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Abstract

Stress-induced hyperglycaemia is a frequent glycaemic complication in critically ill patients.
The resulting elevated blood sugar levels are associated with increased mortality and morbidity
in intensive care units. Glycaemic control (GC) has been used to regulate stress-induced hyper-
glycaemia and is mostly achieved through insulinotherapy. The Stochastic TARgeted (STAR)
protocol is a model-based GC protocol modulating both insulin and nutrition minimising risk
for the BG levels to be outside a pre-set target range.

STAR has been clinically validated and provides safe and effective control for nearly all patients.
However, one of the main identified drawback from the implementation of STAR in clinical
environment is the possible increased workload compared to some intensive care units (ICU)
local practice. This work aims at investigating solutions to reduce this workload and the insulin
dosing variability also affecting nurse’s compliance to the protocol. The solutions are studied
by means of virtual trials on virtual patients allowing to assess and validate likely outcomes
prior potential clinical trial, ultimately saving clinical time and costs.

The first solution investigated aims at increasing measurement intervals in STAR from 1-3
hourly to 1-6 hourly. New stochastic models are built to forecast insulin sensitivity variability
over 1-6 hours intervals. These models are first validated using five-fold cross-validation, then
used in virtual trials to validate their impact on simulated BG outcomes. Results obtained show
a risk and reward trade-off with, as expected, a reduced workload for longer time intervals at
the cost of reduced safety. However, both performance and safety remains very high confirming
the results obtained for a virtual trial performed on an older version of the stochastic models.
These results should be further confirmed by conducting clinical trials.

To further reduce workload, new treatment selection processes are considered in the STAR
framework. Different modifications are implemented on the current version allowing longer
treatment intervals and reducing insulin dosage variations between interventions. Results ob-
tained from the different virtual trials performed with these modifications once again highlight
risk and reward trade-offs with reduced workload and median insulin variations at the expense
of respectively reduced safety and nutrition, and increased workload. Their combination results
in a safe and effective control, but should be clinically validated after some further optimisa-
tions.
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Chapter 1

Introduction

About 30-50% of critically ill patients experience stress-induced hyperglycaemia (SIH) on their
admission in the intensive care unit (ICU) [1]. This metabolic condition results from stress
and inflammatory response to severe injury, responsible for a dysregulation of their glucose
homeostasis leading to a transient hyperglycaemia [2]. It results from the release of humoral
mediators including inflammatory cytokines and counter regulatory hormones affecting the
glucose regulatory system [1].

SIH and glycaemic variability are associated with increased mortality and morbidity in critically
ill patients [2, 3]. Glycaemic control (GC) has been introduced to reduce the blood glucose
(BG) levels and stabilise them in a certain range [2]. It is achieved through protocols essentially
modulating insulin. Recent studies have shown the importance of protocol designs accounting
for inter- and intra-patient variability to provide safe and effective control for all [4, 5].

The Stochastic TARgeted (STAR) GC protocol is a model-based control protocol modulating
both insulin and nutrition. It uses a combination of a physiological and a stochastic model to
provide intervention recommendations minimising the risk of BG levels to be outside a pre-set
target band. STAR provides a unique risk-based dosing approach [6]. The key parameter of
STAR is insulin sensitivity (SI), characterising patient-specific response to insulin. By predict-
ing its future distribution using the stochastic model, STAR can forecast likely future BG levels
using the physiological model [7].

STAR has been clinically validated [8]. It provides a safe and effective control by accounting for
both inter- and intra-patient variability. Two versions of the stochastic model used by STAR
have been developed to date leading to two versions of the protocol denoted STAR-2D and
STAR-3D. Both versions have been clinically shown to provide safe and effective control with
better control than other GC protocols, but STAR-3D provides a more patient-specific control
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thanks to tighter, more patient-specific, SI predictions given by the 3D stochastic model [9, 10].

However, the workload associated with the use of STAR GC protocol can represent a clinical
burden for the nurses impeding its implementation in some intensive care units. This was es-
pecially reported in units with lower nurse per patient ratio [11]. In these units, nurses cannot
manage regular measurements and interventions frequency from every hour to every 3 hours
with the current protocol [12]. In addition, cognitive workload can also impact protocol adop-
tion. For example, it is possible, based on predictions, that changes in treatment have minimal
impact on BG outcomes while requirement changes treatment. Nurses see this variability as
a possible cause of glycaemic variability affecting their confidence in the protocol. These two
factors affect the nurse compliance to the protocol and, therefore, impact clinical outcomes [13].

The aim of this master thesis is to investigate in silico two potential solutions to reduce the
workload associated with the protocol and increase nurse’s confidence in STAR. The first so-
lution consists in extending the measurement and treatment intervals from 1-3 hourly to 1-6
hourly. This solution has already been assessed in virtual trials on the 2D version of STAR
and was shown to still provide safe and effective GC for all patients [14]. This work studies
the risk and reward trade-off of the extension to the 3D version of STAR. The second solution
is an optimisation of the way STAR considers the different possible treatments, i.e. the treat-
ment selection process. Two propositions are investigated, one aims at maximising the time
interval (STAR-TIM) and the other at minimising the variability of the treatments recom-
mended (STAR-IVM). Both propositions are also considered together in a global optimisation
(STAR-GO).

First, the physiological basis of stress-induced hyperglycaemia and the concept of glycaemic
control and protocols are presented in Chapter 2. Then, the GC protocol used all along this
work, STAR GC is presented and developed in detail in Chapter 3. The goal of this work is to
assess the risk and reward trade-off associated with different changes implemented in STAR on
the performance, safety and workload of GC. This is done by conducting virtual trials which
are described in Chapter 4. This Chapter also presents the cohort of virtual patients and the
metrics used to quantify the impact of GC. Chapter 5 develops the 3D stochastic models used
in this work. They are based on retrospective data from the cohort considered. Then, two
Chapters present the results of the virtual trials performed on new versions of the protocol.
Chapter 6 studies the impact of longer treatment intervals and Chapter 7 considers the new
treatment selection processes. Finally, Chapter 8 draws conclusions from this work and gives
indications for possible future work.
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Chapter 2

Glycaemia and glycaemic control

This Chapter presents the biological and physiological background required to understand the
work conducted in this master thesis. The first part focuses on glycaemia, including glucose
metabolism, hyper- and hypoglycaemia and a well-known pathology in critically ill patients,
stress-induced hyperglycaemia. The second part describes the concept of glycaemic control and
the protocols used to achieve it. More specifically, it defines the SI parameter and develops the
concept of model-based protocols such as STAR that will be used in this work.

2.1 Glycaemia

2.1.1 Metabolism

Glucose is the most common monosaccharide (simplest carbohydrate with as molecular formula
a multiple of CH2O) [15] present in the human body and is the most important source of
energy for our metabolism [16, 17]. About 80% of blood glucose (BG) is consumed by the
central nervous system (CNS) while the remaining 20% by the skeletal muscles [18]. The
concentration of blood glucose (BG) is referred to as glycaemia [15].

Normal persons present large glycaemic variations over the day. These variations have to
do with nutrition and fasting periods that a person experiences over the day. Typically, the
concentration of BG increases after a meal due to exogenous glucose ingestion during the meal.
Conversely, it decreases between the meals and typically during the night as the glucose is used
by the tissues and there is no or less glucose entering the blood. Glucose balance (glucose
homeostasis) is then important to control and regulate the BG level [16, 19].

Glucose homeostasis is controlled by two antagonist pancreatic hormones of the endocrine
system, insulin and glucagon [16, 17] (Figure 2.1). Hormones are used by the organism to

3



regulate metabolic function [15, 16]. In particular, insulin and glucagon are released into
interstitial fluid by pancreatic cells for BG level regulation. They promote respectively catabolic
and anabolic reactions taking place in four tissues: the liver, the kidneys, the muscles and the
adipose tissues [7, 19, 20].

Figure 2.1: Blood glucose homeostasis by insulin and glucagon [19].

Glucagon is secreted by pancreatic α-cells when BG levels are low [15, 17], typically during
the night or between meals [19]. It promotes anabolic reactions whose effect is to increase
BG levels (lower part in Figure 2.1) [20]. Anabolic reactions are the hepatic glucose synthesis
from glycogen (glycogenolysis) and the hepatic and renal formation of glucose from substrates:
pyruvic acid, lactic acid, glycerol and amino acid (gluconeogenesis) [15, 17, 19, 21]. These
reactions correspond to endogenous glucose production [20]. Other hormones, such as corti-
sol, catecholamines and growth hormone also promote glycogenolysis and gluconeogenesis [18].
These hormones and glucagon are called counter-regulatory hormones [7]. Epinephrine also
intervenes, but its action is negligible compared to that of glucagon [22].

Insulin is secreted by pancreatic β-cells [15, 17]. Insulin release is stimulated by elevated BG
levels which occurs generally after a meal [19]. It promotes catabolic reactions to stimulate
glucose degradation use and storage to lower BG levels (upper part in Figure 2.1) [19]. Those
reactions are the transport of blood glucose to the cells, the transformation of glucose into
adenosine triphosphate and pyruvic acid in all body cells (glycolysis), the transformation of
glucose into glycogen in the liver and muscles (glycogenesis) and into fat or lipids by hep-
atic and adipose cells (lipogenesis). The other action of insulin is to inhibit glycogenolysis
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and gluconeogenesis [17, 21]. In addition to these hyperglycaemic effects, opposed to that of
glucagon, insulin also exerts non-glycaemic actions. It has anti-inflammatory, anti-thrombotic,
anti-apoptotic and anti-oxidant effects [23].

The secretion of insulin and glucagon is regulated following a negative retroaction mode. Their
secretion is stimulated or inhibited by BG levels fluctuations as a control feedback loop [15,
17].

2.1.2 Hyper-, hypoglycaemia and their medical consequences

It is important for glycaemia to stay in a certain range to maintain a constant energy supply for
the brain and other organs and tissues as glucose is their main source of energy [15]. Normal
fasting BG levels are generally between 4.4 and 6.1 mmol/L [17]. This safe range is called
normoglycaemia. The bounds of this range can vary a bit from one physiology reference book
to another but remain in the same range [15, 16]. When BG levels are below this range, it is
called hypoglycaemia, while elevated BG levels above this range are called hyperglycaemia [7,
20].

There is no strict threshold defining hyper- and hypoglycaemia [7]. As this work is a continua-
tion of another work [7], the same values and ranges will be used to define hyper-, and hypogly-
caemia. A BG level between 8.0 and 10.0 mmol/L corresponds to moderate hyperglycaemia. A
BG level above 10 mmol/L is referred to as severe hyperglycaemia. Moderate hypoglycaemia
is defined between 2.2 and 3.9 mmol/L and severe hypoglycaemia below 2.2 mmol/L.

Both hyper- and hypoglycaemia have adverse effects on the metabolism [7]. Hyperglycaemia can
affect fluid balance, immune function, inflammation and can lead to multiple organ failure [20,
23]. Typical symptoms are polyuria and exacerbated hunger and thirst [17]. Hypoglycaemia can
affect the brain and the heart by inducing irreversible injuries, trembles, seizures and cardiac
dysfunctions [7, 22]. Symptoms from hypoglycaemia are fatigue, feeling of warmth, formal
thought disorders, behavioural changes, emotional lability and eventually seizures and coma
[17, 22].

As any other system in the human body, glucose homeostasis can suffer from dysregulation.
The most common glucose homeostasis impairment in everyday life is diabetes. Diabetes or
diabetes mellitus is a syndrome caused by a lack of insulin secretion or a reduced sensitivity of
the tissues to insulin, leading to a sustained hyperglycaemia [15, 16]. The symptoms of diabetes
are the same as the ones of hyperglycaemia but as it is a sustained state, it can lead to more
serious problems such as heart attack and stroke, increased utilisation of fats and metabolic
acidosis and depletion of body’s proteins [16]. Different types of diabetes caused by different
pathologies exist: type I, type II, gestational diabetes and other less common types of diabetes
[24].
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Type I diabetes is an autoimmune disorder also called insulin-dependent diabetes mellitus. It
is caused by the destruction of the β-cells secreting the insulin by the immune system. This
diabetes generally appears abruptly in a few days or weeks during childhood [15, 16, 17, 24].
Contributing factors to develop type I diabetes are genetic and environmental factors [17, 24].

Type II diabetes is much more common than type I as it affects 90% of all people with diabetes
and is called non-insulin dependent diabetes mellitus. It consists in insufficient synthesis of
insulin and increased insulin resistance of the target tissues. This induces a compensatory
response by the β-cells, an increased plasma insulin concentration. This diabetes is diagnosed
in most cases after 40 years old and develops gradually. Its incidence increases with age. Obesity
plays an important role in the apparition of this type II diabetes which can cause alterations
in cell receptors [15, 16, 17, 24].

The last main type of diabetes mellitus is gestational diabetes. As mentioned in its name, this
diabetes occurs during pregnancy. During pregnancy, women experience accelerated starvation,
glucose fluctuations, additional insulin secretion by the placenta and increased insulin resistance
by the end of the first trimester. All these factors together can lead to diabetes. Generally,
this type of diabetes resolves at the end of the gestational period but it can lead to some
complications, including an increased risk of mortality for both the mother and the foetus [24].

Diabetes is not the only dysregulation of glucose regulatory system. Another type of glucose
dysregulation is stress-induced hyperglycaemia (SIH). It generally occurs in intensive care units
(ICU) as it is part the body response to severe trauma. This stress-induced hyperglycaemia
(SIH) is a current problem in ICU as it increases patient mortality and morbidity [18]. It is the
dysregulation of interest in this master thesis and will therefore be discussed in more details in
the next Section.

2.1.3 Stress-induced hyperglycaemia

Patients admitted in ICU have just experienced severe trauma and their body is constantly
under physiological stress. This stress is the systemic response to critical injury and consists
in an hypermetabolic state [18] which corresponds to an unusual high metabolic activity, in-
flammation and hyperdynamic cardiovascular state [25]. This hypermetabolic state can cause
important neuroendocrine and humoral changes [23]. It involves the release of humoral medi-
ators called inflammatory cytokines and counter regulatory hormones [1, 26]. Glucose uptake
is also impaired [1]. All these mechanisms affect the glucose regulatory system in the patients
whether or not they have pre-existing diabetes. The dysregulation of the glucose homeostasis
leads to a transient hyperglycaemic condition in critically ill patients called stress-induced hy-
perglycaemia (SIH) [2]. This condition is common in ICU and particularly in the first 48 hours
of ICU admission [1].
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Inflammatory cytokines such as tumour necrosis factor-α (TNF-α) and interleukins (IL-1, IL-
6) cause the inhibition of insulin release and insulin resistance [1, 18]. TNF-α also stimulates
glucagon production [2, 26]. Hepatokines such as Forkhead Box O (FOXO) also cause insulin
resistance [1].

Counter regulatory hormones (cortisol, catecholamines and growth hormone) promote the ac-
tivation of pancreatic α-cells which results in an increased gluconeogenesis (increased glucose
production). They also inhibit insulin release and glucose utilisation and increase insulin resis-
tance [1].

The action of cytokines inhibitors and counter regulatory hormones involves increased endoge-
nous glucose production and impairment of the insulin signalling pathway leading to an alter-
ation of glucose metabolism. This alteration results in increased BG levels, insulin resistance
and low levels of insulin leading to SIH (Figure 2.2) [1, 26, 27].

Insulin resistance is frequent in critically ill patients [23]. As previously explained, several
components are responsible for its development. TNF-α reduces the expression of the insulin
receptors in cells and induces the phosphorylation of insulin receptor substrates [18]. Cate-
cholamines inhibits insulin binding to insulin receptors. The different actions of TNF-α and
catecholamines induce insulin resistance [2]. It results in an inability to suppress hepatic glu-
cose production and promotes a catabolic state [26]. Its associated mechanisms are altered
insulin receptor binding and signal transduction, glucose synthesis, increased hepatic glucose
production and decreased peripheral glucose uptake [23].

Figure 2.2: Pathophysiology of the stress-induced hyperglycaemia [1].
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In addition to the hypermetabolic state associated with stress, other endogenous and exogenous
factors influence stress-induced hyperglycaemia: severity of the disease, parenteral administra-
tion of nutrition and therapeutic interventions [2, 27]. First, severity of the disease or trauma
impacts the stress response and therefore the dysregulation of the glucose metabolism [18,
26]. Then, patients receive enteral and parenteral nutrition during their stay in ICU which
consists in an exogenous glucose supply [20]. In addition, parenteral nutrition is not so well
managed by the liver as ingested glucose and represents an even more important supply [18].
A consequence of this exogenous supply is an increase of BG levels [20]. Finally, many drugs
administered to critically ill patients are diluted in glucose solutions [28]. They consist in other
exogenous glucose supply and induce an increase in BG levels. Some treatments can also con-
tain counter regulatory hormones which directly influence glucose metabolism [26]. There also
exist some complicating factors such as pre-existing diabetes mellitus, cirrhosis, pancreatitis,
drugs, hypokalaemia, long stay in bed and age [18].

Stress-induced hyperglycaemia is associated with poor outcomes in critically ill patients. Hy-
perglycaemia is not itself responsible for poor outcomes but it affects the fluid balance, immune
function and inflammation in diabetic and nondiabetic patients particularly after myocardial
infarction, stroke, surgery or other trauma [1, 23]. Those effects are ultimately associated with
increased mortality and morbidity in ICU patients and even more in nondiabetic patients [2,
27]. SIH can also increase the incidence of type 2 diabetes after recovery and this is more
present in men than in women [1].

Finally, a major problem associated with SIH is that it is self-sustained. Indeed, hyperglycaemia
itself induces cytokines release, inflammatory and stress responses that will increase the BG
level [26]. This self-sustained loop has to be broken as hyperglycaemia is associated with poor
outcomes [7, 20]. The only way to do so is by using exogenous insulin which will lower BG
levels [26].

2.2 Glycaemic control

2.2.1 Principles of glycaemic control

Besides stress-induced hyperglycaemia, glycaemic variability is also associated with worse out-
comes in critically ill patients [2, 3, 29, 30]. Glycaemic variability can be expressed as the
standard deviation around the mean glucose value or by the mean amplitude of glycaemic
variations [2]. It resulted from studies that this variability is different between patient with
SIH and with normoglycaemia and is the strongest predictor for mortality and morbidity in
critically ill patients [27].
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Reducing SIH and glycaemic variability are important points to focus on to reduce mortality
and morbidity in ICU. This is the goal of glycaemic control (GC) [2, 27]. This control should
be adaptive and patient-specific [31]. GC also has to account for inter- and intra-patient
variability which is challenging because it can generate glycaemic variability and an increased
risk of hypoglycaemia [7, 32, 33].

A typical way to achieve GC is by the administration of exogenous insulin bolus or infusion.
It allows to overcome the stress-induced insulin resistance by helping to lower glycaemia as the
pancreatic insulin is not sufficient. Safe and effective glycaemic control is associated with several
beneficial effects such as limiting the risk of infections [20]. Insulin is not only responsible for
lowering the BG level. As listed in Section 2.1.1, insulin also has non-glycaemic effects which
can be mediated thanks to the control of the BG levels and which can reverse the effects of
SIH [18, 23]. In addition to insulin, nutritional inputs can also be used to help control glucose
when insulin only is not sufficient to lower BG levels [31].

There are two main types of glycaemic control: conventional and intensive or tight glycaemic
control (TGC). They differ by their BG level target. TGC has a control target consisting in
lower BG levels while conventional GC targets higher BG levels [7, 34].

Using insulin therapy for GC increases the risk of hypoglycaemia, particularly for TGC targeting
lower BG ranges [2, 22, 29, 35]. It results from a combination of factors: insulin excess,
inadequate nutritional support, insufficient exogenous glucose and features of critical illness.
Hypoglycaemia in the ICU is also associated with worse outcomes in ICU patients such as
seizures and death which are the most severe complications [2]. Ensuring a high safety from
hypoglycaemia also has to consist in one of the goals of GC as the risk of hypoglycaemia is one
of the factors impeding effective GC implementation [2, 20, 22].

Different studies have been carried out to compare conventional and tight GC have shown
controversial results [4]. Some of the studies highlighted the fact that TGC allowed to reduce the
risk of infections and both mortality and morbidity by more than 40% [3, 23, 36, 37]. However,
these effects seem to be really beneficial in patients who stay for more than 3-5 days in ICU
[23]. Below this length, insulin administration can worsen the outcomes as hyperglycaemia is
a transient state that resolves with the resolution of the critical state [2, 23]. In contrast, other
studies failed to replicate these results and showed that TGC increased the absolute risk of
death [29, 34]. Nevertheless, further investigations of these studies suggested that their results
might be explained by the poor compliance to the protocol used [4].

Because of these controversial results, the optimal target band is still debated in the ICU as
GC should respect the well-known "first do not harm" medical principle [7].
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2.2.2 Glycaemic control protocols

Many insulin therapy protocols have been developed with the ultimate to achieve safe and
effective GC. There are probably as many protocols as there are ICUs [20]. Those protocols
are typically developed by groups of clinicians. They contain guidelines defining the BG target,
insulin and nutrition dose adjustment, and the monitoring frequency [2]. Protocol design must
overcome the factors impeding safe and effective GC implementation which are the dynamic
patient condition, the risk of hypoglycaemia and the increased nurse staff workload. This
translates into protocols that should be safe (minimising hypoglycaemia), effective (efficient
BG regulation), easy to use, and accounting for patient variability by providing an adaptive
control [20]. If they are well-designed, the protocols allow to have a safe and accurate control, a
treatment that is not a trial and error and interventions prior to hypoglycaemia. It also allows
a decrease of glycaemic variability [2].

Most protocols aim at maintaining the BG levels below 6.1 mmol/l [23]. However, as mentioned
in Section 2.2.1, the optimal target band for GC has also still not been fixed [7]. Therefore,
the different protocols are currently using different targets depending on the degree of control
sought [27].

There currently exist three categories of protocols: flowchart-based protocols, formula-based
protocols and model-based protocols [38].

Flowchart-based protocols consist in the administration of intravenous insulin infusion or bolus
depending on empirical rules [26, 27]. The rules also give the measurement frequency. These
protocols have a limited efficiency as they are based on clinical practice and do not take into
account patient-specificity [20]. They are based on a "one size fits all" method [7].

Formula-based protocols are based on empirical formulae to administrate exogenous insulin.
In this case, the measurement frequency follows the flowchart-based rules. As flowchart-based
protocols, formula-based protocols lack patient-specificity [20].

Model-based GC protocols are protocols based on physiological models describing the insulin-
glucose dynamics. Such system allows us to identify some key parameters representing a patient
metabolic state. Model-based protocols can thus adapt to the dynamic state of the patient
and deliver patient-specific control [7, 20]. They directly account for inter- and intra-patient
variability [7]. Model-based approaches can also better control highly dynamic patients as they
require more frequent measurements [31, 37, 39].

The primary control input of such protocols is the administration of exogenous insulin [37].
Nutrition can also consist of a second control input but it is less used as nutrition is often
considered completely independently from GC. However, using nutrition in GC represents an
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advantage as for patients with high insulin resistance, insulin is not sufficient to reduce the
BG levels [31, 37, 39]. Such protocols have been shown to provide a tighter control than the
ones modulating insulin only [39]. Moreover, most of the model-based protocols calculate the
intervention assuming that the insulin sensitivity (SI), an important parameter representing
patient metabolic response to insulin, is constant from one intervention to the other. However,
SI can actually evolve significantly during the early and late acute phase of stress, as well as
during the recovery phase. Some model-based protocols such as STAR adapt the control with
respect to the SI variations [6]. Finally, model-based protocols allow the conduct of virtual
trials which help in developing the protocol before its implementation in ICUs [40].

Model-based protocols can also be divided in different types of control. They differ in their
metabolic model and the control method they use. However, they are all based on the same
"one method fits all" approach [31].

The specialised relative insulin and nutrition tables (SPRINT) protocol is a table-based version
of one of the model-based protocols [39, 40]. SPRINT is based on computerised glucose control
trials and patient simulations. It is represented by two wheels (Figure 2.3): one dedicated to the
enteral nutrition optimisation (Figure 2.3a) and the other to the insulin bolus administration
(Figure 2.3b). Based on the current blood glucose level, the previous hour feed level and insulin
bolus size and the trend that follows the BG level, the wheels are used to determine the insulin
bolus and the rate of feed to administrate to the patient to reach the BG target which is in
this case 4.4-6.1 mmol/l [39]. Although SPRINT was shown to provide the tightest control
in several studies, it is relatively inflexible and its target glycaemia cannot be changed even
for specific clinical needs or highly dynamic patients. In addition, the choice of measurement
interval is not free [6].

(a) Feed wheel (b) Insulin wheel

Figure 2.3: The SPRINT nutrition (a) and insulin (b) wheels. BG values are in mmol/L,
nutrition in percentage of goal feed and insulin in U/h [39].

Another recently developed model-based protocol is the Stochastic TARgeted (STAR) protocol.
It is a unique risk-based dosing approach that provides insulin and nutrition recommendations
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while ensuring a certain risk of hypoglycaemia. It is composed of two main elements: a phys-
iological model describing the glucose-insulin dynamics and a stochastic model used to make
predictions on insulin sensitivity (SI) variations and then on BG outcomes [6, 40, 41]. As
mentioned, STAR is the first protocol to consider SI variations in its control. It then provides
a patient-specific approach accounting for both inter- and intra-patient variability. STAR is
the protocol used in this thesis. Its different components and framework are discussed more in
details in Chapter 3 [41].

2.2.3 Insulin sensitivity

Insulin sensitivity (SI) is the main parameter used in the glucose-insulin system models de-
veloped to represent the patients and describe the patient-specific metabolic condition [7, 20].
It characterises the cell’s ability to uptake glucose through the mediation of insulin and so
quantifies the response of the body to the insulin [7]. A reduced SI results from an impaired
binding between insulin and cell insulin receptors [20].

This parameter is the reciprocal of insulin resistance which is more commonly used. Increased
SI corresponds to reduced insulin resistance. Critically ill patients generally present a low
insulin sensitivity which results in a reduced insulin action and leads to increased BG levels. SI
is influenced by different factors such as stress, exercise and temperature [20], but is treatment
independent [42].

It is important to determine insulin sensitivity for glycaemic control. This parameter is patient-
specific and time-varying. Its identification in real time for each patient allows it to assess
patient’s response to insulin to better determine the insulin dose to administer for safe GC [4].
In addition, its variability establishes the overall controllability of the patient [4]. Accounting for
SI and its variability over time in GC allows then to consider inter- and intra-patient variability
[32].

2.3 Summary

This Chapter first presented the biological and physiological concepts around glycaemia. Glu-
cose homeostasis is important as glucose is the main source of energy for our metabolism.
However, it can be subjected to dysregulations leading to hyper- and hypoglycaemia. A char-
acteristic dysregulation in critically ill patients is stress-induced hyperglycaemia mediated by
cytokines and counter regulatory hormones. Stress-induced hyperglycaemia is associated with
increased mortality and morbidity.

Secondly, it described the glycaemic control used in ICUs to regulate the stress-induced hy-
perglycaemia and reduce glycaemic variability. Protocols are used to achieve this control and
can be of different types. Model-based protocols provide the best control as they account for
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inter- and intra-patient variability. The Stochastic TARgeted (STAR) protocol, the protocol
of interest in this master thesis, is one of them.

Lastly, insulin sensitivity, the key parameter of GC was developed. This parameter is patient-
specific and time-varying, accounting for it allows to further improve GC.

13



Chapter 3

STAR risk-based glycaemic control

This chapter fully presents, details and describes the STAR GC protocol used and studied in
this thesis. STAR is the successor of the table-based SPRINT protocol and uses a combination
of a physiological and a stochastic model to provide a unique risk-based dosing approach in GC
[7, 41]. The different components are detailed in this Chapter as well as the STAR framework
and the different retrospective results.

3.1 Introduction

The Stochastic TARgeted (STAR) protocol is a model-based GC protocol that provides a
unique patient-specific, risk-based dosing approach [7, 41]. STAR uses the combination of a
physiological glucose-insulin model and a population-based stochastic model to provide optimal
insulin and nutrition interventions for ICU patients [40, 41]. The stochastic model accounts
for metabolic variability and predicts likely future distribution of SI [10]. Based on these
predictions, STAR forecasts the range of future likely BG outcomes for a specific intervention.
It finally provides recommendations of insulin and nutrition intervention guaranteeing a pre-set,
clinical level of risk for this range to be outside a clinically pre-set target band [6, 7].

STAR is the first protocol modulating both insulin and nutrition to provide improved GC
outcomes. The modulation of nutrition interventions has been shown to provide better GC
performance (longer time in the target band), to be safe (decreased risk of hypoglycaemia) and
to reduce clinical workload [43].

The main advantage of STAR is that it allows to achieve adaptable and optimised care to meet
patient-specific needs [6, 10]. The protocol is flexible, safe and induces lower clinical workload
compared to other protocols previously developed [6].
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Moreover, using stochastic models allows to have better predictions of BG evolution over longer
intervals. It provides an enhanced control with guaranteed risk level of hyper- and hypogly-
caemia at the cohort level and this risk is optimised. Finally, protocol is fully generalisable as
the target ranges and risk level can easily be specified to adapt to specific clinical needs [6].

3.2 Physiological model

The physiological model used by STAR is the clinically validated Intensive Control Insulin-
Nutrition-Glucose (ICING) model [6, 44]. The model is composed of three different compart-
ments and metabolic pathways characterising glucose or insulin pharmacodynamics in blood
and interstitial fluid volumes. The compartment model is illustrated in Figure 3.1 and described
below [7, 44].

Figure 3.1: Schematic representation of ICING model representing the compartments and
metabolic pathways [7].

Firstly, the glucose compartment (G) is impacted by insulin and non-insulin mediated glucose
transfers. The insulin mediated transfer is the clearance influenced by SI and the non-insulin
mediated transfers are absorption through exogenous inputs, endogenous glucose production,
kidney clearance and central nervous system uptake.

Secondly, the plasma insulin compartment (I) is influenced by plasma insulin appearance from
exogenous and pancreatic endogenous insulin and by plasma insulin clearance through the
kidneys and the liver.

Thirdly, the interstitial insulin compartment (Q) is impacted by interstitial insulin appearance
from plasmatic insulin transport and by interstitial insulin clearance through cellular degrada-
tion.
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Each of the compartments is governed by a balance equation which leads to a system of three
ordinary differential equations modelling the glucose-insulin dynamics [4, 40, 44]:

Ġ = −pG ·G(t)− SI ·G(t)
Q(t)

1 + αG ·Q(t)
+

P (t) + EGP − CNS

VG

(3.1)

İ = −nK · I(t)− nL
I(t)

1 + αI · I(t)
− nI(I(t)−Q(t)) +

uex(t)

VI

+ (1− xL)
uen(G)

VI

(3.2)

Q̇ = nI(I(t)−Q(t))− nC
Q(t)

1 + αGQ(t)
(3.3)

where
P (t) = min (d2P2, Pmax) + PN(t) (3.4)

Ṗ2 = −min (d2P2, Pmax) + d1P1 (3.5)

Ṗ1 = −d1P1 +D(t) (3.6)

uen(G) = min(max(umin, k1G(t) + k2), umax) (3.7)

The different variables of the model are G(t), the blood glucose level (mmol/L), I(t), the
plasma insulin concentration (mU/L), Q(t), the interstitial insulin concentration (mU/l), P(t),
the glucose appearance in plasma (mmol/min), P2, the glucose level in gut (mmol), P1, the
glucose level in the stomach (mmol) and uen(G), the pancreatic insulin secretion (mU/min).
The other parameters and endogenous variables of the model are gathered and defined in the
Tables A.1 and A.2 [6, 10, 36].

The advantage of this model is that it accounts for insulin sensitivity (SI), the key parameter
in GC [4, 36]. SI is a patient-specific and time-varying parameter [4]. It is the only unknown
parameter of the equations [7]. Its units are (L/mU/minute) and consist in rate units as it
assesses the rate of insulin mediated glucose removal depending on current insulin concentration
[4]. Patient-specific SI profiles can be obtained from the model thanks to an integral-based
fitting that determines SI hourly from patient data (current and past BG levels, past insulin
and nutrition data) which accounts for inter-patient variability [4, 9, 32].

3.3 Stochastic model

As mentioned in previous Sections, SI is a time-varying patient-specific parameter. In the
context of GC, it is important to consider its variations. This is done by the means of a
stochastic model, the second component of STAR assessing intra-patient variability [9, 45].

The stochastic model is based on ICU population data and aims at forecasting future SI dis-
tributions knowing the current identified patient-specific metabolic condition (SI) and the cur-
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rent intervention itself based on observed parameter variations. It describes the hour-to-hour
changes in SI levels [10, 36, 46]. Thanks to the model, a 90% confidence interval (CI) of the
future SI distributions is obtained. These distributions in conjunction with the ICING model
are then used to obtain a 90% CI of future likely BG distributions in response to a specific
insulin and nutrition intervention [10, 36]. These predictions of BG will then be used to select
the adequate treatment ensuring a less than 5% risk of hypoglycaemia [10, 46].

Two versions of the stochastic model were constructed for STAR, the 2D and the 3D stochastic
models. They are both based on a kernel-density estimation method. This method provides a
probability density function of future SI evolution. In the 3D model, future values of SI depend
on its current and anterior values [36]. In addition, SI can be considered as a Markov chain,
a sequence of random variables for which the state at one time depends on the state in the
previous time(s) [47], and its variations are handled as a Markov process [36].

3.3.1 2D stochastic model

The 2D stochastic model uses a bi-variate kernel-density estimation method to predict changes
in SI at hour n+1 depending on SI at hour n. The estimation method provides a model
that describes the transition from one hour to the next and that considers how the existing
data behave. The result obtained with this method is a bi-variate probability density function
predicting the potential future SI values [36, 45].

In the 2D stochastic model, SI can be treated as a first-order Markov chain. It means that the
state of the variable SI at the time n+1 depends only on the prior state at the time n [47]. The
conditional probability of SIn+1 is then obtained using the Markov property and given by:

P (SIn+1 = y | SIn = x) =
p (SIn = x, SIn+1 = y)

p (SIn = x)
(3.8)

The right-handed term composed of the joint probability density function and the probability
density function of SI at time n can also be developed and give a final expression providing the
probability of SIn+1 knowing SIn [36]:

p (SIn+1 = y | SIn = x) =
n∑

i=1

ωi(x)
ϕ
(
y; yi, σ

2
yi

)
pyi

(3.9)

ωi(x) =
ϕ
(
x;xi, σ

2
xi

)
/pxi∑n

j=1 ϕ
(
x;xj, σ2

xj

)
/pxj

(3.10)

where ϕ is the normal probability density function centred at individual data points normalised
in the positive domain by:
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pxi
=

∫ ∞

0

ϕ
(
x;xi, σ

2
xi

)
(3.11)

pyi =

∫ ∞

0

ϕ
(
y; yi, σ

2
yi

)
(3.12)

σ is the variance, function of the local data density in a centred and orthonormalised space
at each data point [36]. The resulting 2D stochastic model in 3D is represented in Figure 3.2.
From this graph, considering a certain SI at the hour n, it is possible to have the probability
distribution of possible SIn+1. It is shown by the red line in Figure 3.3.

Figure 3.2: 2D stochastic model of SI variability [36].

Figure 3.3: Probability density function of likely future SI obtained from Figure 3.2 [36].

The bi-variate kernel-density estimation as illustrated in Figure 3.4 creates a smooth, contin-
uous model surface. Every slice of this surface along the axis on SIn+1 gives the probability
distribution of SIn+1 given SIn [36, 45].
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Figure 3.4: Example of bi-variate kernel-density estimation for 10 data pairs [10].

3.3.2 3D stochastic model

A second version of the stochastic model, the 3D stochastic model, has been built in order to
provide higher patient-specificity, improved SI prediction and, thus, more tailored treatments
[9, 10]. The 3D stochastic model has itself two versions but the most recent one is detailed
here. It uses a tri-variate kernel-density estimation method which is similar to the 2D version.
This model uses 2 inputs, SIn−1 and SIn, to forecast future SI, SIn+1, distribution [9, 10].

For the 3D model, SI is considered as a second order Markov chain, its state at the time n+1
depends on the two prior states at time n-1 and n [10, 47].

The conditional probability distribution is also obtained using the Markov property and is
expressed [10]:

P (SIn+1 = z | SIn = y, SIn−1 = x, ) =
p (SIn+1 = z, SIn = y, SIn−1 = x)

p (SIn = y, Sn−1 = x)
(3.13)

The joint probabilities of the right-handed expressions can be estimated using kernel-density
methods and bi- and tri-variate Gaussian kernel-density functions. It finally provides the prob-
ability of SIn+1 taking a specific value knowing SIn−1 and SIn [10]:

P (SIn+1 = z | SIn = y, SIn−1 = x)

P (SIn = y, SIn−1 = x)
=

1
N

∑N
i=1

Khxi(uxi)
pxi

Khyi(uyi)
pyi

Khzi(uzi)
pzi

1
N

∑N
j=1

Khxj(uxj)
pxj

Khyj(uyj)
pyj

(3.14)
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where Kh(u) =
1√
2πh

e
−1
2 (

u
h)

2

, the Gaussian kernel-density function centred on u with variance
h and N, the number of data points available.

The variance h is determined using the Silverman’s general rule of thumb (ROT):

h = 0.9686σ

(
mR3N

3
7

Z

)− 1
7

(3.15)

where σ is the standard deviation of the data, m the number of data point inside a radius of
N

−1
7 after orthonormalisation, R, the radius from the origin including Z*N data (0 ≤ Z ≤ 1)

[10].

Each kernel-density function Kh(u) in Equation 3.14 is normalised by the area under each
Gaussian curve:

px =

∫ ∞

0

Kx(u)dx, py =

∫ ∞

0

Ky(u)dy, pz =

∫ ∞

0

Kz(u)dz (3.16)

An example of a tri-variate kernel-density estimation is shown in Figure 3.5.

Figure 3.5: Example of tri-variate kernel-density estimation for 10 data triplets [10].

3.4 STAR GC protocol

STAR uses the ICING and stochastic model to ensure that the 5th and 95th percentiles of
the predicted BG are inside the pre-set target range (4.4-8.0 mmol/L) [6, 9, 10, 40, 43]. The
stochastic model is used to give a 90% confidence interval (CI) of future predictions of SI values
based on its current and previous value. These predictions and the equations of the ICING
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model are then used in conjunction to obtain a 90% CI of future likely BG predictions for
a specific insulin and nutrition intervention. It is important to mention that the percentile
values of SI correspond to the reversed (100-percentile) values of BG. This is because high SI
values produce low BG levels [36]. The conversion between the percentiles of SI values to the
percentiles of BG levels is shown in Figure 3.6. From the CI of BG predictions, STAR chooses
the adequate insulin and nutrition intervention ensuring the 5th percentile of BG predictions
to be above the lower band of the target range.

Figure 3.6: SI forecasting using stochastic models and BG forecasting for given insulin and
nutrition intervention. BG percentiles are obtained from reversed SI percentiles [9].

It is a target to range approach. This allows a pre-set risk of only 5% of the BG of the patient
to be below the lower band and to maximise the likelihood of BG in the desired target range
[6, 41]. To reach this, STAR follows some guidelines and is composed of several steps.

First of all, it includes a starting and stopping criterion. The starting criterion for STAR is
to have two successive BG measurements over 8.0 mmol/L within a 4-hour period [9, 40, 43].
The stopping criterion is to have BG levels inside the target band for at least 6 hours and with
insulin rates less than 2.0 U/h. This suggests patients are stabilised and do not need intensive
insulin therapy anymore but may require subcutaneous insulin [9].

Moreover, insulin and nutrition interventions are titrated following some rules. The dose of
insulin administered varies from 0.0 to 6.0 U/h with increments of 0.5 U (excluding 0.5 U/h)
[6, 9, 41]. This increment cannot be more than +2.0 U/h at a time for safety reasons [9]. An
additional 1-3 U/h of continuous infusion can also be administered to highly resistant patients
[6, 9, 41]. Nutrition intervention must be between 30 and 100% of the total caloric goal feed.
The standard 100% goal feed is calculated for each patient individually based on age, and sex
and corpulence using the reference of 25 kcal/kg/day [6, 8, 10, 48]. The increments are of 5% [6,
41] and the maximum change between two interventions is ± 30% [41, 48]. Such limits provide
more robustness and hyperglycaemia is reduced gradually [6]. There is also a preference for
increasing insulin before reducing nutrition. Nutrition is reduced if insulin is not sufficient to
safely lower BG levels, what typically happens for highly resistant patients [9, 48].
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STAR proceeds in four main steps to determine the optimal insulin and nutrition rates to
administer to the patients. The different steps are shown on Figure 3.7 and detailed below [7].

Figure 3.7: 4 steps of STAR GC framework. 1) SI identification from BG measurement and
clinical data, 2) SI variability prediction by the stochastic model, 3) treatments and BG outcomes
assessment from SI prediction using ICING model and 4) treatment choice providing optimal
control and low risk of hypoglycaemia. Inspired from [7].

1. SI identification
Current SI (SIn) is evaluated from previous and current BG measurements and clinical data
using the ICING model and integral-based methods [41]. Patient clinical data, BG measure-
ments, insulin and nutrition interventions and model parameters are set up. A fitting window
of 60 minutes is used to determine SI. This step accounts for inter-patient variability as SI
is determined hourly for each patient [20]. SI is assumed to be independent of insulin and
nutrition interventions [42]. (See Figure 3.7.1)

2. SI variability prediction
The stochastic model is used to determine distribution of possible future SI values for the differ-
ent treatment intervals [41]. It uses the current identified SI values (SIn) to obtain probability
distribution functions. The 5th, 25th, 50th, 75th and 95th percentile predictions are given by the
model. They are controlled to ensure the safety of the patient. This step accounts for intra-
patient variability as the potential evolution of SI is based on patient-specific values. The range
of possible SI values is wider for longer treatment intervals. This is synonymous with higher
potential variability and so higher risks of hyper- and hypoglycaemia [7]. (See Figure 3.7.2)

3. Treatments and BG outcome assessment
All the possible treatments (insulin and nutrition) are assessed. For each of them, a predicted
BG outcome is calculated from the 5th-95th prediction range of SI using the physiological model
[9, 41]. In this case, SI is known and BG is unknown. The model gives the predicted 5th-95th

percentile BG range simulated over a time period (last measurement + time interval) and the
different BG ranges are retained and analysed in the last step [7]. (See Figure 3.7.3)
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4. Treatment choice
The BG outcomes are checked to verify that the 5th and 95th percentiles of BG predictions lie
in the specified target range. The 5th percentile of BG predictions should not be below the
lower limit of the target band (4.4 mmol/L) to ensure a risk of hypoglycaemia of maximum 5%
[9, 41]. The treatment ensuring the best overlap of the target band and the required risk of
hypoglycaemia is chosen [7]. (See Figure 3.7.4)

The last two steps are part of the treatment selection process of STAR. The different treat-
ments possible are considered and it is checked that the corresponding BG predictions comply
with some conditions. As mentioned in Chapter 1, this part will be modified and studied in
Chapter 7.

Predictions and treatment selections are performed for the different time intervals, currently
1, 2 and 3 hours. The 2 and 3 hours time intervals are considered when there is a certain BG
stability in the target range and when safety from hypoglycaemia is ensured [6, 9]. If treatments
associated to different time intervals are acceptable, the nurses are free to choose between the
different intervals, but the treatment associated with the longest time interval should be chosen
to minimise the clinical workload. However, when the BG level is outside the target range,
the time interval is fixed to 1 hour for patient safety [6]. Nurses are also free to reject all
recommendations and adapt rates based on their clinical judgment [7].

In the choice of the optimal intervention, patient safety is the first priority. That means that
a maximum risk of hypoglycaemia of 5% is ensured. The second priority is reaching 100% of
the goal feed [8, 48]. To achieve that, nutrition is modulated less dynamically than insulin.
Nutrition rates are reduced only if increasing insulin is not sufficient to reduce BG levels and
inversely. If different interventions are acceptable, the protocol selects the one with the greatest
nutrition administration [6].

As mentioned in Section 3.1, STAR is fully generalisable. In addition to the target range and the
risk level, other parameters can be changed: nutrition regimes (enteral or parenteral), insulin
administration (by bolus or infusion), maximum insulin and nutrition rates and measurement
frequency [7, 20]. The treatment proposed by STAR is only a suggestion. Clinicians are free
to make some changes with respect to the recommendations. Those changes are recorded and
used by STAR for the future treatment calculations [7].

3.5 Performances and limitations

STAR was shown to provide safe and effective control for ICU patients. In a clinical trial
performed on actual clinical data of patients coming from Christchurch Hospital, New Zealand
and Gyula Hospital, Hungary [8], patients under STAR-2D, the version of STAR using the
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2D stochastic model, showed more than 86% of the time in the target band and very few
occurrences of severe hypoglycaemia (1.5 and 4.3% of patients respectively). STAR provided a
safe and effective control with reduced time on protocol and workload [8]. In another trial [9],
these results were compared with another clinical trial using STAR-3D, the version of STAR
using the 3D stochastic model. The two versions were shown to provide similar, high, quality
of control. However, STAR-3D provides improved GC outcomes with reduced incidence of
hypoglycaemia and increasing nutrition delivery [9].

On the one hand, the 2D version is only based on the current identified current SI value to
forecast future SI distribution. The model is then not able to accurately capture and forecast
SI variability as well as to capture the direct measurement or identification errors directly
impacting the SI predictions [10, 46, 49]. As a result, STAR-2D may be over-conservative for
stable patients by providing wide prediction bands. Even if this conservation allows to reduce
the risk of hypoglycaemia, it also limits insulin dosing and therefore the ability of the controller
to bring BG to the normorange, directly impacting efficacy. At the same time, it may be under-
conservative for less stable patients and gives narrow prediction bands. This will increase the
risk of hypoglycaemia with aggressive insulin dosing [10, 46].

On the other hand, in STAR-3D, the stochastic model leads to tighter prediction bands. Insulin
is thus administered with more certainty and its dosing is more aggressive, while still ensuring
a low risk of hypoglycaemia (safety). The 3D model was shown to provide tighter predictions
more than 70% of the time leading to a greater patient-specificity. The prediction ranges are
even tighter when the hour-to-hour variation (%∆SI) is within ± 20%. This result suggests
that previous metabolic state of the patients has a direct impact on future SI. The stable pa-
tients tend to remain stable and the more variable patients are likely to have bigger metabolic
variations [10]. STAR-3D therefore improves predictions to provide optimal dosing, offering a
higher safety and effective control, while significantly increasing caloric intake, all associated
with improved outcomes. These observations are true cohort-wide and at a per-patient perspec-
tive. It also provides a more patient-specific GC by better considering inter- and intra-patient
variability [9, 10, 46].

However, more data is required to build the 3D stochastic model and STAR-3D engenders an
increased workload as more measurements per day are required (13.7 vs 12.9 measurements per
day [8, 9]) [9, 10]. More globally, the STAR protocol presents some limitations. Parameters
used to define the physiological model are approximations or coming from the literature which
can be a source of error. The stochastic model is based on patient data and might not be able
to characterise some specific behaviours, although it is based on thousands of hours of data [7].
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3.6 Summary

This Chapter presented and detailed the STAR GC framework. STAR provides a unique risk-
based dosing approach and is fully generalisable. The protocol is based on the combination
of a physiological and a stochastic model. They are both successively used to determine the
combination of insulin and nutrition interventions to ensure patient safety, nutrition closest to
100% of the goal feed and a minimum clinical workload.

Two versions of the stochastic model and therefore of STAR were developed and the 3D-version
offers the best outcomes with the greatest patient-specificity, efficiency and safety though it
requires more data and generates more workload.

The 3D-version will be used in this master thesis to respond to the different objectives detailed
in Chapter 1.
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Chapter 4

Virtual trials and virtual patients

This Chapter presents the tools used to assess and compare the different versions of the STAR
protocol studied in this thesis. Virtual trials are used to design and validate GC protocols on
virtual patients. Such trials have been validated and generalised for GC in ICU patients [50].
They allow to compare different protocols on the same cohort of patients before their clinical
implementation. Virtual trials are performed on virtual patients. The cohort of virtual patients
used to do the different analysis is also presented in this Chapter. Virtual patients are created
based on retrospective data of patients from two different ICUs. The different metrics used to
compare and assess GC safety performance and workload are also briefly detailed.

4.1 Virtual patients

Virtual trials are performed on virtual patients based on retrospective clinical data. More
specifically, each virtual patient is characterised by a unique SI(t) profile obtained using an
integral based fitting method and the physiological ICING model [40, 42]. The model uses
patient-specific BG measurements and given insulin and nutrition inputs to derive SI(t) profiles.
SI is time varying and is identified hourly from those clinical data. The patient-specific profiles
obtained were shown to be independent of the clinical inputs used to create them [42]. They
fully characterise the patient metabolic state and its evolution over time [40, 50].

Using real patient data to create the virtual patients allows for the best possible imitation of
the behaviours observed in the clinical environment [40].

4.2 Virtual trials

Virtual trials are a clinically validated tool used to design, assess and validate GC protocols.
They have emerged with the model-based protocols. These in-silico trials allow to assess the

26



performance and safety of different protocols by comparing them on the same cohort of patients
[50]. This is useful in order to help the clinicians to choose the most efficient protocol design
prior to its clinical implementation [6, 40].

Virtual trials are performed on virtual patients preventing any predictable and avoidable adverse
effect to appear after the clinical implementation and then avoidable risks on actual patients
[6].

The use of virtual trials is time and cost saving in the development of GC protocols. They
allow to optimise the protocol virtually and to assess its performance and safety on virtual
patients prior to costly clinical trials, and before its clinical implementation, leading to more
robust protocols [40, 42].

In the context of this thesis, the trials are simulated on Matlab using a Java version of
STAR. The SI(t) profiles of the virtual patients are used to create the stochastic models used
for the different trials performed on the same cohort of patients. The protocol is simulated
on the cohort of virtual patients. The stochastic models and the virtual trials are performed
using five-fold cross-validation [40, 42]. The cohort of virtual patients is divided in five random
groups. Then, STAR is simulated on one group (the validation group) by using the stochastic
model built based on the four other groups (the training groups). This is repeated for each
group. At the end of the simulations, the results for each group are gathered and results at the
whole cohort level are obtained.

However, virtual trials are not sufficient to validate GC protocols. Indeed, they generally
represent ideal conditions with full compliance of the nurse to protocols which is not the case in
clinical conditions. Results in terms of protocol performances and patient safety may be biased
compared to the ones obtained clinically due to the imperfect compliance and the potential
clinical errors present in clinical practices [51]. More specifically in the simulation of the virtual
trials, the longest treatment is always chosen if different recommendations are available. In the
clinical reality, nurses are free to choose between the different possibilities according to other
factors, not considered in virtual trials and can also reject the treatment suggested [7]. Clinical
trials must then be conducted in addition to the virtual ones to completely validate the different
GC protocols [7, 20].

4.3 Cohorts and episodes

Different virtual trials are performed in this thesis. They are all based on retrospective data of
603 critically ill patients treated with either STAR or SPRINT and coming from different ICUs.
There are 292 patients treated with SPRINT. They were treated between July 2005 and May
2007 in Christchurch Hospital, New Zealand. The patients with STAR were treated from June
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2011 to May 2015. They come from two 2 ICUs, 264 of them were admitted in Christchurch
Hospital, New Zealand and 47 in Kalman Pandy Hospital, Hungary. More specific information
concerning the cohorts are available in a previous work [7].

In total, 820 GC episodes corresponding to 68 629 hours of control are considered. The number
of GC episodes is superior to the number of patients in the cohorts as a same patient can
experience several episodes of SIH and require several episodes of GC during his stay in ICU.
This happens when the patient is stabilised and then experiences a new BG dysregulation or
when GC is stopped for a clinical exam or surgery and restarted after [7].

From the initial number of episodes, only the ones lasting more than 10 hours and with an
initial BG level above 7 mmol/L are retained. This allows to discard the episodes that may not
be representative of typical GC patients. There remains 681 GC episodes and 59 439 hours of
control from this selection. From these episodes, a cohort of 681 virtual patients is built.

4.4 Virtual trials comparison analysis

To be able to analyse the results obtained from the different trials and assess the performance
and safety of the different versions of STAR studied, different metrics are used. The metrics
used here are the same as the ones used for the study of the extension on STAR-2D and
correspond to metrics usually used in GC studies [14]. The different protocols are compared in
terms of performance, safety and workload.

The performance is assessed by the median and interquartile range (IQR) of hourly resampled
BG (mmol/L) and %BG in different bands (4.4-8.0 mmol/L and 4.4-7.0 mmol/L). It is also
possible to assess the performance by looking at the time spent in the different bands and in
this case at the number and percentage of patients with more than 50%BG in the bands.

Safety is analysed using the %BG outside the target band (%BG < 4.4 mmol/L and %BG >
8.0 mmol/L), the %BG below the limit of severe hypoglycaemia (%BG < 2.2 mmol/L) and the
number of patients experiencing severe hypoglycaemia.

Finally, workload is compared by looking at the number of measurements per day. The me-
dian and interquartile range of per-patient insulin (U/h) and nutrition rates (%GF) are also
compared.

In addition to these metrics, other results will be used to assess the performance of the new
treatment selection processes studied in Chapter 7. The percentage of unchanged nutrition and
insulin rates interventions as well as the per-patient median [IQR] insulin rate (U/h) and time
interval (min) variations will be also compared. Performance of GC will also be assessed by
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studying the glycaemic variability. Low variability has been associated with improved outcomes
in GC [29, 30, 52]. Glycaemic variability is assessed by the median [IQR] BG level variation.

Those different metrics will be used to assess the risks and rewards associated with the different
versions of STAR developed and studied in this thesis. They will allow to discuss and conclude
on the different versions tested.

4.5 Summary

This Chapter presented the tools that will be used to assess the performance and safety of the
different versions of STAR GC protocol studied in this master thesis. First, virtual trials allow
the protocol to be simulated on virtual patients. The protocol can then be optimised before its
clinical implementation avoiding unnecessary risks for patients.
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Chapter 5

3D Stochastic models

The aim of this Chapter is to build and validate the stochastic models that will be used for
the different virtual trials performed in this thesis. 3D stochastic models are used as they were
proven to provide improved SI predictions, thus, resulted in improved GC outcomes [9, 10, 46].
They are developed using a tri-variate kernel-density method and are validated using a five-fold
cross-validation.

5.1 Introduction

SI is a patient-specific parameter representing patient metabolic response to insulin. STAR
predicts SI variability using a stochastic model. These predictions are used to optimise patient
treatment minimising predicted risk of hypoglycaemia. SI is considered to be constant over a
1 hour period but is time-varying, changing from hour to hour. As intra-patient variability is
not patient-specific [4], the stochastic models are built on ICU patient data to forecast future
SI distributions. The predictions can then be used to predict future BG levels in response to a
certain nutrition and insulin intervention [10, 36, 46].

As discussed in Chapter 3, different versions of the stochastic models have been developed
for STAR. Compared to the original 2D model using only the current identified SI to forecast
variability, the 3D version also uses prior temporal information to better characterise future
potential variability [10]. This new version has been clinically proven to provide tighter predic-
tion ranges and improved GC outcomes compared to the 2D version [9, 10]. The 3D version
of the stochastic models has then been chosen to be used in the different trials of this master
thesis.

One of the main goals of this thesis is to assess the risk and reward trade-off of an extension
of STAR to measurements intervals up to 4-, 5-, or 6-hourly. Six stochastic models are needed,
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one for each of the different time intervals considered. They will also be validated using cross-
validation methods.

5.2 Models construction

5.2.1 Patients and cohort

Stochastic models are built based on patient data. The cohort of patients used is described in
Chapter 4. The GC episodes considered are the ones remaining after the selection process, i.e.
only the episodes lasting more than 10 hours and with a starting BG level above 7.0 mmol/L.
In total, 681 GC episodes totalling 59 439 hours of control and coming from two different ICUs
(Christchurch, New Zealand, and Gyula, Hungary) are considered.

SI is the only patient-specific parameter required to build the stochastic models. Patient-specific
SI profiles are created by identifying SI hourly for each patient using the ICING model and
an integral-based fitting method as described in Chapter 3. The identified SI profiles are then
transformed into triplets (SIn−1, SIn, SIn+i) where i is the time interval (i=1 to 6).

5.2.2 Models creation for different time intervals

To consider an extended version of STAR to longer time intervals (1-6 hourly), stochastic models
must be created for the different intervals considered. In total, six different stochastic models
are built. They are all built upon the same cohort of patients and only the values of SIn+i

in the triplets change between the models. For each of the time intervals, the corresponding
triplets of the virtual patients (SIn−1, SIn, SIn+i, i=1 to 6) are gathered into a different matrix.
These matrices are the input elements of the models.

The 3D stochastic models are built using kernel-density methods. In particular, a tri-variate
kernel-density estimation method is used with the triplets of patient data. The development
of the method has been detailed in Section 3.3.2. Future SI predictions, SIn+i, are obtained by
knowing current and previous SI values (SIn and SIn−1). For each pair of (SIn−1, SIn), there is
a conditional probability density function giving the forward predictions of SIn+i. The model
obtained provides, for any pair (SIn−1, SIn) the different predicted percentiles (5th, 25th, 50th,
75th, 95th) for SIn+i.

Each percentile of the model can be represented by a surface giving the corresponding percentile
prediction of SIn+i from a pair of (SIn−1, SIn). An example is shown in Figure 5.1 for the 5th

and 95th percentiles of predictions for the model with a 6-hourly time interval.
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Figure 5.1: Comparison between the 5th(left) and 95th(right) percentile prediction for 6-hourly
3D stochastic model.

5.2.3 Cross-validation

Cross-validation is used to validate the capacity of the model to accurately predict SI variations
on a completely different cohort of patients. More specifically, the different models are built
using a five-fold cross-validation. Models are built using 80% of patients and validated on the
remaining 20% of patients [42, 53].

The cohort of virtual patients considered in this thesis is thus divided in five random groups of
similar size (136 or 137 patients). These groups were randomised such that the number of SI
triplets identified is similar. Four of these groups (544 patients) are used to build the model to
be validated on the last group (136 or 137 patients). This allows the ability of the stochastic
model to predict the actual SI of ICUs populations to be assessed. In total, 5 models are thus
built and validated, and thus each patient data is only used once for validation.

The validation is done by comparing the prediction accuracy of the model built on the training
group on the data triplets in the validation group. The percentages of data triplets within the
predicted 5th-95th and 25th-75th prediction ranges are assessed. The prediction in the 5th-95th

percentile range is expected to contain 90% of the SIn+i values, 50% for the 25th-75th percentile
range. These percentages are assessed for the different stochastic models.

5.3 Validation and comparison results

The models are compared in terms of prediction accuracy but also in terms of the predicted
range width.
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5.3.1 Comparison between the different time intervals

A representation of the evolution of SI and the 3D predictions ranges for the different 1-hourly
and 6-hourly time intervals for one specific virtual patient is shown in Figure 5.2. From this
Figure, it can be observed that the prediction range is much wider for longer time intervals.
This is shown more globally for the whole cohort and for all the time intervals with the median
width [IQR] of the 5th-95th prediction range reported in Table 5.1. The 5th-95th prediction range
width constantly increases for longer time intervals from a median width [IQR] of 2.5e-04 [2.0e-
04 3.6e-04] L/mU/min for 1-hourly time interval to 5.2e-04 [4.1e-04 7.7e-04] L/mU/min for
6-hourly time interval. These results clearly reflect the increased potential variability behaviour
as time intervals are longer. Potential hyper- and hypoglycaemic risks are thus higher, and the
resulting treatments will be more conservative with less aggressive insulin dosing than for lower
time intervals with higher confidence.
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Figure 5.2: Representation of hourly identified SI evolution and corresponding 1-hourly (blue)
and 6-hourly (red) 3D prediction ranges for one specific virtual patient.

1-hourly 2-hourly 3-hourly 4-hourly 5-hourly 6-hourly

5th-95th prediction
width median [IQR]
(L/mU/min ×10−4)

2.5 [2.0 3.6] 3.4 [2.6 5.0] 3.9 [3.1 5.9] 4.4 [3.3 6.7] 4.8 [3.7 7.3] 5.2 [4.1 7.7]

Table 5.1: Prediction range width comparison between 3D stochastic models for different time
intervals (1-6 hourly).
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Another observation that can be made from Figure 5.2 is that there is an increased mismatch
between the prediction range and the patient-specific identified SI as the time interval increases.
This is particularly noticeable for sudden big changes in SI as in the hour 52. The identified
SI value is outside of the prediction range of the model corresponding to a 6-hourly time
interval. The model was not able to predict such variability, based solely on information from
6 hours before where SI was actually decreasing, thus explaining the lower predicted range.
This suggests that the use of these models can lead to BG level predictions and treatment
recommendations not well suited for highly variable patients, although the very high prediction
accuracy suggests this does not occur very often. This can be associated with increased risk of
unpredicted extreme BG values and then reduced safety as the time interval increases.

In these models, only two values are needed to predict future SI. Ideally, more values would be
needed to predict future SI for longer time intervals. This would give a better representation
of the overall evolution of the patient whether its SI is increasing, decreasing or stable and
would decrease the mismatch observed. For example, it would be better to use the previous
3 values to predict SIn+3, the previous 4 values to predict SIn+4, and so on. However, this is
computationally really hard.

While the prediction range width increases, the relative increase decreases as the time interval
increases. This is represented by Figure 5.3 and Figure 5.4. These Figures represent the ratio
of the 5th-95th percentile prediction ranges between the 1-hourly and the 3-hourly 3D models
(Figure 5.3) and between the 4-hourly and the 6-hourly 3D models (Figure 5.4). Figure 5.3
shows that the 1-hourly 3D model provides tighter prediction ranges than the 3-hourly and in
particular between ±20%∆SI meaning that the 1-hourly 3D model leads to more specificity
and particularly for stable patients. In Figure 5.4, the 4-hourly 3D model also provides tighter
prediction ranges than the 6-hourly 3D model but, in this case, the ratio remains more or less
the same for any %∆SI. These observations corroborate the ones obtained with Figure 5.2
and Table 5.1. The ratio is closer to 1 for the 4-hourly versus the 6-hourly ratio meaning
that these two models provide approximately the same specificity. This is not the case for the
1-hourly versus the 3-hourly. From these observations, it can be concluded that the difference
in prediction range width decreases between the models as the time interval increases and so
the loss of specificity also decreases.

5.3.2 Cross-validation results

The percentage of SIn+i values of the virtual patients contained in the 5th-95th and 25th-75th

percentile prediction ranges is computed for the different time intervals and is reported in
Table 5.2. Approximately 90% and 50% of the values are respectively contained in the 5th-95th

and 25th-75th percentile prediction ranges given by the 3D stochastic models for all the time
intervals. These percentages coincide with what was expected by building the models. Those
results allow to conclude that the different models represent well how SI evolves in ICU patients
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and can be generalised to other patient cohorts coming from different protocols and ICUs. They
can be used to give specific predictions of SI values even for large time intervals.

Figure 5.3: Median [IQR] ratio of 5th-95th percentile prediction width between the 1-hourly and
3-hourly 3D stochastic model as a function of the hour-to-hour percentage change in SI.

Figure 5.4: Median [IQR] ratio of 5th-95th percentile prediction width between the 4-hourly and
6-hourly 3D stochastic model as a function of the hour-to-hour percentage change in SI.
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Another observation is that the percentage of predictions decreases as the time interval increases
while remaining very close to the expected 90% and 50%. This can be explained by the
mismatch described in the previous Section that appears between the identified SI profile and
the prediction ranges for higher time intervals. As the models for higher time intervals may fail
to predict greater variability, less percentage of identified values is contained in the prediction
ranges.

1-hourly 2-hourly 3-hourly 4-hourly 5-hourly 6-hourly

Total number of
triplets

58082 57401 56720 56039 55358 54677

% predictions in 5th-
95th range

91.1 90.8 90.8 90.7 90.7 90.6

% predictions in
25th-75th range

53.8 52.4 51.8 51.4 51.0 51.0

% identified SI above
5th-95th prediction
range

3.0 3.6 3.9 4.1 4.2 4.3

% identified SI be-
low 5th-95th predic-
tion range

5.8 5.6 5.3 5.2 5.1 5.1

Table 5.2: Five-fold cross-validation results summary of prediction power comparison between
3D stochastic models for different time intervals (1-6 hourly).

The cross validation also allows the mismatch highlighted in Section 5.3.1 to be quantified.
This is done by computing the percentages of identified SI values above and below the 5th-95th

range. Identified values above the range mean higher risk of hypoglycaemia and conversely, val-
ues below the range show a risk of hyperglycaemia. For the different time intervals, the risk of
hyperglycaemia is higher than the risk of hypoglycaemia (5.1% vs. 4.3% of identified SI respec-
tively below and above the predicted range for 6-hourly time intervals). While the mismatch
increases with the time interval (Figure 5.2), the actual risk obtained only slightly increases.
This is related to the increased width of the prediction compensating for the mismatch.

5.4 Summary

This Chapter developed and validated the stochastic models that will be used for the different
virtual trials performed in this thesis. The new clinically validated 3D stochastic model method
was used to build new stochastic models for different time intervals (1-6 hourly).

The different models were compared and some observations could be made. Particularly, models
built for longer time intervals provide wider prediction ranges. They seem to be less specific and
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thus more conservative. They could then be associated with reduced safety for the patients.
However, the loss of specificity decreases as the time interval increases and so the loss of safety
may stabilise for longer time intervals. These different observations will be checked and possibly
confirmed with virtual trials performed in the next Chapter.

The models were also validated using a five-fold cross-validation. It resulted that they represent
well ICU patient’s intra-variability and can then be generalised to other patient cohorts from
different ICUs and protocols.
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Chapter 6

Virtual trial on STAR extension to 4-, 5-,
and 6-hourly intervals

This Chapter aims at quantifying the impact of the extension from 1 to 3-hourly to 1 to 4-, 5-,
and 6-hourly of the measurement and treatment intervals on the performance of STAR in GC.
The protocol uses the six stochastic models developed in Chapter 5.

The risk and reward trade-off of the extension is studied by conducting a virtual trial on STAR-
3D adapted to allow longer measurement and intervention intervals. Performance, safety and
workload are compared between each protocol. The results obtained are also compared with
previously virtual trial results of STAR using the old 2D stochastic model [14].

6.1 Introduction

The current version of STAR uses 1 to 3-hourly prediction intervals to determine 1 to 3-hourly
treatment intervals while ensuring a certain risk of hyper- and hypoglycaemia, representing
an average of 12 BG measurements per day [14]. Nurse’s workload in ICU is directly linked
with the safety and quality of care of the patients [13]. This workload is easier to manage in
ICUs where the nurse per patient ratio is relatively high as it is the case at the Christchurch
Hospital, New Zealand. However, in other ICUs where the nurse per patient ratio is lower
such as the University Hospital Center of Liège, Belgium, the same workload can represent a
critical clinical burden [2, 14, 51]. The relatively elevated workload was specifically reported
as a barrier to adoption following a clinical trial of STAR in Liège [12]. The excessive burden
of frequent BG measurements may lead to a poor protocol compliance. Protocol compliance
directly impacts BG outcomes, and, therefore, associated clinical outcomes [13, 51, 52]. There
is thus a need to decrease the workload of the nurses and in this context of GC to improve their
compliance to protocols and GC outcomes. A first approach would be to reduce the number
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of measurements and interventions per day by extending the measurement and intervention
interval to 1 to 6-hourly.

A virtual trial quantifying the risk (reduced safety and performance) and reward (reduced
workload) trade-off of an extension of the measurement and intervention interval to 1 to 6-
hourly has already been conducted using the old 2D stochastic model [14]. This study concluded
that longer time intervals are associated with reduced workload but slightly increased risks of
hyper- and hypoglycaemia. However, performance and safety of the extended version of STAR
remain much better than the ones of other major protocols. It highlights a clear risk and reward
trade-off between the workload and the GC outcomes even if STAR stays robust to adaptation
to longer time intervals, but requires further clinical validation to confirm these results [14].

The goal of this Chapter is to study the impact of an extension of the 1 to 3- to 4-, 5- and 6-
hourly measurement and intervention interval of STAR-3D GC framework. STAR-3D is chosen
as it was proven to better account for inter- and intra-patient variability providing more patient-
specific GC [9]. These results are a consequence of the use of 3D stochastic models basing their
predictions on current and previous SI values. The model provides tighter predictions leading to
an optimal dosing with higher safety and effective control than STAR-2D [9, 10]. It is assumed
that the same risk and reward trade-off highlighted by the trial on STAR-2D will be observed
with the risk being reduced performance, safety and nutrition administration and a reduced
workload as the reward.

To be able to assess the impact of the extension of the time interval on the performance and
safety of STAR-3D presented in Chapter 3, validated virtual trials are used. Using virtual trials
allows the safety and performance of the different protocols to be compared on the same cohort
of patients. This trial is performed on the cohort of virtual patients described in Chapter 4. The
results obtained from the trial are compared using the metrics described in the same Chapter.

6.2 Protocol extension

Few changes were required in STAR protocol design to adapt it to 1 to 6-hourly measurement
and intervention intervals. The main change consisted in allowing the protocol to suggest longer
treatment intervals if it meets the safety requirements. The treatment selection process remains
unchanged and the same constraints on the 5th and 95th percentiles of BG prediction are used.

Another important part of the protocol that was changed was the creation of the corresponding
stochastic models. Six 3D stochastic models were built, one for each time interval, giving the
5th-95th percentile prediction ranges for 1 to 6-hourly intervals. Those models were built using
a tri-variate kernel-density estimation method.
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6.3 Results

6.3.1 STAR-3D virtual trial results

STAR-3D virtual trial results are gathered in Table 6.1. The number of GC hours increases
as the time interval increases for the same number of GC episodes. This depends on what
happens at the end of the simulation. For the same patient, the control can last longer for a
last 6-hourly treatment interval than for a 3-hourly treatment interval. This adds 3 hours in
the number of GC hours for this patient. Extending this to the whole cohort, the number of
GC hours differs between the versions of the protocol and increases as the measurement and
treatment interval increases.

STAR-3D-3H STAR-3D-4H STAR-3D-5H STAR-3D-6H

# GC episodes 681 681 681 681

# GC hours 59209 59522 59701 60054

# BG measurements 29903 25471 22951 20696

# BG measurements/day 12.1 10.3 9.2 8.3

Median BG (mmol/L) 6.4 [5.8 7.2] 6.6 [6.0 7.4] 6.7 [6.1 7.5] 6.8 [6.2 7.5]

Median insulin (U/h) 3.5 [2.0 5.0] 3.0 [2.0 4.0] 2.5 [2.0 3.5] 2.5 [1.7 3.0]

Median nutrition (%GF) 99.7 [84.5 100.0] 94.7 [78.8 100.0] 89.4 [74.5 97.3] 85.3 [70.1 94.7]

%BG in 4.4-8.0 mmol/L 83.8 82.9 82.0 81.4

%BG in 4.4-7.0 mmol/L 67.5 62.9 58.8 56.3

%BG > 8.0 mmol/L 14.5 15.5 16.4 16.9

%BG < 4.4 mmol/L 1.7 1.7 1.6 1.6

%BG < 2.2 mmol/L 0.03 0.03 0.05 0.05

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

591 (86.8%) 592 (86.9%) 586 (86.0%) 584 (85.7%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

479 (70.3%) 457 (67.1%) 432 (63.4%) 398 (58.4%)

# patients min BG < 2.2
mmol/L (%)

12 (1.8%) 14 (2.0%) 19 (2.8%) 23 (3.4%)

Table 6.1: Virtual trial results for STAR-3D for 1 to 3-, 4-, 5-, and 6-hourly intervals.

Different observations concerning the performance can be made from the results as the mea-
surement and treatment interval increases. The %BG in the target band (4.4-8.0 mmol/L)
slightly decreases from 83.8% for STAR-3D-3H to 81.4% for STAR-3D-6H. The difference is
more significant in the 4.4-7.0 mmol/L band with a transition from 67.5% for STAR-3D-3H
to 56.3% for STAR-3D-6H. This decrease is related to the shift upward in median [IQR] BG
from 6.4 [5.8 7.2] to 6.8 [6.2 7.5] mmol/L. This tendency is also represented by the number of
patients having more than 50%BG in the different bands.
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Concerning safety, there is an increased incidence of both hyper- and hypoglycaemia with
increased time intervals (14.5 (3-hourly) vs. 16.9 (6-hourly) %BG > 8.0 mmol/L and 0.03 (3-
hourly) vs. 0.05 (6-hourly) %BG < 2.0 mmol/L). The number of patients experiencing severe
hypoglycaemia also increases from 12 to 23 patients. The workload significantly decreases
as the time interval increases from 29 903 BG measurements for STAR-3D-3H to 20 696 BG
measurements for STAR-3D-6H corresponding respectively to 12.1 and 8.3 measurements per
day.

Regarding insulin and nutrition rates, they both decrease as the time interval increases which
is correlated with the increased risk of hyperglycaemia. However, the median [IQR] nutrition
remains quite high with 85.3 [70.1 94.7] %GF for STAR-3D-6H.

6.3.2 STAR-3D virtual trial results once target band is reached

The results of the virtual trials can also be expressed from the time where the patients have
reached the target band, i.e. the time at which the BG level falls back into the pre-set target
band. These results are gathered in Table 6.2. From the initial cohort, 671 (98.5%) patients
have reached the target band. The time to reach the target is the same for all the measurement
and treatment intervals (2.0 [1.0 3.0] h). At their entry in GC, patients are not yet stabilised.
The protocol is then constrained to propose 1-hourly measurement and treatment intervals to
stabilise the patient. In the initial hours under GC, there is also less nutrition and more insulin
administered as the BG level needs to decrease.

The performance is slightly higher in this case. However, the decrease in %BG in the target
bands occurring when the time interval increases remains the same. Indeed, the discarded
hours are hours where BG is outside and above the target band. The median [IQR] BG is
barely impacted with a very slight decrease for 6-hourly intervals with respect to the raw data
by considering the entire GC length (6.7 [6.1 7.4] mmol/L once the target band reached vs. 6.8
[6.2 7.5] mmol/L for the raw data).

The incidence of hypoglycaemia and the number of patients experiencing severe hypoglycaemia
did not change. However, the incidence of hyperglycaemia decreased as the hours discarded are
hours of initial hyperglycaemia (10.7% for STAR-3D-3H once the target band reached versus
14.5% for STAR-3D-3H in raw data) and this is directly linked with the slightly lower median
BG. The change in safety between the different time intervals did not change. The workload
also slightly decreased by 1 measurement per day for each protocol by discarding initial hours.
The first hours of control require higher measurement and treatment intervals because they are
often constrained to 1 hour while outside the target band, representing the very acute phase of
metabolic stress and SIH.
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The median [IQR] insulin is slightly decreased, directly impacted by the discarded hours and
the median [IQR] nutrition in %GF is increased (89.4% [74.5% 94.7%] for STAR-3D-6H once
the target is reached versus 85.3% [70.1% 94.7%] for STAR-3D-6H with raw clinical data).

Overall, the changes between the protocols are identical. GC performed during the discarded
hours seems to be independent of the measurement and treatment interval allowed and changing
it has no impact on what happens during these hours.

STAR-3D-3H STAR-3D-4H STAR-3D-5H STAR-3D-6H

# GC episodes 671 (98.5%) 671 (98.5%) 671 (98.5%) 671 (98.5%)

# GC hours 56639 56941 57106 57446

# BG measurements 27353 22924 20404 18149

# BG measurements/day 11.6 9.7 8.6 7.6

Time to target (h) 2.0 [1.0 3.0] 2.0 [1.0 3.0] 2.0 [1.0 3.0] 2.0 [1.0 3.0]

Median BG (mmol/L) 6.4 [5.8 7.1] 6.6 [6.0 7.2] 6.7 [6.1 7.4] 6.7 [6.1 7.4]

Median insulin (U/h) 3.0 [2.0 4.5] 2.5 [1.5 3.5] 2.5 [1.5 3.0] 2.5 [1.5 3.0]

Median nutrition (%GF) 99.9 [89.4 100.0] 95.4 [84.4 100.0] 90.7 [79.1 99.3] 89.4 [74.5 94.7]

% BG in 4.4-8.0 mmol/L 87.5 86.5 85.6 85.0

% BG in 4.4-7.0 mmol/L 70.5 65.7 61.4 58.8

% BG > 8.0 mmol/L 10.7 11.7 12.7 13.3

% BG < 4.4 mmol/L 1.8 1.8 1.7 1.7

% BG < 2.2 mmol/L 0.03 0.03 0.05 0.06

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

621 (92.5%) 623 (92.8%) 620 (92.4%) 620 (92.4%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

527 (78.5%) 493 (73.5%) 468 (69.7%) 431 (64.2%)

# patients min BG < 2.2
mmol/L (%)

12 (1.8%) 14 (2.1%) 19 (2.8%) 23 (3.4%)

Table 6.2: Virtual trial results for STAR-3D for 1 to 3-, 4-, 5-, and 6-hourly intervals once
target band is reached.

6.3.3 Performance, safety and workload comparison between STAR-

2D and STAR-3D

The results of the virtual trials performed with STAR-2D in [14] and STAR-3D presented before
are presented in Table 6.3 for easier comparison. Only the results for the 3-hourly and 6-hourly
measurement and intervention intervals are compared.

The performance of STAR-3D slightly increased compared to the performance of STAR-2D
for both 3-hourly and 6-hourly time intervals. %BG in the different bands is higher (83.0 vs.
83.8 % for 3-hourly and 80.0 vs. 81.4 % for 6-hourly in 4.4-8.0 mmol/L and 65.0 vs. 67.5 %
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for 3-hourly and 52.0 vs. 56.3 % for 6-hourly in 4.4-7.0 mmol/L). The number of patients with
more than 50% BG in these bands has also slightly increased.

STAR-2D STAR-3D
3-hourly 6-hourly 3-hourly 6-hourly

# GC episodes 681 681 681 681

# GC hours 59240 60003 59209 60054

# BG measurements 28961 20272 29903 20696

# BG measurements/day 12 8 12 8

Median BG (mmol/L) 6.5 [5.9 7.3] 6.9 [6.3 7.7] 6.4 [5.8 7.2] 6.8 [6.2 7.5]

Median insulin (U/h) 3.2 [2.0 5.0] 2.5 [1.5 3.0] 3.5 [2.0 5.0] 2.5 [1.7 3.0]

Median nutrition (%GF) 100 [85 100] 90 [75 100] 100 [84 100] 85 [70 95]

% BG in 4.4-8.0 mmol/L 83 80 84 81

% BG in 4.4-7.0 mmol/L 65 52 67 56

% BG > 8.0 mmol/L 15 18 14 17

% BG < 4.4 mmol/L 1.6 1.6 1.7 1.6

% BG < 2.2 mmol/L 0.03 0.06 0.03 0.05

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

589 (86%) 571 (84%) 591 (87%) 584 (86%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

466 (68%) 372 (55%) 479 (70%) 398 (58%)

# patients min BG < 2.2
mmol/L (%)

14 (2.1%) 19 (2.8%) 12 (1.8%) 23 (3.4%)

Table 6.3: Virtual trial results for STAR-2D and STAR-3D for 1 to 3-, and 6-hourly intervals.

Regarding safety, the incidence of hyperglycaemia slightly increased which is directly linked with
the slight increase of median [IQR] BG (6.5 [5.9 7.3] and 6.9 [6.3 7.7] mmol/L for STAR-2D vs.
6.4 [5.8 7.2] and 6.8 [6.2 7.5] mmol/L for STAR-3D). The incidence of hypoglycaemia is very
similar between both protocols but the number of patients experiencing severe hypoglycaemia
is higher for 3-hourly (14 vs. 12 measurements per day) and lower for 6-hourly (19 vs. 23
measurements per day) measurement and treatment intervals for STAR-2D. This indicates
the 3D model improved predictions enabled to decrease hypoglycaemia compared to the 2D
model for STAR 3-hourly, but this benefit is clearly affected when considering longer treatment
intervals.

Both versions also provide similar workload despite slightly higher median insulin (3.2 [2.0 5.0]
vs. 3.5 [2.0 5.0] U/h for 3-hourly and 2.5 [1.5 3.0] vs. 2.5 [1.7 3.0] U/h for 6-hourly) and same
nutrition rates for the different intervals except for 6-hourly intervals (90.0 [75.0 100.0] vs. 85.3
[70.1 94.7] %GF).
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6.4 Discussion

6.4.1 Risk and reward trade-off

The results of this trial clearly highlight the risk and reward trade-off of the extension of the time
and measurement intervals already shown for STAR-2D. Indeed, extending the measurement
and treatment intervals is not risk-free. Longer intervals are associated with wider 5th-95th

percentile prediction ranges obtained for the SI predictions due to less confidence in future SI
predictions. Wider predictions of SI and consequently of predicted BG induce more conservative
insulin dosage with lower insulin rates to minimise hypoglycaemia.

In addition to the wider prediction ranges, longer intervals are also associated with higher risk
of extreme changes in SI and thus in BG levels. BG level can thus suddenly increase or drop
and ultimately leads to a hyper- or hypoglycaemic event, as seen in the increased number of
patients experiencing hypoglycaemia.

Therefore, the use of longer intervals impacts performance and safety of GC. The risk associated
with the extension of STAR is represented by the reduced performance (83.8 vs. 81.4 %BG
within 4.4-8.0 mmol/L target band) with a general shift to higher BG levels, reduced safety
with increased risk of hyperglycaemia (14.5 vs. 16.9 %BG > 8.0 mmol/L) and hypoglycaemia
(12 vs. 23 patients with min. BG < 2.2 mmol/L) and reduced nutrition rates (99.7 vs. 85.3
%GF) to limit the increased risk of hyperglycaemia. This risk is more moderate for STAR-
3D-4H and STAR-3D-5H than for STAR-3D-6H. Indeed, the performance and safety are also
reduced but less than for STAR-3D-6H and more for STAR-3D-5H than STAR-3D-4H. This is
also visible with the number and percentage of patients with more than 50%BG in the different
bands that decreases for longer intervals.

As assumed, the reward consists in reduced workload (12.1 vs 8.3 measurements per day)
and is a direct consequence of the use of longer time intervals. Here again, STAR-3D-4H
and STAR-3D-5H present intermediate values with 10.3 and 9.2 measurements per day. This
already represents a noteworthy decrease compared to STAR-3D-3H. An example of this risk
and reward trade-off for STAR-3D-6H compared to STAR-3D-3H is shown in Figure 6.1 showing
the virtual results for a patient.

By considering the results once the target band is reached, the same trade-off can be observed
between reduced workload and reduced performance, safety and nutrition rates. However, they
show higher performance and safety than by considering the entire GC length. Indeed, the very
first hours of GC are hours where the patients are not yet stabilised. The measurement and
treatment intervals are fixed to one hour. The hours to reach the target band are also hours
where patients have hyperglycaemia. By discarding these hours, hours of heavy workload and
high BG are not considered which explains the lower workload, the lower %BG higher than
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Figure 6.1: Representation of the virtual trial results for one patient with the BG level (top),
the nutrition rates and dextrose bolus (middle), the insulin bolus and infusion rates (bottom).
Results are compared between STAR-3D-3H (blue) and STAR-3D-6H (red).

8.0 mmol/L and the higher performance. These hours are common to the different time inter-
vals. Discarding them has no influence on the changes observed by increasing the measurement
and treatment interval. Most of all, this shows very high control performance once the patient
reaches the target, and the ability of STAR to keep glycaemia in target.

Comparing the extension on STAR-3D with the extension of STAR-2D, both protocols present
similar risk and reward trade-offs associated with the extension showing that STAR is robust
when using longer measurement and treatment intervals. Performance, safety and nutrition
are reduced for longer intervals but still significantly higher compared to results obtained with
other protocols [34, 48, 42]. As expected while creating the 3D stochastic models, STAR-3D
provides higher performances and safety than STAR-2D. Indeed, the prediction ranges obtained
with the 3D models are tighter allowing more aggressive insulin dosing. In addition, the 3D
models better accounts for inter- and intra-patient variability, a crucial element to consider to
achieve safe GC.

While STAR-3D provides slightly safer and more effective control than STAR-2D, it shows
an increased number of patients experiencing severe hypoglycaemia (19 vs. 23 patients with
min BG < 2.2 mmol/L) as well as the slight reduced nutrition rates (90 vs. 85.3 %GF)
for STAR-3D-6H compared to STAR-2D-6H. The 3D stochastic model was shown to provide
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tighter prediction ranges more than 70% of the time but it remains less than 30% where it
provides wider prediction ranges for 3-hourly intervals. During these 30%, STAR-3D is then
more conservative in its dosing which results in less nutrition administered and higher risk of
extreme events such as severe hypoglycaemia. Despite this, there is still a reduced safety in
both versions as the measurement and treatment intervals are longer. The number of patients
experiencing hypoglycaemia is the highest in both STAR-3D and STAR-2D for 6-hourly interval,
as expected.

Workload

As previously explained, the main reward is the reduced workload associated with longer mea-
surement and treatment intervals. It is also interesting to look at the evolution of this workload
as a function of the length of ICU stay and to compare it with the number of patients under
GC.

Figure 6.2 shows the evolution of the number of measurements per every 12 hours for the
different measurement intervals. This evolution is compared to the evolution of the number of
patients under GC. The number of measurements per every 12 hours decreases significantly after
the first 12 hours from 7.9 to 5.7 measurements for STAR-3H and from 6.6 to 4.0 measurements
for STAR-6H showing that the first twelve hours clearly require the most workload. Indeed, the
patients are not yet stabilised and so in most cases the measurement interval is fixed to 1-hourly.
These are also the higher acute phase of illness where patients are highly resistant and variable.
After the first 12 hours, the number of measurements keeps decreasing and fluctuates around 1
measurement every 3 hours for STAR-3D-4H, 1 measurement every 3.5 hours for STAR-3D-5H
and 1 measurement every 4 hours for STAR-3D-6H. The difference of measurements between the
different versions (more or less 2 measures/12 hours between 3-hourly and 6-hourly intervals)
is constant as the time increases.

In addition, there is a significant decrease of the number of patients under GC in the first
24 hours of GC (Figure 6.3). Then, the number of patients keeps decreasing. The workload
associated with GC is then the most important within the first 12 hours. Then, the numbers of
measurements as well as the number of patients requiring GC decreases significantly resulting
in a considerable decrease of the workload for the nurses. This trend is the same for the different
versions of the protocol.

Hypoglycaemia

An important risk associated with longer measurement and treatment intervals is the higher
incidence of severe hypoglycaemia. The difference is the most important between STAR-3D-3H
and STAR-3D-6H (1.8% vs. 3.4%). Severe hypoglycaemia was proven to be associated with
worse outcomes in GC [2, 6, 7, 20, 22]. Longer intervals are associated with higher risk of
extreme changes in SI as seen in Chapter 5. SI being directly linked to BG, longer intervals
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Figure 6.2: Number of measurements per 12 hours comparison between the different measure-
ment and treatment intervals.

Figure 6.3: Evolution of the number of patients under GC per 12 hours.

are also associated with higher risk of extreme changes in BG level. For a patient that would
experience a drop in BG 1 hour after the last measurement, the drop would be detected earlier
for 3-hourly time interval than for 6-hourly interval leading to a severe hypoglycaemia in the
second case. In the example shown in Figure 6.4, the patient is experiencing a progressive
increase in SI from hour 11, which is a typical pattern characterising patient recovery. STAR-
3D-3H is able to capture this increase earlier (at hour 13) and adapts its treatment while
STAR-3D-6H detects this change much later, resulting in a severe hypoglycaemia event at hour
16.
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Figure 6.4: Representation of the virtual results for one patient with severe hypoglycaemia
detected at hour 16 for STAR-3D-6H. The BG level (top), the insulin sensitivity (second top),
the nutrition rates and dextrose bolus (third top), the insulin bolus and infusion (bottom) are
shown. Results are compared between STAR-3D-3H (blue) and STAR-3D-6H (red). Dotted lines
on top panel represent the target band 4.4-8.0 mmol/L and the limit of severe hypoglycaemia
2.2 mmol/L.

When analysing hypoglycaemic events more specifically, two observations can be made. First,
some hypoglycaemic event occurs (or not) only because of measurement timing, and this can
favour both the 3-hourly or 6-hourly version. However, while this generally avoids severe
hypoglycaemia, patients still often reach BG values very close to the severe hypoglycaemic
threshold. This situation concerns only a minority of patients and cannot really be explained.
The measurements are better placed by chance.

Most interestingly, another very important observation from the 6-hourly intervals protocol is
that a hypoglycaemic event may not even be detected during control, as shown in Figure 6.5.

Those hypoglycaemic events are short and may resolve without extra insulin adjustment thanks
to nutrition and if SI decreases. They are due to a sudden positive peak in SI. A consequence
of this peak for the same insulin and nutrition rates is a sudden negative peak in BG level
leading to severe hypoglycaemia. However, the hypoglycaemic event is not detected because
it occurs and resolves in less than the length of the measurement interval, i.e. 6 hours. It is
very important to mention this particular case as it shows that the number of patients ex-
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Figure 6.5: Representation of the virtual results for one patient with severe hypoglycaemia
detected at hour 46 for STAR-3D-3H. The BG level (top), the insulin sensitivity (second top),
the nutrition rates and dextrose bolus (third top), the insulin bolus and infusion (bottom) are
shown. Results are compared between STAR-3D-3H (blue) and STAR-3D-6H (red). Dotted lines
on top panel represent the target band 4.4-8.0 mmol/L and the limit of severe hypoglycaemia
2.2 mmol/L.

periencing severe hypoglycaemia may be underestimated in clinical practice when measuring
less frequently. While measurements would suggest the patient remained stable, the patient
actually experienced a severe hypoglycaemic event that would not have been measured here.
An example of this situation for one patient is shown in Figure 6.5. It is clear that the patient
experiences a sudden increase of SI at hour 46 leading to a severe hypoglycaemia. This event is
detected by STAR-3D-3H which has its next measurement at hour 46 and can therefore admin-
istrate a dextrose bolus to increase the BG level more rapidly. The severe hypoglycaemic event
goes completely unnoticed by STAR-3D-6H because the next measurement is at hour 49 and at
this time, SI has returned to lower values and BG is not lower than 2.2 mmol/L anymore. This
sudden rise and fall of SI could characterise a BG measurement error leading to this abnormal
behaviour. However, it could also well characterise patient metabolic reactions to other factors
such as drugs administration, patient handling or other.

These different configurations are a direct consequence of the different timing obtained for the
different measurement and time intervals. To these different timing is associated a chance factor.
For a same patient, one version can by chance detect early a hypoglycaemic event and adapt
its treatment accordingly while another version may fail in detecting it. This is due to better
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measurement timing. It makes it difficult to interpret the results in terms of hypoglycaemia,
especially because of the very low occurrence of hypoglycaemia with STAR. This effect was
already highlighted with the 2D version of STAR but it was also concluded that studying a
large cohort of patients allows to balance the advantage/disadvantage induced [14].

6.4.2 Conclusions

Overall, extending the measurement and treatment intervals of STAR-3D from 3- to 6-hourly
still provides safe and effective control for ICU patients. The different versions result in high
%BG in target band and low incidence of hyper- and hypoglycaemia compared to other proto-
cols. However, increasing the measurement interval shows a trade-off between reduced workload
and reduced performance and safety. For longer intervals, the %BG in the different bands is
reduced and the incidence of hyper- and hypoglycaemia is increased with 14 vs. 23 patients
with minimum BG lower than 2.2 mmol/L in these simulations.

As for STAR-2D, the safest and most effective solution remains the use of 1-hourly intervals
but this is not feasible in clinical practice and generates too much workload [14]. However,
among the different interval lengths studied, STAR-3D-4H and STAR-3D-5H seems to present
the best trade-off between non-negligible reduced workload and limited decrease in performance
and safety.

It is also important to remember that those results were obtained from a virtual trial. It
represents an ideal situation where the nurse’s compliance to protocol is perfect. They are
assumed to always choose the longest treatment proposed by the protocol which may not be
the case in actual clinical practice. A clinical trial should be conducted to further validate the
results obtained with the virtual trials on STAR-2D and STAR-3D.

6.5 Summary

To reduce the nurse’s excessive workload induced by frequent measurement and treatment
interventions, an extension of the measurement and treatment interval proposed by STAR from
1 to 3-hourly to 1 to 4-, 5- and 6-hourly has been developed and studied on STAR-2D and STAR-
3D using virtual trials. Both versions provide robust control with high performance and safety
even for longer measurement and time intervals. STAR-3D shows even higher performance and
safety than STAR-2D due to the use of 3D stochastic models better accounting for inter- and
intra-patient variability.

The extension showed a clear risk and reward trade-off where the risk was reduced performance
and safety with lower %BG in target bands and higher incidence of hyper- and hypoglycaemia
and the reward is the reduced workload (12 vs. 8 measurements per day).
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Chapter 7

Virtual trials on treatment selection
process optimisations

This Chapter aims at studying a new improvement of the STAR GC protocol. In addition
to the extension to 1-6 hourly time intervals, the treatment selection process is modified to
reduce the time and effort required from the nurses and therefore increase their compliance to
the protocol. These considerations are following the high workload reported by nurses during
a clinical trial undertaken at the University Hospital Center of Liège, Belgium [9].

Two modifications are implemented in this new version of STAR. One is the maximisation of the
time interval between two interventions and the second one is the minimisation of the insulin
variations. Their impact on the performance, safety and workload of the protocol is quantified
by conducting virtual trials on the extension of STAR-3D GC framework. The modifications
are tested first individually and then combined.

7.1 Introduction

The current versions of the STAR protocol developed and used here provide safe, effective
GC for nearly all critically ill patients. The different clinical trials performed to validate the
protocol already showed high compliance to protocol with more than 80% of unchanged inter-
ventions from the recommendations of STAR [11, 54]. However, this compliance is not perfect
and different factors can negatively affect it. They are of different nature and some of them,
associated with the protocol design, are the time and effort required (i.e. workload) from nurses
to comply with the protocol [51].

The previous Chapter studied the impact of allowing longer measurement and treatment in-
tervals on the performance, safety and workload of STAR-3D. This first extension significantly
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reduced the workload at the cost of slightly lower performance and safety, and in particular
an increase of the risk of severe hypoglycaemia. However, virtual trial simulations on virtual
patients still showed very high quality control, showing potential clinical benefit from this 6-
hourly extension. While workload was significantly reduced, other factors could further reduce
clinical burden, especially for ICUs with low nurse per patient ratio.

The goal of this Chapter is to assess the risk and reward trade-offs of two additional extensions
to optimise the treatment selection process such that it can further reduce workload in the
STAR-3D GC framework. The first extension aims at allowing longer treatment intervals when
BG is above the upper limit of the target, if the treatment considered results in predicted BG
inside the target. The second extension aims at avoiding treatment changes as much as possible
and reduce the insulin changes when possible such that less interventions are required from the
clinical staff.

Virtual trials are thus conducted on the framework adapted to allow measurement and inter-
vention intervals from 1-3 hourly to 1-6 hourly as this extension provided encouraging results
virtually. Each solution is first studied individually and then, a version combining the two
optimisations is considered.

7.2 Protocol extensions

7.2.1 Original treatment selection (STAR-3D)

STAR-3D current treatment selection process is only based on the 5th and 95th percentile
predictions of BG to select the treatment maximising the nutrition and ensuring a 5% maximum
risk of hypoglycaemia. The idea is to overlap the 5th-95th BG percentiles range as much as
possible with the target band 4.4-8.0 mmol/L [41].

STAR algorithm seeks through all potential treatments to find the optimal option (Figure 7.1).
Currently, it consists of two loops where, for each potential nutrition rate sorted from maximum
to minimum, and for each potential insulin rate sorted also from maximum to minimum, the
predicted 5th and 95th percentiles are calculated [41].

For each pair (nutrition, insulin), the corresponding 5th BG percentile is firstly checked. If it lies
in the interval between the lower bound of the target band 4.4 mmol/L and a certain tolerance
(0.3 mmol/L), then the treatment is directly accepted regardless of the 95th BG percentile. If
the 5th percentile is below the lower bound, then the treatment is rejected. The last possibility
is when the 5th percentile is higher than the lower band with tolerance 4.7 mmol/L. In this
case, the 95th BG percentile is checked. If it lies below the upper bound of the target band
8.0 mmol/L, then the treatment is kept as a solution [41].
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Figure 7.1: Schematic representation of the treatment selection process of STAR-3D. For the
different treatment and time intervals, 5th and 95th percentiles of BG are simulated and checked.

This is done for every measurement and treatment interval allowed so from 1 hour to the
longest interval allowed by the version of the protocol used. The only exceptions are when
current BG level is above the upper bound 8.0 mmol/L or when the last two BG levels were
below 3.0 mmol/L, then only 1 hour treatments are allowed. If no combination of insulin and
nutrition gives an acceptable solution for 1 hour interval, maximum nutrition and zero insulin
are chosen by default [41].

Once all the treatments have been considered, the optimal ones are recommended to the nurses
who choose one between them. In virtual trials, the longest treatment is always chosen by
default.
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7.2.2 Time interval maximisation (STAR-TIM)

The changes performed on the treatment selection process to maximise the measurement and
treatment intervals take two forms depending on the value of the current BG level. The new
version is STAR Time Interval Maximised (STAR-TIM) (Figure 7.2).

Figure 7.2: Schematic representation of the treatment selection process of STAR-TIM. For the
different treatment and time intervals, 5th, 75th and 95th percentiles of BG are simulated and
checked. Changes with respect to STAR-3D are highlighted in blue.

The first change occurs when the current BG lies in the target band. In this case, a tolerance
is added on the 95th BG percentile and the 75th BG is also calculated and checked. The 95th

percentile should be contained in 8.0-10.0 mmol/L and the 75th percentile should be strictly
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lower than 8.0 mmol/L to consider the treatment as acceptable (Figure 7.3). This would allow
longer treatments that were not accepted in the original version to be chosen, while allowing
only 20% risk of having moderate hyperglycaemia and 5% of having severe hyperglycaemia.

Figure 7.3: 1 hour 5th, 75th and 95th percentile BG predictions (blue, top) calculated for the
corresponding 95th, 25th and 5th percentile SI predictions (dotted, bottom). Dotted line on top
panel represent the target band 4.4-8.0 mmol/L for the 5th and 75th percentile predictions of
BG and the limit of severe hyperglycaemia for the 95th percentile prediction of BG.

When the current BG is above the target band, the time interval is not limited to 1 hour
anymore. The maximum time interval allowed corresponds to the half of the maximum time
interval of the protocol rounded up to the next hour, i.e. 2 hours for STAR-TIM-3H and STAR-
TIM-4H and 3 hours for STAR-TIM-5H and STAR-TIM-6H. The tolerances added for the first
case are not used anymore and the treatments are accepted only if the 5th-95th percentile
predictions of BG respect the same conditions as the ones of the original process.

The main reward associated with STAR-TIM is assumed to be higher median time intervals
and therefore reduced workload. However, adding tolerance and allowing longer intervals when
BG values are not stabilised can result in a risk of reduced performance with higher median BG
and more importantly reduced safety with higher incidence of both hyper- and hypoglycaemia.

7.2.3 Insulin dosing variability minimisation (STAR-IVM)

Another factor affecting nurse’s confidence and then compliance to STAR protocol is the vari-
able insulin dosing representing a cognitive workload for the nurses. STAR uses variable insulin
dosing to compensate for the possible BG variations and ensure a pre-set risk of hyper- and
hypoglycaemia [6]. Nurses see this variability as a factor that can induce glycaemic variability
and lead to worst GC outcomes. To reassure the nurses and increase their confidence in STAR,
an idea is to decrease this variability in insulin dosing.
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The changes made to minimise the variability of the insulin dosing are the following. Prior
to testing all the different potential treatments, the protocol considers first the last treatment
(insulin and nutrition) given to the patient during the last intervention. The 5th and 95th BG
percentiles are estimated for this specific treatment and for each time interval, and checked
using the same process as the one described for the original treatment. This new optimisation
is denoted STAR Insulin Variability Minimised (STAR-IVM) (Figure 7.4).

Figure 7.4: Schematic representation of the treatment selection process of STAR-IVM. For the
different treatment and time intervals, 5th and 95th percentiles of BG are simulated and checked.
Changes with respect to STAR-3D are highlighted in blue.

It is more the order into which treatments are computed and compared that is affected rather
than protocol changes. The order of the potential nutrition remains from maximum to min-
imum. For the insulin dosing, the first value considered is not the maximum anymore but
the current dose. Then, it goes to the maximum allowed before going down to the minimum

56



0.0 U/h. For example, if the current dose is 2.0 U/h, the protocol will explore the insulin dosing
from 2.0 to 4.0 and then back to 0.0 U/h as shown in Table 7.1. Therefore, in the example
below, if 2.0 U/h of insulin is acceptable, it will suggest this treatment instead of 4.0 U/h that
could also be an acceptable treatment.

1 2 3 4 5 6 7 8

STAR-3D 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.0

STAR-IVM-3D 2.0 2.5 3.0 3.5 4.0 1.5 1.0 0.0

Table 7.1: Order of allowed insulin administration comparison between STAR-3D and STAR-
IVM.

The expected improvements are reduced insulin rates (thus reduced costs related to insulin), and
reduced glycaemic variability. The performance should be similar but more variable nutrition
to compensate for the less variable insulin dosing.

7.2.4 Global optimisation (STAR-GO)

A last version of the protocol simulated in this Chapter is a combination of both the changes
together to maximise the time interval while also minimising the insulin dosing variability. As
each solution implies changes on different parts of the treatment selection process, they can be
both implemented and tested also at the same time. This last version is denoted STAR Global
Optimisation (STAR-GO).

The results expected from this combination are the combination of the results obtained for
each optimisation, although the effect on workload and insulin dosing of each extension could
be reduced when combining both. Each part of the solution is supposed to impact safety
and workload differently. Combining their effect is expected to counterbalance the potential
negative impacts from reduced safety against improved workload.

With respect to the original version STAR-3D, this new implementation of the treatment se-
lection process is supposed to reduce the workload and the variability in insulin dosing. These
effects will be checked by comparing the results obtained from the virtual trials with the results
obtained for the extension of the original version already presented and discussed in Chapter 6.

7.3 Results

7.3.1 Time interval maximisation (STAR-TIM)

The results of the virtual trial performed on STAR-TIM are presented in Table 7.2. Efficacy
is high with %BG in the band is high for both bands (82.8 %BG within the target band 4.4-
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8.0 mmol/L and 64.5 %BG within 4.4-7.0 mmol/L for 3-hourly time intervals) and it surprisingly
increases as the time interval increases. There is also a slight decrease of the median BG level
(6.5 [5.9 7.4] mmol/L for 3-hourly vs. 6.3 [5.7 7.2] mmol/L for 6-hourly time intervals). The
number of patients with more than 50%BG in the different bands is also high and slightly
increases with the time interval. The glycaemic variability decreases for longer time intervals
from 0.34 [0.25 0.47] mmol/L for 3-hourly to 0.24 [0.17 0.36] mmol/L for 6-hourly. There is
however a slight decrease in performance for 4-hourly time interval compared to the others.

STAR-TIM-3H STAR-TIM-4H STAR-TIM-5H STAR-TIM-6H

# GC episodes 681 681 681 681

# GC hours 59285 59525 59773 60051

# BG measurements 27646 23484 20540 18675

# BG measurements/day 11.2 9.5 8.2 7.5

Median BG (mmol/L) 6.5 [5.9 7.4] 6.5 [5.9 7.4] 6.4 [5.8 7.3] 6.3 [5.7 7.2]

Median insulin (U/h) 3.5 [2.0 5.5] 3.5 [2.0 5.5] 3.5 [2.0 5.0] 2.5 [1.5 4.3]

Median nutrition (%GF) 100.0 [95.4 100.0] 100.0 [86.1 100.0] 88.0 [70.9 99.3] 65.2 [52.0 80.0]

% BG in 4.4-8.0 mmol/L 82.8 82.4 82.9 83.9

% BG in 4.4-7.0 mmol/L 64.5 63.7 65.0 67.8

% BG > 8.0 mmol/L 15.5 15.4 14.6 13.4

% BG < 4.4 mmol/L 1.8 2.2 2.5 2.7

% BG < 2.2 mmol/L 0.03 0.05 0.07 0.08

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

590 (86.6%) 588 (86.3%) 594 (87.2%) 591 (86.8%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

466 (68.4%) 455 (66.8%) 464 (68.1%) 475 (69.7%)

# patients min BG < 2.2
mmol/L (%)

13 (1.9%) 15 (2.2%) 25 (3.7%) 30 (4.4%)

Median BG level varia-
tions (mmol/L)

0.34 [0.25 0.47] 0.31 [0.23 0.42] 0.27 [0.20 0.38] 0.24 [0.17 0.36]

Median insulin variations
(U/h)

1.0 [0.0 1.5] 1.0 [0.0 1.5] 1.0 [0.5 1.5] 1.0 [0.5 1.5]

Median time interval
(min)

180 [60 180] 180 [60 240] 210 [60 300] 180 [60 360]

% unchanged nutrition in-
terventions

62.4 51.9 30.0 22.3

% unchanged insulin in-
terventions

31.2 31.7 31.1 32.8

% unchanged insulin and
nutrition interventions

15.5 13.8 10.5 9.8

Table 7.2: Virtual trial results for STAR-TIM for 1 to 3-, 4-, 5-, and 6-hourly intervals.
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In terms of safety, there is a difference in the evolution observed for hyper- and hypoglycaemia.
There is a slight decrease of the incidence of moderate and severe hyperglycaemia as the time
interval increases. This can be related to the decrease of median nutrition. On the other
side, there is a significant increase in the incidence of hypoglycaemia and especially of severe
hypoglycaemia with 13 (1.9%) patients experiencing severe hypoglycaemia for 3-hourly and
30 (4.4%) patients for 6-hourly time intervals. This can also be explained by the important
decrease in median nutrition.

As expected, workload is significantly reduced from 11.7 measurements per day for 3-hourly
intervals to 7.5 measurements for 6-hourly intervals. This is also represented by the median
[IQR] time interval between interventions (180 [60 180] minutes for 3-hourly vs. 180 [60 360]
minutes for 6-hourly) which is quite high.

Those results are achieved with an important decrease in median nutrition for 5-hourly and
6-hourly intervals (100.0 [95.4 100.0] %GF for 3-hourly and 4-hourly vs. 88.0 [70.9 99.3] %GF
for 5-hourly and 65.2 [52.0 80.0] %GF for 6-hourly time intervals) and less unchanged nutri-
tion interventions as the interval increases and for the nutrition, this is synonymous of higher
variability in nutrition interventions. The median insulin rate is only decreased for 6-hourly
time intervals which is synonymous of more conservative treatments and the percentage of un-
changed insulin interventions is relatively constant. The median change in insulin rate between
two interventions is 1.0 U/h. Overall, these results clearly reflect the wider SI prediction ranges
for longer treatment intervals thus resulting in higher potential risk of both hyper- and hypo-
glycaemia, explaining both reduction in nutrition rates achieved as well as more conservative
insulin dosing (lower rates).

A last worth noting observation associated with the STAR-TIM is the important transition
observed between 3- and 4-hourly and 5- and 6-hourly time intervals. There is a sudden
important decrease in median nutrition and increase in the incidence of severe hypoglycaemia
observed for 5-hourly and 6-hourly time intervals. In the treatment selection process, the big
change between these versions is the maximum interval allowed when the current BG is above
the target band which is 2 hours for 3-hourly and 4-hourly and 3 hours for 5-hourly and 6-hourly.

7.3.2 Insulin dosing variability minimisation (STAR-IVM)

The results of the virtual trial performed on the optimisation STAR-IVM are gathered in
Table 7.3. Performance is high with high %BG in the bands (83.3 %BG within the target band
4.4-8.0 mmol/L and 66.4 %BG within 4.4-7.0 mmol/L for 3-hourly time intervals). Performance
slightly increases with longer time intervals. The number of patients with more than 50%BG
within the bands increases. The increases are a bit more important for the 4.4-7.0 mmol/L
band. There is a slight decrease in the glycaemic variability (0.33 [0.24 0.47] mmol/L for
3-hourly vs. 0.29 [0.21 0.41] mmol/L for 6-hourly).
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STAR-IVM-3H STAR-IVM-4H STAR-IVM-5H STAR-IVM-6H

# GC episodes 681 681 681 681

# GC hours 59239 59386 59424 59501

# BG measurements 30605 27552 26270 25944

# BG measurements/day 12.4 11.1 10.6 10.5

Median BG (mmol/L) 6.5 [5.9 7.3] 6.4 [5.8 7.2] 6.3 [5.8 7.2] 6.3 [5.7 7.2]

Median insulin (U/h) 3.0 [2.0 4.5] 3.0 [2.0 4.5] 3.0 [2.0 4.5] 3.0 [2.0 4.5]

Median nutrition (%GF) 99.9 [84.7 100.0] 89.8 [74.5 100.0] 85.0 [65.8 97.3] 81.9 [64.7 95.6]

% BG in 4.4-8.0 mmol/L 83.2 83.4 83.7 83.9

% BG in 4.4-7.0 mmol/L 66.4 67.7 68.3 68.6

% BG > 8.0 mmol/L 15.1 14.5 14.1 13.9

% BG < 4.4 mmol/L 1.7 2.1 2.2 2.2

% BG < 2.2 mmol/L 0.03 0.05 0.04 0.04

# patients ≥ 50%BG in
4.4-8.0 mmol/L (%

581 (85.3%) 582 (85.5%) 587 (86.2%) 589 (86.5%)

# patients ≥ 50%BG in
4.4-7.0 mmol/L (%)

460 (67.5%) 465 (68.3%) 477 (70.0%) 478 (70.2%)

# patients min BG < 2.2
mmol/L (%)

14 (2.1%) 19 (2.8%) 18 (2.6%) 18 (2.6%)

Median BG level varia-
tions (mmol/L)

0.33 [0.24 0.47] 0.31 [0.22 0.43] 0.29 [0.21 0.41] 0.29 [0.21 0.41]

Median insulin variations
(U/h)

0.5 [0.0 1.0] 0.5 [0.0 1.0] 0.5 [0.0 1.0] 0.5 [0.0 1.0]

Median time interval
(min)

90 [60 180] 90 [60 180] 90 [60 180] 120 [60 180]

% unchanged nutrition in-
terventions

48.2 35.8 33.0 32.4

% unchanged insulin in-
terventions

35.0 34.1 33.0 33.2

% unchanged insulin and
nutrition interventions

16.6 14.4 13.3 13.3

Table 7.3: Virtual trial results for STAR-IVM for 1 to 3-, 4-, 5-, and 6-hourly intervals.

Concerning safety, there is a slightly decreased incidence of hyperglycaemia for longer time
intervals. For the hypoglycaemia, a slightly increased incidence of moderate hypoglycaemia is
observed and related to the slight decrease in median BG level (from 6.5 [5.9 7.3] mmol/L for
3-hourly to 6.3 [5.7 7.2] mmol/L for 6-hourly time intervals). However, the incidence of severe
hypoglycaemia shows an increase for 4-hourly and then a slight decrease for 5- and 6-hourly
intervals.
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The workload decreases but remains high as the time interval increases (12.1 measurements
for 3-hourly vs. 10.5 for 6-hourly intervals). This high workload is also represented by the low
median [IQR] time interval (90 [60 180] minutes for 3-hourly intervals and 120 [60 180] minutes
for 6-hourly intervals).

In this version, the results are obtained with a constant median [IQR] insulin rate and a low
median insulin variation of 0.5 U/h between two interventions. The percentage of unchanged
insulin interventions decreases slightly as the time interval increases. In addition, the mean
[IQR] nutrition achieved is quite high and decreases with the time interval but less than for
the maximisation of the time interval (from 99.9 [84.7 100.0] %GF for 3-hourly to 81.9 [64.7
95.6] %GF for 6-hourly time intervals). The percentage of unchanged nutrition interventions
also decreases.

7.3.3 Global optimisation (STAR-GO)

The last trial was performed using the combination of both optimisations and the results are
presented in Table 7.4. As for the two other trials, the performance is high and slightly increases
with the time interval. This is represented by the increased %BG in the different bands between
3-hourly and 6-hourly time intervals (82.7 vs. 83.4 %BG within 4.4-8.0 mmol/L target band and
64.7 vs. 66.4 %BG within 4.4-7.0 mmol/L). The number of patients with more than 50%BG in
the bands evolves differently for each band. A slight decrease of this number is observed for the
wider 4.4-8.0 mmol/L target band while it increases for the tighter and safer 4.4-7.0 mmol/L
band. The glycaemic variability decreases with 0.34 [0.25 0.46] mmol/L for 3-hourly vs. 0.24
[0.17 0.36] mmol/L for 6-hourly time intervals.

Overall, the performance obtained for STAR-GO is lower than the performance observed for
each optimisation implemented individually. There is also a slight decrease in performance
observed for 4-hourly time intervals already noted for STAR-TIM.

Concerning safety, interesting observations can also be made. The incidence of hyperglycaemia
increases as the time interval increases and is slightly higher than for the two optimisations
separately. The incidence of both moderate and severe hypoglycaemia increases (1.7 %BG <
4.4 mmol/L for 3-hourly vs. 2.7 %BG < 4.4 mmol/L for 6-hourly tome intervals), this increase
being linked to the decrease of median nutrition, but the number of patients experiencing severe
hypoglycaemia is the highest for 5-hourly with 27 patients and the lowest for 4-hourly intervals
with 13 patients. Those numbers are more similar to the ones obtained with the time interval
maximisation rather than for the insulin rate variability minimisation.

The workload is similar to the one obtained for STAR-TIM and evolves the same way by
decreasing from 11.2 measurements per day to 7.5 measurements. The median [IQR] time
interval is also similar to one of STAR-TIM.
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STAR-GO-3H STAR-GO-4H STAR-GO-5H STAR-GO-6H

# GC episodes 681 681 681 681

# GC hours 59312 59536 59790 60068

# BG measurements 27608 23413 20614 18799

# BG measurements/day 11.2 9.4 8.3 7.5

Median BG (mmol/L) 6.5 [5.9 7.4] 6.5 [5.9 7.4] 6.4 [5.8 7.3] 6.3 [5.7 7.2]

Median insulin (U/h) 3.5 [2.0 5.0] 3.5 [2.0 5.0] 3.0 [2.0 4.5] 2.5 [2.0 4.0]

Median nutrition (%GF) 100.0 [92.0 100.0] 100.0 [85.3 100.0] 89.4 [72.0 99.7] 65.3 [52.0 80.0]

% BG in 4.4-8.0 mmol/L 82.7 82.4 82.5 83.4

% BG in 4.4-7.0 mmol/L 64.7 64.1 65.2 66.4

% BG > 8.0 mmol/L 15.6 15.4 14.9 13.9

% BG < 4.4 mmol/L 1.7 2.2 2.5 2.7

% BG < 2.2 mmol/L 0.03 0.04 0.08 0.08

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

588 (86.3%) 586 (86.0%) 588 (86.3%) 583 (85.6%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

460 (67.5%) 458 (67.2%) 453 (66.5%) 473 (69.5%)

# patients min BG < 2.2
mmol/L (%)

14 (2.1%) 13 (1.9%) 27 (4.0%) 25 (3.7%)

Median BG level varia-
tions (mmol/L)

0.34 [0.25 0.46] 0.30 [0.23 0.42] 0.27 [0.19 0.38] 0.24 [0.17 0.36]

Median insulin variations
(U/h)

0.75 [0.5 1.0] 1.0 [0.5 1.5] 1.0 [0.5 1.5] 0.75 [0.5 1.0]

Median time interval
(min)

180 [60 180] 180 [60 240] 210 [60 300] 180 [60 360]

% unchanged nutrition in-
terventions

59.5 49.6 28.0 20.4

% unchanged insulin inter-
ventions

32.2 30.6 30.2 33.2

% unchanged insulin and
nutrition interventions

16.7 13.0 10.1 9.1

Table 7.4: Virtual trial results for STAR-GO for 1 to 3-, 4-, 5-, and 6-hourly intervals.

Those results are achieved with a high but decreasing nutrition from 100 [92.0 100.0] %GF
for 3-hourly to 65.3 [52.0 80.0] %GF for 6-hourly time intervals which is lower but still high
for ICU patients compared to most ICU settings [48]. There is also an important decrease in
the percentage of unchanged nutrition interventions which is initially quite high and decreases
importantly. This is linked to the higher variability of the nutrition interventions observed.
The median insulin rate decreases as the time interval increases and is comprised between the
results obtained for the two optimisations as well as the median insulin variations and the
percentage of unchanged insulin interventions.
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As for the trial performed on STAR-TIM, there is a strong difference in terms of nutrition and
incidence of hypoglycaemia between the 3- and 4- hourly vs. the 5- and 6- hourly versions of
STAR-GO.

7.4 Discussion

7.4.1 Transition in time interval maximisation

For STAR-TIM, a transition was observed between the results obtained for 3-, 4-hourly and
for 5-, 6-hourly time intervals. This difference was marked by an increase in the incidence of
severe hypoglycaemia and a strong decrease in nutrition administration.

In the implementation of the treatment selection process, the main difference observed by
changing the time interval is the maximum time interval allowed when the current BG is above
the target band. For the 3- and 4-hourly versions of STAR-TIM, this interval is limited to 2
hours and for the 5- and 6-hourly versions, it is limited to 3 hours. As a consequence, longer
intervals may be more frequently allowed, increasing the risk of extreme changes in BG levels
and therefore of severe hypoglycaemia (or hyperglycaemia). This change in intervals results
also in a different measurement timing which can unluckily lead to severe hypoglycaemia.

The other effect of allowing longer intervals even for non-stabilised patients is the strong de-
crease in nutrition administration. Treatment recommendations with lower nutrition will be
favoured with respect to others if they allow longer treatment intervals. An example of this
situation is visible in Figure 7.5. At hour 3, the treatment chosen by STAR-TIM-6H provides
less nutrition but a longer time interval than the one by STAR-TIM-3H. There are also cases
where the treatment chosen administers less nutrition and higher insulin rates than the previous
one because it allowed longer treatment intervals. This was already the case in STAR-3D but
occurs more frequently here as longer treatment intervals can be considered more often because
of the higher tolerance on the 95th. This is encountered, for example, at hours 30 and 93 in
Figure 7.5.

A solution to reduce the risks associated with STAR-TIM and the significant decrease in nu-
trition rates achieved can be to limit the maximum time interval allowed to 2 hours when the
current BG is above the target band regardless of the maximum time intervals considered.
Indeed, the 3- and 4-hourly versions allowing a maximum interval of 2 hours were shown to
provide similar performance while reaching much higher nutrition administered and lower in-
cidence of hypoglycaemia than the 5- and 6-hourly versions of STAR-TIM allowing 3 hours
measurement intervals. However, by looking more in detail to the results, this might not be the
main reason for the important decrease. Longer treatment intervals are almost never chosen
when BG is above the target band.
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Figure 7.5: Excerpt of the virtual results for one patient with time interval maximisation. The
BG level (top), the nutrition rates and dextrose bolus (middle), the insulin bolus and infusion
(bottom) are shown. Results are compared between 3-hourly (blue) and 6-hourly (red). Dotted
lines on top panel represent the target band 4.4-8.0 mmol/L.

Another solution would be to adapt the tolerance on the 95th percentile. The decrease in
nutrition and higher risk of hypoglycaemia might also be a consequence of the higher tolerance
on the 95th percentile which can have more impact when longer treatment intervals can be
considered.

To be able to conclude on the influence of each modification and therefore on the solution to
adopt, they should be analysed separately. This will be further analysed in future work.

7.4.2 Balance of effects in global optimisation

During its development, STAR-GO was defined as a combination of both time interval maximi-
sation and insulin variations minimisation. In addition to the implementation, the combination
of both optimisations is also noted in the results obtained.

The different positive and negative effects of each optimisation can be observed in the results
obtained for the global optimisation. Some effects also counterbalance such as the median
insulin variation and the number of patients experiencing severe hypoglycaemia. The re-
sults obtained for each of these variables are between the ones obtained for STAR-TIM and
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STAR-IVM. Globally, the effects of the time interval maximisation prevail, the same transition
between 3- and 4- hourly intervals and 5- and 6- hourly intervals is noted.

Figure 7.6 shows an example of a patient illustrating the differences between the three optimi-
sations. First, the severe hypoglycaemia occurring at hour 26 for the two others is avoided with
STAR-IVM. Then, the important reduction in nutrition observed for STAR-TIM and STAR-
GO is also marked as well as the increase in median insulin rate for STAR-IVM. Finally, there
seems to be more or less the same number of changes in the interventions. However, when these
changes are related to the number of interventions and measures, the ratio reduces and there
are more unchanged interventions for STAR-IVM.

Figure 7.6: Representation of the virtual results for one patient. The BG level (top), the
nutrition rates and dextrose bolus (middle), the insulin bolus and infusion (bottom) are shown.
Results are compared for 6-hourly time intervals between STAR-TIM (red), STAR-IVM (yellow)
and STAR-GO (blue). Dotted lines on top panel represent the target band 4.4-8.0 mmol/L and
the limit of severe hypoglycaemia 2.2 mmol/L.

7.4.3 Risk and reward trade-offs

During their development, the different versions of the treatment selection process were asso-
ciated with potential risks and rewards. To quantify the risk and reward trade-off associated
with each version, the results obtained for the three optimisations considered in this Chapter
are compared with the results obtained for STAR-3D for 3-hourly (Table 7.5) and 6-hourly
(Table 7.6) time intervals.
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STAR-TIM

The reward associated with the STAR-TIM is as expected a reduction of the number of measure-
ments per day compared to STAR-3D (11.2 vs. 12.1 measurements/day for 3-hourly and 7.5 vs
8.3 measurements/day for 6-hourly). There is also an improved percentage of unchanged inter-
ventions and particularly of unchanged nutrition interventions for both 3-hourly and 6-hourly
time intervals. This reward is achieved with an increased risk of hypoglycaemia especially for
6-hourly with 30 patients experiencing severe hypoglycaemia for STAR-TIM against 23 ob-
served for STAR-3D. The other important risk is the relatively much lower median nutrition
for 6-hourly time intervals. The median nutrition administered is reduced by 20% compared
to STAR-3D for the 6-hourly interval (85.3 %GF for STAR-3D vs. 65.2 %GF for STAR-TIM)
which is an important difference.

As already mentioned, two solutions to reduce the risks associated with the time interval max-
imisation would be to limit the time interval allowed to 2 hours when the current BG is above
the target band and not 3 hours as it is in this version and to adapt the tolerance on the 95th

percentile. This should reduce the risk of severe hypoglycaemia and reduce nutrition at the
cost of a slight increase of the workload.

Unlike the initial assumptions made by implementing STAR-TIM, the performance is not really
impacted by the higher tolerance placed on the 95th percentile. Indeed, the %BG in the
different bands is a bit lower for STAR-TIM with 3-hourly intervals but higher for 6-hourly and
particularly for the 4.4-7.0 mmol/L band. This is linked to the lower median BG level obtained
for 6-hourly time intervals.

Overall, this design successfully managed to further reduce workload, at the cost of a signifi-
cantly decreased nutrition rates achieved and increased incidence of severe hypoglycaemia.

STAR-IVM

The main reward associated with STAR-IVM is the reduced median insulin variation (0.5 U/h
for STAR-IVM vs. 1.0 U/h for STAR-3D) and the increased percentage of unchanged insulin
and nutrition interventions for the different time intervals. It also induces a decrease of the
incidence of severe hypoglycaemia for 6-hourly time intervals with only 18 patients experiencing
severe hypoglycaemia compared to the 23 patients for STAR-3D.

However, it results in a decreased median time interval and therefore, an increased workload.
This negative effect is particularly visible for 6-hourly time intervals (10.5 measurements/day
for STAR-IVM and 8.5 measurements/day for STAR-3D). By considering the current treatment
administered, the protocol can choose treatment with insulin dosing leading to higher risk of
extreme BG levels in the next hours. To compensate for this effect, the time interval is reduced
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resulting in lower incidence of both hyper- and hypoglycaemia with an increased workload and
insulin dosing.

The same observation as with the time interval maximisation can be made for the performance.
The lower median BG level obtained for 6-hourly time intervals reflects the increased %BG in
the different bands.

Contrary to initial assumptions, the use of insulin is a bit reduced for 3-hourly but not for
6-hourly. Limiting the insulin dosing variations is then not associated with reduced costs for
all the time intervals. In addition, lower insulin dosing variability induces higher glycaemic
variability for 4-,5-, 6-hourly time intervals and consequently worse GC outcomes.

Here again, the design successfully reduced the insulin dosing variability and the interventions
required from the nurses at the cost of an increased workload in terms of measurements and an
unexpected increased glycaemic variability.
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3-hourly
STAR-3D STAR-TIM STAR-IVM STAR-GO

# GC episodes 681 681 681 681

# GC hours 59209 59285 59239 59312

# BG measurements 29903 27646 30605 27608

# BG measurements/day 12.1 11.2 12.4 11.2

Median BG (mmol/L) 6.4 [5.8 7.2] 6.5 [5.9 7.4] 6.5 [5.9 7.3] 6.5 [5.9 7.4]

Median insulin (U/h) 3.5 [2.0 5.0] 3.5 [2.0 5.5] 3.0 [2.0 4.5] 3.5 [2.0 5.0]

Median nutrition (%GF) 99.7 [84.5 100.0] 100.0 [95.4 100.0] 99.9 [84.7 100.0] 100.0 [92.0 100.0]

% BG in 4.4-8.0 mmol/L 83.8 82.8 83.2 82.7

% BG in 4.4-7.0 mmol/L 67.5 64.5 66.4 64.7

% BG > 8.0 mmol/L 14.5 15.5 15.1 15.6

% BG < 4.4 mmol/L 1.7 1.8 1.7 1.7

% BG < 2.2 mmol/L 0.03 0.03 0.03 0.03

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

591 (86.8%) 590 (86.6%) 581 (85.3%) 588 (86.3%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

479 (70.3%) 466 (68.4%) 460 (67.5%) 460 (67.5%)

# patients min BG < 2.2
mmol/L (%)

12 (1.8%) 13 (1.9%) 14 (2.1%) 14 (2.1%)

Median BG level varia-
tions (mmol/L)

0.35 [0.25 0.49] 0.34 [0.25 0.47] 0.33 [0.24 0.47] 0.34 [0.25 0.46]

Median insulin variations
(U/h)

1.0 [0.5 1.5] 1.0 [0.0 1.5] 0.5 [0.0 1.0] 0.75 [0.5 1.0]

Median time interval
(min)

120 [60 180] 180 [60 180] 90 [60 180] 180 [60 180]

% unchanged nutrition in-
terventions

41.0 62.4 48.2 59.5

% unchanged insulin in-
terventions

29.9 31.2 35.0 32.2

% unchanged insulin and
nutrition interventions

11.0 15.5 16.6 16.7

Table 7.5: Virtual trial results summary for 3-hourly time intervals. Comparison between
STAR-3D, STAR-TIM, STAR-IVM and STAR-GO.
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6-hourly
STAR-3D STAR-TIM STAR-IVM STAR-GO

# GC episodes 681 681 681 681

# GC hours 60054 60051 59501 60068

# BG measurements 20696 18675 25944 18799

# BG measurements/day 8.3 7.5 10.5 7.5

Median BG (mmol/L) 6.8 [6.2 7.5] 6.3 [5.7 7.2] 6.3 [5.7 7.2] 6.3 [5.7 7.2]

Median insulin (U/h) 2.5 [1.7 3.0] 2.5 [1.5 4.3] 3.0 [2.0 4.5] 2.5 [2.0 4.0]

Median nutrition (%GF) 85.3 [70.1 94.7] 65.2 [52.0 80.0] 81.9 [64.7 95.6] 65.3 [52.0 80.0]

% BG in 4.4-8.0 mmol/L 81.4 83.9 83.9 83.4

% BG in 4.4-7.0 mmol/L 56.3 67.8 68.6 66.4

% BG > 8.0 mmol/L 16.9 13.4 13.9 13.9

% BG < 4.4 mmol/L 1.6 2.7 2.2 2.7

% BG < 2.2 mmol/L 0.05 0.08 0.04 0.08

# patients ≥50%BG in
4.4-8.0 mmol/L (%)

584 (85.7%) 591 (86.8%) 589 (86.5%) 583 (85.6%)

# patients ≥50%BG in
4.4-7.0 mmol/L (%)

398 (58.4%) 475 (69.7%) 478 (70.2%) 473 (69.5%)

# patients min BG < 2.2
mmol/L (%)

23 (3.4%) 30 (4.4%) 18 (2.6%) 25 (3.7%)

Median BG level varia-
tions (mmol/L)

0.22 [0.15 0.32] 0.24 [0.17 0.36] 0.29 [0.21 0.41] 0.24 [0.17 0.36]

Median insulin variations
(U/h)

1.0 [0.5 1.5] 1.0 [0.5 1.5] 0.5 [0.0 1.0] 0.75 [0.5 1.0]

Median time interval
(min)

60 [60 360] 180 [60 360] 120 [60 180] 180 [60 360]

% unchanged nutrition in-
terventions

19.9 22.3 32.4 20.4

% unchanged insulin in-
terventions

33.9 32.8 33.2 33.2

% unchanged insulin and
nutrition interventions

8.4 9.8 13.3 9.1

Table 7.6: Virtual trial results summary for 6-hourly time intervals. Comparison between
STAR-3D, STAR-TIM, STAR-IVM and STAR-GO.

STAR-GO

The different risk and reward trade-offs highlighted for STAR-TIM and STAR-IVM are com-
bined in STAR-GO. The reward associated with the combination is a reduced workload of
approximately one measurement per day compared to the original version and higher percent-
ages of unchanged interventions. Performance is similar but higher for 6-hourly time intervals.
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The risks are higher incidence of hypoglycaemia and significantly reduced nutrition for 6-hourly.
The nutrition is similar to the one obtained for the time interval maximisation but the increased
incidence of severe hypoglycaemia is lower because it was counterbalanced by the reduced
incidence obtained for the insulin dosing variability minimisation. There is also an increased
glycaemic variability.

However, the risk and reward trade-off highlighted here for STAR-GO and more globally for
each optimisation studied evolve with the time interval. Indeed, this is noted by the opposite
evolution of performance and incidence of hyperglycaemia between STAR-3D and STAR-GO.

Figure 7.7 allows to better visualise this evolution by showing a summary of the main risks
and rewards associated with STAR-GO for the different time intervals. The results obtained
for 4-hourly and 5-hourly time intervals are also visible in this Figure even though they are not
shown in the Tables 7.5 and 7.6. Only STAR-GO is compared as it combines well the results
of each optimisation.

Figure 7.7: Comparison of performance, safety and workload between STAR-3D (solid line) and
STAR-GO combining time interval maximisation and insulin variations minimisation (dotted
line) as a function of the time intervals.

For 3-hourly time intervals, the reward associated with each optimisation of the treatment se-
lection process (lower workload and higher percentage of unchanged interventions) is clearly
visible. The risks are however limited as the nutrition and the incidence of hyper- and hy-
poglycaemia are barely impacted. These observations together with the previous ones allow
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to conclude that the new treatment process implemented in STAR-GO is well suited to be
used with 3-hourly time intervals as the risks associated are limited compared to the rewards
obtained.

For 4-hourly, the situation is similar. The reward is still clear with only a bit less unchanged
interventions and in this case increased nutrition. On the other side, the risks associated are not
increased so the global optimisation is also appropriate to be used with 4-hourly time intervals.

From 5-hourly time intervals, the situation is a bit different. First, for 5-hourly, one main
reward, the reduced workload is obtained. Except the slight increased incidence of severe
hypoglycaemia, the rest of the results seems similar between the two protocols suggesting that
STAR-GO has no significant impacts on GC using 5-hourly time intervals.

Then, for 6-hourly, the reward associated with STAR-IVM is not so noticeable. The inci-
dence of hyperglycaemia is slightly lower than for the different time intervals. However, the
risk expressed by much lower nutrition administration may exceed the main reward of one
measurement less per day but a solution has been proposed to reduce that risk.

7.4.4 Conclusions

Globally, the new treatment selection processes implemented here fulfill their functions. The
changes implemented to maximise the time interval reduce the workload and those to minimise
the insulin dosing variability reduce the number of interventions required of the nurses. STAR-
GO also combines well the different effects.

In addition, the number of patients with more than 50% BG in the different bands is high
for the different protocols and time intervals tested. This shows that an effective control was
achieved for nearly all patients.

Those improvements are not risk-free. Each one is associated with different risks. The nutri-
tion is reduced, the incidence of hypoglycaemia is increased for longer time intervals and the
workload and glycaemic variability are increased for less insulin variations. Those risks also
add and/or counterbalance in the protocol combining the improvements. However, they remain
limited except for 6-hourly time intervals which encourages their use in clinical practice.

Solutions were also proposed to reduce the important decrease in nutrition administration and
the increased incidence of hypoglycaemia induced by STAR-TIM for 6-hourly time intervals,
by fixing interval to a maximum of 2 hours when above target and by adapting the tolerance on
the 95th percentile when in the target. These solutions should be tested to see if they actually
increase nutrition, thus positively impacting the results.
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Once again, it is important to mention that those results were obtained using virtual trials.
They assume a full compliance of the nurse which is not representative of the reality. As
encouraging results were already obtained with these virtual trials, clinical trials should be
conducted on STAR-GO to further validate its use.

7.5 Summary

To further reduce the workload associated with GC and to increase the nurse’s confidence in
STAR, two changes were implemented in the treatment selection process of STAR-3D. Their
goal is to reduce the number of measurements and interventions required and to reduce the
variability in insulin dosing.

To check the validity of these improvements, virtual trials were conducted on each change
implemented individually and then, on a global optimisation combining the two changes. The
trials were performed on the extension of STAR-3D developed in Chapter 3 as it provided
positive results.

The trials performed showed encouraging results confirming the assumed effects of each change
and highlighting the risk and reward trade-offs associated with each optimisation. By maximis-
ing the time interval and minimising the insulin dosing variability, the workload was reduced
in terms of number of measurements per day and insulin and nutrition interventions. The risks
associated with these rewards were mainly reduced safety and nutrition for 6-hourly intervals.

Those results are positive for a future use of this new protocol in clinical practice and par-
ticularly in ICUs where the nurse’s compliance and confidence in the protocol is not optimal.
However, some adjustments still need to be made and a clinical trial should confirm the results
obtained virtually.
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Chapter 8

Conclusions

8.1 General conclusions

Stress-induced hyperglycaemia is a common glucose complication occurring in critically ill pa-
tients. It is part of the stress response of the body following a severe trauma. Stress-induced
hyperglycaemia is associated with worse outcomes for critically ill patients and glycaemic con-
trol has been introduced to reduce and stabilise BG levels. This control is achieved through
protocols modulating insulin and in some cases nutrition. One of such GC protocols is the
Stochastic TARgeted (STAR) GC protocol. Two versions of the stochastic models used in
STAR have previously been developed, providing two versions of STAR, and the most recent
one STAR-3D was shown to provide tighter predictions with a more patient-specific control
and therefore expected improved clinical outcomes.

New versions of STAR-3D are studied in this master thesis. Their aim is to reduce the workload
and the treatment variability associated with the protocol perceived as a clinical burden for the
nurses and impeding the adoption of the protocol in some intensive care units. The different
versions are investigated by assessing the risk and reward trade-off of each of them. This is
done by conducting virtual trials on virtual patients. Using virtual trials allows to optimise and
validate the protocol prior to its clinical implementation saving time, money and preventing
avoidable risks on real patients.

The different in silico trials are performed on a same cohort of 681 virtual patients characterised
by unique insulin sensitivity profiles. These patients are used to create the 3D stochastic models.
These models are created for the six different time intervals considered using five-fold cross-
validation. They show larger prediction width as the time interval increases possibly associated
with reduced safety for the patients. The five-fold cross-validation also allows to conclude that
the models are generalisable to other cohorts and protocols.
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The first trial is an extension of the measurement and treatment interval of STAR-3D from
1-3 hourly to 1-6 hourly. This extension has previously been studied on STAR-2D and the
protocol was shown to provide robust control even for longer intervals. Results obtained with
STAR-3D also clearly highlight a risk and reward trade-off with reduced workload at the cost
of lower %BG in the target band and higher incidence of both hyper- and hypoglycaemia as
the measurement and intervention interval increases. Overall, 4- and 5-hourly intervals appear
to offer the best risk and reward trade-off with non negligible reduced workload at the cost of
limited decrease in performance and safety of STAR-3D. Compared to STAR-2D, performance
and safety are improved thanks to tighter predictions obtained with the stochastic models better
accounting for inter- and intra-patient variability.

The second set of trials tests different optimisations of the treatment selection process of STAR-
3D. The optimisations are tested on the extension of the time intervals because of the encour-
aging results obtained with the first virtual trial. The proposed solutions are first studied
separately and then together in a global optimisation process. The results obtained from the
trials show that each version fulfills the functions it is implemented for and the effects of each
add up or counterbalance in the global optimisation.
A first solution, STAR-TIM is implemented to further reduce the workload associated with
STAR by maximising the time interval between measurements and interventions. The work-
load is effectively reduced for STAR-TIM with high performance at the cost of much lower
nutrition rates and lower safety.
The second solution is implemented in STAR-IVM and consists in reducing the insulin dosing
variability. Here again, STAR-IVM successfully reduces the insulin variability and the need to
change the treatment administered at the expense of increased workload.
The combination of both solutions in STAR-GO provides a safe and efficient control for nearly
all patients. Despite some further optimisations of the treatment selection process to limit the
risks mentioned, results are encouraging for a future use of this new version of STAR-3D in
clinical practice.

8.2 Perspectives and Future work

This work investigated the risk and reward trade-offs associated with different versions of the
STAR-3D protocol. These studies were made in silico using virtual trials providing results in an
ideal situation of full nurse’s compliance. However, this does not completely reflect the reality
as nurses are free to choose the recommendations given by the protocol. To be able to conclude
on the validity of a protocol, clinical trials have to be performed.

The conduction of a clinical trial is thus the next step to validate the extension of STAR to
longer treatment and measurement intervals. The encouraging results obtained virtually for
STAR-2D in a previous study and for STAR-3D in this work need to be confirmed clinically
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before actually implementing the protocol in intensive care units.

On the other side, future work also needs to be carried out on the optimisations of the treatment
selection process prior to their clinical testing. For STAR-TIM, two modifications have been
implemented in the treatment selection process and it was not possible to detect the influence
of each of them by simply looking at the results. Further virtual trials should be conducted
on each modification implemented separately to study their impact and be able to test the
solutions proposed to limit the reduction in nutrition rates administration and the increased
incidence of hypoglycaemia observed for longer time intervals in STAR-TIM and STAR-GO. If
these trials validate these versions, clinical trials could than be conducted on STAR-GO.
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Appendix A

Parameters of the ICING model

Parameter Signification Value Units

αG

Saturation of insulin-mediated glucose up-
take

0.0154 [L/mU ]

αI Saturation of hepatic insulin clearance 17× 10−3 [L/mU ]

CNS Glucose uptake by central nervous system 0.3 [mmol/min]

d1 Glucose transfer rate from stomach to gut 0.0347 [min−1]

d2 Glucose transfer clearance rate from gut 0.0069 [min−1]

EGP Endogenous glucose production (hepatic) 1.16 [mmol/min]

k1 Insulin secretion model parameter 14.9 [(mU · L)/mmol/min]

k2 Insulin secretion model parameter -49.9 [mU/min]

nC

Rate parameter: cellular degradation of
internalised insulin

0.006 [min−1]

nI

Rate parameter: diffusion of insulin be-
tween plasma and interstitium

0.006 [min−1]

nK

Rate parameter: kidney clearance of in-
sulin

0.0542 [min−1]
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nL

Rate parameter: general hepatic insulin
clearance

0.1578 [min−1]

pG
Other non-insulin mediated glucose clear-
ance

0.006 [min−1]

Pmax Maximum glucose flux out of the gut 6.11 [mmol/min]

umax Maximum insulin secretion 266.7 [mU/min]

umin Minimum insulin secretion 16.7 [mU/min]

VG Glucose distribution volume 13.3 [L]

VI Insulin distribution volume 4 [L]

xL

Fractional first pass hepatics insulin clear-
ance from portal vein

0.67 [−]

Table A.1: Parameters values and definitions of the ICING model [7, 44].

Variable Signification Units

D(t) Oral glucose input rate (enteral nutrition) [mmol/min]

PN(t) Intravenous glucose input rate (parenteral nutrition) [mmol/min]

uex(t) Intravenous insulin input rate [mU/min]

Table A.2: Exogenous variables description of the ICING model [7, 44].
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