
https://lib.uliege.be https://matheo.uliege.be

Modeling and Solving Problems Using Propositional Logic and SAT Solvers

Auteur : Aldeghi, Florian

Promoteur(s) : Fontaine, Pascal

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "management"

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17699

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège - Faculty of Applied Sciences

Modeling and Solving Problems Using
Propositional Logic and SAT Solvers

Dissertation carried out in partial fulfillment of the requirements for
the degree of Master of Civil Engineering in Computer Science

by Aldeghi Florian

Academic supervisor :
Prof. Pascal Fontaine

Academic year 2022-2023

Abstract
This research focuses on problem-solving using logical models, aiming to efficiently solve

a variety of well-known puzzles and games that are known for their challenging nature. The
goal is to find ways to model the problem and formulate constraints in order to reduce the
computation time required to find a solution.

The study expands beyond single-player puzzles and also explores two-player games.
By analyzing and proposing novel solutions for different puzzle scenarios, this research
explores a part of propositional logic applied to the resolution of games and puzzles.

Specifically, the study explores the application of logical model to the Snake Cube
puzzle, demonstrating its effectiveness. Furthermore, the efforts have enabled addressing
larger puzzle instances (4x4x4 snake cube) by exploiting the symmetry properties of the
problem. Additionally, the research investigates different approaches to solving the 2x2
Rubik’s Cube, with the objective of achieving reasonable solution times for the 3x3 Rubik’s
Cube. This work experiment problem-solving techniques within the domain of logic-based
models and lay the foundation for further improvements and applications.

An analysis of the rules and scenarios of the game of Othello has been conducted to
propose a model that allows the simulation of a game’s progression. Othello is a strate-
gic game that necessitates careful planning and decision-making. The research findings
revealed the minimum number of moves required to reach the end of a game for differ-
ent board size, which is nine for boards of size 5 to 8. An extension of the model using
quantified Boolean formulae provides a straight path towards solving the game. While the
game has already been solved for a 6x6 board, the model presented here serves as a scal-
able foundation. With improvements in writing constraints in future research, the finale
objective is to solve the full-scale 8x8 game.

Keywords: SAT solver, Boolean variables, clauses, model, computation time, satisfiabil-
ity, efficiency, quantifier.

1

Acknowledgements
First, I would like to express my gratitude to Prof. Pascal Fontaine, my supervisor,

who took the time to work with me in finding a subject that aligned with my interests,
who followed up my progress regularly and made sure I was on the right path, and who
provided me with valuable guidance throughout this research, greatly contributing to its
successful completion.

I extend my appreciation to ChatGPT, an AI language model by OpenAI, for its
invaluable assistance and insightful suggestions during the development of this thesis. Its
contributions have greatly enhanced the quality and clarity of my work.

I would also like to acknowledge the use of the website ‘draw.io’, which was instrumental
in creating all the images used in this work.

Thank you to my girlfriend for being with me throughout the entire year, consistently
checking in on my progress and providing encouragement in my work. Simply put, thank
you for being there. Your support has meant everything to me.

Finally, I would like to express my heartfelt gratitude to my family and friends for
being there for me and following the progress of my work, all while believing in me.

2

Contents
1 Introduction 4

2 Propositional Logic 6
2.1 Conjunctive Normal Form . 10
2.2 SAT Solvers . 11
2.3 Conflict-Driven Clause Learning algorithm 12

3 Solving the Snake Cube with Propositional Logic 15
3.1 Modeling . 15
3.2 Constraints . 16
3.3 Improvement with Symmetries . 18
3.4 Resolution . 20
3.5 Future Works . 23

4 Model Checking 24
4.1 Promela Model . 25
4.2 Depth First Search and Breadth First Search 26

5 Solving the Rubik’s Cube with Model Checking 29
5.1 Modeling . 29
5.2 States and Configuration . 31
5.3 Resolution . 32

6 Solving the Rubik’s Cube with Propositional Logic 35
6.1 Modeling . 36
6.2 Constraints . 37

6.2.1 Transformation of Constraints in CNF 39
6.2.2 AMO and ALO Constraints . 39
6.2.3 Binary Encoding . 41

6.3 Results . 42
6.4 Future Works . 44

7 Two-player Games Problem 45
7.1 Quantified Boolean Formula . 45

8 Playing Othello with Propositional Logic 47
8.1 Modeling . 48
8.2 Constraints . 51

8.2.1 Reduction of Clauses and Variables 57
8.3 Quantifiers and Directives to Solve Othello 58
8.4 Future Works . 61

9 Conclusion 62

References 63

A Action function of the Rubik’s Cube 65

B Initial States for Testing the Rubik’s Cube Models 67

3

1 Introduction

In today’s world, puzzles, two-player games, and brain teasers and games are found every-
where and are fascinating people from all walks of life. The Rubik’s Cube, for instance, is
a puzzle that has challenged countless individuals, leaving them contemplating over its so-
lution. This research is driven by the motivation to explore and develop effective methods
for solving such problems using logical modeling techniques. Furthermore, it investigates
the field of model checking, which involves the successive generation of possibilities until a
buggy trace is found, although without the aid of logical reasoning. This buggy trace is, in
Section 5, synonymous with a found solution. To tackle logical models, the SAT solver will
be a useful tool, as it can reason over the proposed models and provide viable solutions.

The field of logic includes various approaches that allow the modeling of different prob-
lems with varying degrees of expressiveness. Among these logical frameworks, such as
first-order logic and propositional logic, see e.g. [2] or [18]. We specifically focus on the
use of propositional logic. It serves as the fundamental logic system for our study. Addi-
tionally, the field of logic finds application in various domains, including data verification
in databases and proof construction in the theory of computation, which were covered in
the courses I have taken. To this end, SAT solvers, which come in different types and
employ various algorithms and parameters, play a crucial role. While some SAT solvers
are customized to specific domains or problems to achieve high efficiency, others, like the
sat4j solver [3] used in this work, offer a more general approach.

Within the domain of puzzles and related fields of interest, considerable research has
already been conducted. Notably, solutions have been presented for games such as Connect
Four, where it has been proven that the first player always possesses a winning strategy,
see [16]. However, despite the vast array of games and puzzles that have been analyzed,
there remain numerous unexplored challenges awaiting logical modeling and solution dis-
covery.

The personal motivation to engage in this research originates from a strong interest
in puzzles and a persistent quest for solutions. Whether it is the desire to outsmart an
opponent or simply to find the most efficient path to puzzle resolution, the satisfaction
derived from solving problems using logical reasoning is immeasurable. For instance, after
numerous rounds of playing Connect Four with my partner, I have often wondered how
to develop a winning strategy. The domain of problem-solving through logical modeling
offers a wide scope that poses countless intriguing questions, and this research aims to
contribute answers to some of these questions.

Multiple objectives are at the heart of this research. Firstly, the aim is to address
unresolved problems by finding solutions for puzzles and games that have not been previ-
ously explored in the context of logical modeling. Secondly, for problems where solutions
already exist, the focus shifts towards improving computation times and identifying key
factors that influence the efficiency of the solutions. By analyzing existing approaches and
exploring innovative modeling techniques , the research aims to improve existing solutions.

Additionally, a crucial objective is to expand the repertoire of solved games that can be
used in future projects for logic courses. By presenting elegant or efficient solutions, this
research belongs to the domain of game-solving techniques and provides a valuable resource
for game enthusiasts, researchers, and developers. The goal is to not only demonstrate the
effectiveness of logical modeling but also inspire further investigations and applications in

4

solving various puzzles and games.

We establish a roadmap to guide our study and achieve our objectives. It begins with
an in-depth exploration of the Snake Cube puzzle, which serves as an excellent starting
point due to the absence of an existing logical model. This initial stage allows for the
formulation of innovative ideas and the development of constraint modeling techniques.
The main goal is to identify ways to enhance our initial model to extend it to handle larger
instances of the snake-cube while maintaining reasonable computation times.

Making use of the knowledge and experience acquired from the Snake Cube puzzle, the
investigation then shifts its focus to the Rubik’s Cube, a well-known puzzle with a myriad of
existing solver models available online. By examining different approaches, algorithms, and
solution methodologies, the research aims to identify an effective strategy for solving the
Rubik’s Cube with a propositional logic model by first addressing the problem with model
checking. Furthermore, this step provides lesser-known ways of modeling constraints, such
as the 2-product encoding, see [6], which will prove instrumental in the subsequent phase
of the study.

After exploring various models and approaches for constructing constraints, the work
concludes with an exploration of Othello, a complex two-player game requiring strategic
planning and decision-making. This final stage will use the practical insights gained from
the Snake Cube and Rubik’s Cube analyses to a more complex problem domain. The
constraints in Othello are more complex to model, but they are based on the generalized
methodologies developed in the previous stages. The objective of our model is to determine
the minimum number of moves required for each grid size to reach the end of the game,
which can be useful in creating clauses to determine the winner.

5

2 Propositional Logic

Propositional logic, also known as statement logic, is a branch of logic that aims to connect
propositions using logical connectives. By combining propositions, more complex proposi-
tions are formed. The terms statement and proposition can be used interchangeably. An
atomic proposition represents an indivisible unit and is typically represented by a Boolean
variable. The combination of atomic propositions results in a larger proposition. Proposi-
tional logic is sometimes referred to as zeroth-order logic and serves as the foundation for
higher-level logics, such as first-order logic, which involves non-logical objects. It can be
seen as the fundamental level of logic from which higher levels are built upon.

A proposition is a statement or evaluation that can be either true or false. In the case
of atomic propositions, they are represented by Boolean variables that can have a truth
value of either true or false. For instance, the propositions “I have a house” and “My house
has four facades” can be represented by the Boolean variables ’p’ and ’q’. These variables
can take on the values true or false.

By combining multiple atomic propositions using logical connectives, also known as
logical operators, we can create composite propositions that can also be evaluated as true
or false based on the values of the atomic propositions and the logical connectives used.
For example, we can form the composite proposition “I have a house and my house has
four facades”. The truth value of the entire proposition is determined by the individual
truth values of its component atomic propositions and the logical connective ‘and’.

The logical connectives in propositional logic include the conjunction ‘and ’, disjunction
‘or ’, negation ‘not ’, implication ‘if ... then ...’, and equivalence ‘if and only if ’. These con-
nectives are represented by the symbols ‘∧’ (conjunction), ‘∨’ (disjunction), ‘¬’ (negation),
‘→’ (implication), and ‘↔’ (equivalence) respectively.

A sentence, in the context of propositional logic, refers to a complete statement or
proposition that can be true or false (it is equivalent to a composite proposition). It is
composed of atomic propositions and combinations of logical connectives. For example,
these logical connectives allow us to create the sentence “If I have a house and my house
has four facades, then I have a four-sided villa”. This can be rewritten as “(I have a house
∧ My house has four facades) → I have a four-sided villa”. Using Boolean variables p, q,
and r respectively, we can express it as (p ∧ q) → r. If variables p and q are assigned the
value true, we can conclude that r is also true if the sentence is true. Conversely, if r is
known to be true, the sentence must also be true.

However, a sentence can be false depending on the combination of logical connectives
and propositions. For instance, in the sentence “I have a house and I do not have a house”,
represented as p ∧ ¬p, the sentence is false.

We encounter two scenarios: either a composite proposition is evaluated to true, al-
lowing us to derive the values of certain atomic propositions based on others, or we derive
the value of the entire composite proposition based on the values of the atomic proposi-
tions within it. In the latter case, where we seek the value of a composite proposition,
we can employ a truth table. A truth table presents all possible combinations of values
for the atomic propositions on the left side and the corresponding value for the composite
proposition on the right side. In the following discussion, we will use variables instead of
atomic propositions, and the term proposition will encompass both atomic and composite
propositions. For example, the logical operator ‘∧’, which is a binary operator that denotes

6

conjunction, is true only when both propositions it connects are true. Its truth table is as
follows:

α β α ∧ β

0 0 0
0 1 0
1 0 0
1 1 1

Each of the logical operators has its own truth table as presented in the tables below.
Once all the variables have been assigned values, the truth values of the proposition can
be determined thanks to tables. If there are no parentheses, the order of precedence is
to first evaluate negations, then conjunctions, followed by disjunctions, implications, and
finally equivalences.

α β α ∨ β

0 0 0
0 1 1
1 0 1
1 1 1

α ¬α
0 1
1 0

α β α→ β

0 0 1
0 1 1
1 0 0
1 1 1

α β α↔ β

0 0 1
0 1 0
1 0 0
1 1 1

• The logical operator ‘∨’ is a binary operator that is true if at least one of the two
propositions is true.

• The logical operator ‘¬’ operator is a unary operator that is true if the proposition
is false.

• The logical operator ‘→’ is a binary operator that means that is the left proposition
is true, the right proposition must be true. Therefore, it is true is the left proposition
is false or if the right proposition is true.

• The logical operator ‘↔’ is a binary operator that means that the two propositions
must have the same value. It is true if both propositions are false or if both propo-
sitions are true

We can use true and false as equivalents of 1 and 0 to denote the value of a proposition.
The are represented by ‘T ’ for true and ‘F ’ for false. The operators ‘∧’ and ‘∨’ are both
associative and commutative. T is dominant in a disjunction and absorbed in a conjunction
while F is dominant in a conjunction and absorbed in a disjunction. Both of them respect
the law of implication α ∨ α ≡ α and α ∧ α ≡ α.

When multiple operators are used to form a more complex proposition, we can proceed
by following the priority rules. For instance, the proposition α ↔ ¬β → γ ∧ δ can be
rewritten as α ↔ ((¬β) → (γ ∧ δ)). For α = T, β = T, γ = F, and δ = T, we can
substitute these values into the proposition:

T↔ ((¬T)→ (F ∧ T)) ≡ T↔ (F→ F)

≡ T↔ T

≡ T

7

In this case, the proposition is true. However, if β is set to false, the implication
becomes false, resulting in T↔ F, which makes the proposition false. For all propositions
constructed using the five logical operators, we can create a truth table to determine the
value of the proposition for all possible combinations of Boolean variables. The challenge
arises when dealing with complex propositions that involve a large number of variables,
as the number of possible values increases exponentially with the number of variables.
Specifically, it becomes 2n, if n is the number of variables. Consequently, as the proposition
becomes more complex and involves numerous variables, the truth table becomes extremely
large.

Another useful task in propositional logic is the application of logical equivalences to
reduce the complexity of propositions. Logical equivalences allow us to construct different
propositions using the same variables but with different logical operators, while ensur-
ing that both propositions have the same value for every combination of variable values.
By employing these equivalences, we can simplify complex propositions. Here are some
commonly used logical equivalences:

1. Double Negation: ¬¬α↔ α

2. De Morgan’s Laws: ¬(α ∨ β)↔ ¬α ∧ ¬β

3. De Morgan’s Laws: ¬(α ∧ β)↔ ¬α ∨ ¬β

4. Implication: α→ β ↔ ¬α ∨ β

5. Biconditional: (α↔ β)↔ (α→ β) ∧ (β → α)

6. Distribution: (α ∧ β) ∨ γ ↔ (α ∨ γ) ∧ (β ∨ γ)

7. Distribution: (α ∨ β) ∧ γ ↔ (α ∧ γ) ∨ (β ∧ γ)

A logical proposition that is always true is called a tautology. For example, α ∨ ¬α is
a tautology. The truth table of the proposition is always true. All the logical equivalences
presented above are tautological propositions. We can prove that the following proposition
is a tautology using these logical equivalences:

¬(α ∨ β)→ (α ∧ β → ¬α ∨ ¬β) ≡ ¬α ∧ ¬β → ¬(α ∧ β) ∨ ¬α ∨ ¬β
≡ ¬(¬α ∧ ¬β) ∨ ¬α ∨ ¬β ∨ ¬α ∨ ¬β
≡ α ∨ β ∨ ¬α ∨ ¬β
≡ T

The inverse of a tautology is a contradiction (or self-contradiction). A tautology is a
logical proposition that is always true, regardless of the truth values of the propositional
variables involved. On the other hand, a contradiction is a proposition that is always false,
irrespective of the truth values assigned to the propositional variables. A proposition that
is neither self-contradictory nor tautological is called a contingent proposition.

When solving problems, one of the objectives is to determine whether a proposition or a
set of propositions consists entirely of tautologies, has some instances that make the set of
propositions true, or has no instances that make all the propositions true simultaneously.
An instance refers to assigning a truth value to each variable in the set. If there are

8

instances that make the set true, it is considered satisfiable, whereas if there are no instances
to make it true, it is unsatisfiable.

To achieve this objective, one approach is to construct the truth table of the proposition
or, if we have a set, for each propositions in the set. By doing so, we can observe the different
values that the proposition can take. However, as the number of Boolean variables in the
set increases, constructing the truth table becomes impractical. For instance, in Section 8,
we encounter a scenario with more than 10 000 Boolean variables, resulting in a truth table
size of 210000, which is infeasible in practice.

In the subsequent sections of the work, the goal is to determine the satisfiability of the
set of propositions that represents the problem and, if it is satisfiable, to find a truth value
assignment to the variables that yields a solution. If multiple propositions within the same
set are logically equivalent, they can be simplified by retaining only one of them in the set.

As solving a problem with truth tables is impractical, we need to use algorithms to
determine the satisfiability of a set of propositions. This can be accomplished by finding a
variable assignment that satisfies all the propositions or by inferring that the set consists
of tautologies even if it does not often happen.

When searching for a satisfiable instance, we can either manually infer new propositions
to determine the variable assignments or use a SAT solver. For instance, if our set includes
the proposition p ∧ q, we can infer p and q. An inference is a logical consequence of a
proposition, indicating that for all instances that make the initial proposition true, the
inferred proposition will also be true. It is written as {p∧q} ⊢ p and {p∧q} ⊢ q. There are
various methods to derive new propositions. Another example is the set {p, p→ q} ⊢ q.

During the process of reasoning over all propositions in the set, multiple inferences can
be made. Whenever a proposition contains only one variable, we can determine whether
that variable must be true or false. Each newly inferred proposition becomes part of the
set. If we manage to infer two contradictory propositions, it demonstrates that the set is
unsatisfiable. For instance, with the set {p→ q, p ∨ q, ¬q} we can infer:

{p ∨ q, ¬q} ⊢ p

{p→ q, p} ⊢ q

{¬q, q} is a contradiction

However, in the set {p→ q, p ∨ ¬q, q} we can infer:

{p ∨ ¬q, q} ⊢ p

{p→ q, p} ⊢ q

{p, q}

Unlike logical equivalence, a logical consequence does not permit the removal of the
initial proposition from the set. In the last example, the final set is a logical consequence
of all the other propositions in the set. Furthermore, assigning a true value to both vari-
ables makes the initial set true. Thus, this set is satisfiable with the instance p = T, q = T.

References for this section include [18] and [10]. These resources provide numerous
examples demonstrating how deduction and inference can be performed.

9

2.1 Conjunctive Normal Form

This section is based on the knowledge acquired during the course [14].

A set of propositions can be modified using logical equivalences established in the
previous section to respect a given form. The two main forms are the disjunctive normal
form (DNF) and the conjunctive normal form (CNF). In this work, the useful form is the
conjunctive normal form. Actually, it is useful in the application of propositional logic,
such as satisfiability testing, and logic-based problem solving.

A Conjunctive Normal Form (CNF) is a form used in propositional logic to represent
complex logical propositions in a standardized way. CNF is constructed as a conjunction
of clauses, where each clause is a disjunction of literals. A CNF is a conjunction of clauses.
In a CNF, each clause represents a separate proposition, and these clauses are combined
using ‘∧’ to form the overall expression. For instance, if the set is {p∨q, ¬p→ q, p→ ¬q},
it represents the complex proposition (p ∨ q) ∧ (¬p→ q) ∧ (p→ ¬q). However, this set is
not in CNF because the propositions of the set are not clauses.

Within each clause, we have a disjunction of literals. A literal is a Boolean variable and
a sign. The literal is said to be negative if negated and positive otherwise. These literals
represent atomic proposition that can be true or false. For the variable ’p’, the literal is
either ’p’ or ’¬p’.

The combination of conjunctions and disjunctions in CNF allows us to express com-
plex logical relationships between propositions. By representing them in CNF, we can
easily analyze and manipulate them using well-defined rules and algorithms and identify
contradictions or redundancies.

The transformation of a logical proposition into CNF involves a series of steps. These
steps ensure that the resulting CNF expression consists of a conjunction of clauses, where
each clause is a disjunction of literals.

1. Equivalence Elimination: The first step is to transform all equivalences into two
implications. α↔ β becomes (α→ β) ∧ (β → α).

2. Implication Elimination: The second step is to eliminate all implications into a dis-
junction. α→ β becomes ¬α ∨ β.

3. Application of De Morgan’s Laws: The second step usually adds a negation between
the left hand side proposition. This law allows to put the negation into the propo-
sition if it was not an atomic proposition. ¬(α ∨ β) and ¬(α ∧ β) become ¬α ∧ ¬β
and ¬α ∨ ¬β

4. Distribution of Disjunction over Conjunction: At this step, only conjunctions and
disjunctions remain. Disjunctions must be distributed to have the priority on them
and have a disjunction of literals. (α ∧ β) ∨ (γ ∧ δ) becomes (α ∨ γ) ∧ (α ∨ δ) ∧ (β ∨
γ) ∧ (β ∨ δ).

5. Simplification: This last step consists in removing redundancies, double negations
and obtain a conjunction of disjunctions of literals.

Another method to transform a set a propositions in CNF is using Tseitin transformation
which uses auxiliary variables (more details in [19]).

10

In the following example, each step is useful to obtain the initial proposition in CNF:

α↔ (β ∨ γ) ≡ (α→ β ∨ γ) ∧ (β ∨ γ → α)

≡ (¬α ∨ β ∨ γ) ∧ (¬(β ∨ γ) ∨ α)

≡ (¬α ∨ β ∨ γ) ∧ ((¬β ∧ ¬γ) ∨ α)

≡ (¬α ∨ β ∨ γ) ∧ (¬β ∨ α) ∧ (¬γ ∨ α)

There is no need of simplifications because the last proposition is already in CNF.

For this work, all constraints describing a problem or a puzzle are first written in a
readable form using implications and equivalence. This transformation into CNF will be
useful to solve the problems using a SAT solver.

A disjunctive normal form (DNF) is a disjunction of cubes where a cube is a conjunction
of formulas, that is a formula of the form (l1 ∧ . . . ∧ ln) ∨ . . . ∨ (li ∧ . . . ∧ lj). As DNF will
not be used in this work, further details are left the reader on the website [21].

2.2 SAT Solvers

SAT solvers, or Satisfiability solvers, are powerful computer algorithms used to decide
the satisfiability of propositional logic formulas [29] (see also [14] which is a course that
contributed to the following explanations). These solvers employ sophisticated search
algorithms and logical inference techniques to efficiently explore the vast solution space of
possible truth assignments without constructing the whole truth table.

The main objective of a SAT solver is to determine if a given propositional logic formula
is satisfiable or unsatisfiable. If the SAT solver finds the problem satisfiable, it outputs
a satisfiable solution with a truth value assignment for each Boolean variable present in
the propositions. Otherwise, the SAT solver returns “unsatisfiable”, proving that no such
assignment exists.

SAT solvers typically operate on formulas represented in CNF, which provides a stan-
dardized format for logical propositions that facilitates efficient processing. These solvers
can effectively tackle large-scale problems, handling formulas with thousands or even mil-
lions of variables and clauses. In fact, in this work, we encountered scenarios, such as the
game of Othello, where modeling a complete game required over 10,000 Boolean variables.

The input of a SAT solver is a CNF file written in the DIMACS CNF file format. This
format is supported by almost all SAT solvers. The format is described as follow:

• lines starting with a ’c’ are comments

• the first line is of the form ’p cnf n m where ’n’ is the number of Boolean variables
and ’m’ the number of clauses

• clauses are encoded by lines terminated by a 0. For the clause (l1 ∨ l2 ∨ l3), the
corresponding encoding is ’v1 v2 v3 0’ where vi is the sign and the value associated
to the literal li. If the value associated to the literal li is i, and only l2 is negated.
The line for this clause is ’1 -2 3 0’. The 0 represents the end of a clause.

11

The DIMACS CNF file for the set (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) is:

c this is some comment
p cnf 3 2
1 -2 0
-1 -2 3 0

The output gives the satisfiability of the problem. An output to the previous example
could be:

c clasp version 3.3.3
c Reading from stdin
c Solving...
c Answer: 1
v 1 -2 3
s SATISFIABLE
c other comments

In this work, the constraints of the models described in subsequent sections are im-
plemented using CNF and solved using the sat4j solver [3]. Sat4j is a solver that uses
the Conflict-Driven Clause Learning (CDCL) algorithm and allows for tuning certain fea-
tures to adapt to specific problems [4]. Further details about these features and their
configuration can be found in the documentation [3].

2.3 Conflict-Driven Clause Learning algorithm

The Conflict-Driven Clause Learning (CDCL) algorithm is an algorithm used to solve
satisfiability problems and is used by some SAT solvers, as the one used in this work. The
objective of the algorithm is to determine a truth value assignment to Boolean variables of
the CNF formulas that make them satisfiable or prove that the problem is unsatisfiable.

The main steps of the CDCL algorithm are performed iteratively, and can be roughly
described as follows:

1. Unit Propagation: During unit propagation, truth values are assigned to variables
appearing in unit clauses, and these assignments are propagated to other clauses in
the formula. This propagation process has two effects on non-unit clauses:

• Removal: If a non-unit clause becomes satisfied (at least one literals evaluate
to true), it can be removed from the working set of clauses since it is no longer
relevant to the satisfiability of the formula. In practice, the clause is not really
removed.

• Reduction: If a literal in a non-unit clause evaluates to false, that literal is
removed from the clause. In practice, the literal is not really removed.

For example, in the set (¬x1∨¬x2), (¬x1), (x1∨x2), with the unit clause (¬x1), we
assign the value true to the literal ¬x1. Therefore, the value variable x1 is false and

12

this assignment propagates to the other clauses. The first clause becomes satisfied
and can be removed, while the third clause is reduced to (x2), which in turn indicates
that x2 must be true.

2. Decision: If no unit propagation can be performed and no conflict is detected, the
CDCL algorithm proceeds with making a decision to assign a truth value to a variable
at a specific decision level. The decision level is the number of decisions made so far.
This decision is typically guided by heuristics that aim to facilitate the search for
a satisfying assignment. The heuristic can determine whether the algorithm should
choose a positive or negative literal, as well as which specific literal to select. Once
the decision is made, the assigned truth value is propagated to other clauses in a
similar manner as unit propagation.

3. Conflict Analysis: If a conflict is detected during the propagation in the first two
steps, the algorithm performs an analysis to identify the cause of the conflict. A
conflict occurs when a subset of clauses, typically two clauses, becomes unsatisfiable.
For instance, consider the clauses (x1∨x2) and (x1∨¬x2), and let’s assume that the
literal x1 is decided. Through propagation, we obtain both x2 and ¬x2. This subset
of clauses is unsatisfiable, indicating the presence of a conflict. The algorithm learns
from the cause of the conflict by incorporating a new clause into the working set.

4. Backtracking: The algorithm backtracks to a previous decision level, undoing variable
assignments and conflict analysis, in order to search for a different assignment. The
decision level at which backtracking occurs is chosen based on the analysis of the
conflict. When a conflict is detected, the algorithm examines the learned clause and
identifies the decision level associated with the conflicting literals. The decision level
is then adjusted to backtrack to a previous state where the conflict can be resolved.
Backtracking allows the algorithm to explore alternative paths and continue the
search for a satisfying assignment.

5. Repeat: Steps 1-4 are repeated until a satisfying assignment is found or it is deter-
mined that the problem is unsatisfiable.

More details about conflict analysis, learned clauses and backtracking can be found
in [20].

The following example illustrates how the algorithm works on a simple set containing
four clauses:

(1) x1 ∨ x2

(2) ¬x1 ∨ x2

(3) ¬x1 ∨ ¬x2 ∨ x3

(4) ¬x1 ∨ ¬x2 ∨ ¬x3

The heuristic used in this example decides positive literals by increasing order. There is
no unit propagation or conflict, a decision needs to be made. The heuristic decides the
literal x1 which is propagated in clauses (1) and (2). The working set becomes:

(2) x2

(3) ¬x2 ∨ x3

(4) ¬x2 ∨ ¬x3

13

The clause (2) becomes a unit clause through the propagation of x1. The literal x2 is
assigned true with the unit propagation and propagated in clauses (3) and (4). The
working set becomes:

(2) x2

(3) x3

(4) ¬x3

Clauses (3) and (4) are two conflicting clauses. As only one decision has been done so far,
the only analysis that can be done is that variable x1 must be false. We add the learned
clause (¬x1) to the working set and backtrack to the first decision:

(1) x1 ∨ x2

(2) ¬x1 ∨ x2

(3) ¬x1 ∨ ¬x2 ∨ x3

(4) ¬x1 ∨ ¬x2 ∨ ¬x3
(5) ¬x1

Clause (5) is a unit clause and is propagated into all the other clauses, clause (1) is reduced
while clauses (2), (3), (4) are removed:

(1) x2

(5) ¬x1

The algorithm reaches the end and find a satisfiable solution. As x3 is no more in the
working set, its value can be set to true or false. The algorithm could return the solution
x1 = F, x2 = T, x3 = T.

14

3 Solving the Snake Cube with Propositional Logic

The snake cube is a puzzle which consists in the construction of a cube with a chain of
blocks. In this problem, blocks are cubic elements of the chain, there are in white and
orange in the left part of Figure 1. Cells are the locations in the final cube in 3D (right
part of Figure 1.) Each block is either aligned with the precedent and the next block in
the chain or it makes an angle with the latter two. Blocks that make an angle are called
corner blocks. The objective of the puzzle is to find the good orientation of each corner
block to form the final cube. In the basic problem, this is a chain with 27 blocks to form
a cube of size 3x3x3 as on the Figure 1.

Figure 1: snake cube: initial chain to final cube

Of course, the problem can be adapted to cubes of different size like 4x4x4 or even to
some chains that do not contain a cubic number of block, to form a rectangular solid e.g.
of size 3x4x4. The last two cases are also analysed in this section.
For the cubes of size 1 and 2, there is, for each, only one possible initial chain and the
resolution is trivial. In larger dimensions however, this puzzle becomes non-trivial and can
keep someone busy for some time. Our motivation to study this puzzle is also because
there exist various potential approaches to solve it. We here present the first attempt (as
far as we know) to solve it with propositional logic.

3.1 Modeling

We consider two natural ways to model the problem. For a chain with a cubic number
of block n ≥ 8 to form a final cube of size m with m3 = n, the two model styles are as
follows.

• The chain is ordered with values from 1 to n for each block. Cells of the cube are
identified by Cartesian coordinates, top left front cell is 1, 1, 1. j increases to the left,
k down and l back. For each cell, we create n Boolean variables to state if the block
i is in the cell j, k, l. Therefore there are m3 × n = n2 Boolean variables:

∀i ∈ [1, n], ∀j, k, l ∈ [1,m]3 pi,j,k,l =

{
1 if block i is in cell j, k, l
0 otherwise.

15

• Four Boolean variables per corner block are used to indicate the position of the next
block relative to it. It means that if the block i is a corner block, there are four
Boolean variables pi,1, pi,2, pi,3, pi,4 and the one that is true indicates respectively if
block i+ 1 is above, below, to the left, or to the right of block i. There are at most
(n− 2)× 4 Boolean variables since first and last blocks are not corner blocks.

∀i ∈ [1, n] s.t. i is a corner block, ∀j ∈ [1, 4], pi,j =

{
1 if block i has orientation j
0 otherwise.

The statement “i has orientation j” indicates the position of block i + 1 in relation
to block i. If block i has orientation 1, block i+ 1 is positioned above block i. The
same applies to the other three orientations, as explained earlier.

In the second case, there is much less Boolean variables and the problem seems to be
solved more quickly. However, modeling constraints is more complex and it is difficult to
express the problem in a convenient way. In fact, this modeling style uses the least amount
of useful information to solve the problem. As I did not find how to model constraints
with the second model style, the following analyses are conducted based on the first style.

Therefore, we will solve the snake cube with the first modeling style that requires n2

Boolean variables. The chain will thus be represented by a binary string where 1s indicate
corner blocks and 0s indicate aligned blocks. For convenience, the first and last blocks of
the chain are 0s but it does not really matter.

3.2 Constraints

According to the modeling style, we must write the further constraints on the Boolean
variables for the solver to find a correct solution. There are two rules to describe a correct
solution of this puzzle: we must respect the structure of the initial chain and all cells of
the final cube must be filled with one and only one block of the chain. Each of these two
rules can be represented respectively thanks to three and two sets of constraints.
Therefore, the problem can be entirely defined by five sets of constraints. The use of
the symbol ‘∀’ in the constraints and its similarity with the symbol ‘∧’ is explained in
Section 8.2.

The first three sets impose the structure of the chain:

• Each pair of consecutive blocks {(1, 2), (2, 3), . . . , (n − 1, n)} must be in two neigh-
boring cells in the final cube:

∀j, k, l ∈ [1,m]3, ∀i ∈ [1, n− 1] pi,j,k,l ⇒ (pi+1,j−1,k,l ∨ pi+1,j+1,k,l ∨ . . .∨ pi+1,j,k,l+1)

In the disjunction on the right side of the implication in the above formula, Boolean
variables that do not have indices within the bounds are simply removed. The dis-
junction contains at most six Boolean variables, corresponding to the six neighboring
cells. Those clauses can be rewritten in conjunctive normal form using the logical
equivalence α⇒ β ←→ ¬α ∨ β. It creates n× (n− 1) clauses.

16

• For all blocks that are not corner blocks (0s in the binary string), the previous and
next blocks must be in cells of a same row with exactly one cell between them.
The first and last block of the chain are not considered here since they do not have
respectively previous and next blocks:

∀i ∈ [2, n− 1] s.t. block i is not a corner block, ∀j, k, l ∈ [1,m]3 :

pi−1,j,k,l ⇒ (pi+1,j−2,k,l ∨ pi+1,j+2,k,l ∨ . . . ∨ pi+1,j,k,l+2)

As in the previous constraint, the right side of the implication contains at most six
Boolean variables, as those with unbound indices are removed from the disjunction.

• For all blocks that are corner blocks (1s in the binary string), the previous and next
block must be diagonally adjacent cells:

∀i ∈ [2, n− 1] s.t. block i is a corner block, ∀j, k, l ∈ [1,m]3 :

pi−1,j,k,l ⇒ (pi+1,j−1,k−1,l ∨ pi+1,j+1,k−1,l ∨ . . . ∨ pi+1,j,k+1,l+1)

The same remark regarding the number of variables in the right side of the implication
applies to this constraint as well, as mentioned in the two previous constraints. In
this case, there are at most twelve Boolean variables.

These last two sets of constraints create together (n − 2) × n clauses. With those three
sets, the chain structure is well respected. We have an illustration of those three sets in
2D in Figure 2.

Figure 2: illustration of constraints for the chain structure

To enforce the rule that each cell in the cube contains exactly one unique block, there
are multiple possibilities to describe it, each requiring two sets of constraints. The objective
is to ensure that no cell contains more than one block and that each block is present in
exactly one cell. This can be achieved by formulating constraints that cover both aspects:

1. Each block appears in at least one cell and there is at most one block per cell

2. Each block appears in at most one cell and there is at least one block per cell

3. There is at least one block per cell and at most one block per cell

17

The third set of constraints does not explicitly specify that different blocks must be present
in each cell. However, due to the constraints imposed by the chain structure, where each
block must be adjacent to the next one, it implicitly ensures that all blocks are present
in the cube. There are three possible ways to represent this, each requiring the same
number of clauses. These representations involve an “At Least One” (ALO) constraint
and an “At Most One” (AMO) constraint on a set of Boolean variables, where the set size
remains constant. A clear explanation of the ALO and AMO constraints is provided in
Section 6.2.2.

Since the number of clauses is the same for each pair of constraints, we will arbitrarily
choose the first approach for the remaining discussion:

• Each block appears in at least one cell:

∀i ∈ [1, n] pi,1,1,1 ∨ pi,1,1,2 ∨ . . . ∨ pi,m,m,m

There are m3 Boolean variables per clause and n clauses.

• At most one block per cell, or in other words, there cannot be two different blocks
in the same cell:

∀j, k, l ∈ [1,m]3, ∀i ∈ [1, n− 1], ∀h ∈ [i+ 1, n] ¬pi,j,k,l ∨ ¬ph,j,k,l

An AMO constraint uses n ×
∑n−1

i=1 i clauses. However, this number of clauses can
be reduced using techniques presented in Section 6.2.2.

The total number of clauses is n×(n−1)+(n−2)×n+n+n×(n−1)× n
2 = n×(n2

2 + 3n
2 −2)

and the total number of Boolean variables is n2.

3.3 Improvement with Symmetries

Now we have a good model and a set of clauses that perfectly describe the problem, The
objective is to find how to improve the set of clauses so that the SAT solver goes faster.
In fact, it is possible to add new clauses that will add new restrictions for the SAT solver
to converge faster to the solution (or find that the constraints are unsatisfiable.)

An interesting observation in this problem is the presence of symmetries in the snake
cube. Therefore we can add a set of clauses to prevent redundancy in the search of the
solution. In fact, several instances of the solution are the same but with a rotation or a
symmetry of the cube. For instance, if we place the first block of the snake in one corner
of the cube, it does not matter which corner we choose, all the instances we can create
with the first block in a corner will be similar. The only difference between these instances
will be a rotation or symmetry of the cube. All the instances we can create with the first
block in the corner 1, 1, 1 will be identical to those we can create with the first block in
the corner 1, 1, n, and the same applies to all other corners, whether these instances are
satisfiable or not.

What is called an instance in this section is assigning each block of the chain to a
different cell of the cube. By definition, an instance satisfies all clauses that describe the
second rule “all cells of the final cube must be filled in with a different block of the chain”.
However, an instance does not necessarily satisfy the first rule on the chain structure.

18

Thus, the objective is to find an instance that satisfies this first rule.
Two instances are similar if one is the image of the other by a rotation or a symmetry of
the cube.

Thanks to those new clauses, we can prevent the solver to test similar instances and
waste time. Still in the previous example, if putting the first block in the corner 1, 1, 1 does
not allow to find a satisfiable solution, it is useless to try to put the first block in another
corner since from another corner, all possible instances will be similar instances to the one
made by being in the corner 1, 1, 1. So, we can add a clause that says that block 1 can not
be in one of the seven other corners than the 1, 1, 1.

In order to detect when there are symmetries and so similar instances, we introduce
the notion of configuration. A configuration is like an instance but where only the first
i blocks are assigned to a cell, i ∈ [0, n]. Configuration 1 is when only the first block is
assigned to a cell (there exists n configuration 1), and configuration n is an instance (there
exists n! instances).

Recursively, starting from configuration 0, we look if there is one or more symmetry
axis in the cube. If a symmetry axis is detected, we incorporate a clause that imposes a
constraint during the transition from configuration i to i+1. This constraint ensures that
the next block can only be positioned on a specific side of the symmetry axis, precisely in
a neighboring cell relative to the one currently occupied by block i.

If a symmetry axis intersect an empty cell and that this cell is adjacent to the one
containing block i, this cell is accepted for block i + 1. If there are several symmetry
axis for one configuration i, the next block must be in one of the sections created by the
axis. An example is illustrated in Figure 3 in a 2D representation. We are currently in
configuration 1 and examining the possible configurations 2.

Figure 3: Illustration of symmetries in 2D representation

In Figure 3, only one configuration 2 is possible from configuration 1.

To be consistent, we start in configuration 0 where no block is placed. We just have an
empty cube. There are nine symmetry axis. In the case of a 3x3x3 cube, the first block
be positioned in only four different cells. We mentioned that block i + 1 should be in an
adjacent cell of the one containing block i but at configuration 0, as no block is placed,
we just take all cells from one section described by symmetry axis to put the first block.
Those four cells are shown in Figure 4. The central cell 2, 2, 2 is green but hidden by the
other cells.

19

Figure 4: possible configuration 1 from configuration 0 in 3x3x3 cube

The symmetries of configuration 0 to 1 add the clause: p1,1,1,1∨p1,2,1,1∨p1,2,2,1∨p1,2,2,2.
We obtain four possible configurations for configuration 1. We define Confi as the set of all
possible configurations i, and confi,j as the jth configuration within Confi. For example,
Conf1 contains the four configurations {p1,1,1,1, p1,1,1,2, p1,1,2,2, p1,2,2,2}, where each Boolean
variable represents a configuration within this set.

For all the configurations confi,j in the set Confi that exhibits symmetries, we introduce
the clause confi,j ⇒ x ∨ . . . ∨ z, where x, . . . , z represent the Boolean variables that
corresponds to the accepted cells for block i + 1. This clause ensures that if confi,j is
chosen, the next block (i+1) can only be placed in the specified cells x, . . . , z. Recursively,
we go through all possible configurations by incrementing i.

Using this method will create a tree with all configurations with configuration 0 as the
root node. The nodes at depth n are the set of all instances that respect the rule “each
block is in a cell next to the one of the previous block”, removing all similar instances. Due
to the large size of the tree, it is possible to truncate it after a certain number of iterations.
This is because after several iterations, the number of symmetries decreases significantly,
leading to a diminishing number of new and relevant clauses.

In Conf0, there is only one configuration which is the null configuration and this null
configuration can be represented by the True predicate. For the 3x3x3 cube, as determined
earlier, there are four configurations in Conf1. For example, the configuration conf1,1 =
p1,1,1,1 has three symmetries. The section made by those symmetries contains only one
cell of the cube. Therefore, the associated constraint is p1,1,1,1 ⇒ p2,2,1,1 ←→ ¬p1,1,1,1 ∨
p2,2,1,1. As conf1,1 accepts only one cell for the next block, it adds only one configuration
p1,1,1,1 ∧ p2,1,1,2 in Conf2.

In the code used for analyzing the complexity and computation time of the SAT solver,
we include clauses generated by configurations up to Conf3 for the 3x3x3 cube and Conf4
for the 4x4x4 cube. However, for cases such as the 3x3x4 cube which involve a rectangular
shape, the code does not include symmetry clauses. All those clauses are general clauses
that are adapted to all chains.

3.4 Resolution

Once the set of clauses is prepared, it can be passed to the SAT solver for further processing.
However, before delving into the computational aspects, it is important to consider the
features of the SAT solver in order to design a solver that is well-suited to the problem at

20

hand. In this section, we use the sat4j solver [3]. Many of its features are described in [4].
These features provide valuable insights into the customization options available with the
sat4j solver.

Among the various features offered by the sat4j solver, one feature of particular impor-
tance to us is the phase selection strategy. This strategy plays a crucial role in determining
how Boolean variables are evaluated during the solving process. When the solver encoun-
ters a point where it needs to make a decision on a literal, the phase selection strategy
guides the solver in choosing whether to assign a positive or negative value to that literal.
This decision can have a significant impact on the solver’s performance and efficiency in
finding a solution.

In order to adapt the solver to our problem, we need to examine how this feature
affects the resolution process. The objective of the symmetry clauses we have added is to
provide a means of constructing the cube step by step from configuration 0 to a satisfiable
instance. Therefore, we want to decide positive literal because they will be propagated in
other clauses. In a way, we want to follow the configuration tree with a sort of depth first
search (DFS), DFS is explained in Section 4.2.

Furthermore, in line with the construction approach, we must initially determine the
placement of the first blocks. This implies that clauses related to configuration 0 should
be prioritized, followed by subsequent configurations. Regrettably, none of the features
in sat4j enable us to establish a preference order for clauses. Nevertheless, despite the
inability to prioritize these clauses, they still serve a valuable purpose. Hence, in this
scenario, we employ the positive literal selection strategy.

Another strategy that can be of interest is determining negative literals. This is because,
in the case of a 3x3x3 cube, there are only 27 positive literals and 702 negative literals
at the conclusion of a satisfiable solution. Consequently, making a decision on a negative
literal has a higher probability of being a favorable choice. However, since we have an
AMO constraint that create a lot of clauses with two negative Boolean variables. Deciding
on a negative literal will remove all the clauses where this literal appears for the AMO
constraint but will not make a unit propagation on these clauses. Therefore, there will
be fewer variables that will take on a value after a negative decision than after a positive
decision. In this case, we use negative literal selection strategy.Taking a strategy that mixes
positive and negative decision is never the best for our problem.

In the following Table 1, we have the computation time in seconds of the SAT solver
for different size of cube, with and without symmetry clauses, and with different decision
strategies. The set of symmetry clauses was not tested on a non cubic problem.

With symmetry clauses Without symmetry clauses
Decision strategy Positive literal Negative literal Positive literal Negative literal
3x3x3 sat 0.11 0.06 0.2 0.08
3x3x3 unsat 0.78 0.89 2.34 4.52
3x3x4 sat / / 33.3 0.42
4x4x4 sat No result 671 No result 231

Table 1: computation time in second of sat4j solver with the “at most one block per cell”
constraint

21

The general tendency that we observe is that adding symmetry clauses is beneficial for
the speed of the solver. Moreover, the negative literal decision strategy seems to perform
better than the positive one except in the case of an unsatisfiable problem.

The use of symmetry clauses in a SAT solver has a clear advantage when it comes to
determining the unsatisfiability of a problem. These clauses help the solver avoid redundant
computations for similar problem instances, resulting in faster detection of unsatisfiability.
In fact, the solver can infer more clauses and find more quickly two or more contradictory
clauses. However, when it comes to satisfiable problems, drawing significant conclusions
becomes challenging. The way the SAT solver proceeds resembles an examination of all
possible instances. Therefore, the time required to find a satisfiable solution is highly
dependent on the specific problem and cannot be generalized.

However, there are some insights we can gain when considering the impact of symme-
try clauses on the distribution of satisfiable and unsatisfiable instances. Let’s consider a
hypothetical scenario where, by removing all similar instances, we have only one satisfi-
able instance. Initially, there are a large number of unsatisfiable instances compared to
satisfiable instances. The inclusion of symmetry clauses reduces the total number of sat-
isfiable instances to one as it removes all similar instances. While the proportion between
the number of satisfiable and unsatisfiable instances remains the same, the elimination of
similar instances with symmetry clauses reduce the search space.

Let’s use arbitrary numbers to illustrate the example. Initially, we have x = 100 sat-
isfiable instances and y = 9900 unsatisfiable instances. After applying symmetry clauses,
we have x = 1 satisfiable instance and y = 99 unsatisfiable instances. In both cases, the
probability of finding a satisfiable instance is 1

100 . However, the expected time required
to find the first satisfiable instance is lower when using symmetry clauses. As the SAT
solver generates a new clause each time there is a conflict with the CDCL algorithm (see
Section 2.3), the solver do not try the same instance twice. The numbers used are not
realistic but are solely employed for the purpose of illustrating the maintained proportion
between satisfiable and unsatisfiable instances in a simpler manner.

To conclude, in theory, the symmetry clauses should help but since the way the SAT
solver works has some randomness, it is not always the case in practice. It explains why
the computation time for solving the 4x4x4 cube can be greater with symmetry clauses.

An interesting point that was noticed afterward is that changing the way to express the
second rule “exactly one block per cell and each block in a cell”, with the second proposition
of Section 3.2 can have an impact on the SAT solver efficiency. Indeed, with the constraint
“at most one block per cell”, when we decide a positive literal, we know that the cell is
‘locked’ but the block can still be in another cell and lock another cell. It is when all cells
will be locked that we can see that the constraint at least one cell per block is unsatisfied.

If we use the constraint “at most one cell per block”, once a positive literal is decided,
the block is ‘locked’ but the cell stays ‘unlocked’. Thanks to the constraints on the chain
structure, the two previous and two next blocks can not be in the same cell.

With this implementation, we obtain the results of Table 2:

22

With symmetry clauses Without symmetry clauses
Decision strategy Positive literal Negative literal Positive literal Negative literal
3x3x3 sat 0.28 0.31 0.16 0.25
3x3x3 unsat 1.21 2.22 5 12.2
4x4x4 sat 17 60 101 145

Table 2: computation time in second of sat4j solver with the “at most one cell per block”
constraint

The results indicate that the inclusion of symmetry clauses has a beneficial effect on
the algorithm. This aligns with the original objective of the change. Therefore, it can be
concluded that the positive literal decision strategy is the preferable approach.

3.5 Future Works

There are still several directions for improvement to achieve better efficiency. With the
following suggestions, I propose that future research focuses on their implementation.

• We can exploit the fact that by construction, as we can see in Figure 1, we know
that an ‘even’ block can not be close to an ‘odd’ block in the cube. ‘Even’ blocks are
in white and ‘odd’ blocks are in orange in the figure.

• We can improve symmetry clauses by constructing them directly with the chain
structure because for now, when we compute Confi+1 with Confi, we do not take
into account if block i is a corner block or not.

• As discussed in the previous section, there are two ways to describe the second rule,
each with its disadvantages. Maybe using the two representations can be positive
even if it increases the number of clauses. In order to reduce the number of clauses,
we can use the 2 product encoding for AMO constraints as explained in Section 6.2.2.

• We can reduce the number of Boolean variables by using a binary encoding (see
Section 6.2.2) for cells location. It means that instead of having n Boolean variables
to represent n locations of cells, we can use ⌈log2(n)⌉ Boolean variables. However,
the expression of clauses is much more difficult.

• We could use another SAT solver or even customize a problem specific SAT solver
that allows to give priority on clauses and Boolean variables to choose when there is
a decision to do.

23

4 Model Checking

Model checking is a technique used to verify whether a state space of a model adheres
to a given set of specifications and rules. It is particularly useful for ensuring liveness
requirements and preventing livelocks in concurrent programs, see [11]. The model and its
specifications are described using a specific language that can be processed and verified by
the model checker.

To verify the model, the model checker tool systematically explores the state space of
the model to identify any buggy traces. The model itself can consist of multiple compo-
nents, each capable of performing various actions. The state space can be represented as a
directed graph, where nodes represent states and edges represent actions. Specifications are
encoded into the model, including states that need to be avoided, such as system crashes.
The model checker checks whether these specified states exist within the state space of
the model. If such states are found, the model checker returns a buggy trace, which is a
sequence of actions that led to the undesired state, highlighting what needs to be avoided,
see [35].

A major challenge in model checking is the problem of combinatorial explosion of
states. When exploring the state space, the model checker can encounter an enormous
number of states, which can make the verification of complex systems nearly impossible.
To address this issue, techniques such as model reduction or simplification of specifications
and properties are employed to reduce the size of the state space. By applying these
techniques, the model checker can focus on a more manageable subset of states, enabling
more efficient and feasible verification, as discussed in [35].

In this study, the application of model checking focuses on a simple model-checking
problem and consists in a verification of whether a formula in propositional logic is satisfi-
able given the rules of the problem. The acceptable states of the problem are encoded as
undesired states, and the rules and moves of the problem are represented as actions. The
initial state of the problem is encoded as the root node of the model checker. By traversing
the state space of the problem through the execution of actions, the model checker aims
to identify if an undesired state is reached. In such cases, the model checker stops and
returns the corresponding buggy trace. While the model checker perceives this as an error,
for us, it represents the solution to the problem at hand.

To summarize model checking can be characterised by five mains steps:

1. System Modeling;

2. Specification of Properties;

3. Exhaustive State Space Exploration;

4. Property Verification;

5. Handling Combinatorial Explosion;

Another challenge in model checking arises when the state space is either infinite or
bounded but contains cycles. Without proper handling of cycles, the model checker may
get trapped in an infinite loop and fail to terminate. To address this issue, two primary
solutions have been developed.

24

• The first approach is to set a limit on either the number of states visited or the
depth of the search (see Section 4.2). By doing so, the model checker explores only
a portion of the state space, potentially missing out on a valid solution. However,
this method helps prevent the model checker from getting stuck in infinite loops and
allows for a termination condition to be reached.

• The second approach is to prevent cycles in the state space. One naive way to achieve
this is by storing all the previously visited states in memory and ensuring that the
model checker does not revisit the same state. However, this method can become
memory-intensive and slow, especially when dealing with a large number of reachable
states, such as in the case of a 3x3 Rubik’s cube.

For the Rubik’s cube example, we used the spin model checker [17]. The spin model
checker requires a Promela file as input, which contains the model’s details. It explores
the state space using either a depth first search (DFS) or a breadth first search (BFS), as
described in Section 4.2. The tool also provides options to adjust memory management
and set a depth limit for the search. In the case of the Rubik’s cube problem, a depth limit
is necessary to find a solution using DFS.

4.1 Promela Model

In the Promela file, the model is described with several components. These components
are processes encoded as proctype and run concurrently. Each process has a set of actions
that can be performed. These actions are expressed as guarded command sequence. To
write a Promela model, we need to follow the steps:

1. Identify processes: We start by identifying the processes required in the system. Each
process represents a component that interacts with other processes.

2. Define process behavior: We can specify the behavior of each process using a proctype
declaration. Within a process, we define actions, state variables, and transitions be-
tween different states. Actions can include sending and receiving messages, updating
variables, or executing specific operations.

3. Declare global variables: We declare the global variables used by multiple processes.
These variables represent the shared state of the system and can be accessed and
modified by different processes.

4. Model process interactions: In cases where processes need to communicate, we specify
how it will be done. This includes communication, synchronization, and coordination
mechanisms such as message passing or shared variables.

5. Define system properties: We specify the properties or assertions that need to be
verified in the model. We use assert statements to define these properties. If an
assertion is not satisfied, it results in an error. The acceptable states of the problem
are defined as negated assertions to stop the algorithm when reached.

6. Use a model checker: The Promela model is send to a model checker such as spin
that is used in Section 5.

An introduction to the Promela language can be found in the course [31]. It is important
to note that using numerous processes can make the model checking process less efficient.

25

4.2 Depth First Search and Breadth First Search

The model checker is used to explore the state space of a system or a problem. This
state space can be represented as a directed graph, where nodes represent states and edges
represent actions between states. For instance, in the case of a Rubik’s cube, each state of
the cube corresponds to a node, and the movements of the cube are represented by edges
in the graph. The two main algorithms used to traverse a graph are Depth First Search
(DFS) and Breadth First Search (BFS). This section is based on the course [15].

DFS is an algorithm used to traverse trees or graphs, directed or not. In the case of a
tree, the algorithm starts from the root node. For a graph, it can start either from a node
representing the initial state or, if none is specified, from an arbitrary node. Assuming the
graph is depicted with the starting node at the top and other nodes positioned lower based
on their distance from the root node, DFS follows the principle of “depth before breadth”.
This means it explores the deepest nodes in a branch before visiting neighboring nodes.

DFS is implemented using a Last-In-First-Out (LIFO) queue [9] to traverse the tree or
graph vertically downwards from the starting node. It backtracks whenever it encounters
a node with no unvisited neighbors. In the case of a graph, which can have cycles, DFS
labels visited nodes to avoid revisiting them. The LIFO queue can be seen as a vertical
stack where nodes are stacked on top of each other.

The algorithm starts by placing the starting node in the queue. To visit a node, we
remove it from the queue and add all its unvisited neighboring nodes to the LIFO queue.
The last added node is positioned at the top of the queue. At each step, the algorithm visits
and removes the node at the top of the queue, which corresponds to the most recently added
node. It then adds any unvisited nodes accessible from this current node to the queue.
This process continues iteratively until the entire graph is traversed. When no more nodes
or unvisited nodes can be reached from the current node, the algorithm backtracks to the
node at the top of the queue (which belongs to a different branch in the case of a tree). If
a node is accessible from multiple other nodes and appears multiple times in the queue, it
is only visited once due to the labeling mechanism. When a labeled node is at the top of
the queue, it is simply removed. The search terminates when the queue becomes empty or
when a specific target node is found.

In the case of a search tree with multiple acceptable states, which correspond to ac-
cepted nodes, the search can:

• Terminate upon finding an acceptable state. However, this state may not necessarily
be the accepted node with the shortest path from the starting node.

• Terminate upon reaching the end of the search tree, indicating a finite search tree.

• Terminate after visiting all branches up to a maximum depth defined as the search
limit.

• Never terminate if there is no limit and the search tree is infinite. In this case, it is
possible to continuously explore the same branch, going deeper and deeper.

The time complexity of the DFS algorithm is O(|V |+|E|), where |V | represents the number
of vertices and |E| represents the number of edges in the graph. The space complexity is
O(|V |) in the worst case.

26

BFS is an algorithm used to traverse trees or graphs, directed or not. In the case of a
tree, the algorithm starts from the root node. For a graph, it can start either from a node
representing the initial state or, if none is specified, from an arbitrary node. Assuming the
graph is depicted with the starting node at the top and other nodes positioned lower based
on their distance from the root node, BFS follows the principle of “breadth before depth”.
This means it explores all nodes at the current level before proceeding to the next level in
the graph.

BFS is implemented using a First-In-First-Out (FIFO) queue [9] to traverse the tree
or graph horizontally across the levels. It systematically explores all neighboring nodes
before moving on to deeper levels or branches. In the case of a graph, where cycles can
exist, BFS uses a labeling mechanism to mark visited nodes and avoid revisiting them.
The FIFO queue can be visualized as a horizontal line where nodes are added to the back
of the queue and removed from the front.

The algorithm begins by placing the starting node in the queue. To visit a node, we
remove it from the front of the queue and add all its unvisited neighboring nodes to the
FIFO queue. At each step, the algorithm visits and removes the node at the front of the
queue, which corresponds to the node that has been in the queue for the longest time.
Iteratively, the algorithm explores all nodes in the current level before proceeding to the
next level. The BFS algorithm continues this process until the queue becomes empty,
indicating that all nodes have been visited, or until a specific target node is found. If a
node is reachable from multiple paths, it will be added to the queue multiple times, but
it will only be visited once due to the labeling mechanism. When a labeled node is at the
front of the queue, it is simply removed. The BFS algorithm ensures that all nodes at a
given level are visited before moving on to the next level.

In the case of a search tree with multiple acceptable states, which correspond to ac-
cepted nodes, the search can:

• Terminate upon finding an acceptable state. It is guaranteed to be the accepted node
with the shortest path from the starting node.

• Terminate upon reaching the end of the search tree, indicating a finite search tree.

• Terminate after visiting all branches up to a maximum depth defined as the search
limit.

• Never terminate if there is no limit and the search tree is infinite.

The time complexity of BFS is O(|V |+|E|) and the space complexity is O(|V |).

We will see with the Rubik’s cube example that both searches have their advantages
and inconvenient. In the case of a tree that is very deep but not wide, the DFS algorithm
will require more memory compared to BFS. This is because the DFS stack stores all
the nodes in a branch along with their neighboring nodes. On the other hand, the BFS
algorithm only needs to store at most the nodes of a certain level and the nodes of the next
level in memory. Therefore, in a shallow but wide tree, BFS will consume more memory.
Figure 5 illustrates both types of searches.

27

Figure 5: DFS and BFS in a finite tree

The evolution of the LIFO queue during the DFS is as follows:

initial queue : 1

node 1 visited: 3 2

node 2 visited: 3 5 4

node 4 visited: 3 5

node 5 visited: 3

node 3 visited: 6

node 6 visited: ∅

The evolution of the FIFO queue during the BFS is as follows:

initial queue : 1

node 1 visited: 2 3

node 2 visited: 3 4 5

node 3 visited: 4 5

node 4 visited: 5 6

node 5 visited: 6

node 6 visited: ∅

28

5 Solving the Rubik’s Cube with Model Checking

The Rubik’s cube is a puzzle which consists in a cube with each face divided in several
facelets. The cube is formed by small cubes which can each move somehow independently.
The objective is to rotate faces of the cube in order to have each face of a uniform color.
There are six faces and six different colors. In a nxn cube, there are n2 facelets by face
and n2 facelets of each color.

There exist many variants of the Rubik’s cube that are no more cube. In this section,
we will look into the 2x2 cube and how to solve it with a model checker. Other ways to
solve Rubik’s cube exist such as the Fridrich Method (see [13]) but still no method uses
the model checker to get there.

Figure 6: 2x2 Rubik’s cube: from a random initial configuration to the acceptable state

Indeed, the 2x2 cube is similar to the well-known 3x3 cube, but with fewer possible
movements and, consequently, fewer possible states. This is why the analysis of model
checking on the Rubik’s cube can be conducted more effectively using the 2x2 Rubik’s
cube as a basis.

5.1 Modeling

The cube is composed of six faces, each of them ordered from 1 to 6 as shown in Figure 7.
In the figure, face 1 corresponds to the top face and the face 2 correspond to the front face.
The remaining faces are deduced from these first two.

Each face has four facelets ordered from 1 to 4. A configuration of the cube associates
a color to each facelet of each face. A valid configuration is a configuration that allows,
with some moves, to reach an acceptable configuration.

The difference between a state and a configuration is that several configurations corre-
spond to the same state. Actually, any rotation of the whole cube keeps the cube in the
same state. For example, on Figure 6, if the red face goes up, the white face goes left and
the blue face goes front, the state is unchanged, but the configuration is different. As there
are 24 different rotations of the whole cube that correspond to the same state, it means
that there are 24 configurations but one state that are acceptable. Opposite colors are
always in pairs in an acceptable configuration : white-yellow, red-orange, blue-green. This
explains why there are not 6! acceptable configurations.

The second aspect in the modeling to solve the cube is to describe authorized move-
ments. A movement is the description of how a face can rotate and a move is the re-
alisation of a movement. In a first approach, looking at the cube in front, there are 18
possible rotations. Each face can rotate 90° clockwise, counterclockwise or a half turn.

29

Three movements per face and six faces gives 18 movements. For a 2x2 cube, among those
18 rotations, some are redundant.

Figure 7: faces and facelets numbering

Indeed, based on the definitions of states and configurations mentioned earlier, it be-
comes evident that all movements in the Rubik’s cube occur in pairs. For example, a
clockwise rotation of the left face results in the same state as a clockwise rotation of the
right face. The only distinction is a rotation of the entire cube, resulting in two different
configurations but ultimately representing the same state. By exploiting these symmetries,
we can eliminate nine redundant movements. One has the flexibility to decide whether a
180° rotation is counted as one or two moves. In the case where it is counted as two moves,
these half-turns need to be subtracted from the total count of possible moves. There are
still three ways to model the movements:

• Three movements: this is the simplest way to model the cube, with only left, up and
front clockwise rotation. In fact, two or three clockwise rotations of the same face
leads to the same configuration as a half turn or a counterclockwise rotation of this
same face.

• Six movements: starting from the 18 initial and removing the six half turns, there are
still 12 movements. By excluding the six symmetries of these pairwise movements,
we are left with the left, up and front clock and counterclockwise rotations. In this
case, the optimal number of moves to reach the acceptable state is less or equal to
the case with three movements (equal if the optimal solution only needs clockwise
rotations.)

• Nine movements: in fact, to have the optimal solution in terms of number of moves,
nine movements are needed. We must add the possibility to do a rotation of 180° in
one move, which adds three movements to the six ones just described. This model
only remove the nine symmetries from 18 initial movements.

In those three cases, all reachable configurations starting from one initial configuration
are the same. The case with three movements is the minimum number of movements
required to reach all the states of the 2x2 cube. As defined above, the model style with six
movements is an intermediary between the two other model style so we will analyse the
two other in the next section.

30

Figure 8: Three movements model style of the cube

5.2 States and Configuration

Once all the movements are described as well as the acceptable configurations, we can
launch the model checker and analyse the results. However, we must reflect more on the
2x2 Rubik’s cube before running the model checker.

In fact, it is possible to prevent some cycles to happen. For example, in the three
cases described above, executing four times the same movement will always lead to the
same configuration. With a naive storage approach, it is not possible to efficiently prevent
all cycles. In fact, in order to ensure that we never revisit the same configuration, we
would need to store all previously visited configurations. With a naive storage method, we
would require 9 bytes for storing one configuration (24×3bits). As there are more than 88
million configurations, looking at each of them before making a movement becomes very
expensive. In future research, another way to prevent all cycles would be to identify all
sequences of moves that keep the cube in the same configuration. Preventing these move
sequences would be more efficient as it would only require keeping track of the last few
moves.

Therefore, if the model checker use a depth first search (DFS) defined is Section 4.2, it
requires a limit in the depth. Otherwise it will stay in the same branch going deeper and
deeper indefinitely because the same configuration can occur twice or more and there will
always be one more authorized movement.

The 2x2 Rubik’s Cube is composed of 8 small cubes, which are all corners. We will
refer to these small cubes as corners. It has 3 674 160 states which correspond to 7!× 36,
see [26]. Intuitively, it seems to be 8! × 38 because, if we take the 8 corners and we need
to reconstruct the cube, the first corner can be placed in one of the 8 positions. Then,
the second corner can be placed in one of the remaining 7 positions, and so on until the
last one. This corresponds to the mathematical concept of permutations of the 8 corners,
which can be counted as 8× . . .×1 and is denoted as 8! (read as “8 factorial”). Additionally,
each corner can have 3 orientations. Since each cube can be oriented in one of the 3 ways,
this does 3 × . . . × 3 = 38 possibilities. Thanks to the definition of a configuration, the
number 8!× 38 looks to be the number of configurations. However it is not the number of
valid configurations.

31

Actually, there are certain configurations that are unreachable in a solvable 2x2 Rubik’s
cube. When seven corners have their orientations determined, the orientation of the last
corner becomes fixed with only one possible configuration, since corner rotations occur in
pairs. This reduces the total number of configurations to 8! × 37. Thus, we now have
the accurate count of configurations. As we have defined earlier, there are 24 times more
configurations than states which gives 8!×37

24 = 8!×37

8×3 = 7!× 36.

More formally, it comes from the fact that to prevent rotations of the whole cube, we
need to fix the first corner at a fixed place with a fixed orientation and all the other corners
move in relation to it. It finally gives a permutation of seven corners and an orientation
for six of them, see also [26].

The number of states in the 2x2 cube, which amounts to “only” 3 974 160 possible
states, is significantly lower compared to the 43 252 003 274 489 856 000 states of the 3x3
cube. This relatively smaller number of states makes it feasible for a computer to handle.
However, the question remains as to how much the depth of the search can be limited.

5.3 Resolution

The implementation of the model follows the explanation provided in Section 4. It involves
one process with three or nine guarded command sequences, each corresponding to a spe-
cific movement. After each guarded command sequence, the model checker verifies if an
acceptable configuration has been reached. If this is the case, the model checker terminates
and returns the buggy trace, which effectively represents the solution to solve the cube.

The depth limit for Rubik’s cube resolution is called the God’s number (demonstration
in [5]). It is the maximum number of moves to go from one state to any other possible state
trying to use the fewest movements as possible. If we construct a graph where vertices are
the states and edges are moves, the God’s number would be the diameter of the graph.
This number depends on the definition of movements. For the 2x2 Rubik’s cube, the God’s
number is 14 when we consider only 90° rotations (six movements model) and 11 when we
allow 180° rotations (nine movements model).

This God’s number allows to put an upper limit for the depth of the search. If the
starting state of the algorithm is always a possible state, it is useless to have a limit in
depth for the BFS because the algorithm will always find the optimal solution which is less
or equal to the God’s number of moves. Otherwise, if non feasible states are allowed as
starting state, we also need to put the limit for the BFS. It will detect when the Rubik’s
cube is feasible or not.

The God’s number for the model with three movements is unknown but since each
movement of the nine movements model can be done in at most three moves of the three
movements model, the God’s number is at most 3× 11 = 33.

With this limit on the depth of the search, we can run the algorithm to see which
one between depth first search (DFS) and breadth first search (BFS), see Section 4.2 is
best. Computation times presents in Table 3 is calculated using different limits of depth
on an unfeasible starting state. By taking an unfeasible starting state, we can see the
time for each search to go through the whole search tree without finding any buggy trace.
Therefore, it represents the time required to determine that there is no solution.

32

max 9 moves max 10 moves max 11 moves

search time memory
used search time memory

used search time memory
used

DFS 0.11s 132Mb 0.16s 136Mb 0.72s 166Mb

BFS 8.14s 1723Mb 40.2s 4618Mb no result not enough
memory

Table 3: Computation time and memory used by the two search algorithms

One thing to mention about the memory used is that there are 128Mb used for the
hash table required by the algorithm. The model checker used in this section is the spin
model checker [17]. The operation of a model checker is explained in Section 4. As the
results show, the DFS is much faster. Actually, the memory used by the DFS is lower and
much less time is wasted in managing this memory as explained in Section 4.2.

The problem with DFS is that with a limit of 11 moves, we are not sure to have the
optimal solution in terms of the minimal number of moves (most of the time, DFS gives a
solution where the number of moves is worth the limit). To obtain the optimal solution,
there are two main ideas:

• Use BFS. In this case, we always find the optimal solution in one search but it is
possible to have to wait for a while if the optimal solution is 11 moves.

• Use several times the DFS. In this case, there are again different strategies to reduce
the search time but in any case, it will be better in terms of time than BFS. In fact,
even by running several times the DFS with a limit going from 1 to the optimal
number of moves, it is faster than running once the BFS.

Let’s consider a practical approach for ordering the limit to execute the DFS. Previous
searches have exhaustively explored all possible initial states to determine the optimal
number of moves required for each of them [5]. The results are summarized in the following
table, which displays the number of states at different distances from the solved state.

Distance from start number of states
0 1
1 9
2 54
3 321
4 1847
5 9992
6 50136
7 227536
8 870072
9 1887748
10 623800
11 2644
total 3674160

Table 4: Number of states for each distance from start

33

The median number of moves is 9 and the average number is 8.75 moves. By taking
the computation time to do a DFS for each distance, we found the best way to have, on
average, the smallest computation time to find the optimal solution. First, we must run
a DFS with a limit of nine moves. Then, if no solution is found, we increase the limit by
one until a solution is found. At the limit of 11, a solution should be found if the initial
state is a valid state. Otherwise, we decrease the limit by one until no solution is found.
The optimal solution is therefore the last solution found.

Details of this method depends on the computation time of each distance from start and
number of states that are at this distance. Therefore, this method is specific to the nine
movements model. The average computation time of this method is less than a quarter of
a second to find the optimal solution if the initial state is valid.

The results of the model with three movements cannot be directly compared to those
of the model with nine movements. Although both models can find the optimal number
of movements by decreasing the limit, the optimal solution in one model is not necessarily
equal to the optimal solution in the other model. In the model with three movements,
the optimal solution will always be greater than or equal to the optimal solution with
nine movements. Since these optimal solutions are different, the two models cannot be
compared based on this aspect.

With the model style with three movements, the same move can not be done more
than three times in a row, otherwise we find ourselves in the same configuration. It will
allow to reduce the size of the search tree in width. A DFS simulation with a maximum
of 33 moves computes the time to traverse the search tree, which includes every possible
state at least once, as previously mentioned. When discussing the search tree, it is more
appropriate to refer to states rather than configurations. This is because, in all cases, only
movements of the top, front, and left faces are considered, and the bottom corner at the
right back remains unchanged. As a result, there are no two configurations that represent
the same state within the search tree.

The computation time to solve the Rubik’s cube with the three movements model is 5s
and the memory used is 402Mb. Even if we said that the two models could not be compared,
this model is not better performing than the one with nine movements. Moreover, there
is no way to find the optimal solution, where the optimal solution is the one that uses the
least face rotations and where a 180° rotation has the same weight as a 90° face rotation.
Actually, to find the optimal solution in this sense, we should specify in our model that
three clockwise rotations of the same face count as only one move but this leads to the six
or nine-movement model.

All those results are theoretically computed because we go through the whole search
tree of an initial state which is not valid. In practice, if we only have valid initial states,
the solution is found even faster because we only explore a subset of the search tree.

One last thing to remember is that those results are computed with a model checker.
As for a Rubik’s cube 3x3, the number of different movements is higher and God’s number
is equal to 20 (for a model that accept 180° rotation), the computation time increases a lot
and it becomes difficult to find a solution with a model checker. There exist solvers that
provide a solution in a few seconds for the 3x3 Rubik’s cube but they use other methods
or they use hard coding of ready-made techniques that are known to solve Rubik’s cube.
At this time, I do not see any improvement that could be useful to improve the computation
time and allow us to solve the 3x3 Rubik’s cube with a model checker in a reasonable time.

34

6 Solving the Rubik’s Cube with Propositional Logic

The resolution of the Rubik’s Cube using a SAT solver is interesting for two main reasons.
Firstly, it allows us to explore the possibility of solving the 2x2 cube more efficiently
compared to using a model checker, despite the fact that the model checker is already
very fast. It raises the question of whether we can extend this approach to solve the 3x3
cube, which currently remains a challenge for the model checker. Secondly, it is interesting
pedagogically to present various classes of problems that can be modeled with propositional
logic and solved with a SAT solver.

Actually, in Section 3, we used the SAT solver to solve a static problem. This is a
problem where we are looking for a satisfiable instance of the problem and where there are
no steps. Another popular example of a static problem is the Sudoku problem, where the
goal is to fill in the empty cells with numbers that satisfy the game’s rules.

In this section, the problem is dynamic. It means that the problem evolves step by step
and we can talk about states in the problem. In dynamic problems, we are looking for a
sequence of actions leading to an acceptable state. Another dynamic problem is Solitaire,
where the objective is to find a series of movements to eliminate each ball from the board.
These problems are shown in Figure 9.

Figure 9: Static vs dynamic games

A dynamic problem can be seen as a static problem where the instance that we find is
a series of actions, one for each step. As an illustration, in the case of Sudoku, the instance
involves the task of assigning a number from 1 to 9 (in a 9x9 Sudoku) to each empty cell.
Conversely, in Solitaire, the instance is assigning a single action for each step ranging from
1 to n. A step of a dynamic problem comprises choosing an action and updating the state.

To deal with a dynamic problem as a static problem, it is essential to have a finite
number of steps. Without such a limitation, determining the required number of Boolean
variables becomes impossible. Since each step requires at least one action, and the actions
necessitates Boolean variables, an unbounded number of steps would imply an unbounded
number of Boolean variables. Consequently, it can not be handled in propositional logic
as a unique formula, and solved with one call to a SAT solver.

For the Rubik’s cube, the number of steps is not known precisely, but it is limited by the
God’s number (as discussed in Section 5.3). On the other hand, for the Solitaire problem,
the number of steps is known exactly and corresponds to the number of balls minus one.
While dynamic problems can be addressed using a model checker, their efficiency is not

35

always guaranteed. In certain cases, using propositional logic to tackle these problems can
offer improved performance.

6.1 Modeling

The modeling of a dynamic problem can be divided into two components: the represen-
tation of states and the representation of actions (or also called movements in the case of
the Rubik’s cube). As discussed earlier (Section 5.3), there is a limit on the number of
steps in the problem. In this section, a state is equal to a configuration in Section 5.2, as
it represents a picture of the problem at some point.

Actions and states are linked. We start from an initial given state zero, and at each
step one action ai, i ≥ 1 is chosen according to the state si−1. Implicitly, an action also
depends on the previous actions. Once the action ai is chosen, the state si−1 is updated
to obtain the state si. The state si, i ≥ 1 only depends on the state si−1 and the action
ai. This link between states and actions is called a Markov Decision Process.

In order to model the Rubik’s cube, we drew inspiration from the work of Jingchao
Chen [7], who presented a SAT solver-based approach for solving the 3x3 cube. However,
it’s important to note that the computation time of the SAT solver increases exponentially
with respect to the number of steps. To overcome this limitation and ensure the solver can
handle configurations that require up to 20 steps to solve, he proposed a SAT encoding
of the problem and used a problem-specific solver. The algorithm of the specific solver is
capable of generating the necessary 20 actions when required, thereby enabling the solution
of all possible initial states of the 3x3 Rubik’s cube.

We extended this method to the 2x2 cube by preserving the same model style as
described in Section 5.1, which includes nine movements, six faces, and 24 facelets. In this
adaptation, an action corresponds to a movement of the top, left, or front face. The main
objective is to discover a solution that enhances the encoding approach to further improve
efficiency while using a general SAT solver.

According to Jingchao Chen’s model style, we use one Boolean variable by possible
action for each step, that is, nine Boolean variables for the nine movements, and three
Boolean variables to specify the moving face. It allows to have a better encoding of
constraints. For states, we use a binary encoding for the color of each facelet, which means
that only three Boolean variables are needed instead of six. More explanation on the
binary encoding is provided in Section 6.2.3. A state is therefore defined by 24 times three
Boolean variables and an action by 12 Boolean variables.

As explained in Section 5.3, moving the same face twice in a row is useless since it
can be achieved with a single action. This means that an action depends not only on the
previous state but also on the previous action. Therefore, we have a Partially Observable
Markov Decision Process (POMDP) for the 2x2 Rubik’s cube, as shown in Figure 10.

Figure 10: Simplified Partially Observable Markov Decision Process of Rubik’s cube 2x2.

36

For a convenient SAT encoding, we also need a Boolean variable to ensure that an
acceptable state is reached. It adds one Boolean variable per state which is equal to 1 if
the state is an acceptable state. At least one state must be an acceptable state.
At the end, since there is a limit of 11 actions, we have 11 × 12 = 132 Boolean variables
for actions and 12 × (24 × 3 + 1) = 876 Boolean variables for states. Here is the list of
Boolean variables:

1. c(i, j, k, l) is the lth color bit of facelet j of face i at state k;

2. a(m, s) = 1 if step s corresponds to action m (among the nine movements);

3. f(n, s) = 1 if face n (among top, left and front face) at step s is moved;

4. t(k) = 1 if the state k is an acceptable state.

With i ∈ [1,6], j ∈ [1,4], k ∈ [0,11], l ∈ [1,3], m ∈ [1,9], n ∈ [1,3], s ∈ [1,11].
The set M containing values of m can be divided in three subsets M1 := {1, 2, 3},M2 :=
{4, 5, 6} and M3 := {7, 8, 9}. Each subset of action corresponds to one moving face. The
face n = 1 corresponds to moving the top face and is associated to the subset of actions
M1 which represents moving the top face of 90° clockwise, 180° or 90° counterclockwise.
For n = 2 and 3, it is the same for the left face and the front face. The set N := {1, 2, 3}.

In the binary encoding of colors, one reads the three Boolean variables as the bits of
a binary number. Therefore, we can have a number from 0 to 7. Each number from 0 to
5 represents a color while 6 and 7 are forbidden. 0 corresponds to orange, 1 to red, 2 to
green, 3 to blue, 4 to yellow and 5 to white in our encoding.

6.2 Constraints

The SAT encoding of the Rubik’s cube involves five sets of constraints, each of which can
be further decomposed into smaller subsets. The use of the symbol ‘∀’ in the constraints
and its similarity with the symbol ‘∧’ is explained in Section 8.2, and the explanations of
AMO and ALO constraints is in Section 6.2.2.

• The initial state must be respected. We obtain this thanks to:

∀i ∈ [1, 6], ∀j ∈ [1, 4], ∀l ∈ [1, 3] IS(c(i, j, 0, l))

where, for each i, j, k, l, IS(c(i, j, k, l)) = c(i, j, k, l) if the lth bit color of facelet j of
face i is 1 at the initial state, otherwise IS(c(i, j, k, l)) = ¬c(i, j, k, l).

• Exactly one action must be chosen at each step with the corresponding moving face.
The moving face is described with:

∀s ∈ [1, 11] ALO f(N, s) ∧ AMO f(N, s)

Moreover, for each moving face, at most one action can be done

∀n ∈ [1, 3], ∀s ∈ [1, 11] AMO a(Mn, s)

37

For the face chosen to move, at least one corresponding action should be true.

∀s ∈ [1, 11], ∀n ∈ [1, 3] f(n, s)⇒ ALO a(Mn, s)

Finally, for the faces that are not chosen to move, no corresponding action can be
done.

∀s ∈ [1, 11], ∀n ∈ [1, 3], ∀m ∈Mn ¬f(n, s)⇒ ¬a(m, s)

• Once an action is chosen, the next state must correspond to the previous state up-
dated by this action.

Here, the fact to have the moving face and the action is useful. The moving face
allows to know which face does not move and so which facelets do not move.

∀s ∈ [1, 11], ∀n ∈ [1, 3], ∀l ∈ [1, 3], ∀(i, j) ∈ Oppn f(n, s)⇒ c(i, j, s, l) = c(i, j, s−1, l)

where the set Oppn consists of pairs (i, j) that describe the 12 facelets opposite to
face n. These facelets are preserved between the two steps. Once the positions of
these 12 facelets are updated, the specific action is applied to update the positions
of the remaining 12 facelets that move.

∀s ∈ [1, 11], ∀m ∈ [1, 9], ∀l ∈ [1, 3], ∀(i, j) /∈ Oppn a(m, s)⇒ c(i, j, s, l) = Am(c(i, j, s, l))

where Am is the update function corresponding to action am.

• There must be exactly one state that is an acceptable state. While multiple states
could potentially meet the criteria for acceptability, specifying exactly one state sim-
plifies the search once an acceptable state is found. We cannot stop after finding an
acceptable state because the number of Boolean variables is predefined. As there are
a certain number of variables based on the allowed number of moves, we cannot stop
after finding an acceptable state; we must assign values to all the remaining variables
as well.

AMO t(S) and ALO t(S)

With S, the set of all states.

The definition of an acceptable state also constitutes a constraint:

∀k ∈ [0, 11], ∀j ∈ [1, 3], ∀i ∈ [1, 6], ∀l ∈ [1, 3] t(k)⇒ c(i, j, k, l) = c(i, 4, k, l)

It means that each of the three first facelets of each face has the same color (same
three color Boolean variables) as the fourth facelet of the same face if a state is an
acceptable state.

• Consecutive repetitions of the same moving face are not allowed:

∀s ∈ [1, 10], ∀n ∈ [1, 3] f(n, s)⇒ ¬f(n, s+ 1)

For the third constraint about the update of states, an example of the function A1 is
given here below. It corresponds to the action a1 (moving face f1) which corresponds to
a 90° clockwise rotation of the top face. This function attributes for each state Boolean
variable, an other state Boolean variable of the previous step. The details for the remaining
eight functions are provided in Appendix A.

38

Facelets of top face: ∀l ∈ [1, 3], ∀s ∈ [1, 11]A1(c(1, 1, s, l)) = c(1, 3, s−1, l), A1(c(1, 2, s, l)) =
c(1, 1, s− 1, l), A1(c(1, 4, s, l)) = c(1, 2, s− 1, l), A1(c(1, 3, s, l)) = c(1, 4, s− 1, l).

Facelets of side faces: ∀l ∈ [1, 3], ∀s ∈ [1, 11], ∀j ∈ [1, 2] A1(c(2, j, s, l)) = c(5, j, s − 1, l)
and ∀i ∈ [3, 5] A1(c(i, j, s, l)) = c(i− 1, j, s− 1, l).

These are the changes for the 12 moving facelets during a movement of the top face.
Each facelet is assigned the value of another facelet from the previous step.
The Figure 11 shows facelets belonging to Opp1

Figure 11: Set Opp1

In the last example with action A1, we have a move of the top face that keeps green
facelets unchanged and modifies red facelets.

6.2.1 Transformation of Constraints in CNF

The constraints described in the previous section are not in conjunctive normal form (CNF)
and cannot be directly solved by a SAT solver. It is necessary to apply some logical
transformations to rewrite these formulas into CNF and obtain the corresponding clauses.
Each quantifier ‘∀’ in the constraints ranges on the whole line even if there other logical
symbols or functions. For each value of the variable in the ‘∀’, it creates a new clause.
An equal ‘=’ symbol corresponds to the equivalence ‘⇔’ symbol. It means that the two
variables must have the same values.

All other symbols are described in the Section 2.1. By following these steps, all con-
straints that represent the encoding of the Rubik’s cube. It only remains to convert the
AMO and ALO constraints into CNF.

6.2.2 AMO and ALO Constraints

ALO means at least one and AMO means at most one. Those constraints apply to a set of
Boolean variables among which at least or at most one must be true. When combining the
two constraints on the same set of Boolean variables, we have an exactly one constraint.

When we use a uppercase letter within the parentheses, it represents a set of Boolean
variables. If the set represented by the uppercase letter is not already defined, it represents
the set that the corresponding lowercase letter can take. For example, the set S contains
the values that s can take, which are [1, 11]. The constraint AMO t(S) is therefore on the
set {t(1), . . . , t(11)}.

39

The simplest constraint to express is the ALO constraint, which is a disjunction of
positive literals. For each Boolean variable in the set, there is a corresponding literal. If
the set contains Boolean variables α, β, and γ, the clause representing the ALO constraint
is α ∨ β ∨ γ. In other words, at least one of the Boolean variables in the set must be true.
Thus, the ALO constraint is described by a single clause.

The AMO constraint requires multiple clauses to be expressed. It other words, it means
that for any pair of Boolean variables in the set, at least one of them must be false. For
each possible pairs of Boolean variables (α, β), we introduce the clause ¬α∨¬β. If the set
contains Boolean variables (α, β, γ), we have the following three clauses: ¬α∨¬β, ¬α∨¬γ,
and ¬β ∨ ¬γ. The AMO constraint is described by (n − 1) × n

2 clauses, where n is the
number of Boolean variables in the set. As the number of Boolean variables in the set
increases, the number of clauses increases still more.

At this state, we are able to express all constraints in CNF. The number of clauses
is determined by the sum of the number of clauses required for each constraint. For
each constraint, the number of clauses can be computed by multiplying all elements of the
constraint. In this computation, an ‘equal’ constraint creates 2 clauses, an AMO constraint
creates (n− 1)× n

2 , and a ‘∀’ multiplies the number of clauses by e, where e is the number
of elements in the ‘∀’. By performing this computation for each constraint, we obtain the
total number of clauses.

An interesting point described by Jingchao Chen and presented in [6] is a logical equiv-
alence to reduce the number of clauses required to write an AMO constraint. It increases
the number of Boolean variables to reduce the number of clauses. The idea is to generate
two new sets of Boolean variables to represent the initial set of variables. By applying an
AMO constraint to each of the new sets and assigning one Boolean variable from the initial
set to each pair consisting of one Boolean variable from each of the two new sets, we can
effectively express the AMO constraint on the initial set. The two new sets can be seen as
rows and columns of a two-dimensional grid. The variable from the initial set located at
the intersection of the two Boolean variables that are true, if there is one, is the only one
permitted to be true. This arrangement ensures that only one variable from the initial set
can be true at a time, therefore enforcing the AMO constraint.

This method called the 2-product encoding is illustrated in Figure 12.

Figure 12: Illustration of the 2-product encoding principle

The two axis of the grid are the sets P and Q where P has ⌈
√
n⌉ Boolean variables

pi and Q has ⌈ n
|P |⌉ Boolean variables qj . If the initial set of Boolean variables is X and

contains {x1, . . . , xn}, each Boolean variable xk corresponds to a pair (pi, qj). To have

40

AMO of X, we do AMO of P , AMO of Q and a we add a constraint to tell that xk can be
true only if both variables of its pair are true:

AMO(X) ≡ AMO(P)∧AMO(Q)∧∀k ∈ X, ∀(i, j) corresponding to k (¬xk∨pi)∧(¬xk∨qj)

The AMO encoding requires n2

2 −
n
2 clauses while the 2-products encoding for AMO con-

straint needs 2n+(3|P |−4)+(3|Q|−4) clauses and at most 4
√
n auxiliary Boolean variables.

In the last example in Figure 12, the initial set contains ten Boolean variables and the
two new sets P and Q contain respectively four and three Boolean variables.

The paper says that this encoding is useful starting with AMO constraints with more
than 20 Boolean variables. For a huge number of Boolean variables in the set, the 2-
product encoding can be done recursively for the two new AMO constraints. Another way
to proceed is the n-product encoding, the idea is the same but using n new sets of auxiliary
Boolean variables.

6.2.3 Binary Encoding

In this section, we will introduce an alternative approach to eliminate the need for AMO and
ALO constraints. This method employs a binary encoding for the variables involved in the
constraint. For instance, if we have a set of seven variables with an ‘exactly one’ constraint
on them, we can either use seven Boolean variables with AMO and ALO constraints on
them, or we can use a binary encoding with ⌈log(#var)⌉ Boolean variables to represent
the variables.

Similar to the encoding of colors discussed in Section 6.1, we can use a binary repre-
sentation for variables. With the example of seven variables, we would need ⌈log(7)⌉ = 3
Boolean variables, denoted as p1, p2, p3. A variable i is true if the binary number formed
by the Boolean variables is i − 1. For instance, if the Boolean variables take the values 0
0 0, it corresponds to variable one being true, while 0 0 1 represents variable two being
true, and so on until 1 1 0 for variable seven. Since this binary encoding represents only a
single number, the AMO constraint is automatically satisfied.

However, the ALO constraint is not directly satisfied. For example, if we the three
Boolean variable are 1 1 1, it does not correspond to any variable because there is no vari-
able eight. To ensure that the ALO constraint is verified, we must prevent the appearance
of numbers that do not correspond to any variable. This can be achieved by introducing a
clause for each forbidden number. In the given case, the clause would be ¬(p1 ∧ p2 ∧ p3),
which can be equivalently expressed as ¬p1 ∨ ¬p2 ∨ ¬p3.

Therefore, the maximum number of clauses required is at most equal to the number
of forbidden values. The number of forbidden values can be calculated as 2⌈log(n)⌉ − n,
where n is the number of variables. However, in some cases, it is possible to prevent the
forbidden values using fewer clauses than the actual number of forbidden values.
Let’s consider another example where values from 0 to 8 are allowed, and we need to
prevent values from 9 to 15. In this scenario, we have four Boolean variables p1, p2, p3, p4
for encoding. With only the three clauses ¬p1 ∨ ¬p2, ¬p1 ∨ ¬p3, and ¬p1 ∨ ¬p4, we can
successfully prevent the forbidden values while allowing the remaining values.

If we have only an ALO constraint, the binary encoding cannot be used and becomes
useless as it will allow only one constraint to be true. However, if we have only an AMO

41

constraint, we can employ this encoding as long as the Boolean variables can represent at
least one more number than the total number of variables. In fact, if all variables are false,
we require the Boolean variables to be able to represent a number that does not correspond
to any variable. We would need ⌈log(n+ 1)⌉ Boolean variables.

In a dynamic problem involving states and actions, the state at step s is connected to
the state at step s − 1 through the action taken at step s. In such cases, if states use a
binary encoding with an AMO constraint, there is no need to create clauses for forbidden
values in the states because the action chosen will conduct directly to a permitted state if
the model is well-done.
For instance, we can consider the Rubik’s cube as it is the subject of this section. The
initial state can be represented using positive unit clauses and a valid color is given to each
facelet using binary encoding. When the first action is chosen, it explicitly determines the
next state. It means that there is no need to prevent color Boolean variables to be 1 1 0
or 1 1 1 because it becomes impossible to obtain these forbidden values in this scenario.

6.3 Results

Initially, the model is implemented as described in Section 6.2, without using the 2-product
encoding for the AMO constraints. Actually, the number of Boolean variables involved in
the sets on which the AMO constraints are applied is lower than 20. Therefore, we have 11
244 clauses (72 for the initial state + 67 for exactly one final state + 1296 for final state
checking + 275 for the all chosen moves + 9504 for the update of a move + 30 to prevent
the same moving face twice in row) and 1008 Boolean variables (12 states × 24 facelets ×
3 color bits + 12 states × 1 accepted state checker + 11 actions × 12 movements).

Taking into account the fact that the SAT solver is slow for unsatisfiable problems
(more than a minute), we will focus on generating only solvable initial state to assess the
computation time. We randomly generate 12 solvable initial states and measure the average
computation time of the SAT solver for these cases. If the goal is to determine whether
an initial state is solvable or not, the average computation time needs to be calculated
differently. The twelve initial states are listed in Appendix B.

In contrast to the approach described in Section 3.4, for these results, we do not modify
the SAT solver’s parameters and keep the default configuration. This decision was made
as we did not conduct any analysis on the impact of SAT solver’s parameters on the
computation time in this section.

To calculate the average computation time, we take the average of the means on five
attempts for each initial state above. We obtain an average computation time of 1.94
second to solve the cube. Moreover, only three initial states take more than two seconds
to be solved, the variance is 5.27 s2.

In the second step, we will use binary encoding for representing the action and the
moving face. The aim is to enhance the model and reduce the number of Boolean variables
and clauses required. Specifically, instead of using 12 Boolean variables to determine the
action and the moving face at step s, we only need two Boolean variables for the moving
face and four Boolean variables for the action.

As we require the four Boolean variables p1, p2, p3, p4 for the nine different actions, only
binary values 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 and 1000 are allowed for these

42

four Boolean variables. To prevent the occurrence of the seven other values, the following
constraints should be applied: ¬p1∨ (¬p2∧¬p3∧¬p4). In CNF, three clauses are required:
¬p1 ∨ ¬p2, ¬p1 ∨ ¬p3 and ¬p1 ∨ ¬p4.
To choose the moving face among the three ones, we need the two Boolean variables p5, p6
where only 00,01,10 are allowed. Therefore we add the clause ¬p5 ∨ ¬p6.

In terms of the overall number of Boolean variables and clauses, the reduction achieved
may not be significant since the majority of the clauses are used to describe the transition
from one state to another, but the objective is to see if it can have a positive impact on the
computation time. Once this enhancement is implemented, the performance is evaluated
on the same sample used in the first model. Although the results may not be highly
accurate (not enough data used), they provide a general understanding of the performance
of this new model.

The disadvantage when using the method of binary encoding is to retrieve the infor-
mation. Actually, when using one Boolean variable for one variable, the information is
clear. For instance, if the Boolean variable that represents action 1 at step 1 is 1, we
know directly the action at the first step. With the binary encoding, since the variable for
the action at step 1 is divided in four Boolean variables. We need to retrieve these four
Boolean variables to know the action chosen. On one hand, we search within a group of
Boolean variables for the one that is positive, while on the other hand, we search for all
the Boolean variable groups to obtain their values. However, these are merely practical
details that do not affect the efficiency of the SAT solver.

The model with binary encoding is, on average across the sample of initial state, sig-
nificantly worse. Although the size of the sample does not allow for a precise calculation of
the average computation time, it still provides a good estimate of the order of magnitude
to expect. It becomes evident that the first method is better performing.
In fact, we obtain a computation time of 22.29 seconds to solve the cube. Some initial
states take only a few seconds to be solved, while others can take nearly a minute. The
variance in solving times with this model is remarkably high with a value of 365 s2.

These results are disappointing as we had hoped to improve Jingchao Chen’s model.
However, it does prove that reducing the number of clauses and Boolean variables in a
model solved with a SAT solver is not always synonymous with improved computation time.
This highlights the complexity of improving SAT-based models and emphasizes the need
for careful analysis and experimentation to achieve desired performance improvements.

In conclusion, to solve the Rubik’s Cube using a SAT solver, those two models with
SAT-encoding do not guarantee finding the optimal solution in terms of the minimum
number of moves. To achieve the optimal solution, a strategy similar to Section 5.3 needs
to be employed, when we search the optimal solution with a DFS. Actually, to reduce the
maximum number of moves used to solve the cube, we only need to modify the clause
“at least one” acceptable state among eleven in “at least one” acceptable state among x
where x is the maximum number of moves used. We can reduce the number of clauses
and Boolean variables by removing all clauses and Boolean variables that describe Boolean
variables after step x.

The average computation time to determine the impossibility of solving a cube within
the maximum number of allowed moves is approximately 1.2 seconds for eight moves, 5
seconds for nine moves, and 25 seconds for ten moves. Therefore, it is recommended to
initially search for a solution within eight moves. If a solution is found, the number of

43

allowed moves can be progressively decreased until no solution is found, indicating the
optimal solution. Conversely, if no solution is found within eight moves, the number of
allowed moves can be increased until a solution is obtained.

6.4 Future Works

To enhance the proposed model by Jingchao Chen, which was adapted for the 2x2 Rubik’s
cube, we can explore an alternative approach to represent states and their updates. When
examining the number of clauses in our model, we find that 9 504 out of 11 244 clauses are
associated with states updates following a move. Currently, we employ 24×3 = 72 Boolean
variables to store a state, and with nine movements, this results in 72×9×2 = 1296 clauses
to express a single step (since each ’equals’ operation requires two clauses). However, by
using Boolean variables for the type of movement, we reduce the number of clauses to 864
for one step.

As mentioned in Section 5.2, the 2x2 Rubik’s cube has a total of 3 674 160 states, which
can be represented using ⌈log(3674160)⌉ = 22 bits. However, our current model uses 72
Boolean variables to store a state, which may not be the most efficient representation.
Therefore, exploring alternative representations of the cube could potentially improve per-
formance if we are able to significantly reduce the number of clauses. The main challenge
would lie in finding a way to express the state update through actions using clauses. This
would require careful consideration and experimentation to find an effective approach.

Another analysis that could be performed using this model is to verify the God’s num-
ber. In order to do this, we would need to remove constraints on the initial state, and
search for an initial state that cannot be solved within a number of moves corresponding
to the God’s number. If this problem is unsatisfiable, we can try again by reducing the
number of moves by one. If, in this case, the problem is satisfiable, it would prove the
God’s number through the model.

44

7 Two-player Games Problem

The process of solving a two-player game involves determining whether one of the players
has a winning strategy regardless of the other player’s moves. The objective is to identify if
a player can achieve victory no matter what strategy their opponent adopts. If the answer
is affirmative, then for each move made by the player in question, a list of moves that
maintain their winning position is generated. Depending on the opponent’s move, a new
list is computed for the subsequent move.

For example, when playing connect-4, the solver [32] can provide guidance to the first
player, indicating the optimal move to secure a win. Similarly, the solver may offer advice
to the second player, suggesting strategies that prolong the game as much as possible,
aiming to delay the opponent’s victory.

In addition to the task of solving a two-player game, there are other valuable analyses
that can be performed to deepen our understanding of gameplay dynamics. One such
analysis involves exploring various game scenarios and observing the outcomes that arise
from different player strategies. By considering multiple hypothetical scenarios, we can
gain insights into the strengths and weaknesses of different approaches and anticipate the
potential consequences of specific moves.

When dealing with such problems, a systematic approach involves several key steps.
Firstly, it is essential to determine the initial state of the game. Next, the winning condi-
tions need to be identified, clarifying what constitutes a successful outcome for each player.
To formalize the rules of the game, constraints are employed to show the authorized moves,
interactions, and restrictions within the game environment. Constraints are also required
to model how the game progresses and evolves based on the actions taken by the players.
A crucial step is to determine all indicator variables that will allow to model an entire
game. In order to solve the game, we will use quantifiers.

7.1 Quantified Boolean Formula

In logic and mathematics, quantifiers allow to express statements involving variables. A
quantifier specifies the scope of a variable and determines whether the statement applies to
all elements (universal quantification) or at least one element (existential quantification)
within a given domain. A Quantified Boolean Formula (QBF) combines these quantifiers
with Boolean logic, enabling us to represent and reason about complex problems.

A QBF follows a specific structure: QB, where Q is a sequence of quantifiers Q1v1 . . . Qnvn.
Each quantifier Qi, which can be either an existential (∃) or universal (∀) quantifier, binds
a variable vi. Importantly, each variable appears at most once in the sequence Q. The
formula B represents a Boolean expression in CNF (see Section 2.1).

Universals and existentials in a QBF are the variables quantified by universal and
existential quantifiers, respectively. A QBF is determined by the truth values of its sub-
formulas. For a QBF of the form ∃v1Q2v2 . . . QnvnB, it is true if the QBF Q2v2 . . . QnvnB
is true either for v1 = T or v1 = F. Similarly, for a QBF of the form ∀v1Q2v2 . . . QnvnB,
it is true only if the QBF Q2v2 . . . QnvnB is true for both v1 = T and v1 = F.

By employing quantifiers and Boolean logic, QBF provides a means of expressing and
analyzing a wide range of problems. They enable us to reason about the existence and

45

universality of solutions, explore different scenarios, and determine the satisfiability or
validity of complex statements. The next sections will delve further into the application of
QBF to solve the two-player game of Othello.

In the context of a two-player game, the player for whom we seek victory (typically the
first player) is quantified existentially, while the other player is quantified universally. This
formulation allows us to focus on the existence of a winning strategy for the first player.
By alternating the moves of the first and second players and alternating the existential
and universal quantifiers, we formulate the problem as "Does there exist a move for the
first player such that for every move of the second player, there exists a move for the
first player...?" This can be seen as searching for a satisfiable solution to this problem,
where satisfying assignments represent winning strategies for the first player. The indicator
variables required to establish the state of the game are quantified existentially following
the move that corresponds to that particular state.

46

8 Playing Othello with Propositional Logic

Othello is a strategic game played by two players on a green square grid board with a size
of n×n, where n ≥ 4. Each player possesses tokens with a black and a white face. During
their respective turns, alternatively, players aim to strategically place their tokens on the
board. The objective is to have the most tokens of their own color at the end of the game.
Typically, the game concludes when the entire grid is filled with n × n tokens. However,
there are situations where the game ends prematurely if neither player can make a valid
move. A player who cannot make a move at its turn must pass its turn, while a player
who can make a move at its turn must do so as it is mandatory.

The game begins with two tokens of each color placed in a cross formation at the center
of the board, as depicted in the left portion of Figure 13. The right portion of Figure 13
illustrates the conclusion of the game, indicating here a victory for the white player.
The player with the black tokens takes the first turn. To place a token on the board, it
must be played in an adjacent cell to an opponent’s token. Additionally, the played token
must form a line with one or more opponent’s tokens, with the line ending in a token of
the player’s color. When a token is played, all opponent’s tokens that form a line enclosed
by the played token and another token of the same player already on the board are flipped
to the player’s color. This process is illustrated in the middle of Figure 13, where the
valid cells for a black token are marked with black circles and the red circle indicates the
placement of the black token. The lines can be horizontal, vertical, or oblique. If multiple
lines are enclosed by the played token, all of those lines are flipped. The rules of the game
are described in [30]

Figure 13: From initial to end state of a Othello game

In this section, illustrations will be presented using a 6x6 board, but the description
of variables and constraints will be general for an n× n board. In propositional logic, the
total number of Boolean variables must be determined at the start of the game. Regardless
of the specific case, the objective is to progress from state 0 to state S, where S represents
the number of tokens required to fill the board. In cases where the game ends before the
board is fully occupied, we still proceed until state S without making any further moves.

The game of Othello for a 6x6 board has already been solved, with the white player
emerging as the winner. This solution was achieved through the application of machine
learning techniques and other mechanisms, as detailed in the reference [28]. The objective
of this section is to present a well-designed SAT encoding of Othello and enabling to further
researcher to solve it using quantified Boolean formulae (QBF). This encoding can serve as
inspiration for researchers tackling other two-player games. Additionally, it can be adapted
to accommodate boards of different sizes and facilitate various analyses. For instance, with
the first model of constraint presented in the two following sections, we can enforce a player

47

to make a move by adding a unit clause or ensure that a specific game state occurs. Since
no previous results were found in this context, the encoding allows us to determine the
minimum number of moves required to reach the end of the game. This idea motivated
me to approach the problem of solving Othello using SAT encoding and to answer this
question about the minimum number of move.

8.1 Modeling

We will encode the game of Othello as a dynamic problem since states evolve with actions,
such as the Rubik’s cube problem of Section 5 and 6. As a base of the encoding, we
require two kinds of main variables, one for the states and one for the actions. With these
two types of variables, we can represent the entire game by describing each step with the
move made and the corresponding state. However, the number of clauses would be very
large and composed of a significant number of literals, making the encoding unreadable.
One source of inspiration for constructing this model is the SAT encoding of the game
Connect-4, described in the paper [16].

In our encoding, we will use 15 types of variables, out of which 12 are paired, represent-
ing the black and white players. The distinction between them lies in the variable naming
convention, where variables for black tokens start with a “b” and variables for white tokens
start with a “w”. The term iff means “if and only if”. Traditionally, the columns of the
board are identified using letters, while the rows are identified using numbers. However,
to simplify the encoding of constraints, we will also encode the columns using numbers.

First of all, we will use the variable blacks,c,r (respectively whites,c,r) which is true iff
the cell (c, r) contains a black (or white) token at state s. It allows to keep the state of
game. Since playing on a square board of size n, with the initial state s = 0, we have
(S + 1)n2 variables for each color where S is the total number of moves to fill the board.
Last state is state s = S. Not surprisingly, another variable is bmoves,c,r (respectively
wmoves,c,r) which is true iff a black (or white) token is played in cell (c, r) at step s. We
introduce Sn2 Boolean variables.

We will add to these kind of variables eleven complementary variables that are only
there to make the understanding of the game easiest and the encoding more readable. The
variables related to the actions (bmove and white) are the key variables while all the others
(including black and white) are called indicator variables.

• occupieds,c,r is true iff the cell (c, r) contains a black or white token at state s. It
introduces (S + 1)n2 variables.

• blines,c1 ,r1 ,c2 ,r2 (respectively wlines,c1 ,r1 ,c2 ,r2) is set to true iff there exists a vertical,
horizontal, or diagonal line of at least three cells, starting from (c1, r1) and ending at
(c2, r2), in state s that allows a black (or white) token to be placed at (c1, r1) in the
next move. In such a line, the first cell is unoccupied, the last cell contains a black
(or white) token, and all the intermediate cells contain white (or black) tokens. In a
6x6 board, this introduces S × 360 variables for each color, as there are 360 possible
lines.

• bvalids,c,r (respectively wvalids,c,r) is true iff the cell (c, r) is a valid cell for a black
(or white) token at state s. It introduces Sn2 variables for each color.

48

• bimpos (respectively wimpos) is set to true iff there are no valid cells for placing a
black (or white) token at state s. It introduces S variables for each color.

• turns is true if a black token will be played at move s+ 1, and it is false if a white
token will be played at move s+1. If the game is over at state s, turns is true if the
last token played was black, and 0 otherwise. It introduces S variables.

• bflips,c,r (respectively wflips,c,r) is true if the token in cell (c, r) is flipped to black
(or white) after move s. It is true if a black (or white) token is played in cell (c, r) or
if cell (c, r) is at the end of a line of white (or black) tokens that were flipped at step
s. Otherwise, bflips,c,r (respectively wflips,c,r) is false. It introduces Sn2 variables
for each color.

• endgames is 1 iff no move can be done at step s+ 1. It introduces S variables.

Figure 14 provides an illustration of these indicator variables. The indices ‘s’, ‘c’, and
‘r’ represent the states, columns, and rows, respectively. ‘c’ and ‘r’ range from 1 to n,
while ‘s’ ranges from 0 to S. It should be noted that certain Boolean variables do not have
the state s = 0 or s = S.

Figure 14: Illustration of indicator variables

All of these indicator variables are interconnected. The variable occupied depends only
on black and white variables and is used to check if a bline or wline starts with an empty
cell. In turn, these indicators are used to determine if a cell is valid and available for a
black or white token to be played. The variables bimpo and wimpo indicate if a player is
unable to make a move or if the game has reached its end. The variable turn represents
which player must do the next move and is determined based on the previous turn and
the availability of a valid move for the player. To track the evolution of black and white

49

tokens, the variables bflip and wflip are used, which are determined by the lines from the
previous state and the chosen move. Finally, the endgame indicator signifies that no more
moves can be made.

The Figure 15 shows the relation between all kinds of variables from state 0 to state
S. The expression of constraints will be based on this schema.

Figure 15: Relation between variables from initial state to end state

To initialize the game, certain variables need to be declared. Since for boards with
an even size, the initial state of the actual game is symmetric for the first player (black),
the first move does not have any influence on the game. Thus, in our model, the initial
state has five tokens on the board, and the total number of cells remaining to be filled is
S = n2 − 5. For boards of size five and seven, the initial state of our model is modified
by describing only four tokens and giving turn to the black player. The initial state of the
game is the state s = 0, as shown in Figure 16, and is declared using unit clauses.

∀c, r ∈ [1, n]2

{
white0,c,r if c = r = ⌊n2 ⌋+ 1

¬white0,c,r otherwise

∀c, r ∈ [1, n]2

black0,c,r if c = ⌊n2 ⌋ and r = ⌊n2 ⌋ − 1

black0,c,r if c = ⌊n2 ⌋ and r = ⌊n2 ⌋
black0,c,r if c = ⌊n2 ⌋ and r = ⌊n2 ⌋+ 1

black0,c,r if c = ⌊n2 ⌋+ 1 and r = ⌊n2 ⌋
¬black0,c,r otherwise

¬turn0

Figure 16: Initial state of the actual game and of our model

50

Once we have all our Boolean variables for our model, we must link them through
constraints to have a complete game from state 0 to state S. So far, for a 6x6 game board,
we have the following quantities: n = 6, S = n2 − 5 = 31, and a total of 32 596 Boolean
variables.

8.2 Constraints

For the expression of constraints, we will use the seven symbols ‘∀’, ‘∧’, ‘
∧

’, ‘∨’, ‘
∨

’, ‘⇒’
and ‘⇔’. It is important to have a clear understanding of these symbols to facilitate the
comprehension and ensure the correctness of the constraints.

• ‘∨’ and ‘∧’ are binary operators representing logical disjunction and conjunction,
respectively. ‘∧’ has higher priority than ‘∨’ when evaluating statements. They are
used to combine literals and/or formulas. For example, the constraints p1 ∧ p2 ∨ p3
and p2 ∨ p3 ∧ p1 both represent (p1 ∧ p2) ∨ p3.

• ‘∀’ is a quantifier that applies to the entire formula on its right, using a set of values
for indices. In fact, this quantifier is a syntactic sugar used to represent a large
conjunction. It creates a new clause for each value of the indices, substituting the
indices in the formula. For example, the constraint ∀i ∈ [2, 4], p1 ∨ pi represents
p1 ∨ p2, p1 ∨ p3, and p1 ∨ p4.

• ‘
∧

’ and ‘
∨

’ are operators that apply to literals directly on their right or, if followed
by parentheses, to a set of literals within those parentheses. Unlike ‘∀’, they do not
create new clauses but create a new conjunction or disjunction within the formula.
For example, the constraint

∨3
i=1(pi∨

∧6
j=4 pj) represents (p1∨ (p4∧ p5∧ p6))∨ (p2∨

(p4 ∧ p5 ∧ p6)) ∨ (p3 ∨ (p4 ∧ p5 ∧ p6)). ‘∀’ is similar to ‘
∧

’ followed by parentheses
applied to the entire formula.

• ‘⇒’ and ‘⇔’ are binary operators. ‘⇒’ has higher priority than ‘⇔’ but lower priority
than ‘∨’ and ‘∧’. For example, the constraint p1 ∧ p2 ⇔ p3 ⇒ p4 ∨ p5 represents
(p1 ∧ p2)⇔ (p3 ⇒ (p4 ∨ p5)).

These symbols and their rules of precedence are important for understanding and cor-
rectly representing the constraints in a logical and concise manner. A reminder for the
unary operator ‘¬’ that has the priority over all previous operators as long as there are no
parentheses. The explanations for the AMO and ALO constraints are in Section 6.2.2.

The most intuitive way to explain and describe constraints is to use the logical operators
‘⇒’ and ‘⇔’. For instance, when discussing the act of making a move, the most accurate
description would be to say that playing a black token in a particular cell implies flipping
certain tokens. However, these operators are not allowed in CNF.

To ensure readability and correctness, we will follow a three-step process when express-
ing the constraints. First, we will explain them using natural language. Then, we will
translate them into logical formulas. Finally, we will transform these formulas into CNF
to respect the requirements of SAT solvers.

We have 15 types of Boolean variables, which leads to 15 sets of constraints that
describe the relationships between each variable and the others. Most of the variables are

51

grouped into pairs based on the distinguishing characters “black” and “white”, resulting
in nine main sets of constraints. For brevity, we will provide the description and initial
representation for the black variable only, and the CNF expression will be shown for both
the black and white variables, separated by a horizontal line. The variables that are not
useful in the last state s = S are described for all s until s = S − 1.

1. The first constraint concerns the occupied variable and states that a cell is occupied
iff a black or a white token is present in the cell.

∀s ∈ [0, S], ∀c, r ∈ [1, n]2 blacks,c,r ∨ whites,c,r ⇔ occupieds,c,r

In CNF:

∀s ∈ [0, S], ∀c, r ∈ [1, n]2 blacks,c,r ∨ whites,c,r ∨ ¬occupieds,c,r
¬blacks,c,r ∨ occupieds,c,r

¬whites,c,r ∨ occupieds,c,r

2. In this constraint, we will update the token color present in cells to have black and
white variables. If there is a black flip, the cell contains a black token. If there is a
white flip, there is no black token. Otherwise, there is a black token if there was one
in the previous step.

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 ¬wflips,c,r ∧ ¬bflips,c,r ⇒ (blacks,c,r ⇔ blacks−1,c,r)

bflips,c,r ⇒ blacks,c,r

wflips,c,r ⇒ ¬blacks,c,r

In CNF:

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 wflips,c,r ∨ bflips,c,r ∨ ¬blacks,c,r ∨ blacks−1,c,r

wflips,c,r ∨ bflips,c,r ∨ blacks,c,r ∨ ¬blacks−1,c,r

¬bflips,c,r ∨ blacks,c,r

¬wflips,c,r ∨ ¬blacks,c,r

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 bflips,c,r ∨ wflips,c,r ∨ ¬whites,c,r ∨ whites−1,c,r

bflips,c,r ∨ wflips,c,r ∨ whites,c,r ∨ ¬whites−1,c,r

¬wflips,c,r ∨ whites,c,r

¬bflips,c,r ∨ ¬whites,c,r

3. The following constraints will illustrate the variables bimpo and wimpo. A move for
the black player is impossible iff all cells of the board are not valid for a black token.

∀s ∈ [0, S − 1]

n,n∧
c=1,r=1

¬bvalids,c,r ⇔ bimpos

In CNF:

∀s ∈ [0, S − 1]

n,n∨
c=1,r=1

bvalids,c,r ∨ bimpos

∀c, r ∈ [1, n]2 ¬bvalids,c,r ∨ ¬bimpos

52

∀s ∈ [0, S − 1]

n,n∨
c=1,r=1

wvalids,c,r ∨ wimpos

∀c, r ∈ [1, n]2 ¬wvalids,c,r ∨ ¬wimpos

4. We will now introduce the variable turn. turn is true iff it is the black player’s turn.
It is the black player’s turn iff it was the white player’s turn in the previous move
and the black player is able to make a move, or if it was the black player’s turn in
the previous move and the white player is not able to make a move.

∀s ∈ [1, S − 1] ¬turns−1 ∧ ¬bimpos ⇒ turns

turns−1 ∧ wimpos ⇒ turns

In CNF:

∀s ∈ [1, S − 1] turns−1 ∨ bimpos ∨ turns

¬turns−1 ∨ ¬wimpos ∨ turns

¬turns−1 ∨ wimpos ∨ ¬turns

turns−1 ∨ ¬bimpos ∨ ¬turns

5. This constraint specifies the value of the variable endgame. This is the end of the
game iff no move can be done.

∀s ∈ [0, S − 1] bimpos ∧ wimpos ⇔ endgames

In CNF:

∀s ∈ [0, S − 1] ¬bimpos ∨ ¬wimpos ∨ endgames

bimpos ∨ ¬endgames

wimpos ∨ ¬endgames

6. The constraints for the Boolean variables bmove and wmove involve additional steps.
In each step, there can be at most one black move. If it is the black turn (turns is
true) and the game is not over, there must be at least one black move (exactly one,
but expressing it requires additional constraints, and the AMO constraint is already
expressed). Furthermore, a black move can only be made if the cell is valid for black.
Otherwise, if it is not black’s turn or if it is the end of the game, no black move can
be made.

∀s ∈ [1, S] turns−1 ∧ ¬endgames−1 ⇒ ALO bmoves,C,R

AMO bmoves,C,R

∀c, r ∈ [1, n]2 ¬turns−1 ∨ endgames−1 ⇒ ¬bmoves,c,r

¬bvalids−1,c,r ⇒ ¬bmoves,c,r

53

In CNF:

∀s ∈ [1, S] ¬turns−1 ∨ endgames−1 ∨
n,n∨

c=1,r=1

bmoves,c,r∧
c1,r1,c2,r2∈[1,n]4
(c1,r1) ̸=(c2,r2)

¬bmoves,c1,r1 ∨ ¬bmoves,c2,r2

∀c, r ∈ [1, n]2 turns−1 ∨ ¬bmoves,c,r

¬endgames−1 ∨ ¬bmoves,c,r

bvalids−1,c,r ∨ ¬bmoves,c,r

∀s ∈ [1, S] turns−1 ∨ endgames−1 ∨
n,n∨

c=1,r=1

wmoves,c,r∧
c1,r1,c2,r2∈[1,n]4
(c1,r1) ̸=(c2,r2)

¬wmoves,c1,r1 ∨ ¬wmoves,c2,r2

∀c, r ∈ [1, n]2 ¬turns−1 ∨ ¬wmoves,c,r

¬endgames−1 ∨ ¬wmoves,c,r

wvalids−1,c,r ∨ ¬wmoves,c,r

For the three last constraints, we will introduce four objects that are necessary to rep-
resent the constraints in a readable form. Two of these objects are illustrated in Figure 17,
where a line starts with a point and finishes with a bar. The lines are at least length three
because there must be at least one cell of the opposite color between the empty cell and
the cell of our color. In the right illustration, the blue cells represent those that belong to
set Inlineof(2,3).

• A set Lines contains all horizontal, vertical and oblique lines of at least three cells
that are on the board. In a 6x6 board, there are 360 lines. A line in Lines is
represented by the series of cells where line1 denotes the coordinates of the first cell
and linel denotes the coordinates of the last cell.

• A dictionary Lineof where, for each coordinates (c, r), Lineof(c,r) represents the set
of all lines that start at cell (c, r). In a 6x6 board, corner cells have the highest
number of lines, with a total of 12 lines.

• A dictionary Linewith where, for each coordinates (c, r), Linewith(c,r) represents the
set of all lines which contain (c, r). In a 6x6 board, cells of the center are in the
highest number of line, in a total of 66 lines.

• A dictionary Inlineof where, for each coordinates (c, r), Inlineof(c,r) represents the
set of all coordinates (c′, r′) which are in a horizontal, vertical or oblique line of (c, r).
In a 6x6 board, cells of the center have the highest number of coordinates, with a
total of 20 coordinates.

The total length of all the combined lines is 1400 cells. This result is useful for calculating
the total number of clauses needed to represent the constraints.

54

Figure 17: Illustration of sets for Othello constraint

7. The next constraint will give a value to the variables bline and wline. A line is a
black line iff the first cell is unoccupied, the last cell contains a black token and all
other are white.

∀s ∈ [0, S − 1], ∀line ∈ Lines ¬occupieds,line1
l∧

i=2

whites,linei ∧ blacks,linel ⇔ blines,line1,linel

In CNF:

∀s ∈ [0, S − 1], ∀line ∈ Lines occupieds,line1

l−1∨
i=2

¬whites,linei ∨ ¬blacks,linel ∨ blines,line1,linel

¬occupieds,line1 ∨ ¬blines,line1,linel
blacks,linel ∨ ¬blines,line1,linel
∀i ∈ [2, l − 1] whites,linei ∨ ¬blines,line1,linel

∀s ∈ [0, S − 1], ∀line ∈ Lines occupieds,line1

l−1∨
i=2

¬blacks,linei ∨ ¬whites,linel ∨ wlines,line1,linel

¬occupieds,line1 ∨ ¬wlines,line1,linel
whites,linel ∨ ¬wlines,line1,linel
∀i ∈ [2, l − 1] blacks,linei ∨ ¬wlines,line1,linel

8. Before playing a token, we need to know if the cell is valid thanks to the variables
bvalid and wvalid. A cell is valid for a black token iff there exists a black line starting
from this cell.

∀s ∈ [0, S − 1], ∀c, r ∈ [1, n]2
∨

line∈Lineof(c,r)

blines,line1,linel ⇔ bvalids,c,r

In CNF:

∀s ∈ [0, S − 1], ∀c, r ∈ [1, n]2
∨

line∈Lineof(c,r)

blines,line1,linel ∨ ¬bvalids,c,r

∀line ∈ Lineof(c, r) ¬blinesline1,linel ∨ bvalids,c,r

55

∀s ∈ [0, S − 1], ∀c, r ∈ [1, n]2
∨

line∈Lineof(c,r)

wlines,line1,linel ∨ ¬wvalids,c,r

∀line ∈ Lineof(c, r) ¬wlinesline1,linel ∨ wvalids,c,r

9. Finally, the last set of constraints describes the variables bflip and wflip. If a cell is
not located on the same row, column, or diagonal as the cell where a black token is
played, there is no black flip in that cell. Additionally, if a white move is made, it
implies that no black flips occur. In the case of a black move, all tokens that are in
the black lines originating from the move’s cell will be black flipped. Subsequently,
any cells that lie on the same row, column, or diagonal as the cell where a black
token was played but are not part of any black line originating from the move’s cell
will remain unflipped. Finally, if the game is over, no flips are performed.

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 bmoves,c,r ⇒
n,n∧

c1=1,r1=1
(c1,r1)/∈Inlineof(c,r)

¬bflips,c1,r1

wmoves,c,r ⇒
n,n∧

c1=1,r1=1

¬bflips,c1,r1

∀line ∈ Lineof(c, r) bmoves,c,r ∧ blines−1,line1,linel ⇒
l∧

i=1

bflips,linei

∀(c1, r1) ∈ Inlineof(c, r) bmoves,c,r
∧

line∈Linewith(c1,r1)
∈Lineof(c,r)

¬blines−1,line1,linel ⇒ ¬bflips,c1,r1

endgames−1 ⇒ ¬bflips,c,r
In CNF:

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 ∀c1, r1

{
∈ [1, n]2

/∈ Inlineof(c, r)
¬bmoves,c,r ∨ ¬bflips,c1,r1

∀c1, r1 ∈ [1, n]2 ¬wmoves,c,r ∨ ¬bflips,c1,r1
∀line ∈ Lineof(c, r), ∀i ∈ [1, l] ¬bmoves,c,r ∨ ¬blines−1,line1,linel ∨ bflips,linei

∀(c1, r1) ∈ Inlineof(c, r) ¬bmoves,c,r
∨

line∈Linewith(c1,r1)
∈Lineof(c,r)

blines−1,line1,linel ∨ ¬bflips,c1,r1

¬endgames−1 ∨ ¬bflips,c,r

∀s ∈ [1, S], ∀c, r ∈ [1, n]2 ∀c1, r1

{
∈ [1, n]2

/∈ Inlineof(c, r)
¬wmoves,c,r ∨ ¬wflips,c1,r1

∀c1, r1 ∈ [1, n]2 ¬bmoves,c,r ∨ ¬wflips,c1,r1
∀line ∈ Lineof(c, r), ∀i ∈ [1, l] ¬wmoves,c,r ∨ ¬wlines−1,line1,linel ∨ wflips,linei

∀(c1, r1) ∈ Inlineof(c, r) ¬bmoves,c,r
∨

line∈Linewith(c1,r1)
∈Lineof(c,r)

wlines−1,line1,linel ∨ ¬wflips,c1,r1

¬endgames−1 ∨ ¬wflips,c,r

All of these constraints accurately describe the rules and scenarios of the game. The
total number of clauses is obtained by summing the clauses from each constraint (444117)

56

along with the initial unit clauses (73). This results in a total of 444 190 clauses for a 6x6
board, as shown in Table 5, using 32 596 Boolean variables.

constraint 1 2 3 4 5 6 7 8 9 total
clauses 3456 8928 2294 120 93 45818 109120 24552 249736 444117

Table 5: Number of clauses per set of constraints

This total number of clauses is calculated for a 6x6 board with a total number of lines
of 360, and an average length per line of 1400

360 cells.

8.2.1 Reduction of Clauses and Variables

There are several possibilities to reduce the number of clauses and Boolean variables. One
idea is to eliminate unnecessary variables. Specifically, we can remove variables corre-
sponding to the five cells where tokens are initially placed, as there will be no moves on
these cells. Additionally, we do not need variables to indicate the occupancy and validity
of these cells, as we already know the answers (occupied is true and valid is false). Con-
sequently, we can eliminate all lines starting from these five cells. Furthermore, due to the
construction of the game, we know that the four corner cells will never be flipped.

Removing all those Boolean variables reduces the total by 4314. Another approach to
reducing variables is to observe that certain cells, such as those on the sides, cannot be
flipped in the initial moves. Additionally, based on the game’s construction, some variables
only become relevant after a certain number of moves. Taking these factors into account
can further reduce the overall number of Boolean variables needed.

Removing variables will indeed lead to a reduction in the number of clauses. Eliminat-
ing 53 out of 360 lines will significantly impact the last three constraints, which generate
the highest number of clauses. Additionally, another approach to reducing the number of
clauses is by using the 2-product encoding for the “at most one” AMO constraint in the 7th

constraint, as described in Section 12. This encoding technique can help further minimize
the clause count. Another possible encoding is the binary encoding for black and white
moves, as described in Section 6.2.3. This encoding is particularly useful when there is at
most one move made per step. However, it was also demonstrated in the same section that
a binary encoding does not always provide efficiency benefits.

A last helpful modification is to include the endgame variable in all clauses related
to the bvalid, bline, bimpo and turn variables of the next step (respectively the same
variables for the white). This ensures that when the game is over, all clauses pertaining
to subsequent moves are automatically true and no move is made. Our encoding already
propagates the end of the game through the connection between variables but explicitly
including “. . .∨ endgames ” in those clauses for state s+1 provides a direct termination of
the game without further reasoning of the SAT solver. In that case, we need to add the
constraint endgames ⇒ endgames+1 and ¬endgame0 to propagate the end of the game
at each step.

Implementing these changes will indeed lead to a significant reduction in the overall
number of clauses and Boolean variables, potentially improving efficiency. However, it
is not the only approach to enhance efficiency. Adding additional clauses to establish

57

relationships between variables can greatly assist the SAT solver in its task. For instance,
we can add clauses to say that if a cell is occupied at state s, it will be occupied for all
state from s to S. While our current encoding serves as a solid foundation for solving
the Othello game and conducting various analyses, there are still numerous directions for
further improvement.

8.3 Quantifiers and Directives to Solve Othello

With the model established in the previous two sections, we are already capable of per-
forming analysis and reasoning on the game but not yet of solving it. For example, to
determine the minimum number of moves required to end the game, we can add the unit
clause endgames with a specific value for s to see if the solver can find a valid game se-
quence that ends at state s. If the answer is satisfiable, we can gradually decrease s to
find the minimum number of moves needed to finish the game. On the other hand, if the
problem is unsatisfiable, we can increase s until we find a valid game sequence. For this
particular objective, the last modification proposed in the previous section is very useful,
as it allows us to eliminate all clauses beyond state s since endgame will be decided to true
directly through the unit clause.

We analyzed these questions for the five different board sizes ranging from four to eight.
Table 6 provides the minimum number of moves required to reach the end of the game
starting from an initial state with four tokens. Since odd-sized boards start with four
tokens, we use the same initial state for all five sizes to facilitate comparison in the table.

board size 4x4 5x5 6x6 7x7 8x8
number of moves 6 9 9 9 9

Table 6: The minimum number of moves required to reach an endgame state

These minimum numbers of moves is a scenario where all tokens on the board are black.

Another aspect we can explore with our model is finding optimal strategies or analyzing
different scenarios. By introducing additional constraints or modifying existing ones, we
can fine-tune the behavior of the game solver and study various aspects of the game. For
example, we can impose constraints on the positioning of black or white tokens, simulate
specific game situations, or study the impact of different move sequences on the outcome
of the game. These modifications will provide valuable insights into the strategic elements
of Othello and help us understand the game dynamics more comprehensively.

In order to determine the winner of a game, we need to introduce a new type of Boolean
variable. By using the variables bwin, wwin, and draw , we can determine the outcome of
a game, as discussed in the previous paragraph. To do this, we need to add clauses that
define the winner of a game. Since the victory goes to the player with the most tokens
of its color, we need to find a way to count tokens using clauses. Here, we will explain a
preliminary approach to express the victory of the white player.

In the case where the board is filled at the end of the game, white wins if at least
⌈n2

2 + 1⌉ white tokens are present. For a 6x6 board, this would be at least 19 tokens. Our
idea is to consider all possible combinations of 19 cells and check if the white variable is
true for these 19 cells at the final state. If one of the combinations satisfies this condition,

58

white wins. The same approach can be applied to determine if black wins. Detecting a
draw involves considering all possible partitions of the cells into two groups of 18. If we
find a partition where all black variables for cells in group 1 are true and all white variables
for cells in group 2 are true, it is a draw.
To identify the white win, we create the following constraint. Let C be the set of all
combinations of 19 pairs (i, j) chosen from [1, 6]2. ∀c ∈ C

∧
(i,j)∈cwhiteS,i,j ⇒ wwin.

However, if the board is not fully filled at the end of the game, white can win even
without having more than 18 white tokens. In this case, we need to add additional victory
conditions. If one cell is empty, white only needs 18 tokens to win. In this scenario, finding
a combination of 18 white cells and 1 empty cell results in a victory for white. The same
approach should be applied to all possible scenarios. For example, if we find a combination
with 11 white cells and 15 empty cells, it is also a victory for white because black cannot
have more than 10 tokens. To determine the maximum number of empty cells that we can
have when a game is over, we need to know the minimum number of moves required to
finish a game that are calculated in Table 6. It gives us the possible number of empty cells.

It is important to note that using combinations and permutations on large sets leads
to an enormous number of clauses. Therefore, this approach is only a preliminary one and
is intended to be improved in future research.

We will now introduce quantifiers and follow the directives explained in Section 7.1.
The first player must be an existential player, while the second player must be a universal
player. This means that we are interested in determining if the first player has a winning
strategy. We want to check if there always exists a sequence of moves for the first player
such that for any possible sequence of moves for the second player, the first player can
win. For even-sized boards, we look for a winning strategy for the white player, while for
odd-sized boards, we look for a winning strategy for the black player.

To achieve this, we add the unit clause wwin to the set of clauses, representing the
desired win condition for the first player (white). The objective of the first player is to
make the problem satisfiable in order to win, while the objective of the second player is
to make the problem unsatisfiable to prevent the first player from winning. In fact, if the
problem is satisfiable, the clause wwin is true.

Since each move in Othello has an influence on the next move, we need to establish
an order for quantifying the variables. We can start by quantifying the first move made
by the first player, followed by the quantification of the second move made by the second
player, and so on until the end of the game.

∃{wmove1,1,1, wmove1,1,2, . . . , wmove1,n,n}
∀{bmove2,1,1, bmove2,1,2, . . . , bmove2,n,n}
∃{wmove3,1,1, wmove3,1,2, . . . , wmove3,n,n}
...
∃{wmoveS,1,1, wmoveS,1,2, . . . , wmoveS,n,n}

One challenge arises when a player cannot play and needs to pass its turn as it becomes
unclear which player will make the even and odd moves. To account for the fact that both

59

players can potentially make a move on each turn, we can employ a different approach. We
include all players in all moves, always starting with the first player (although the order
itself is not important). We introduce quantifiers such as “there exists a first move for
player 1, such that for every first move of player 2, there exists a second move for player
1”, and so on until the end of the game. By using the variable turn, we can allow both
players the opportunity to play, but only the player whose turn it is will actually make the
move.

∃{wmove1,1,1, wmove1,1,2, . . . , wmove1,n,n}
∀{bmove1,1,1, bmove1,1,2, . . . , bmove1,n,n}
∃{wmove2,1,1, wmove2,1,2, . . . , wmove2,n,n}
...
∃{wmoveS,1,1, wmoveS,1,2, . . . , wmoveS,n,n}
∀{bmoveS,1,1, bmoveS,1,2, . . . , bmoveS,n,n}

The second problem is that, currently, the second player has always a winning strategy.
In fact, for example, it can simply make the “at most one move per step” constraint
false. With its universal quantifier, it can set two different bmove variables to true at
the same step, making the problem unsatisfiable and winning the game. To counter this,
we introduce a new Boolean variable bcheat , which is true if the second player (black)
cheats. This variable will be added to all the clauses related to bmove. Therefore, if the
black player tries to cheat by making a clause false by not following the rules, the first
player (white) can set bcheat to true and win the game. For instance, instead of having
¬bmove2,1,1 ∨¬bmove2,1,2, we will have ¬bmove2,1,1 ∨¬bmove2,1,2 ∨ bcheat2. If the second
player wants to cheat by placing two tokens in cell (1, 1) and (1, 2) at the second step, the
first player can make the problem satisfiable by setting bcheat2 to true.

Now, the problem is that the first player has always a winning strategy by accusing the
second player of cheating. Thus, we need to ensure that bcheat is true if and only if the
second player cheats. To continue with the same example, we add the clause bmove1,1,1 ∨
bmove1,1,2 ∨¬bcheat1. In this way, if the second player does not cheat and the first player
declares bcheat1 to be true, all the clause that ensure that bcheat is false only if a rule is
broken become false. Therefore, the problem is unsatisfiable and the second player wins.
By using this new variable bcheat , set in an if-and-only-if manner in all the rules related to
the black player’s moves, it becomes impossible to cheat without facing defeat. It gives, for
each of the five constraints that define wmove (constraint 6 in Section 8.2), the following
equivalence: ¬(constraint)⇔ bcheats.

Finally, to enforce a win for the white player when black cheats, we add the following
clause: ∀s ∈ [1, S] wwin ∨ ¬bcheats.

Now that we have ensured that both players will adhere to the rules (accounting for
all scenarios where the universal quantifier would enable the second player to cheat), we
can proceed by introducing existential quantifiers for the indicator variables. The variables
bcheat and wwin are included as part of these indicators. The final representation of the
quantified Boolean formulae is as follows:

60

∃{black0,C,N , white0,C,N , occupied0,C,N , . . . , endgame0, wwin}
∃{wmove1,1,1, wmove1,1,2, . . . , wmove1,n,n}
∀{bmove1,1,1, bmove1,1,2, . . . , bmove1,n,n}
∃{Indicator variables for step 1}
∃{wmove2,1,1, wmove2,1,2, . . . , wmove2,n,n}
...
∃{wmoveS,1,1, wmoveS,1,2, . . . , wmoveS,n,n}
∀{bmoveS,1,1, bmoveS,1,2, . . . , bmoveS,n,n}
∃{Indicator variables for step S}

In summary, we have developed an initial model consisting of variables and constraints
that accurately define the game of Othello and its rules. This model enables analysis of
various gameplay scenarios and to find the minimum number of moves to reach an endgame
state. To determine the outcome of a game, we introduced Boolean variables to represent
the winner and presented an initial approach to evaluate it. Additionally, in order to solve
the Othello game, we introduced quantifiers and cheat variables to systematically explore
all possible scenarios.

8.4 Future Works

To further expand on this work, an objective for the researchers is to implement these con-
straints using the proposed enhancements. The first objective starting from the proposed
model is to reformulate, if possible, the constraints that use the higher number of clauses.
Then, we can use the minimum number of moves required to set a lower bound on the
number of tokens needed to win, thereby reducing the number of clauses required to define
the variable wwin. The proposed version should be refined to make it more accessible.
Finally, the main goal is to use the QBF approach with a suitable solver to solve the game
of Othello on a 6x6 board, and potentially extend it to solve the 7x7 and 8x8 board if
feasible.

61

9 Conclusion

In conclusion, this research project has successfully achieved its primary objectives, which
had two main components. Firstly, it aimed to extend the application of propositional logic
to games and problems that had not been previously approached in this manner, thereby
introducing new directions of exploration. By doing so, it has opened up new possibilities
for student research projects and offered fresh perspectives for students to delve into.
Additionally, it aimed to improve problem-solving techniques in terms of computation
times, with the primary goal of effectively managing and solving larger problem instances.

To accomplish these objectives, the project began by exploring various ways to model
the problems, with a particular focus on propositional logic, in order to establish functional
models. Subsequently, key factors influencing the efficiency and ease of search for the SAT
solver were investigated. Different models were examined to assess the impact of constraint
construction on overall efficiency. Notably, the project used the SAT solver sat4j, which
operates on constraints in Conjunctive Normal Form (CNF).

In the domain of two-player games, Quantified Boolean Formulas (QBF) were intro-
duced to allow for alternating moves between the players. With an existential and an
universal player, we proposed a way of solving the game as depicted in Section 8.3. In the
context of model checking, the evaluation primarily focused on breadth-first-search (BFS)
and depth-first-search (DFS) techniques.

For the Snake Cube problem, we found out the significant benefit of incorporating
problem symmetry into the constraints, resulting in improved efficiency and the successful
resolution of a 4x4x4 cube. In the case of the Rubik’s Cube, limitations were identified
with the model checker, preventing the handling of the 3x3x3 cube. By adapting a proposi-
tional logic model to the 2x2x2 cube, it was observed that reducing the number of Boolean
variables and clauses did not always lead to improved efficiency. However, this still demon-
strates different ways of thinking when it comes to establishing constraints. Regarding
the Othello game, the project primarily focused on providing an initial approach where
we defined a model allowing us to determine the minimum number of moves to reach an
endgame state. Moreover, there are guidelines to develop in order to solve the game in
future research.

Overall, this work has explored the domain covered by propositional logic, opening
directions for further investigation. The proposed ideas for further research are detailed in
the “Future Works” sections of each respective chapter.

Finally, this project has not only allowed for personal growth and the expansion of
knowledge in this field, but it also aims to inspire and engage new students and researchers
in this fascinating and ever-evolving domain.

62

References

[1] aurelien. Les Rubiks cube. 2013. url: http://rubikscube-aurelien.over-blog.
com/l-algorithme-de-dieu.html.

[2] Jon Barwise. “An Introduction to First-Order Logic”. In: Handbook of Mathematical
Logic. Ed. by Jon Barwise. Studies in Logic and the Foundations of Mathematics.
Amsterdam, NL: North-Holland, 1977. isbn: 978-0-444-86388-1.

[3] Daniel Le Berre and Anne Parrain. “The Sat4j library, release 2.2”. In: J. Satisf.
Boolean Model. Comput. 7.2-3 (2010), pp. 59–6. doi: 10.3233/sat190075. url:
https://doi.org/10.3233/sat190075.

[4] Daniel Le Berre and Stéphanie Roussel. “Sat4j 2.3.2: on the fly solver configuration
System Description”. In: J. Satisf. Boolean Model. Comput. 8.3/4 (2014), pp. 197–
202. doi: 10.3233/sat190098. url: https://doi.org/10.3233/sat190098.

[5] Jerry Bryan. Algorithme de Dieu pour le cube de poche 2x2x2. Dec. 1993. url: http:
//www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan_
_God’s_Algorithm_for_the_2x2x2_Pocket_Cube.html.

[6] Jingchao Chen. “A New SAT Encoding of the At-Most-One Constraint”. Unpub-
lished. 2011.

[7] Jingchao Chen. “Solving Rubik’s Cube Using SAT Solvers”. In: CoRR abs/1105.1436
(2011). arXiv: 1105.1436. url: http://arxiv.org/abs/1105.1436.

[8] Christinne Choppy. Spécification des Systèmes Complexes (SDSC). Institut Galilée.
Nov. 2022. url: https://lipn.fr/~rodriguez/teach/sdsc/2015-16/.

[9] code_r. FIFO vs LIFO approach in Programming. GeeksforGeeks. url: https://
www.geeksforgeeks.org/fifo-vs-lifo-approach-in-programming/.

[10] Wikipedia contributors. Propositional calculus - Wikipedia. https://en.wikipedia.
org/wiki/Propositional_calculus. 2023-05-31. 2023.

[11] Deadlock, Livelock and Starvation. Baeldung. Apr. 2021. url: https://www.baeldung.
com/cs/deadlock-livelock-starvation.

[12] Lux Edixhoven. “Attacking the n-puzzle using SAT solvers”. MA thesis. Leiden In-
stitute of Advanced Computer Science (LIACS), July 2016.

[13] Denes Ferenc. Different Rubik’s Cube Solving Methods. https://ruwix.com/the-
rubiks-cube/different-rubiks-cube-solving-methods/. Accessed on 2023-06-
01.

[14] Pascal Fontaine. Logics for Computer Science. 2022.

[15] Pascal Fontaine. Structure de données et algorithme. 2020.

[16] Ian P Gent and Andrew G D Rowley. “Encoding Connect-4 using Quantified Boolean
Formulae”. In: Unknown (Aug. 2003).

[17] Gerard J. Holzmann. Spin Model Checker. ACM Digital Library. url: https://
spinroot.com/spin/whatispin.html (visited on 11/2022).

[18] Internet encyclopedia of philosophy contributors James Fieser Bradley Dowden.
Propositional Logic | Internet Encyclopedia of Philosophy. https://iep.utm.edu/
propositional-logic-sentential-logic/. 2023-05-31.

[19] Tommi Junttila. CNF Translations. https://users.aalto.fi/~tjunttil/2020-
DP-AUT/notes-sat/cnf2.html. 2023-05-31. 2020.

63

http://rubikscube-aurelien.over-blog.com/l-algorithme-de-dieu.html
http://rubikscube-aurelien.over-blog.com/l-algorithme-de-dieu.html
https://doi.org/10.3233/sat190075
https://doi.org/10.3233/sat190075
https://doi.org/10.3233/sat190098
https://doi.org/10.3233/sat190098
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Jerry_Bryan__God's_Algorithm_for_the_2x2x2_Pocket_Cube.html
https://arxiv.org/abs/1105.1436
http://arxiv.org/abs/1105.1436
https://lipn.fr/~rodriguez/teach/sdsc/2015-16/
https://www.geeksforgeeks.org/fifo-vs-lifo-approach-in-programming/
https://www.geeksforgeeks.org/fifo-vs-lifo-approach-in-programming/
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Propositional_calculus
https://www.baeldung.com/cs/deadlock-livelock-starvation
https://www.baeldung.com/cs/deadlock-livelock-starvation
https://ruwix.com/the-rubiks-cube/different-rubiks-cube-solving-methods/
https://ruwix.com/the-rubiks-cube/different-rubiks-cube-solving-methods/
https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html
https://iep.utm.edu/propositional-logic-sentential-logic/
https://iep.utm.edu/propositional-logic-sentential-logic/
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cnf2.html
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cnf2.html

[20] Tommi Junttila. Conflict-driven clause learning (CDCL) SAT solvers. https://
users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html. 2023-05-31.
2020.

[21] Tommi Junttila. DNF — The Disjunctive Normal Form. https://users.aalto.
fi/~tjunttil/2020-DP-AUT/notes-sat/dnf.html. 2023-05-31. 2020.

[22] K1ntus. Othello-solver. GitHub. Jan. 2023. url: https://github.com/K1ntus/
Othello-Solver.

[23] Chunxiao Li et al. “Towards a Complexity-Theoretic Understanding of Restarts in
SAT Solvers”. In: Theory and Applications of Satisfiability Testing – SAT 2020. Ed.
by Luca Pulina and Martina Seidl. Cham: Springer International Publishing, 2020,
pp. 233–249. isbn: 978-3-030-51825-7.

[24] nimble-code. Exécutables précompilés de Spin. https://spinroot.com/spin/Bin/.
Nov 2022. spinroot.

[25] OW2 Consortium. Index of /sat4j. https://release.ow2.org/sat4j/. OW2 Con-
sortium, Nov. 2022.

[26] PHILIPPE PICART. The Rubik’s Cube. Nov. 2022. url: http://trucsmaths.free.
fr/rubik.htm.

[27] Knot Pipatsrisawat and Adnan Darwiche. “A Lightweight Component Caching Scheme
for Satisfiability Solvers”. In: Theory and Applications of Satisfiability Testing - SAT
2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007, Proceed-
ings. Ed. by João Marques-Silva and Karem A. Sakallah. Vol. 4501. Lecture Notes in
Computer Science. Springer, 2007, pp. 294–299. doi: 10.1007/978-3-540-72788-
0_28. url: https://doi.org/10.1007/978-3-540-72788-0%5C_28.

[28] F. Pittner. Solving the 6x6 normal othello game. July 2006. url: http://www.
tothello.com/html/solving_the_6x6_normal.html.

[29] Simon Prince. Tutorial #9: SAT Solvers I: Introduction and applications. Borealis
AI. Nov. 2020. url: https://www.borealisai.com/research-blogs/tutorial-9-
sat-solvers-i-introduction-and-applications/.

[30] Règles du jeu d’Othello/Reversi. Fédération Française d’Othello. url: https://www.
ffothello.org/othello/regles-du-jeu/.

[31] César Rodríguez. Introduction à l’outil Spin et au langage Promela. Institut Galilée.
Nov. 2022. url: https://lipn.fr/~rodriguez/teach/sdsc/2015-16/files/01-
cours.pdf.

[32] Solveur de puissance 4. Game Solver. url: https://connect4.gamesolver.org/.

[33] Zhouheng (Jeffrey) Sun. How to Model a Rubik’s Cube and Build a Solver. Dec. 2020.
url: https://observablehq.com/@onionhoney/how-to-model-a-rubiks-cube.

[34] Tcl/Tk Software. https : / / www . tcl . tk / software / tcltk / bindist . html. Tcl
Developer Xchange site, Nov. 2022.

[35] Wikipedia contributors. Model Checking. https://en.wikipedia.org/wiki/Model_
checking. May 30, 2023. 2023.

64

https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/dnf.html
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/dnf.html
https://github.com/K1ntus/Othello-Solver
https://github.com/K1ntus/Othello-Solver
https://spinroot.com/spin/Bin/
https://release.ow2.org/sat4j/
http://trucsmaths.free.fr/rubik.htm
http://trucsmaths.free.fr/rubik.htm
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0%5C_28
http://www.tothello.com/html/solving_the_6x6_normal.html
http://www.tothello.com/html/solving_the_6x6_normal.html
https://www.borealisai.com/research-blogs/tutorial-9-sat-solvers-i-introduction-and-applications/
https://www.borealisai.com/research-blogs/tutorial-9-sat-solvers-i-introduction-and-applications/
https://www.ffothello.org/othello/regles-du-jeu/
https://www.ffothello.org/othello/regles-du-jeu/
https://lipn.fr/~rodriguez/teach/sdsc/2015-16/files/01-cours.pdf
https://lipn.fr/~rodriguez/teach/sdsc/2015-16/files/01-cours.pdf
https://connect4.gamesolver.org/
https://observablehq.com/@onionhoney/how-to-model-a-rubiks-cube
https://www.tcl.tk/software/tcltk/bindist.html
https://en.wikipedia.org/wiki/Model_checking
https://en.wikipedia.org/wiki/Model_checking

A Action function of the Rubik’s Cube

The actions are applicable for all values of s in the range [1, 11] and all values of l in the
range [1, 3].

Action Facelets of rotating face Facelets of side faces

A1: 90° clockwise top face

A1(c(1, 1, s, l)) = c(1, 3, s− 1, l)
A1(c(1, 2, s, l)) = c(1, 1, s− 1, l)
A1(c(1, 4, s, l)) = c(1, 2, s− 1, l)
A1(c(1, 3, s, l)) = c(1, 4, s− 1, l)

A1(c(2, 1, s, l)) = c(5, 1, s− 1, l)
A1(c(2, 2, s, l)) = c(5, 2, s− 1, l)
A1(c(3, 1, s, l)) = c(2, 1, s− 1, l)
A1(c(3, 2, s, l)) = c(2, 2, s− 1, l)
A1(c(4, 1, s, l)) = c(1, 1, s− 1, l)
A1(c(4, 2, s, l)) = c(1, 2, s− 1, l)
A1(c(5, 1, s, l)) = c(1, 1, s− 1, l)
A1(c(5, 2, s, l)) = c(1, 2, s− 1, l)

A2: 180° top face

A2(c(1, 1, s, l)) = c(1, 4, s− 1, l)
A2(c(1, 4, s, l)) = c(1, 1, s− 1, l)
A2(c(1, 2, s, l)) = c(1, 3, s− 1, l)
A2(c(1, 3, s, l)) = c(1, 2, s− 1, l)

A2(c(2, 1, s, l)) = c(4, 1, s− 1, l)
A2(c(2, 2, s, l)) = c(4, 2, s− 1, l)
A2(c(3, 1, s, l)) = c(5, 1, s− 1, l)
A2(c(3, 2, s, l)) = c(5, 2, s− 1, l)
A2(c(4, 1, s, l)) = c(2, 1, s− 1, l)
A2(c(4, 2, s, l)) = c(2, 2, s− 1, l)
A2(c(5, 1, s, l)) = c(3, 1, s− 1, l)
A2(c(5, 2, s, l)) = c(3, 2, s− 1, l)

A3: 90° counterclockwise
top face

A3(c(1, 1, s, l)) = c(1, 2, s− 1, l)
A3(c(1, 2, s, l)) = c(1, 4, s− 1, l)
A3(c(1, 4, s, l)) = c(1, 3, s− 1, l)
A3(c(1, 3, s, l)) = c(1, 1, s− 1, l)

A3(c(2, 1, s, l)) = c(3, 1, s− 1, l)
A3(c(2, 2, s, l)) = c(3, 2, s− 1, l)
A3(c(3, 1, s, l)) = c(4, 1, s− 1, l)
A3(c(3, 2, s, l)) = c(4, 2, s− 1, l)
A3(c(4, 1, s, l)) = c(5, 1, s− 1, l)
A3(c(4, 2, s, l)) = c(5, 2, s− 1, l)
A3(c(5, 1, s, l)) = c(2, 1, s− 1, l)
A3(c(5, 2, s, l)) = c(2, 2, s− 1, l)

A4: 90° clockwise left face

A4(c(3, 1, s, l)) = c(3, 3, s− 1, l)
A4(c(3, 2, s, l)) = c(3, 1, s− 1, l)
A4(c(3, 4, s, l)) = c(3, 2, s− 1, l)
A4(c(3, 3, s, l)) = c(3, 4, s− 1, l)

A4(c(1, 1, s, l)) = c(4, 4, s− 1, l)
A4(c(1, 3, s, l)) = c(4, 2, s− 1, l)
A4(c(2, 1, s, l)) = c(1, 1, s− 1, l)
A4(c(2, 3, s, l)) = c(1, 3, s− 1, l)
A4(c(6, 1, s, l)) = c(2, 1, s− 1, l)
A4(c(6, 3, s, l)) = c(2, 3, s− 1, l)
A4(c(4, 4, s, l)) = c(6, 1, s− 1, l)
A4(c(4, 2, s, l)) = c(6, 3, s− 1, l)

65

A5: 180° left face

A5(c(3, 1, s, l)) = c(3, 4, s− 1, l)
A5(c(3, 4, s, l)) = c(3, 1, s− 1, l)
A5(c(3, 2, s, l)) = c(3, 3, s− 1, l)
A5(c(3, 3, s, l)) = c(3, 2, s− 1, l)

A5(c(1, 1, s, l)) = c(6, 1, s− 1, l)
A5(c(1, 3, s, l)) = c(6, 3, s− 1, l)
A5(c(6, 1, s, l)) = c(1, 1, s− 1, l)
A5(c(6, 3, s, l)) = c(1, 3, s− 1, l)
A5(c(2, 1, s, l)) = c(4, 4, s− 1, l)
A5(c(2, 3, s, l)) = c(4, 2, s− 1, l)
A5(c(4, 4, s, l)) = c(2, 1, s− 1, l)
A5(c(4, 2, s, l)) = c(2, 3, s− 1, l)

A6: 90° counterclockwise
left face

A6(c(3, 1, s, l)) = c(3, 2, s− 1, l)
A6(c(3, 2, s, l)) = c(3, 4, s− 1, l)
A6(c(3, 4, s, l)) = c(3, 3, s− 1, l)
A6(c(3, 3, s, l)) = c(3, 1, s− 1, l)

A6(c(1, 1, s, l)) = c(2, 1, s− 1, l)
A6(c(1, 3, s, l)) = c(2, 3, s− 1, l)
A6(c(2, 1, s, l)) = c(6, 1, s− 1, l)
A6(c(2, 3, s, l)) = c(6, 3, s− 1, l)
A6(c(6, 1, s, l)) = c(4, 4, s− 1, l)
A6(c(6, 3, s, l)) = c(4, 2, s− 1, l)
A6(c(4, 4, s, l)) = c(1, 1, s− 1, l)
A6(c(4, 2, s, l)) = c(1, 3, s− 1, l)

A7: 90° clockwise front face

A7(c(2, 1, s, l)) = c(2, 3, s− 1, l)
A7(c(2, 2, s, l)) = c(2, 1, s− 1, l)
A7(c(2, 4, s, l)) = c(2, 2, s− 1, l)
A7(c(2, 3, s, l)) = c(2, 4, s− 1, l)

A7(c(1, 3, s, l)) = c(3, 4, s− 1, l)
A7(c(1, 4, s, l)) = c(3, 2, s− 1, l)
A7(c(3, 4, s, l)) = c(6, 2, s− 1, l)
A7(c(3, 2, s, l)) = c(6, 1, s− 1, l)
A7(c(6, 2, s, l)) = c(5, 1, s− 1, l)
A7(c(6, 1, s, l)) = c(5, 3, s− 1, l)
A7(c(5, 1, s, l)) = c(1, 3, s− 1, l)
A7(c(5, 3, s, l)) = c(1, 4, s− 1, l)

A8: 180° front face

A8(c(2, 1, s, l)) = c(2, 4, s− 1, l)
A8(c(2, 4, s, l)) = c(2, 1, s− 1, l)
A8(c(2, 2, s, l)) = c(2, 3, s− 1, l)
A8(c(2, 3, s, l)) = c(2, 2, s− 1, l)

A8(c(1, 3, s, l)) = c(6, 4, s− 1, l)
A8(c(1, 4, s, l)) = c(6, 2, s− 1, l)
A8(c(6, 2, s, l)) = c(1, 3, s− 1, l)
A8(c(6, 1, s, l)) = c(1, 4, s− 1, l)
A8(c(3, 4, s, l)) = c(5, 1, s− 1, l)
A8(c(3, 2, s, l)) = c(5, 3, s− 1, l)
A8(c(5, 1, s, l)) = c(3, 4, s− 1, l)
A8(c(5, 3, s, l)) = c(3, 2, s− 1, l)

A9: 90° counterclockwise
front face

A9(c(2, 1, s, l)) = c(2, 2, s− 1, l)
A9(c(2, 2, s, l)) = c(2, 4, s− 1, l)
A9(c(2, 4, s, l)) = c(2, 3, s− 1, l)
A9(c(2, 3, s, l)) = c(2, 1, s− 1, l)

A9(c(1, 3, s, l)) = c(5, 1, s− 1, l)
A9(c(1, 4, s, l)) = c(5, 3, s− 1, l)
A9(c(3, 4, s, l)) = c(1, 3, s− 1, l)
A9(c(3, 2, s, l)) = c(1, 4, s− 1, l)
A9(c(6, 2, s, l)) = c(3, 4, s− 1, l)
A9(c(6, 1, s, l)) = c(3, 2, s− 1, l)
A9(c(5, 1, s, l)) = c(6, 2, s− 1, l)
A9(c(5, 3, s, l)) = c(6, 1, s− 1, l)

66

B Initial States for Testing the Rubik’s Cube Models

Twelve initial states are used to compute the average computation time of the SAT solver.
The first digit corresponds to the color of facelet one of face one and so on for each facelet
of each face, as shown in Figure 7.

1. 510250321251523343144400

2. 255025405011310431442332

3. 002443015035425513423211

4. 035521414041532230312405

5. 223014511500543321302445

6. 515502002314504213432341

7. 105124334020223134055451

8. 040431155535320120342142

9. 353044020122340421555113

10. 540033023554111243022514

11. 441354131325234501522000

12. 225330535140114054422130

67

