
https://lib.uliege.be https://matheo.uliege.be

Human Motion Simulation Using Reinforcement Learning

Auteur : Adriaens, Jérôme

Promoteur(s) : Sacré, Pierre; Bruls, Olivier

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and

intelligent robotics"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17681

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University Of Liège
Faculty of Applied Sciences

Academic year 2022-2023

Human Motion Simulation
Using Reinforcement Learning

Author
Jérôme Adriaens

Supervisors
Prof. Dr.-Ing. Olivier Brüls
Prof. Dr.-Ing. Pierre Sacré

Jury
Prof. Dr.-Ing. Guillaume Drion
Prof. Dr.-Ing Cédric Schwartz

Master’s thesis completed in order to obtain the degree of Master of Science
in Electrical Engineering by Jérôme Adriaens

Professional focus: Signal Processing and Intelligent Robotics

Abstract

The simulation of realistic human motion is a critical aspect in several fields. Rang-
ing from character animations in video games to medical research, human motion sim-
ulation is involved in a lot of domains. In fact, replicating physiologically plausible
human motion is essential for creating realistic human motion. However, due to the
complexity of modeling a physiologically accurate model, being able to simulate a re-
alistic motion is very challenging. A common approach to tackle this kind of problem
includes reinforcement learning. Since reinforcement learning is very popular nowa-
days and showed to be quite successful on a bunch of tasks, this is the approach chosen
for this work. In particular, this thesis aims at controlling a physiologically plausible
model in order to make it move forward. This work is segmented into 3 parts. First,
the key concepts for this work are exposed in order to make the following as clear as
possible. Then, the main components of the reinforcement learning framework are cho-
sen through a comparative analysis of several sets of components. This concerns the
algorithm, the neural network architectures along with other training methods. Lastly,
a controller is to be trained to make a human model moves forward. The behavior of
the human model is then analyzed to assess its gait. This work brings insights into var-
ious elements that are important when using reinforcement learning to train an agent
to move forward. In particular, it provides a detailed method for training an agent as
well as a description of the main components. In addition, this controller succeeds to
make a musculo-skeletal model walk forward.

1

Acknowledgements
This master’s thesis was completed with the priceless support of many people, all of

whom I would like to express my sincere gratitude.

Firstly, I would like to thank both my supervisors, Oliver Brüls and Pierre Sacré for their
support and advice throughout the entire duration of the thesis. In particular, they really
helped me organize the thesis’ workload and define the methodology without discouraging
me at any time. For all of this, I am particularly grateful.

Then, during this thesis, some computations were performed thanks to the NIC5 cluster
of Liège University which computational resources have been provided by the Consortium
des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scien-
tifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.
Therefore, I would like to thank the NIC5 administrator: David Colignon whose help allowed
me to use the cluster for this thesis.

Finally, I would like to thank warmly my family and friends who supported me and
helped me during the entire thesis.

2

Contents

Introduction 5

I Key Theoretical Concepts 9

1 Key Reinforcement Learning Notions 9
1.1 General concepts . 9
1.2 Classical Approaches . 11
1.3 DDPG . 12
1.4 MBVE . 15

2 Definition of the RL Problem 17
2.1 Presentation of the environment . 17
2.2 State Space Description . 19
2.3 Action Space Description . 20
2.4 Reward function . 20

3 Bio-Mechanical Modeling 21
3.1 Muscle Model . 21
3.2 Contact Forces Model . 22

4 State of the Art Review 24

II Training Pipeline Design 26

5 Methodology 26
5.1 Main Steps . 26
5.2 Test Environments . 26
5.3 Comparison Procedure . 27
5.4 Transition Collection . 28

6 RL Algorithms 30
6.1 Numerical Training Parameters . 30
6.2 Simulation Results . 31
6.3 Discussion . 32

7 Network Architectures 36
7.1 Neural Networks . 36
7.2 Simulation Results . 37
7.3 Discussion . 38

3

Contents 4

8 Frame Skipping 40
8.1 Concept . 40
8.2 Results and Discussion . 40

III Training the Musculo-skeletal Agent 43

9 Training Procedure 43
9.1 Reward Shaping . 43
9.2 Pre-training . 44
9.3 Initial State . 45

10 Analysis of final controller 47
10.1 Performances . 47
10.2 Gait analysis . 47

11 Conclusion 61
11.1 Summary . 61
11.2 Fulfilments of Objectives . 61
11.3 Going Further . 62

Appendix 63

A Detailed Architectures 63

B Algorithms 66

C Tools 69

4

Problem Statement 5

Introduction
Problem Statement

Simulating physiologically plausible human motions is an essential aspect of creating re-
alistic and immersive environments. It involves modeling and replicating the movements of
humans in a way that closely mimics their natural patterns and behaviors as well as the
underlying mechanisms. By doing so, virtual environments can be designed to be more
reliable, which is particularly important in fields linked with biomechanical simulations or
virtual reality.

In particular, a wide range of applications involves human interactions and so requires
high degrees of reliability from those virtual environments. In order to create plausible human
motions, a lot of physics constraints must be respected while considering a muscle-actuated
body. Indeed, the dynamics of a human body have constraints and limitations enforced by
the human body, such as the range of motion in a joint or the torque developed by a joint.
These parameters are intrinsically linked with muscle characteristics and dynamics among
other aspects of biomechanics.

It is then important to be able to reproduce plausible human movements from a biome-
chanical perspective to develop many applications requiring human interactions in simulated
environments. For example, in the case of autonomous driving, it is clear that human-car
interactions are essential concerns. In such cases, real-life testing can be laborious because it
may rise security hazards if humans are involved, and using dummies might not reflect real
cases. Using simulated environments is a workaround. However, to be as close as possible to
real conditions for the human part, the motion control and simulation should be as plausible
as possible. Another example relates to the field of virtual reality gaming and entertain-
ment. Realistic human motion can help create a more immersive and engaging experience
for users. Simulating the movements of a character in a game using realistic human motion,
might enhance the sense of presence that players feel in the virtual environment, leading to
a more satisfying and enjoyable user experience.

Lastly, there are medical applications. In research particularly, by accurately simulating
human motion, researchers can study the mechanics of different motions and explore the ef-
fects of various factors on human performance and health. More precisely, a prior estimation
of the impact of some treatment might be provided by tuning parameters of some accurate
motion simulator. Doing so could reduce the quantity of ressourceful experimental data to
be recorded from a patient to perform such an analysis for example. In brief, the study of
the simulation of human movements is motivated by its broad range of applications ranging
from entertainment to medical research.

Actually, creating physiologically accurate movements requires a deep understanding of
human anatomy and biomechanics, as well as the ability to create algorithms and models
that can reproduce realistic motions. Achieving this level of realism is a challenging but

5

Objectives Description 6

critical step for all the applications described above, among many more. On top of that,
controlling realistically an accurate human model becomes very important. Using reliable
models, the task of performing a given motion is challenging and even more when the ob-
jective is to provide realistic movements and dynamics.

Presently, Reinforcement Learning (RL) and Neuro-inspired controllers are part of the
main approaches that are considered for controlling a reliable human model. The latter is
directly linked with the physiological phenomenons that occur within the Central Nervous
System (CNS). This approach aims at understanding the underlying neurological interac-
tions in the brain and nervous system that allows control of the human body.

On the other hand, the RL approach is becoming more and more popular these days
with the rise of artificial intelligence in many domains. It differs from the previous approach
because it tends to learn directly how to control the model in order to perform a certain set
of tasks.

Consequently, in some scenarios, the learned controller might miss the pattern and be-
havior of real human motion. Analyzing what leads to human-like motions when trying to
come up with trained controllers in a RL framework is thus critical. Therefore, this is the
approach chosen in this thesis. In particular, the 2-dimensional motion of a realistic body
will be studied to provide some insights on ways to develop simple controllers with deep RL.

Objectives Description
The main objective of this thesis is to develop a controller able to make a musculo-skeletal

model move. Using RL as the main block for developing the controller, this thesis is based
on 3 axes:

• Leveraging the computational cost of an accurate model

• Providing an accurate description of the method used

• Training and analyzing a controller

First of all, accurate simulators such as OpenSim are freely available and allow the study
of various cases. It comes at the expense of computational cost, especially in a reinforcement
learning method. Indeed, when considering a 3-dimensional environment with an incomplete
body, state-of-the-art controllers typically require hundreds of CPUs and several GPUs to
train neural networks effectively. Reducing the reliance on the simulator to obtain transi-
tions is directly associated with improving sample efficiency. By minimizing the need for
extensive simulation-based data generation, the learning process becomes more efficient and
resource-friendly. The first objective is thus to see how is it possible to reduce the need
for accurate simulators to leverage the computational cost of training a controller. This
will be tackled by exploring the possibility of using model-based RL methods to increase
sample efficiency. The extent to which a model can be used will be analyzed. In addition,
this thesis also aims to determine whether simple networks and methods can be effectively

6

Related Work 7

utilized to learn complex behavior while utilizing reasonable computational resources. In
this context, different neural networks and methodologies are explored to see which can be
employed to acquire specific behavioral patterns without requiring excessive computational
resources. Hence, it involves testing different network architectures and algorithms.

Another objective is to provide a full description of the methods used in order to facilitate
the reproducibility of the results presented and improvements of the network architectures
and RL algorithms used. Even if only classical algorithms and networks are used throughout
this work, it seems important to give a full insight into the methods employed. As such, the
training procedure and the parameters impacting the performances will be exposed.

Lastly, this work aims also to be able to train an agent to move. Then, an analysis of
the obtained results for the learned behavior will be conducted. Not only focusing on the
performance of an agent but also looking qualitatively at the behavior developed to compare
it with humans. The ultimate objective is to have an agent that exhibits a human-like gait
and to understand the underlying causes.

Related Work
One of the objectives of this study is to try to reduce the computational cost associated

with the training procedure. An essential aspect closely related to this objective is the inves-
tigation of sample efficiency, which remains a challenging topic in the field of reinforcement
learning. To address this challenge, a recent and innovative RL algorithm called Risk Averse
Value Expansion (RAVE) [1] has been introduced. This algorithm combines both model-
free and model-based RL approaches. Notably, RAVE employs learned models to estimate
the transition function of the environment, leading to improved sample efficiency. Within
the realm of RL algorithms that utilize an environmental model, two notable approaches
are Stochastic Ensemble Value Expansion (STEVE) [2] and Model-Based Value Expansion
(MBVE). These preceding algorithms serve as foundational pillars upon which RAVE builds,
incorporating their insights and techniques. By studying and comparing these various RL
algorithms, with a focus on sample efficiency and reducing computational costs, valuable in-
sights can be gained to develop more efficient and effective approaches to training RL models.

The study of motion is not only restricted to human motion and as such, some have
studied the capabilities of neural networks to adapt to morphological changes in the model
used [3]. The highlight is thus on the adaptability of the controller to changes in the config-
uration of the agent controlled, it showed that the underlying architecture of the controller
is quite an important factor to take into account. Some work focused also on the application
of deep learning for human motion simulation for various sets of tasks [4, 5]. In addition
to that, focusing on character animation, some research also studies human motion but the
emphasis is put on character animation [6].

Related to controllers, other more classical methods for optimal control are used to tackle
similar problems [7, 8]. Differing from RL methods, neurologically inspired controllers were

7

Related Work 8

developed to reproduce human motion in a variety of tasks [9]. This type of controller re-
quires nonetheless a certain amount of fine-tuning. In fact, it results from studying humans
and how the CNS operates the human body.

Similarly, Central Pattern Generator (CPG) are neural circuits that generate rhythmic
patterns of activity in organisms, including humans and animals. These circuits are often
found in the spinal cord or brainstem and are responsible for generating rhythmic movements
such as walking, swimming, or flying. In robotics, CPG based controllers are used in order
to generate oscillatory patterns for rhythmic motor behaviors such as walking. The study of
CPG has provided valuable insights into the generation of rhythmic patterns and locomotion
control, both in biological systems and the field of robotics. In fact, in the field of robotics,
CPG based controllers may be used as a building block in order to produce walking patterns
[10].

As a last related work, some work studied the range of joint torques and angles to
provide state-dependent limits on torques. So, optimization problems could be solved in the
torque actuation domain instead of the common muscle actuation domain [11]. In fact, they
transform an optimal control problem in the muscle actuation space to an equivalent one
in the torque actuation space. This methodology can be used for trajectory optimization
problems as well as policy learning using RL.

8

General concepts 9

Part I

Key Theoretical Concepts
1 Key Reinforcement Learning Notions

1.1 General concepts
Reinforcement Learning (RL) is a subfield of Machine Learning (ML) that focuses on how

an agent can learn to make decisions sequentially in an environment to maximize a notion
of cumulative reward. The RL formalization can be seen as an optimization problem that
aims at maximizing the total reward denoted J . In fact, the goal is to find an optimal policy
π∗ that maximizes J such that the problem to be solved is:

Jπ∗ = max
π

Jπ (1)

Moreover, RL involves an agent interacting with an environment and learning through
a trial-and-error process. The agent takes actions in the environment, receives feedback in
the form of rewards or penalties, and aims to learn an optimal policy (π∗) that guides its
decision-making process. The classical interaction scheme of the agent with the environment
is depicted in Figure 1. A key mathematical framework within RL is the definition of the
RL problem as a Markov Decision Process (MDP). Using this formalization, the following
objects can be defined:

a) State Space (S): A set of possible states that the environment can be in. The states
are denoted s such that s ∈ S.

b) Action Space (A): A set of possible actions that the agent can take. The actions are
denoted a such that a ∈ A.

c) Transition Probability (T): A function that defines the probability of transitioning from
one state to another when a particular action is taken. It is denoted as T (s, a, s′) and
represents the probability of transitioning from state s to state s′ after taking action
a in the environment.
Strictly speaking, it can be denoted as

T (s, a, s′) ≡ p(s′ | s, a) ∀s, s′ ∈ S , a ∈ A

This transition probability corresponds directly to the interaction with the environ-
ment.

d) Reward Function (r): A function that specifies the immediate reward the agent receives
upon transitioning from one state to another. It is denoted as r(s, a, s′) and represents
the reward obtained after taking action a in state s and transitioning to state s′.

9

General concepts 10

e) Discount Factor (γ): A value between 0 and 1 that determines the importance of
future rewards compared to immediate rewards. A higher discount factor values future
rewards more. This discount factor is essential for the convergence of some equations
when infinite time horizon problems are considered.

Figure 1: RL Environment Interaction

The deterministic policy that an agent follows is denoted π(s) such that:

π(s) : S 7→ A

In the more general case where π represents a conditional probability distribution, it is
denoted as :

a ∼ π(. | s) ∀s ∈ S , a ∈ A

For this problem, we want to consider an infinite time horizon problem, for this purpose,
the discount factor γ will be very useful. An important function to introduce for further
developments is the value function denoted Vπ(s). This represents the discounted cumulative
reward that is expected starting from state s and following policy π. In fact, in this case
for an infinite horizon, the value function V is preferred to J since the expression of V is
bounded if the reward is bounded. Indeed, by using the Bellman equation for the V function
we have that:

V (s) = r + γ ·
∑
s′∈S

P (s′ | s)V (s′)

Where P (s′ | s) represents the probability to transition from state s to state s′ thus with γ
between 0 and 1 the value function is bounded. By denoting Gt as the cumulative reward
starting at time t such that :

Gt =
∞∑

k=0
γk · rt+k+1

One can rewrite the value function as:

V (s) = E [Gt | st = s]

10

Classical Approaches 11

In order to show explicitly the policy in this formulation, the expected cumulative return of
such a policy for infinite time horizon problems can be stated as:

Vπ(s) = lim
T →∞

E
[

T∑
t=0

γt · rt+1 | at ∼ π(. | st), s0 = s

]

= lim
T →∞

E
[

T∑
t=0

γt · r(st, at, st+1) | at ∼ π(. | st), st+1 ∼ p(. | st, at), s0 = s

] (2)

Where s0 = s corresponds to the initial state at time-step t = 0. The optimization problem
that is to be solved can be summarized as:

Vπ∗(s) = max
π

Vπ(s)

And the objective is to find the optimal policy π∗ such that:

π∗(s) = arg max
π

Vπ(s)

In addition, a very important function is the Q-function, denoted as Q(s, a), which repre-
sents the expected discounted cumulative reward that an agent can achieve by taking action
a in state s, following a specific policy. It quantifies the desirability of taking a particular
action in a given state. The Bellman equation for the Q-function is defined as:

Q(s, a) = E
[
r + γ ·max

a′
Q(s′, a′)

]
Where r is the immediate reward obtained from taking action a in state s, a′ is the next

action to be taken in state s′, and maxa′ denotes selecting the action that maximizes the
Q-value in the next state s′. The Q-function is closely related to the value function through
the following relationship:

V (s) = max
a

Q(s, a)

Which states that the value of a state is equal to the maximum Q-value over all possible
actions in that state. By iteratively applying the Bellman equation for the value function or
the Q-function, RL algorithms can estimate these functions through value iteration, policy
iteration, or other iterative methods. These estimations then guide the agent’s decision-
making process to select actions that maximize the expected cumulative rewards in a given
environment.

Overall, the Bellman equation provides a key framework for understanding the interplay
between the value function and the Q-function, enabling the development of RL algorithms
that can effectively learn and optimize behavior in various environments.

1.2 Classical Approaches
There are many classical approaches to solving the previously described optimization

problem. Basically, there are model-free and model-based approaches. The model-based

11

DDPG 12

approaches can either be based on a given model of the environment or learn the model
such as Model Based Policy Optimization (MBPO) [12] or Model-Based Value Expansion
(MBVE) [13] algorithm that will be used.

In the category of model-free methods, there are direct policy optimization methods that
consist of learning directly the policy such as REINFORCE [14].

Another method is the Q-Learning approach, which consists of learning the Q-function
corresponding to an environment and then selecting the best action to perform in order to
maximize the Q-function on the actions. Such algorithms are often used with discrete action
space [15, 16].

Lastly, there are also actor-critic methods that are a mix of Q-learning and policy op-
timization. A well-known algorithm and the one that will be used in this work is Deep
Deterministic Policy Gradient [17]. This approach is mainly based on the Temporal Dif-
ference (TD) equation for updating the action-value function (Q-function) corresponding to
the critic network. The TD error for the critic network can be written as:

r + γ ·Q(s′, a′)︸ ︷︷ ︸
TD Target

−Q(s, a) (3)

Where r is the immediate reward for transitioning from state s to state s′ taking action
a and a′ is such that a′ ∼ π(. | s). The first term is called the TD target. In the following,
DDPG and MBVE are detailed in the context of this project.

1.3 DDPG
Deep Deterministic Policy Gradient (DDPG) is an algorithm that simultaneously learns

a Q-function and a policy. By utilizing off-policy data and the Bellman equation, it learns
the Q-function, which is then employed to learn the policy. The following mathematical
developments are inspired by [18]. The motivation behind this approach is similar to Q-
learning, as it is driven by the idea that if the optimal action-value function Q∗(s, a) is known,
then the optimal action given by the policy π∗(s) for any given state can be determined by
solving:

π∗(s) = arg max
a

Q∗(s, a)

DDPG employs a unique approach to handle environments with continuous action spaces
by interleaving the learning of an approximation to Q∗(s, a) and an approximation to π∗(s).
This adaptation specifically addresses the challenge posed by the computation of the max
over actions in maxa Q∗(s, a). In scenarios where the number of actions is finite and discrete,
evaluating the max is straightforward. Indeed, the Q-values for each action can be computed
individually and be directly compared, which also provides the action that maximizes the
Q-value.

However, in the case of continuous action spaces, evaluating the entire space is not
feasible, and solving the optimization problem becomes quite complex. Thus computing

12

DDPG 13

maxa Q∗(s, a) with conventional optimization methods would be excessively time-consuming.
Moreover, since this computation would be required every time the agent intends to take an
action in the environment.

Due to the continuous nature of the action space, the function Q∗(s, a) is assumed to
be differentiable with respect to the action. This enables the formulation of an efficient,
gradient-based learning rule for a policy π(s), which takes advantage of this characteristic.
Rather than executing an expensive optimization subroutine whenever maxa Q(s, a) needs
to be computed, it can be approximated as maxa Q(s, a) ≈ Q(s, π(s)).

For this method, 2 neural networks are needed: one for the Q-function Q(s, a) and one
for the function approximating maxa Q(s, a) that is denoted π(s). The parameters of the
neural network Q(s, a) will be denoted by ϕ such that Qϕ(s, a) is called the critic network.
For the neural network corresponding to π(s), the parameters of the network are denoted by
θ such that πθ(s) is called the actor network.

This algorithm is an off-policy algorithm. It means that the transitions can be collected
by a different policy than the one being trained. In particular, in this algorithm, the transi-
tions are collected and inserted into a replay buffer called D as this has proven to be efficient
[19]. The replay buffer D stores one-step transitions in the form (s, a, r, s′, d) where s is the
starting state, the action a, r the reward obtained by transition from s to s′ applying action
a, the next state s′, the terminal flag d. The terminal flag d is provided by the environment
and equals 1 if the state s′ is terminal 0 otherwise. A terminal state terminates an episode.

In order to train the critic network, the TD is a key equation. The equation (3) can be
adapted for this algorithm, thus the TD-target is thus:

r + γ · (1− d) ·Qϕ(s′, a′) (4)

However, to avoid using the same network to compute the target as the one being optimized.
A delayed version of each network is used in order to compute the target in equation (4). In
fact, 2 more networks are used with parameters ϕtar and θtar respectively for the critic and
the actor, these are called the target networks. These target parameters are updated during
the algorithm such that:

ϕtar ← (1− ρ) · ϕtar + ρ · ϕ
θtar ← (1− ρ) · θtar + ρ · θ

Where ρ corresponds to a delay parameter, usually close to 0. With all the above, the
definitions for the loss critic can be written as follows:

L(ϕ,D) = E
(s,a,r,s′,d)∼D

[(
Qϕ(s, a)− (r + γ(1− d)Qϕtar(s′, πθtar(s′))

)2
]

The objective is to minimize this loss called the mean-squared Bellman error. For the actor-
network, the objective is to maximize the following expression:

E
s∼D

[
Qϕ(s, πθ(s))

]
13

DDPG 14

The loss to minimize for the actor can thus be written:

L(θ,D) = − E
s∼D

[
Qϕ(s, πθ(s))

]
Finally, the main steps of the algorithm used in the case of this project can be found in
Algorithm 1.

14

MBVE 15

1.4 MBVE
Model-Based Value Expansion (MBVE) is a Reinforcement Learning (RL) approach that

combines model-based planning with value function approximation. The main idea behind
MBVE is to leverage a learned dynamics model of the environment to generate rollouts and
estimate value functions more efficiently.

In MBVE, an RL agent first learns a dynamics model denoted f̂ that predicts the next
state s′ and the reward r given the current state s and action a. This model is then used
to generate multiple rollouts starting from states collected by interacting with the environ-
ment. Each rollout consists of a sequence of states, actions, and rewards. Additionally, in
this context, the sequence is also composed of the terminal signal d produced by f̂ .

Using the generated rollouts, MBVE estimates the value function by considering the im-
mediate rewards and the expected values of the next states. By incorporating the learned
dynamics model, MBVE can propagate rewards more accurately and efficiently through the
rollouts.

MBVE employs a recursive value estimation process known as the TD-k trick in the
original paper [13]. It iteratively updates the value estimates for each generated state ŝ by
considering the immediate reward and the expected value of the next state.

Once the value function is estimated, MBVE can use it to improve the agent’s policy. By
selecting actions that maximize the estimated value as explained in previous sections, the
policy is refined to make more informed decisions. Additionally, MBVE includes a model
refinement step, where the dynamics model is updated using the collected transitions from
the environment. This helps improve the accuracy of the model and enhances the quality of
future rollouts and value estimates. Overall, MBVE combines model-based planning, value
function approximation, and bootstrapping to learn more efficient value estimates and im-
prove the RL agent’s policy. It offers a trade-off between exploration and exploitation by
leveraging the learned dynamics model to guide the agent’s decision-making process.

In fact, this algorithm is well suited to be used with actor-critic methods such as DDPG.
The TD target from (3) is changed within this algorithm. In the original paper, a few as-
sumptions are made for the method. It is assumed that the reward function is known and
that the learned dynamics model is accurate enough.

For the following, the dynamics model of the environment f̂ is assumed to take as input
the current state s and current action a and give as output a reward r̂, the next imagined
state ŝ′ and the terminal signal d̂ (representing the probability of being in a terminal state)
such that:

f̂ : S × A 7→ S × R× [0, 1]
While MBVE can be used on top of an actor-critic method, this method will build upon
DDPG. As such, an actor-network π and a critic network Q will be used. Parameters θ/θtar

15

MBVE 16

and ϕ/ϕtar are respectively used for the actor and the critic.

In order to compute the TD target, a rollout length of H is fixed and a replay buffer D
is considered to store transitions (s, a, r, s′, d) collected from the true environment. The first
step is to generate a rollout of length H using f̂ starting from a transition (s, a, r, s′, d) that
will be denoted:

τ0 = (s−1, a−1, r−1, s0, d−1)

Then for t ∈ [1, H], H transitions are imagined using f̂ such that: ŝt

r̂t−1

d̂t

 = f̂(ŝt−1, ât−1)

τt = (ŝt−1, ât−1, r̂t−1, ŝt, d̂t−1)

With ât−1 = πθtar(ŝt−1). The value Q̂k can be defined as follows:

Q̂k =
H−1∑
i=k

γi−k ·
i−1∏
j=k

(1− d̂j) · r̂i + γH−k ·
H−1∏
m=k

(1− d̂m) ·Qϕtar(ŝH , âH)

From this expression, the loss for the critic can be defined as:

L(ϕ, τ0:H) = 1
H + 1

H−1∑
k=−1

(
Qϕ(ŝk, âk)− Q̂k

)2

And by denoting the actor’s loss by:
L(θ, τ)

Having the same expression as for DDPG. One may also define L(ζ, τ) as the dynamics
model loss of f̂ with ζ the parameters of f̂ such that f̂ζ .

Finally, the main steps of the algorithm used in the context of this project are summarized
in algorithm 2. The version presented in this work is a bit different than the one presented
in the original paper because the terminal signal d needed to be used in the scope of this
project as well as a neural network for the dynamics model.

16

Presentation of the environment 17

2 Definition of the RL Problem

2.1 Presentation of the environment
The RL environment that will be used in this thesis originates from the Learn to Move -

Walk Around competition organized by the NeurIPS conference in 2019. The NeurIPS 2019
competition ”Learn to Move - Walk Around” focused on advancing locomotion control for
simulated characters using mathematical and computational techniques.

In the context of this competition, locomotion control is referring to the ability to con-
trol the actions of a musculo-skeletal model in a simulated environment. Participants in the
NeurIPS 2019 competition were challenged with the task of creating a locomotion controller
capable of following a target velocity map within the given OpenSim-RL simulation envi-
ronment [20]. This environment is built upon OpenSim [21]. The controllers were evaluated
based on their effectiveness in following these velocity targets and on effort minimization.
The form of the total reward used is as follows:

Jπ = Ralive + Rstep + Rtarget

Where Ralive corresponds to a bonus for not falling. Then Rstep is a term that gives a bonus
for making a step with minimum effort and following the target velocity. The last term
Rtarget is a bonus for reaching the target of the velocity field.

Concerning the control aspect, the controlled agent is a musculo-skeletal model from
OpenSim. More precisely, the control is directly performed on the activation of the different
muscles of the model. The controlled agent is depicted in Figure 2a. The model consists of
a 3D human musculo-skeletal model constituted by seven segments with joints accounting
for 8 internal Degrees of Freedom (DOF). The model is actuated by 22 muscles, 11 on each
leg.

The target velocity vectors to follow in the context of the competition can be found in
Figure 2b. There are 2 fields: a global one and a local one. The global represents the full
target velocities and corresponds to a 5m × 5m map. On the hand, the local one (or body
in the figure) corresponds to the local targets reporting to the agent’s body.

This competition serves as the starting point for this thesis. Since the environment de-
scribed above is quite complex and computationally costly, the environment will be simplified
for this work. The simplifications hold in 2 main components:

Firstly, the agent evolves now in a 2-dimensional environment and as such there is 1
internal DOF less per leg due to the absence of abduction in the hip. The second change
concerns the objective function of the environment, the objective will be only to move forward
as fast as possible. Next follows a more detailed description of this simplified environment.

17

Presentation of the environment 18

(a) Musculo-skeletal model of the
simulation environment (b) Target velocity vector field

Figure 2: NeurIPS Human Motion Problem

18

Action Space Description 19

2.2 State Space Description
The state space of the simplified environment corresponds to the body state of the agent.

The state space denoted S is such that S ⊆ R97. A state s is composed of 97 values describing
the body. Some of these values make sense only in the 3-dimensional environment but will
be part of a state anyway, for example, the abduction of the hip since the motion is planar.
In fact, these 97 are provided by the environment from OpenSim-RL. The first 9 values
describe the pelvis state. These are :

• Pelvis height [m]

• Pelvis pitch angle [rad]

• Pelvis roll angle [rad]

• Pelvis forward velocity [m s−1]

• Pelvis leftward velocity [m s−1]

• Pelvis upward velocity [m s−1]

• Pelvis pitch angular velocity [rad s−1]

• Pelvis roll angular velocity [rad s−1]

• Pelvis yaw angular velocity [rad s−1]

Then the state of each leg is successively described, for each leg there are 44 values.
These 44 values can be put into 3 categories: the ground reaction forces, the joint state,
and the muscles state. The ground reactions account for 3 values, one per direction, and are
normalized to the body weight of the model. The joint state is composed of 8 values:

• Hip abduction angle [rad] and angular velocity [rad s−1]

• Hip extension angle [rad] and angular velocity [rad s−1]

• Knee extension angle [rad] and angular velocity [rad s−1]

• Ankle plantar flexion angle [rad] and angular velocity [rad s−1]

Finally, for each muscle for each leg, there are 3 values:

• Muscle fiber force, normalized to maximum isometric force

• Muscle fiber length, normalized to the optimal length

• Muscle fiber velocity, normalized to optimal length per second

In total, there are 97 states. However, some of them are supposedly constant in a planar
motion but will be part nonetheless of the state.

Once the states are described, an important thing to notice is that a state s is completely
agnostic to time and also to its x − y position since only the height (z − axis) is given.
That means that if the agent is performing optimally close to the initial position it will also
perform optimally further away.

19

Reward function 20

2.3 Action Space Description
An important notion to describe is also the action space A. In this case, there are 22

muscles of which the agent controls directly the excitation levels of the model muscles. In
fact, A is such that A = [0, 1]22 and thus an action a is such that a ∈ [0, 1]22.

As said above, there are 11 muscles per leg and those are summarized in Table 1. The
muscles are also listed with their impact on the different joints.

Name Role
Hip Abductor (HAB) hip abductor
Hip Adductor (HAD) hip adductor
Hip Flexor (HFL) hip flexor
Glutei (GLU) hip extensor
Hamstrings (HAM) biarticular hip extensor and knee flexor
Rectus Femoris (RF) biarticular hip flexor and knee extensor
Vastii (VAS) knee extensor
Biceps Femoris, Short Head (BFSH) knee flexor
Gastrocnemius (GAS) biarticular knee flexor and ankle extensor
Soleus (SOL) ankle extensor
Tibialis Anterior (TA) ankle flexor

Table 1: List of Muscles

2.4 Reward function
The reward function of the simplified environment should be modified to cope with the

new objective i.e. to run as fast as possible. The reward function developed in this section
is an adaption of the one used within the competition. By calling r the reward at a given
time step, r is composed of 2 main components:

r = balive + bstep

The first term balive corresponds to a bonus for not falling such that:

balive =
{

0.1 if standing up
−100 if agent has fallen

In fact, the criterion to determine if the agent fell or not corresponds to the definition of a
terminal state. A state is terminal if the pelvis height is below 0.6m.

Then, the term bstep gives a bonus for moving forward fast and making steps with mini-
mum effort. This term equals 0 if no new footstep is made. Otherwise, bstep is composed of
3 terms:

bstep = bspeed + bnew step − pmuscle

20

Muscle Model 21

Denoting by i the ith time step corresponding to the last footstep and by j the jth time
step corresponding to the new footstep, ∆tij is the time between the two footsteps such that:

∆tij = (j − i) ·∆t

With ∆t the simulation time step.
Then bspeed is the average forward speed of the pelvis between time step i and j. The

bonus bnew step is such that:
bnew step = 10 ·∆ij

This form is used to avoid encouraging making very small steps. The last term pmuscle is
the penalty for muscle activation and aims at minimizing the effort. By noting Ak

m as the
activation level of muscle m at time step k and M as the set of all muscles of the model:

pmuscle =
j∑

k=i

∑
m∈M

(Ak
m)2 ·∆t

This time integration of the squared muscle activation tends to approximate muscle fatigue
and is often minimized in locomotion simulations [20].

3 Bio-Mechanical Modeling
Now that the state space S, action space A, and reward function are completely defined.

The type of model used for the musculo-skeletal agent is further detailed with the main
considerations.

3.1 Muscle Model
Since the control is done on the muscle excitation levels, it is important to understand

the underlying muscle model. For this environment, the well-known Hill-type muscle model
is used. The Hill-type muscle model used in OpenSim involves several important equations
to describe muscle behavior. Here are the key elements associated with the Hill-type muscle
model:

1. The Contractile Element (CE):
The contractile element models the capability of the muscle fibers to generate force
based on their length, velocity, and activation rate. This component is the active el-
ement of the model. It combines the force-length and force-velocity relationships to
compute the contractile element force (FCE). These 2 relationships are often repre-
sented in their normalized form such that the fiber length is normalized by its optimal
length, the force by the maximum isometric force, and the velocity by the maximum
contraction velocity. An example of such relations is shown in Figure 3 where the
active curve corresponds to this element for the force-length relationship.

21

Contact Forces Model 22

2. The Parallel Elastic Element (PEE):
The parallel elastic element is used for modeling the compliance or elasticity of the
muscle’s passive components that are in parallel with the contractile element. It ac-
counts for the elastic properties of muscle fibers and connective tissues. The force
exerted by the parallel elastic element (FP EE) is also a function of the muscle length
LM . Such a relationship is shown in Figure 3 corresponding to the passive curve.

3. The Series Elastic Element (SEE):
The series elastic element is for modeling basically the tendons and other passive
structures in series with the muscle fibers. They are the elements linking the contractile
element to the skeletal system in order to transmit the generated forces. The force
exerted by the series elastic element (FSEE) is a function of the tendon length LT .

While the activation levels matter for the CE, it is also important to know how OpenSim
computes the activation dynamics. In OpenSim, the activation dynamics of muscles are
commonly modeled using a first-order differential equation. This equation describes the
relationship between the time derivative of muscle activation a(t) and the muscle excitation
level u(t). Basically, the equation is:

ȧ(t) = u(t)− a(t)
τ(a(t), u(t))

Where τ(a(t), u(t)) is a variable time constant [22]. In practice, a bunch of parameters are
needed for the described dynamics, these muscles parameters are given within an .osim file
describing the OpenSim model. This model is provided in the original NeurIPS competition
environment. By combining these components, the muscle model in OpenSim provides a
comprehensive representation of muscle behavior, accounting for both contractile properties
and passive elasticity.

3.2 Contact Forces Model
Lastly, since a walking motion is simulated, it is crucial to use a model for the contact

forces between the body and the ground. This interaction between the ground and the model
feet is done with the help of contact spheres, 3 on each foot. This OpenSim model uses the
Hunt and Crossley contact force model. The Hunt and Crossley contact force model [23] is
often used to describe contact forces with dry friction in multibody dynamics simulations.

It includes both normal and tangential contact forces. It also takes into account the
energy being dissipated during impacts. Basically, a coefficient of restitution is a main com-
ponent of this model, this coefficient represents the ratio of relative velocities before and
after the impact of bodies that collides.

Once the muscle forces are computed [24] as the contact forces, the joint torques can be
computed and the state of the musculo-skeletal model updated. The way OpenSim computes
forward dynamics is detailed in the documentation [25].

22

Contact Forces Model 23

Figure 3: Schematic diagram of the Hill-type muscle model with Pennation Angle of the
muscle fibers (αM). Figure taken from [24].

23

State of the Art Review 24

4 State of the Art Review
State-of-the-art methods for addressing this problem include the top solution of the

NeurIPS competition. The first-place solution, Risk Averse Value Expansion (RAVE) [1],
drew inspiration from Model-Based Value Expansion (MBVE) and Stochastic Ensemble
Value Expansion (STEVE). The key idea behind RAVE was to leverage ensembles of stochas-
tic networks to enhance prediction quality. By incorporating uncertainty estimates into their
approach, they aimed to improve the robustness of their model’s predictions. The second-
place solution [26] also employed an ensemble of networks but adopted a modified version of
the TD3 algorithm [27]. They leveraged the ensemble approach to mitigate overfitting and
enhance the stability of the learning process. In contrast, the third-place solution [28] utilized
the Soft Actor-Critic (SAC) algorithm [29]. They employed a multivariate representation for
the reward, enabling them to learn multiple Q functions simultaneously. This approach al-
lowed for a more comprehensive exploration of the action space and improved policy learning.

All three solutions implemented a strategy of reshaping the original reward to facilitate
gradual task learning. The first and third-place solutions employed a technique known as
curriculum learning. They simplified the environment by initially teaching the agent to move
forward before gradually introducing the target velocity. This curriculum-based approach
aimed to facilitate a smoother learning process and accelerate convergence. By combining
elements from model-based methods, ensemble learning, curriculum learning, and reinforce-
ment learning algorithms, these top-performing solutions in the NeurIPS competition have
significantly advanced the field and demonstrated effective strategies for tackling the given
problem.

In addition, significant research efforts have been devoted to enhancing the original
MBVE algorithm employed in this project, as evidenced by the aforementioned solutions.
Several studies have proposed improvements to this approach by incorporating stochastic
networks [30]. These extensions aim to introduce randomness and uncertainty into the
model’s predictions, enabling better adaptability to complex and uncertain environments.

Regarding the network architecture for modeling the environment dynamics, various ap-
proaches have demonstrated remarkable success. Some methods [31, 32, 33] have achieved
notable results by leveraging deep reinforcement learning techniques to learn accurate and
effective dynamics models. By utilizing sophisticated neural network architectures, these
approaches have been able to capture intricate relationships and intricate dynamics within
the environment.

Furthermore, alternative methodologies have explored the use of memory-based con-
trollers. For instance, certain methods [34, 35, 3] have employed recurrent neural networks
(RNNs) to incorporate memory and temporal dependencies into the control process. By
leveraging the sequential nature of RNNs, these approaches have demonstrated enhanced
capabilities in learning and executing complex control policies that require memory and se-
quential decision-making.

24

State of the Art Review 25

These advancements in the field highlight the continuous efforts to refine and extend the
MBVE algorithm, improve the modeling of environment dynamics, and explore innovative
controller architectures. By incorporating these developments, researchers aim to tackle the
challenges posed by complex and dynamic real-world tasks more effectively.

25

Test Environments 26

Part II

Training Pipeline Design
5 Methodology

5.1 Main Steps
The design methodology is a crucial aspect of this thesis, as it outlines the systematic

approach employed to create and develop the final solution employed to address the initial
problem.

The design procedure is divided into three main steps:

1. The learning algorithm: two well-known algorithms namely Deep Deterministic Policy
Gradient (DDPG) and Model-Based Value Expansion (MBVE) will be compared and
discussed to choose the more suitable one for the OpenSim environment.

2. The networks architectures: three simple implementations of the different components
needed within a RL framework such as the actor and critic will also be studied.

3. The training procedure: this part aims at highlighting the impact of different param-
eters in the training procedure. Mainly, the impact of pre-training and curriculum
learning on performance. As this approach was used among the top solutions [36, 28]
of the NeurIPS competition. Also, the impact of frame skipping and reward shaping
is analyzed.

Throughout the analysis and comparison in each part, the choice is made to arbitrarily fix
all the other parameters and not to test and compare every combination of the three main
steps. This would be time-consuming in terms of computation time just to record all the
necessary data. On top of that, the idea is also to have an insight of what is the individual
impact and gains of the three different parts cited above. Hence, when comparing algo-
rithms, the network architectures are fixed such as the training procedure. Following the
idea to compare these different steps independently.

Lastly, all choices made in the different steps will be incorporated into the method that
will be used to train the complex agent inside the OpenSim environment.

5.2 Test Environments
Even if the main goal is to train an agent for controlling a musculo-skeletal model, the

choice of the different components is performed using much more simpler problems.
Since the environment of interest described in section 2 is computationally very heavy,

the different tests for choosing the design won’t be pursued in this environment but rather
in two well-known environments often used for benchmarking. These environments will be

26

Comparison Procedure 27

used only for design purposes.

These are the Inverted Pendulum problem and the Walker2D problem from the Gym
[37] python library that uses MuJoCo [38] which is a physics engine. These libraries are very
popular and are used notably in robotics and biomechanics.

These 2 environments will be only used for choosing the learning algorithm and the
network architectures. Also, for the training procedure, only the frame-skipping part will be
done in these 2 environments. The reason for that is that the pre-training and curriculum
learning makes sense only for the initial OpenSim environment. The two above-mentioned
environments are depicted in Figure 4.

(a) Inverted Pendulum (b) Walker2D

Figure 4: MuJoCo Environments

The inverted pendulum environment is mainly used to debug and test the different im-
plementations. However, it will be used also in the discussion for the choice of the different
components. In addition, the Walker2D environment is chosen because it is quite similar
to the initial RL environment of interest. Indeed, it is composed of a torso, 2 legs, and 2
feet. It has in total 9 DOF just like the simplified OpenSim model. However, the states are
different and the controller acts directly on the individual torque of each joint and no control
on any muscle is present. Thus this environment can be seen as a highly simplified version
of the initial problem but cannot replace the initial environment for the considered problem
without further caution.

5.3 Comparison Procedure
The last important aspect of the design procedure is now to define explicitly what will

be the criteria to differentiate the multiple approaches.
Firstly, as the main criterion, the direct performance of the learned policy π will be eval-
uated in the corresponding environment to obtain a measure of how well it is performing
in the environment. The goal is to optimize the cumulative reward, this is the measure of

27

Transition Collection 28

performance that will be used in this context.

Furthermore, the training duration will be considered, taking into account the time re-
quired for training. As one of the objectives of the thesis is to minimize computational
expenses, the training time holds significant importance. Although the explicit computa-
tion time depends on the machine and set-up on which the different methods are run when
comparing methods, the consistent use of the same machine allows for a meaningful com-
parison of computation times. In particular, the focus will be on comparing the training
time required to achieve good performance across the methods. One could want to compare
the quality of the estimated Q-Values but the problem is that it is quite complicated to
collect the necessary data to provide a thoughtful analysis. If the agent performs well in the
environment, it might suggest that the Q-Values are estimated correctly. Thus, it is assumed
the performance will be enough as a criterion for the comparison.

Following the idea of being efficient in terms of computation, the inference time is also
to be considered. The inference time is included in the training time as there are forward
passes through the different networks. However, the inference time is important to have an
idea of the computation cost of the trained controller when exploiting it.

The comparison criteria being defined, the next sections will focus on the use of these
criteria to choose the best methods to apply to the initial environment.

5.4 Transition Collection
Since the environment that will be used is expensive in terms of computation, the pro-

cedure to collect the data is adapted. In the implementation, multiple environments run in
parallel to collect each a certain number of transitions. These transitions are then gathered
and added to a replay buffer. Then, one epoch of training is performed and the updated
policy is sent back to the multiple environments in parallel to collect again a set of transitions.

Focusing on the replay buffer, the idea is to store all the transitions in a buffer. During
training, batches of transitions are sampled from this buffer (with replacement) and these
batches are used in the training algorithm. Such an approach has been shown to improve the
training process [19]. The underlying idea is to consume a transition more than one single
time. This method can be safely used with the learning algorithms that will be utilized since
these algorithms are off-policy methods. This means that the current policy being trained
can use transitions generated by another policy.

For the collection of the data, an additional method is used to tackle the problem of
exploitation versus exploration trade-off. The famous ϵ-greedy algorithm [15] is implemented
with a small variation. The original ϵ-greedy takes with a probability ϵ a random action
from a uniform distribution. In this work, the random action taken with probability ϵ is not
sampled from a uniform distribution anymore. Instead, a noise is added to the original action
a and this noise is sampled from a normal distribution. As such the exploration method is

28

Transition Collection 29

as follows:

a =
πθ(s) with probability 1− ϵ

clip(πθ(s) + n, 0, 1) with probability ϵ

Where a is the final taken action, πθ is the policy with parameter θ and and n is such that:

n ∼ N (0, σ2)

In the context of this project, σ is chosen to be equal to 0.1 and ϵ to 0.2. Also, the clip
function clamps the value to be within 0 and 1.

The motivation behind this variation of the ϵ-greedy method is that a completely random
action is much more likely to yield a bad combination of the muscles’ activation. In addition,
the activation of a muscle is between 0 and 1, as such sampling uniformly an action from
this interval leads to an expectancy of 0.5. Then, it means activating each muscle at 50% on
average which is much more likely not to lead to gait-like motion. So, the idea is to explore
actions near the ones that are chosen by the policy π.

29

Numerical Training Parameters 30

6 RL Algorithms
The first design step is to choose which algorithms will be used to train the agent in the

complex environment. As explained before, there are 2 algorithms to be considered:

• Model-Based Value Expansion (MBVE)

• Deep Deterministic Policy Gradient (DDPG)

The usage of the model-free approach (DDPG) is a state-of-art algorithm when it comes
to RL. It is expected to have a reduced sample efficiency compared to MBVE but doesn’t
need the use of a model nor to learn a model. On the other hand, the MBVE algorithm is a
hybrid approach and requires the use of a model of the environment. In this case, the model
is to be learned during the training process and the model of the environment corresponds
to a neural network.

6.1 Numerical Training Parameters
Since this part focuses on comparing 2 algorithms, the neural networks used and the

training parameters have to be fixed.
For both algorithms there are an actor and a critic network as described in the DDPG

algorithm in section 1.3. Additionally, for the model-based approach, there is another neural
network that corresponds to the model of the environment as described in section 1.4. These
networks can be denoted as :

Actor→ πθ(s)
Critic→ Qϕ(s, a)

Environment Model→ fζ(s, a)

Where ϕ, θ, and ζ represent the parameters of the different neural networks. Both the
actor and the critic have an architecture corresponding to the variant Multi-Layer Percep-
tron (MLP) architecture that will be described more thoroughly in section 7.

For the model fζ , the same base blocks are used but combined in a parallel way. The
estimated next state s′, estimated done state d, and the estimated reward r are computed
in completely parallel blocks. They correspond to 3 distinct neural networks in parallel.

Now that the network architectures are fixed, the training procedure and parameters need
to be fixed as well. The main parameters are summarized in Table 2 and they are chosen
from common values used. The optimizer used to update the different networks is the Adam
optimizer [39] which is also a classical choice to optimize the neural networks. The rollout
length is only used for the model-based approach as described in the MBVE algorithm. It
is not used for DDPG.

Concerning the frame skipping that is applied for both algorithms in both environments:
The number of frames skipped is the same for the 2 environments. However, the simulation

30

Simulation Results 31

Name Symbol Value
Discount Factor γ 0.99
Learning Rate α 1e− 4
Soft Update Factor τ 1e− 3
Frame Skipping - 10
Number of Epochs - 1000
Updates per Epoch - 256
Rollout Length - 3

Table 2: Training Parameters

time-step ∆t is different for the inverted pendulum and the walker:

Inverted Pendulum → ∆t = 0.02s
Walker2D → ∆t = 0.002s

So the resulting equivalent simulation time-step is different in both environments. The in-
depth analysis of frame skipping is done in section 8 and gives more information on frame
skipping.

6.2 Simulation Results
The results are presented in a way to show the evolution of the performance of the agent

in the environment throughout the learning process. The parameters of the neural networks
are recorded every 10 epochs. For every recorded neural network, the performance on 20
runs is used to compute a mean and standard deviation to show the performance. The re-
sulting performance for the pendulum environment is shown in Figure 5a and for the walker
environment in Figure 5b.

Interestingly, the DDPG algorithm seems to outperform the MBVE algorithm in terms
of performance for both environments. The model-based approach seems to never find a
good policy to follow. On the contrary, the model-free approach seems to learn something
as its performance gets better at some point. Looking at Figure 5a, DDPG has maximum
performance on the pendulum environment since in this configuration the maximum cumu-
lative reward possible is 100.

For the walker (Figure 5b), DDPG is also clearly better, the difference being that the
agent can still learn after 1000 epochs but it is sufficient to compare both algorithms. In-
deed, although the performance of the model-free approach seems to fluctuate, it is way
better than the model-based one.

In terms of computational cost, the time needed to train for 1000 epochs is reported for
both methods for both environments in Table 3. The format is hh:mm:ss for the times. From
the training times, it is clear that the MBVE takes more time to train than DDPG for the

31

Discussion 32

MBVE DDPG
Pendulum 6:20:56 3:12:13
Walker 14:37:43 2:19:48

Table 3: Training Times

same number of epochs. The inference time is not considered in this section as this will be
the same for both algorithms since the neural networks are the same in both cases.

6.3 Discussion
The results presented previously tends to show that the DDPG algorithm is better than

the MBVE. However, it should be the contrary if one refers to this paper [13] introducing
the MBVE algorithm. The problem is that in this context, the model that is learned from
the environment is not good enough to allow for the algorithm to be efficient. To confirm
this intuition, the graphs in Figure 6 show the different errors for the 3 estimated quantities.
In Figure 6a, the relative error of the estimated reward r̂ and the estimated next state ŝ′ are
shown. The relative error is computed as such:

e =
∥∥∥∥∥x − x̂

x + ϵ

∥∥∥∥∥
Where e is the relative error, x is the true quantity and ϵ is a constant equal to 1e − 5

for numerical stability.

It is clear that the model of the environment is not accurate for the states especially since
the relative error climbs up high sometimes. The order of magnitude between the predicted
and the true state is quite important and that leads to poor performance. On the other
hand, the reward is approximated quite correctly since the error is very low. Focusing on
the done state, the error is defined differently as the estimated done state d̂ represents the
probability of being in a terminal state. The binary cross entropy loss is used as an error
measure such that:

ebce = − (x · log x̂ + (1− x) · log(1− x̂))

Where ebce is the binary cross entropy. The limit cases when x→ 0 or x→ 1 are taken care
of and the error is clamped at 100.

In Figure 6b, the cross entropy of the estimated done state with the true done state is
represented. Again, it struggles to classify between terminal states and non-terminal states
which leads to the failure of the algorithm. Due to lack of time, the cause for the poor per-
formance of the model is not analyzed in depth but is most likely due to the way the model
is trained since the model to approximate, in the case of the pendulum, is quite simple:
only 4 state values to estimate, a simple reward function (= 1 if alive), and a simple defi-
nition of a terminal state (terminal if deviation angle from vertical is greater than a constant).

32

Discussion 33

The objective of using a model-based method to increase the sample efficiency is thus
compromised since the use of a model itself impairs the learning process. To conclude this
part, the choice is made to use DDPG in the following since it is faster epoch-wise and does
not rely on the quality of a model which could lead to bad performance if not accurate.

33

Discussion 34

(a) Inverted Pendulum

(b) Walker2D

Figure 5: Cumulative Reward

34

Discussion 35

(a) State and Reward relative error

(b) Cross Entropy error of done state

Figure 6: Model Error

35

Neural Networks 36

7 Network Architectures
The next step is now to choose an architecture for the neural networks that will be used

for the actor and critic networks. Since the DDPG has been chosen previously as the training
algorithm for the following steps, there are only these two networks.

The same structure will be applied for both actor and critic networks, this is an arbi-
trary choice and one could test multiple combinations of architectures for the actor and
critic respectively. In this work, there are only 3 architectures that are investigated. These
architectures will be tested on both test environments and the architectures will be nearly
identical for the critic and actor on a single test. The criterion for the comparison will be the
same as the previous section. The only difference is that in this case, the inference time of
the actor will be considered as it will represent the computational cost to run the controller
if one wanted to use it in a running environment.

The training parameters that will be used are the same as for the comparison of the
algorithms specified in Table 2.

7.1 Neural Networks
The main ideas of the architecture are developed hereafter. There are 3 architectures:

• Multi-Layer Perceptron (MLP)

• Variant Multi-Layer Perceptron (MLP)

• Self-Attention

Firstly, the MLP architecture is one the most basic neural network architectures and
is just composed of multiple sequential linear layers with activation functions in-between
layers. The architecture implemented in this context is just a sequential combination of a
linear layer and an activation function. The representation of this architecture can be found
in Figure 16. The activation function is chosen to be the ReLU function which is a common
choice for the activation function. It is defined as:

ReLU(x) = max(x, 0)

Actually, this type of architecture was used by the top solution of the NeurIPS competi-
tion [36]. This network represents a very naive network without taking any other consider-
ations into account.

Secondly, the next architecture is a variant of the first which differs from the addition of
small features. A form of residual connection is added to the network by concatenating the
input of a block with its output. This idea was used by [28] and has shown its interest in
deep neural networks[40]. Then a normalization layer is added at the entry of each residual
block. More specifically, batch normalization is used as described here [41] and it is common
practice to use this kind of layer in neural networks. A dropout layer [42] is also added before

36

Discussion 37

every activation function because it is also good practice and helps to increase the robust-
ness of the network. It might however increase the training time needed. A representation of
the architecture of this network is depicted in Figure 17 alongside with the different blocks
involved.

The last architecture that will be tested is inspired by the recent success of transformers
and more particularly attention layers [43]. Actually, the idea of incorporating transformer
architecture inside RL framework has already been studied [44, 45, 46]. In this work, only
self-attention layers will be used. This architecture consists of multiple blocks assembled
sequentially. Each block consists of a multi-head self-attention layer followed by a linear
layer and a residual connection is added to the whole block. Dropout and layer normalization
are also incorporated. This implementation is inspired by an architecture presented in the
context of the INFO8010 course given by Professor Gilles Louppe at the ULiège University
[47]. The representation of the self-attention architecture is found in the Appendix in Figure
18. Lastly, all actor networks have a scaled version of a hyperbolic tangent activation function
in order to project the action in the range of the different environments.

7.2 Simulation Results
The different results on both environments are shown in Figure 7. The first thing to

notice is that for the pendulum environment, all networks find a policy that maximizes the
reward as can be seen in Figure 7a. However, the MLP seems not to be very stable in its
training in the sense that its performance sometimes drops greatly. A similar observation
can be made for the self-attention network even if it is a bit more stable than the MLP. On
the other hand, the variant MLP seems to be more stable than the two other networks in
this case.

Then, when looking at the performances of the networks on the walker environment in
Figure 7b, it is quite obvious that the variant MLP has the best performances among all
tested networks. The MLP never performs greatly, it seems to never learn something useful.
The self-attention network seems to have learned something at the start but then its perfor-
mance decreases without improving again. There is a small plateau between the 300th and
350th epochs. This plateau is a case where the agent has learned not to fall and so the agent
stabilizes itself but does not move forward therefore its cumulative reward is bounded by
1000. The variant MLP has the best performances in general even if the standard deviation
is also higher. However, the agent has learned not only to stand without falling but at some
point, it can move a bit forward.

The next thing to look at is the training time needed for the different architectures.
These training times are shown in Table 4. From this table, it can be seen that the MLP
is the fastest to train followed by the variant MLP and the most time-consuming is the
self-attention network. Then, the same order is observed when comparing the inference time
for the 3 networks.

37

Discussion 38

MLP Variant MLP Self-Attention
Pendulum 01:40:00 02:20:00 04:20:00
Walker 02:15:00 03:30:00 05:10:00

Table 4: Training Times

7.3 Discussion
From the results explained previously, the choice of network is quite clear. Indeed, the

variant MLP will be used in the next steps since it’s the best compromise between perfor-
mances and computational cost. It is the best network in terms of performance. The fact
that the variant MLP is better than the MLP could be explained by the fact that it incor-
porates common good practice in terms of architecture and thus is better than the simple
and naive version.

On the other hand, the reason for the self-attention to perform poorly compared to the
variant MLP cannot be explained straightforwardly. It might be that such an architecture
isn’t appropriate in this context for the different functions it needs to approximate.

38

Discussion 39

(a) Inverted Pendulum

(b) Walker2D

Figure 7: Cumulative Reward

39

Results and Discussion 40

8 Frame Skipping
The last experiment to conduct on the 2 test environments is the effect of frame skipping.

For this part, the algorithm is fixed to be DDPG and the architecture used is the variant
MLP. Except for the frame skipping all the other parameters are identical to the ones
specified in Table 2.

8.1 Concept
First of all, the idea of frame skipping is to make an agent apply the same action over a

specified amount of time steps. For example, denoting by fs the numbers of skipped frames,
an action a is taken by the policy π every fs time steps in the environment. It is such that:

at =
π(st) if t mod fs = 0

at−[t mod fs] Otherwise

Where at represents the action at time step t, st is the state at time step t and mod is
the modulo operator. In fact, this technique has shown its effectiveness for performing in
Atari games [48] and even in other environments [49]. The underlying idea is to force the
agent to act the same for a longer period of time. In a way, the actions that the agent takes
have a higher impact when it comes to the interaction with the environment.

Alternatively, it can be interpreted as if the number of possible sequences of action is
reduced. For a finite number of time steps, the total number of actions to be taken is lower
when performing frame skipping. Hence, it may be easier to find a sequence of actions
leading to a good reward.

8.2 Results and Discussion
The performance for comparing the impact of frame skipping can be found in Figure 8.

An important thing to notice is that the scale of the cumulative reward is different. Indeed,
for the test environments, the reward obtained time step by time step is not scaled according
to the frame skipping. So if there is a frame skipping of 10 frames, the agent will collect
a reward 10 times less than in an environment without frame skipping for the same total
duration time of an episode. In order to provide comparable curves, the rewards are scaled
accordingly to the frame-skipping factor. In that way the cumulative rewards for both ap-
proaches are comparable.

Starting by looking at Figure 8a, it can be seen that frame skipping helps to learn faster
and more robustly. Indeed, once the agent has learned to perform optimally, the perfor-
mances are quite stable. On the other hand, the agent that didn’t use frame skipping took
more epochs to achieve the best performances. However, these performances are not stable
as can be seen in the figure. There are huge drops in performance at some epochs.

For the walker environment, the performances are shown in Figure 8b. In this environ-
ment, the benefit of using frame skipping is even clearer, without frame skipping it seems

40

Results and Discussion 41

that the agent never learns to perform correctly in the environment since the performances
are very low. When using frame skipping, the agent performs way better even though the
performances are fluctuating.

These results confirm the intuition that frame skipping helps in the process of learning.
As discussed earlier, the number of sequences of actions is reduced when performing frame
skipping and thus it might be easier to find a good sequence of actions.

Concerning the training times, they are quite similar as shown in Table 5. Using a frame
skipping of 10 takes a little longer than without any frame skipping. However, the differ-
ence in performances between the two approaches clearly makes us choose to go with the
approach of using frame skipping. It is expected that using frame skipping may extend the
training time since the simulation time steps are also greater so the environment simulates
for a longer time at each time step when using frame skipping.

In conclusion, considering the initial environment in this work, frame skipping emerges
as a favorable choice due to its greater performance in test environments.

Frame Skipping No Frame Skipping
Pendulum 02:20:00 02:05:17
Walker 03:30:00 03:11:07

Table 5: Training Times

41

Results and Discussion 42

(a) Inverted Pendulum

(b) Walker2D

Figure 8: Cumulative Reward

42

Reward Shaping 43

Part III

Training the Musculo-skeletal Agent
9 Training Procedure

In the previous part, a short analysis was done to choose which algorithm and networks
were to be used for training the initial agent in the physiologically accurate environment.

The algorithm that will be used for training is DDPG as it performed better than MBVE
and does not rely on the quality of a learned model of the environment. Next, the archi-
tecture chosen will be the variant MLP as it leads to the best performances on the test
environments with reasonable training times. The exact parameter for the structure of the
network can be found in Table 6 following the architecture in Figure 17. Lastly, use of frame
skipping within learning will be used as it was demonstrated to be very effective in the 2
test environments. So this was a summary of the choices made so far for the training of the
musculo-skeletal agent.

This part will only focus on the musculo-skeletal agent and the final adjustments to the
method developed throughout this thesis. As a first adjustment, the initial reward function
of the environment has been modified during this work and a small discussion about the
shape of the reward will also be present in the following. Then, the idea is also to assess the
impact of pre-training the agent to imitate another controller. Thus, a comparison between
learning from scratch and a pre-trained agent will be conducted.

Finally, the results of the training process will be analyzed in terms of performances over
time as well as the quality of the gait and motion developed by the agent.

9.1 Reward Shaping
Shaping a reward in a RL framework is something really important and might be difficult

[50]. In fact, an ill-shaped reward can lead to undesired behavior in a given environment.
The policy could act optimally in concordance with the reward function but still not behave
as it is intended to [51]. A badly shaped reward could also lead a policy to be stuck in a
local minimum.

For this problem, the original reward function is the one specified in section 2. A few
attempts of modifications were performed to make the agent learn faster. A first attempt
was to add a bonus for swinging the legs. Denoting θ̇r the angular velocity of the right hip
joint and θ̇l the angular velocity of the left hip joint, the term in the reward rswing was as
follows:

rswing = ws · ∥θ̇r − θ̇l∥

The idea was to encourage the agent to swing its legs in opposite directions and so to make
it walk. However, observing some intermediate results, showed that the agent had learned

43

Initial State 44

to throw one of its legs into the air which is not a desired behavior. This idea was thus
abandoned.

Then, another idea was to penalize the agent if the height of its pelvis was too low. The
threshold is chosen to be 0.8m since 0.6m corresponds to the threshold for a terminal state
as described previously. Basically, the idea was to encourage the agent to keep its pelvis
above the terminal threshold. However, it was observed that sometimes the agent chose to
terminate the episode as fast as it could when its pelvis was below 0.8m. In fact, this was
because the agent would have less penalty by terminating the episode fast than staying with
a pelvis height between 0.6 and 0.8m.

Hence, this penalty was a bit modified in order to only give a large penalty when the
agent is in a terminal state as described in section 2. So that the penalty is equal to −100
when the pelvis height is lower than 0.6m. Finally, the form of the reward function consists
of multiple terms that are detailed in section 2.4.

9.2 Pre-training
Pre-training in Reinforcement Learning (RL) refers to the process of training an agent

on a related task or a large dataset before fine-tuning it on the specific target task. This
approach has proven to be effective for some complex tasks [52].

In particular, for this project, a tool available is a controller adapted from this paper [9].
The controller is neuro-inspired but the version provided only works for particular initial
conditions. It is however able to provide a dataset of a walking agent.

The inspiration for using such an approach comes from the top solutions of the NeurIPS
competition [36, 28] where they used curriculum learning in the training procedure. Cur-
riculum learning consists of changing the objective progressively in an environment to learn
intermediate behavior and accelerate the learning of an agent for a particular task. In their
work, they first learn to move forward as fast as possible in the 2d simplified environment
used in this thesis. Then, the agent learns to follow a target velocity in a forward direction.
Finally, they used this agent to generalize in 3 dimensions.

In this work, the agent will be pre-trained with data collected from the neuro-inspired
controller cited above. Then, the agent will continue to train on the environment to learn to
move forward. The interest of pre-training, in this case, is that the learned policy is trying
to imitate the neuro-inspired controller. Then, when training with DDPG, the policy will
generate transitions that are better than completely random actions. Hence, it is expected
that the use of imitation learning before starting the real training process accelerates the
training.

44

Initial State 45

9.3 Initial State
A last improvement that is performed related to the original environment concerns the

initial states. Initially, the agent starts by being straight up with its legs and body aligned
(Figure 9c). However, when performing imitation learning, the initial state needed to be
different because the neuro-inspired controller needs to start in a particular state (Figure
9a).

The following idea was to design 3 main initial states. Basically, it consists of:

1. The upright position (Figure 9c)

2. A position with the right leg in front and the left leg in the back (Figure 9b)

3. A position with the left leg in front and the right leg in the back (Figure 9a)

Then some noise is added to the position in order to randomize as much as possible the
initial states. The noise is a Gaussian noise around the position with a very small standard
deviation. This set of initial states is used in order to provide a lot of different starting
points in an episode. Hence, this would allow us to explore a large variety of different states.

In addition, thanks to the state’s locality as explained in section 2.2, if the agent is able
to perform optimally initially then it should perform the same way further from the initial
point. Hence, this justifies this idea of taking these multiple initial positions such that more
positions are covered at the initial state of an episode.

45

Initial State 46

(a) Left Leg in front (b) Right Leg in front

(c) Upright

Figure 9: Initial positions of agent

46

Gait analysis 47

10 Analysis of final controller
After an extensive training process, the final controller is a policy that has undergone

rigorous training for a total of 500 epochs. During each epoch, the policy was updated 1024
times with a batch of size 4000 for each update. The learning rate was equal to 1e − 4
for both the actor and the critic network. Frame skipping is also applied for the training
process, the initial time step is dt = 0.01s and it is dilated by a factor of 10 so that the dt
used for training is dt = 0.1s.

The training procedure, spanning numerous iterations, consumed approximately 33 hours
to complete, showing the great number of computational resources that are needed for such
a task. In the following, an analysis of the performances of the final controller as well as the
gait exhibited by the agent with the learned policy is conducted.

10.1 Performances
In terms of performances, it will be decomposed reporting to the 3 initial states described

in section 9.3. For each initial state, 20 episodes are played in order to record the average
performances of the agent starting from each different state. Additionally, it has been ob-
served that evaluating the agent trained with frame skipping (dt = 0.1) with the original
time step dt = 0.01 leads to better performances. In fact, evaluating with dt = 0.1s, the
agent falls from time to time. On the contrary, evaluating with dt = 0.01, the agent falls
much less and is also able to move forward.

This result is interesting in the sense that it shows the agent can interpolate the action
to take. It means that if the control frequency increases, the agent is still able to work. In
particular, in this case, it worked even better. So, a time step of dt = 0.01 will be used in
order to evaluate and analyze the agent’s performance and gait.

The results are shown for each of the initial states including variation around these posi-
tions in Figure 10. It can be seen that except for some episodes, the performances are quite
high for the 3 starting positions. In fact, if the agent does not make any steps, the total
reward would be 100. In addition, for all initial positions, the majority of episodes are above
this value. Hence, it shows that the agent is able to move forward. It is indeed confirmed
by visualizing multiple episodes in the environment. By looking at Figure 11, it can be seen
that the velocity of the agent varies but does not get really high. Indeed, it barely goes up
to 2.2m s−1 and is most of the time below 1.5m s−1.

Next, an analysis of the gait is performed. Indeed, since previous results show that the
agent is able to move forward then a gait analysis makes sense.

10.2 Gait analysis
This section will focus on the behavior of the agent, especially the gait of this agent. For

the analysis, the agent starts in the position with the left leg in front (Figure 9a). As part

47

Gait analysis 48

Figure 10: Total Reward of the agent in comparison to the 3 initial poses

of this analysis, all excitation signals generated by the agent are shown in Figure 15. Each
figure represents the excitation level of a muscle on both legs. Also, the upward ground
reaction force is shown for both feet in Figure 12. Similarly, the angles and angular velocity
of each joint are shown in Figure 13 and 14 respectively. As for the excitation levels of
the muscles, the different quantities are shown for the right and the left leg. This choice of
representation is to enhance the visibility of symmetric behavior in the agent. Lastly, the
global motion of the agent is summarized by the motion of the pelvis, Figure 11 shows the
height of the pelvis as well as its velocity forward and upward.

Starting by looking at the evolution of the state of the pelvis through time (Figure 11),
it can be seen that a certain pattern is repeating itself. There are small variations but the
agent moves forward with a kind of cycle. However, the agent does not behave symmetri-
cally, indeed by looking at the joint values (Figure 13), it can be seen clearly that the curves
for the left leg and the right leg are different. Similarly, the same kind of observation can be
made by looking at the angular velocities in Figure 14.

The source of this non-symmetric behavior can be seen with the excitation levels (Figure
15) provided by the controller. Indeed, for some muscles like the BFSH, there is not any
symmetry between the excitation levels of the two legs. The excitation for the right leg
is often near 0 while it is the opposite for the left leg. However, the agent seems to have
learned complementary values for the excitation of the muscle on both legs. When the value
is low for one leg it is higher for the other leg. So, the agent may have learned a dependency

48

Gait analysis 49

between the two muscles. The same relations can be observed for different groups of muscles
for example the HAM in Figure 15f.

Some muscles seem to exhibit some symmetry nonetheless, for example, the GAS in Fig-
ure 15b, the excitation signal is high on one leg then the other is high in a symmetric way.
This corroborates the previous observation with the complementary excitations.

All muscles won’t be analyzed in detail because overall the figures, the reason for the
asymmetry in the behavior of the agent is due to some muscles. The agent does not provide
symmetry in its excitation signals pattern for some muscles. Hence, the gait is not symmetric.

Lastly, this analysis showed that the agent is not symmetric in his gait. This does not
mean that it performs badly in the environment but from a physiological point of view, this
type of gait is closer to a disturbed gait than a typical human gait.

Figure 11: Pelvis State including forward velocity, upward velocity, and its height

49

Gait analysis 50

Figure 12: Ground reaction forces pointing upward for both feet

50

Gait analysis 51

(a) Hip Joint Angles

(b) Knee Joint Angles

51

Gait analysis 52

(c) Ankle Joint Angles

Figure 13: Joint Angle Values for both leg.

52

Gait analysis 53

(a) Hip Joint Angular Velocity

(b) Knee Joint Angular Velocity

53

Gait analysis 54

(c) Ankle Joint Angular Velocity

Figure 14: Joint Angular Velocity Values for both leg.

54

Gait analysis 55

(a) Biceps Femoris, Short Head (BFSH)

(b) Gastrocnemius (GAS)

55

Gait analysis 56

(c) Glutei (GLU)

(d) Hip Abductor (HAB)

56

Gait analysis 57

(e) Hip Adductor (HAD)

(f) Hamstrings (HAM)

57

Gait analysis 58

(g) Hip Flexor (HFL)

(h) Rectus Femoris (RF)

58

Gait analysis 59

(i) Soleus (SOL)

(j) Tibialis Anterior (TA)

59

Gait analysis 60

(k) Vastii (VAS)

Figure 15: Excitation levels for each muscle for the right and the left leg.
Right leg is in blue and left leg is in orange

60

Fulfilments of Objectives 61

11 Conclusion
A brief summary of the work done so far is provided as a starter for the conclusion. It

will be followed by a posterior view of the initial objectives and then some tracks are given
to improve this project further.

11.1 Summary
First, the RL algorithm was chosen by comparing the implementation of MBVE and

DDPG in the scope of this thesis. These tests were performed on simple problems to high-
light the best choice and to limit the computation time needed. It turns out that in this
context, DDPG was the fastest and most efficient algorithm.

Then, a comparative analysis was performed to select a neural network architecture to
use in the training of the musculo-skeletal agent. 3 distinct simple architectures were de-
veloped and tested. After testing, the variant Multi-Layer Perceptron was chosen for its
performance on the test environments.

Thereafter, other considerations in the training process were analyzed. In particular,
frame skipping showed a great interest in training. The importance of the shape of the
reward and pre-training an agent with imitation learning was investigated. All those con-
siderations helped to improve the final training process.

Finally, the quality of the developed controller was analyzed from a pure RL perspective
by looking at the total reward of the agent in the environment. In addition, a more physio-
logical analysis was provided focusing on the gait of the agent. This showed that even if the
agent can move forward, the gait is not symmetrical as opposed to the common human gait.

11.2 Fulfilments of Objectives
Back to the 3 main objectives of this thesis. As a reminder the 3 objectives were:

1. Reduce the computational cost of the usage of an accurate model

2. Give a detailed description of the procedure used

3. Provide an analysis of the resulting controller

Concerning the first objective, it would be presumptuous to say that the method devel-
oped in this work significantly reduces the computational cost. Indeed, despite the use of
imitation learning at first for pre-training and frame-skipping that reduces the total training
time needed. Their impact on the computational cost is limited and additional work may
be needed to truly improve the computational limitations.

Then, the second objective consisted of a detailed procedure description. The whole pro-
cess and decisions for choosing the different elements of the training process were explained.

61

Going Further 62

Hence, this objective is fulfilled.

Similarly, the third and last objective is also completed. Once the controller is trained,
a short analysis of its behavior was performed to criticize the knowledge it has learned.

Finally, the overall objectives presented in the context of this are partially accomplished.
Even if they were far from ambitious, they tend to give insights for further developments in
the field of human motion simulation with reinforcement learning.

11.3 Going Further
To improve further this project, there is always the possibility to train the agent until

the complete convergence of the policy. This would of course take a lot of time since this
approach is computationally costful.

One of the results was that the learned dynamics model was not accurate enough to
be able to bring the model-based approach above the model-free approach. Thus, it would
be interesting to study in more detail how to provide a good dynamics model and to what
extent a neural network can estimate an environment.

Directly following this, improving the algorithms using a model-based approach can also
be very interesting. The improvements can be to lower the dependency of the algorithm per-
formances on the learned dynamics such as using an ensemble of networks [2]. Since basic
algorithms were used in this project, one could also use more advanced algorithms to solve
this problem. Such algorithms could however be more costly in terms of computation. These
advanced methods may be linked with the usage of stochastic neural networks to account
for the stochasticity of the environment and thus provide better results.

An aspect that could be improved is the architecture of the neural networks. Indeed,
memory can be included in the neural networks to improve further the performance of the
agent in the environment. Learning how to walk or move with such memory-based controllers
is shown to work with a certain efficiency [3, 34, 35]. This type of architecture could then
be used to generalize a controller to work for multiple morphologies. Such a property for
a controller is crucial for simulating the motions of different entities. Prior work on simple
problems showed promising results [3].

A method that was not used in this thesis, called transfer learning, can also be studied to
train an agent in a simpler environment. This simpler environment being cheaper in terms
of computation could be used extensively. The idea is then to transfer the knowledge to the
complex environment.

62

Detailed Architectures 63

Appendix
A Detailed Architectures

Here follows the different neural network architectures developed in the context of this
thesis.

Figure 16: Multi-Layer Perceptron (MLP) Architecture

63

Detailed Architectures 64

Figure 17: Variant Multi-Layer Perceptron Architecture

Figure 18: Self-Attention Architecture

The following table summarizes the network parameters for the final controller:

64

Detailed Architectures 65

N 4
K 4

Layer Width 512

Table 6: Variant MLP parameters for final controller

65

Algorithms 66

B Algorithms

66

Algorithms 67

Algorithm 1 Deep Deterministic Policy Gradient (DDPG)
1: Initialization: Initialize actor network parameters θ and critic network parameters ϕ

randomly. Initialize target network parameters θtar ← θ and ϕtar ← ϕ. Empty replay
buffer D.

2: Sample initial state: Observe initial state s0.
3: repeat
4: Select action at according to the current policy at = πϕ(st) and the exploration

method (see section 5.4).
5: Take action at, observe next state st+1, receive reward rt, and terminal signal dt.
6: Store the transition (st, at, rt, st+1, dt) in D.
7: If dt is 1, then reset the environment.
8: if it is time to update then
9: for a fixed number of updates do

10: Sample randomly a batch of transitions, B = {(s, a, r, s′, d)} from replay buffer
D

11: Compute the target Q-value:
12:

y(r, s′, d) = r + γ(1− d)Qϕtar(s′, πθtar(s′))
13: Update the critic network by one step of gradient descent using:
14:

∇ϕ
1
|B|

∑
(s,a,r,s′,d)∈B

(
y(r, s′, d)−Qϕ(s, a)

)2

15: Update the actor-network by one step of gradient descent using:
16:

−∇θ
1
|B|

∑
(s,a,r,s′,d)∈B

Qϕ(s, a)

17: Update target networks with soft updates:
18:

θtar ← ρ · θ + (1− ρ) · θtar

19:
ϕtar ← ρ · ϕ + (1− ρ) · ϕtar

20: end for
21: end if
22: until convergence

67

Algorithms 68

Algorithm 2 Model-Based Value Expansion (MBVE)
1: Initialization: Initialize actor network parameters θ and critic network parameters

ϕ randomly. Initialize target network parameters θtar ← θ and ϕtar ← ϕ. Initialize
dynamics model parameters ζ Empty replay buffer D.

2: Sample initial state: Observe initial state s0.
3: repeat
4: Select action at according to the current policy at = πϕ(st) and the exploration

method (see section 5.4).
5: Take action at, observe next state st+1, receive reward rt, and terminal signal dt.
6: Store the transition (st, at, rt, st+1, dt) in D.
7: If dt is 1, then reset the environment.
8: if it is time to update then
9: for a fixed number of updates do

10: Sample randomly a batch of transitions, B0 = {(s, a, r, s′, d)} from replay
buffer D

11: Update the dynamics model network by one step of gradient descent using:
12:

∇ζL(ζ, B0)
13: Update the actor-network by one step of gradient descent using:
14:

−∇θ
1
|B0|

∑
(s,a,r,s′,d)∈B

Qϕ(s, a)

15: Generate rollouts of length H from B0 using f̂ζ :
16:

BH = {(s−1, a−1, r−1, ŝ0, d−1, â0, r̂0, ŝ1, d̂0, . . . , âH−1, r̂H−1, ŝH , d̂H−1, âH)}
17: Update the critic network by one step of gradient descent using:
18:

∇ϕ
1
|BH |

∑
τ∈BH

L(ϕ, τ)

19: Update target networks with soft updates:
20:

θtar ← ρ · θ + (1− ρ) · θtar

21:
ϕtar ← ρ · ϕ + (1− ρ) · ϕtar

22: end for
23: end if
24: until convergence

68

Tools 69

C Tools
In the context of this thesis, the PyTorch library was mainly used. All the algorithms

were implemented by hand. There was a try to use the library PyTorch-RL but it wasn’t
possible to adapt the algorithm as it was intended to.

Some parts of the collection of the data were unclear. As such, all RL algorithms were
re-implemented.

Also, the library and codes used by the top solutions [36, 26, 28] could not be reproduced
even after numerous trials.

It was thus abandoned since it took too much time and did not work.
The OpenSim and OpenSim-RL python libraries were also used to use the OpenSim en-

vironment. As for the environments, the gym library with the MuJoCo environments is also
used.

This was the list of all the different tools used during this thesis.

69

References 70

References
[1] Bo Zhou, Fan Wang, Hongsheng Zeng, and Hao Tian. Risk averse value expansion for

sample efficient and robust policy learning, 2020.

[2] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion.
CoRR, abs/1807.01675, 2018.

[3] Alberto Silvio Chiappa, Alessandro Marin Vargas, and Alexander Mathis. Dmap: a
distributed morphological attention policy for learning to locomote with a changing
body. arXiv preprint arXiv:2209.14218, 2022.

[4] Zijie Ye, Haozhe Wu, and Jia Jia. Human motion modeling with deep learning: A
survey. AI Open, 3:35–39, 2022.

[5] Seung-Hee Lee, Moon Seok Park, Kyoungmi Lee, and Jehee Lee. Scalable muscle-
actuated human simulation and control. ACM Transactions on Graphics (TOG), 38:1
– 13, 2019.

[6] Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C. Karen Liu, Julien Pettré
, Michiel van de Panne, and Marie-Paule Cani. A survey on reinforcement learning
methods in character animation. Computer Graphics Forum, 41(2):613–639, may 2022.

[7] Tom Erez, Yuval Tassa, and Emanuel Todorov. Infinite-horizon model predictive control
for periodic tasks with contacts. 06 2011.

[8] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw images. Advances
in Neural Information Processing Systems, 06 2015.

[9] Seungmoon Song and Hartmut Geyer. A neural circuitry that emphasizes spinal feed-
back generates diverse behaviours of human locomotion. The Journal of physiology,
593(16):3493–3511, 2015.

[10] Florin Dzeladini, Nadine Ait-Bouziad, and Auke Ijspeert. CPG-Based Control of Hu-
manoid Robot Locomotion, pages 1099–1133. Springer Netherlands, Dordrecht, 2019.

[11] Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C. Karen Liu. Synthesis of
biologically realistic human motion using joint torque actuation. CoRR, abs/1904.13041,
2019.

[12] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your
model: Model-based policy optimization. CoRR, abs/1906.08253, 2019.

[13] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez,
and Sergey Levine. Model-based value estimation for efficient model-free reinforcement
learning. CoRR, abs/1803.00101, 2018.

70

References 71

[14] R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine Learning, 8:229–256, 1992.

[15] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–
292, May 1992.

[16] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Kim. Q-learning
algorithms: A comprehensive classification and applications. IEEE Access, PP:1–1, 09
2019.

[17] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforce-
ment learning, 2019.

[18] Deep Deterministic Policy Gradient — Spinning Up documentation. https://
spinningup.openai.com/en/latest/algorithms/ddpg.html. Accessed 2023-06-01.

[19] Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning.
CoRR, abs/1710.06574, 2017.

[20] Seungmoon Song, Lukasz Kidziński, Xue Peng, Carmichael Ong, Jennifer Hicks, Sergey
Levine, Christopher Atkeson, and Scott Delp. Deep reinforcement learning for modeling
human locomotion control in neuromechanical simulation. Journal of NeuroEngineering
and Rehabilitation, 18, 08 2021.

[21] Ajay Seth, Jennifer L. Hicks, Thomas K. Uchida, Ayman Habib, Christopher L. Dem-
bia, James J. Dunne, Carmichael F. Ong, Matthew S. DeMers, Apoorva Rajagopal,
Matthew Millard, Samuel R. Hamner, Edith M. Arnold, Jennifer R. Yong, Shrinidhi K.
Lakshmikanth, Michael A. Sherman, Joy P. Ku, and Scott L. Delp. Opensim: Simulat-
ing musculoskeletal dynamics and neuromuscular control to study human and animal
movement. PLOS Computational Biology, 14(7):1–20, 07 2018.

[22] First-Order Activation Dynamics - OpenSim Documentation - Site global.
https://simtk-confluence.stanford.edu:8443/display/OpenSim/First-Order+
Activation+Dynamics. Accessed 2023-06-03.

[23] K. H. Hunt and F. R. E. Crossley. Coefficient of restitution interpreted as damping in
vibroimpact. 42(2):440–445.

[24] Thelen 2003 Muscle Model - OpenSim Documentation - Site global. https:
//simtk-confluence.stanford.edu:8443/display/OpenSim/Thelen+2003+Muscle+
Model. Accessed 2023-06-03.

[25] How forward dynamics works - OpenSim documentation - site global. https://simtk-
confluence.stanford.edu:8443/display/OpenSim/How+Forward+Dynamics+Works.
Accessed 2023-06-03.

[26] Sergey Kolesnikov and Valentin Khrulkov. Sample efficient ensemble learning with
catalyst.rl. CoRR, abs/2003.14210, 2020.

71

https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://simtk-confluence.stanford.edu:8443/display/OpenSim/First-Order+Activation+Dynamics
https://simtk-confluence.stanford.edu:8443/display/OpenSim/First-Order+Activation+Dynamics
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Thelen+2003+Muscle+Model
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Thelen+2003+Muscle+Model
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Thelen+2003+Muscle+Model

References 72

[27] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation
Error in Actor-Critic Methods, October 2018. arXiv:1802.09477 [cs, stat].

[28] Dmitry Akimov. Distributed soft actor-critic with multivariate reward representation
and knowledge distillation. CoRR, abs/1911.13056, 2019.

[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. CoRR,
abs/1801.01290, 2018.

[30] Daniel Palenicek, Michael Lutter, and Jan Peters. Revisiting model-based value expan-
sion, 2022.

[31] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. CoRR,
abs/1805.12114, 2018.

[32] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. CoRR, abs/1708.02596, 2017.

[33] Guoqing Ma, Zhifu Wang, Xianfeng Yuan, and Fengyu Zhou. Improving model-based
deep reinforcement learning with learning degree networks and its application in robot
control. Journal of Robotics, 2022:1–14, 03 2022.

[34] Jonah Siekmann, Srikar Valluri, Jeremy Dao, Lorenzo Bermillo, Helei Duan, Alan Fern,
and Jonathan W. Hurst. Learning memory-based control for human-scale bipedal loco-
motion. CoRR, abs/2006.02402, 2020.

[35] C.L.P. Chen. Deep q-learning with recurrent neural networks. 2016.

[36] Bo Zhou, Hongsheng Zeng, Fan Wang, Yunxiang Li, and Hao Tian. Efficient and robust
reinforcement learning with uncertainty-based value expansion. 12 2019.

[37] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[38] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[40] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015.

[41] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

72

Tools 73

[42] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. CoRR, abs/1207.0580, 2012.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

[44] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforce-
ment learning via sequence modeling. CoRR, abs/2106.01345, 2021.

[45] Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar Gülçehre,
Siddhant M. Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb
Noury, Matthew M. Botvinick, Nicolas Heess, and Raia Hadsell. Stabilizing transformers
for reinforcement learning. CoRR, abs/1910.06764, 2019.

[46] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Rus-
lan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. CoRR, abs/1901.02860, 2019.

[47] GPT implementation by Gilles Louppe in the Lecture 8 of INFO8010. https://github.
com/glouppe/info8010-deep-learning/tree/master/code/gpt. Accessed: 2021-05-
17.

[48] Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip
is a powerful parameter for learning to play atari. 01 2015.

[49] Shivaram Kalyanakrishnan, Siddharth Aravindan, Vishwajeet Bagdawat, Varun Bhatt,
Harshith Goka, Archit Gupta, Kalpesh Krishna, and Vihari Piratla. An analysis of
frame-skipping in reinforcement learning. 02 2021.

[50] Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M. Kakade, and Sergey Levine.
Unpacking reward shaping: Understanding the benefits of reward engineering on sample
complexity, 2022.

[51] Jack Clark and Dario Amodei. Faulty reward functions in the wild. https://openai.
com/research/faulty-reward-functions, 2016. Accessed on May 31st, 2023.

[52] Zhihui Xie, Zichuan Lin, Junyou Li, Shuai Li, and Deheng Ye. Pretraining in deep
reinforcement learning: A survey, 2022.

[53] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2RL:
deep dense architectures in reinforcement learning. CoRR, abs/2010.09163, 2020.

73

https://github.com/glouppe/info8010-deep-learning/tree/master/code/gpt
https://github.com/glouppe/info8010-deep-learning/tree/master/code/gpt
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions

Acronyms 74

Acronyms
BFSH Biceps Femoris, Short Head. 20, 48, 55

CE Contractile Element. 21, 22

CNS Central Nervous System. 6, 8

CPG Central Pattern Generator. 8

DDPG Deep Deterministic Policy Gradient. 12, 15, 16, 26, 30–33, 36, 40, 43, 44, 61, 67

DOF Degrees of Freedom. 17, 27

GAS Gastrocnemius. 20, 49, 55

GLU Glutei. 20, 56

HAB Hip Abductor. 20, 56

HAD Hip Adductor. 20, 57

HAM Hamstrings. 20, 49, 57

HFL Hip Flexor. 20, 58

MBPO Model Based Policy Optimization. 12

MBVE Model-Based Value Expansion. 7, 12, 15, 24–26, 30–32, 43, 61, 68

MDP Markov Decision Process. 9

ML Machine Learning. 9

MLP Multi-Layer Perceptron. 30, 36–38, 40, 43, 61, 63, 64

PEE Parallel Elastic Element. 22

RAVE Risk Averse Value Expansion. 7, 24

ReLU Rectified Linear Unit. 36

RF Rectus Femoris. 20, 58

RL Reinforcement Learning. 3, 6–9, 11, 15, 17, 26, 27, 30, 37, 43, 44, 61

SEE Series Elastic Element. 22

SOL Soleus. 20, 59

74

Tools 75

STEVE Stochastic Ensemble Value Expansion. 7, 24

TA Tibialis Anterior. 20, 59

TD Temporal Difference. 12, 13, 15, 16

VAS Vastii. 20, 60

75

