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Abstract

The presence of a fractal pattern, characterized by self-similarity at various scales, has been observed
in numerous physiological signals. This thesis specifically investigates the fractal dynamics of the heart
rate. The main objective of this project is to analyze the underlying mechanisms that contribute to
this complex structure, aiming to gain a deeper understanding of its nature and how it is influenced
by different diseases. The study focused on three distinct groups which included healthy subjects,
individuals with congestive heart failure, and those with atrial fibrillation. The study aimed to adapt
and expand a stochastic model proposed by Ivanov et al. [21], which originally focused on modeling
the fractal dynamics of the heart rate in healthy individuals. The model assumes that the heart
rate is influenced by the parasympathetic and sympathetic systems. In this project, the model was re-
implemented and extended to incorporate diseased subjects. The extended stochastic model accurately
represented the fractal dynamics of the heart rate, showing strong correlation with observed patterns.
Atrial fibrillation resulted in a complete loss of fractal dynamics at low scales, replaced by a random
signal. Congestive heart failure had a lesser impact but showed a reduction in the influence of the
sympathetic and parasympathetic systems. These findings highlight the model’s strength in elucidating
complex physiological processes. Looking ahead, further advancements can be made by incorporating
additional factors, paving the way for even more comprehensive understanding.
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Chapter 1

Getting Started

1.1 Introduction

Fractals are complex structures that exhibit self-similarity at different scales and have been observed
in a wide range of natural systems. In particular, the fractal pattern has been observed in many
biological signals, including the heart rate, which is an important indicator of cardiovascular health.
This pattern is believed to reflect the complex interactions between the different physiological systems
that regulate the heart rate. This thesis aims to analyze the fractal dynamics of the heart rate using
various techniques and models and investigate the differences in the fractal pattern between healthy
and diseased subjects.

1.1.1 Background and Significance

Fractal patterns have been observed in many physiological signals, including gait [15, 20, 18, 29] and
heart rate [12, 11, 42]. These signals display complex patterns that cannot be easily characterized
by traditional signal analysis methods. In 1994, Peng et al. [32] introduced a method that quantifies
the long-range correlation observed in signals with a fractal pattern. This method, called detrended
fluctuation analysis (DFA), has since been widely used to identify fractals in various biological signals
[15, 20]. In particular, DFA has been used to investigate how the fractal pattern of heart rate signals
changes with the progression of diseases or aging [33, 12].

The dynamics of the heart rate have been the subject of numerous mathematical and statisti-
cal modeling attempts. One of the earliest models was introduced by Warner and Cox [35], who
proposed various mathematical equations to predict the heart rate based on sympathetic and vagus
efferent nerves to the heart. Subsequently, several other models emerged, with many of them adopting
statistical approaches such as autoregressive models [6] and point process models [3]. In a more spe-
cific context, Stirling et al. [39] developed a model for heart rate response to exercise using differential
equations, considering the dependence of heart rate on time and oxygen demand. More recent advance-
ments have explored the application of machine learning techniques. Neural networks, ranging from
simple artificial neural networks [41] to more complex models incorporating Long Short-Term Memory
(LSTM) networks, have been investigated. The utilization of LSTMs enables capturing correlations
between interbeat intervals, often augmented with attention mechanisms [26].

Despite the existence of several models with compelling features and outcomes, none of them have
incorporated the fractal dynamics of heart rate. The only model identified that considers the fractal
pattern is the one proposed by Ivanov et al. [21] which models the heart rate of healthy subjects.
Given that the primary focus of this study is on fractal dynamics, this model appears to be the most
pertinent foundation for modeling the fractal dynamics of heart rate.

The objective of this project is to explore this existing stochastic model developed for modeling
the heart rate and adapt it to incorporate diseased patients. By doing so, we aim to gain a deeper
understanding of the effects of these diseases on the fractal dynamics of the heart rate and how these
changes can be modeled. In addition, this project aims to evaluate the performance of these models
in differentiating between healthy and diseased patients based on their heart rate dynamics. This
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information could be used to develop new diagnostic tools for cardiovascular diseases and to better
understand the underlying mechanisms of these conditions.

1.1.2 Structure of the Thesis

To achieve the objectives of this thesis, the following structure is adopted.
In the remaining sections of this chapter, section 1.2 provides a brief overview of fractals and the

heart rate, which are essential concepts for understanding this project. Following that, section 1.3
introduces the two datasets utilized in this work.

Chapter 2 focuses on analyzing the structure of fractal signals. This chapter is divided into two
parts: first, we explore the methods used to analyze fractal signals (section 2.1), and then we apply
the most suitable method to heart rate signals (section 2.2).

Once a solid understanding of fractals is established, the subsequent focus is on modeling the
fractal pattern of heart rate. Chapter 3 explores the Ivanov model, a stochastic model that has proven
successful in generating fractal heart rate signals. In section 3.1, we present the model and identify
the parameters that influence the fractal pattern of the generated signals. In sections 3.2, 3.3, and 3.4,
we explore three different methods to fit the most appropriate parameters on real heart rate datasets,
which include data from healthy subjects, as well as individuals with congestive heart failure and atrial
fibrillation. Finally, in section 3.5, we analyze the quality of the parameters estimation for each subject
and provide an interpretation.

Lastly, in chapter 4, we briefly explore generalized linear models, another potential heart rate model
and evaluate its potential for fractal modeling.

1.1.3 Code Availability

All the different methods employed and discussed in this study were implemented using the Python
programming language within a Jupyter Notebook environment. The documented source codes can
be accessed from the following GitHub repository:
https://github.com/OdlBB/ATFE0015-1-Fractality-as-a-health-indicator.
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1.2 Context

1.2.1 What is a Fractal?

When someone evokes the word fractal, most people think of geometric figures that self contain them-
selves, i.e. figures that whatever the scale at which we look, we will always see the same figure. Some
known examples are the Koch snowflake (Figure 1.1) or the Sierpinski carpet. If these figures are in-
deed fractals, they are just a small subset of the whole set and represent an extreme example of what a
fractal actually is. What characterises a fractal is the self similarity (and not the self-containing) at all
scales. Let’s take the example of the coastline of Britain. At a scale of 10km, the beaches and cliffs can
be seen. Once zoomed at a scale of 1km, new small beaches appear. This keeps happening by zooming
again and again1. As can be seen on Figure 1.2, even though the pictures were taken at different scales,
the coast line remains pretty similar. However, at a certain point, such as the molecular scale, this
phenomenon is no longer observable. Self-similarity at all scales is an ideal case, and in reality, the
range of scales at which fractals can be observed is limited by upper and lower bounds.

Figure 1.1: Left: Koch snowflake. Right: A fractal temporal process at different time scales. Figure
from ref [12].

Figure 1.2: Britain coast at scales of 10km (left) and 1km (right). Source: https://www.youtube.
com/watch?v=pAiR7g5xzaQ.

Another characteristic of fractals is that they have an infinite perimeter (due to the self-similarity
at all time scales) but a finite surface. Let’s consider the Britain coastline again. Obviously, the surface
of Britain is finite. However, the perimeter will grow with the precision. This happens because the
more we zoom in and increase the precision, the more details of the coastline such as cliffs and small
beaches become visible, causing the perimeter value to increase.

1More details in https://www.youtube.com/watch?v=pAiR7g5xzaQ
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1.2.1.1 Fractals in Time Series

In the context of this project, the concept of fractal patterns is applied to time series analysis and more
specifically on biological signals. As depicted in Figure 1.1, some signals also exhibit self-similarity.

Before diving into the fractal signal, we first need to know what are white and Brownian noise.
White noise is a type of noise that has a flat frequency spectrum meaning that it contains all

frequencies at equal intensity. It is called "white" because it is analogous to white light, which contains
all visible colors at equal intensity. In terms of time series, it consists in a time series with

• a zero mean,

• a finite standard deviation that is constant in time,

• no correlation between the lags.

Brownian noise is the integration of white noise. It has a power spectral density that is inversely
proportional to the frequency squared, which means that its power decreases as the frequency increases.
It is also referred as random walk noise, meaning that the time series can be built by using a random
walk process. It has the following properties apart from the ones in table 1.1:

• Drift: non-zero mean drift, which means that over time, the values tend to move in one direction
or another;

• Diffusion: the values tend to spread out over time due to random fluctuations. This is in
contrast to white noise, which has equal variance at all times.

The fractal signal is more commonly referred as "1/f" noise or pink noise2 [23]. It exhibits a
power spectral density that is inversely proportional to the frequency. This means that the power
of the noise decreases as the frequency increases. In terms of that definition, it is also referred as a
noise that is between white and Brownian noise (see Figure 1.3). Additionally to the characteristics
presented in table 1.1, 1/f noise also exhibits persistence which refers to the characteristic of the noise
to exhibit long-lasting fluctuations and variations that persist over time without quickly diminishing
or transitioning to different states.

Property 1/f noise White noise Brownian noise

Randomness The values of the sequence The values of the sequence The values of the sequence
are not predictable or are not predictable or are not predictable or
deterministic. deterministic. deterministic.

Stationarity The statistical properties The statistical properties The statistical properties
change over time. don’t change over time. change over time.

Autocorrelation The correlation between two No correlation between Due to the random walk
points decreases slowly as the points. structure, each sample
the time that separates them depends on the previous one,
grows. resulting in a correlation

between successive values.
Memory The value at any given time Independence between the The value at any given time

depends not only on its points. is influenced by the values
immediate past but also on that came before it.
its more distant past.

Table 1.1: Statistical characteristics comparison of white noise, 1/f noise and Brownian noise

2More details about 1/f noise in https://www.youtube.com/watch?v=ToZFyIvnQnI&t=492s
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Figure 1.3: (A) Simulation of the noise signals (B) Detrended fluctuation analysis (DFA) (C) spectral
analysis. Figure from ref [29].

1.2.2 Heart Rate

In the heart rate, what is actually measured is the interbeat time, i.e. the time between two beats of
the heart [2]. One could think that the heart rate follows a smooth curve but it turns out to be quite
"chaotic". Actually, in the article [12], the authors explain that a constant heart rate is associated
with diseased people.

In order to determine the heart rate, we first need to get the ECG signal. This signal is a repre-
sentation of the electric activity of the heart. The electric pulse is what enacts the contraction of the
heart. The form of the electric signal during one heart beat is commonly called the "PQRST" form.
In order to explain this "wave", we first need to have a bit of knowledge of the heart anatomy. The
heart has four different cavities: the right and left atrium and the right and left ventricle. The atria
are the cavities in which the blood enters and the ventricles are the ones from which the blood leaves
the heart. These last two cavities are actually the most powerful and the ones responsible for all the
blood circulation. Let’s now get back to the electric signal. In Figure 1.4, we have two "PQRST"
waves. The "P" part corresponds to the electric signal propagating into the atria, while the "R" part
is the electric signal propagating into the ventricles. The interbeat interval is measured by taking the
time between two "R" peaks. A representation of the whole process is available on Figure 1.4.

The heart rate can be influenced by various factors. In the context of this project, we consider
three of them:

1. The sinoatrial (SA) node is a small cluster of specialized cells located in the right atrium
of the heart, and it serves as the natural pacemaker of the heart. The SA node generates
electrical impulses that initiate each heartbeat, and these impulses travel through the atria to
the atrioventricular (AV) node, and then to the ventricles, causing them to contract and pump
blood throughout the body.

2. The parasympathetic nervous system, which is also known as the "rest and digest" system,
tends to slow down the heart rate. The parasympathetic fibers that innervate the heart release
the neurotransmitter acetylcholine, which binds to receptors on the SA node and slows down
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the rate of electrical impulses generated by the node. The parasympathetic nervous system is
primarily active during periods of rest and relaxation, such as when you’re sleeping or sitting
quietly.

3. The sympathetic nervous system, which is also known as the "fight or flight" system, tends
to speed up the heart rate. When the body perceives a threat or stressor, the sympathetic nervous
system is activated, and sympathetic fibers that innervate the heart release the neurotransmitter
norepinephrine, which binds to receptors on the SA node and increases the rate of electrical
impulses generated by the node. This prepares the body for action by increasing blood flow to
the muscles and organs and increasing the heart rate and blood pressure.

Of course, the heart rate can be influenced by other factors such as physical activities, emotions,
body temperature, ... However, these are beyond the scope of this project.

Figure 1.4: On the left: Heart interbeat. On the right: Heart beat process. Figure from ref [24]

1.2.2.1 Diseases

In this work, we analyse the heart rate of healthy and diseased subjects and compare them. More
specifically, we consider two different diseases:

1. congestive heart failure,

2. atrial fibrillation.

The first one is a condition that occurs when the heart, and more specifically the ventricles loose
pumping power, thus not meeting the body’s needs. This often occurs when the muscle is weakened
or damaged. One of the possible reactions to this lack of pumping can be an acceleration in the heart
rate in order to maintain a sufficient blood flow to the body.

The second one also impacts the heart rate but in a different way: it impacts the electrical impulses.
As briefly explained earlier, in order to get a beat, an electric signal needs to be propagated into the
heart and this is done in a very specific order:

1. The signal starts from a region on the right atrium called the sinoatrial node (also called the
natural pacemaker).

2. The signal is then propagated through the atria, so that the blood in these cavities flows into
the ventricles.

3. The electrical impulses then go through the ventricles, leading to the contraction ejecting the
blood out of the heart.

11



Note that this is a simplified version of what is actually happening but it is enough for the scope
of this work.

In atrial fibrillation, the subject has an irregular heartbeat due to the electrical impulses of the
heart becoming disorganised, leading to contractions in the atria to be totally desynchronised and thus
inefficiently making the blood flow from the atria to the ventricles. Furthermore, the contractions no
longer start at the sinoatrial node but now start anarchically anywhere in the atria.

12



1.3 Datasets

1.3.1 First Dataset: ECG for Healthy Aging

The first dataset is made of various ECGs, grouped by age (see table 1.2) that were recorded from 1.121
healthy subjects. This dataset is available on physionet3. The length of the recording varies between 8
and 45 minutes. The fractal pattern isn’t something observed on ECG signals but on interbeat signals,
thus the signals need to be processed before being used.

However, as will be developed in section 2.2.1, the time series obtained from this dataset are too
short to observe the fractal pattern and in the future analysis, only the second dataset will be used.

Group 1 2 3 4 5 6 7

Size 46 422 229 105 43 50 50
Age 18-19 20-24 25-29 30-34 35-39 40-44 45-49
8 9 10 11 12 13 14 15
50 18 24 19 13 7 12 7

50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-92

Table 1.2: Age groups of the first dataset

1.3.2 Second Dataset: Heart Rate of Healthy and Sick Subjects

The second dataset is available on physionet4. This dataset offers 15 heart rates signals, each time
series being around 24 hours long. The set can be divided into 3 groups:

1. group n: this group contains 5 times series of healthy subjects,

2. group c: this group contains 5 times series of subjects with congestive heart failures,

3. Group a: this group contains 5 times series of subjects with atrial fibrillation.

As a reminder, congestive heart failure occurs when the heart muscle doesn’t pump the blood as well
as it should and can lead to an acceleration of the heart rate. Atrial fibrillation occurs when the electric
activity in the heart goes wrong and thus the contractions in the atrium are totally desynchronised
often leading to a fast and irregular heart rate (more detail in section 1.2.2.1).

It happened that some signals contained abnormal heart beats (especially the ones of subjects with
congestive heart failures). The intervals that precede and follow these beats should be considered as
outliers. For this, a second series was proposed with these outliers being removed. DFA (see section
2.1.1) being very sensitive to outliers, this second series were the ones that were used for further
analysis. However, it is important to note that not all of the outliers were removed and a few still
remained. Additional information can be found in the dataset documentation.

3https://physionet.org/content/autonomic-aging-cardiovascular/1.0.0/
4https://physionet.org/content/chaos-heart-rate/1.0.0/
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Chapter 2

Identify the Fractal Pattern on Time
Series

2.1 Methods Overview

The first step is to determine the structure of a time series that has fractal patterns and how to
characterise it. It has been determined that the fractals can be associated with "1/f" noise (see section
1.2.1.1). There are several ways to characterise these different signals but the two most used methods
are the detrended fluctuation analysis (DFA) [15, 20] and the power spectrum analysis [11]. Both
methods consist in representing a data with a curve and summarise that data with a value (α for
the DFA method and β for the power spectrum analysis). As can be seen in Figure 1.3, the value
determines which kind of signal we have. These two methods are actually linked since β = 2α − 1
[5]. Both are used to evaluate what is called the Hurst exponent, which is a measure of the present
correlation in a time series.

2.1.1 Method 1: Detrended Fluctuation Analysis

Method overview The detrended fluctuation analysis (DFA) is a method that quantifies the pres-
ence of long-term correlations, or self-similar behavior, in time series data. The method, initially
introduced by Peng et al. [32] for analyzing DNA sequences, has gained popularity and become a
widely utilized technique. It has found applications in the analysis of various signal types, including
physiological signals, financial markets, and climate data, and has received over 3.000 citations 1.It can
be performed with the following steps2 [32, 19]:

1. convert the signal to a mean-centered cumulative sum,

2. define the various "scales",

3. for a given scale, split the data into epochs according to the size of that scale,

4. detrend each epochs,

5. compute the root mean square of each epoch

RMS =

√√√√ 1

N

n∑
i=1

x2i ,

6. take the mean of all the RMSs as a summary value for that scale,

7. repeat 3 for each scales,
1https://en.wikipedia.org/wiki/Detrended_fluctuation_analysis
2More details in https://www.youtube.com/watch?v=-RmxLZF8adI
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8. compute the linear fit between log-scales and log-RMS, the slope α of this line will is the coefficient
that summarizes the time series.

Figure 2.1: This figure illustrates the different stages of the DFA method. The first image shows the
original signal, while the next image displays the signal converted to a mean-centered cumulative sum
(step 1). The middle images depict examples of the signal divided into different time scales, in which
these these sub-signals are detrended (steps 2, 3, 4 and 5), and the image on the right shows the final
curve (steps 6, 7 and 8). The slope of this curve corresponds to the value of the coefficient α.

Results interpretation Based on the computed value, the type of signal can be identified (see
Figure 1.3):

• anti-correlated time series if α < 0.5,

• white noise, uncorrelated time series if α ≈ 0.5,

• correlated time series if α > 0.5,

• 1/f noise if α ≈ 1,

• Brownian noise if α ≈ 1.5.

From there, the Hurst exponent H can be identified:

• if α ∈ [0, 1], the signal is a fractional Gaussian noise and H = α,

• if α ∈]1, 2], the signal is a fractional Brownian motion and H = α− 1.

Trend of time series The trend of a time series is the general direction in which the values of the
time series are changing over time. It represents the long-term behavior of the time series, indicating
whether the series is increasing, decreasing, or remaining relatively stable over time.

Detrending is the process of removing the trend component from a time series data, leaving behind
only the variation in the series that is not explained by the trend. One of the most common trend is a
linear trend, meaning a straight line can be fitted. Detrending this series simply consists of removing
the straight line best fit [19].

In the context of detrended fluctuation analysis, the local trend is determined and then removed.
The used DFA method is defined by an order N which is the order of the polynomial that will be fitted
to the epochs [5, 19]. For example, the method DFA-2 will detrend the epochs using a polynomial of
order 2.
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Figure 2.2: Linear detrending of a time series

Intuition of DFA The first step (convert the signal into its mean-centered cumulative sum) is crucial
as it helps determine some trends that wouldn’t be perceived if the original time series was used. This
creates a random walk that is dominated by the large-scale fluctuations in the data, while short-term
fluctuations are integrated out. This has the effect of amplifying the long-term correlations in the data
and reducing the effects of noise and short-term variability.

If we have a look at the method, it first approximates the time series by making linear regressions
into time windows and then measures how much it is impacted by the size of that time window i.e.
the variance of the regressions for a given time window size. If the signal can have quite large time
windows and remain relatively precise, then logically, the coefficient α will be quite high as at small
windows the variance in the detrended signal will be very small (since it was very well approximated)
but eventually, it will loose its precision. On the other hand, if the time series needs very small windows
to be accurately estimated, it doesn’t change much that there is a small or a large time window, there
will be a high variance in both, thus the coefficient α will be small, since the variability will (faintly)
grow 3.

If we have a look at Figure 2.3, we can see that for white noise, even with small windows, the
variance will already be quite high and will remain high whatever the time window, thus the slope
of all the RMSs computed will be low as no big difference will rise if the signal is approximated with
small or large time windows. On the other hand, for Brownian noise, the slope will be high. Indeed,
for small time windows, the regressions will be very precise and it will gradually loose in precision.

3More details in https://www.youtube.com/watch?v=o0LndP2OlUI&t=322s
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Figure 2.3: Integration of time series. On the top left side: white noise, on the top right side: 1/f
noise, on the bottom: Brownian noise.

2.1.1.1 Implementing and Assessing the Method

In order to perform DFA, two different implementations of the method were used:

1. the first was built from scratch following the various steps described in section 2.1.1,

2. the second was already implemented in the MFDFA package4.

Assessing the method Before performing DFA on any dataset, we first need to check that these
methods are accurate. For that, several signals were generated with a given value for the coefficient
α. DFA (using both implementations) was then performed on these signals to give the estimated α∗.
From there, we can compare α with α∗ and determine the accuracy of the methods.

The stochastic package5 was used to generate the signals. That package provides a method
called FractionalGaussianNoise that generates a random signal with a given Hurst exponent. Once
that signal was generated, both DFA methods could be called to assess the value. However, it is
not possible to generate signals with α above 1 (definition of fractional Gaussian noise, see section
2.1.1). Nonetheless, future analyses will include signals that are fractional Brownian motions. The
stochastic package doesn’t offer other methods that could build a signal based on the Hurst exponent
but it has the possibility to generate a signal based on its power spectrum coefficient β (more details
in section 2.1.2) with the ColoredNoise method. With the relation β = 2α − 1, it was possible to
generate signals with the expected value of α ∈ [0.4, 1.6]. Each signal consisted of 10.000 points.

4https://github.com/LRydin/MFDFA
5https://github.com/crflynn/stochastic
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NB: another package called FBM6 was also considered to generate random signals based on the
Hurst exponent. However, due to technical limitations, the methods proposed by this package were
soon discarded as the signals generated with a Hurst exponent close to 0 or 1 weren’t accurate.

Scale impact In order to verify whether it is better to use small scales or scales up to the dataset
length, the code was launched twice: once with scales between 10 and 100 and once with scales between
3 and 1000.

The results on Figure 2.4 contain various interesting information. First of all, when lower scales are
used, the second method (i.e. the one from the MFDFA package) is more accurate than the first one (the
one that was implemented). On the other hand, if larger scales are used (up to the signal length), the
first version tends to become more accurate while the second version becomes less accurate. This leads
to no method "standing out", but the difference between the methods with larger scales is less than
when smaller scales are considered. This is one element that could be in favor of the second method.
Both methods are quite accurate at all scales but some combinations are better than others.

Figure 2.4: This figure presents the results obtained from performing DFA on signals generated with
the stochastic package of size 10.000. The graphs on the left were obtained from the experiment
using scales in the range [10, 100], while the graphs on the right were generated from scales in the range
[10, 1000]. The top graphs display the exact values of α along with all the computed values α∗. For
each α coefficient, five different signals were generated and the computed values for each signal were
subtracted from the actual value. The resulting absolute values were averaged. The bottom graphs
show the evolution of these mean absolute errors.

Time series length impact The tests described earlier only utilized time series of a single size.
However, in future analyses, longer time series with more than 70.000 values will be considered. To
ensure that the DFA method is effective for such larger sizes, the same analysis was repeated with time
series of random sizes selected from the interval [10.000, 200.000]. The chosen scales ranged from 10
to N/10 with N being the size of the time series. The results are presented in Figure 2.5, indicating
that the DFA method was actually more accurate with these longer signals than with those shown in
Figure 2.4.

6https://github.com/732jhy/Fractional-Brownian-Motion

18

https://github.com/732jhy/Fractional-Brownian-Motion


Figure 2.5: This figure presents the results obtained from performing DFA on signals generated with
the stochastic package of size randomly selected between [10.000, 200.000]. The left graph displays
all the computed α∗ values along with their exact values. For each α coefficient value, five signals were
generated, and the computed α∗ values were subtracted from the actual value. Then, the absolute
values were averaged together. The right graph shows the evolution of these mean values.

Implementation and scale choice For the following analyses, the second method with smaller
scales (around 1/10th of the signal length for the maximum scale) will be used as it was the most
accurate. The other reason why this method will be favored is that it is much faster.

2.1.2 Method 2: Power Spectrum Analysis

The power spectrum of a time series describes the distribution of power into the frequency components
of that signal. In the power spectrum analysis, this power spectrum is then approximated by the
function P (f) ∼ f−β . The value β is the one that will help identifying the type of the signal (see
Figure 1.3):

• white noise if β ≈ 0,

• 1/f noise if β ≈ 1,

• Brownian noise if β ≈ 2.

2.1.2.1 Implementing and Assessing the method

Implementing the method The value was determined by creating a log-log plot of the power
spectrum of the signal and performing a linear regression. The slope of the resulting line corresponds
to the β coefficient.

Assessing the method The power spectrum analysis implementation was assessed in the same way
as for the DFA method (see section 2.1.1.1 for more details), i.e. a signal with a given value β was
generated and the estimation β∗ was given by the power spectrum analysis. The accuracy can be
deduced from these results.

As can be seen on Figure 2.6, the power spectrum analysis remains quite accurate but is not as
good as the DFA method, especially when the β coefficient of the signal is close to 1.
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Figure 2.6: This figure presents the results obtained from performing the power spectrum analysis on
signals generated with the stochastic package of size randomly selected between [10.000, 200.000].
The graph on the left represents all the β∗ values computed along with the exact values of β. For
each β value, the 5 computed values for each signal were subtracted from the actual value (use of the
absolute difference) and were then averaged together. The graph on the right shows the evolution of
these means.

2.1.3 Method Selection

After comparing both methods, it was determined that the DFA method was given preference over the
power spectrum analysis in this work. DFA demonstrated higher precision, especially for signals with
α = β = 1, and is considered more suitable for fractal pattern analysis in general [19].
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2.2 Identify the Fractal Pattern on Heart Rate Signals

2.2.1 DFA on Different Age Groups

DFA was first conducted on the dataset described in section 2.2.1 with the aim of detecting any
discernible differences in the fractal pattern based on the age of the subject. However, it turns out
that this dataset provides too small signals (with a length ranging from 374 to 5240 beats) leading to
an inaccurate analysis that does not yield any significant findings. As depicted in Figure 2.7, the α
coefficient is often much smaller than the expected value of 1. Additionally, no significant aging-related
pattern can be detected.
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Figure 2.7: The plot on the left displays the α coefficient obtained with DFA of each subject of the
first dataset (see section 2.2.1), with dots of the same color indicating membership in the same age
group, ordered from youngest to oldest. The youngest are on the left and the oldest are on the right.
The scales taken into account ranged from 5 to l/8, where l is the length of the time series. The plot
on the right shows the average of the α coefficients for each age group. The numbers above the bars
represent the count of subjects in each group.

2.2.2 DFA on the Heart Rate of Healthy and Sick Subjects

Let’s now use the dataset described in section 1.3.2. Several analyses were conducted on the time series
by considering the use of the entire time series or only a portion of it.

Analysis on the whole time series The first analyses are DFA on the whole time series. These
analyses are inspired from the ones made by Peng et al. (1995) [33] which performed DFA on healthy
patients and on patients with congestive heart failure.

When DFA was performed on the whole time series, different scales were considered:

1. between 10 and 10.000,

2. between 10 and 100,

3. between 100 and 10.000.

The findings are presented in Figure 2.8 and Figure 2.9. These figures reveal several important
observations. First, for healthy subjects, the results remain consistently close to the significant value of
1 across all time scales, as depicted by the straight line in Figure 2.8. On the other hand, for patients
with atrial fibrillation, the time series appears to be completely random at low scales, indicating a
lack of correlation between heartbeats [13]. This is represented by an α coefficient close to 0.5. This
observation suggests the possibility of utilizing it as a potential diagnostic tool. However, as the scales
increase, the α coefficient rises and approaches the value 1, even surpassing the values for healthy
subjects. This is clearly observable in Figure 2.8 with the curve having a low slope for small scales
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but a higher one as scales grow. Finally, for congestive heart failure patients, although the values are
relatively constant, they exhibit slightly more variability than healthy subjects across different time
scales. The values are also higher than those for healthy subjects, indicating that the time series
becomes more similar to Brownian noise.
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Figure 2.8: The plot above shows the DFA curve for the first subjects in each category. The data for
group n (healthy) is represented on the top left side, group a (atrial fibrillation) on the top right side,
and group c (congestive heart failure) on the bottom. The scales range from 10 to 10.000. The plots
for all subjects are available in appendix B.
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Figure 2.9: The bar charts display the α coefficient resulting from the DFA method performed on the
entire time series of each subject. The first five bars represent group n (healthy), the next five represent
subjects from group a (atrial fibrillation), and the last five represent those from group c (congestive
heart failure). The results for three different scaling ranges are shown: the top left corresponds to
scales between 10 and 10.000, the top right to scales between 10 and 100, and the bottom to scales
between 100 and 10.000.

Analysis on 8192-beat sub-samples A second analysis was made based on the analysis of Peng
et al. As pointed in that article, it isn’t very practical to diagnose someone based on a 24 hours signal.
Thus, DFA was conducted on sub-signals of the original one made of 8192 beats which corresponds to
around 2 hours. Two different sets of scales were considered:

1. scales between 4 and 16 beats, the resulting value will be called α1,

2. scales between 16 and 64 beats, the resulting value will be called α2.

The results are available in table 2.1. It can be seen that the results for healthy people obtained are
extremely close to the ones obtained in Peng et al.. On the other hand, for patients with congestive
heart failure, even though it is quite close, there are still some small differences between our results
and those from Peng et al.. We can make the assumption that this is due to a variation in severity of
the disease between the subjects of the two datasets, but since we don’t have access to the one used
in Peng et al., we have no way to confirm this assumption.

On Figure 2.10, these intervals are plotted. We can clearly distinguish the subjects with atrial
fibrillation from the rest using α2. However, due to the intervals overlapping with each other, there is
no way to distinguish healthy subjects from the ones with congestive heart failure.
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Healthy Congestive heart failure Atrial fibrillation

α1 1.2103± 0.1754 0.9969± 0.2854 0.6039± 0.0492

α1 in Peng et al. 1.201± 0.178 0.803± 0.259 /
α2 0.9915± 0.1167 1.2254± 0.119 0.5453± 0.0393

α2 in Peng et al. 0.998± 0.124 1.125± 0.216 /

Table 2.1: Results of DFA made on time series made of 8192 beats. These time series come from the
second dataset (section 1.3.2) and a division into sub-signals of the correct size of the provided signals.
The results are presented as mean± standard deviation.

Figure 2.10: Intervals of the α coefficient obtained from DFA for healthy and diseased patients. The
intervals on the left correspond to α1, and those on the right correspond to α2.

Analysis on a per hour basis A final analysis was performed by looking at the evolution of the α
coefficient in time. It was conducted on a per hour basis. For that purpose, the time series were divided
into signals that correspond to an hour long and DFA was performed on each of these sub-signals. The
results are available on Figure 2.11. The first observation is that no trend can be noticed with the
evolution of time of the α coefficient. This means that DFA won’t be affected by the time at which
the cardiac signal will be recorded. The second observation is that the results confirm what was said
earlier: the subjects with atrial fibrillation can clearly be distinguished from the other subjects but
healthy subjects and patients with congestive heart failure can’t be significantly differentiated based
on DFA.

5 10 15 20
Hour

0.6

0.8

1.0

1.2

1.4 n
a
c

5 10 15 20
Hour

0.6

0.7

0.8

0.9

1.0

1.1

1.2

n
a
c

Figure 2.11: The plot shows the hourly evolution of the α coefficient from the DFA method for each
subject in the second dataset (refer to section 1.3.2) on the left and the mean of each group (n for
healthy, a for atrial fibrillation and c for congestive heart failure) on the right.
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2.3 Conclusion

The results obtained with the DFA method have demonstrated its potential as a diagnostic tool for
identifying atrial fibrillation. However, the same cannot be said for congestive heart failure, as the DFA
method has shown mixed results in differentiating between patients with this condition and healthy
individuals.

The Detrended Fluctuation Analysis (DFA) method is a reliable and accurate tool for analyzing
fractal patterns in the heart rate signal (section 2.1.1.1). However, the size of the signal is a critical
factor for obtaining significant results with DFA, and it is important to ensure that the signal is of
sufficient length before conducting the analysis (section 2.2.1).

Finally, the results also suggest that the time at which the heart rate signal was measured does not
appear to have a significant impact on the fractal pattern detected by the DFA method. This implies
that the fractal properties of the heart rate signal may be a stable feature of the cardiovascular system,
even in the presence of disease (section 2.2.2).
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Chapter 3

The Ivanov Model: a Stochastic Model for
Heart Rate Fractal Dynamics

3.1 Model Description and Analysis

3.1.1 Model Overview

This chapter focuses on a stochastic model proposed by Ivanov et al. [21] to describe the heart rate
variability of healthy individuals. We examine this model to gain insights into its mechanism for
capturing the fractal dynamics of the heart rate. A good understanding of this model is necessary
because we attempt to fit some of its parameters to the subjects of the second dataset (see section
1.3.2) to determine if the model can be extended to diseased subjects and to identify any differences
between healthy and sick patients.

The Ivanov model [21] is a stochastic model which considers that the heart rate is influenced by 3
elements (more details in section 1.2.2):

• the sinoatrial node (SA) which tends to keep the heart rate at a constant rate,

• the sympathetic systems (SS) which speeds up the heart rate,

• the parasympathetic system (PS) which slows down the heart rate.

The idea is that the time interval between two heartbeats, denoted as τ(n), behaves like a random
walk process. Different factors influence this process, and each factor has a specific preferred level,
denoted as τk. The process tends to move towards these preferred levels. However, the levels themselves
change over time. To illustrate this idea, a simplified representation of the model’s behavior is shown
in Figure 3.1.

Figure 3.1: Schematic representation of the dynamics of the Ivanov model. This model consists in
a random walk with stochastic feedback controls. In this specific representation, only two preferred
levels are used: τ0 and τ1. Figure from ref [21].

In this model, it considers that the time τ(n + 1) between the heart beats n and n + 1 can be
computed in the following way:
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τ(n+ 1)− τ(n) = ISA(n) + IPS(n, τPS(n)) +
N∑
j=1

IjSS(n, τ
j
SS(n)) (3.1)

where

•

Ik(n) =

{
wk(1 + η) if τ(n) < τk
−wk(1 + η) otherwise, (3.2)

with Ik being the feedback input biasing the walker to a preferred level for a given system (SA,
SS or PS),

• τk is the preferred level for τ(n) and remains at the same value for a certain amount of time
which follows a probability distribution with a mean of T k

lock,

• wk is the strength of the feedback input Ik,

• η is white noise.

3.1.2 Implementing and Assessing the Model

Implementation For the probability distribution of the white noise η, the preferred levels and the
time of an unchanged preferred level T , the same distributions than the ones used in the paper [21]
were used: a Laplace distribution for the first, a uniform distribution for the second and a normal
distribution for the latest. The method to generate a signal takes as parameters:

1. the input strengths wSA, wSS , wPS ,

2. the number of sympathetic inputs N ,

3. the preferred level τSA,

4. the upper and lower bounds on τPS and τSS ,

5. the mean and standard deviation of the white noise η (note that the mean should be 0 as it is
white noise),

6. the mean and standard deviation of the time T ,

7. the number of beats to be generated.

Assessing An example of a signal generated by this model is available in Figure 3.2. It can be seen
that the signal indeed presents a fractal pattern as the signal has a similar pattern at different scales.
Furthermore, the generated signal is similar to a signal of a healthy subject as can be seen on Figure
3.3.
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Figure 3.2: Signal generated from the Ivanov model at various time scales. The signal was generated
with the same variable values as in the paper, i.e N = 7, wSA = wSS = wPS/3 = 0.01s. η is a
symmetrical exponential distribution (Laplace distribution) with 0 mean and 0.5 scale. τSA = 0.6s,
and both τ jSS and τPS are drawn from a uniform distribution, the first being bound by [0.2, 1.0] and
the latter by [0.9, 1.5]. Finally, T follows a normal distribution with a mean of 1000 beats.
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Signal generated with the Ivanov Model with 20000 beats

Figure 3.3: On the left, 20.000 beats of the signal of the forth healthy subject in the second dataset
(see section 1.3.2). On the right, a signal generated with the Ivanov model. The parameters value are
the same as in Figure 3.2.

However, this isn’t enough to assess the model. Thus a Power spectrum analysis along with a DFA
(see section 2.1) were performed on 1000 signals generated with that model. As can be seen on Figure
3.4, the signals generated from the Ivanov model are indeed fractals. A mean value of α ≃ 1.06006
was found with the DFA algorithm while β ≃ 1.156 for the power spectrum analysis. In Ivanov et al.
paper [21], the value for β was ∼ 1.1 which is quite similar to our results.
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Figure 3.4: Histogram of the values of α for DFA (scales between 5 and 500) and β for the spectrum
analysis on 1000 signals generated with the Ivanov model. The parameters value are the same as in
figure 3.2.

3.1.3 Selection of Default Parameter Values

The default parameter values, which are the same as those used in section 3.1.2, are as follows:

1. wSA = 0.01,

2. wSS = 0.01,

3. wPS = 0.03,

4. N = 7,

5. τSA = 0.6,

6. τSS ∈ [0.2, 1],

7. τPS ∈ [0.9, 1.5],

8. η has a standard deviation of 0.5×
√
2,

9. T has a mean of 1000 and a standard deviation of 500.

Most of these parameters have the same values as in the paper [21]. However two parameters are
defined in a different way:

1. The first one is the standard deviation of the time T . The reason is simply that that standard
deviation wasn’t specified in the paper. However, as explained in section 3.1.5.5, this parameter
doesn’t have much importance.

2. On the other hand, the standard deviation of the white noise η was initially set to 0.5. However,
after generating a signal with the Ivanov model, it turned out that the signals didn’t look as
smooth as the ones generated with a scale of 0.5 (with the Laplace distribution, the standard
deviation is equal to b×

√
2 with b being the scale) and looked more like a signal made of "blocks",

thus not looking quite like a healthy patient heart rate signal (see Figure 3.5).

On top of this shape less "smooth", the fractal pattern is also lost. Indeed, 1000 signals were
generated with a standard deviation of 0.5 and DFA was performed on these signals. The obtained
mean was α ∼ 1.18279 which is quite far from the required value of 1 (see Figure 3.6).
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Figure 3.5: Generated signal with the Ivanov model. The parameters are the ones by default but the
standard deviation of η is 0.5 on the left and 0.5×

√
2 on the right.

Figure 3.6: Histogram of the values of α for DFA (scales between 5 and 500) for 1000 signals generated
with the Ivanov model. The parameters are the ones by default except for the standard deviation of
the white noise η which is 0.5.

3.1.4 Mechanisms Underlying Fractal Pattern in the Model

The fractal patterns found in some biological signals may be explained by the influence of different
inputs that change at varying time scales, as discussed in previous studies [14, 23]. Haudorff et al.
demonstrated that the combination of random processes with different time scales can produce the 1/f
noise pattern. This model shares similarities with the present study, as it involves the combination of
various inputs that change over time and have their own preferred levels.

Furthermore, if we have a look at the various statistical characteristics of the 1/f noise (section
1.2.1.1), this model respects them:

• Randomness: there is randomness mainly with the parameter η to which we also add the time
T and the preferred levels τk;

• Stationarity: the generated time series aren’t stationary since the statistical properties (espe-
cially the mean of the signal) will change with the preferred levels τk;

• Persistence: the model indeed has long-lasting fluctuations that persist. In this model, the
time in which all the τk remain the same is the time during which the signal is in a same state;

• Correlation/Memory: each τ(n) depends on the value of τ(n − 1) which itself depends on
τ(n− 2), ...

However, this model works as long as the parameters remain in a certain range of values. In the
next section, we have a look at how each parameter can influence the fractal pattern of the model.
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3.1.5 Parameter Effects on Fractal Pattern in the Model

3.1.5.1 Strength of the Feedback Input Ik

Figure 3.7: Evolution of the α coefficient obtained with DFA for the value of parameters wSA (top left),
wSS (top right) and wPS (bottom). The lags considered were between 5 and 500 and the generated
signals were each of 20.000 points. The values considered for the parameters are between 0 and 0.1. 50
different parameter values were considered and 10 trials were done for each value. The mean of these
10 trials is what is plotted. The green strip represents α coefficients that fall within the range of 0.95
to 1.05, while the blue strips represent coefficients that are 0.5 to 0.1 away from the significant value
of 1.

On Figure 3.7, it can be seen that the three parameters tend to act in the same way. However, there
are differences in their impact.

As the parameter values increase, the α coefficient approaches 0.5, making the signal more similar
to white noise. This is because, as the strength of the input increases, so does the value of Ik (see
Equation 3.2). For the SA node, at some point, ISA becomes much larger, causing the signal to vary
only around the straight line of τSA. A similar effect occurs with wSS , where the values of ISS become
so large that changes in τ jSS are barely noticeable compared to the signal variation. When this happens,
the signal loses its non-stationarity property and appears more like white noise.

On the other hand, wPS does not seem to significantly affect the fractal pattern, as the larger
values of ISA and ISS compensate for the increased input strength. We can however see that the α
values do decrease and with higher values considered, we will see the same curve as for wSA and wSS .

Finally, when the value of wSS is too small, the α coefficient increases, indicating that the signal
is approaching Brownian noise. This is comparable to having a small value for N , and this is further
explained in the following section.
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Figure 3.8: Signal generated with the Ivanov model with wSA = 0.1

3.1.5.2 Number of Sympathetic Systems N

Figure 3.9: Evolution of the α coefficient obtained with DFA for the parameter N . The lags considered
were between 5 and 500 and the generated signals were each of 20.000 points. The values considered
for the parameter are between 0 and 50. 50 different parameter values were considered and 10 trials
were done for each value. The mean of these 10 trials is what is plotted. The green strip represents α
coefficients that fall within the range of 0.95 to 1.05, while the blue strips represent coefficients that
are 0.5 to 0.1 away from the significant value of 1.

Figure 3.9 illustrates that having a small value for N results in signals that are closer to Brownian
noise. This is due to the fact that IPS will account for most of the variation in τ(n+ 1). As a result,
the signal will be made of "blocks" where the mean of the signal only varies with changes in τPS ,
leading to drifts in the signal (as depicted in Figure 3.10). The value N thus needs to be large enough
to compensate IPS .

On the other hand, as long as the value for N doesn’t get too large, the model is not too impacted
by the value of N . This is most likely because the IjSS with higher values for τ jSS will compensate the
ones with lower values for τ jSS , and thus, there won’t be very large variations in τ(n) as it was observed
with the strengths of the feedback inputs.

The signal tends to white noise with very large values of N because when there are too many IjSS
inputs, a change in one preferred level will have little effect on the final value. As a result, the signal
becomes stationary (see Figure 3.10).
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Figure 3.10: Generated signals with the Ivanov model. On the left, the signal is generated with N = 1
and the preferred levels τPS and τ1SS are also plotted. On the right, the signal is generated with N = 50.

3.1.5.3 White Noise η

Figure 3.11: Evolution of the α coefficient obtained with DFA for the scale (left) and the standard
deviation (right) of the white noise η. The lags considered were between 5 and 500 and the generated
signals were each of 20.000 points. The values considered for the parameters are between 0 and 1. 50
different parameter values were considered and 10 trials were done for each value. The mean of these
10 trials is what is plotted. The green strip represents α coefficients that fall within the range of 0.95
to 1.05, while the blue strips represent coefficients that are 0.5 to 0.1 away from the significant value
of 1.

Figure 3.11 demonstrates that when the scale of the parameter η is too low, the resulting signal tends
towards Brownian noise. This is because when the scale is very small, η approaches zero, which means
that the noise has no effect on the signal. In this case, the signal will primarily consist of drifts, which
leads to a signal that is closer to Brownian noise.

On the other hand, when the scale grows, larger values will be observed for η, thus taking more
importance in the Ivanov equation. This can be seen in the decreasing values of α with higher scale
values.

Another observation from Figure 3.11 is that using a scale of 0.5 instead of the standard deviation
is appropriate, as Ivanov et al. [21] mention in their paper that the values should fall between 0.4
and 0.6, which is generally the case for the α coefficient when using the scale, but not when using the
standard deviation.

The mean of η isn’t considered here as by definition, white noise has a 0 mean.
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3.1.5.4 Bounds for the Preferred Levels τk

Figure 3.12: Evolution of the α coefficient obtained with DFA for the parameters τPS (on the top,
lower bound on the left and upper bound on the right), τSS (in the middle, lower bound on the left
and upper bound on the right) and τSA (bottom). The considered lags were between 5 and 500 and
the generated signals were each of 20.000 points. The range in parameters values must make sense
biologically and each level will have its own bounds. For τPS , the lower bound must not be lower than
the value of τSA and must obviously remain under the upper bound, thus the values were considered
between [0.6, 1.5]. The upper bound must not be too long as two heart beats can’t be separated
for more than 10 seconds normally. The considered values were between [0.9, 3]. For τSS , the lower
bound must not be higher than τSA (values considered between [0, 0.6]) and the upper bound must
not be larger than the upper bound of τPS (values considered in the interval [0.2, 1.5]). Finally, for
τSA, the considered values were in the interval [0.2, 3]. 50 different parameter values were considered
and 10 trials were done for each value. The mean of these 10 trials is what is plotted. The green
strip represents α coefficients that fall within the range of 0.95 to 1.05, while the blue strips represent
coefficients that are 0.5 to 0.1 away from the significant value of 1.

The results on Figure 3.12 show that the bounds of the preferred levels seem to not have much impact
apart from the upper bound of τSS .
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In a general way, the value of the bounds will not impact the fractal pattern much. However it has
an impact on the value of τ(n). For example, if we have two different subjects that have a different
heart rate average, then the preferred levels in the model will need to be adjusted to account for these
differences.

The reason why the upper bound of τSS has an influence is because it is too close to the lower
bound, leading to τ jSS evolving more as a straight line. In that case, we fall back to cases similar to the
ones in section 3.1.5.1. The reason why this wasn’t observed with the lower bound is that we didn’t
consider values close enough to the chosen upper bound in order to remain biologically consistent, but
we can see that the curve was already getting down.

With this logic, we could argue that this phenomena wasn’t observed with τPS . There are several
reasons why the bounds have little impacts. The first one is that most of the final value of Equation
3.1 will greatly depend on the ISS value since it has more importance (7 inputs against one for PS)
even if wPS > wSS . This is for that same reason that the value for τSA hasn’t much impact on the
fractal pattern.

A second reason, that concerns more the upper bound than the lower bound, would be that in a
general way, τ(n) never reaches the bound of τPS , thus whatever the bound is, we will mostly be in
the first case of Equation 3.2 (see Figure 3.13).

Figure 3.13: Generated signal with the Ivanov model along with the evolution of τPS
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3.1.5.5 Time for the Preferred Levels T

Figure 3.14: Evolution of the α coefficient obtained with DFA for the time T for which the preferred
levels τk remain the same (evolution of the mean on the left and evolution of the standard deviation
on the right). The values of the mean were considered between 0 and the length of the signal. The
standard deviation was considered between 0 and the mean of T . The lags were between 5 and 500. The
generated signals were each of 20.000 points. 50 different parameter values were considered. Ten trials
were done for each value. The mean of these ten trials is what is plotted. The green strip represents
α coefficients that fall within the range of 0.95 to 1.05, while the blue strips represent coefficients that
are 0.5 to 0.1 away from the significant value of 1.

From the results on Figure 3.14, it can be seen that the time T has an influence on the fractal pattern
but only the mean of T has an impact, while its standard deviation has none.

The curve of the mean of T is different from the ones that were previously observed. Here, if the
value is too small, the signal will be close to white noise but it will also happen if the value is too large.
Let’s first consider the case where the mean value is too small. In that case, the correlation between
the points will be completely lost. Indeed, the Ik value will no longer depend on τ(n) but on the value
of the preferred levels τk that will vary at almost each time step. This means that the signal will no
longer try to remain to that preferred level since that level is completely random and changes at each
time step. On the opposite case, if the value becomes too large, that means that the preferred levels
will never change. We then reach cases where the preferred levels are straight lines which means that
the non-stationarity property is lost.

The standard deviation of T on the other hand doesn’t have any impact on the fractal pattern.
However, larger values for the standard deviation are to be preferred as too small standard deviation
will lead to the preferred levels changing at the same time. The generated signal will more look like
"blocks", while a higher value of the standard deviation leads to "smoother" variations (see Figure
3.15).

Figure 3.15: Signal generated with the Ivanov model with a standard deviation for T of 1 (on the left)
and 1000 (on the right)
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3.1.5.6 Parameters Impact Summary and Selection for Fitting

Parameters Impact on the fractal pattern Other impact
Strengths of the Important impact when the value grows, Impact on the amplitude of the
feedback inputs wSS , especially for wSA and wSS leading to a signal signal as well as its standard
wPS and wSA close to white noise. Impact more negligible for deviation.

wPS . For wSS , a low value leads to a signal
made of "blocks".

Number of Impact negligible as long as the values are
sympathetic within a reasonable range, as extremely
signals N small or large values may have more significant

effects.
White noise η Important impact when the standard deviation Important impact on the

is small as it removes the randomness of the standard deviation as well as
signal. the local amplitude in steady

states.
Preferred levels τSA, Not an important impact as long as the upper Impact on the mean of the
τPS and τSS and lower bound, especially the ones for τSS , signal and the range of the

are far enough. values taken by the time series.
Time for constant No impact of the standard deviation of T but
preferred levels T very important impact of the mean value as

extreme values (both too small and too large)
will remove the non-stationarity propriety of the
signal.

Table 3.1: Summary of the impact of the various parameters of the Ivanov model

The analysis of table 3.2 led to the conclusion that the feedback input strengths wSA, wPS , and wSS

would be the most relevant parameters to adjust depending on the subject. These parameters have
a significant impact on both the amplitude and fractal pattern of the signal, making them the most
interesting ones to vary.

Let’s examine the other parameters and understand why they were not chosen:

• The parameter N , representing the number of sympathetic signals, has a negligible impact, and
therefore, it is not necessary to fit it to the heart rate time series.

• The white noise parameter η could also be a suitable option since it affects both the fractal
pattern and the amplitude, similarly to the feedback input strengths. However, the impact of the
standard deviation of η is only significant when it is small, and it has little to no impact when it
is large. This makes the feedback input strengths more interesting since they impact the fractal
pattern in a similar way and have a stronger influence on the amplitude.

• As the preferred levels have no significant impact on the fractal pattern, fitting these parameters
to the heart rate time series would not be meaningful. However, this does not necessarily mean
that these values must remain fixed. Since the impact of the preferred levels is mainly on the
specific values taken by the time series, they could potentially be adjusted based on observations
of the heart rate signals.

• While the time period T for which the preferred levels remain constant does have an impact on
the fractal pattern, we didn’t fit it to the heart rate signals. This is because its value plays a
crucial role in preserving the persistent property of the model. Therefore, it is important to keep
the value of T fixed, and not adjust it during the fitting process. Furthermore, it provides limited
information regarding the impact of the systems on the heart rate, which is why the feedback
input strengths were given preference.
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Figure 3.16: Methodology for selecting the most appropriate parameters to be fitted on heart rate
signals.

3.1.6 Parameter Estimation on Real Data

With the most suitable parameters identified to be fitted on the heart rate of different subjects, we
can now proceed to the actual parameter estimation in the subsequent sections. This allows us to
determine the optimal parameter values for each subject. Three distinct methods were employed for
this purpose:

1. maximum likelihood estimation (section 3.2),

2. approximate Bayesian computation (section 3.3),

3. Bayesian inference with neural networks (section 3.4).

As explained in section 3.1.5.6, we will focus on fitting the feedback input strengths wSA, wPS , and
wSS . The same methodology will be employed for each of the three methods, summarized in in Figure
3.17:

1. To assess the parameter estimation method, we will generate multiple signals using the Ivanov
model with known parameter values;

2. Utilizing one of the three methods, we will perform the parameter estimation process;

3. The estimated parameters will be compared to their original values;

4. If the estimated parameters closely match the original values, we can conclude that the method
is accurate and can be applied to estimate parameters in heart rate data.
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Figure 3.17: Methodology used to estimate the parameters wSA, wSS and wPS of the Ivanov model
for heart rate signals.
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3.2 First Method for Parameter Estimation: Maximum Likelihood
Estimation

3.2.1 Method Overview

The maximum likelihood estimation (MLE) is a method to estimate the optimal parameters of a model
using available data. This approach involves selecting parameter values that maximize the likelihood,
which is the probability of observing the given data based on the parameter values. Typically, the
likelihood function is denoted as L(θ|X), where θ represents the parameters of the model and X is the
observed data. The likelihood function for n data points can be written as:

L(θ|X) = f(X = x1|θ)× ...× f(X = xn|θ)

where f(X = xi|θ) represents the probability of observing the i-th data point xi given the model
parameters θ.

Often, it is more convenient to maximize the log-likelihood rather than the likelihood itself, as it
results in a sum rather than a product.

log(L(θ|X)) = log(f(X = x1|θ)) + ...+ log(f(X = xn|θ)).

In the end, the estimation for the parameters θ is given by:

θ∗ = maxθ log(L(θ|X)).

3.2.2 Applying MLE to the Ivanov Model: Analytical Form of the Likelihood

To begin, we need to determine the probability distribution of the model. Equation 3.1 shows that
we need to maximize the probability that the value τ(n+ 1)− τ(n) is equal to the difference between
two points in the time series. This involves determining the probability distribution of ISA, IPS , and
ISS individually. Subsequently, the probability distribution for the sum of all three can be computed.
Since Ik is dependent on the value τ(n), we can simplify by maximizing the following probability:

f(X|τ(n), θ)

where X = τ(n+ 1)− τ(n), and θ represents the model parameters.

3.2.2.1 Sinoatrial Node

The probability distribution of ISA can be determined as follows, given that the value of the preferred
level τSA is unique for the SA node:{

ISA ∼ Laplace(wSA × (1 + µ), wSA × b) if τ(n) < τSA
ISA ∼ Laplace(−wSA × (1 + µ), wSA × b) otherwise, (3.3)

where µ is the mean of the parameter η in Equation 3.2 and b is its scale. Note that since η is white
noise, µ will always be 0, thus for the next probability distributions definition, it will be ignored.

3.2.2.2 Parasympathetic System

The determination of the probability distribution for the parasympathetic system is more complex
since τPS follows a uniform distribution between two values. To handle this, let us introduce the
following parameters:

• τPSmax the maximum value for τPS ,

• τPSmin the minimum value for τPS ,

• p the probability that τ(n) < τPS .
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Finally, we get


IPS ∼ Laplace(wPS , wPS × b) if τ(n) < τPSmin

IPS ∼ Laplace(−wPS , wPS × b) if τ(n) > τPSmax

IPS ∼ p× Laplace(wPS , wPS × b) + (1− p)× Laplace(−wPS , wPS × b) otherwise.

The last line of the equation is actually sufficient to cover all cases, with the first two lines being special
cases for p = 1 and p = 0, respectively.

3.2.2.3 Sympathetic System

The input values IjSS for the sympathetic systems follow the same probability distribution as the
parasympathetic system input, using their own parameter values such as τSSmin , τSSmax , and wSS .
However, since the values IjSS are added N times resulting in the sum ISS =

∑N
j=1 I

j
SS , random

variables with the same distribution are added, and the probability of this sum can be approximated
by a normal distribution. This approximation is valid when N is sufficiently large, which in this case
was determined experimentally to be N > 3. To simplify our analysis, we define the following terms:

• µSS = p× wSS + (1− p)× (−wSS), the mean of the probability distribution of ISS ,

• σSS the standard deviation of the probability distribution of IjSS . The distribution of IjSS can
actually have two shapes:

1. The first one is a Laplace distribution. In this case, the standard deviation will remain
unchanged, thus σSS = wSS × σ where σ is the standard deviation of the white noise η.

2. The second case is the bimodal distribution, meaning the distribution has two trends. This
is the result of the probability distribution being a linear combination of two Laplace dis-
tributions. In the present case, the distribution has two "peaks" which occur at the means
of the two Laplace distributions. In this case, the standard deviation can be approximated
by: √

w2
SS + σ2 − ((2p+ 1)× wSS)2.

Finally, we have

ISS =

N∑
j=1

IjSS ∼ N (N × µSS ,
√
N × σSS).

3.2.2.4 Convolution

Let’s take a brief look at convolution before we proceed to derive the probability distribution of
τ(n+ 1)− τ(n).

In probability theory, convolution refers to a mathematical operation that involves two probability
distributions. Specifically, given two random variables X and Y with probability distributions f and g
respectively, the convolution of f and g, denoted f ∗ g, is a new probability distribution that represents
the probability distribution of the sum Z = X + Y.

The convolution operation can be thought of as a way to combine the probabilities of two events
in order to compute the probability of their sum. The basic idea is to integrate the product of the
probability density functions of X and Y over all possible values of X and Y that would result in a
particular value of Z. This can be expressed mathematically as:

(f ∗ g)(z) =
∫

f(x)g(z − x)dx.
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3.2.2.5 Sum of the Inputs

Finding the probability density function of the sum of these three components is not a straightforward
task. As we aim to calculate the probability density of the sum of random variables, we can employ
the concept of convolution.

First, let’s approximate the probability density function of ISA + IPS :

• if the probability density function of IPS is a Laplace distribution, then

ISA + IPS ∼ Laplace(µSA + µPS , bSA + bPS),

• if the probability density function of IPS is a bimodal distribution, then

f(ISA + IPS |θ) = f(ISA|θ) ∗ f(IPS |θ).

Finally, the probability density function can be estimated in the following way:

f(X|θ) = f(ISA + IPS |θ) ∗ f(ISS |θ).

3.2.2.6 Problem of the Probability of τ(n) < τk

Now that we have the probability density function of τ(n+ 1)− τ(n) given τ(n) and θ, the remaining
step is to determine the probability p that τ(n) < τk, where τk represents the preferred levels.

For the sinoatrial node, this probability can only take values of 1 or 0 since τSA is constant and
known. However, for PS and SS, the preferred levels vary within two bounds, making the computation
of this probability more complicated. As the levels are selected using a uniform distribution, a naive
approach could be to consider:

P (τ(n) < τk) =
τk − τlower_bound

τupper_bound − τlower_bound
.

However, this approach overlooks the fact that the preferred levels remain constant for a significant
amount of time. Therefore, τ(n) not only depends on τ(n − 1), τ(n − 2), ... but also on these fixed
preferred levels. When a time step is reached where the preferred levels have been constant for a while,
τ(n) is likely to have reached a steady state. In such a scenario, it would be incorrect to assume that
the probability p is the same as the one previously described. In other words, the proposed probability
distribution is only valid if the preferred levels τk change at each time step.

In the current scenario, calculating the probability p appears impractical as it relies on several
variables, such as the possibility that τ(n) may be in a steady state, but there is no ways of determining
it as it also depends on the duration T for which a preferred level τk remains unchanged.

Therefore, it is unlikely to obtain precise outcomes by applying the maximum likelihood estimation
method to the datasets’ heart rate signals. However, for validation purposes, it was still conducted with
the assumption that T = 1, to confirm that despite the model’s significant deviation from reality, the
maximum likelihood method doesn’t provide outcomes that differentiate between healthy individuals
and those with diseases.

3.2.3 Implementing and Assessing the Method

3.2.3.1 Method Implementation

The maximum likelihood implementation for the model was carried out in several steps. First, the
probability distribution for each input Ix using the formulas defined in section 3.2.2 was constructed,
after which they were gradually combined using convolution.

For the SA node, the required parameters to determine the likelihood are:

• wSA the strength of the feedback input,
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• the standard deviation of the white noise η,

• τSA the preferred level of the SA node,

• τ(n) the previous RR interbeat.

For the parasympathetic system, the required parameters to determine the likelihood are:

• wPS the strength of the feedback input,

• the standard deviation of the white noise η,

• τPSmin the lower bound for preferred level,

• τPSmax the upper bound for preferred level,

• τ(n) the previous RR interbeat.

For the sympathetic system, the required parameters to determine the likelihood are:

• wSS the strength of the feedback inputs,

• the standard deviation of the white noise η,

• τSSmin the lower bound for preferred level,

• τSSmax the upper bound for preferred level,

• τ(n) the previous RR interbeat,

• N the number of feedback inputs.

3.2.3.2 MLE with One Feedback Input

Method To verify the exactitude of the computation of the probability density function of each input
Ix, the maximum likelihood estimation was performed but by considering that there is only one of the
input of Equation 3.1. Thus, we have:

τ(n+ 1)− τ(n) = Ix.

In order to perform the maximum likelihood estimation, the first step is obviously to determine
the likelihood for a given signal. For that we can use the formulas for Ix (SA, SS and PS) described in
section 3.2.2. We compute the likelihood of each points in the provided signal excepted the first one
(since we don’t have τ(−1)). Then, we compute the log-likelihood by summing up the log.

To maximize the log-likelihood, we can use the minimize function from the scipy.optimize library,
which is designed for minimization rather than maximization. To overcome this, we minimized the
negative log-likelihood. In the end, we will have:

w∗
x = minwx −

∑
n

log(f(τ(n+ 1)− τ(n)|τ(n), θ))

with θ being the parameters needed to compute the probability density.
In order to check that it works, a signal is generated with a given value for wx and the other values

for the strengths of the feedback inputs are set to zero. For example, if we are considering SA, then
we generate a signal with wSA = y with y being a given value and wSS = wPS = 0.

For all three inputs, 500 signals composed of 5000 beats were generated with a random value for
their strength wx. A maximum likelihood estimation on these signals was performed to estimate these
values of wx. The absolute difference between the estimated w∗

x and the actual value wx was then
computed in order to assess the precision of the estimation.

This was performed twice:

1. once with the time T varying as specified in the model (see section 3.1.3),

2. once with T = 1 such that the naive probability distribution p is correct (see section 3.2.2.6 for
more details).
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Results Results of the two experiments are available in Figures 3.18 and 3.19. The parameter
estimations for SA and PS were accurate in both cases. However, the estimations for SS were only
accurate in the second case. The absolute difference between the estimated value of w∗

SS and the
actual value could reach up to 0.012, which is significant considering that the values of wSS were
chosen between 0 and 0.1. Additionally, a loss in precision can be expected when combining multiple
inputs. Therefore, in the following analysis, we will only consider the second case where the value of
T is fixed at 1.

Figure 3.18: The histograms display the frequency of signals based on the absolute difference between
the estimated w∗

x with MLE and the actual parameter value of a signal generated with the Ivanov model.
The experiment generated 500 signals using the Ivanov model with wx chosen randomly between 0
and 0.1. The remaining parameters used in this experiment are consistent with those specified in
section 3.1.3, except for the two other feedback input strengths, which are set to 0 (e.g., wSA = y and
wPS = wSS = 0).
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Figure 3.19: The histograms display the frequency of signals based on the absolute difference between
the estimated w∗

x with MLE and the actual parameter value of a signal generated with the Ivanov model.
The experiment generated 500 signals using the Ivanov model with wx chosen randomly between 0
and 0.1. The remaining parameters used in this experiment are consistent with those specified in
section 3.1.3, except for the two other feedback input strengths, which are set to 0 (e.g., wSA = y and
wPS = wSS = 0) and the time T which is set to 1.

3.2.3.3 MLE with Two Feedback Inputs

Method Now that we have confirmed the accuracy of the maximum likelihood estimation for one
input, we can now evaluate the same approach considering that the value τ(n+1)− τ(n) is dependent
on two inputs:

τ(n+ 1)− τ(n) = Ix + Iy.

The process of computing the separate likelihoods remains unchanged, but in order to determine
the probability of Ix + Iy, we utilize the convolve function from the scipy.signal library. Before
the convolution can be performed, we first need to compute fIx(x|θ) and fIy(x|θ) for all points, which
is obviously unfeasible. Thus, we compute the values within a chosen interval that is defined by the
bounds mean ± 3 × std, with a precision of 0.0001. In other words, the value of f(x|θ) is computed
for every 0.0001 values in the specified interval.

The convolution operation is computationally expensive, and hence the maximum likelihood es-
timation was carried out on 50 signals with random values of wx and wy chosen between 0 and 0.1.
Additionally, the length of the signals was decreased to 1000 points.

Results The results of these experiments can be found in Figure 3.20. The majority of the exper-
iments produced accurate results, but there were some cases where the accuracy was poor. This can
be attributed to the imprecision of the convolution process, which causes a loss of accuracy. The
imprecision can create local minimums which the optimization algorithm minimize can get stuck in,
leading to less accurate results.
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Figure 3.20: The histograms illustrate the frequency of precision values (absolute difference between
estimated and actual values) for the estimated w∗

x and w∗
y (mix of 2 inputs) using MLE on signals

generated with the Ivanov model. The top histograms show estimation results on signals not containing
the SS inputs (wSS fixed to 0), the middle ones show results for signals without the SA input (wSA

fixed to 0), and the bottom ones show results without the PS input (wPS fixed to 0). T is set to 1,
and the remaining parameters follow those specified in section 3.1.3. The estimations were performed
50 times on signals with 1000 points. The values of wx and wy were randomly selected between 0 and
0.1. The abscissa axis of the middle histograms is limited to 0.015 for clarity, but 8 precision values
exceeded this limit, with 5 around 0.08.

3.2.3.4 MLE on the Whole Model

Method Finally, using convolution, the likelihood estimation was performed by estimating the like-
lihood of the sum of all inputs as in Equation 3.1. The parameter estimation was conducted on 50
signals consisting of 1000 points, with the strengths of the feedback input randomly selected between
0 and 0.1.

Results The results are available on Figure 3.21. They show that the estimation of the feedback
input strengths is often inaccurate, with over half of the experiments yielding an absolute difference
between the estimated value w∗

x and the true parameter value wx greater than 0.1. This inaccuracy can
be attributed to the loss of precision incurred during the convolution, which causes the minimization
to get trapped in a local minimum.

Ideally, to avoid this issue, one would aim for a precision level lower than the tolerance of the
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minimize algorithm. However, achieving such a level of precision would require substantial computa-
tional resources.

Figure 3.21: Histograms representing frequency of signals that had a given precision (absolute difference
between the estimated value for the estimated parameter and the actual value) for the estimated
w∗
x. The signals generated with the Ivanov model on which the maximum likelihood estimation was

performed are made of 1000 points and 50 trials were performed. T is set to 1 and the values for wSA,
wSS and wPS were randomly selected between 0 and 0.1. The remaining parameters are the same as
the ones described in section 3.1.3.

3.2.4 Conclusion

Although the maximum likelihood estimation is a commonly used method for estimating parameters
from data, it is not a suitable approach for the Ivanov model due to several issues. Firstly, it is highly
challenging to obtain an analytical form of the model’s likelihood, as explained in section 3.2.2.6.
While a naive expression can be derived and tested, a second problem arises from the fact that the
Ivanov model is a stochastic process composed of a sum of inputs, which means it is also a sum of
random variables. This requires the use of convolution to compute the likelihood of the model, which
is highly computationally intensive and results in a loss of precision. Therefore, we can conclude that
the maximum likelihood estimation is not a suitable method for parameter estimation in the Ivanov
model.
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3.3 Second Method for Parameter Estimation: Approximate Bayesian
Computation

3.3.1 Method Overview

In the previous section, it was shown that accurately estimating the parameters based on the likeli-
hood is not feasible. An alternative method is to use approximate Bayesian computation (ABC) [40].
This approach is often employed when the likelihood function is either intractable or computationally
expensive. Instead of computing the likelihood function, ABC approximates the posterior distribution
of parameters p(θ|X) by simulating the system and comparing the simulated data to the observed
data using a distance function. The basic concept of ABC is to accept parameter values that generate
simulated data that are similar to the observed data, up to a specified tolerance level. The most
commonly used algorithm is the rejection algorithm, which follows the following steps [43]:

1. Sample a candidate parameter θ∗ from a prior distribution p(θ);

2. Simulate a dataset X∗ from the model;

3. Compare the simulated dataset X∗ with the experimental data X0, using a distance function d
and a tolerance ϵ. If d(X0, X

∗) ≤ ϵ, accept θ∗;

4. Repeat until N parameter values have been accepted.

The choice of distance function is not limited to any specific type as long as it effectively measures
the similarity between the observed and simulated data. Examples include the Euclidean distance or
Manhattan distance.

Assessing the similarity between the observed and the simulated data solely by measuring the dis-
tance between them can be inadequate, especially in the case of time series where it is often challenging
to replicate the exact same series. Instead, a common approach is to measure the distance between
a summary statistic S(X) that reduces the data to a more manageable set of features, such as mean,
standard deviation, autocorrelation, etc. This allows for a more effective comparison between the
observed and simulated data.

Selecting the appropriate summary statistics, distance metric, and threshold value is crucial for
the performance of the ABC algorithm and depends on the specific case at hand. Hence, these choices
should not be overlooked.

The rejection algorithm has a major drawback: if the prior distribution p(θ) differs significantly
from the posterior distribution p(θ|X), the algorithm will generate many θ∗ that are far from the true
value of θ. As a result, the algorithm will have a high rejection rate, which makes it highly inefficient.

To address this issue, we introduce an alternative version of the ABC algorithm based on sequential
Monte Carlo (SMC) [43, 38]. The ABC SMC algorithm aims to iteratively refine the approximation of
the posterior distribution of parameters by selecting multiple thresholds, denoted as ϵ1 > ϵ2 > · · · >
ϵT > 0. The algorithm operates as follows:

1. Initialize ϵ1, ϵ2, ..., ϵT and set the population indicator to t=0;

2. Set the particle indicator i = 1 (a parameter estimation value is called a particle);

3. If t = 0, sample θ∗∗ independently from p(θ). Else, sample θ∗ from the previous population
θt−1 with the weights wt−1 and perturb the particle to obtain θ∗∗ ∼ Kt(θ|θ∗) where Kt is a
perturbation kernel.

If p(θ∗∗) = 0, return to step 3.

Simulate a candidate dataset X∗.

If d(X∗, X0) ≥ ϵt, return to step 3;
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4. Set θ
(i)
t = θ∗∗ and compute the weight for particle θ

(i)
t in the following way

w
(i)
t =

 1 if t = 0
p(θ

(i)
t )∑N

j=1 w
(j)
t−1Kt(θ

(j)
t−1,θ

(j)
t

if t > 0.

if i < N , set i = i+ 1 and go to step 3.

5. Normalize the weights.

If t < T , set t = t+ 1, go to step 2.

Figure 3.22: Conceptual overview of the ABC method with the rejection algorithm. Figure from ref
[16].

3.3.2 Applying ABC to the Ivanov Model: Tools Selection

3.3.2.1 Summary Statistics

Three summary statistics are chosen for the ABC algorithm on the heart rates:

• The DFA coefficient: since the fractal dynamic of the heart rate is being considered, this
summary statistic is an obvious choice for parameter estimation;

• The autocorrelation: long-range correlation is a statistical characteristic of 1/f signals, as
described in section 1.2.1.1, so it makes sense to use this statistic;

• The variance: the parameters to be estimated are the strengths of the feedback inputs (see
section 3.1.5.6), which have an impact on the signal amplitude and, consequently, the variance
of the signal. The variance is relatively small compared to the two previous statistics, so a factor
of 50 (determined experimentally) is used to increase its importance.

3.3.2.2 Distance Function

For the ABC algorithm on the heart rates, the Euclidean distance was chosen to measure the similarity
between the observed and simulated data. This is a common choice in ABC as it is easy to compute and
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interpret. Moreover, it provides a natural way to use the summary statistics that we selected. Indeed,
since the summary statistics are real-valued vectors, the Euclidean distance naturally quantifies the
distance between them. Other distance functions could have been chosen, but the Euclidean distance
is a reasonable first choice and often yields good results in practice.

3.3.2.3 Thresholds

The chosen thresholds are generated in three stages as follows:

1. The first 20 thresholds are evenly spaced between 1 and 0.1;

2. The next 20 thresholds are evenly spaced between 0.1 and 0.01;

3. The final 20 thresholds are evenly spaced between 0.01 and 0.001.

However, it was found that some of the parameter estimation computations were excessively slow
at certain thresholds, with little difference in the resulting parameter distributions. Therefore, a time
limit was imposed on the parameter estimation computation, and it may not always complete at the
final threshold.

3.3.2.4 Prior Distribution

The chosen prior distribution for the parameters wSA, wSS , and wPS is a uniform distribution given
by wx ∼ Uniform(0, 0.1).

3.3.2.5 Perturbation Kernel

The perturbation kernel for parameter estimation is commonly implemented using either a normal
distribution or a uniform distribution. For this particular project, a normal distribution is deemed
more suitable, and thus we selected θ∗∗ according to the following procedure:

θ∗∗ ∼ N (θ∗, 0.01).

The choice of a standard deviation of 0.01 is considered appropriate because the original distribution
of p(θ) is a uniform distribution between 0 and 0.1. This value is small enough to avoid considering
an excessively large range of values, yet large enough to prevent getting trapped in a narrow range of
values if an iteration yields parameter estimates far from the correct value.

3.3.2.6 Number of Points for the Time Series

The length of the time series was set to 5000 points, which strikes a balance between efficiency and
accuracy. The ABC algorithm produces a substantial number of time series, so the longer the time
series, the more time the parameter estimation will take. However, the fractal pattern of the signals
generated by the Ivanov model is due to the signal varying based on preferred levels that themselves
vary based on a time T (see sections 3.1.5.5 and 3.1.4). This time T follows a normal distribution with
a mean of 1000. Therefore, a value of 5000 seems appropriate as it will capture various modifications
in the preferred levels but will not generate excessively large signals.

Since the time series used in this project for the Ivanov model have a size of 20.000, the subset of
5.000 points to be analyzed will be selected randomly, starting from a randomly chosen initial point.

3.3.3 Implementing and Assessing the Method

The implementation of the method utilized the tools outlined in the preceding section. As explained in
section 3.1.6, the evaluation of the method involved generating signals with predetermined parameter
values with the Ivanov model. The estimated parameters obtained through the ABC method are then
compared to the original parameter values to assess the performance of the method.
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The Ivanov model parameters to be estimated are the feedback input strengths wSA, wSS , and wPS ,
as discussed in section 3.1.5.6. Figure 3.23 shows that the ABC algorithm does not provide accurate
results. However, it shows promising results for estimating a single feedback input strength, even
for wSS , which was not the case for maximum likelihood estimation, as described in section 3.2.3.2.
Therefore, a revised model will be presented.
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Figure 3.23: The histograms depict the parameter estimation distribution obtained using ABC SMC
for a signal generated by the Ivanov model, with the parameter values set as described in section 3.2.3.2.
The same tools described in section 3.3.2 were used, and 100 parameter estimations were generated
for each considered threshold. The top left panel shows the estimations for wSA, the top right panel
shows the estimations for wPS , and the bottom panel shows the estimations for wSS .

3.3.4 Revisited Ivanov Model

3.3.4.1 Model Overview

In this section, we examine a modified version of the Ivanov model (previously discussed in section
3.1). Although the underlying stochastic process remains the same, the interpretation will be slightly
different due to simplifications. Specifically, we still assume that the time between beats τ(n) follows
a random walk process that is biased towards preferred levels. However, in contrast to the previous
model, we omit the inputs for the sinoatrial (SA) node and the parasympathetic system. We then
have:

τ(n+ 1)− τ(n) =

N∑
j=1

Ij(n, τ j(n)) (3.4)

with
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I(n) =

{
w(1 + η) if τ(n) < τ j

−w(1 + η) otherwise. (3.5)

In the revised version of the Ivanov model, the inputs are not assigned to any particular system but
are rather considered as inputs that can be influenced by both the sympathetic and parasympathetic
systems. The preferred levels change over time, as in the original model, and their values determine
the impact of the sympathetic or the parasympathetic systems. If a preferred level at a particular time
is close to the center of the range, it will be considered as an input that isn’t influenced by any system
and follows the rhythm of the SA node.

Upon reflection, this version appears to be more coherent, particularly for the inputs of the sym-
pathetic system. This is because the sympathetic system is intended to accelerate the heart rate, but
its preferred level, representing the desired interbeat time, could be greater than the preferred level of
the SA node. Additionally, the uniform distribution for this input was centered on τSA (the preferred
level of SA).

3.3.4.2 Parameters Value Choice

The majority of the parameters in this model are analogous to those in the original model. To avoid
repetition, we only provide a brief overview of them. For a more in-depth understanding of the reasoning
behind each parameter, please refer to sections 3.1.3 and 3.1.5. The parameters in this model are as
follows:

• For the number of inputs considered N , the original value was set to 7. Considering that we
removed two inputs and that IPS had a bigger impact than the other inputs, we will now set N
to 10.

• The white noise η remains unchanged (Laplace distribution with scale = 0.5 and mean = 0).

• The preferred level τ j will remain the same than for the SS inputs of the original model, i.e.
centered around the SA level and bounded between 0.2 and 1. These levels follow a uniform
distribution.

• The preferred levels will remain constant for T beats before changing. The distribution of T
remains unchanged (normal distribution with mean = 1000 and standard deviation = 500)

• The parameter value for w was the most challenging to determine as it was the parameter we
aimed to fit to certain subjects in the model. To select an appropriate value for this parameter,
we conducted an analysis similar to that in section 3.1.5.1, and the outcomes are presented in
Figure 3.24. Based on these results, w was set to 0.015.

52



Figure 3.24: This graph shows the variation of the α coefficient calculated using the DFA method with
respect to the parameter w. The lag values used for the analysis range from 5 to 500 and the signals
used for the calculation are generated with the revisited Ivanov model and are of 20.000 points. The
parameter w varies between 0 and 0.05, with 50 different values considered. For each value of w, 10
trials were performed, and the mean of the results is displayed in the graph. The green strip represents
α coefficients that fall within the range of 0.95 to 1.05, while the blue strips represent coefficients that
are 0.5 to 0.1 away from the significant value of 1.

3.3.4.3 Implementing and Assessing the Model

Implementation No implementation of the model is necessary as it can be modeled by changing
the parameters of the original model in the following way:

1. wSA = wPS = 0,

2. wSS = 0.015,

3. N = 10,

4. τSSlower
, τSSupper , τPSlower

, τPSupper and τSA are unchanged,

5. the mean and standard deviation of T are unchanged,

6. the mean and scale of η are unchanged.

Assessing Figure 3.25 shows that the signal generated by the model is very similar to the heart rate
of a healthy subject, indicating that the model is a reliable approximation. Furthermore, DFA was
conducted on 1000 signals (see Figure 3.26), and the mean α coefficient was found to be around 1.073,
which is quite close to the significant value of 1. Thus, this model generates a signal that successfully
captures the fractal pattern of the heart rate.
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Figure 3.25: The figure on the left shows the heart rate signal generated by the revisited Ivanov model,
with parameter values of w = 0.015, τ j ∈ [0.2, 1], and η ∼ Laplace(0, 0.5). On the right, we can see
the first 20.000 interbeats of the heart rate signal from the fifth healthy subject in the second dataset
(section 1.3.2).

Figure 3.26: The histogram shows the distribution of the α coefficients computed using the DFA
method on 1000 signals generated with the revisited Ivanov model. The lags considered are between 5
and 500. The parameter values used for the model are w = 0.015, τ j ∈ [0.2, 1], and η ∼ Laplace(0, 0.5).

3.3.5 ABC on the Revisited Model

Similar to the approach taken for the Ivanov model, we choose to fit the feedback input strength w for
various signals. This is motivated by the same reasons discussed in section 3.1.5.6.

3.3.5.1 Assessing ABC on the Ivanov Model Revisited

Before proceeding with parameter estimation on the heart rate signals using the ABC algorithm, it is
important to verify the reliability of the method, just like for the maximum likelihood estimation (see
section 3.2.3). To assess the accuracy of the ABC algorithm, the parameter w using signals generated
from the revisited Ivanov model was estimated. Three different estimations of the parameter w for
signals were performed with the following values:

1. w = 0.005,

2. w = 0.01,

3. w = 0.025,

4. w = 0.05,

5. w = 0.075.

54



The parameter estimation results obtained using the ABC algorithm are depicted in Figure 3.27. It
can be observed that the ABC method performs quite well in estimating the parameter w, particularly
for small values. Although the algorithm appears to be slightly less accurate for higher values of w,
the relative difference between the actual value and the estimated value remains similar to the relative
difference observed for smaller values (see Figure 3.28). Therefore, while the precision of the estimation
may decrease for higher values of w, the ABC method can still be considered a reliable estimator for
the revisited Ivanov model parameter w.
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Figure 3.27: This figure presents boxplots displaying the distribution of parameter estimations w∗

obtained using the ABC algorithm on signals generated with the revisited Ivanov model. The parameter
w was set to 0.005, 0.01, 0.05, and 0.075, and for each value, three signals were generated and their
corresponding w parameter was estimated 100 times for each threshold. All parameters of the Ivanov
model are the same as described in section 3.3.4.2, except for the feedback input strength. The ABC
SMC algorithm tools used are the same as in section 3.3.2. The computation was terminated after
a specified time limit, with the last threshold considered falling within the range of 0.01463158 and
0.08410526.
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Figure 3.28: This figure serves as a summary of figure 3.27. For each parameter value considered, the
relative difference between the estimated parameter value w∗ and its actual value w is computed for
each trial.
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3.3.5.2 Parameter Estimation on Heart Rate Signals

Method Having established the reliability of the ABC method for parameter estimation in the
revisited Ivanov model, we can now apply it to estimate the parameter w for real subjects. The Ivanov
model, which was previously considered for time series of 20.000 points, will now be applied to the
signals in the dataset described in section 1.3.2. Since all the signals in this dataset consist of at least
70.000 points, they were divided into four separate time series, each containing 20.000 points apart for
the last one that might be smaller.

The analysis was conducted in two stages. In the first stage, a fitting was performed on the
initial 20.000 points of each subject’s signal, allowing for a longer computation time and thereby
achieving greater precision. The second stage involved the remaining three time series, corresponding
to the points in the intervals [20.000, 40.000], [40.000, 60.000], and [60.000, 80.000]. Although the
computation time was shorter in the second stage, it still provided sufficiently accurate parameter
estimations.

Results The results of the first fitting can be seen in Figure 3.29, while the results of the second
fittings are shown in Figure 3.30. Although there is some overlap between the healthy subjects and
those with congestive heart failure, a clear distinction can still be observed between the two groups
based on the parameter w. The parameter w tends to be smaller for subjects with congestive heart
failure, indicating that the influences on the heart rate from the components (SA node, sympathetic
and parasympathetic systems) are weakening. This suggests a decrease in the effectiveness of these
components in regulating the heart rate.

In contrast, subjects with atrial fibrillation can be easily identified by their significantly larger
estimations of the feedback input strength w∗. According to the model, this suggests a substantial
influence of the components in affecting the heart rate.
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Figure 3.29: The boxplots illustrate the distribution of parameter w (of the revisited Ivanov model)
estimations obtained using ABC on real heart rate signals from subjects in the second dataset (refer
to section 1.3.2). The subjects are categorized into three groups: the first five subjects (group n) are
healthy, the middle five subjects (group c) have congestive heart failure, and the last five subjects
(group a) have atrial fibrillation. The ABC tools described in section 3.3.2 were employed for the
analysis. The parameter fitting was conducted on the first 20.000 points of each time series. The ABC
algorithm was executed for a specific time limit, resulting in a final threshold range between 0.05631579
and 0.098.
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Figure 3.30: The boxplots illustrate the distribution of parameter w (of the revisited Ivanov model)
estimations obtained using ABC on real heart rate signals from subjects in the second dataset (refer
to section 1.3.2). The subjects are categorized into three groups: the first five subjects (group n) are
healthy, the middle five subjects (group c) have congestive heart failure, and the last five subjects
(group a) have atrial fibrillation. The ABC tools described in section 3.3.2 were employed for the
analysis. The fitting process was conducted three times, each time on a different portion of the subject
signals. Trial 1 focused on beats within the interval [20.000, 40.000], trial 2 on [40.000, 60.000], and
trial 3 on [60.000, 80.000]. The ABC algorithm was executed with a specified time limit, resulting in
a final threshold range between 0.09336842 and 0.1463158.
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Figure 3.31: The boxplots illustrate the distribution of parameter w (of the revisited Ivanov model)
estimations obtained using ABC on real heart rate signals from subjects in the second dataset (refer to
section 1.3.2). The boxplots provide a summary of the parameter estimation distribution within each
group of the dataset (n for healthy, a for atrial fibrillation, and c for congestive heart failure), serving
as a concise representation of the results depicted in Figures 3.29 and 3.30.

3.3.6 Conclusion

Similar to the MLE method, the ABC method demonstrated limitations in accurately estimating the
parameters of the Ivanov model. However, unlike the previous method, the ABC method can be
employed to estimate the parameters of a revised model (section 3.3.4).

The ABC method specifically estimates the feedback input strength parameter w. The estimations
of this parameter for the subjects in each group yielded interesting results, as noticeable distinctions
were observed between the groups. This shows the potential for modeling each group separately using
the Ivanov model.
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3.4 Third Method for Parameter Estimation: Neural Networks

In the preceding sections, we explored two different methods for parameter fitting of the Ivanov model
on real heart rate time series. However, neither of these methods yielded accurate parameter estima-
tions. In this section, we introduce a final approach using neural networks to address this challenge.

3.4.1 Applying neural networks to the Ivanov Model

3.4.1.1 Libraries

The time series will be embedded using PyTorch.
The lampe package1 was employed to estimate the parameters. This package provides methods

that, given the data, estimates the posterior distribution of the parameters. It is implemented using
PyTorch.

3.4.1.2 Datasets

Three distinct datasets were created, each serving a specific purpose:

• the training set: This set consists of 216 time series,

• the validation set: This set consists of 212 time series,

• the testing set: This set consists of 210 time series.

All time series within these datasets contain 20.000 data points and are generated using the Ivanov
model. The parameters used to generate the signals are set to their default values (see section 3.1.3)
except for the parameters under estimation, namely the feedback input strengths wSA, wSS , and wPS .
These strengths are randomly chosen within the range of 0 to 0.1 for each individual time series.

To efficiently store and load the dataset, the lampe.data module provides a class called HD5Dataset.
The use of this process of generating and storing the datasets was heavily influenced by the lampe
tutorial 2.

3.4.1.3 Embedding

Prior to parameter estimation, the dimensionality of the time series needs to be reduced. To accomplish
this, an embedding was constructed using convolutional neural networks (CNN). CNNs have demon-
strated remarkable effectiveness in analyzing images and uncovering significant patterns within them.
Subsequently, they have been applied to time series analysis and proven to be a dependable tool for
extracting patterns and facilitating classification [46]. The embedding architecture employed in this
study is specifically designed to convert the input time series data into a learned feature representation.

Theoretical background A convolutional network, also known as a convolutional neural network
(CNN), is a type of deep learning model designed for processing structured grid-like data, such as
images or time series data [28, 1].

The key component of a convolutional network is the convolutional layer, which applies a set of
learnable filters (also called kernels) to the input data. These filters slide over the input, computing a
dot product at each location and producing a feature map. This process allows the network to capture
local patterns and spatial dependencies present in the input. It has several features:

• The number of channels which refers to the depth dimension of the input and output data. It
represents the number of feature maps or filters used in that layer. Each channel focuses on
capturing different types of features in the input data.

1https://github.com/francois-rozet/lampe
2https://lampe.readthedocs.io/en/stable/tutorials/simulators.html
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• The kernel size, also known as the filter size, which determines the spatial extent of the receptive
field used for the convolution operation. It specifies the dimensions (width and height) of the
sliding window that moves over the input data.

• Padding which is an optional technique used to preserve spatial information during the convo-
lution operation. It adds extra pixels or values around the input data, effectively increasing its
size.

Typically, convolutional networks also include pooling layers, which reduces the spatial dimensions
while retaining important information.

Convolutional networks often conclude with fully connected layers, which connect all the neurons
from the previous layer to the next layer, and finally end with a softmax layer for classification or a
regression layer for regression tasks.

During training, convolutional networks optimize their parameters through backpropagation and
gradient descent, aiming to minimize a chosen loss function. This process allows the network to learn
to recognize complex patterns and features in the input data, making them well-suited for tasks such
as image classification, object detection, and image segmentation.

Figure 3.32: These illustrations depict the underlying principles of a convolutional neu-
ral network (CNN). The figure on the top left demonstrates the operation performed
by the convolutional layer, while the figure on the top right represents the operation
carried out by the pooling layer. The bottom figure provides an overview of the
general architecture of a CNN. Source: https://www.analyticsvidhya.com/blog/2021/05/
convolutional-neural-networks-understand-the-basics/.

Embedding architecture

• Convolutional layers: The embedding starts with a 1D convolutional layer that takes as input
a single channel, representing the time series data. This layer convolves the input with 16 filters,
each with a kernel size of 1.

Following the initial convolutional layer, a stack of 10 additional convolutional layers is employed.
Each of these layers uses the same number of channels as the previous layer (16), a kernel size of
3 and a padding of 1.

60

https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-understand-the-basics/
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-understand-the-basics/


• Activation function: After each convolutional layer, a scaled exponential linear unit (SELU)
activation function is applied.

• Pooling layers: To reduce the spatial dimensions, max pooling is applied after each convolu-
tional layer. Max pooling is performed with a kernel size of 3 and a stride that varies depending
on the layer position.

• Flatten and fully connected layer: Following the stack of convolutional and pooling lay-
ers, a flattening operation is applied to convert the multi-dimensional feature maps into a one-
dimensional vector. This flattened representation is then passed through two fully connected
layers which reduces the data to a vector of size 8.

3.4.1.4 Model Architecture

After creating the embedding, the remaining architecture follows a straightforward approach. The
lampe package provides the NPE module, which takes the embedded time series as input and returns
an approximate posterior distribution p(θ|x), where θ represents the parameters to be estimated and
x represents the time series.

The implementation closely follows the approach outlined in the lampe tutorial 3, with similar steps
and procedures.

3.4.2 Training and Assessing the Method

Training The neural network is trained using the training set and validated using the validation set.
Training is performed using batches of size 256, and the torch.cuda library is utilized to accelerate
the process on compatible hardware.

Expected coverage To evaluate the accuracy of the neural network estimation, the lampe.diagnosis
module provides methods to calculate the expected coverage of the model.

The concept of expected coverage, as defined in the lampe tutorial, can be described as follows:
"The expected coverage of a posterior estimation p(θ|x) at a credible level 1−α is the probability of a
set of parameters θ∗ to be included the highest density region of total probability 1−α of the posterior
estimator, given an observation x∗ ∼ p(x|θ∗)" 4.

The highest posterior density region corresponds to the credible region with the smallest volume.
A credible region is a space Θ that satisfies the condition [17]:∫

Θ
p(θ|x = xO)dθ = 1− α.

If the expected coverage at a credible level 1 − α is equal to 1 − α, the estimator is considered
calibrated. In other words, the plot of expected coverage should align along the diagonal. If the curve
falls below the diagonal, it indicates overconfidence of the model, while a curve above the diagonal
suggests underconfidence.

Testing the model The expected coverage of the trained network was evaluated on the testing set.
The results are available on Figure 3.33. It can be seen that even though the curve isn’t totally aligned
with the diagonal, it is pretty close, which means that the model is pretty calibrated. On Figure
3.34, the parameters estimations on two different time series of the testing set are available. We can
observe that the first one is a very good approximation while the other one is not totally accurate.
However, even though the parameter estimations won’t be totally accurate, we can still conclude that
the estimations remain quite close.

3https://lampe.readthedocs.io/en/stable/tutorials/embedding.html
4https://lampe.readthedocs.io/en/stable/tutorials/coverage.html
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Figure 3.33: Expected coverage of the trained neural network. A curve bellow the diagonal means an
overconfident model while a curve above it means a underconfident model.

Figure 3.34: Parameters estimation for two time series of the testing set with the trained neural
network. The estimation on the left is the one of the first time series of the training set and the one on
the right is for the 25th time series of the training set. The parameters estimated are the feedback input
strengths of the Ivanov model (more details in section 3.1.5.6). The cells located on the rightmost side
depict the posterior probability distribution p(wx|X) of the parameter value for the respective time
series. The remaining cells represent the joint probability distribution for two parameters.

3.4.3 Parameters Estimation of Heart Rate Signals

Given that the model was trained on time series consisting of 20.000 points, the parameter fitting for
the Ivanov model on real heart rate signals also needed to be performed on time series of the same
length. To achieve this, the first 60.000 points of each signal from each subject of the second dataset
(see section 1.3.2) were considered, and the fitting process was conducted three times on different
segments of the signals.

The obtained results can be analyzed in two steps. Firstly, we can examine the results for healthy
subjects and assess the proximity of the estimated values to those chosen in this study. Secondly, we
can investigate any differences that may exist among the various groups.

Results of healthy subjects The original model for healthy subjects [21] established the reference
values as wSA = wSS = wPS/3 = 0.01, which were also utilized in this project. Figures 3.35, 3.36,
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and 3.38 demonstrate that the estimations for at least wSA and wPS in healthy subjects’ signals are
remarkably close to these initial values apart from the first healthy subject which exhibits a relatively
high value for wSA. Nevertheless, referring to Figure 3.7 in section 3.1.5.1, where the impact of the
parameters was analyzed, this value is not high enough to have a substantial impact on the fractal
dynamic of the heart rate.

On the other hand, the parameter wSS tends to be slightly smaller, especially for subjects n1, n2,
and n5. In section 3.1.5.1, it was observed that a small value for wSS can affect the fractal dynamics
of the heart rate signal. However, this effect is counterbalanced by the higher estimations of wPS .

Overall, despite some differences between the estimations and the original model values, the esti-
mations remain quite close. This finding further strengthens the claim that the Ivanov model can be
effectively employed to model the heart rate of healthy subjects.
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Figure 3.35: The figure illustrates the median and mean of the parameter estimations for the three
parameters (wSA, wSS , and wPS) of the Ivanov model, specifically for each healthy subject in the
second dataset (refer to section 1.3.2).

Results of all groups From Figures 3.36, 3.37 and 3.38, we can observe a similar trend to the
fitting using ABC (refer to section 3.3.5.2): the strengths of the feedback inputs tend to decrease for
congestive heart failure and increase significantly for atrial fibrillation.

However, several additional observations need to be mentioned. Firstly, for congestive heart failure,
the decrease in strengths is mainly noticeable for wSA and wPS , while the decrease for wSS is less
apparent.

Secondly, it can be observed that the predictions for subjects with atrial fibrillation have a higher
variance (indicating greater uncertainty) compared to subjects in the other two groups. It could be
hypothesized that atrial fibrillation, being closer to white noise, exhibits a highly randomized signal,
making it challenging to accurately model. However, this increased uncertainty is primarily observed
for wSA, indicating that this parameter have a lower importance in the case of atrial fibrillation. Upon
closer examination of Figure 3.38, it can be seen that for wPS , the uncertainty is primarily driven by
subjects a5 and a4, while the predictions for wPS among the three remaining subjects have the lowest
variance of all subjects. Furthermore, although the variance for wSS remains relatively high, it is still
small enough to differentiate subjects with atrial fibrillation from those in the other two groups. In
conclusion, while wSA cannot be clearly confined to a specific interval for modeling the heart rate of
subjects with atrial fibrillation, wSS can be placed within a distinct interval, and caution should be
exercised when interpreting wPS due to its large variance in two of the subjects.
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Figure 3.36: The boxplots display the distribution of parameter estimations for wSA (top left), wPS

(top right), and wSS (bottom) within each group (n for healthy, a for atrial fibrillation, c for congestive
heart failure) of the second dataset (see section 1.3.2). The parameter fitting was performed using the
neural network architecture with three trials on the first 60.000 points of each signal (20.000 points
for each trial). Each boxplot represents the distribution of estimations from the three trials for each
subject within the group.
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Figure 3.37: The mean and median of the parameter estimations for wSA, wSS , and wPS of the
Ivanov model are shown for each group (n for healthy, a for atrial fibrillation, and c for congestive
heart failure) in the second dataset (see section 1.3.2).
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Figure 3.38: The boxplots depict the distribution of parameter estimations for wSA (top left), wPS

(top right), and wSS (bottom) across subjects in the second dataset (see section 1.3.2). The parameter
fitting was conducted using the neural network architecture with three trials on the first 60.000 points
of each signal (20.000 points for each trial). Each boxplot represents the distribution of estimations
from the three trials. A more detailed distribution of each trial is available in appendix C.

3.4.4 Conclusion

Among the methods explored, the utilization of a neural network emerged as the only reliable approach
to estimate the desired parameters of the Ivanov model.

The parameter estimations obtained from the heart rate signals in the second dataset (section
1.3.2) yielded interesting insights. Firstly, the estimations for healthy subjects closely aligned with
those of the original model, providing reassurance regarding the effectiveness of the original model in
simulating the heart rate of healthy individuals. Secondly, notable distinctions were observed among
the different groups, indicating the potential for individualized modeling of heart rate based on the
specific disease.
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3.5 Results Summary and Interpretation

3.5.1 Results Summary

In the previous sections, we investigated several methods to estimate the feedback input strengths
parameters of the Ivanov model. The objective was to apply these methods to actual heart rate
signals in order to obtain the best parameter fit for the model. Among these methods, two emerged
as particularly noteworthy:

• the ABC method applied to a revisited model (refer to section 3.3.4),

• a neural network utilizing the lampe package.

Both of these approaches provided sets of parameter estimations that could be utilized to approxi-
mate the posterior distribution p(θ|x) of the parameters. The outcomes of the fittings for each subject
can be found in sections 3.3.5.2 and 3.4.3.

The key findings were as follows:

• The neural network fitting for the parameters produced values similar to those in the original
work for healthy subjects, indicating that the model is effective for simulating heart rate signals.

• For subjects with congestive heart failure, the strengths had lower values than those for healthy
subjects, suggesting a reduction in the impact of the sympathetic and parasympathetic systems.

• In contrast, for subjects with atrial fibrillation, the strengths were very high, indicating an over
influence of the sympathetic and parasympathetic systems.

Group n Group c Group a
w with ABC 0.0201± 0.0046 0.0074± 0.0033 0.0482± 0.0091

wSA with the neural network 0.0134± 0.009 0.0027± 0.0028 0.0379± 0.0367

wSS with the neural network 0.0061± 0.0032 0.005± 0.0027 0.0418± 0.0113

wPS with the neural network 0.0347± 0.0073 0.0161± 0.0112 0.0771± 0.0313

Table 3.2: For each group (n for healthy, c for congestive heart failure, and a for atrial fibrillation),
this table presents the intervals of parameter values that can be utilized to generate a heart rate signal
using the (revisited) Ivanov model. The intervals were computed as mean ± std, using parameter
estimations obtained through the ABC method (section 3.3) and the neural network (section 3.4).

3.5.2 Assessing the Fit to Real-World Data

Comparing time series Now that we have performed fittings using several methods, it is inter-
esting to evaluate their relative effectiveness. However, comparing time series poses a challenge as
it involves techniques from the field of time series data mining, which is an active area of research
[44]. Most existing methods for comparing time series involve measuring the "closeness" of two time
series, either by directly computing the Euclidean distance between them or by applying alignment
techniques to superimpose them and then assessing the difference [9, 45, 4]. However, these methods
have limitations, including the fact that many proposed techniques are specific to particular datasets
[22, 8]. Additionally, in the context of this project, we are dealing with noisy data, which means that
identifying similar trends among the time series is not feasible. Consequently, aligning the time series
and calculating distances between them won’t provide meaningful insights.

Hence, our main objective is to evaluate the model’s ability to generate signals that exhibit similar
characteristics to the original ones. Specifically, we will analyze the fractal dynamics of the generated
signals in comparison to their corresponding subjects.
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Figure 3.39: Methodology for assessing the Ivanov model’s capacity to replicate the fractal signal of
each subject, utilizing the parameter estimations obtained from the ABC method for the revisited
model (see section 3.3.4) and the neural network.

Visual aspect An initial comparison can be made by examining the visual characteristics of the
time series. In Figure 3.40, the first 20.000 data points of the time series for the first subject are
displayed for each category, along with simulated signals generated using the Ivanov model and the
revisited Ivanov model (see section 3.3.4). Upon visual inspection, it is apparent that the simulated
signals closely resemble the original signal, demonstrating a strong visual similarity between them.

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

n1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

c1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

a1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

n1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

c1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

a1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

n1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

c1

0 2500 5000 7500 10000 12500 15000 17500 20000
beats

0.0

0.5

1.0

1.5

in
te

rb
ea

t(s
)

a1

Figure 3.40: These figures depict the heart rate signals of the first subjects from each group in the
second dataset (n for healthy, c for congestive heart failure, and a for atrial fibrillation). The top
signals display the first 20.000 data points from the dataset. The middle signals represent signals
generated using the revisited Ivanov model (section 3.3.4), where the parameter w is set to the mean
value obtained from parameter estimations using the ABC method (see section 3.3). Lastly, the bottom
signals correspond to signals generated using the Ivanov model with default parameters (see section
3.1.3), except for the feedback input strengths wSA, wSS and wPS , which are set to the mean value
obtained from parameter estimations using the neural network (see section 3.4). A simulation for all
subjects is available in appendix D.
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Detrended fluctuation analysis After visually confirming the similarity between the simulated and
original signals, the next step is to assess whether the fractal pattern or its loss is accurately reproduced
by the model with the fitted parameters for each subject. To accomplish this, 100 simulated signals
were generated for each subject, and the resulting α coefficient was computed. Figure 3.41 presents a
summary of the obtained results.

The overall results indicate that both models have successfully preserved the presence or absence of
fractal dynamics. However, a few subjects, particularly those in the congestive heart failure group, have
slightly deviated results, which may affect the reliability of their heart rate simulations. Nonetheless,
these difference are not significant enough to dismiss the model altogether, but they indicate room for
improvement.

In conclusion, this model is capable of accurately representing the heart rate of healthy subjects
and can be extended to individuals with both congestive heart failure and atrial fibrillation.
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Figure 3.41: This figure compares the α coefficient obtained using the DFA method for the real heart
rate signals of the subjects in the second dataset (see section 1.3.2) with the simulated signals generated
using the (revisited) Ivanov model. The analysis considered scales ranging from 10 to 500, and the
time series consisted of 20.000 points each. For the real signals, the DFA method was applied to the
first 20.000 points. For the simulations, 100 signals were generated for each subject using parameters
randomly selected from the estimations made specifically for that subject within the (revisited) Ivanov
model. The value displayed represents the mean α coefficient computed across all these simulated
signals. The top figure presents the results obtained using the revisited Ivanov model and the parameter
values obtained through ABC (see section 3.3), while the bottom figure illustrates the results obtained
with the Ivanov model and the parameter values obtained through the neural network.

3.5.3 Improvement Suggestions

Considering more parameters There are two potential strategies for improving the current model.
Firstly, it may be worthwhile to investigate the preferred levels bounds of the Ivanov model, which were
not previously considered in the fitting process as it was not deemed impactful on the fractal dynamic.
However, since subjects with congestive heart failure have smaller amplitude compared to healthy
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subjects, adjusting the bounds and expanding or reducing the potential values for the preferred levels
may have a greater impact in this group. This approach could be explored using the ABC method on
the revisited model initially.

To evaluate the feasibility of this suggestion, a similar approach to the previous section was em-
ployed for DFA with the parameter estimations obtained earlier using ABC. The only difference is
that the signals generated for the estimation assessment now have preferred level bounds based on the
values observed in the specific subject under consideration for the α coefficient comparison.

The results, depicted in Figure 3.42, indicate that this proposition holds merit and shows promising
potential. The improvements achieved with subjects who initially had poor results, such as n4, c3, and
c4, are substantial. However, this preliminary experiment merely confirms the usefulness of adapting
the preferred level bounds based on the heart rate signal values during parameter estimation. To
conduct a more comprehensive analysis, the entire process described in Figure 3.17 must be repeated,
taking into account the dynamic adjustment of the preferred level bounds. The poor results observed
for n1 and the atrial fibrillation group highlight the necessity of undertaking this complete process to
obtain a deeper understanding of the parameter estimation and model fitting.
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Figure 3.42: This figure compares the α coefficient obtained using the DFA method for the real heart
rate signals of the subjects in the second dataset (see section 1.3.2) with the simulated signals generated
using the revisited Ivanov model. The analysis considered scales ranging from 10 to 500, and the time
series consisted of 20.000 points each. For the real signals, the DFA method was applied to the first
20.000 points. For the simulations, 100 signals were generated for each subject using parameters
randomly selected from the estimations made specifically for that subject within the revisited Ivanov
model. Furthermore, the bounds of the preferred level are adapted to the subject considered.

In a broader sense, it is possible to consider fitting all the parameters of the Ivanov model for
all subjects. However, it is important to recognize that incorporating more parameters significantly
increases the complexity of parameter estimation, potentially leading to a decrease in precision.

Another suggestion for incorporating new parameters in the model or parameter estimation is to
introduce additional components that account for other factors influencing the heart rate, such as
blood pressure or exercise.

LSTM embedding Secondly, an alternative embedding technique could be applied in the fitting
of parameters with the neural network. The current choice of CNN for embedding was motivated by
its ability to recognize various patterns in time series data. However, an alternative approach worth
considering is the use of LSTMs (Long Short-Term Memory). LSTMs possess the capacity to capture
important information from a sequence while disregarding less significant details. Given the long-range
correlation exhibited by fractal time series, LSTMs could prove to be particularly advantageous in this
context.
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3.5.4 Results Interpretation

The outcomes of these parameter fittings indicate that in the case of congestive heart failure, the influ-
ence of the sympathetic and parasympathetic systems appears to diminish significantly. Conversely, for
atrial fibrillation, there is a notable increase in the impact of these systems accompanied by a dimin-
ished significance in the Ivanov model of the sinoatrial (SA) node, as indicated by its exceptionally high
variance for the parameter estimations. This observation can be attributed to the absence of a sinus
rhythm in individuals with atrial fibrillation, which implies that the SA node no longer regulates the
heart rate. These findings highlight the distinct physiological mechanisms underlying these two cardiac
conditions, shedding light on the potential role of autonomic regulation in their pathophysiology.

According to Dr. Philippe Marcelle, a cardiologist at "CHC asbl Liège", and Dr. Sebastien Robi-
net, a cardiologist at "CHU Uliège", these results are consistent with the existing knowledge about
congestive heart failure and atrial fibrillation.

According to Dr. Robinet, these findings align with previous studies conducted on heart rate
variability [31], which is a closely related area of research. He emphasizes that the results obtained
for congestive heart failure closely correlate with existing prognostic indicators. However, he notes
that these results may be less applicable to atrial fibrillation due to its absence of a sinus rhythm.
While still meaningful, the relevance of these findings in the context of atrial fibrillation is somewhat
diminished.

Dr. Marcelle also highlights the progress made in recent years in understanding these diseases,
particularly the increasing recognition of subgroups within congestive heart failure. Dr. Marcelle
suggests that while the overall findings are accurate, further exploration of these subgroups would be
valuable to ensure the applicability of the results to all cases, considering the heterogeneous nature of
congestive heart failure. Regarding atrial fibrillation, Dr. Marcelle recommends considering additional
factors such as the health of the atrioventricular node. Overall, while the model demonstrates its
effectiveness, Dr. Marcelle also highlights the importance of physiological justifications for the number
of feedback inputs for the parasympathetic and sympathetic systems.

This insight suggests new opportunities for future research, indicating that a more detailed dif-
ferentiation of the signals based on disease subgroups could be conducted to observe any potential
variations.

3.6 Conclusion

It has been demonstrated that the Ivanov model is an accurate model for representing the fractal
pattern of the heart rate in healthy individuals and can be extended to diseased subjects.

Several methods were explored to adapt the Ivanov model for individuals with congestive heart
failure and atrial fibrillation by using parameter estimation. Among these methods, only neural net-
works (section 3.4) demonstrated reliability, while the ABC method (section 3.3) was applicable only
to a revised version of the model (section 3.3.4). In contrast, maximum likelihood estimation (section
3.2) proved to be highly inaccurate and unsuitable for this particular case.

The parameter estimations resulting from these methods allowed for differentiation between the
three groups (healthy, congestive heart failure, and atrial fibrillation). Furthermore, the results demon-
strated accuracy, as the estimations successfully replicated the correct fractal dynamics of the signals
(section 3.5).

Nevertheless, perfect accuracy was not achieved for all subjects, with slight differences observed in
the fractal pattern. This indicates potential avenues for further improvement and exploration of the
model (section 3.5.3).
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Chapter 4

Going Beyond: an Introduction to
Generalized Linear Model

4.1 GLM overview

In this project, we focused on analyzing a stochastic model specifically designed for modeling the heart
rate. However, the fractal dynamics observed in the heart rate signal can also be found in many other
physiological signals. It would be intriguing to explore the possibility of extending this model to a more
generalized framework that could be applied to model various fractal signals. One potential avenue for
such an extension is the use of generalized linear models. In the following section, we provide a brief
overview of generalized linear models and their potential for heart rate modeling.

A Generalized linear model (GLM) is an extension of the linear regression model [27, 30]. Unlike
the linear regression model, GLMs allow for a wider range of probability distributions, making it more
flexible. The linear regression model assumes that the conditional expectation of the response variable
Y is a linear function of the predictor variables:

E(Y |X) = XTβ.

The linear regression model is based on a normal distribution assumption, so that

Y = XTβ + ϵ

with ϵ ∼ N (0, σ2). Alternatively, we can say that

Y |X ∼ N (µ(X), σ2I)

with µ(X) = XTβ.

Figure 4.1: Linear regression schematic representation. Figure from ref [27]
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In contrast to linear regression, the generalized linear model assumes that Y |X follows a distribution
from the exponential family (more details in appendix E). Moreover, it assumes that a function of the
mean is a linear combination of the predictors:

G(µ(X)) = XTβ

with G being called the link function.
GLMs consist of three components [37, 36]:

1. Random component: It refers to the probability distribution that describes the variation in
the response variable.

Y ∼ distribution from the exponential family.

2. Linear predictor: It is a linear combination of the predictor variables used to model the
relationship between the predictor variables and the response variable. The linear predictor is
specified as:

η = G(µ) = Xβ.

3. Link function: As mentioned earlier, it is a function used to transform the response variable
to a linear combination of the predictor variables. Table 4.1 shows link functions for several
distributions. The link function must satisfy the following requirements:

• it must be continuously differentiable,
• it must be strictly increasing,
• the image must be in R (and thus must be invertible).

In the case of the canonical exponential family, we can use the canonical link, which is obtained
as:

g(µ) = θ = (b′)−1(µ).

In appendix E.1, we will discuss the intuition behind this formula.

Distribution f(y) Canonical link

Bernouilli µy(1− µ)1−y η = log( µ
1−µ)

Poisson µy

y! e
−µ η = log(µ)

Exponential 1
µexp(− y

µ) η = 1
µ

Gamma 1
Γ(ϕ)(

ϕ
µ)

ϕexp(−ϕy
µ )yϕ−1 η = 1

µ

Normal exp[−(y−µ)2/(2ϕ)2]√
2πϕ

η = µ

Inverse Gaussian
√

λ
2πx3 exp(−λ(x−µ)2

2µ2x
) η = 1

µ2

Table 4.1: Example of distributions from the exponential family

4.2 GLMs on Time Series

After reviewing the principles behind GLMs and the general overview of the method, we can proceed
to model the heart rate of the second dataset (described in section 1.3.2) by estimating the parameters
β. To predict the interbeat for beat n, the previous n − t interbeat observations will be used as the
input variables X. It should be noted that since fractals show long-range correlation, the value of t
must be chosen large enough.

For time series, we can consider two cases for the GLMs:
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1. keeping the signal unchanged,

2. converting the signal into a count time series.

4.2.1 Implementation

The fitting of the parameters β for GLMs was implemented using the GLM module from the statsmodels.api
library [34]. This module enables the fitting of the parameters based on given observations and their
corresponding response variable Y , along with the distribution considered.

For a given heart rate signal, we ignore the first t points and use all the remaining points as the Y
values. The preceding t points in the signal are the observations for that given value.

After the fitting is completed, we can simulate a signal using the following steps:

1. Take the first t points of the original heart rate signal. These points will be the starting obser-
vations for the simulation;

2. Compute the scale of the exponential distribution using the scale attribute from the GLM.fit()
method;

3. Compute the expected value µ with µ(X) = G−1(XTβ);

4. Generate a new point randomly using the chosen exponential distribution;

5. Add the new point to the observations and remove the furthest point in the observations;

6. Go back to step 3 and generate a new point.

4.2.2 GLMs on the Heart Rate Signal

4.2.2.1 Normal Distribution

The first distribution that we considered is the normal distribution, which implies a simple linear
regression model. We set t = 1000 for this model.

Fitting the GLM on the signal did not provide accurate results. As shown in Figure 4.2, a visual
inspection reveals that the generated signal is significantly different from the signal on which the
parameters were fitted. Nevertheless, this does not necessarily mean that the model is useless and
should be discarded. Interestingly, a fractal analysis using the DFA method shows that even though
the amplitudes of the signals are quite different, the fractal pattern of the signals is actually reproduced
(see Figure 4.3). While this project will not undertake any further analysis, this result is encouraging
with regards to the potential of GLMs for modelling heart rate signals.
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Figure 4.2: The figure shows heart rate signals. The left panel displays signals from the first subject
of each group (n for healthy, a for atrial fibrillation and c for congestive heart failure) in the second
dataset (described in section 1.3.2). The middle panel shows a generated signal with parameters fitted
with GLM using a normal distribution on the signal of the subject with the same scale as the left
panel. The right panel shows a signal generated by simulation of GLM with a different scale.
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Figure 4.3: These bar plots illustrate the α coefficient for each subject, obtained from the DFA method
with scales ranging from 10 to 1000. The first five bars correspond to the healthy subjects, the middle
five represent the subjects with atrial fibrillation, and the last five bars correspond to the subjects
with congestive heart failure. The plot on the left shows DFA performed on the real signals from the
second dataset, while the one on the right shows DFA conducted on the signals generated using the
parameters fitted with GLMs on the subjects of this dataset.

4.2.2.2 Inverse Gaussian Distribution

The inverse Gaussian distribution is the second distribution that is being considered. This choice was
motivated by the fact that it was previously used to build a statistical model of the heart rate, which
shares some similarities with a GLM [3].

Similar to the normal distribution, fitting GLMs with the inverse Gaussian distribution resulted
in signals with very low amplitude compared to the original signals. However, unlike the normal
distribution, the inverse Gaussian distribution failed to replicate the fractal pattern of each signal,
and only produced signals that resemble white noise (see Figure 4.4). These results do not necessarily
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indicate that the inverse Gaussian distribution should be rejected, given that it has been previously
used for heart rate modeling. However, if one were to further explore the use of GLMs for heart rate
modeling, it would be prudent to first investigate the use of the normal distribution.
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Figure 4.4: Simulation of heart rate signal for subject n1 (healthy) from the second dataset (see section
1.3.2) using parameters fitted through GLM with the inverse Gaussian distribution.

4.2.2.3 GLMs on Count Time Series

An alternative approach to consider is transforming the heart rate time series into count time series
[7, 10, 25]. This involves creating time bins of a specific size in which the number of beats will be
recorded. The choice of distribution to use will depend on the length of the bins:

• for small time bins, the count will either be 1 or 0, and a Bernoulli distribution should be used,

• for larger time bins, the count can be greater than 1, and a Poisson distribution should be used.

However, these approaches are not analyzed in this work. In the case of the Bernoulli distribution,
a large number of beats needs to be considered, which means that an extremely large number of
observations (time bins) are required, which requires powerful computational tools, and therefore, it
wasn’t considered in this project.

Although the Poisson distribution is more feasible, the fractal dynamics of the heart rate cannot be
analyzed since we have no way of knowing how the beats are distributed within the bins. This causes
us to lose the fractal properties of the heart rate that we aim to analyze in this work. However, this
does not necessarily mean that count time series should be discarded altogether, and further analysis
may lead to potential models with great promise.

4.3 Conclusion

We have only scratched the surface of the potential of GLMs for modelling the heart rate signal.
Despite the inaccuracy of the results obtained with the normal distribution, the fact that a fractal
pattern similar to the original signal was reproduced shows the promising potential of this approach.
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Chapter 5

Conclusion

The objective of this project was to gain a deeper comprehension of the fractal nature of biological
signals and to construct a model that could elucidate the elements responsible for this fractal pattern
in such signals. Additionally, the project aimed to examine how these components may change in
response to diseases.

The study primarily centers on the heart rate signal and seeks to investigate the influence of
three principal components, namely the sinoatrial node (SA), the sympathetic signal (SS), and the
parasympathetic signal (PS), on its variability. The investigation specifically compares three groups
of subjects, healthy individuals, subjects with congestive heart failure and individuals afflicted with
atrial fibrillation.

The initial focus lies in identifying the presence of a fractal pattern in the signals and conducting
preliminary observations. The DFA method was identified as a suitable technique to identify the
fractal pattern. The findings suggest that individuals with atrial fibrillation exhibit a loss of the fractal
pattern at smaller scales, indicating its potential as a diagnostic tool. Although a slight distinction
was observed between healthy subjects and those with congestive heart failure, it is not substantial
enough to definitively differentiate between the two groups.

This project centers around the utilization of the Ivanov model, an existing stochastic model intro-
duced by Ivanov et al. [21]. The Ivanov model is based on a random walk process that incorporates
inputs influenced by the SA, SS, and PS components. To align the model with real datasets, the
strengths of these inputs were calibrated using three distinct approaches: maximum likelihood es-
timation, approximate Bayesian computation (ABC), and neural networks. Among these methods,
the neural network emerged as a reliable estimator, while the ABC method demonstrated reasonable
accuracy when applied to a slightly adjusted version of the model.

The results of the model fitting were found to be intriguing. In the case of individuals with
congestive heart failure, there was a noticeable reduction in the strength of the inputs, indicating that
the heart rate is less influenced by the various systems. On the other hand, individuals with atrial
fibrillation demonstrated an opposite reaction, with a significant increase in the strength of the inputs.

The results obtained in this study demonstrate a significant level of accuracy in modeling the heart
rate and its fractal dynamics for both healthy subjects and those with congestive heart failure and atrial
fibrillation. Although the model did not achieve total accuracy, there are various potential avenues
for future work, such as exploring the possibility of fixing custom parameters, which were fixed in this
study, or considering the potential of using LSTMs to better integrate the long-range dependency of
the fractal dynamics in the parameters fitting.

Although the Ivanov model is specifically designed for heart rate signals, fractal dynamics can also
be observed in other biological signals. Considering the model’s ability to accurately reproduce this
fractal dynamic, it could be interesting to generalize its application. In this regard, the potential of
using generalized linear models (GLM) to model the heart rate was briefly investigated. Despite the
modest accuracy of the generated signals, some of them successfully captured the fractal pattern ob-
served in the original subjects. This finding highlights promising opportunities for further investigation
into the fractal dynamics of biological signals.

The fractal pattern observed in biological signals is a complex structure that we have yet to fully
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comprehend. This study has provided insight into the potential of modeling the fractal pattern of the
heart rate, examining the elements that influence it and how they can evolve with diseases, ultimately
affecting the fractal pattern. The field of research in this area is extensive, and the model developed
in this study could be extended to many other horizons.

77



References

[1] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. “Understanding of a Convolutional
Neural Network”. In: IEEE (2017).

[2] Xianghong Arakaki1 et al. “The connection between heart rate variablility (HRV), neurological
health, and cognition: a literature review”. In: Frontiers in Neuroscience 17 (2023).

[3] Riccardo Barbieri et al. “A point-process model of human heartbeat intervals: new definitions of
heart rate and heart rate variability”. In: Am J Physiol Heart Circ Physiol 288 (2005), pp. 424–
435.

[4] Gustavo E.A.P.A. Batista, Xiaoyue Wang, and Eamonn J. Keogh. “A Complexity-Invariant Dis-
tance Measure for Time Series”. In: Proceedings of the 2011 SIAM International Conference on
Data Mining (2013). Society for Industrial and Applied Mathematics, pp. 699–710.

[5] Richard Blender and Klaus Fraedrich. “Long time memory in global warming simulations”. In:
GEOPHYSICAL RESEARCH LETTERS 30.14 (2003).

[6] Anita Boardman et al. “A study on the optimum order of autoregressive models for heart rate
variability”. In: Physiology measures 23 (2002), pp. 325–336.

[7] Nicholas Bosowski, Vinay Ingle, and Dimitris Manolakis. “Generalized Linear models for count
time series”. In: ICASSP (2017), pp. 4272–4276.

[8] Hui Ding et al. “Querying and Mining of Time Series Data: Experimental Comparison of Rep-
resentations and Distance Measures”. In: Proceedings of the VLDB Endowment 1.2 (2008),
pp. 1542–1552.

[9] Keaogh Eamonn. Introduction to Time Series Mining. http://didawiki.cli.di.unipi.it/
lib/exe/fetch.php/dm/time_series_from_keogh_tutorial.pdf. Accessed: 06-05-2023.

[10] Uiri Eden. Generalized linear models. Presented at the Methods in Computational Neuroscience.
2016.

[11] Ary L. Goldberger, C.-K. Peng, and Lewis A. Lipsitz. “What is physiologic complexity and how
does it change with aging and disease?” In: Neurobiology of Aging 23 (2002), pp. 23–26.

[12] L. Goldberger et al. “Fractal dynamics in physiology: Alterations with disease and aging”. In:
PNAS 99 (2002), pp. 2466–2472.

[13] S. Halvin et al. “Fractals in Biology and Medicine”. In: Chaos, Solitons Fractals 6 (1995), pp. 171–
201.

[14] Jeffrey M. Hausdorff and C.K. Peng. “Multiscaled randomness: A possible source of 1/f noise in
biology”. In: Physical Review E. 54.2 (1996), pp. 2154–2157.

[15] Jeffrey M. Hausdorff et al. “When human walking becomes random walking: fractal analysis and
modeling of gait rhythm fluctuations”. In: Physica A. 302 (2001), pp. 138–147.

[16] Indranil Hazra, Mahesh D. Pandey, and Noldainerick Manzana. “Approximate Bayesian com-
putation (ABC) method for estimating parameters of the gamma process using noisy data”. In:
Reliability Engineering System Safety 198 (2020).

[17] Joeri Hermans et al. “Posterior Approximations Can Be Unfaithful”. In: Transactions on Machine
Learning Research 11 (2022).

78

http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/dm/time_series_from_keogh_tutorial.pdf
http://didawiki.cli.di.unipi.it/lib/exe/fetch.php/dm/time_series_from_keogh_tutorial.pdf


[18] K. Hu et al. “The suprachiasmatic nucleus functions beyond circadian rhythm generation”. In:
Neuroscience 149 (2007), pp. 508–517.

[19] Kun Hu et al. “Effect of trends on detrended fluctuation analysis”. In: PHYSICAL REVIEW E
64.011114 (2001).

[20] Kun Hu et al. “Non-random fluctuations and multi-scale dynamics regulation of human activity”.
In: Physica A. 337 (2004), pp. 307–318.

[21] P.C. Ivanov et al. “Stochastic feedback and the regulation of biological rythms”. In: Europhysics
letters 43 (1998), pp. 363–368.

[22] Eamonn Keogh and Shruti Kasetty. “On the Need for Time Series Data Mining Benchmarks:
A Survey and Empirical Demonstration”. In: Data mining and knowledge discovery 7.4 (2003),
pp. 349–371.

[23] Marvin S. Keshner. “1/f noise”. In: Proceedings of the IEEE 70.3 (1982), pp. 212–218.

[24] Philippe Kolh. Physiologie des Systèmes. Course syllabus. 2021.

[25] W.K. Li. “Time Series Models Based on Generalized Linear Models: Some Further Results”. In:
Biometrics 50 (1994), pp. 506–511.

[26] Haijun Lin et al. “A new method for heart rate prediction based on LSTM-BiLSTM-Att”. In:
Measurement 207 (2022).

[27] James K. Lindsey. Applying Generalized linear models. New York: Springer, 1997.

[28] Gilles Louppe. Lecture 5: Convolutional networks. Course of Deep Learning given at University
of Liège. 2023.

[29] Jeffrey M.Haussdorff et al. “Fractal dynamics of human gait: stability of long-range correlations
in stride interval fluctuations”. In: Journal of Applied Physiology 80 (1996), pp. 1448–1457.

[30] Marlene Müller. “Generalized linear model”. In: Handbook of Computational Statistics (2004),
pp. 681–709.

[31] James Nolan et al. “Prospective Study of Heart Rate Variability and Mortality in Chronic Heart
Failure”. In: Circulation 98.15 (1998).

[32] C.-K. Peng et al. “Mosaic organization of DNA nucleotides”. In: PHYSICAL REVIEW E 42.2
(1994), pp. 1685–1689.

[33] C.-K. Peng et al. “Quantification of scaling exponents and crossover phenomena in nonstationary
heartbeat time series”. In: Chaos 5.1 (1995), pp. 82–7.

[34] Jonathan Pillow. Statistical models for neural data: From GLMs to latent variables. Presented at
COSYNE. 2018.

[35] Homer R.Warner and Albert Cox. “A mathematical model of heart rate control by sympathetic
and vagus efferent information”. In: Simulation 3.1 (1962), pp. 349–355.

[36] Philippe Rigollet. Chapter 10: Generalized Linear Models. https://ocw.mit.edu/courses/
18-650-statistics-for-applications-fall-2016/dff89368051a5feae72b39c6422d0752_
MIT18_650F16_GLM.pdf. Statistics for Application course given at MIT. 2016.

[37] Pierre Sacré. Lecture slides for Priniciples of Neuroengineering. 2022.

[38] S. A. Sisson, Y. Fan, and Mark M. Tanaka. “Sequential Monte Carlo without likelihoods”. In:
PNAS 104.6 (2007), pp. 1760–1765.

[39] James Robert Stirling et al. “A Model of Heart Rate Kinetics in Response to Exercise”. In:
Journal of Nonlinear Mathematical Physics 15.2 (2002), pp. 325–336.

[40] Mikael Sunnaker et al. “Approximate Bayesian computation”. In: PLOS Computational Biology
9.1 (2013).

[41] Kuan Tao et al. “Estimation of Heart Rate Using Regression Models and Artificial Neural Net-
work in Middle-Aged Adults”. In: Frontiers in Physiology 12 (2021).

79

https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/dff89368051a5feae72b39c6422d0752_MIT18_650F16_GLM.pdf
https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/dff89368051a5feae72b39c6422d0752_MIT18_650F16_GLM.pdf
https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/dff89368051a5feae72b39c6422d0752_MIT18_650F16_GLM.pdf


[42] Fumiharu Togo and Yoshiharu Yamamoto. “Decreased fractal component of human heart rate
variability during non-REM sleep”. In: Am J Physiol Heart Circ Physiol 280 (2000), pp. 17–21.

[43] Tina Toni et al. “Approximate Bayesian computation scheme for parameter inference and model
selection in dynamical systems”. In: Journal of the royal society 6 (2009), pp. 187–202.

[44] Derrick TR, Bates BT, and Dufek JS. “Evaluation of time-series data sets using the Pearson
product-moment correlation coefficient.” In: Medecine and Science in Sports and Exercise 26.7
(1994), pp. 919–928.

[45] Xiaoyue Wang et al. “Experimental comparison of representation methods and distance measures
for time series data”. In: Data Mining and Knowledge Discovery 26 (2013), pp. 275–306.

[46] Bendong Zhao et al. “Convolutional neural networks for time series classification”. In: Journal of
Systems Engineering and Electronics 28.1 (2017), pp. 162–169.

80



A Heart Rate Time Series of the Dataset with Healthy and Sick
Patients
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C Parameters Estimation of the Ivanov Model with Neural Networks
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D Heart Rate Signals Simulation with the (Revisited) Ivanov Model

D.1 Healthy Subjects
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D.2 Subjects with Congestive Heart Failure
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D.3 Subjects with Atrial Fibrillation
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E Exponential Family

The exponential family is the group of all distributions for which the probability (density) function is
of the form:

f(x, θ) = h(x)f(x)exp[
k∑

i=1

ηi(θ)Ti(x)] = h(x)exp[
k∑

i=1

ηi(θ)Ti(x)−B(θ)].

Table 4.1 presents some examples of distributions from the exponential family. Although some of
these distributions may not appear to be in the exponential family format, they can be transformed
to the correct format.

Let’s take two examples. First, let’s consider the normal distribution X ∼ N (µ, σ2) with θ = (µ, σ2)

f(θ, x) =
1

σ
√
2π

exp(−(x− µ)2

2σ2
) = exp(− x2

2σ2
− µ2

2σ2
+

xµ

2σ2
− log(σ

√
2π)).

We thus have a distribution of the exponential family with:

• h(x) = 1

• T1(x) = x2

• η1(θ) = − 1
2σ2

• T2(x) = x

• η2(θ) = − µ
σ2

• B(θ) = µ2

2σ2 + log(σ
√
2π)

Next, let’s take the example of the Bernouilli distribution. Its probability mass function can be
changed into

P (X = x) = px(1− p)1−x = exp(xlog(p) + (1− x)log(1− p)) = exp(xlog(
p

1− p
)− log(

1

1− p
))

with px = exp(xlog(p)).
We thus have

• h(x) = 1

• T1(x) = x

• η1(θ) = log( p
1−p)

• B(θ) = log( 1
1−p)

In the context of the generalized linear model, we will only consider a subset of the exponential
family called the canonical exponential family.

f(y, θ, ϕ) = exp[
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)]

with ϕ being the dispersion parameter indicating how "spread" the distribution is. θ is called the
location parameter and indicates the position where the distribution lies.
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E.1 Mean

We know for a fact that
∫
f(y, θ, ϕ)dy = 1. From there, we can derive

0 =
∂

∂θ

∫
f(y, θ, ϕ)dy =

∫
[
∂

∂θ
log f(y, θ, ϕ)]f(y, θ, ϕ)dy = E[

∂

∂θ
l(y, θ, ϕ]

with l(y, θ, ϕ) = log f(y, θ, ϕ). We thus have

l(y, θ, ϕ) =
Y θ − b(θ)

a(ϕ)
+ c(Y, ϕ).

Therefore:

∂l

∂θ
=

Y − b′(θ)

a(ϕ)

and thus

E(
∂l

∂θ
) =

E(Y )− b′(θ)

a(ϕ)
= 0

which leads to the final result of

E(Y ) = µ = b′(θ).

E.2 Example of the Inverse Gaussian Distribution

We will transform the original analytical form of the inverse Gaussian distribution into an expression
that resembles the canonical exponential form.

f(x) =
√

λ
2πx3 exp(−λ(x−µ)2

2µ2x
)

= exp(− λ(x−µ)2

2µ2x+ 1
2
log λ

2πx3

)

= exp(−λ(x2−2µx+µ2)
2µ2x

+ 1
2 log(

λ
2πx3 ))

= exp(− λx
2µ2 + λ

µ − λ
2x + 1

2 log(
λ

2πx3 )).

We now fix θ = − 1
2µ2 and ϕ = 1

λ . Therefore, we have 1
µ =

√
−2θ.

f(x) = exp(xθ+
√
−2θ

ϕ − 1
2xϕ + 1

2 log
1

2πx3ϕ
)

We therefore have:

• a(ϕ) = ϕ

• b(θ) = −
√
−2θ

• c(x, ϕ) = 1
2 log

1
2πx3ϕ

− 1
2xϕ .

For the canonical link, the constants are often removed. Therefore, the canonical link can be
computed in the following way:

θ =
1

µ2
⇐⇒ µ =

1√
θ
= b′(θ)
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