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Abstract

The technique of online distillation has become increasingly popular in adapting real-
time deep neural networks using a slow and accurate teacher model. However, one of the
most significant challenges encountered with online distillation is catastrophic forgetting,
which happens when the student model is updated with new domain data and loses the
previously learned knowledge.

The main contribution in this thesis is to apply continual learning techniques to mitigate
the problem fo catastrophic forgetting in online distillation. Indeed, continual learning has
shown to be useful in a more general setting, where the model tend to forget knowledge
from previous tasks when learning the current one. The study aims to assess the efficacy
of various state-of-the-art continual learning methods in reducing catastrophic forgetting
when applied to online distillation, particularly in cyclic domain shifts.

The experimental results presented in this study show improved accuracy and robustness
in the context of online distillation when leveraging continual learning methods to reduce
catastrophic forgetting, with potential applications in fields such as video surveillance or
autonomous driving. As such, this work represents a significant contribution to the fields
of online distillation and continual learning, providing new insights and avenues for future
research.

The content of this thesis is mostly based on the work of Houyon et al. [1], of which
I am a first author. This paper was peer-reviewed and accepted for publication in the
CLVision workshop at CVPR 2023. In addition, this thesis provides more comprehensive
and detailed explanations of the continual learning methods used in the study, as well
as additional experiments, results, and discussions. This report takes into account the
feedbacks and remarks from the CLVision reviewers, making it, overall, more complete
than the published paper. Finally, we provide a detailed implementation on a public
Github repository: https://github.com/Houyon/online-distillation-cl.
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Chapter 1

Introduction

1.1 Problem statement
Deep Neural Networks (DNNs) have shown outstanding performance on a range of com-
puter vision tasks by assuming that the training and testing data share similar distri-
butions, as mentioned in [2–4]. Nevertheless, DNNs can experience significant loss in
performance when tested on out-of-distribution data, where the testing data contains do-
main shifts that differ from the training data, as stated in [5, 6]. Moreover, when learning
a continuous stream of tasks, DNNs tend to forget previously learned distributions, which
can lead to a considerable performance loss, as discussed in [7]. The occurrence of domain
shifts in real-world applications due to variations in brightness, weather conditions, and
sensor perturbations, as cited in [8], highlights the importance of developing algorithms
that can enable DNNs to adapt to such shifts while maintaining high performance in
real-world scenarios.

Continual learning enables machine learning models to learn from a continuous flow of
data without forgetting previously learned knowledge [9, 10]. This research focuses on
a specific practical scenario of online continual learning [11], which deals with cyclic
domain shifts, where a sequence of data switches between two distributions for a certain
period. For instance, an autonomous driving system that travels between cities and
countrysides might face domain shift as the instance’s distribution changes between the
two scenes, potentially leading to online learning failures and real-world deployment issues.
Although prior research has explored online continual learning in different settings, such
as unsupervised domain adaptation [12], domain incremental learning [13], and test-time
adaptation [14], these studies generally consider more general settings where domain shifts
are unconditional and possibly less realistic. By focusing on cyclic domain shifts, this
research has enabled the development of new algorithms that can adapt to these changes
more effectively in real-world scenarios, exploring a pragmatic approach.
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Figure 1.1. (© 2023 IEEE) Online distillation with continual learning. According
to Houyon et al. [1] , when cyclic domain shifts occur in long videos, the online distillation
framework proposed by Cioppa et al. [15] forgets the previously acquired knowledge as it
fine-tunes on the current domain. It is studied, in this work, the inclusion of state-of-the-
art continual learning methods inside the online distillation framework to mitigate this
catastrophic forgetting around the domain shifts.

This work proposes a novel approach to address the challenge of adapting to cyclic do-
main shifts in the context of online domain incremental learning. Specifically, a previously
published real-time online distillation technique [15] is employed to learn from the unla-
beled cyclic stream of data. The online distillation technique asynchronously updates a
student-teacher based approach on the received data, enabling the model to continually
learn from new data. However, it was found that the way the student was being trained
can cause the student to forget the previously learned domain, leading to a significant loss
in performance. To mitigate this undesirable effect, online distillation is combined with
state-of-the-art continual learning techniques as shown in Figure 1.1. Both regularization-
and replay-based approaches from the continual learning literature are leveraged. The
proposed approach effectively enables the student to adapt to cyclic domain shifts and
maintain high performance over time, making it suitable for real-world deployment.

1.2 Contributions
Contributions are summarized in three points. The first point is the definition of the cyclic
online continual learning setup and a proposal for the corresponding evaluation metrics.
Second, new metrics are proposed in order to evaluate the model in the specific scenario
of cyclic domain shifts. Third, we combine online distillation with both regularization and
replay-based continual learning approaches to better learn from cyclic domains. Then,
experiments are conducted on the proposed stream where it is shown that these approaches
mitigates forgetting on the original online distillaiton framework.
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1.3 Collaboration
The work of this thesis has led to the writing of a scientific article (Houyon et al. [1])
that has been peer-review and accepted at CLVision workshop which is part of the CVPR
(Computer Vision and Pattern Recognition) 2023 conference. This article is the result
of collaboration between doctoral students and professors from the University of Liège
(Anthony Cioppa, Anaïs Halin, Maxim Henry, and Marc Van Droogenbroeck), as well as
professors and doctoral students from KAUST University in Saudi Arabia (Yasir Ghu-
naim, Motasem Alfarra, and Bernard Ghanem). To achieve this, bi-weekly meetings were
held so that these people could have continuous monitoring of my progress and guide me
towards the right path. I personnaly took care of the implementation and my collaborators
guided me based on their respective expertise and helped me write the paper.

Figure 1.2. (© 2023 IEEE)Screenshot of our published paper accepted at the CLVision
workshop at the CVPR 2023 conference [1]
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Chapter 2

Related Work

2.1 Domain shifts
A domain shift is characterized by a change in the statistical distribution of data between
distinct domains, as explained by Farahani [16]. Recent studies in computer vision have
shown that this phenomenon is often observed at test time in open-world scenarios [17–19].
In the field of autonomous driving, domain shift can occur due to various factors [20], such
as diverse environmental conditions like rural or urban roads, lighting conditions such as
day or night, weather conditions like sunny or snowy [8], traffic conditions, or differences
in the appearance of roads or traffic signs across different countries [21].

In the context of autonomous driving, it is essential for algorithms to be able to handle
dynamic domain shifts to ensure the vehicle can perceive and understand its surroundings,
and avoid obstacles. To address this challenge, domain adaptation has become a critical
area of research, particularly in open-world scenarios such as autonomous vehicles [20,
22–25], where data is collected in a constantly changing environment.
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(a) Downtown environment (b) Highway environment

(c) Rainy environment

Figure 2.1. Illustration of different environments. In autonomous driving, domains can
differ from where the car drives (highway (Figure b), downtown (Figure a), urban, forest,
...) but also according to weather conditions (sunny, rainy (Figure c), ...). The resulting
model should be able to handle all these domains.

The present study focuses on investigating the cyclic domain shift phenomenon specifically
in the context of autonomous driving, where the domains are characterized by alternating
sequences of highway and downtown driving conditions.

2.2 Online distillation
Achieving high performance, real-time speed, and generalizability across multiple domains
is a challenge in the field of deep neural networks. On one hand, top-performing models
tend to exhibit strong performance across diverse domains, they can be memory-intensive
for embedded systems or too slow for use in real-time applications [26–28]. On the other
hand, lightweight and fast networks show good performance on smaller domains but may
not have the same level of generalizability [29].

To address this issue, Cioppa et al. [15] proposed an online distillation method for videos,
which enables the training of a lightweight student network using a slower, larger teacher
model. During testing, the teacher provides pseudo ground truths to the student, allowing
it to specialize in the specific domain being analyzed. This approach helps the student
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model to adapt to changing video conditions and match the performance of the slower
teacher. The online distillation technique is applicable to various tasks, including semantic
segmentation and multi-modal object detection [15, 30].

The objective of the proposed approach is to produce real-time predictions ŷi for each
frame xi of a long untrimmed video V for a given task T , such as object detection or
semantic segmentation. The approach uses a student-teacher architecture with a fast and
slow route. The student network S computes ŷi at a rate of rV in the fast route (inference).
In parallel, the slower but high-performance frozen teacher network T produces pseudo
ground-truths ỹi′ = T(xi) at a slower rate of rT on a subset of V in the slow route
(training).

Each new pair (xi′ , ỹi′) is stored into an online dataset D that has a fixed size N . The
stored pairs are used to train a copy Sc of the student network, and when the online
dataset is full, the oldest pairs are replaced with new incoming pairs.

Iteratively, Sc is trained on D, by minimizing the loss:

L =
N∑

n=1
L(Sc(xn), ỹn) ,

where the distance function L depends on the specific task being performed by the student-
teacher architecture. The parameters of S are updated by transferring the parameters θ
of Sc at a rate equal to the inverse of the training time of Sc on one epoch of D. The
complete process is outlined in Algorithm 1.

Algorithm 1 The proposed online distillation algorithm from [15]

1 Choose T, initialize S and Sc with θ0, collect D1
2 while incoming video stream V do
3 while Sc trains with Dk do
4 Segment all incoming frames with S
5 Compute T(Xi′) for some incoming frames Xi′

6 S becomes Sc by copying weights θk of Sc into S
7 Dk becomes Dk+1 by replacing some frames by (Xi′ , T(Xi′))
8 Increment k by 1

The introduced framework allows S to specialize in the latest portion of the video being
analyzed, enabling it to adapt to slow domain changes as long as reliable predictions are
produced by T.

Nonetheless, the continuous fine-tuning process, due to the way the online dataset is
updated as shown in Figure 2.2, causes the network to forget previously learned knowledge
over time. For example, when abrupt domain shifts occur, S requires multiple updates
to regain good performance even if the same domain has previously appeared in the
video.
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Figure 2.2. Baseline. Illustration on how the online dataset works in the original distil-
lation framework. Upon the arrival of a new frame, it gets incorporated into the online
dataset. However, if the online dataset has reached its capacity limit, the oldest frame
in it is discarded; it works in a First In First Out (FIFO) manner. This results in
the online dataset being populated with frames that are only from the last h minutes of
video. Consequently, the student’s parameters get adjusted to align with this particular
distribution of frames, without considering any previous contexts. This entire procedure
can lead in catastrophic forgetting.

Therefore, this work investigates several continual learning techniques to alleviate the
impact of catastrophic forgetting in online distillation, particularly in cases of cyclic do-
main shifts. This work proposes to combine online distillation with regularization- and
replay-based methods for a more effective continual learning approach.

2.3 Continual learning
Continual Learning (CL) is a learning paradigm that focuses on learning from a stream of
data that may have a changing distribution over time [31, 32]. However, one of the main
challenges of this paradigm is the problem of catastrophic forgetting, where previously
learned knowledge is lost when adapting to newly arriving data samples [7, 10].

One approach to mitigating the forgetting effect in continual learning is to regularize
the training process by constraining the changes of important network parameters [7, 33,
34], or performing knowledge distillation [9, 35, 36]. Another approach is to use replay-
based methods, where previously seen examples are rehearsed by storing a subset of the
observed data in a replay buffer [10, 37, 38]. While both approaches were originally pro-
posed for the class-incremental setup and classification tasks, they have recently been
extended to the more realistic domain incremental setup and the more challenging se-
mantic segmentation task [13, 39]. However, most prior research assumes fully supervised
setups where the stream reveals labeled data for the student learner. In this work, the
domain incremental setup for semantic segmentation is analyzed under a semi-supervised
setup; the teacher network T is trained using supervised learning, which then will provide
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pseudo-groundtruths to unlabeled data from the incoming stream that are used to train
the student network.
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Chapter 3

Methodology

In this section, our extension of online distillation including continual learning is presented.
Then, the integration of regularization-based and replay-based continual learning methods
into the new online distillation framework is detailed. Finally, an explanation is provided
on how to evaluate and benchmark online continual learning methods under the cyclic
stream.

3.1 Online distillation with continual learning
The existing online distillation framework is extended with continual learning techniques
to mitigate catastrophic forgetting of previously learned knowledge when dealing with
cyclic domain shifts. Specifically, the benchmark includes two types of techniques: replay-
based methods (CLRep) that operate on the online dataset D using selection function fS

and update function fU , and regularization-based methods (CLReg) that act on the loss
function L The extended framework is illustrated in Figure 3.1.

Reguarding replay-based methods, designing the adequate selection function fS and up-
date function fU is important because it will determine which samples are used for replay
and which samples will remain in the buffer. They must cover several and crucial aspects
such as diversity (keep samples from as many domains as possible), or similarity to in-
coming batch (we would rather replay samples that are not similar to incoming data as
they are likely to come from a past domain).

Reguarding regularization-based methods, they represent an additional term in the loss (a
regularizer) such that it constraint the parameters in order to retain past knowledge.

In the original framework, fS selects all pairs from D, and fU stores the new samples in
a First In First Out (FIFO) manner.
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Figure 3.1. (© 2023 IEEE) Online distillation. According to Houyon et al. [1], the
framework is composed of a fast and a slow route. In the fast route (inference), the video
stream V is processed by a student network S on a task T (e.g., semantic segmentation
for autonomous driving) and produces predictions ŷi for each frame of the video xi at the
original video rate rV (i.e., in real time). In parallel in the slow route (training), a frozen
teacher T produces pseudo ground-truths ỹi′ from a subset of frames xi′ at a slower rate
rT. The pair (xi′ , ỹi′) are then stored in an online dataset (or replay buffer) D through
an update function fU . D is sampled through a selection function fS and the selected
pairs (xn, ỹn) are used to train a copy of the student network Sc for one epoch using a loss
L. The parameters θ of Sc are then transferred to S at a rate rSc (corresponding to the
inverse of the training time of Sc on one epoch) so that S improves on the latest domain
of V . One of the contribution of the work consists in including replay-based Continual
Learning (CL) methods, CLRep, inside D and regularization-based methods, CLReg, on
L.

3.2 Replay-based methods
The methods that leverage a replay buffer involve using a finite-sized collection of data
and corresponding ground-truth labels that are accessed by a selection function, denoted
as fS, and updated with new data by an update function, denoted as fU , at every training
epoch. The online distillation framework, which was presented earlier, can be considered
as a replay-based method. In this case, the replay buffer corresponds to D, the pseudo
ground-truth predictions ỹn serve as the labels, fS chooses all the data in the replay buffer
to be used during the training epoch, and fU determines how the samples in the replay
buffer are updated.

In the original online distillation framework, the size of the replay buffer is equal to the
number of samples, denoted as N , that are passed to the model during each training
step. However, in the extended version of the framework, the replay buffer is expanded
to include M ≥ N samples, where N samples are sampled without replacement from
the buffer at each training step. The selected samples are then augmented with the new
incoming data from the stream.

By enlarging the replay buffer to hold M samples and then selecting only N samples from
it, the student can benefit from a more diverse set of training samples, without incurring
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additional computational overhead for a training epoch.

Several strategies to modify fU and fS to reduce the catastrophic forgetting are considered:
FIFO, Uniform, Prioritized, and MIR.

3.2.1 First In First Out
In the First In First Out (FIFO) strategy, fU inserts the new frames while removing
the oldest ones. This strategy is the one implemented in the original framework’s update
strategy where M = N , and fS selects all M samples from the replay buffer. This
strategy is used as a baseline with other methods. Algorithm 2 illustrates fU in the
FIFO strategy.

Algorithm 2 fU in the FIFO strategy

1 Replay buffer D, set of samples X, buffer capacity M
2 function FIFO_fU(D, X, M)
3 s←M − |D|+ |X| Available space in D
4 if s < 0 then
5 D ← D \ D[1, ..., s] Remove the s oldest samples in D
6 D ← D ∪X
7 return D

3.2.2 Uniform
The objective of the replay-based methods is to keep in memory a wider variety of samples
to reduce catastrophic forgetting. The Uniform strategy works such as fU (Algorithm
3) randomly selects samples to replace, and fS (Algorithm 4) randomly selects N frames
for replay.

Thanks to this, the probability to replace or select a sample decays exponentially. The
Uniform strategy is a first improvement in order to reduce the forgetting of the student
network.

Algorithm 3 fU in the Uniform strategy

1 Replay buffer D, set of samples X, buffer capacity M
2 function Uniform_fU(D, X, M)
3 for x ∈ X do
4 if |D| == M then
5 j ← RandInt([0, M − 1]) Select an index at random
6 D ← D \ {D[j]} Remove the j − th sample in D
7 D ← D ∪ {x}
8 return D

In terms of computation overhead, the Uniform strategy is (very) slightly bigger than
FIFO strategy. Indeed, in the Uniform strategy, the selection function is O(N) in-
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Algorithm 4 fS in the Uniform strategy

1 Replay buffer D, number of samples to select N
2 function Uniform_fS(D, N)
3 s← min(|D|, N)
4 J ← RandomChoice([0, |D| − 1], s) Select s indexes in the range [0, |D|] without

replacement
5 Z ← D[J ]
6 return Z

stead of O(1) for the FIFO strategy. The complexity of the update function fU remains
unchanged.

3.2.3 Prioritized
The Prioritized strategy is an improvement of the Uniform strategy and is inspired of a
technique that was proposed by Schaul et al. [40] in the context of reinforcement learning.
We adapt the work of these authors in the context of continual learning. The authors of
this paper introduce a new approach to experience replay in deep reinforcement learning.
The experience replay, in the context of reinforcement learning, is a method that enables
an agent to learn from its past experiences by storing and randomly sampling batches of
transitions (state, action, reward, next state) from a replay memory buffer.

The proposed approach, called Prioritized Experience Replay (PER), assigns priorities to
each transition in the memory buffer based on its estimated potential for improving the
learning process. The priorities are calculated using the temporal-difference (TD) error,
which represents the difference between the predicted and actual values of the expected
reward. Transitions with higher TD errors are considered more important, and therefore,
are sampled more frequently than low-priority transitions.

The paper presents two methods for prioritizing experience replay: Proportional Priori-
tization, where the priority of each transition is proportional to its TD error, and Rank-
Based Prioritization, where transitions are ranked by their TD errors, and the sampling
probability is based on their rank.

This strategy for reinforcement learning can be adapted to a strategy; in the Uniform
strategy, frames are assumed to be equally important. In the Prioritized strategy, an
importance score is assigned to each frame. More formally, let D = {x1, ..., xM} be the
M frames in the replay buffer D. Importance scores {I1, ..., IM} are computed for each
frame in the replay buffer. In denotes the importance of the frame xn, and is measured
by the loss function:

In = L(S(xn), T(xn)) .

It is worth noticing that the importance score could be measured according to other met-
rics, such as the accuracy, the recall, the precision, the F1-score or the Mean Intersection
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Over Union (mIoU). The notion of importance can vary on the context and the task that
needs to be achieved.

The importance score constitutes the probability of determining actions on the frames.
For the selection function fS (Algorithm 6), it determines the probability to select the
sample for replay. For the update function fU (Algorithm 5), it determines the probability
to remove this sample from the replay buffer D. The transformation of the importance
score into a probability is straightfoward:

pn = I−1
n∑M

n′=1 I−1
n′

.

To control the prioritization, an hyper-parameter α ≥ 0 is added to adjust the conservation
of frames. The probability of defining actions on the frame is as follows:

P (n) = pα
n∑M

n′=1 pα
n′

.

Therefore, a high value of α will be more conservative, while a low value of α will be less
conservative, with α = 0 being the Uniform strategy.

However, due to time constraints, it is not acceptable to re-compute, after each epoch,
the importance score for all M frames in the replay buffer as it would represent M
forward passes in the student network S. Therefore, it is decided to only re-compute the
importance score for the frames that are chosen for the next epoch and this update is
done inside the update function fU .

Overall, the Prioritized is slower than the Uniform strategy in terms of updates. Re-
guarding the selection function, the theoretical complexity is O(M) instead of O(N), but,
practically speaking, it is very negligible.

Algorithm 5 fU in the Prioritized strategy

1 Replay buffer D, set of samples X, buffer capacity M
2 function Prioritized_fU(D, X, M)
3 for x ∈ X do
4 if |D| == M then
5 P ← [P (0), ..., P (M − 1)]
6 j ← RandInt([0, M − 1], P) Select an index at random, according to the

probability distribution P
7 D ← D \ {D[j]} Remove the j − th sample in D
8 D ← D ∪ {x}
9 return D
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Algorithm 6 fS in the Prioritized strategy

1 Replay buffer D, number of samples to select N
2 function Prioritized_fS(D, N)
3 s← min(|D|, N)
4 P ← [P (0), ..., P (|D| − 1)]
5 J ← RandomChoice([0, |D| − 1], s, P) Select s indexes in the range [0, |D|]

without replacement according to the probability distribution P
6 Z ← D[J ]
7 return Z

3.2.4 Maximum Interfered Retrieval
Proposed by Rahaf et al. [38], Maximum Interfered Retrieval (MIR) states that replay
strategies relying in the selection of random samples from a replay memory or a generative
model is suboptimal. Instead, MIR suggests a controlled sampling of memories for replay.
To do that, MIR selects samples that are most interfered. In other words, it retrieves
samples that are the most negatively impacted by the foreseen parameters update.

This method makes the assumption that some already seen samples from memory may
be unaffected or even improved, thus retraining on them represents a waste of computa-
tion.

In the online distillation framework, MIR represents a selection function fS (Algorithm
7) since it retrieves samples from memory. Let Sc(·; θ) be parameterized with parameters
θ. Given a standard objective min

θ
L(Sc(X; θ), T(X)), when receiving samples X from

the video stream, the would-be parameters θv are estimated with X:

θv = θ − α∇L(Sc(X; θ), T(X))

θv can be used to find the samples that would be the most interfered from parameters
updated with the incoming batch. Let k be the number of samples that are retrieved from
the replay buffer D. The top-k samples from the replay buffer D are retrieved according
to the following criteria:

s(x) = L(Sc(x; θv), T(x))− L(Sc(x; θ), T(x)) .

s(x) denotes the interference on sample x caused by updating the parameters from θ to
θv. The memory could be augmented in order to keep track of the parameters θ∗ that has
given the best L(Sc(x; θ), T(x)) so far for a given sample x, denoted as L(Sc(x; θ∗), T(x)).
With this strategy, the top-k samples from the replay buffer D are retrieved according to
the following criteria:

s∗(x) = L(Sc(x; θv), T(x))−min(L(Sc(x; θ), T(x)), L(Sc(x; θ∗), T(x))) .

s∗(x) denotes the interference on sample x caused by updating the parameters from θ∗ to
θv
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To further reduce the compute cost, C > k samples from the replay buffer D are chosen
randomly. The search criterion is applied on these C samples. The selection is done
ramdomly in order to ensure the diversity of the samples.

Algorithm 7 fS in the MIR strategy

1 Replay buffer D, number of samples to select N , incoming batch X, budget C
2 function MIR_fS(D, N , X, C)
3 q ← min(|D|, C)
4 JC ← RandomChoice([0, |D| − 1], q)
5 Z ← D[JC ] Samples to evaluate
6 θv ← θ − α∇L(Sc(X; θ), T(X))
7 S ← [L(Sc(z; θv), T(z))− L(Sc(z; θ), T(z)) for z ∈ Z]
8 q ← min(|D|, N)
9 JN ← ArgMax(S, q) Select the q indexes according to the q biggest scores inside

S
10 Z ← Z[JN ] Selected samples
11 return Z

In terms of time complexity, fS in the MIR strategy is quite expensive since it requires
to perform a gradient step on a copy of Sc in order to search for the best samples for
replay.

3.3 Regularization-based methods
Regularization-based methods aim to mitigate forgetting by adding a regularization term
to the training loss function L. This can be formulated as follows:

L =
N∑

n=1
L(Sc(xn), ỹn) +R ,

where R is a method-specific regularization term. In this work, four regularization-based
continual learning methods are considered, namely ER-ACE [41], LwF [9], MAS [33], and
RWalk [34].

Some methods were designed to work on the hypothesis that task boundaries were known,
i.e. in an offline setup. In the online setup, this hypothesis does not hold anymore because
task boundaries are unknown. For instance, methods like LwF, MAS and RWalk were
designed for an offline setup. An explanation on how to adapt these methods and simulate
task boundaries will be given in section 3.3.2.

3.3.1 ER-ACE
Experience Replay with Asymmetric Cross-Entropy (ER-ACE) is a regulariza-
tion method proposed by Caccia et al. [41] that reduces changes in the learned presenta-
tion (past tasks’ knowledge) when training on samples from a new class. Given a model
fθ(x) with parameters θ, the goal is to minimize some classification loss L on the incom-
ing batch of data without negatively interfering with the previously learned classes. To
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address this issue, the simplest but efficient approach is to use a replay buffer and some
strategies like the Uniform strategy, as presented in 3.2.2

However, the Uniform strategy treats both the incoming batch and the replayed batch
in a similar manner, i.e. they are both minimizing the same loss function L. Instead,
while the replayed batch is used to minimize L, the incoming batch minimizes some
new loss function L′ such that it limits the interference with the previously well learned
classes.

ER-ACE uses the Uniform strategy to replay samples. In the online distillation frame-
work, this regularization method can be used as follows:

Given an incoming batch of frames X, let Cold be the set of previously learned classes and
let Ccur be the set of classes observed in X (provided by T(X)). If C is the set of classes
included in the cross-entropy loss, Lce is the cross-entropy loss defined as:

Lce(X, C) = −
∑
x∈X

|x|−1∑
p=0

∑
c∈C

T(x)p,clog(Sc(x)p,c)

where p is the pixel index, and c is the class index. This definition of the cross-entropy
loss enables to focus on the representation of specific classes while ignoring the others.
Finally, let Xbf and X in be the framess retrieved from the replay buffer and the incoming
batch of frames respectively. The loss applied at each step would be:

Lace(Xbf ∪X in) = Lce(Xbf , Cold ∪ Ccurr) + Lce(X in, Ccurr)

where Ccurr is the set of classes in the incoming batch, while Cold is the set of already
seen classes that do not appear in Ccurr. The first term in the loss ensures that the
representation of past samples are preserved. The second term in the loss makes it so that
only the labels present in the batch will serve in the gradient update, thus accelerating the
representation of the classes contained in Ccurr. The algorithm is developped in 8.

Algorithm 8 ER-ACE

1 Incoming batch X in, Online dataset D, number of samples to select N , set of classes
C, Sc’s parameters θ

2 function ER-ACE(X in, D, N , θ)
3 Xbf ← Uniform_fS(D, N)
4 Ccurr ← Unique(T(X in)) set of classes appearing in the incoming batch
5 L ← Lce(Xbf , C) + Lce(X in, Ccurr)
6 Optimizer(∇L, θ)
7 D ← Uniform_fS(D, X in, |D|)

ER-ACE’s time complexity is negligibly higher than the time complexity of the Uniform
strategy as the additional computation overhead is only for adapting the loss for the
incoming batch.
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3.3.2 LwF
When learning a new task, Li et al. [9] proposes a method called Learning without
Forgetting (LwF) which trains the network on the new task while preserving its on the
previously learned tasks.

In this set up, the goal is to integrate new tasks without using previous tasks’ data. To do
this, LwF keeps in memory two networks: the network being trained : fθ, and an older
version of the same network: fθ′ . In the continual online distillation setup, the network
would refer to Sc, and the older version of that network would represent an older version
of Sc.

For a given batch of data X from the new task, the standard cross-entropy loss is ap-
plied:

Lnew(X) = −
∑
x∈X

|x|−1∑
p=0

(T(X)p)T log(Sc(X; θ)p).

In the other hand, old knowledge is preserved by using knowledge distillation loss, which
encourages a network to output the same outputs of another network. For the same batch
of data X, the knowledge distillation loss serves as regularization term:

Lold(X) = −
∑
x∈X

|x|−1∑
p=0

(Sc(X; θ′)p)T log(Sc(X; θ)p).

The loss applied at each step would be:

LLwF (X) = Lnew(X) + Lold(X)

Therefore, Lnew trains the student network on a new task while Lold penalizes the stu-
dent network if its outputs differ a lot from a previous version of itself, thus preventing
forgetting.

Algorithm 9 LwF

1 batch of frames X, Sc’s parameters θ, past version of Sc’s parameters θ′

2 function LwF(X, θ, θ′)
3 L ← Lnew(X) + Lold(X)
4 Optimizer(∇L, θ)

When training on the first task, there is no distillation loss to evaluate as there is no
previous version of the network. Therefore, the network is trained on Lnew.

This regularization method adds computational overhead because the regularization term
(Lold) requires to perform |X| forward passes into an older version of the student net-
work.
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3.3.3 MAS
Memory Aware Synapses (MAS) from Aljundi et al. [33] preserves knowledge by
penalizing large changes to important parameters. For each parameter of the network,
an importance weight is assigned measuring how sensitive the network is to a specific
parameter change on a particular set of data.

The sensitivity of a network f with respect to its parameters θ and a data point xk is
measured by adding a small perturbation δ = {δi} in the parameters θ = {θi}. In the
online distillation framework, the result represents a change in the network that can be
approximated by

Sc(xn, θ + δ)− Sc(xn, θ) ≈
∑

i

gi(xk)δi

where

gi(xk) = ∂Sc(xn, θ)
∂θi

is the gradient of the learned student network with respect its parameter θi evaluated for
a single data point xn, and δi is the change in parameter θi.

If δi is assumed to be very small, the estimation can be based on the direct magnitude of
the gradient gi, thus estimating the sensibility of the learned student network for a small
perturbation to a specific parameter change. Let X be a batch of frames, importance
weights Ω = {Ωi} can be obtained by taking the sum of the gradients of each frame
x ∈ X such that the importance weight Ωi for parameter θi is given by

Ωi = 1
|X|

∑
x∈X

||g(x)||.

Therefore, parameters with low importance weights do not affect the output, meaning
that they can be used to learn new tasks, while parameters with high importance weights
need to be unchanged as they’re the one preserving the knowledge of the current and past
tasks.

However, the student network Sc produces multi-dimensional outputs, up to millions of
elements. Therefore, the computation of a single importance weight Ωi is measured by
computing the gradient of each output of Sc, which represents as many backward passes
as the output dimensionality of Sc. Practically speaking, this computation is not possible
when given time constraints. This issue is adressed by computing the gradient of the
squarred l2 norm of Sc instead of the l2 norm of the gradient of Sc:

gi(x) = ∂l2
2(Sc(x, θ))

∂θi

.
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Thanks to this trick, a scalar value is given instead of a vector output, meaning that only
one backward pass in the student network is needed to estimate Ω.

Importance weights Ω are estimated from the batch of frames X and it will prevent
catastrophic forgetting for the part of the input space that X belongs to. However,
parameters that do not affect this region will be given low importance weights, which can
affect the knowledge of other regions in the input space. To adress this issue, a replay
buffer could be added to the method so that it ensures diversity of the frames that are
used to compute Ω. Another technique could be to perform exponential averaging. Let
Ωt be the current importance weights, when updating these importance weights, perform
exponential averaging:

Ωt+1 = (1− β)Ωt + βΩ

where β ∈ [0, 1] is a hyperparameter.

When training, importance parameters Ω is used as a regularizer in the loss function. For
a given set of frames X, the loss at each step would be:

LMAS(X) = L(X) + λ
∑

i

Ωt
i(θi − θt−1

i )2

where λ is a hyperparameter for the regularizer, and θt−1 are the parameters of Sc of the
latest update of the importance parameters. Importance parameters update are shown in
algorithm 10 and the loss computation shown in algorithm 11.

Algorithm 10 MAS: Update of the importance weights

1 batch of frames X, Sc’s parameters θ, current importance parameters Ω
2 function Update_Ω(X, θ, Ω)
3 S ← 1

|X|
∑

x∈X l2
2(Sc(x, θ))

4 Ω′ ← BACKWARD(S)
5 Ω← (1− β)Ω + βΩ′

6 return θ, Ω Return old parameters θ, and new importance weights Ω

Algorithm 11 MAS

1 batch of frames X, Sc’s parameters θ, importance parameters Ω, Sc’s parameters θ′

of the latest update of Ω
2 function MAS(X, θ, Ω, θ′)
3 L ← L(X) + λ

∑
i Ωi(θi − θ′

i)2

4 Optimizer(∇L, θ)

The regularization’s computation complexity is linear with respect to the number of pa-
rameters. Reguarding the importance weights update, it consists in |X| additional forward
passes in Sc and a backward pass.
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3.3.4 RWalk
Riemann Walk (RWalk) by Chaudrhy et al. [34] adapts the work of Aljundi et al.
[33] by defining three components to regularize the loss. The first component is a KL-
divergence-based regularization over the conditional likelihood pθ(y|x) (Sc(x) in the on-
line distillation framework). The second component is a parameter importance score that
mesures the sensitivity of the loss with respect to movements on the Riemaniann mani-
fold. The third component introduces methods for obtaining a small set of representative
samples from past tasks (these methods similar to replay-based methods, such as the
Uniform strategy).

The KL-divergence-based regularization helps the network learn parameters for the cur-
rent task by constraining the pθ(y|x) to be close to some older conditional likelihood
pθ′ (y|x). In the online distillation framework, the loss would be as follows:

L(X) + λDKL(Sc(X; θ)||Sc(X; θ′))

where λ is a hyperparameter and DKL(Sc(X; θ)||Sc(X; θ′)) = 1
2

∑
i Fθ′

i
(θi − θ′

i)2 where Fθ′

is the empirical Fisher information matrix and it can be approximated by the importance
weights computed in MAS, assuming that the Fisher information matrix is diagonal
(independence of the parameters).

In the same way as in MAS, the Fisher information matrix is updated by performing
exponential averaging:

F t
θ = (1− β)F t

θ + βF t−1
θ

where β ∈ [0, 1] is a hyperparameter and t denotes the task number. Since the Fisher
information matrix is a description of how the model behaves, but it mostly depend on
the current task. Therefore, they do not take into account how the parameters affected
the model’s optimization over time. The authors augment the Fisher information matrix
with a parameter importance score that is accumulated over the whole training trajectory
of the loss. The score is calculated by dividing the change in the loss function L by the
distance between the conditional likelihood distributions as the model progresses through
the parameter space.

Let t be the training step. When switching from θt to θt+1, the change in the loss can be
estimated by:

L(θt+∆t)− L(θt) ≈ −
∑

i

∆Lt+1
t (θi)

where Lt+1
t (θi) is the accumulated change in the loss caused by parameter θi from t to

t + ∆t. Finally, the importance of a parameter θi from training step t1 to t2 is computed
as
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st2
t1(θi) =

t2∑
t=t1

∆Lt+1
t (θi)

1
2F t

θi
∆θ2

i + ϵ

where ϵ > 0. The combination of the Fisher information matrix based importance and
the optimization-path based importance scores produces the following loss function:

LRW alk(X) = L(X) + λ
∑

i

(Fθ′
i
+ st′

t0(θi))(θi − θ′
i)2

where st′
t0(θi) denotes the accumulated score from the first training iteration t0 until the

last training iteration t′ corresponding to the latest task. To avoid score accumulation to
be too big, scores are averaged after each task. Algorithm is illustrated in 12

Algorithm 12 RWalk

1 batch of frames X, Sc’s parameters θ, Sc’s parameters θ′ of the latest update of the
Fisher information matrix, Fisher information matrix Fθ′

2 function RWalk(X, θ, θ′, Fθ′)
3 L ← L(X) + λ

∑
i(Fθ′

i
+ st′

t0(θi))(θi − θ′
i)2

4 Optimizer(∇L, θ)

3.3.5 Adaptation to the online case
LwF, MAS and RWalk were designed to work in an offline manner, meaning that task
boundaries were known. In this setup, this hypothesis does not hold; task boundaries
are unknown. In this thesis, we propose a solution to make these regularization-based
methods work for online streams, with unknown task boundaries.

To make these algorithms work for online streams without task boundaries, two properties
are used: a warmup, and an update frequency. The training procedure is illustrated in
algorithm 13

The warmup lets Sc to be initialized during the warmup phase, where the regularization
term R is set to 0. In fact, it represents a number of training steps k0 such that for
each step i ∈ [0, k0[, the student network is trained without taking into consideration the
regularizer.

The update frequency is one way to simulate task boundaries. Let k be the interval
(in training epochs) between two updates. Then, k can be used to simulate that task
boundary after k training epochs. Therefore, k is an hyperparameter for these three
methods.
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Algorithm 13 Online adaptation of offline algorithms

1 Online dataset D, Sc’s parameters θ, warmup epochss k0, update frequency k, current
number of training epochs t

2 function Online_training(D, θ, k0, k, t)
3 for batch X ∈ D do
4 L ← 0
5 if t < k0 then
6 L ← ∑

x∈X L(Sc(x; θ), T(x))
7 else
8 L ← ∑

x∈X L(Sc(x; θ), T(x)) +R
9 Optimizer(∇L, θ)

10 if t%k == 0 then
11 Simulate end of task. Update R
12 t← t + 1

3.4 Evaluation methodology
To evaluate the student network Sc (or equivalently S), we design adequate metrics in
order to evaluate the performance and the forgetting of the student network through
time.

First, a task-specific metric is needed to evaluate the performances of the model over time.
This task-specific metric could be accuracy for classification, or the mean Intersection
over Union (mIoU) for semantic segmentation.

Second, it is also desired to know the performances of the student network on other
domains when being trained on the current domain. Evaluating the model on already-
seen domains could show the forgetting of the model.

Finally, another way to evaluate forgetting is to evaluate the performances on the model
near domain shifts. Indeed, if this metric value is high, this would mean that the model
did not suffer from a drop of its performances due to the domain shift, thus confirming
that the model did not suffer from catastrophic forgetting.

3.4.1 Performances over time
The performance of the student network Sc (or equivalently S) over time is evaluated
according to its task-specific metric M (mIoU for semantic segmentation, accuracy for
classification, ...). At time i′, the student network Sc is evaluated on a set of size I frames
X ′

i = {xi′ , ..., xi′+I} and pseudo ground truths Ỹ ′
i = {T(xi′), ..., T(xi′+I)}:

M(Sc(Xi′ ; θi′ , Ỹi)

where θi′ are the parameters of Sc at time i′. Since Sc operated at a different rate rSc

than S, the training of Sc and the update of S may be asynchronous.
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3.4.2 Backward Transfer
To evaluate the forgetting of the student network over time, the student network is eval-
uated on other domains when being trained on the current domain. To do this, the
student network is evaluated on already-seen samples from the past, belonging to previ-
ous domains. Backward Transfer (BWT) [42] is a mean to measure the influence that
learning on a new domain has on the performance on past domains.

Originally, BWT was designed for an offline setting because evaluating on past tasks
requires to know these tasks boundaries. In this work, a modified version of BWT is
proposed to evaluate forgetting of some model for online streams. The student network’s
forgetting at time i′ is evaluated with respect to previous data corresponding to the
previous domain:

BWT(i′) =M(Sc(Xi′−h; θi′), Ỹi′−h) ,

where h is the backward time shift.

To illustrate the effect of the metric, let’s assume an online stream V being an ordered
set of set of samples V = {VA

1 ,VB
1 ,VA

2 ,VB
2 , ...} where VA

i and VB
i are set of frames from

domain DA and domain DB respectively such that all sequences have the same length:
|VA

1 | = |VB
1 | = |VA

2 | = |VB
2 | = .... Setting h = |VA

1 | means that, at time i′, the set of frames
Xi′ and the set of frames Xi′−h do not belong to the same domain. If the performance of the
student network increases over time, i.e. from time i′, i′ + 1, i′ + 2, ... and its performances
decreases on the sets of frames from the past, i.e. at time i′ − h, i′ − h + 1, i′ − h + 2, ...,
this would be an indication that Sc is getting better on the current domain but forgets
the previous domain. In the other hand, if the performances of Sc on the current domain
increases over time and the performance of the Sc remain unchanged for the previous
domain, it indicates that Sc has been able to retain previous knowledge, thus alleviating
catastrophic forgetting. An illustration is given at Figure 3.2
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Figure 3.2. Theoretical Backward Transfer on the baseline with online stream V . The
blue line shows the performance of Sc at time i′. The red line shows the BWT at time i′.
In the student network’s training, the weights of Sc are fine-tuned according to the current
domain it perceives. As a consequence, Sc improves its performances on the said domain.
However, the BWT decreases, which indicates that Sc forgets the previous domain. The
BWT is not defined at the beginning because there is no previous domain. At the time
of the domain shift, the student network suffers from a drop of performances, but the
BWT increases by a lot. This is because, at the time of the domain shift, Sc has trained
on a domain that represents the new domain in the backward transfer.

3.4.3 Final Backward Transfer
In addition to the BWT, the Final Backward Transfer (FBWT) is a special case of
BWT where the evaluated set of frames Z is the whole online stream V and h is set to
0. Formally, if the length of the stream is K, the FBWT is defined as follows:

FBWT(V) =M(Sc(Z; θK), T(Z)

where Z is the set of all frames contained in the online stream V , and θK are the parameters
obtained when training on V .

This metric gives the overall performance of the student network Sc on the stream it has
trained on. This metric is interesting in the context of catastrophic forgetting because
if Sc suffers from catastrophic forgetting, then Sc would very likely be performant on
only one domain, and suffering from bad performances on the other domains. Taking the
definition of V as earlier, an illustration of the metric with the online streram V is given
at Figure 3.3.
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Figure 3.3. Theoretical Final Backward transfer on the online distillation baseline
of Cioppa et al. [15] with online stream V . The blue line shows the performance of Sc

being trained, and the red line shows the performance of the final version of Sc when
being trained on the entire stream. If the last domain Sc has trained on is domain 1,
the performance over time of the final Sc would show good performance on domain 1
and bad performance on domain 2. This behavior happens because Sc has fine-tuned its
parameters on the latest domain without taking into consideration the others domains.

3.4.4 Forward Transfer
Similar to BWT, Forward Transfer (FWT) excepts that it is a mean to measure the
influence that learning on a new domain has on the performance on future domains.

Originally, FWT was designed to evaluate the zero-shot capabilities of a model. In this
work, FWT evaluates the student network Sc on future (therefore, unseen) samples from
the online stream belonging to a possibly already seen domain. A motivation to use BWT
and FWT is to check for forgetting for sure, but also overfitting. Indeed, for instance, if
Sc shows a high BWT but a low FWT on the online stream V , this might indicate that
Sc only overfitted already-seen frames, thus did not alleviate forgetting. An illustration
of FWT on online stream V is shown in Figure 3.4.
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Figure 3.4. Forward transfer on the baseline with online stream V . At time i′, the
performances of the student network (blue line) and the FWT (red line) are displayed.
At the beginning, Sc’s FWT is very low; the student network has never seen the second
domain. Then, the behavior of the student network with the baseline is the same as in
Figure 3.2.

3.4.5 Task-specific metric near domain shifts
A simple, yet effective metric, is to record the task-specific metric M near the times a
domain shift occurs. Indeed, catastrophic forgetting leads to a huge drop of the perfor-
mances of the student network Sc (equivalently S) when the domain changes.

To do this, a time window of size 2h + 1 is defined. If a domain shift occurs at time i′,
the task-specific metric M near domain shift is defined as

MNDS(i′, k) = 1
2k + 1

i′+k∑
j=i′−k

M(Xj, Ỹj).

MNDS(i′, k) gives an average of the metric M of a time window of size 2k + 1 centered
at i′. An illustration of the metric is given at Figure 3.5.
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Figure 3.5. Task-specific M near domain shifts on the baseline with online stream V .
Green arrows represent time windows where the task-specific metric M recorded in each
time window is averaged to produce the task-specific metric near domain shift.
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Chapter 4

Experiments

In this section, the experimental setup utilized for benchmarking the continual online dis-
tillation framework is described. Subsequently, quantitative results are presented through
a comparative study using a proposed evaluation methodology. To illustrate the practical
impact for autonomous driving applications, some qualitative results are also showcased.
Finally, an ablation study is done to demonstrate the importance of some features for
alleviating catastrophic forgetting efficiently.

4.1 Experimental setup
The online continual learning framework presented is agnostic to task, metric, and training
parameters, allowing it to be adaptable to diverse scenarios. The following section contains
technical details of the experiments conducted in various settings, providing a thorough
description of the framework.

4.1.1 Task
Benchmark are done on a real scenario wich is semantic segmentation in the context of
autonomous driving. Indeed, the task consists of producing segmentation masks from a
video taken by a camera located behind the windshield of a car.

Semantic segmentation is a computer vision task that involves assigning a label or category
to each pixel in an image. It is a more advanced form of image segmentation, which
involves dividing an image into different regions based on similar visual properties such
as color, texture, or intensity.

In semantic segmentation, the goal is to not only segment the image but to assign a
meaningful label or category to each pixel. This requires a more detailed understanding
of the image’s contents and context. For example, in an image of a street scene, semantic
segmentation would identify each pixel belonging to the road, sidewalk, buildings, cars,
pedestrians, and any other objects present in the scene.

In autonomous driving, semantic segmentation is used to localize objects on the road,

32



such as pedestrians, vehicles, and road signs, which is critical for safe and effective navi-
gation.

This task is relevant in the context of catastrophic forgetting. Indeed, it is likely that, for
an undetermined amount of time, the camera does not catch any pedestrian during the trip
(for instance, when driving on the highway). Due to the FIFO nature of the baseline’s
online dataset, the online dataset could lack of examples of what is a pedestrian and,
therefore, forget its representation. This kind of behavior is not permitted as it would
make autonomous driving no longer safe at all.

Figure 4.1. Semantic segmentation task example. Left column is the input image, right
column is the segmentation mask. The task is to train the student network model S to
produce high quality segmentation masks in the context of autonomous driving. That is,
S must be able to detect and localize pedestrians, cars, road signs, roads, etc.

4.1.2 Dataset
The online distillation framework works on long untrimmed videos. These videos need to
highlight the task’s objectives and thus contain cyclic domain shifts. However, most of the
semantic segmentation datasets on the internet are either frames or small video clips (e.g.,
CityScapes [43], BDD100K [21], etc.). Therefore, it is not possible to use them.

To have a dataset that highlights the task’s objectives, it has been chosen to artificially
construct videos by concatenating sequences from three domains DA, DB and DC by
cycling from one domain to another. In the autonomous driving case, DA is defined as a
highway environment, DB is defined as a downtown environment and DC is defined as a
forest environment. (see Figure 4.2 for more details) From these domains, two artificially
videos are constructed from these environments.
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(a) Downtown environment (b) Highway environment

(c) Forest environment

Figure 4.2. Considered environments (or domains). In the downtown environment (Figure
a), there are a lot of objects such as cars, pedestrian, traffic lights, buildings, ... . In the
highway environment (Figure b), there is a clear sky, almost no buildings, no pedestrian.
The most common objects are cars and the road. In the forest environment (Figure c),
almost no cars are seen, trees are all around. There three environments are relevant
towards the task that needs to be achieved; they all have their own properties and the
goal of the student network S is to be able to be performant on all these domains without
suffering from catastrophic forgetting. The student network must not forget what is
a pedestrian or a traffic light as it would be a huge problem for autonomous driving
applications.

The first video is constructed from two domains: DA and DB. The resulting video is an
ordered set V1 = {VA

1 ,VB
1 ,VA

2 ,VB
2 , ...} where VA

i is a sequence belonging to domain DA

and VB
i is a sequence belonging to domain DB. For this video, two versions are proposed:

one with 20 minutes sequences, and one with 40 minutes sequences. The duration of
the sequences are relevant in this continual online distillation framework because longer
sequences have an impact on the forgetting of the model. The experiments on these
two versions of that video are presented in the paper Houyon et al. [1] and in this
document.

The second video is constructed from three domains: DA, DB and DC . The resulting
video is an ordered set V2 = {VB

1 ,VC
1 ,VA

1 ,VB
2 ,VC

2 ,VA
2 ...} where VA

i is a sequence belonging
to domain DA, VB

i is a sequence belonging to domain DB and VC
i is a sequence belonging

to domain DC . For this video, each sequence is 20 minutes long. The experiments on
that video are not presented on the paper.
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4.1.3 Evaluation metric
Mean Intersection over Union

The mean Intersection over Union (mIoU) is a commonly used evaluation metric in
computer vision tasks, such as image segmentation and object detection. It measures the
similarity between two sets of points: the predicted set and the ground truth set. The
formal definition of mIoU is:

mIoU = 1
C

C∑
i=1

IoUi

where C is the total number of objects or regions being evaluated, IoUi is the intersection
over union (IoU) for the i-th object or region.

The IoUi for each object or region is defined as:

IoUi = Area of overlap between the predicted set and the ground truth set
Area of union between the predicted set and the ground truth set

where the "Area of overlap" is the intersection between the predicted set and the ground
truth set, and the "Area of union" is the union of the two sets.

Figure 4.3. Computation of the IoU.

The mIoU ranges from 0 to 1, with higher values indicating better performance. A value
of 1 indicates perfect overlap between the predicted and ground truth sets, while a value
of 0 indicates no overlap.

What does the metric really evaluate?

In the online distillation framework, the ground truth set is not available. Instead,
pseudo-groundtruths are available; outputs from the teacher network T. Generally,
the teacher network is assumed to generate outputs that are close enough to the real
groundtruth.

That being said, the metric evaluates the capacity of the student network S to imitate
the teacher network T. If it is assumed that, for each frame x:
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T(x) ≈ Y,

where Y is the real groundtruth, then

mIoU(S(x), T(x)) ≈ mIoU(S(x), Y )

is a good approximation on the capacity of the student network S to achieve the task.

Metrics

For each video, the mIoU, the BWT, the FBWT, the FWT and the mIoU near domain
shifts metrics are provided during the whole video. The average of these metrics over the
whole video is also provided. The considered set of frames for evaluation is set to 1 minute
and k is set to 2 minutes for the mIoU near domain shifts metric. Finally, depending on
the sequence length, the parameter h from the BWT and FWT is set to 20 or 40. (20 if
the sequence length is 20 minutes, 40 if the sequence length is 40)

4.1.4 Teacher network
It is important to choose a teacher network T that is able to produce the best pseudo-
groundtruths as possible. The presented network is Segformer [26], a network using
transformers (and not Convolutional Neural Networks) to perform semantic segmentation.
Furthermore, it is the state of the art performance for semantic segmentation tasks on
popular semantic segmentation datasets.

Image as a sequence

Given an image of size H×W ×C, this image can be divided into patches of size M ×M
that are fed one after the other to the Transformer architecture.

Architecture

The Segformer architecture (see Figure 4.4) is performant thanks to several components.
First, this is a positional-encoding free Transformer. In older versions of Transformer
architectures for semantic segmentations, positional encoding was used to introduce the
location information. However, if the resolution at test time is different from the resolution
at train time, the model suffers from a drop of its performances as the positional code
needs to be interpolated. To adress this issue, positional information can be provided by
a simple convolution layer infine the feed-forward network (Refered as Mix-FFN in Figure
4.4).

Second, Transformers are known to be computationally demanding, especially due to the
self-attention layer. Self-attention is computed as

Attention(Q, K, V ) = Softmax( QKT

√
dhead

)V

where Q = K = V all have the same dimension N × C where N = H ×W is the length
of the sequence and C is the number of channels. Self-attention has a time complexity
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Figure 4.4. Segformer architecture from [26]. It consists of two parts. First, a hierarchical
Transformer encoder to extract features. Then an All-MLP decoder taking the global and
local features induced by the Transformer encoder to produce the semantic segmentation
mask.

of O(N2), which is computationally expensive for high resolution images. To adress this
issue, the length of the sequence can be reduced by a ratio R as follows:

K̂ = Reshape(N

R
, C ·R)(K)

K = Linear(C ·R, C)(K̂)

K̂ is K reshaped to dimensions N
R
×C ·R, which then produces a new K when K̂ is passed

to a linear layer producing N
R
×C outputs. Therefore, the complexity of the self-attention

mechanism becomes O(N2

R
) instead of O(N2). This trick enables the training of bigger

transformer architectures and thus improve the performance on some tasks.

Finally, the multi-level features (i.e. the features extracted from all Transformer blocks)
are fed to the multi-layer perceptron, then upsampled to gather a segmentation mask of
dimension H

4 ×
W
4 ×Ncls, where Ncls is the number of categories.

Training

The Segformer architecture is taken from an open source semantic segmentation toolbox
which is open source (source: https://github.com/open-mmlab/mmsegmentation). It has
been trained on the CityScapes dataset [43]. Cityscapes provides high-quality, pixel-level
annotations for a diverse set of urban images captured in different cities across Germany.
The dataset consists of images taken from the perspective of a moving vehicle and covers a
wide range of urban scenes, including streets, intersections, sidewalks, buildings, vehicles,
and pedestrians.

Segformer trained on Cityscapes is relevant for the autonomous driving task. Furthermore,
Segformer is able to produce quality predictions that are close to the real groundtruth.

37

https://github.com/open-mmlab/mmsegmentation


Figure 4.5. Performances of SegFormer on the ADE20K and Cityscapes datasets from
[26]. Segformer shows a significant improvement on accuracy with respect to others known
models.

Figure 4.6. Segmentation mask from the Segformer architecture on the Cityscapes dataset.
Segformer is able to recognize all the objects and regions in the image.

For the experiments, the teacher network T is assumed to process a frame at a rate of
rT = 3 seconds per frame, which is the assumed framerate of the network teacher T used
in Cioppa et al. [15]. In fact, the framerate of Segformer is higher, but it is decided
to make the setup more difficult because the online distillation may be performed on
embedded devices that may not process frames faster.

4.1.5 Student network
As for the student network S and Sc, the TinyNet architecture is chosen [15, 29]. TinyNet
is a lightweight network for semantic segmentation which a scaled-down version of the
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PSPNet architecture [44].

Figure 4.7. Overview of TinyNet taken from [29]. It is composed of four components.
First, the original image (a) that will be segmented. Second, a feature map (b) which is
a simple ResNet module [2] that is used to extract feature maps. Third, a pyramidal
module that helps at gathering context information. Finally, an upsampling block in
order to produce the final segmentation map. Initially, TinyNet was proposed for line
and player segmentation on sport videos. However, it is completely viable for other fields
such as autonomous driving.

PSPNet introduced a pyramidal pooling module which can capture multi-scale contextual
information from an input image. Pyramidal pooling module aggrgates global contextual
information by using pooling operations at multiple scales as shown in Figure 4.7. The
ResNet module outputs high-level features that capture low-level details and high-level
semantic information. Then, the pyramid pooling perform pooling operations at multiple
scales; the feature map is splited into different regions and each region are independently
processed. Finally, all the pooling results are concatenated and upsampled to provide the
prediction.

TinyNet requires few sample to train, it can adapt to new scenes quite fast. Furthermore,
due to its low size (way less parameters than classical models like PSPNet or Segformer),
it makes predictions very fast. For the experiments, the student network is assumed to
process at a rate rS = 30 frames per second.

4.1.6 Experiment procedure
All the experiments are done on already recorded videos. In this subsection, explana-
tions on how the annotated frames are produced and how the student is evaluated are
given.

Annotated frames

Given a video at 30 FPS, a pseudo-annotated frame is produced every 90 frames, repre-
senting a frame every 3 seconds. Once all the annotated frames are gathered, they will
be used to perform online distillation. This is done as such because we do not want to
re-compute all pseudo-groundtruths whenever an experiment is performed.

Evaluation of the student network

Given the annotated frames from the teacher and the video, the online distillation is
performed as follows:
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1. Start with an empty replay buffer D0 = {} and initialize Sc with θ0. Set t = 0

2. At time t, a new batch of annotated frames Xt arrives, representing 1 minute of
video (20 annotated frames).

3. A dataset D = X ∪ fS(Dt) is used to perform one epoch on the student network
Sc(·; θt)

4. Sc(·; θt) becomes Sc(·; θt+1) after training. Sc(·; θt+1) is evaluated on the sets of
frames Xt+1, Xt+1−h and Xt+1+h to produce the mIoU, the BWT (if possible) and
the FWT (if possible) respectively.

5. Update the buffer Dt+1 = fU(Dt, Xt+1). Increment t.

6. if it is not the end of the stream, go back to 2. Otherwise, compute the FBWT and
the mIoU NDS.

4.1.7 Hyperparameters
Student network

The student network Sc is trained from scratch at the beginning of the video. ADAM
optimizer is used at a learning rate of 10−4. The batch size if set to 1, which follows the
setup from Cioppa et al. [15] that does not use a decreasing learning rate because the
data stream may be infinite and it is desirable that the student networks keeps training
on it.

Replay-based methods

The buffer size is set to M = 250 for the first experiment and it is set to M = 150 for
the second experiment (this gives an intuition on the impact of the capacity of the replay
buffer on the performance of the student network). The number of selected frames is
set to N = 100. For the Prioritized strategy, the prioritization parameter α is set to 3.
For the MIR strategy, the number of samples C to apply the search criterion is set to
150.

Regularization-based methods

To simulate the boundaries, the warmup (in terms of epochs) is set to 10 epochs. For the
update frequency, it is set to 1.

MAS and RWalk have an hyperparameter λ to adjust the importance of the regularizer;
it is set to 1. Furthermore, they both use a decay parameter β; it is set to 0.1.

4.2 Two domains setup
In this section, performance of the baseline is compared with several continual learning
approaches on the video V1. Memoryless methods are studied as a naïve approach; they
represent methods that are not using a replay-buffer. Instead, each annotated frame from
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the teacher is used once for training, then deleted. Furthermore, combination of replay-
based and regularization-based methods are studied to assess their effects (if they are
benefical or not). Replay-buffer capacity is set to M = 250.

4.2.1 Quantitative results

Methods Parameters Metrics (mean %)
fS fU R mIoU mIoU NDS FWT BWT Final BWT

Memoryless

/ / / 18.4/19.4 14.9/15.1 6.8/4.8 7.8/7.5 14.9/15.0
/ / MAS 14.0/14.0 13.0/13.3 11.1/11.1 12.9/12.9 14.2/14.2
/ / LwF 15.7/15.9 12.0/11.0 9.7/6.8 11.3/8.9 14.7/12.9
/ / RWalk 18.3/19.3 14.6/14.7 7.5/4.7 8.6/6.5 15.1/14.2

Baseline All FIFO / 23.4/24.2 19.8/18.2 14.5/9.5 17.7/13.9 21.9/19.9

Replay Buffer

Uniform Uniform / 25.5/25.0 23.6/21.1 22.2/17.3 30.6/28.8 29.4/28.4
Prioritized Prioritized / 25.1/25.1 23.2/20.8 21.3/17.3 29.2/28.4 29.2/28.9
MIR Uniform / 25.2/25.2 23.7/24.5 21.9/17.9 30.5/28.6 29.5/29.7
MIR Uniform MAS 14.5/14.9 13.4/14.7 12.1/13.6 13.9/15.2 15.1/15.4
MIR Uniform LwF 18.7/18.1 17.6/15.7 17.4/13.9 21.0/20.2 22.4/21.1
MIR Uniform ACE 25.6/25.5 24.2/21.8 22.0/17.5 30.8/29.4 28.8/28.5
MIR Uniform RWalk 25.2/25.4 23.4/22.0 21.8/18.0 30.0/30.8 30.1/30.8

Table 4.1. (© 2023 IEEE) Quantitative results. The baseline by Cioppa et al. [15] com-
pared to memoryless and replay-based methods. A benchmark of the different selections
functions fS, update functions fU , and regularizers R are performed for each category.
It displays the different metrics for the 20/40 concatenated sequences for the video V1.
There is a noticeable difference of performance between the replay-based methods and the
memoryless methods. Furthermore, the baseline remains better than memoryless meth-
ods but is outperformed by all replay-based methods except for replay-based methods
using LwF and MAS regularization methods. Indeed, LwF and MAS tend to decrease
the performance, while ACE and RWalk increase the performance. Overall, the Uniform
method, the MIR method, MIR+ACE and MIR-RWalk show the best performance. A
comparison of the temporal evolution of the baseline with some methods are given at
figures 4.8, 4.9 and 4.10.

In table 4.1, we can see that memoryless methods do not perform well compared to the
baseline. An illustration of Memoryless RWalk is given at Figure 4.8. This indicates
the necessity to use replay-based methods in order to improve the performance of the
student network over time. Moreover, replay-based methods work pretty well without any
regularizer; they all outperform the baseline, where MIR shows the best results among
all the replay-based only methods. However, adding a regularizer to these replay-based
methods are not always benefical; LWF and MAS, combined with the MIR method,
perform clearly worse than the baseline. An hypothesis could be that the regularizer
prevents the student from adapting to new domains, meaning that when trying to learn
the second domain, the regularizer completely blocks the training of the student in order
to remember the first domain. Furthermore, the size of the model could also play a role
because, for MAS, constraining the change of parameters could be a too huge penalty for
small models.
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Figure 4.8. (© 2023 IEEE) Evolution of performance over time. The baseline is
compared with the memoryless RWalk regularization method. (Top-left) mIoU: RWalk
Memoryless underperform against the baseline. Furthermore, it does not even avoid
catastrophic forgetting as it suffers from a huge drop of its performance at each domain
shift. (This drop is even bigger than the baseline’s). (Bottom-left) BWT: When evaluated
on the previous domain, RWalk Memoryless underpeforms against the baseline. They are
both not able to retain knowledge on already-seen training samples. (Top-Right) Final
BWT: Again, RWalk Memoryless underperforms compared to the baseline. For both
methods, they’re only performing at their best on the latest domain they were trained
on. (Bottom-right) FWT: When evaluated on the next domain, both methods do not
generalize well on unseen samples from already-seen domains.

Overall, the biggest improvement is done with MIR. Nonetheless, other replay-based
methods also show similar performance than MIR, such as the Uniform method shown in
Figure 4.9. The Uniform method has the benefits of not being computationally expensive,
at least compared to the baseline, unlike MIR who requires more computation power to
work. Therefore, if the computation power is an important variable to take into account
(which is the case for autonomous driving application), a more lightweight method could
be used if it nearly reaches the same performance. Reguarding the Prioritized method, it
underperforms compared to the Uniform method. More explanation on this will be given
in the ablation (see section 4.4.1)
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Figure 4.9. Evolution of performance over time. Uniform and MIR are compared
with the baseline. Both methods clearly outperform the baseline on every aspect. (Top-
left) mIoU: All the methods have similar performance within a domain. The difference
occurs at each domain shift; Uniform and MIR do not suffer from a drop of their perfor-
mance, unlike the baseline. (Bottom-left) BWT: When evaluated on previous domains,
Uniform and MIR are able to retain information on past training frames. (Top-right)
Final BWT: Uniform and MIR’s performance remain decent on all domains, unlike the
baseline who is only decent on the last domain it has trained on. (Bottom-right) FWT:
Uniform and MIR are able to generalize well on new samples from already-seen domains.

The best performing methods are MIR+ACE and MIR+RWalk. For the mIoU, MIR+ACE
is slightly better; an explanation could be that MIR+ACE does not only retain knowl-
edge with the replay buffer, but it also accelerate the learning of new classes (due to the
asymmetric loss). This assumption is relevant because MIR+ACE has a better mIoU
NDS than MIR+RWalk. Reguarding the RWalk regularization method, it is a smarter
version of MAS who keeps track of all variation in loss caused by the parameters of the
model. This additional feature prevents the model from being completely frozen (not able
to learn a new task).

In figure 4.10, the evolution of the performance over time for the baseline and on one of
the best method (MIR+RWalk) is shown. Reguarding the mIoU plot, both methods are
behaving the same way; this is expected because they both discover the two domains.
The second transition shows the difference between the two methods: the baseline suffers
from a drop of its performance while MIR+RWalk remains performant. This comment also
holds for all the next transitions. This drop of performance by the baseline is caused by the
forgetting of the previous domain. Indeed, one can confirm this assumption by checking
the other metrics; MIR+RWalk outperforms the baseline in BWT which is an indication
that MIR+RWalk is able to retain more information from the previous domain than the
baseline. Furthermore, the FWT is also high for MIR+RWalk compared to the baseline
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who decreases over time on the same domain, this indicates thar MIR+RWalk can better
generalize on new frames from a previous domain than the baseline. Finally, the Final-
BWT is clearly better for MIR+RWalk than the baseline, indicating that MIR+RWalk
does not suffer from forgetting on past domains.
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Figure 4.10. Evolution of performance over time. MIR-RWalk is compared with
the baseline. Comments are similar than Uniform and MIR (4.9). This is the method
achieving the best performance.

4.2.2 Qualitative results
The qualitative demonstration of the impact of top-performing continual learning methods
on mitigating catastrophic forgetting is presented in this study. Specifically, the accuracy
of segmentation masks is examined by following two specific transitions: from the highway
to downtown (where the student has only encountered downtown once before) and from
downtown to highway (where the student has previously experienced the highway domain
six times).

In Figure 4.11, a visual comparison is shown between the segmentation masks produced
by the baseline method, MIR, and MIR+RWalk, in relation to the ground-truth mask.
Notably, even though the student has been exposed to the domain previously, the seg-
mentation masks generated by the baseline approach immediately after the domain shift
are notably inadequate. This deficiency could potentially lead to hazardous situations
for both the autonomous vehicle and its occupants. Conversely, the segmentation masks
obtained through the application of MIR and MIR+RWalk exhibit a significantly closer
alignment with the ground-truth masks.

Furthermore, quantitative results corroborate these observations by highlighting the con-
siderable improvement in prediction quality achieved through the integration of continual
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learning algorithms into the online distillation framework. These enhancements make the
framework more practical and reliable for real-world applications.

RGB Image Ground truth Baseline MIR MIR+RWalk

Figure 4.11. (© 2023 IEEE) Qualitative results. Segmentation masks from several
methods at the time of a domain shift. Top row shows a frame taken right after the second
domain shift (shift to the downtown environment). Down row shows a frame taken right
after the seventh domain shift (shift to the highway environment). The baseline performs
a poor segmentation masks right after domain shifts even though it had already seen
them. MIR and MIR+RWalk manage to produce decent segmentation masks.
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4.3 Three domains setup
In this section, performance of the baseline is compared with several continual learning
approaches on the video V2. The study is the same than the two domains setup, except
that this experiment involves a more difficult setup (an additional domain: the forest
enviromnent). This time, the replay-buffer capacity is set to M = 150.

4.3.1 Quantitative results

Methods Parameters Metrics (mean %)
fS fU R mIoU mIoU NDS FWT BWT Final BWT

Memoryless

/ / / 19.9 16.4 6.8 7.7 14.4
/ / MAS 17.0 13.9 9.3 14.1 15.5
/ / LwF 17.1 13.1 7.4 11.4 13.0
/ / RWalk 19.8 16.6 6.8 8.1 14.2

Baseline All FIFO / 23.8 20.2 8.9 17.3 19.8

Replay Buffer

Uniform Uniform / 24.9 22.3 18.5 28.9 26.4
Prioritized Prioritized / 25.0 23.3 19.8 28.8 26.9
MIR Uniform / 25.1 22.7 18.9 29.3 27.1
MIR Uniform MAS 16.5 15.4 14.5 19.0 18.4
MIR Uniform LwF 19.8 17.6 16.7 22.3 22.6
MIR Uniform ACE 24.9 22.7 18.9 29.3 27.8
MIR Uniform RWalk 25.2 22.9 19.3 29.0 26.5

Table 4.2. Quantitative results. The baseline by Cioppa et al. [15] compared to
memoryless and replay-based methods. A benchmark of the different selections functions
fS, update functions fU , and regularizers R are performed for each category. It displays
the different metrics for the 20 concatenated sequences for the video V2. Memoryless
methods decrease the performance compared to the baseline. Replay-based methods
outperform the baseline on all aspects. MAS and LwF regularization methods decrease
the performance while ACE and RWalk increase the performance. A comparison of the
temporal evolution of performance of some mehods are given in figures 4.12, 4.13 and
4.15.

In table 4.2, again, memoryless methods perform poorly compared to the replay-based
methods. Indeed, they underperform on all metrics with respect to the baseline, except
Memoryless-MAS who outperforms the baseline on the FWT metric. On the hand, all
replay-based methods outperform the baseline. Indeed, Uniform, Prioritized and MIR
show extremely good results on all metrics compared to the baseline. However, when
combining replay-based methods with a regularizer, MAS and LwF decrease the perfor-
mance, while RWalk and ACE increase the performance.

Figure 4.12 compares the baseline with Memoryless-MAS. Even though Memoryless-MAS
underpeforms against the baseline, it shows improvement over other Memoryless methods.
Indeed, Memoryless-MAS is method outperforms all other Memoryless methods on the
FWT, BWT and Final BWT metrics, indicating that it is able to retain some knowledge.
It can even outperform the baseline on the FWT at some time (40-60, 60-80, 100-120, 160-
180). This might be due to the way its importance weights are updated. Indeed, after the
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warmup and at each epoch, its importance weights are being updated using exponential
averaging. Therefore, Memoryless-MAS forgets less quickly (as time passes, importance
weight will only focus on the current domain but it takes several updates).

Reguarding replay-based only methods, Prioritized and MIR slightly outperform Uni-
form. This might indicate that if the capacity of the replay buffer is limited, a smarter
selection and/or update function can improve the performance. Figure 4.13 illustrates a
comparison between the baseline, Prioritized and MIR. Prioritized method shows the best
FWT and mIoU NDS among all methods. The reason could be that, since the replay-
buffer’s capacity is limited, Prioritized is more able to preserve older samples from past
domains, unlike a uniform selection function who, on average, will delete these samples
quicker.
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Figure 4.12. Evaluation of performance over time. Comparison between the baseline
and Memoryless-MAS. (Top-left) mIoU: MAS underperforms against the baseline all the
time. Furthermore, it also suffers from a drop of its performance during a domain shift.
(Bottom-left) BWT: Memoryless-MAS underperforms against the baseline, meaning that
its capacity to retain knowledge from the past is worse than the baseline. (Top-right)
Final-BWT: On the first domain (0-20, 60-80, 120-140), Memoryless-MAS almost shows
equal performance. Like the baseline, Memoryless-MAS performs the best on the last
seen domain, and performs very poorly on the others, indicating that it did not retain
knowledge from past domains. (Bottom-right) FWT: Surprisingly, Memory-less MAS is
able to outperform the baseline at some time, meaning that it can better generalize on
unseen samples from already-seen domains.
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Figure 4.13. Evolution of the performance over time. Prioritized and MIR are
compared with the baseline. Both methods, again, clearly outperform the baseline on
every aspect. (Top-left) mIoU: All the methods have similar performance within a domain.
the difference occurs at each domain shift; reguarding MIR and Prioritized, they both do
not suffer from a huge drop of performance. (Bottom-left) BWT: MIR and Prioritized are
both able to retain information from the past. MIR and Prioritized almost shows the same
performance. (Top-right) Final-BWT: The baseline only remembers the latest domain it
has trained on (bad performances on the two others domains), while Prioritized and MIR
were able to retain information from the past. Again, MIR and Prioritized almost show
the same performance. (Bottom-right) FWT: When evaluated on future domains, MIR
and Prioritized remain performant on new samples from already seen domains, showing
good generalization. Prioritized slightly outperform MIR on the FWT.

Concerning MIR+MAS and MIR+LWF, their mIoU is low compared with the baseline.
However, they still perform better than the baseline in terms of FWT and BWT (also
Final BWT for MIR+LWF). In the other hand, MIR+MAS and MIR+LWF perform
worse than MIR, which may indicates that the regularizer prevents the network from
learning a lot from new domains. Constraining the model by a previous version of the
model does not seem to be a good idea in the online distillation framework. Fig 4.14 shows
the performance of MIR+LWF compared to the baseline. It shows that MIR+LWF (or
MIR+MAS) is able outperform the baseline in terms of BWT, FWT and Final-BWT,
but they get outperformed by the baseline inside the current domain.
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Figure 4.14. Evolution of performance over time. Comparison of MIR+LWF with
the baseline. (Top-left) mIoU: During a domain shift, MIR+LWF doesn’t suffer from
catastrophic forgetting. However, it does not manage to outperform the baseline inside the
same domain. (Bottom-left) BWT: When evaluating on already-seen samples, MIR+LWF
does not seem to suffer from forgetting, but its learning capacity is limited. (Top-right)
Final-BWT: MIR+LWF shows good performance on the last seen domain it has trained
on. However, its performance are weak on the other domains, but it is still better than
the baseline. (Bottom-right) FWT: When evaluated on unseen samples of already seen
domains, MIR+LWF shows greater capacity to generalize than the baseline.

Finally, Figure 4.15 illustrates the performance of one of the best method: MIR+ACE. In
the mIoU plot, from minute 0 to minute 59, MIR+ACE behaves the same way than the
baseline; this is expected since it discovers the three domain. The first difference occurs
at minute 60, where the student perceives frames from the first domain. The baseline
suffers from a drop of its performance while MIR+ACE keeps showing good performance.
For the Final BWT, the final model using with MIR+ACE shows good performance on
all domains, meaning that it has been able to retain knowledge from the past. This
observation is reinforced by the BWT and the FWT, showing that MIR+ACE mitigates
forgetting and generalizes over unseen samples from already seen domains.
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Figure 4.15. Evolution of performance over time. MIR-ACE is compared with the
baseline. Comments are similar than Prioritized and MIR (4.15). This is one of the
methods achieving the best performance.

4.3.2 Qualitative results
A qualitative demonstration of the impact of some continual learning methods on miti-
gating catastrophic forgetting is presented in this study. As for the first experiment, the
accuracy of segmentation masks is examined by following all the possible transitions: from
the forest environment to the downtown environment, from the downtown environment
to the highway environment and from the highway environment to the forest environ-
ment. (In all cases where the student has previously experienced all domains exactly one
time).

In figure 4.16, a visual comparison is shown between the segmentation masks produced by
the baseline method, Prioritized and MIR+ACE, in relation to the ground-truth mask.
Again, the baseline produces poor segmentation masks, even worse than for the first
experiment. Indeed, this time, the baseline produce segmentation masks that are not
even close to the ground truth, it looks more like a can of paint thrown on a board. This
baseline is not suitable for real world application such as autonomous driving.

Reguarding Prioritized, it manages to produce segmentation masks where the regions
are well segmented, but it fails at capturing objects (pedestrian, cars, ...) precisely.
MIR+ACE manages to produce decent segmentation masks, but fails at capturing minor
details (poles, ...).
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RGB Image Ground truth Baseline Prioritized MIR+ACE

Figure 4.16. Qualitative results. Segmentation masks from several methods at the time
of a domain shift. Top row shows a frame taken right after the third domain shift (shift
from the forest environment to the highway environment). Middle row shows a frame
taken right after the fourth domain shift (shift from the highway environment to the
downtown environment). Down row shows a frame taken right after the fifth domain shift
(shift from the downtown environment to the forest environment). The baseline performs
segmentation masks that are very wrong compared to the groundtruth. Prioritized have
somme difficulties at representing some classes clearly (cars in this case) and fails at
producing decent segmentation masks for them. Prioritized manages to produce good
segmentation masks for representing regions (sky, road, trees, ...). MIR+ACE is able to
produce good segmentation masks.

4.4 Discussion

4.4.1 Effect of replay-based methods
Experiments have shown that replay-based methods are a good way in order to mitigate
forgetting. Furthermore, the way the replay buffer is managed also impacts the perfor-
mance of the model. When the capacity of the buffer is large enough (wirh respect to the
number of domains to be considered), the chosen selection and update functions does not
seem to have a huge impact; it has one when either the capacity of the replay-buffer is
limited (it can have several causes, such as limited hardware). Or if there are too many
domains to remember. If the first case, when the replay-buffer’s capacity is too small,
frames from past domains are likely to disappear, and thus the student will start forget-
ting it. In the other hand, if the sequence inside a domain is too long, the same behavior
would appear. This behavior has been observed in table 4.1, when the sequence length
goes from 20 minutes to 40 minutes, the mIoU NDS, FWT and BWT all decreased. In-
deed, as time passes, there is a moment where the number of samples from past domains
is too low compared to the samples from the current domain, limiting the network from
learning. Furthermore, smarter methods such as Prioritized and MIR show better results
than Uniform when the capacity of the replay buffer is low, as seen in table 4.2.

To further demonstrate the utility of using smarter update functions for the replay-buffer
in order to mitigate forgetting, one experiment is ran using the Uniform method and the
Prioritized method, where the capacity of the buffer is set to M = 100, which is the
number of samples that are selected for training. Therefore, the selection function selects
all samples for training.
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Methods Parameters Metrics (mean %)
fS fU R mIoU mIoU NDS FWT BWT Final BWT

Baseline All FIFO / 23.8 20.2 8.9 17.3 19.8

Replay Buffer All Uniform / 23.7 20.9 14.8 25.0 24.1
All Prioritized / 23.8 21.8 15.7 25.2 25.4

Table 4.3. Quantitative results. The baseline is compared with the Uniform method
and the Prioritized method when M = N = 100 on the video V2. In terms of mIoU, all
methods perform the same. First difference is for the mIoU NDS, where the Prioritized
method decreases less from a drop of performance when a domain shift occurs. In this
case, the Prioritized method outperforms all other methods.

Table 4.3 shows the results of these methods on the video V2, which involves three do-
mains with sequences of 20 minutes long. Overall, the Prioritized method outperforms
the baseline on all metrics except for the mIoU. At the time of a domain shift, the Pri-
oritized method shows more robustness compared to the Uniform method. Indeed, due
to the limited capacity of the replay-buffer (M = 100), samples from past domains are
likely to be replaced by new incoming samples from the current domain. In these exper-
iments, the next minute of video the student is trained on is added in the replay-buffer
after each epoch. The probability of a sample to be replaced grows quickly with respect
to the number of epochs. In the other hand, the Prioritized method takes into account
the importance of a frame by computing a score, which makes non-uniform probabilities.
Therefore, if the student shows a decrease of its performance on past domains, the prob-
ability of replacing samples from past domains by a new sample from the current domain
will decreases. Figure 4.17 shows the performance of the methods over time.

One could think that MIR could be an efficient update function as it uses scores to
deterministically select samples. Practically, it is not convenient as the considered domains
may contain out-of-distribution samples. Therefore, MIR, as an update function, would
keep all these samples in the replay-buffer and thus train on out-of-distribution samples,
which is something that must be avoided. Using scores to represent probabilities is more
convenient to address these issues.
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Figure 4.17. Evolution of performance over time. The baseline is compared with the
Uniform method and the Prioritized method. (Top-left) mIoU: Uniform and Prioritized
almost show equal performance than the baseline, except that their suffer less from a drop
of their performance at the time of a domain shift. (Bottom-left) BWT: When evaluated
on past samples from past domains, Uniform and Prioritized show the same performance.
(Top-right) Final-BWT: Prioritized shows better capacity at retaining information from
past domains than Uniform. (Bottom-right) FWT: Prioritized shows better generalization
than Uniform.

4.4.2 Effect of regularisation-based methods
Experiments have shown that using regularizer methods are not sufficient to mitigate
catastrophic forgetting. Indeed, all memoryless methods underperform against the base-
line. When regularization-based methods is used with replay-based methods, it can
slightly increase the performance.

Nonetheless, regularization-based methods such as MAS and LWF are able to retain
knowledge in order to reduce catastrophic forgetting. Indeed, Figure 4.18 compares FIFO-
Memoryless (The baseline without the replay-buffer) and MAS-Memoryless. Even though
MAS-Memoryless underperforms against FIFO-Memoryless, MAS-Memoryless does not
suffer from catastrophic forgetting. This is reinforced by the fact that MAS-Memoryless
outperforms FIFO-Memoryless on the BWT and the FWT. Indeed, MAS-Memoryless is
able to retain knowledge from past domains but at the price of decreasing its performance
on the current domain.

Finally, regularization-based methods may show unsatisfying performance because, ini-
tially, they were meant to be used in an offline setup, where task boundaries are known.
A better fine-tuning of their hyper-parameters (method-based hyper-parameters, task-
boundary simulated hyper-parameters), may increase the performance.
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Figure 4.18. Evolution of performance over time. FIFO-Memoryless is compared
with MAS-Memoryless on the video sequence V1, where the length of a sequence is 20 min-
utes. (Top-left) mIoU: FIFO-Memoryless outperforms MAS-Memoryless on the current
domain. When a domain shift occurs, MAS-Memoryless does not suffer from a huge drop
of its performance unlike FIFO-Memoryless. (Bottom-left) BWT: Memoryless-MAS is
able to retain knowledge from frames it has trained on. FIFO-Memoryless quickly forgets
the knowledge acquired. (Top-right) Finalt-BWT: FIFO-Memoryless only remembers
the last domain it has trained on. MAS-Memoryless shows the same performance on
all domains; it underperforms against FIFO-Memoryless on the latest domain they have
trained on, but it slightly outperforms it on the other domain. (Bottom-right) FWT:
MAS-Memoryless shows more generalization capacity than FIFO-Memoryless
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Chapter 5

Conclusion

5.1 Conclusion
In conclusion, the emergence of online distillation has opened up new possibilities for
adapting deep neural networks in real-time. Nonetheless, the challenge of catastrophic
forgetting during domain shifts has posed a significant obstacle in implementing this
technique. This study presents an innovative solution to address this challenge by in-
tegrating continual learning methods, enhancing the suitability of online distillation for
practical applications like autonomous driving. Through our experiments, we assessed
several cutting-edge continual learning approaches and demonstrated their effectiveness
in mitigating catastrophic forgetting. Furthermore, we conducted a thorough analysis of
our proposed solution, specifically in the context of cyclic domain shifts. The outcomes
emphasize that our approach enhances the resilience and accuracy of online distillation,
making it a promising technique for real-world applications. This research represents a
significant advancement in the field of online distillation and continual learning, offering
substantial potential to make a meaningful impact in diverse fields such as autonomous
driving.

5.2 To go further
Several doors are opened to improve our online distillation framework. First, other replay-
based and regularization-based methods could be used. There exists others more recents
regularization- and replay-based methods ([45], [46]) where the problem of catastrophic
forgetting is seen from another perspective.

Furthermore, mitigating catastrophic forgetting could also be directly done inside the
network itself. One of them are Memory-Augmented Neural Networks (MANNs) [47]
where the network is equipped with an external memory to access and retrieve information
(refered as Neural Turing Machines [48]). The authors state that their architecture would
potentially be suitable to alleviate catastrophic forgetting. However, the core of their
study was to achieve one-shot learning.

55



Bibliography

[1] Joachim Houyon et al. “Online Distillation with Continual Learning for Cyclic Do-
main Shifts”. In: IEEE International Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Workshop on Continual Learning in Computer
Vision. Vancouver, Canada: IEEE, June 2023. url: https://arxiv.org/abs/2304.
01239 (pages 1, 6, 7, 14, 34).

[2] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR). Las Vegas, NV, USA: Inst. Electr.
Electron. Eng. (IEEE), June 2016, pp. 770–778. doi: 10.1109/cvpr.2016.90. url:
https://doi.org/10.1109/CVPR.2016.90 (pages 5, 39).

[3] Ming Liang and Xiaolin Hu. “Recurrent convolutional neural network for object
recognition”. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR). Boston,
MA, USA: Inst. Electr. Electron. Eng. (IEEE), June 2015, pp. 3367–3375. doi:
10.1109/cvpr.2015.7298958. url: https://doi.org/10.1109/CVPR.2015.7298958
(page 5).

[4] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural
Networks 61 (Jan. 2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.003. url:
https://doi.org/10.1016/j.neunet.2014.09.003 (page 5).

[5] Dan Hendrycks and Thomas Dietterich. “Benchmarking Neural Network Robust-
ness to Common Corruptions and Perturbations”. In: Int. Conf. Learn. Represent.
(ICLR). 2019 (page 5).

[6] Oguzhan Fatih Kar et al. “3D Common Corruptions and Data Augmentation”. In:
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR). New Orleans, LA, USA:
Inst. Electr. Electron. Eng. (IEEE), June 2022, pp. 18941–18952. doi: 10.1109/

cvpr52688.2022.01839. url: https://doi.org/10.1109/CVPR52688.2022.01839

(page 5).
[7] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”.

In: Proc. National Acad. Sci. (PNAS) 114.13 (Mar. 2017), pp. 3521–3526. doi:
10.1073/pnas.1611835114. url: https://doi.org/10.1073/pnas.1611835114

(pages 5, 11).
[8] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. “ACDC: The Adverse Con-

ditions Dataset with Correspondences for Semantic Driving Scene Understanding”.
In: IEEE Int. Conf. Comput. Vis. (ICCV). Montreal, QC, Canada: Inst. Electr.
Electron. Eng. (IEEE), Oct. 2021, pp. 10745–10755. doi: 10.1109/iccv48922.2021.
01059. url: https://doi.org/10.1109/ICCV48922.2021.01059 (pages 5, 8).

56

https://arxiv.org/abs/2304.01239
https://arxiv.org/abs/2304.01239
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/cvpr.2015.7298958
https://doi.org/10.1109/CVPR.2015.7298958
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/cvpr52688.2022.01839
https://doi.org/10.1109/cvpr52688.2022.01839
https://doi.org/10.1109/CVPR52688.2022.01839
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1109/iccv48922.2021.01059
https://doi.org/10.1109/iccv48922.2021.01059
https://doi.org/10.1109/ICCV48922.2021.01059


[9] Zhizhong Li and Derek Hoiem. “Learning without Forgetting”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 40.12 (Dec. 2018), pp. 2935–2947. doi: 10.1109/tpami.
2017.2773081. url: https://doi.org/10.1109/TPAMI.2017.2773081 (pages 5, 11,
19, 21).

[10] Arslan Chaudhry et al. “Continual Learning with Tiny Episodic Memories”. In: Int.
Conf. Mach. Learn. (ICML). 2019 (pages 5, 11).

[11] Zhipeng Cai, Ozan Sener, and Vladlen Koltun. “Online Continual Learning with
Natural Distribution Shifts: An Empirical Study with Visual Data”. In: IEEE Int.
Conf. Comput. Vis. (ICCV). Montréal, Can.: Inst. Electr. Electron. Eng. (IEEE),
Oct. 2021, pp. 8261–8270. doi: 10.1109/iccv48922.2021.00817. url: https://doi.
org/10.1109/ICCV48922.2021.00817 (page 5).

[12] Baochen Sun and Kate Saenko. “Deep CORAL: Correlation Alignment for Deep
Domain Adaptation”. In: Eur. Conf. Comput. Vis. (ECCV). Vol. 9915. Lect. Notes
Comput. Sci. Springer Int. Publ., 2016, pp. 443–450. doi: 10.1007/978-3-319-

49409-8_35. url: https://doi.org/10.1007/978-3-319-49409-8_35 (page 5).
[13] Prachi Garg et al. “Multi-Domain Incremental Learning for Semantic Segmenta-

tion”. In: Jan. 2022, pp. 2080–2090. doi: 10.1109/wacv51458.2022.00214. url:
https://doi.org/10.1109/WACV51458.2022.00214 (pages 5, 11).

[14] Dequan Wang et al. “Tent: Fully test-time adaptation by entropy minimization”.
In: CoRR abs/2006.10726 (2020). arXiv: 2006.10726 (page 5).

[15] Anthony Cioppa et al. “ARTHuS: Adaptive Real-Time Human Segmentation in
Sports Through Online Distillation”. In: IEEE Int. Conf. Comput. Vis. Pattern
Recognit. Work. (CVPRW), CVsports. Long Beach, CA, USA: Inst. Electr. Electron.
Eng. (IEEE), June 2019, pp. 2505–2514. doi: 10.1109/cvprw.2019.00306. url:
https://doi.org/10.1109/CVPRW.2019.00306 (pages 6, 9, 10, 29, 38, 40, 41, 46).

[16] Abolfazl Farahani et al. “A Brief Review of Domain Adaptation”. In: Trans. Com-
put. Sci. Comput. Intell. (2021), pp. 877–894. doi: 10.1007/978-3-030-71704-9_65.
url: https://doi.org/10.1007/978-3-030-71704-9_65 (page 8).

[17] Hyesu Lim et al. “TTN: A Domain-Shift Aware Batch Normalization in Test-Time
Adaptation”. In: Int. Conf. Learn. Represent. (ICLR). 2023, pp. 1–19. url: https:
//openreview.net/pdf?id=EQfeudmWLQ (page 8).

[18] Qin Wang et al. “Continual Test-Time Domain Adaptation”. In: IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR). New Orleans, LA, USA: Inst. Electr. Elec-
tron. Eng. (IEEE), June 2022, pp. 7191–7201. doi: 10.1109/cvpr52688.2022.00706.
url: https://doi.org/10.1109/CVPR52688.2022.00706 (page 8).

[19] Fatemeh Azimi et al. “Self-supervised Test-time Adaptation on Video Data”. In:
IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV). Waikoloa, HI, USA: Inst.
Electr. Electron. Eng. (IEEE), Jan. 2022, pp. 2603–2612. doi: 10.1109/wacv51458.
2022.00266. url: https://doi.org/10.1109/WACV51458.2022.00266 (page 8).

[20] Tao Sun et al. “SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Do-
main Adaptation”. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR).
New Orleans, LA, USA: Inst. Electr. Electron. Eng. (IEEE), June 2022, pp. 21339–
21350. doi: 10.1109/cvpr52688.2022.02068. url: https://doi.org/10.1109/

CVPR52688.2022.02068 (page 8).

57

https://doi.org/10.1109/tpami.2017.2773081
https://doi.org/10.1109/tpami.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/iccv48922.2021.00817
https://doi.org/10.1109/ICCV48922.2021.00817
https://doi.org/10.1109/ICCV48922.2021.00817
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1007/978-3-319-49409-8_35
https://doi.org/10.1109/wacv51458.2022.00214
https://doi.org/10.1109/WACV51458.2022.00214
https://arxiv.org/abs/2006.10726
https://doi.org/10.1109/cvprw.2019.00306
https://doi.org/10.1109/CVPRW.2019.00306
https://doi.org/10.1007/978-3-030-71704-9_65
https://doi.org/10.1007/978-3-030-71704-9_65
https://openreview.net/pdf?id=EQfeudmWLQ
https://openreview.net/pdf?id=EQfeudmWLQ
https://doi.org/10.1109/cvpr52688.2022.00706
https://doi.org/10.1109/CVPR52688.2022.00706
https://doi.org/10.1109/wacv51458.2022.00266
https://doi.org/10.1109/wacv51458.2022.00266
https://doi.org/10.1109/WACV51458.2022.00266
https://doi.org/10.1109/cvpr52688.2022.02068
https://doi.org/10.1109/CVPR52688.2022.02068
https://doi.org/10.1109/CVPR52688.2022.02068


[21] Fisher Yu et al. “BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask
Learning”. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR). Seattle,
WA, USA: Inst. Electr. Electron. Eng. (IEEE), June 2020, pp. 2633–2642. doi:
10.1109/cvpr42600.2020.00271. url: https://doi.org/10.1109/CVPR42600.2020.
00271 (pages 8, 33).

[22] Jinlong Li et al. “Domain Adaptive Object Detection for Autonomous Driving un-
der Foggy Weather”. In: IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV).
Waikoloa, HI, USA: Inst. Electr. Electron. Eng. (IEEE), Jan. 2023, pp. 612–622.
doi: 10.1109/wacv56688.2023.00068. url: https://doi.org/10.1109/WACV56688.
2023.00068 (page 8).

[23] Sébastien Piérard et al. “Mixture Domain Adaptation to Improve Semantic Segmen-
tation in Real-World Surveillance”. In: IEEE/CVF Winter Conf. Appl. Comput.
Vis. Work. (WACVW). Waikoloa, HI, USA: Inst. Electr. Electron. Eng. (IEEE),
Jan. 2023, pp. 22–31. doi: 10.1109/wacvw58289.2023.00007. url: https://doi.

org/10.1109/WACVW58289.2023.00007 (page 8).
[24] Theodoros Panagiotakopoulos et al. “Online Domain Adaptation for Semantic Seg-

mentation in Ever-Changing Conditions”. In: Eur. Conf. Comput. Vis. (ECCV).
Vol. 13694. Lect. Notes Comput. Sci. Springer Nat. Switz., 2022, pp. 128–146. doi:
10.1007/978-3-031-19830-4_8. url: https://doi.org/10.1007/978-3-031-19830-
4_8 (page 8).

[25] Yawei Luo et al. “Taking a Closer Look at Domain Shift: Category-Level Adversaries
for Semantics Consistent Domain Adaptation”. In: IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR). Long Beach, CA, USA: Inst. Electr. Electron. Eng.
(IEEE), June 2019, pp. 2502–2511. doi: 10.1109/cvpr.2019.00261. url: https:

//doi.org/10.1109/CVPR.2019.00261 (page 8).
[26] Enze Xie et al. “SegFormer: Simple and Efficient Design for Semantic Segmentation

with Transformers”. In: vol. 34. 2021, pp. 12077–12090 (pages 9, 36–38).
[27] Hengshuang Zhao et al. “Pyramid Scene Parsing Network”. In: IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR). Honolulu, HI, USA: Inst. Electr. Electron.
Eng. (IEEE), July 2017, pp. 6230–6239. doi: 10.1109/cvpr.2017.660. url: https:
//doi.org/10.1109/CVPR.2017.660 (page 9).

[28] Sixiao Zheng et al. “Rethinking Semantic Segmentation from a Sequence-to-Sequence
Perspective with Transformers”. In: June 2021, pp. 6877–6886. doi: 10 . 1109 /

cvpr46437.2021.00681. url: https://doi.org/10.1109/CVPR46437.2021.00681

(page 9).
[29] Anthony Cioppa, Adrien Deliège, and Marc Van Droogenbroeck. “A bottom-up ap-

proach based on semantics for the interpretation of the main camera stream in soc-
cer games”. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit. Work. (CVPRW),
CVsports. Salt Lake City, UT, USA, June 2018, pp. 1846–1855. doi: 10.1109/CVPRW.
2018.00229. url: http://hdl.handle.net/2268/222427 (pages 9, 38, 39).

[30] Anthony Cioppa et al. “Multimodal and multiview distillation for real-time player
detection on a football field”. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit.
Work. (CVPRW), CVsports. Seattle, WA, USA, June 2020, pp. 3846–3855. doi:
10.1109/CVPRW50498.2020.00448. url: https://doi.org/10.1109/CVPRW50498.

2020.00448 (page 10).

58

https://doi.org/10.1109/cvpr42600.2020.00271
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1109/wacv56688.2023.00068
https://doi.org/10.1109/WACV56688.2023.00068
https://doi.org/10.1109/WACV56688.2023.00068
https://doi.org/10.1109/wacvw58289.2023.00007
https://doi.org/10.1109/WACVW58289.2023.00007
https://doi.org/10.1109/WACVW58289.2023.00007
https://doi.org/10.1007/978-3-031-19830-4_8
https://doi.org/10.1007/978-3-031-19830-4_8
https://doi.org/10.1007/978-3-031-19830-4_8
https://doi.org/10.1109/cvpr.2019.00261
https://doi.org/10.1109/CVPR.2019.00261
https://doi.org/10.1109/CVPR.2019.00261
https://doi.org/10.1109/cvpr.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/cvpr46437.2021.00681
https://doi.org/10.1109/cvpr46437.2021.00681
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.1109/CVPRW.2018.00229
https://doi.org/10.1109/CVPRW.2018.00229
http://hdl.handle.net/2268/222427
https://doi.org/10.1109/CVPRW50498.2020.00448
https://doi.org/10.1109/CVPRW50498.2020.00448
https://doi.org/10.1109/CVPRW50498.2020.00448


[31] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem”. In: Psychol. Learn. Motiv. (1989),
pp. 109–165. doi: 10.1016/s0079-7421(08)60536-8. url: https://doi.org/10.

1016/S0079-7421(08)60536-8 (page 11).
[32] Robert M. French. “Catastrophic forgetting in connectionist networks”. In: Trends

Cogn. Sci. 3.4 (Apr. 1999), pp. 128–135. doi: 10.1016/s1364-6613(99)01294-2.
url: https://doi.org/10.1016/S1364-6613(99)01294-2 (page 11).

[33] Rahaf Aljundi et al. “Memory Aware Synapses: Learning What (not) to Forget”. In:
Eur. Conf. Comput. Vis. (ECCV). Vol. 11207. Lect. Notes Comput. Sci. Springer
Int. Publ., 2018, pp. 144–161. doi: 10.1007/978-3-030-01219-9_9. url: https:
//doi.org/10.1007/978-3-030-01219-9_9 (pages 11, 19, 22, 24).

[34] Arslan Chaudhry et al. “Riemannian Walk for Incremental Learning: Understanding
Forgetting and Intransigence”. In: Eur. Conf. Comput. Vis. (ECCV). Vol. 11215.
Lect. Notes Comput. Sci. Springer Int. Publ., 2018, pp. 556–572. doi: 10.1007/978-
3- 030- 01252- 6_33. url: https://doi.org/10.1007/978- 3- 030- 01252- 6_33

(pages 11, 19, 24).
[35] James Smith et al. “Always Be Dreaming: A New Approach for Data-Free Class-

Incremental Learning”. In: IEEE Int. Conf. Comput. Vis. (ICCV). Montreal, QC,
Canada: Inst. Electr. Electron. Eng. (IEEE), Oct. 2021, pp. 9354–9364. doi: 10.

1109/iccv48922.2021.00924. url: https://doi.org/10.1109/ICCV48922.2021.

00924 (page 11).
[36] Qiankun Gao et al. “R-DFCIL: Relation-Guided Representation Learning for Data-

Free Class Incremental Learning”. In: Eur. Conf. Comput. Vis. (ECCV). Vol. 13683.
Lect. Notes Comput. Sci. Springer Nat. Switz., 2022, pp. 423–439. doi: 10.1007/
978-3-031-20050-2_25. url: https://doi.org/10.1007/978-3-031-20050-2_25
(page 11).

[37] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient episodic memory for con-
tinual learning”. In: Adv. Neural Inf. Process. Syst. (NeurIPS). 2017 (page 11).

[38] Rahaf Aljundi et al. “Online continual learning with maximally interfered retrieval”.
In: Adv. Neural Inf. Process. Syst. (NeurIPS). 2019 (pages 11, 18).

[39] Motasem Alfarra et al. “SimCS: Simulation for Online Domain-Incremental Contin-
ual Segmentation”. In: CoRR abs/2211.16234 (2022). doi: 10.48550/arXiv.2211.
16234. arXiv: 2211.16234. url: https://doi.org/10.48550/arXiv.2211.16234

(page 11).
[40] Tom Schaul et al. “Prioritized Experience Replay”. In: CoRR abs/1511.05952 (2015).

doi: 10.48550/arXiv.1511.05952. arXiv: 1511.05952. url: https://doi.org/10.
48550/arXiv.1511.05952 (page 16).

[41] Lucas Caccia et al. “New Insights on Reducing Abrupt Representation Change in
Online Continual Learning”. In: Int. Conf. Learn. Represent. (ICLR). 2022 (page 19).

[42] Natalia Dıaz-Rodrıguez et al. “Don’t forget, there is more than forgetting: new
metrics for Continual Learning”. In: Continual learning W., Neural Inf. Process.
Syst. (NeurIPS). 2018 (page 27).

[43] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Under-
standing”. In: IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR). Las Ve-

59

https://doi.org/10.1016/s0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/s1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1007/978-3-030-01219-9_9
https://doi.org/10.1007/978-3-030-01219-9_9
https://doi.org/10.1007/978-3-030-01219-9_9
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1109/iccv48922.2021.00924
https://doi.org/10.1109/iccv48922.2021.00924
https://doi.org/10.1109/ICCV48922.2021.00924
https://doi.org/10.1109/ICCV48922.2021.00924
https://doi.org/10.1007/978-3-031-20050-2_25
https://doi.org/10.1007/978-3-031-20050-2_25
https://doi.org/10.1007/978-3-031-20050-2_25
https://doi.org/10.48550/arXiv.2211.16234
https://doi.org/10.48550/arXiv.2211.16234
https://arxiv.org/abs/2211.16234
https://doi.org/10.48550/arXiv.2211.16234
https://doi.org/10.48550/arXiv.1511.05952
https://arxiv.org/abs/1511.05952
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1511.05952


gas, NV, USA: Inst. Electr. Electron. Eng. (IEEE), June 2016, pp. 3213–3223. doi:
10.1109/cvpr.2016.350. url: https://doi.org/10.1109/cvpr.2016.350 (pages 33,
37).

[44] Hengshuang Zhao et al. “Pyramid Scene Parsing Network”. In: 2017. arXiv: 1612.
01105 [cs.CV] (page 39).

[45] Yaoyao Liu et al. “Mnemonics Training: Multi-Class Incremental Learning With-
out Forgetting”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.01226. url:
https://doi.org/10.11092Fcvpr42600.2020.01226 (page 55).

[46] Bowen Zhao et al. “Maintaining Discrimination and Fairness in Class Incremental
Learning”. 2019. arXiv: 1911.07053 [cs.CV] (page 55).

[47] Adam Santoro et al. “One-shot Learning with Memory-Augmented Neural Net-
works”. 2016. arXiv: 1605.06065 [cs.LG] (page 55).

[48] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”. 2014.
arXiv: 1410.5401 [cs.NE] (page 55).

60

https://doi.org/10.1109/cvpr.2016.350
https://doi.org/10.1109/cvpr.2016.350
https://arxiv.org/abs/1612.01105
https://arxiv.org/abs/1612.01105
https://doi.org/10.1109/cvpr42600.2020.01226
https://doi.org/10.11092Fcvpr42600.2020.01226
https://arxiv.org/abs/1911.07053
https://arxiv.org/abs/1605.06065
https://arxiv.org/abs/1410.5401


Appendix A

Online Distillation with Continual
Learning for Cyclic Domain Shifts

Published paper (© 2023 IEEE)

61



Online Distillation with Continual Learning for Cyclic Domain Shifts

Joachim Houyon1,∗ Anthony Cioppa1,2,∗ Yasir Ghunaim2 Motasem Alfarra2

Anaı̈s Halin1 Maxim Henry1 Bernard Ghanem2 Marc Van Droogenbroeck1

1 University of Liège 2 KAUST

Abstract

In recent years, online distillation has emerged as a pow-
erful technique for adapting real-time deep neural networks
on the fly using a slow, but accurate teacher model. How-
ever, a major challenge in online distillation is catastrophic
forgetting when the domain shifts, which occurs when the
student model is updated with data from the new domain
and forgets previously learned knowledge. In this paper,
we propose a solution to this issue by leveraging the power
of continual learning methods to reduce the impact of do-
main shifts. Specifically, we integrate several state-of-the-
art continual learning methods in the context of online dis-
tillation and demonstrate their effectiveness in reducing
catastrophic forgetting. Furthermore, we provide a detailed
analysis of our proposed solution in the case of cyclic do-
main shifts. Our experimental results demonstrate the effi-
cacy of our approach in improving the robustness and ac-
curacy of online distillation, with potential applications in
domains such as video surveillance or autonomous driv-
ing. Overall, our work represents an important step for-
ward in the field of online distillation and continual learn-
ing, with the potential to significantly impact real-world ap-
plications.

1. Introduction
Deep Neural Networks (DNNs) have shown remarkable

performance on various computer vision tasks thanks in
part to the assumption that the training and testing data
are identically distributed [21, 27, 37]. However, DNNs’
performance degrade significantly when tested on out-of-
distribution data, such as testing data that contains domain
shifts relative to the training data [22, 23]. Even worse,
DNNs tend to forget previously learned distributions when
learning continually on a stream of tasks [24]. This perfor-
mance loss is a major concern because domain shifts are
likely to occur in real-world deployments due to changes

(*) Equal contributions
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Figure 1. Online distillation with continual learning. When
cyclic domain shifts occur in long videos, the online distillation
framework proposed by Cioppa et al. [10] forgets the previously
acquired knowledge as it fine-tunes on the current domain. In this
work, we study the inclusion of state-of-the-art continual learning
methods inside the online distillation framework to mitigate this
catastrophic forgetting around the domain shifts.

in brightness between day and night, weather conditions
across seasons, and sensor perturbations [35]. Therefore, it
is essential to develop algorithms that can enable DNNs to
adapt to such domain shifts and maintain high performance
in real-world settings.

Continual learning aims at building machine learning
models that can learn from a continuous stream of data
without forgetting previously learned knowledge [9,20,26].
We investigate a practical scenario of online continual learn-
ing [7]. Specifically, we consider cyclic domain shifts
where a stream of data consistently alternates in revealing
new unlabeled data from one of two distributions for a pe-
riod of time. For instance, consider an autonomous driv-
ing system that frequently travels between cities and coun-
trysides, where the distribution of instances varies between
the two scenes. Such domain variation can cause the on-
line learner to fail in adapting to this distribution shift, rais-
ing concerns about the real-world deployment of such sys-
tems. While online continual learning has been studied in
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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several contexts, such as domain incremental learning [18],
unsupervised domain adaptation [39], and test-time adapta-
tion [41], these works typically analyze the more general,
and potentially less realistic, setup where domain variations
are unconditional. Our focus on cyclic domain shifts en-
ables us to explore a pragmatic setting and develop novel
algorithms that can better adapt to these changes.

In this work, we propose a novel approach to address
the challenge of adapting to cyclic domain shifts in the con-
text of online domain incremental learning. Specifically, we
employ a previously published real-time online distillation
technique [10] to learn from the unlabeled cyclic stream of
data. Online distillation asynchronously updates a student-
teacher based approach on the received data, which enables
the model to continually learn from new data. However,
we found that the cyclic domain shift can cause the student
to forget the previously learned domain, leading to a sig-
nificant loss in performance. To mitigate this undesirable
effect, we combine online distillation with state-of-the-art
continual learning as shown in Figure 1, leveraging both
regularization- and replay-based approaches from the con-
tinual learning literature. Our proposed approach enables
the student to effectively adapt to cyclic domain shifts and
maintain high performance over time, making it suitable for
real-world deployment.

Contributions. We summarize our contributions in two
points: (i) We define the cyclic online continual learn-
ing problem setup and propose corresponding evaluation
metrics. (ii) We combine online distillation with both
regularization- and replay-based continual learning ap-
proaches to better learn on cyclic domains. We conduct
experiments on the proposed stream where we show that
our approach mitigates the forgetting of the original online
distillation framework.

2. Related Work

Domain shifts. A domain shift is a change in the statistical
distribution of data between different domains [15]. This
phenomenon is commonly observed at test time in open-
world scenarios [4, 19, 28, 42]. In autonomous driving, do-
main shift can be caused by many diverse factors [40], such
as different environments (e.g., rural or urban roads), light-
ing conditions (e.g., day or night), weather conditions (e.g.,
sunny or snowy) [35], traffic conditions or even differences
in the appearance of roads or traffic signs across different
countries [44]. However, it is crucial for autonomous ve-
hicles to have algorithms that are robust to these dynamic
domain shifts in order to constantly be able to perceive
and understand their surrounding environment to avoid ob-
stacles. Domain adaptation is an active area of research
that aims at addressing the domain shift problem, espe-
cially in open-world applications such as autonomous ve-

hicles [25,30,32,33,40], where data is collected in a highly
dynamic environment. In this work, we study the particular
case of cyclic domain shifts in the field of autonomous driv-
ing, where the domains can be represented as a succession
of highway and downtown driving conditions.

Online distillation. In the field of deep neural networks,
there is a trade-off between speed, performance, and gen-
eralizability across multiple domains. While the best-
performing models often exhibit high performance across
diverse domains, they tend to be memory-greedy for em-
bedded systems or too slow for use in real-time applica-
tions [43,46,47]. In contrast, lightweight and fast networks
show good performance on smaller domains but lack gener-
alizability [12]. To address this issue, Cioppa et al. [10]
proposed an online distillation approach for videos, that
enables the online training of a lightweight student net-
work using a slower, larger teacher model. At test time,
the teacher provides pseudo ground truths to the student,
allowing it to specialize in the specific domain being an-
alyzed. The student model therefore adapts to changing
video conditions, even matching the performance of the
slower teacher. This online distillation approach may be
used for different tasks such as semantic segmentation [10]
or multi-modal object detection [11]. However, this tech-
nique experiences a temporary loss of performance during
domain shifts. In this paper, we investigate several contin-
ual techniques to mitigate the effects of catastrophic for-
getting in online distillation, particularly in cases of cyclic
domain shifts. We combine online distillation with both
regularization- and replay-based approaches for a better
continual learning scheme.

Continual learning. Continual Learning (CL) aims at
learning from data arriving as a stream with changing dis-
tribution [16, 31]. However, this learning paradigm face
the catastrophic forgetting challenge, that is, previously
learned knowledge is forgotten when adapting to the newly
arriving data samples [9, 24]. One approach of mitigat-
ing the forgetting effect is regularizing the training pro-
cess through constraining the changes of important net-
work parameters [2, 8, 24] or performing knowledge distil-
lation [17, 26, 38]. Alternatively, replay-based methods re-
hearse previously seen examples by storing a subset of the
observed data in a replay buffer [3, 9, 29, 34]. While both
approaches were originally proposed for class-incremental
setup and classification task, they were recently extended to
the more realistic domain incremental setup and the more
challenging semantic segmentation task [1, 18]. Neverthe-
less, prior art assumes fully supervised setups where the
stream reveals labeled data for the student learner. To that
end, we analyze the domain incremental setup for semantic
segmentation under an unsupervised setup.
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3. Methodology

In this section, we first describe online distillation in a
mathematical framework suited for continual learning. Next
we detail the regularization-based and replay-based contin-
ual learning methods that we integrate into the online dis-
tillation framework. Finally, we explain how to evaluate
and benchmark online continual leaning methods under our
cyclic stream.

3.1. Online distillation framework

The online distillation framework proposed by Cioppa et
al. [10] allows a real-time network to adapt to domain shifts
at test time. Formally, given a long untrimmed video V
composed of a stream of frames xi produced at a rate rV
and a task T (e.g., object detection, semantic segmentation,
etc.), the objective is to produce a stream of predictions ŷi
for each frame xi in real time (i.e., at a rate rV ). To do
so, the authors leverage a student-teacher architecture with
a fast and slow route. In the fast route (inference), a student
network S computes ŷi = S(xi) at the rate rV . In parallel
in the slow route (training), a slower but high-performance
frozen teacher network T produces pseudo ground-truths
ỹi′ = T(xi′) at an asynchronous slower rate rT on a subset
of V . Each new pair (xi′ , ỹi′) is then stored through an up-
date function fU into an online dataset D of size N that is
used to train a copy Sc of the student network. In the orig-
inal framework, fU is chosen as a First In First Out (FIFO)
algorithm. Iteratively, Sc is trained on selected samples ex-
tracted from D by a function fS , by minimizing the loss:

L =
N∑

n=1

L(Sc(xn), ỹn) ,

where L is a distance function suited to learn task T . In the
original framework, fS selects all pairs in D one time. The
parameters of S are updated by copying the parameters θ of
Sc at the rate rSc

, corresponding to the inverse of the train-
ing time of Sc on one epoch of D. The complete pipeline
may be found in Figure 2.

Thanks to this framework, S becomes specialized to the
last minutes of the particular video it is analyzing. This al-
lows it to adapt to slowly changing domains in V as long
as T is able to produce reliable predictions. However, this
continual fine-tuning makes it forget previously acquired
knowledge over time. For instance, when sudden shifts in
domain occurs, S needs several updates to recover good per-
formance even if the same domain already appeared in the
video. In the following, we propose to incorporate Contin-
ual Learning (CL) techniques in the existing online distil-
lation framework to minimize the catastrophic forgetting of
previously acquired knowledge in the case of cyclic domain
shifts. In particular, we benchmark several replay-based

methods (CLRep) that act on D and regularization-based
methods (CLReg) that act on L as shown in Figure 2.

3.2. Replay-based methods

This set of methods leverage a replay buffer (i.e. a col-
lection of data and corresponding ground-truth labels) of
finite size that is accessed by the selection function fS and
updated with new data by an update function fU at each
training epoch. The online distillation framework presented
above can be formulated as a replay-based method, where
the replay buffer corresponds to D, the labels are the pseudo
ground-truth predictions ỹn, fS selects all data of the replay
buffer to be used during the training epoch, and fU deter-
mines the policy to update samples in the replay buffer. In
the original online distillation framework, the size of the re-
play buffer is also the number of samples, N , passed to the
model at each training step. We extend the replay buffer
to include M ≥ N samples where we sample N samples
without replacement from the buffer at each training step.
We augment the selected samples with the new incoming
data from the stream.

We consider several strategies to modify fU and fS to
reduce the catastrophic forgetting: FIFO, Uniform, Priori-
tized, and MIR.
FIFO: fU stores the most recent samples in the replay
buffer while removing oldest ones. This is equivalent to
the original framework’s update strategy that is used as a
baseline for comparison with other methods.
Uniform: fU stores incoming data at randomly selected re-
play buffer indices. This strategy leads to an expected re-
maining lifespan of data to decay exponentially [5], which
could avoid forgetting. As for memory selection fS , it per-
forms a random selection from memory for constructing a
training batch.
Prioritized: Adapting the work of Schaul et al. [36] on re-
inforcement learning, we set fU to assign an importance
score I for each sample in the replay buffer following:

In = L(S(xn),T(xn)) .

The importance score is then used as a probability of de-
termining which samples to remove from the replay buffer
following:

pn =
I−1
n∑M

n′=1 I−1
n′

.

To perform the memory selection fS operation, prioritized
follows the same strategy described above for the update
function fU .
MIR [3]: is a selection function fS that selects a subset of
the replay buffer samples that are maximally interfered by
the incoming data in a stream. In other words, it constructs
a set of training samples from memory that are negatively
affected the most by the next parameter update.
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Figure 2. Online distillation. The framework is composed of a fast and a slow route. In the fast route (inference), the video stream V is
processed by a student network S on a task T (e.g., semantic segmentation for autonomous driving) and produces predictions ŷi for each
frame of the video xi at the original video rate rV (i.e., in real time). In parallel in the slow route (training), a frozen teacher T produces
pseudo ground-truths ỹi′ from a subset of frames xi′ at a slower rate rT. The pair (xi′ , ỹi′) are then stored in an online dataset (or replay
buffer) D through an update function fU . D is sampled through a selection function fS and the selected pairs (xn, ỹn) are used to train a
copy of the student network Sc for one epoch using a loss L. The parameters θ of Sc are then transferred to S at a rate rSc (corresponding
to the inverse of the training time of Sc on one epoch) so that S improves on the latest domain of V . One of the contribution of our paper
consists in including replay-based Continual Learning (CL) methods, CLRep, inside D and regularization-based methods, CLReg , on L.

3.3. Regularization-based methods

Regularization-based methods mitigate forgetting by
adding a regularization term to the training loss function L.
Generally, this can be formulated as:

L =
N∑

n=1

L(Sc(xn), ỹn) +R ,

where R is a method-specific regularization term. In this
paper, we consider four different regularization-based con-
tinual learning methods: ER-ACE [6], LwF [26], MAS [2],
and RWalk [8]. We summarize these methods hereafter.
ER-ACE [6] aims at reducing the changes in the learned
representation when training on samples from a new class.
It does so by applying an asymmetric parameter update on
the incoming data and the previously seen data that are sam-
pled from a replay buffer. Specifically, ER-ACE restricts the
loss computation on classes presented in the incoming data
while ignoring remaining classes. We note that ER-ACE
only works on incoming data while keeping the original loss
on the data sampled from replay buffer.

The following methods were originally proposed for set-
tings with clear task boundaries. We adopt them to work on
online streams without task boundaries by using two prop-
erties: (i) warmup and (ii) update frequency. The warmup
defines a time period for the network to be initialized dur-
ing the warmup phase, we set R = 0. The update fre-
quency simulates an artificial task boundary after every k
steps, where k is a fixed hyperparameter for all methods.

LwF [26] uses knowledge distillation to encourage the cur-
rent network’s output to resemble that of a network trained
on data from previous time steps. In our setup, LwF keeps a
previous version of our student network Sc to guide the fu-
ture parameter updates of this network. Maintaining a pre-
vious network that is potentially more tailored to previous
domains could help in preserving learned knowledge.

MAS [2] assigns an importance weight for each network
parameter by approximating the sensitivity of the network
output to a parameter change. When training on new distri-
butions, it penalizes large changes to important parameters
and, thus, preserves previously learned knowledge.

RWalk [8] is a generalized formulation that combines
a modified version of the two popular importance-based
methods: EWC [24] and PI [45]. RWalk computes impor-
tance scores for network parameters, similar to MAS, and
regularizes over the network parameters.

3.4. Evaluation methodology

To evaluate the adaption to new domains and the forget-
ting of past domains, we propose several evaluation met-
rics. Following the work of Cioppa et al. [10], the perfor-
mance of the student network Sc (equivalent to S) over time
is defined as follows: given a task-specific metric M (e.g.,
mIoU for semantic segmentation or accuracy for classi-
fication), a set of size I of frames X ′

i = {xi′ , ..., xi′+I}
and pseudo ground truths Ỹ ′

i = {ỹi′ , ..., ỹi′+I}, the perfor-
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mance of the student network at time i′ is given by:

M(Sc(Xi′ ; θi′), Ỹi′) ,

where θi′ are the parameters of Sc at time i′, which may be
asynchronous with the training of Sc and update of S as it
operates at a the different rate rSc

.
Backward Transfer (BWT): Motivated by the discrete im-
plementation of backward transfer [14], we propose a mod-
ified version for online streams that measures forgetting of
the current student network with respect to previous data,
which corresponds to the previous domain in our case:

BWT(i′) = M(Sc(Xi′−h; θi′), Ỹi′−h) ,

where h refers to the backward time shift.
In addition, we report the Final Backward Transfer

(Final BWT). Given a stream of length K, we evaluate
the backward transfer of the final model θK on the entire
stream, i.e. setting h = 0 in BWT. This metrics allows to
evaluate the final student model on all previous domains,
rather than only one specific past domain.
Forward Transfer (FWT): Similar to the backward trans-
fer, we adapt the discrete version [14] of forward transfer
for our online setup as follows:

FWT(i′) = M(Sc(Xi′+h; θi′), Ỹi′+h) .

Forward transfer measures the model’s performance on fu-
ture unseen data. In our case, this metric is useful in evalu-
ating the current model on the next domain.

4. Experiments
In this section, we first describe the experimental setup

on which we benchmark our continual online distillation
framework. Next, we provide quantitative results including
a comparative study, of our framework using our proposed
evaluation methodology. Finally, we display some quali-
tative results to show the practical impact for autonomous
driving applications.

4.1. Experimental setup

Our online continual learning framework is agnostic to
the task, metric, and training parameters. In this section, we
provide the technical details describing our experiments in
various settings.
Task. We benchmark our framework on the outdoor seman-
tic segmentation task, which consists in assigning a class
label to each pixel of a frame. We study the particular case
of videos taken behind the windshield of vehicles, which is
the typical study-case for autonomous driving applications.
Dataset. The online distillation framework requires long
untrimmed videos, in our case containing cyclic domain

shifts. Additionally, these videos must be relevant to high-
light the task’s objectives. Since most datasets for semantic
segmentation are composed of frames or small video clips
(e.g., CityScapes [13], BDD100K [44], etc.), they cannot
be used in our context of online continual learning. Hence,
we follow the same strategy to simulate long videos with
domain shifts as in [10] and propose to artificially con-
struct a video V by concatenating sequences from 2 differ-
ent domains, DA and DB , alternating in cycle from one
domain to the other. The resulting video is therefore an or-
dered set V = {VA

1 ,VB
1 ,VA

2 ,VB
2 , ...}, where the VA

i and
VB
i are sequences from domain DA and domain DB , re-

spectively. In our autonomous driving case, we define the
two domains DA and DB as a highway environment and
a downtown environment, which differ from the priors on
the semantic classes (e.g., there should be fewer persons
in highways than downtown) or the background (e.g., there
are more buildings in downtown and more empty spaces in
highways). We extract several clips from each domain and
alternatively concatenate them to build V . To consider clips
of different time lengths, we construct two video V streams
where the extracted clips are 20 minutes and 40 minutes
long respectively.

Evaluation metric. Following the standards in semantic
segmentation, we use M = mIoU to evaluate the segmen-
tation masks of each frame as described in Section 3. Fol-
lowing the work of Cioppa et al. [10], since ground-truth
data is unavailable for our dataset, we evaluate the perfor-
mance of the student with respect to the pseudo ground
truths produced by the teacher. This evaluates the capac-
ity of the student to imitate the teacher. We provide the
mIoU , FWT, BWT, Final BWT metrics either during the
video or averaged over the entire video (referred as mean).
We choose I = 1 minute and h = 20 minutes or h = 40
minutes depending on the domain sequences length to eval-
uate the forgetting on the previous or future domains. Fi-
nally, we also compute the average across a time window of
± 2 minutes of each domain shift occurrence. We call this
metric mIoU Near Domain Shifts (mIoU NDS).

Networks and training parameters. For the teacher
network T, we chose SegFormer [43] trained on the
CityScapes dataset, which is the state of the art in seman-
tic segmentation on this dataset. For the student networks
S and Sc, we chose TinyNet [10, 12], a lightweight seg-
mentation network that only needs a few training samples
to specialize on a particular domain, that is fast to train, and
operates in real time (at least 30 frames per second for full-
HD videos on a Nvidia 1080 GPU). The student network Sc

is trained from scratch at the beginning of the video using a
learning rate of 10−4 and ADAM optimizer for online learn-
ing following [10]. The replay buffer size is set to M = 250
and the number of selected frames to N = 100 frames.
Given the chosen video, networks, and replay buffer size,
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Table 1. Quantitative results. We compare several memoryless and replay-based methods with the original baseline framework proposed
by Cioppa et al. [10]. For each category, we benchmark several selection functions fS , update functions fU , and regularizers R. The
performance is provided for our proposed evaluation metrics for the 20/40 concatenated sequences. The replay-based methods generally
outperform the baseline and the memoryless methods. The LwF and MAS regularization methods decrease the performance, while ACE
and RWalk increase the performance. The best results are obtained with a uniform replay buffer, MIR, MIR+ACE, and MIR+RWalk. We
compare the temporal evolution of the performance of the Baseline with one of the best performing method MIR+RWalk in Figure 3.

Methods Parameters Metrics (mean %)
fS fU R mIoU mIoU NDS FWT BWT Final BWT

Memoryless

/ / / 18.4/19.4 14.9/15.1 6.8/4.8 7.8/7.5 14.9/15.0
/ / MAS 14.0/14.0 13.0/13.3 11.1/11.1 12.9/12.9 14.2/14.2
/ / LwF 15.7/15.9 12.0/11.0 9.7/6.8 11.3/8.9 14.7/12.9
/ / RWalk 18.3/19.3 14.6/14.7 7.5/4.7 8.6/6.5 15.1/14.2

Baseline All FIFO / 23.4/24.2 19.8/18.2 14.5/9.5 17.7/13.9 21.9/19.9

Replay Buffer

Uniform Uniform / 25.5/25.0 23.6/21.1 22.2/17.3 30.6/28.8 29.4/28.4
Prioritized Prioritized / 25.1/25.1 23.2/20.8 21.3/17.3 29.2/28.4 29.2/28.9
MIR Uniform / 25.2/25.2 23.7/24.5 21.9/22.5 30.5/28.6 29.5/29.7
MIR Uniform MAS 14.5/14.9 13.4/14.7 12.1/13.6 13.9/15.2 15.1/15.4
MIR Uniform LwF 18.7/18.1 17.6/15.7 17.4/13.9 21.0/20.2 22.4/21.1
MIR Uniform ACE 25.6/25.5 24.2/21.8 22.0/17.5 30.8/29.4 28.8/28.5
MIR Uniform RWalk 25.2/25.4 23.4/22.0 21.8/18.0 30.0/30.8 30.1/30.8

the rates are: rV = 30 frames per second, rT = 3 seconds
per frame, and rSc

= 60 seconds per epoch.

4.2. Quantitative results

We compare the performance of the original framework
with the proposed continual learning approaches. As a
naive approach, we also study a memoryless online distilla-
tion framework, in which the online dataset does not store
any frame. In this setup, the pairs produced by the teacher
are used only once for training and are then deleted. As can
be seen from Table 1, the memoryless approaches perform
worse than the original framework for all metrics, show-
ing that retaining some information in an online dataset (or
replay buffer) improves the performance. Interestingly, all
replay-based methods without regularizers improve com-
pared to the baseline, with the best performance obtained
by MIR overall. Adding a regularizer is however not always
beneficial. For instance, MAS and LwF systematically de-
crease the performance, while ACE and RWalk slightly in-
crease the performance. We hypothesize that this can be at-
tributed to the fact that MAS and LwF were proposed in the
offline setup with the aim of reducing the elasticity of the
model towards adapting to new information. While this ap-
proach was proven to be useful in several scenarios, it could
hinder the student from quickly adapting to new domains
in the online setup. The biggest improvement is therefore
mainly due to the replay buffer method with MIR.

In Figure 3, we show the evolution of the performance
over time for the baseline and on one of the best method

(MIR+RWalk) for cycles of 20. As can be seen from the
mIoU plot, during the two first cycles, both methods have
similar results. This is expected as they both discover the
new domains. The first difference can be seen at the sec-
ond transition, where the first domain is seen once again.
The baseline method has a huge drop, while the continual
learning method shows good performance. At each other
transition, MIR+RWalk does not suffer from the drop in per-
formance caused by the forgetting of the previous domain.
We conduct a comparison between the MIR+RWalk method
and the original online distillation framework (baseline) by
analyzing the performance evolution of the mIoU , BWT,
Final-BWT, and FWT metrics. When evaluated on the pre-
vious domain, MIR+RWalk significantly outperforms the
baseline in BWT, indicating its ability to retain information
about the previous domain on frames it has been trained
on. In the case of Final-BWT, the baseline quickly forgets
past knowledge, while MIR+RWalk is able to maintain high
performance for both domains across many cycles. Finally,
when evaluated on the future domain, MIR+RWalk also
shows significant performance improvements compared to
the baseline in FWT, indicating its ability to generalize on
new frames from a previous domain.

4.3. Qualitative results

We qualitatively demonstrate the effect of the best per-
forming continual learning methods on the catastrophic for-
getting. To do so, we investigate the quality of the seg-
mentation masks right after the second transition from high-

2441



0 20 40 60 80 100 120 140 160
time (in minutes)

5

10

15

20

25

30

35

m
Io

U 
(%

)

Baseline
MIR+RWalk

0 20 40 60 80 100 120 140 160
time (in minutes)

10

15

20

25

30

35

40

Fi
na

l B
W

T 
(%

)

Baseline
MIR+RWalk

0 20 40 60 80 100 120 140
time (in minutes)

5

10

15

20

25

30

35

40

BW
T 

(%
)

Baseline
MIR+RWalk

20 40 60 80 100 120 140 160
time (in minutes)

0

5

10

15

20

25

30

35

FW
T 

(%
)

Baseline
MIR+RWalk

Figure 3. Evolution of the performance over time. We compare the evolution with respect to mIoU , BWT, Final-BWT, and FWT of
the MIR+RWalk method with the original online distillation framework (baseline). (Top-left) mIoU : the performances are mostly similar
within the domain, but around the domain shifts (from the second cycle), the baseline suffers from forgetting while MIR+RWalk keeps
high performance. (Bottom-left) BWT: when evaluating on the previous domain, MIR+RWalk clearly outperforms the baseline, showing
that it is able to retain information about the previous domain, on frames it has trained on. (Top-right) Final-BWT: the baseline quickly
forgets past knowledge, while MIR+RWalk is able to retain high performance for both domains across many cycles. (Bottom-right) FWT:
when evaluating on the future domain, MIR+RWalk also significantly outperforms the baseline, showing that it is able to generalize on
new frames of a particular domain using information from a previous domain it has seen before.

RGB Image Ground truth Baseline MIR MIR+RWalk

Figure 4. Qualitative results. Comparison of the segmentation masks obtained by different online continual learning methods: (top row)
a frame taken right after second transition between highway and downtown, and (bottom row) a frame taken right after seventh transition
between downtown and highway. The baseline method predicts poor segmentation masks after the domain shift, even though it has already
seen this domain before. In contrast, MIR and MIR+RWalk produce better segmentation masks.

way to downtown (the student has seen the downtown only
once before), and the seventh’s transition from downtown to
highway (the student has already seen the highway domain
6 times before). Figure 4 compares the segmentation masks
obtained by the baseline method, MIR, and MIR+RWalk

with the ground-truth mask. As shown, even though the stu-
dent has already seen the domain previously, the segmenta-
tion masks of the baseline right after the domain shift are
very poor. In practice, this could lead to hazardous situa-
tions for the autonomous vehicle and its passengers. On the
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contrary, the segmentation masks obtained with MIR and
MIR+RWalk are much closer to the ground-truth masks.
The quantitative results demonstrate that incorporating con-
tinual learning algorithms into the online distillation frame-
work considerably enhances the quality of the predictions,
rendering it more viable for real-world applications.

5. Conclusion
In conclusion, the development of online distillation has

brought new opportunities for adapting deep neural net-
works in real time, making them more suitable for practi-
cal applications such as autonomous driving. However, the
issue of catastrophic forgetting when the domain shifts has
been a major challenge in the implementation of this tech-
nique. In this paper, we proposed a novel solution to this is-
sue by incorporating continual learning methods. Through
our experimentation, we evaluated several state-of-the-art
continual learning methods and demonstrated their effec-
tiveness in reducing catastrophic forgetting. We also con-
ducted a detailed analysis of our proposed solution in the
case of cyclic domain shifts. The results highlight that our
approach improves the robustness and accuracy of online
distillation, making it a promising technique for real-world
applications. This work represents a significant step for-
ward in the field of online distillation and continual learn-
ing, with the potential to have a meaningful impact on vari-
ous fields such as autonomous driving.
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Appendix B

All experiment results

B.1 Two domains setup

B.1.1 20 minutes sequences
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B.1.2 40 minutes sequences
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B.2 Three domains setup
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