visible as discussed with the implicit
transform blocks.

Looking back at the functional characteristics of our quality model, it is evident that the
prototype is not yet suitable for production due to missing features. Nevertheless, we have
demonstrated the feasibility and extensibility of the language by incorporating a distinct
operator as an example. The generated code has been verified to be readable according to
our expert user, and correct with samples of ETLang code. Although the generated code may
not attain the level of efficiency achievable through manual coding, this is an anticipated
outcome resulting from the inclusion of abstractions. We identified areas where optimization
of code generation could be implemented.

Regarding the implementation of code generation, a template-based methodology was adopted
for this thesis assessing the language feasibility and viability. However, for a production
version, a more robust approach such as utilizing the MMT approach towards a C# AST
would be recommended, even if more complex. This would allow for validation of the C#

AST, and better support from MPS code generation aspect.

5.4 Discussion 46

Conclusion and Future Works 6
As we approach the conclusion of this study, it is time to reflect on what has been accomplished,
what has been learned throughout this work, and what could be done in the future to further
develop the current prototype. Additionally, it is an opportunity to propose other original
solutions that may be worth investigating.

6.1 Conclusion

Throughout this master’s thesis, we have embarked on a design journey that allowed us
to explore the creation of ETL user interfaces and address the needs of non-programming
users. It has been an intriguing design problem, as it involved more than just proposing a
potential solution, but rather engaging in the entire design process, having an important
creative part.

Our work adhered to several principles of user-centered product design in the realm of
human-computer interactions, which we discovered and studied at Aalto University. It was
through the design aspects, rather than technical considerations, that we learned the most and
experimented at various stages. This experience also provided an opportunity to delve deeper
into the field of ETL, building upon our previous integrated project related to e-learning
platform migration.1 A common point of both projects was to empower users to have control
over their data transformations, since full automation even if desirable was not possible.

While our previous project focused primarily on technical aspects, this master’s thesis ex-
plored the area of design. It was approached from a perspective that values design culture,
emphasizing the role of abduction or creative hypothesis, rather than the scientific culture of
objectivity and neutrality. However, it is important to note that working on a design project
individually does not naturally encourage documentation and the complementarity of ideas.
As with any design process, restarting the project would yield different results.

1I have worked, with my group of Integrated Project, on a proof of concept transferring and converting
Blackboard courses to Moodle.

47

47

Figure 6.1: Revamped Double Diamond Framework [@Nes18]

Let us revisit our initial objectives and assess our progress at this point. Our goals were
to facilitate the learning process of creating ETL processes and enable non-expert users to
create ETLs while reducing the time required for their development, regardless of the users’
programming expertise. We placed our focus on ETL processes targeting relational databases,
with data sources primarily consisting of CSV files and other similar formats managed by
ETL.NET as TextFiles.

Through retrospective analysis, we can examine the undertaken work using the double diamond
framework (also on Figure 6.1), which has been adapted to accommodate a preferred solution
in the form of a DSL:

1. The first stage involved investigating whether a DSL could serve as a solution to the
problem at hand, answering the question ‘are we doing the right thing ?’. During the
divergent research phase, we engaged in discussions with domain experts and researched
ETL processes, various types of programming interfaces, and related topics. Mind
mapping was employed as a means to structure our ideas during the convergent synthesis
phase. It would have been beneficial to document our findings more extensively for this
thesis. At the conclusion of this phase, we were able to define the objectives of our
project and identify the associated constraints with greater clarity. We discussed our

6.1 Conclusion 48

approach to the problem and potential solutions in the ”Related and Future Works”
section.

2. The second stage focused on ‘doing the DSL right’. During the ideation phase, we
created and evaluated several paper prototypes, following a similar approach employed
by Borum et al. [BNS21]. This two-phase design process, akin to the diverging and
converging stages of the diamond model, was discussed in detail in the design section
(see chapter 3). The two phases of Borum et al. do not serve the same goals, the first
is common to both methodologies, the second for Borum et al. is a final evaluation of
the construction prototype, which we also conducted in the previous chapter. For the
double diamond, the converging phase, or implementation phase, involves the actual
implementation of a functional prototype for ETLang, which was indeed done before
the final evaluation. The final evaluation phase allowed us to determine if the developed
prototype adequately met the requirements of users and other stakeholders.

At the end of the process, we think a projectional dsl with spreadsheets naming and conventions,
materialized by ETLang design and implementation, may be an answer to the objectives we
initially set.

However, for this solution to be effectively utilized, further implementation effort and refine-
ment with continuous user involvement would be necessary to make the language evolve with
its users.

Furthermore, we would recommend considering exploring alternative solutions, either as
complementary approaches or as potential alternatives to domain-specific languages.

Although further refinement and implementation efforts are necessary for the proposed DSL,
we hope this design research provides a foundation for investigating alternative solutions and
facilitating the ongoing evolution of the language in collaboration with its users.

6.2 Future Works

6.2.1 Improving the Prototype

To further enhance the prototype, several areas of focus can be identified:

6.2 Future Works 49

Addressing Identified Issues
During the evaluation, we identified several issues. Addressing them would be a first
step.

Expansion of ETLang Language Constructs
The prototype can be extended by introducing additional language constructs such as
more operators, diverse types, and expressions. These extensions would provide users
with a broader range of functionalities to express complex ETL macros. As we have
seen in the extensibility evaluation.

Refactoring
The concept interfaces within the language can be reorganized to improve the sharing
of behaviors and facilitate better node reference scoping. This restructuring would
enhance the maintainability of the language.

Feasibility Study of MPS on the Web
Exploring the feasibility of adopting MPS on the web would open up new possibilities
for accessibility and collaboration, allowing users to work with the language through a
web-based interface.

Automatic File Structure Deduction
Investigating the feasibility of automatically deducing file structures from example
files. Possibly implemented with MPS PasteHandler would streamline the process
of defining file structures in the language, enhancing user productivity and reducing
manual effort.

Standard Tables for Anonymous Types
Introducing standard tables, tables with predefined columns, validated by database-
related operations, would enhance reliability and reduce errors.

Optimize AST for Code Generation
We have identified opportunities to optimize the AST for code generation. For example,
we could merge multiple operations of adding columns and merge them into a single
restructure operation, leading to fewer operators in the generated code.

Code Generation with MMT to C# and ETL.NET

Exploring code generation capabilities using MMT to generate stub C# code and
ETL.NET code would provide users with more seamless integration with existing frame-
works and tools.

6.2 Future Works 50

Data Path Analysis
Performing data path analysis specifically focused on use operators, would enable users
to gain insights into data flow and dependencies within their ETL programs. This
analysis would enhance error messages and facilitate optimization.

Side Panel in MPS
Exploring the idea of adding a side panel within MPS that provides a preview of results
of the selected steps of the ETL process would potentially enhance user productivity
and facilitate real-time feedback during program development.

6.2.2 Other Research Directions

In addition to the presented enhancements to our existing prototype, our research has unveiled
several other research directions that we think merit exploration. It is crucial to emphasize
that these concepts have not undergone rigorous evaluation in terms of feasibility or their
potential to enhance usability. Therefore, they are presented solely as potential ideas for
future research.

Live-coding of ETL
Exploring methods to enhance interactivity and provide rapid feedback in the design of
ETL processes represents an interesting research direction. ETLs systems, including
ETLang, commonly involve a separation between the design and execution phases.
Investigating approaches to integrate these phases and facilitate faster user feedback
during the design phase would be a valuable endeavor.

One promising direction to explore is the concept of live coding for ETL, where users
can observe the program results in real-time as they modify their program. This
approach has been implemented in another context by Heyvaert et al. [Hey+16] and
is also possible with Enso (see Chapter 2), where users can view the data output
through interactive placed windows at choose stages of their programs. This live-coding
capability would represent an initial step towards enhancing the user experience in ETL
design.

Building upon this foundation, further possibilities arise, such as modifying program
behavior by directly manipulating the displayed results, such as Programming-by-
Example, which we will discuss next. Another approach would be to propose advanced

6.2 Future Works 51

aids for comprehending and constructing ETL programs, drawing on the vision of
Learnable Programming presented by Bret Victor [@Vic12].

However, several challenges must be addressed when implementing live coding for
ETLs. These challenges include visualizing the complexity of ETL processes, ensuring
good performance to provide real-time feedback, finding a balance between power and
simplicity to improve usability, and guaranteeing the safety of operations as it should
not have any side effects on data sources and destinations.

Programming-by-Example
Inspired by the success of the programming-by-example approach in data preparation
tools such as Wrangler, investigating how it could be transposed to ETL design would be
an interesting direction with an original user experience. This entails investigating how
users can modify sample data and generate ETL programs based on these modifications,
offering a unique and innovative user experience.

However, it is important to acknowledge the potential challenges associated with
this approach. One concern pertains to the time, and frustration due to repetitive
action, required to provide a sufficient number of examples to derive the desired action,
particularly in cases involving conditions. In some instances, the time invested in
providing an adequate number of examples may exceed the time required to describe
the desired action using an alternative interface, language, or menu-based system.

Despite these potential challenges, exploring the feasibility and effectiveness of incor-
porating programming-by-example into ETL design presents an intriguing avenue for
future research. It has the potential to offer users a more intuitive and efficient means
of creating ETL programs by leveraging their existing knowledge of the data.

6.2 Future Works 52

Glossary and Acronyms

Glossary

.NET .NET is a free, cross-platform, open-source developer platform for building many
different types of applications. iv, 1, 6, 22, 24, 53

ETLang ETL Language, working around Tables. iv, v, 11–15, 18–22, 24–35, 38, 39, 42, 43,
45, 46, 49–51, 58, 59

C# C# is a multi-paradigm programming language encompassing strong typing, imperative,
declarative, functional, generic, object-oriented (class-based), and component-oriented
programming disciplines. 5, 7, 8, 11–13, 16, 19, 22–24, 33–36, 44, 46, 50

F# F# is a functional programming language for .NET developed by Microsoft. 24

ETL.NET ETL library in .NET created by Stéphane Royer, sponsored and used by FundPro-
cess. 1–18, 22, 24, 33–39, 43, 44, 48, 50

FundProcess FundProcess � is a company that develops software for the financial industry,
they provided the subject for the work presented in this thesis. 1, 2, 4–7, 9, 14, 36, 38,
39, 53

MPS JetBrains MPS � , or Meta Programming System, is a language workbench that allows
to create projectional DSL. 23, 25–29, 32–34, 43, 46, 50

MPS Extensions “The MPS Extensions � aim to ease language development within MPS.”
They are maintained in open-source by itemis and JetBrains. 31, 33

53

53

https://www.fundprocess.lu
https://www.jetbrains.com/mps
https://jetbrains.github.io/MPS-extensions/

Acronyms

AST Abstract Syntax Tree. 11, 13, 22, 23, 25–27, 30–32, 34, 40, 42, 44–46, 50

BPMN Business process model and notation. 5

DSL Domain Specific Language. 2–5, 8, 9, 13, 22, 24, 25, 27, 32, 35, 37, 48, 49, 53

ETL Extract Transform Load. iv, 1–9, 11–13, 15–21, 24, 35, 36, 38, 39, 45, 47, 48, 50–53

IDE Integrated Development Environment. 3, 4, 26, 33

MMT Model-to-Model Transformation. 33, 46, 50

SSIS SQL Server Integration Services. 5

UMUX User Metrics Usability Experience. 37, 38, 58

Acronyms 54

Bibliography

[Bar17] Ankica Barišić. “Usability Evaluation of Domain-Specific Languages”. en. PhD thesis.
Universidade NOVA de Lisboa, Dec. 2017 (cit. on pp. 8, 37).

[Ber+16] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert, and Janet
Siegmund. “Efficiency of Projectional Editing: A Controlled Experiment”. In: Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. FSE 2016. Seattle, WA, USA: Association for Computing Machinery, 2016,
pp. 763–774. doi: 10.1145/2950290.2950315 � (cit. on pp. 24, 36).

[Bla00] A. Blackwell. “Dealing with New Cognitive Dimensions”. In: Workshop on Cognitive
Dimensions. University of Hertfordshire, Dec. 8, 2000. url: https://www.cl.cam.
ac.uk/~afb21/publications/CDWorkshop.pdf (visited on May 19, 2023) (cit. on
p. 35).

[BNS21] Holger Stadel Borum, Henning Niss, and Peter Sestoft. “On Designing Applied DSLs for
Non-Programming Experts in Evolving Domains”. en. In: 2021 ACM/IEEE 24th Inter-
national Conference on Model Driven Engineering Languages and Systems (MODELS).
IEEE, Oct. 2021, pp. 227–238. doi: 10.1109/MODELS50736.2021.00031 � (cit. on
pp. 8, 11, 36, 49).

[BS22] Holger Stadel Borum and Christoph Seidl. “Survey of established practices in the life cycle
of domain-specific languages”. en. In: Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems. Montreal Quebec Canada: ACM,
Oct. 2022, pp. 266–277. doi: 10.1145/3550355.3552413 � (cit. on p. 32).

[El 14] Zineb El Akkaoui. “A BPMN-based conceptual language for designing ETL processes”.
en. Publisher: Université libre de Bruxelles. PhD thesis. Université libre de Bruxelles, June
2014. url: http://hdl.handle.net/2013/ (visited on Apr. 4, 2023) (cit. on pp. 5,
7, 35, 36).

[El +12] Zineb El Akkaoui, José-Norberto Mazón, Alejandro Vaisman, and Esteban Zimányi.
“BPMN-Based Conceptual Modeling of ETL Processes”. en. In: Data Warehousing and
Knowledge Discovery. Ed. by Alfredo Cuzzocrea and Umeshwar Dayal. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 1–14. doi: 10.1007/978-3-
642-32584-7_1 � (cit. on p. 5).

[Erd+13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, et al. “The State of the Art
in Language Workbenches”. In: Software Language Engineering. Ed. by Martin Erwig,
Richard F. Paige, and Eric Van Wyk. Cham: Springer International Publishing, 2013,
pp. 197–217 (cit. on p. 23).

55

55

https://doi.org/10.1145/2950290.2950315
https://www.cl.cam.ac.uk/~afb21/publications/CDWorkshop.pdf
https://www.cl.cam.ac.uk/~afb21/publications/CDWorkshop.pdf
https://doi.org/10.1109/MODELS50736.2021.00031
https://doi.org/10.1145/3550355.3552413
http://hdl.handle.net/2013/
https://doi.org/10.1007/978-3-642-32584-7_1
https://doi.org/10.1007/978-3-642-32584-7_1

[Fin10] Kraig Finstad. “The Usability Metric for User Experience”. In: Interacting with Computers
22.5 (May 2010), pp. 323–327. doi: 10.1016/j.intcom.2010.04.004 � . eprint:
https://academic.oup.com/iwc/article-pdf/22/5/323/1992916/iwc22-

0323.pdf (cit. on p. 37).

[Gre89] Thomas R G Green. “Cognitive Dimensions of Notations”. In: Proceedings of the Fifth
Conference of the British Computer Society, Human-Computer Interaction Specialist
Group on People and Computers V. UK: Cambridge University Press, 1989, pp. 443–460.
url: https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.
270 (cit. on pp. 7, 35, 36).

[HN20] Mazhar Hameed and Felix Naumann. “Data Preparation: A Survey of Commercial Tools”.
In: SIGMOD Rec. 49.3 (Dec. 2020), pp. 18–29. doi: 10.1145/3444831.3444835 �

(cit. on p. 6).

[Hey+16] Pieter Heyvaert, Anastasia Dimou, Aron-Levi Herregodts, et al. “RMLEditor: A Graph-
Based Mapping Editor for Linked Data Mappings”. In: The Semantic Web. Latest Advances
and New Domains. Ed. by Harald Sack, Eva Blomqvist, Mathieu d’Aquin, et al. Cham:
Springer International Publishing, 2016, pp. 709–723. doi: 10.1007/978-3-319-34129-
3_43 � (cit. on p. 51).

[Kan+11] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. “Wrangler:
interactive visual specification of data transformation scripts”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (2011) (cit. on p. 6).

[Kle08] Anneke Kleppe. In: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. 1st ed. Addison-Wesley Professional, 2008. Chap. 6.3 How to Create
an Abstract Syntax Model (cit. on p. 8).

[Pol+21] Ildevana Poltronieri, Allan Christopher Pedroso, Avelino Francisco Zorzo, Maicon Bernardino,
and Marcia de Borba Campos. “Is Usability Evaluation of DSL Still a Trending Topic?”
In: Human-Computer Interaction. Theory, Methods and Tools. Ed. by Masaaki Kurosu.
Vol. 12762. Cham: Springer International Publishing, 2021, pp. 299–317. doi: 10.1007/
978-3-030-78462-1_23 � (cit. on pp. 35–37).

[Völ+16] Markus Völter, Tamás Szabó, Sascha Lisson, et al. “Efficient Development of Consistent
Projectional Editors Using Grammar Cells”. In: Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering. SLE 2016. Amsterdam,
Netherlands: Association for Computing Machinery, 2016, pp. 28–40. doi: 10.1145/
2997364.2997365 � (cit. on p. 24).

[Wau22] Julien Wauthoz. “Creation of a domain specific language for an Extract-Transform-Load
system”. MSc thesis. Université de Liège, June 26, 2022. url: https://matheo.uliege.
be/handle/2268.2/14583 (visited on Oct. 23, 2022) (cit. on pp. 4, 10, 15, 35).

[Wil06] Chauncey E. Wilson. “Triangulation: The Explicit Use of Multiple Methods, Measures,
and Approaches for Determining Core Issues in Product Development”. In: Interactions
13.6 (Nov. 2006), pp. 46–63. doi: 10.1145/1167948.1167980 � (cit. on p. 37).

Bibliography 56

https://doi.org/10.1016/j.intcom.2010.04.004
https://academic.oup.com/iwc/article-pdf/22/5/323/1992916/iwc22-0323.pdf
https://academic.oup.com/iwc/article-pdf/22/5/323/1992916/iwc22-0323.pdf
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.270
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.270
https://doi.org/10.1145/3444831.3444835
https://doi.org/10.1007/978-3-319-34129-3_43
https://doi.org/10.1007/978-3-319-34129-3_43
https://doi.org/10.1007/978-3-030-78462-1_23
https://doi.org/10.1007/978-3-030-78462-1_23
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/2997364.2997365
https://matheo.uliege.be/handle/2268.2/14583
https://matheo.uliege.be/handle/2268.2/14583
https://doi.org/10.1145/1167948.1167980

Webpages

[@Bor02] Alan Borning. CSE 341 – Evaluating Programming Languages. 2002. url: https://
courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-

languages.html (visited on Dec. 7, 2022) (cit. on pp. 35, 36).

[@Car+22] Phillip Carter, Michaël Hompus, OlegAlexander, et al. What is F#. Oct. 13, 2022. url:
https://learn.microsoft.com/en-gb/dotnet/fsharp/what-is-fsharp

(visited on May 16, 2023) (cit. on p. 24).

[@Gu+23] Grace Gu, Randolph West, Jason Roth, et al. SSIS Designer. Mar. 3, 2023. url: https:
//learn.microsoft.com/en-us/sql/integration-services/ssis-designer

(visited on May 16, 2023) (cit. on p. 5).

[@Koš21] Sergej Koščejev. Language design patterns: Inline definitions. June 7, 2021. url: https:
//specificlanguages.com/articles/patterns/inline-definitions/ (cit. on
p. 30).

[@Lor16] Hoa Loranger. The Negativity Bias in User Experience. Oct. 23, 2016. url: https:
//www.nngroup.com/articles/negativity-bias-ux/ (visited on June 5, 2023)
(cit. on p. 43).

[@Mic] Microsoft. Automate tasks with the Macro Recorder. url: https://support.microsoft.
com/en-us/office/automate-tasks-with-the-macro-recorder-974ef220-

f716-4e01-b015-3ea70e64937b (visited on Apr. 28, 2023) (cit. on p. 14).

[@Nes18] Dan Nessler. How to apply a design thinking, HCD, UX or any creative process from
scratch — Revised & New Version. Feb. 6, 2018. url: https://uxdesign.cc/how-to-
solve-problems-applying-a-uxdesign-designthinking-hcd-or-any-design-

process-from-scratch-v2-aa16e2dd550b (visited on May 22, 2023) (cit. on p. 48).

[@Par12] Terence Parr. Tree rewriting in ANTLR v4. Dec. 9, 2012. url: https://theantlrguy.
atlassian . net / wiki / spaces / ~admin / blog / 2012 / 12 / 08 / 524353 / Tree +

rewriting+in+ANTLR+v4 (cit. on p. 23).

[@Vic12] Bret Victor. Learnable Programming. Designing a programming system for understanding
programs. Sept. 2012. url: http://worrydream.com/LearnableProgramming/

(visited on June 7, 2023) (cit. on p. 52).

[@Völ21] Markus Völter. Deployment options for MPS. May 26, 2021. url: https://www.itemis.
com/en/it-services/methods-and-tools/dsls-mps-deployment-options

(visited on May 12, 2023) (cit. on p. 34).

Webpages 57

https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://learn.microsoft.com/en-gb/dotnet/fsharp/what-is-fsharp
https://learn.microsoft.com/en-us/sql/integration-services/ssis-designer
https://learn.microsoft.com/en-us/sql/integration-services/ssis-designer
https://specificlanguages.com/articles/patterns/inline-definitions/
https://specificlanguages.com/articles/patterns/inline-definitions/
https://www.nngroup.com/articles/negativity-bias-ux/
https://www.nngroup.com/articles/negativity-bias-ux/
https://support.microsoft.com/en-us/office/automate-tasks-with-the-macro-recorder-974ef220-f716-4e01-b015-3ea70e64937b
https://support.microsoft.com/en-us/office/automate-tasks-with-the-macro-recorder-974ef220-f716-4e01-b015-3ea70e64937b
https://support.microsoft.com/en-us/office/automate-tasks-with-the-macro-recorder-974ef220-f716-4e01-b015-3ea70e64937b
https://uxdesign.cc/how-to-solve-problems-applying-a-uxdesign-designthinking-hcd-or-any-design-process-from-scratch-v2-aa16e2dd550b
https://uxdesign.cc/how-to-solve-problems-applying-a-uxdesign-designthinking-hcd-or-any-design-process-from-scratch-v2-aa16e2dd550b
https://uxdesign.cc/how-to-solve-problems-applying-a-uxdesign-designthinking-hcd-or-any-design-process-from-scratch-v2-aa16e2dd550b
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
http://worrydream.com/LearnableProgramming/
https://www.itemis.com/en/it-services/methods-and-tools/dsls-mps-deployment-options
https://www.itemis.com/en/it-services/methods-and-tools/dsls-mps-deployment-options

Questionnaire A
The used questionnaire was written in French, here is a translation of the questions.

The 3 first questions were rated on a scale of 1 to 7 stars, 1 being the worst and 7 being the
best.

1. Could you evaluate the readability of ETLang’s language?

2. Could you evaluate the ease of learning of ETLang?

3. Could you evaluate the ease of editing of ETLang?

The second standard part was the UMUX, with scales of 1 to 7 going from strongly disagree
to strongly agree:

1. The capabilities of this prototype meet my requirements.

2. Using this prototype is a frustrating experience.

3. This prototype is easy to use.

4. I have to spend too much time correcting things with this prototype.

58

58

Getting started B
The tutorial was converted for conservation from the original documentation website of
ETLang. It is available at https://etlang.org/docs/getting-started/. Styling has
been adapted to fit LATEX typesetting. Videos have been replaced by reconstructed screenshots.
The styling of keyboard shortcuts and menu items has been adapted as well as the styling of
admonitions.

B.1 Getting started tutorial

In this tutorial, will see to create your first ETL process with Etlang, and we will go through
some essential language constructs. We assume you have a working IDE, you can get one
working with the installation � page.

B.1.1 Step 1: Create a new solution

First, we need to create a new project. Follow the same steps as in the video, or the textual
description.

Warning

Videos were done with a previous version of the language. Mutustru has been fully
rebranded to Etlang.

59

59

https://etlang.org/docs/getting-started/
https://etlang.gitlabpages.uliege.be/etlang/install/

Video B.1: Create a new project, first and last windows of the original video

Use the New project wizard, give it a name, and make sure to keep Solution project selected.

Once your new solution is created, you can create a model. Look at the Logical View

(left panel), with the right-click menu select New Model . A window opens, and in the
Used languages tab, add Etlang.

Info

Models declare which languages they use and hold a logical set of ETL processes also
called Macros.

From there, you can create a new Macro, which defines your ETL process. Right-click on
your model, and select New Macro . In the main windows, you can give your Macro a name,
for example, MyEtlMacro.

B.1.2 Step 2: Declare your file structure

Etlang is designed to handle tabular data, like CSV files, with a fixed number of columns.

A table for Etlang has a name, and a set of columns. Each column of a table has a unique
name and contains a predefined type of value, for example, number, text, date, etc.

Here is our example table, with 5 columns:

B.1 Getting started tutorial 60

Table B.1: My hello.csv table

firstname lastname age favouritColour likesBanana
John Doe 42 blue true
Jane Doe 42 red false
Alice Dreamer 36 green true

Let’s define it in Etlang, so that it knows how to read the CSV file. In your Macro, in the
central view, trigger the completion menu with Ctrl + Space then start to write file

structure and select it among the completions.

Video B.2: Declare a file structure. We see how the completion works, and the final result at this
stage.

A file structure is named and defines a table. Give a name for both, person for example.
Then in the table section, you will need to provide the columns of your table, as well as their
type.

The optionalFrom is used if you want to use a different name than the header in the CSV
file. In that case, use the name you want, and in optionalFrom put the exact header used
in the CSV file.

B.1.3 Step 3: Read the file

Now that we have declared our table, we can read the CSV file with the table structure
defined above.

B.1 Getting started tutorial 61

To read the file, we need to add a new instruction. After the file structure definition,
go to a new line, trigger the completion with Ctrl + Space , write and select read
structured file.

This operator needs a file path and a table structure. The file path should be a string thus
type " followed by the filename, for example, "people.csv". For the table structure, your
previously defined person should be proposed, by the completion.

1 read file from "hello.csv" with structure person

B.1.4 Step 4: Modify the table

Now that we have read the file, we can modify the table, for example, we can add a new
column, with the birth year of the person.

It should look like this:

1 add column birthyear ⟵ 2023 - #Person.age

To write it, go to the next line after the read from file operation, and trigger the
completion with Ctrl + Space . Select add column from the completion menu, then
write the name of the new column, and press Enter .

You have something like this:

1 add column birthyear ⟵

The only thing left is to give a value to the column. Write 2023 -, then you need to reference
the value of the previous table read from the file.

The previous table is given by #table (it will be displayed as #Person). Access a column
of the table, use a dot. In our case we want the age, thus write #Person.age.

B.1 Getting started tutorial 62

Analyse table columns

After some operators, you may lose track of which column is in the table.
To see the columns of a table, use the action Show type on an operator: Place your
cursor on the operation name, Ctrl + + p .
You will see the column birthyear has been added.

Figure B.1: Table type inspector

B.1.5 Step 5: Save the table

To save the table in our database, we need to have only columns: first name, last name, and
birth year.

We can add one more operator to keep only these 3 columns, by restructuring the table, with
the restructure operator. Restructuring a table is like replacing the table with a new one,
you will therefore need to provide a new table with the table expression (not #table, this is
to access the previous table).

Hereafter is a complete recap of what we have done with a video:

B.1 Getting started tutorial 63

Video B.3: The video shows the whole editing of the file from the file structure definition, instead
we propose the final result.

B.1 Getting started tutorial 64

B.1.6 Bonus Step 6: Defining symbols

The current year is a bit hardcoded into the expression, we could extract the value and define
an expression for later reuse.

To do that, go on a blank line before the initialize from file operator (to avoid cutting
the sequence of operation) and write a define expression statement. For example define
2023, with the name currentYear. Then in place of the 2023 while adding a column, use
the name of your expression, currentYear.

Why not cut the sequence of operation ?

You should keep the sequence of operations together without blank lines, or other
things than operators. Otherwise the reference to the previous table does not work as
there is no table produced on the line just above.

Success

We have written our first ETL process, and we have seen some essential language
constructs. You can go deeper by reading the language reference � .

B.1 Getting started tutorial 65

https://etlang.gitlabpages.uliege.be/etlang/language-reference/

B.1 Getting started tutorial 66

