
https://lib.uliege.be https://matheo.uliege.be

Master Thesis : Optimization Strategies for Industrial-size Job Shop Scheduling

Auteur : Boveroux, Laurie

Promoteur(s) : Louveaux, Quentin

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/17710

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



UNIVERSITY OF LIÈGE - FACULTY OF APPLIED SCIENCES

Optimization Strategies for

Industrial-size Job Shop Scheduling

Master’s thesis completed in order to obtain the degree of

Master of Science in Data Science and Engineering

by

Boveroux Laurie

Supervisor

Louveaux Quentin

Jury members

Derval Guillaume

Fontaine Pascal

Louveaux Quentin

Academic Year

2022-2023



Abstract

This thesis investigates the optimization of a large-scale job shop scheduling

process. Scheduling plays a crucial role in resource allocation and productivity

maximization for companies. We evaluate the performance of established

optimization techniques, including simulated annealing, branch and bound, dive,

and a relaxation with a linear program we call the ranking method. We use three

instances from the database of TOOWHE Enterprise Resource Planning (ERP)

software, developed by Hi-pass. Through extensive experimentation on three

instances of industrial-scale job shop problems, we assess the effectiveness and

limitations of each algorithm. The simulated annealing algorithm shows promise

by achieving significant objective value improvements within a reasonable

execution time. However, the ranking method quickly outperforms it, providing

equivalent solutions in a fraction of a second. By solving a relaxation of the

problem with a linear program, the ranking method provides lower bounds and

generates efficient operation schedules. To overcome the limitations of the branch

and bound method, we propose the dive approach, which allows deeper exploration

of the solution space while maintaining model consistency. By incorporating

different strategies for operation selection, the dive approach achieves high-quality

schedules within a limited number of dives. Our results highlight the limited

scalability of the branch and bound method and the effectiveness of the simulated

annealing algorithm, ranking method, and dive approach in generating reliable

initial schedules. We recommend using the ranking method or dive approach to

obtain an initial schedule and applying the simulated annealing algorithm for

further refinement. This research contributes to the advancement of scheduling

optimization in ERP systems, providing insights into algorithm performance and

practical recommendations for improving scheduling efficiency and resource

utilization in industrial contexts.

I

https://toowhe.com/


Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Q. Louveaux,

for his guidance and mentoring throughout this research project. His expertise and

feedback have been crucial in shaping the direction and quality of this thesis.

I would also like to thank Hi-Pass for providing me with the subject of this thesis

and access to the real-world data and resources necessary to conduct this study.

Their cooperation and collaboration were critical to gaining practical insight into

industrial job shop scheduling problems and conducting meaningful research.

Finally, I would like to thank my family and friends for their support and

encouragement throughout this journey. Their belief in my abilities has been a

constant source of motivation and inspiration.

Without the collective support and encouragement of these individuals and

organizations, this research would not have been possible.

II



Author’s Note

Please note that for grammatical and syntactical reasons, some sections of this thesis

have been rewritten using chatGPT, an AI language model developed by OpenAI.

All content reviewed with the help of chatGPT was revised and edited to align

with my own ideas and understanding. ChatGPT was used as a reformulation

and grammar tool. Furthermore, all content submitted to chatGPT is my own.

Therefore, while the language model was used as a tool, the intellectual contributions

and ownership of the content remain solely mine.

Additionally, all the files used to conduct this thesis are available in the GitHub

repository:

https://github.com/LaurieBvrx/

Optimization-Strategies-for-Industrial-size-Job-Shop-Scheduling.git.

III

https://github.com/LaurieBvrx/Optimization-Strategies-for-Industrial-size-Job-Shop-Scheduling.git
https://github.com/LaurieBvrx/Optimization-Strategies-for-Industrial-size-Job-Shop-Scheduling.git


Table of Contents

Acronyms VII

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Field of Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Machine environment . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Processing characteristics . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Benchmarks from the literature . . . . . . . . . . . . . . . . . . . . . 8

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Outline of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Methodology 13

2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Definition of a Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Order of the operations . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Completion times of the operations . . . . . . . . . . . . . . . 14

2.3 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Design of the neighborhood . . . . . . . . . . . . . . . . . . . 19

2.4 Ranking Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 A single-machine scheduling problem . . . . . . . . . . . . . . 23

2.4.2 A single machine scheduling problem to our job shop problem 26

2.5 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

IV



Table of Contents

2.5.2 Selection of the constraint . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Tree structure and search . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Lukewarm start . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Dives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Implementation of a dive . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Efficiency of a dive: Comparison of the performances with the

branch and bound method . . . . . . . . . . . . . . . . . . . . 36

2.6.3 Integration of dives in branch and bound method . . . . . . . 38

3 Evaluation 39

3.1 Simulating Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 First neighborhood . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Second neighborhood . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Third neighborhood . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Ranking Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 About the lower bound . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 About the objective . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Selection of the parameters to improve the pruning . . . . . . 49

3.3.2 Results of the branch and bound method . . . . . . . . . . . . 54

3.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Selection of the constraint strategies . . . . . . . . . . . . . . 58

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Mix of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Simulated annealing after the ranking method . . . . . . . . . 64

3.5.2 Simulated annealing after the dive method . . . . . . . . . . . 65

3.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Conclusion 68

4.1 Brief Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 68

V



4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

List of Figures 71

List of Tables 74

Bibliography 77

A Appendix 81

A.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1.1 First neighborhood . . . . . . . . . . . . . . . . . . . . . . . . 81

A.1.2 Second neighborhood . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.3 Third neighborhood . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Ranking method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2.1 About the lower bound . . . . . . . . . . . . . . . . . . . . . . 100

A.2.2 About the objective . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . 103

A.3.1 Selection of the parameters to improve the pruning . . . . . . 103

A.3.2 Results of the branch and bound method . . . . . . . . . . . . 107

A.4 Dive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.4.1 Selection of the constraint strategies . . . . . . . . . . . . . . 111

A.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

VI



Acronyms

BFS Breadth-first Search.

BnB Branch and Bound.

BNS Best-node search.

CM-2LV Critical machine and the 2 largest violations.

CM-5LV Critical machine and one of the 5 largest violations.

CM-FO Critical machine and first operations.

CM-LV Critical machine and largest violation.

GA Genetic Algorithm.

GS Greedy search.

LJ Largest job.

LP Linear Program.

LS Lukewarm start.

SA Simulated Annealing.

VII



1. Introduction

1.1. Context

TOOWHE is an Enterprise Resource Planning software developed by Hi-Pass. This

software provides solutions to manage various operating processes of companies by

integrating multiple management functions. Its features enable enterprises to reduce

and automate administrative tasks and ensure the traceability of all activities.

Among the management functions provided by TOOWHE, scheduling is a crucial

process. Scheduling involves efficiently allocating a company’s available resources,

including employees and machines, to maximize productivity. Scheduling is a

process that plays an important role in the industrial sector. It allows companies

to determine their billing rate and set delivery times for their clients. Having an

optimal schedule allows companies to invoice faster the clients and optimize the

use of machines and personnel. In other terms, it affects a company’s overall

success.

The scheduling algorithm in TOOWHE offers some optimization features. The

optimization is done with a pure analysis approach. This involves thoroughly

examining the existing schedule, identifying any gaps or inefficiencies, and making

appropriate adjustments to improve its quality. An acceptable schedule can be

produced, one that is both applicable and suitable for companies with their

required timeframe.

In addition to the pure analysis approach, a global optimization perspective can be

adopted and that is precisely the objective of this thesis. The objective is to design

a process that goes beyond an acceptable schedule to achieve optimized scheduling,

although not necessarily optimal. By testing different optimization algorithms and

1

https://toowhe.com/
https://toowhe.com/
https://toowhe.com/


1.2. Field of Scheduling

techniques, we aim to develop a high-quality scheduling process, particularly when

dealing with large-scale problems.

In summary, while the TOOWHE software optimizes the schedule through a pure

analysis approach, this thesis aims to extend the optimization efforts by

incorporating different optimization algorithms. The objective is to achieve a

high-quality scheduling process that maximizes resource utilization and contributes

to companies’ overall efficiency in industrial contexts.

1.2. Field of Scheduling

Scheduling is the process of determining the order and timing of tasks or activities in

a way that maximizes efficiency, meets deadlines, and optimizes resource utilization.

This process involves allocating resources, such as time, people, and equipment, to

specific tasks in a coordinated manner.

One effective way to visualize and understand scheduling is through the use of a

Gantt chart. A Gantt chart provides a comprehensive timeline view, serving as a

graphical representation of tasks or activities. Along the chart’s x-axis, tasks are

displayed as horizontal bars. The x-axis represents time and the y-axis represents

machines. Each bar corresponds to a specific task, and its length illustrates the

duration of that task. By observing the Gantt chart, we can easily grasp the

temporal relationships between tasks and their respective timelines. An example

from the TOOWHE software is given in Figure 1.1.

The field of scheduling has been extensively studied for several decades in the

literature, with numerous books and papers covering various aspects of the topic.

The papers range from elementary to very advanced, with some focusing on

deterministic scheduling [5, 19], while others cover stochastic scheduling

[36, 34, 37, 9] or online scheduling [4, 17, 24, 26]. A stochastic schedule is a type of

schedule that takes into account the various sources of uncertainty or randomness

that can occur in a production environment. These sources of uncertainty may

include machine breakdowns, unexpected high-priority jobs, and imprecise

processing times [31]. Online scheduling, on the other hand, focuses on scheduling

2

https://toowhe.com/
https://toowhe.com/


1.2. Field of Scheduling

Figure 1.1.: Extract of a Gantt chart from TOOWHE

problems where jobs arrive dynamically over time. The scheduler does not have

complete information about the tasks that will be encountered in the future. Some

of the papers also deal with computational complexity issues [12], and others are

more applied and focus on real-world problems [30]. Scheduling problems can be

found in a wide range of applications across various fields such as transportation,

manufacturing [18] and healthcare [21]. To sum up, the field of scheduling is a rich

area of research that has generated a wealth of knowledge and practical

applications.

The complexity of scheduling problems comes from the fact that they can take many

different forms with different characteristics. To describe a deterministic schedule

problem accurately, the standard notation in literature is the triplet α|β|γ where

α represents the machine environment, β the processing characteristics and the

constraints and γ the objective. The term job is a unit of work to be completed.

For example, in a manufacturing area, a job is the production of a specific product

on one or several machines.

1.2.1. Machine environment

Machine environment α refers to the characteristics of the machines that are involved

in the process. These characteristics may include factors such as the number of

machines available, their processing speeds and capacities. Some possible machine

environments specified in the α field are listed below. These definitions come from

3

https://toowhe.com/


1.2. Field of Scheduling

the book of reference of Pinedo [31].

Single machine (1). The case of a single machine is the simplest of all possible

machine environments and is a special case of all other more complicated machine

environments.

Flow shop (Fm). There are m machines in series. Each job has to be processed

on each one of the m machines. All jobs have to follow the same route, i.e., they

have to be processed first on machine 1, then on machine 2, and so on.

Job shop (Jm). In a job shop with m machines, each job has its own predetermined

route to follow.

Open shop (Om). There are m machines and there are no restrictions with regard

to the routing of each job through the machine environment.

1.2.2. Processing characteristics

Some examples of processing characteristics and constraints that are specified in the

β field are listed below. These definitions come from the book of reference of Pinedo

[31].

Preemptions (prmp). Preemptions imply that it is not necessary to keep a job on

a machine, once started, until its completion. The scheduler is allowed to interrupt

the processing of a job (preempt) at any point in time and put a different job on the

machine instead.

Precedence (prec). Precedence constraints may appear in a single machine or in

a parallel machine environment, requiring that one or more jobs may have to be

completed before another job is allowed to start its processing. There are several

special forms of precedence constraints: if each job has at most one predecessor and

at most one successor, the constraints are referred to as chains.

Recirculation (rcrc). Recirculation may occur in a job shop or flexible job shop

when a job may visit a machine more than once.

4



1.3. Problem statement

1.2.3. Objective

The objective to minimize γ is always a function of the completion times of the

jobs. A common objective is the makespan (Cmax), defined as the maximum

completion time of jobs. It is equivalent to the completion time of the last job to

leave the system. Another common objective is the total weighted completion

time (
∑

wjCj), defined as the sum of weighted completion times of all jobs. The

weight wj denotes the importance of job j relative to the other jobs in the system.

There exist other objectives relative to the lateness of a job. The lateness is

defined as the difference between its completion time and its due date. The due

date of a job is the deadline for delivering a job to the customer.

1.3. Problem statement

In this thesis, we will focus on a specific machine environment, the Job Shop (Jm). A

job shop is composed of a set of n jobs J1, ..., Jn and m different machines M1, ...,Mm.

Each job Ji follows a predetermined route on machines. A route consists of a number

ni of operations Oi,1, ..., Oi,ni
which have to be processed in this particular order.

The Gantt chart in Figure 1.2 illustrates these relations.

Figure 1.2.: Gantt chart of a job shop problem

This ordered list of operations is called a machine sequence. Each operation Oik is

assigned to a machine and must be processed during a processing time pik without

interruption. There is no preemption (prmp), the operations cannot be interrupted

5



1.4. Related work

at any point in time once it is processed. Each job may contain operations that are

processed on the same machine, known as re-circulation (rcrc). We assume that each

machine can process only one operation at a time and that each operation can be

processed only on a unique machine. There is no symmetry. The scheduling problem

is subject to precedence constraints (prec) in chain form. In addition to the order on

the operations, there can be orders on jobs. A job can have to be completed before

another job is allowed to start its machine sequence. The objective one considers is

the total weighted completion time, denoted by the sum of the weighted completion

time of each job. The problem one is concerned with can be characterized by the

triplet Jm | prec, rcrc |
∑

wjCj. This triplet refers to a job shop with m machines.

There is recirculation, so a job may visit a machine more than once and there are

precedence constraints. The objective is the minimization of the total weighted

completion times.

Even if some aspects of the environment of TOOWHE are not covered (e.g.

personnel, availability of raw materials, etc.), an effective model for the considered

Job Shop problem could also be useful to solve problems with more complex

requirements.

1.4. Related work

The job shop problem is an NP-hard problem [25], meaning that there is no known

algorithm that can solve it in polynomial time. It has also proven to be

computationally challenging and it is among the most studied combinatorial

problems [13]. The work of Fisher and Thompson [16] has contributed to the fame

of this problem. They described two small-size problem instances, one with 20 jobs

to be scheduled on 5 machines and another one with 10 jobs on 10 machines. The

first one was solved ten years later and the other took more than 25 years to be

solved optimally in 1989 [11]. They solved the problem with a Branch and Bound

method based on the disjunctive graph model.

Branch and bound methods [8, 7] are exact methods. It is based on a complete

enumeration of the possible schedules organized in a tree structure with a pruning

technique. At each branch, a subset of possible schedules is defined using different

6

https://toowhe.com/


1.4. Related work

strategies. For example, we can choose an operation of a job to be scheduled or

add a constraint on the order of the operations. To evaluate each subset, a lower

bound of the solution is calculated by analyzing the choices made in a specific

branch. This lower bound provides an optimistic estimate of the potential

solutions that can be generated by the branch. If the lower bound for a branch

exceeds the current best solution, the entire branch can be pruned from the tree.

The Branch and Bound methods can take a very long time to find an optimal

schedule even for small problems like 20 machines and 20 jobs [31]. According

to Zhang et al. [42], they do not solve instances larger than 250 operations in a

reasonable time.

To deal with larger problems, it was, therefore, necessary to develop heuristic

methods that concentrate the search for promising branches. One of the most

famous heuristic procedures for scheduling is the Shifting Bottleneck Heuristic [1].

This procedure solves the problem by iteratively identifying the machine that

creates a bottleneck and solving the schedule optimally on that unique machine

using the one-machine schedule method by Carlier [10].

There exist other methods that are useful in dealing with scheduling problems in

practice such as local search methods. These are heuristic methods that can find a

reasonably good solution in a relatively short time [31].

A first example is Simulated annealing [22]. It is an iterative optimization

algorithm, inspired by the physical annealing process of solids [33]. It works by

starting with an initial schedule and iteratively modifying it by making small

random changes. The algorithm evaluates the new solution and accepts it if the

objective decreases. It also accepts solutions that increase the objective with a

certain probability. This probability decreases over time. By accepting these

solutions with a probability, it allows the algorithm to escape local optima.

A second example is the Tabu search [14, 28, 29, 39]. It is also an iterative

optimization algorithm based on an acceptance-rejection criterion. This criterion is

no longer based on a probabilistic process but rather on a deterministic one. A

“tabu list” is used to avoid visiting states that have already been viewed and

undoing changes that have already been made. It also searches for better solutions

in the neighborhood of the current one by making small moves and may accept

7



1.5. Benchmarks from the literature

schedules that are possibly worse than the previous solution. The new contribution

of this algorithm is that the moves that lead to previously visited states are

forbidden and kept in the tabu list. Tabu search can escape local optima and

converge to a global optimum by allowing the algorithm to explore solutions that

may initially seem worse.

Another type of local search algorithm is genetic algorithm (GA) [31]. This type is

more general and abstract than simulated annealing and tabu-search methods.

Genetic algorithms are methods that mimic natural evolution. A GA considers a

population of individuals, each of which encodes a potential solution to the

problem. The quality of an individual is defined by the fitness function. In the

context of scheduling, the fitness function measures the objective. The search

progress is achieved by changing the population, generation after generation. A

new population is produced by selecting the parents based on some characteristics

(selection), combining the two parents to produce a new offspring (crossover), and

modifying the newly generated offspring to set up unexplored genetic materials

(mutation). GA differs from simulating annealing and tabu-search methods in that

at each step, several schedules are generated and passed to the next step. However,

simulating annealing and tabu-search can be viewed as a specific case of GA with a

population of one individual.

1.5. Benchmarks from the literature

Benchmarks are used to evaluate in a standardized way the performance of

different approaches to solve a particular problem. Benchmarks typically consist of

a set of instances that represent different job shop problems. Each instance

specifies the number of jobs, the number of machines, and the processing times for

each job on each machine. These instances differ in size and difficulty.

The benchmark introduced by Fisher and Thompson [16] was seen as a challenge

and contributed to the fame of the Job Shop problem [13]. After this first

challenging benchmark, the scientific community created many other benchmarks

[2, 3, 15, 23, 27, 38, 40, 41]. Although not strictly required, the scheduling

community conventionally creates rectangular instances for jobs and machines.

8



1.6. Contributions

This implies that each job assigns exactly one operation for each machine, and

each machine has exactly one operation for each job assigned to it. The largest

instances are created by Taillard [40]. They consist of 100 jobs and 20 machines,

for a total of 2000 operations.

However, our scheduling problems are different from all the instances of these

available benchmarks. They do not follow a rectangular form. In our model, a job

can have a number of operations different from the number of machines and a job

can be processed more than once on the same machine (recirculation). Due to

these variations in problem structure and size, we cannot directly compare the

results obtained from our instances with those of the existing benchmarks.

1.6. Contributions

The challenge of this thesis lies in tackling the size of the job shop problems at

hand. Table 1.1 provides an overview of the problem sizes for three instances, with

the number of jobs, operations (including those on machines with infinite capacity),

and machines (including machines with infinite capacity).

In our research, we aim to push the limits of established optimization techniques,

including simulated annealing, branch and bound, and dives. By subjecting these

methods to industrial-size problems, we can evaluate their performance and identify

their strengths and limitations.

Moreover, we use an algorithm we call the ranking method. It involves solving

a relaxation of the problem with a linear program. The solution gives a lower

bound and an order in which we can schedule the operations. Through extensive

experimentation, we determine the feasibility and effectiveness of this approach in

dealing with large job shop problems.

We performed the initial testing of our algorithms on the first instance of the job

shop problem, and the detailed results and analysis of these tests can be found in the

main text of the thesis. To further validate our results, we performed additional tests

on the second and third instances. The comprehensive results for these instances are

presented in the appendix of the thesis. By testing and evaluating our algorithms

9



1.6. Contributions

on multiple instances, we gain a deeper understanding of their performance and

limitations across a range of problem sizes and complexities.

Firstly, we develop two algorithms that compute the completion times of the

operations based on a given order. This can be challenging, as there are many

constraints to consider. Each of the methods we evaluate (except the ranking

method) tries to find a better schedule by modifying the order of the operations. It

is so necessary to compute the completion times of the operations efficiently to

evaluate each of the orders generated all along the algorithms.

Secondly, we evaluate the simulated annealing algorithm. It starts with a

streamlined schedule where each job is organized one after the other in the order

given in the data. The objective value of this initial schedule is 8,286,958. We

explore three different neighborhoods, starting from simpler to more complex

strategies. Among them, only the first neighborhood exhibits low objective

schedules without significant variability in the tests. The algorithm with an

appropriate neighborhood demonstrates promise, achieving a best objective value

of 3,185,492 within a seven-minute execution time.

However, the ranking method quickly outperforms the simulated annealing

algorithm, achieving an objective value of 2,984,850 in less than a second. When

one family of constraints in the linear program is applied to each set of operations,

the ranking method can find a solution that is less than two times the optimal

solution. However, due to the problem’s size, the family of constraints can only be

applied to partial sets of operations. After studying several specific sets, we find

that the ranking method consistently produces schedules with objectives of about

3,000,000 within seconds, regardless of the set chosen. The lower bounds, though,

are really distinct and the higher ones reach values of approximately 800,000.

The high lower bound obtained from the ranking method serves as a baseline for the

branch and bound algorithm. In this algorithm, the branching is done by selecting

two operations and imposing their order. After each branching, we are thus in a

subproblem where two additional operations are ordered. Despite testing various

strategies to select operations and expand nodes, we were unable to improve the

pruning process. The pruning process happens when the lower bound exceeds the

current best objective, meaning that no better schedule can be found in this branch.

10



1.6. Contributions

The lack of pruning reduces the branch and bound algorithm to a simple exact

method where all the solution space is explored. The branch and bound method

without pruning cannot handle the complexity and size of industrial-scale problems

effectively. Additionally, the need to establish in totality and solve a linear program

at each node further contributes to the algorithm’s limitation by slowing it down.

To address these limitations, we introduce the dive approach, which incorporates

the concept of a warm start. In the dive approach, the same model is maintained

between nodes within the same dive. At each node, a new constraint that imposes

a random order on two selected operations is added to the model. The dive

approach’s efficiency enables deeper exploration of the search tree. By analyzing

different strategies for operation selection, we achieve good schedules in less than

100 dives within an hour. This makes the dive approach a promising alternative.

By starting the search with a good schedule obtained from the ranking method in

less than a second, we found a schedule with the best objective value of 2,400,752.

To compare the simulated annealing algorithm with the dive approach, we perform

the simulated annealing algorithm using the initial schedule obtained from the

ranking method. The ranking method provides an initial schedule with an

objective value of 2,984,830, which improves to 2,092,161 after applying the

simulated annealing algorithm. Furthermore, we investigate refining the dive

approach schedule using the simulated annealing algorithm. The dive approach

yields an initial schedule with an objective value of 2,400,752, which is further

optimized to 2,009,964 through the application of simulated annealing. The

simulated annealing algorithm is thus a valuable tool for refining and enhancing

schedules with a low initial objective. Mixing the methods leads to better

schedules than applying a method alone, and this for the three instances of the

problem.

In conclusion, our findings highlight the limited performance of the branch and

bound method when confronted with the size of the problems considered.

Conversely, the simulated annealing algorithm, ranking method, and dive approach

demonstrate their effectiveness in generating reliable initial schedules. For optimal

results, we recommend using one of the initial schedules obtained from the ranking

method or dive approach, followed by applying the simulated annealing algorithm

11



1.7. Outline of the work

to further refine and improve the schedules.

Instance Number of
jobs operations machines

1 828 6057 (4392) 51 (17)
2 866 6174 (4514) 48 (16)
3 268 1049 (515) 35 (1)

Table 1.1.: Problem Sizes for Three Instances: Number of Jobs, Operations
(Including Operations on Machines with Infinite Capacity), and
Machines (Including Machines with Infinite Capacity)

1.7. Outline of the work

The structure of the report is as follows:

• Chapter 1 - Introduction

• Chapter 2 - Methodology: This chapter covers the methods developed

for this thesis and describes the structure and implementation of different

algorithms to solve the problem.

• Chapter 3 - Evaluation: Demonstration and discussion of the results of the

different methods.

• Chapter 4 - Conclusion: Brief summary and conclusion of what was done in

this thesis, and quick overview of some potential future work from this thesis.

12



2. Methodology

2.1. Data

The data delivered by TOOWHE about the supply chain of one of their client are

given in CSV files. The first CSV file contains all the operations for each job. The

jth operation Oi,j of the job Ji is defined by the machine Mi,j on which it has to be

processed, along with its preparation time and its realization time. The processing

time pi,j is defined by the sum of the last two. The jth operation of the job Ji is

then the tuple (i, j,mi,j, pi,j).

The second CSV file contains the names of all the machines involved in the process

and their corresponding capacity. The capacity of a machine, which can either be

1 or infinity, is the maximum number of operations that it can handle at the same

time. The machines with infinite capacity, such as SST (sous-traitance) and MAG

(magasin) do not require scheduling. But the operations on these machines still

impact the timing of the operations of the same job.

To deal with the infinite capacity, the jth operation of the job Ji can be expressed

as the tuple (i, j,mi,j, pi,j, ai,j), where ai,j is the sum of processing times of

operations on a machine with infinite capacity that come after the jth operation of

the job Ji and before the next operation of the same job on a machine with a finite

capacity.

In some cases, a job may start with an operation on a machine with infinite

capacity. In such cases, the jth operation of the job Ji can be expressed as a tuple

(i, j,mi,j, bi,j, pi,j, ai,j), where bi,j is the sum of the processing times of operations

on a machine with infinite capacity before the operation of the same job on a

machine with a finite capacity. This value can be different from zero only for the

first operation of a job.

13

https://toowhe.com/


2.2. Definition of a Schedule

2.2. Definition of a Schedule

A schedule consists of two parts: the order in which operations are processed on

each machine and the corresponding completion time for each operation. While a

schedule is crucial for effective resource allocation and productivity, it is essential to

have an initial schedule to begin the planning process. The initial schedule serves

as a starting point for further optimization and improvement. It provides a baseline

from which companies can evaluate and refine their scheduling decisions. Therefore,

for all algorithms we will test, we require an initial order of operations and an

efficient algorithm to accurately calculate the completion times whenever the order

is altered.

2.2.1. Order of the operations

Finding a first order can be easily done by sequentially examining each operation

of each job. We iterate over all the jobs and add the jth operation of the job Ji,

denoted by (i, j, bij, pij, aij), to the list of operations of the corresponding machine.

This amounts to programming one job after the other.

This deterministic approach ensures that the schedule is feasible, i.e. the order of the

sequence machine is respected. However, some algorithms like simulated annealing

do not require a feasible schedule initially. Therefore, a random schedule can be

generated by shuffling the list of operations of each machine, which can be used as

the initial schedule for the simulated annealing algorithm.

2.2.2. Completion times of the operations

Although the order of the operations is sufficient to define a schedule, it is necessary

to compute the completion times to calculate the objective, assess the schedule’s

quality and evaluate its effectiveness. While establishing the order of operations

is a straightforward task, the computation of completion times requires additional

considerations and cannot be derived trivially from the order of operations.

Two approaches were developed to get the completion times of the operations, one

involving a linear program (LP) and the other without solving a LP. This step

14



2.2. Definition of a Schedule

must be done as fast as possible to not limit the number of solutions that can be

explored within a given time.

When using a linear program, a model is created with two variables: completion

and end. The variable completion, notated CMi,j, represents the completion time

of each operation j on the specific machine Mi. If the operation j of the job Ji on

machine mij is followed by other operations on machines with infinite capacity, i.e.

aij ̸= 0, the processing times of these next operations do not affect the completion

time of the machine mij. These operations are not carried out on it. The variable end

of size 1xn represents the n completion times of the n jobs. endi, the completion time

of the job Ji, is determined by summing the completion time of the last operation

k of the job Ji and the value aik.

The objective is defined by the weighted sum of the values of the variable end where

all the weights are equal to 1:

n∑
i=1

wi ∗ endi where wi = 1 ∀i.

The model has two types of constraints:

• The precedence constraints of the operations of a single job (illustrated in

Figure 2.1):

Ci,j+1 ≥ Ci,j + ai,j + bi,j+1 + pi,j+1 ∀j ∈ {1, ..., ni − 1} ∀i (2.1)

Figure 2.1.: Illustration of a precedence constraint of the job Ji

• The constraints on the capacity of the machines (illustrated in Figure 2.2):

15



2.2. Definition of a Schedule

If the operation l of the job Jk follows the operation i of the job Ji in the

schedule of the machine mk,l (= mi,j),

Ck,l ≥ Ci,j + pk,l ifmk,l = mi,j (2.2)

Figure 2.2.: Illustration of a constraint on the capacity of the machine m

When not using a linear program, the completion time of each operation can

be determined by sequentially examining the schedule and noting the completion

time of the first available operation encountered. An operation is considered

available if it is either the first operation of a job or if the previous operation in

the sequence has already been scheduled.

In other words, we have two counters: one for the jobs and one for the machines.

While all the operations of all the jobs are not scheduled, we iterate over the

machines. At each current operation (i, j, bi,j, pij, ai,j) of the machine (determined

by the counter), if the number of the operation j corresponds to the counter of the

job i, the operation can be scheduled. This means that all the previous operations

of the job and on the machine have been scheduled and the two counters are

incremented.

The two methods produce the same completion times, which validates the results.

However, we consider the second technique as better because it is faster.

The two methods were tested on n different orders, where n represents the total

number of jobs. To generate these n distinct orders, the deterministic method

outlined in subsection 2.2.1 is initiated with a different job as the starting point

for each schedule. For instance, the first schedule begins with job 1 and concludes

with job n, while the tenth schedule starts with job 10, processes job n, and then

proceeds from job 1 to job 9, adhering to a circular order. The results of this test

16



2.2. Definition of a Schedule

are reported in Table 2.1.

With LP Without LP
Time for the 828 schedules (in s) 72.7613 4.7271
Average time for 1 schedule (in s) 0.0879 0.0057

Table 2.1.: Comparison of Execution Time for the 2 Methods to Get the Completion
Times

The second method of computing completion times is not only more efficient but

also more adaptable compared to the linear program approach. This adaptability

becomes particularly useful when we are confronted with infeasible schedules that

may arise during the simulated annealing (SA) algorithm.

When generating a neighborhood in the SA algorithm, it is possible to encounter new

schedules that are infeasible, meaning they violate certain constraints and cannot

be executed. This poses a challenge because the linear program, used in the first

method, fails to find a solution to the completion times when it is confronted with

such infeasible schedules. Consequently, the objective cannot be computed, and the

algorithm becomes effectively blocked, hindering further progress.

However, the second technique can be modified to address this issue. Suppose no

more available operations can be scheduled. In that case, we can schedule the next

operation for a particular machine and add a penalty to the job and the machine

by increasing the processing time of this operation. To determine the machine for

scheduling the next operation, a criterion based on the mean order of operations is

used. The mean order is computed as the average of the order of operations assigned

to the specific machine. For instance, consider a scenario where a machine processes

the fourth operation of one job and the second operation of another job. In this

case, the mean order would be 3. By selecting the machine with the lowest mean

order, we can expect to schedule an operation that disrupts the existing blockage.

This relaxation of the scheduling process within the simulated annealing algorithm

proves highly advantageous. The ability to generate neighboring solutions becomes

more effective as it acknowledges the potential occurrence of infeasible schedules.

From such infeasible schedules, feasible neighbors can be derived, allowing a larger

exploration of the solution space.

17



2.3. Simulated Annealing

2.3. Simulated Annealing

Simulated annealing [22] is a widely used stochastic algorithm for solving hard

combinatorial optimization problems such as scheduling. The algorithm is inspired

by the process of annealing in metallurgy, where a material is heated to a

temperature that permits many atomic rearrangements and then slowly cooled down

to decrease defects until it freezes into a good crystal [33].

In simulated annealing, the algorithm starts with an initial schedule/solution and an

initial temperature, the maximum temperature. We iterate while the temperature is

larger than the minimum temperature and while the maximum number of iterations

is not reached. At each iteration, the algorithm searches for better solutions by

making random changes in the order of the operations of the current schedule.

These random changes define the neighbor of the current solution.

The algorithm always accepts changes that decrease the objective. To avoid being

trapped in local minima, the algorithm accepts changes that raise the objective with

a certain probability. This probability decreases gradually during the search. The

probability that the schedule is accepted is p = exp(∆
T

), where T is the current

temperature and ∆ is the difference between the objective of the previous schedule

and the objective of the new one. The difference is positive since the new schedule

raises the objective.

To introduce randomness into the algorithm, random numbers uniformly distributed

between 0 and 1 are commonly employed. One such number is selected and compared

with the probability value p. If the random number is lower than p, the algorithm

keeps the new solution; otherwise, the previous solution is used to start the next

step.

Moreover, at each iteration, if the new schedule has a lower objective than the best

schedule we currently have, the new schedule becomes the best one. Once all the

iterations are done or once the temperature is low enough, the algorithm returns

the best schedule encountered during the search. The pseudo-code of this

algorithm is provided in Algorithm 1.

18



2.3. Simulated Annealing

Algorithm 1 Simulated Annealing

T ← Tmax

i← 0
curr ← Init()
obj curr ← Objective(curr)
best← curr
obj best← obj curr
while T > Tmin and i ≤ nb iter do

next← Neighbour(curr)
obj next← Objective(next)
if obj next < obj curr then

curr ← next
if obj next < obj best and IsFeasible(next) then

best← next
else if Random() < exp(obj curr−obj next

T
) then

curr ← next
T ← T ∗ cooling rate
i← i + 1

return best

2.3.1. Design of the neighborhood

The effectiveness of simulated annealing depends on the neighborhood structure of a

schedule. Two schedules are neighbors if one can be obtained through a well-defined

modification of the other by definition [31].

First neighborhood

A first simple neighbor of a schedule can be designed by interchanging a pair of

adjacent operations within a window of a certain size 2 ∗w. To begin, we randomly

select a machine that has more than one operation. Next, we choose a starting

operation k at random from all the operations on that machine. Assuming that the

machine has a total of t operations, the second operation is then randomly selected

from the range [max(1, k − w), min(t, k + w)], where 2 ∗ w is a predefined window

size. This ensures that the second operation is adjacent to the first one within the

specified window, where the window spans from k − w to k + w and is constrained

by the total number of operations on the selected machine.

After swapping the two operations, it is not guaranteed that the resulting schedule

19



2.3. Simulated Annealing

will satisfy all the precedence constraints of the job shop problem. To address this

issue, the second method described in subsection 2.2.2 can be used, in its modified

version which involves introducing a penalty. If the penalty is sufficiently large, the

objective of the new schedule will be higher than the objective of the previous one

since it violates a constraint. The new schedule will be accepted according to the

previously defined probability. However, even if the objective of the new schedule

may be lower than the best objective, it cannot be considered as the new best

solution because it is infeasible, as shown in pseudo-code 1.

Second neighborhood

The second neighborhood is an extension of the first neighborhood, where instead

of swapping two operations, we swap three operations within a window of a certain

size. This neighborhood is created by modifying the procedure described previously.

Similar to the first neighborhood, we begin by randomly selecting a machine that

has more than two operations. However, if a machine has exactly two operations,

we make an exception and swap these two operations directly. This ensures that

even machines with only two operations are considered in the swapping process.

For machines with more than two operations, we proceed as follows: we choose a

starting operation, denoted as k, at random from all the operations on that

machine. The second operation is randomly selected from the range

[max(1, k − w), min(t, k + w)], where w represents the window size. In the second

neighborhood, we introduce a third operation, which is also randomly selected

from the range [max(1, k − w), min(t, k + w)].

By swapping three operations instead of two, the second neighborhood allows for a

more extensive exploration of the solution space. It increases the difference

between two neighboring schedules that can be obtained from a given schedule.

This enhanced exploration can be beneficial in finding better solutions or escaping

from local optima in the optimization process.

While increasing the number of swapped operations expands the search space, it

also introduces a higher risk of violating precedence constraints. Therefore, similar

to the first neighborhood, it is necessary to apply a mechanism to handle infeasible

20



2.3. Simulated Annealing

schedules, such as the penalty-based method mentioned in Subsection 2.2.2.

In summary, the second neighborhood in simulated annealing swaps three operations

within a window, providing a neighbor more different than the initial one. This

extended neighborhood can be advantageous in improving the optimization process

by allowing the algorithm to discover new promising solutions.

Third neighborhood

The third neighborhood expands upon the previous neighborhoods by considering

a larger number of operations to swap. This neighborhood is the most complex out

of the three because we select the neighbor based on an optimization problem. In

this case, we select four operations from the schedule and evaluate all possible

combinations of these four operations. The combination that yields the lowest

objective value, considering the objective is to be minimized, is chosen as the new

schedule.

By increasing the number of operations involved in the swapping process, the third

neighborhood allows for even greater exploration of the solution space compared to

the previous neighborhoods. Considering all 24 possible combinations of four

operations provides a more comprehensive search, potentially leading to the

discovery of better solutions.

More complex neighborhoods can be useful for several reasons. First, they promote

intensification in the search process. Intensification refers to focusing on promising

areas of the solution space where better solutions are more likely to be found. By

evaluating all possible combinations of four operations, the algorithm systematically

assesses various combinations to identify the one with the lowest objective value.

This intensification approach can lead to faster convergence towards better solutions.

Second, more complex neighborhoods can be particularly beneficial for highly

complex optimization problems or instances where the solution space is vast and

challenging to explore thoroughly. By considering a larger neighborhood, the

algorithm can cover a broader range of potential solutions, increasing the chances

of finding optimal or near-optimal solutions.

However, it is worth noting that the more complex neighborhood also comes with

21



2.4. Ranking Method

increased computational costs due to the evaluation of multiple combinations.

Therefore, its use should be carefully considered, taking into account the problem’s

complexity and available computational resources.

In summary, the third neighborhood selects four operations and evaluates all

possible combinations to identify the one with the lowest objective value. This

approach allows us to make an extensive exploration of the solution space and can

be beneficial for complex optimization problems or instances with vast solution

spaces even though it requires high computation costs.

2.4. Ranking Method

In this section, we present a method we call the “Ranking Method” for solving our

job shop scheduling problem. It provides a systematic approach to determine the

sequence in which the operations of each job should be processed.

To begin, we develop an equivalent problem for the single-machine scheduling

problem. Next, we consider a relaxation problem derived from the single-machine

scheduling problem with precedence constraints. By solving this relaxation

problem, we obtain completion times for the operations that respect the

precedence constraints. However, these completion times do not account for the

capacity constraints of the machines. Consequently, the obtained completion times

serve as a lower bound on the objective value. We then explore the relationship

between the optimal value and the lower bound obtained from the relaxation

problem.

Subsequently, we adapt the relaxation of the single-machine scheduling problem

to our job shop scheduling problem. This adaptation enables us to leverage the

insights and techniques from the single-machine problem and apply them to the

more complex job shop scenario.

The completion times obtained from the relaxation can be interpreted as a ranking

or order in which the operations can be processed. By sorting the completion times

in increasing order, we can create a feasible schedule for the job shop problem.

Finally, the real completion times, taking into consideration the capacity constraints

22



2.4. Ranking Method

of the machines, can then be computed using one of the two approaches developed

previously in subsection 2.2.2.

2.4.1. A single-machine scheduling problem

According to Bertsimas and Weismantel [6, pp. 95-98], let’s consider the single

machine scheduling problem with a set V = {1, ..., n} and follow their developments.

Each job i ∈ V has its processing time pi. The objective is to minimize the total

weighted completion time
∑
i∈V

wiCi where wi ≥ 0, i ∈ V are given weights. The

schedule needs to satisfy the following constraints to characterize the completion

times:

• Constraints on the processing time:

Cj ≥ pj, j ∈ V, (2.3)

• Constraints stating that in every schedule, either job k is processed before job

j, or job j is processed before job k:

Cj ≥ Ck + pj or Ck ≥ Cj + pk j, k ∈ V, j ̸= k.

A schedule is nonidling if the machine is used without any idle time. This means

that the machine is processing a job at all times during the schedule. In a nonidling

schedule, the completion time of a job i is C∗
i =

i∑
k=1

pk.

Knowing that all nonidling schedules are optimal [6], the completion times C1, ..., Cn

of the n jobs satisfy:

n∑
i=1

piCi ≥
n∑

i=1

piC
∗
i

=
n∑

i=1

pi

n∑
i=1

pk

=
1

2

n∑
i=1

p2i +
1

2

( n∑
i=1

pi

)2

23



2.4. Ranking Method

We can consider any set S = {i1, ..., is} ⊂ V of jobs and the objective function

where

wi = pi ∀i ∈ S,

wi = 0 ∀i /∈ S.

The schedule in which we first process the job according to the ordering i1, ..., is of

the element of S and then the jobs not in S is optimal from the following

statement:

If 1,2,...,n is the order according to which the jobs in an optimal feasible schedule are

processed. Then,
w1

p1
≥ w2

p2
≥ ... ≥ wn

pn
.

Therefore, for all nonidling schedules, the completion times satisfy

n∑
i=1

wiCi ≥
n∑

i=1

piCi

=
s∑

j=1

pij

j∑
k=1

pik (2.4)

≥ 1

2

∑
i∈S

p2i +
1

2

(∑
i∈S

pi

)2

, ∀S ⊂ V.

The completion times are given exactly by the inequalities (2.4) [32] and the single

machine scheduling problem is therefore equivalent to

min
n∑

i=1

wiCi

s.t.
∑
i∈S

piCi ≥
1

2

∑
i∈S

p2i +
1

2

(∑
i∈S

pi

)2

, S ⊂ V. (2.5)

We can now consider the single machine scheduling problem with precedence

constraints according to Bertsimas and Weismantel [6, pp. 452-53]. The following

linear optimization problem (2.6) of the single machine scheduling problem with

24



2.4. Ranking Method

precedence constraints is a relaxation of the problem and provides a lower bound

on the optimal objective function value:

min
n∑

i=1

wiCi

s.t.
∑
i∈S

piCi ≥
1

2

∑
i∈S

p2i +
1

2

(∑
i∈S

pi

)2

, S ⊂ V, (2.6)

Cj ≥ Ci + pj, (i, j) ∈ A.

Where the precedence constraints among jobs are described by a directed graph

G = (V,A), where

A =
{

(i, j) | job i must be processed before job j
}

,

We can sort the optimal completion time C∗
i given by the relaxation (2.6) and

create a feasible schedule by processing the jobs in the same order. The value of the

objective, the weighted sum, is ZH .

If the inequality (2.4) is applied on all possible sets S, the value ZH is lower or equal

to two times the value of the relaxation ZLP [35]:

ZH

ZLP

≤ 2 (2.7)

In summary, the relaxation problem provides a lower bound ZLP on the optimal

objective value Zopti, and the feasible schedule generated from the optimal

completion times serves as an upper bound ZH :

ZLP ≤ Zopti ≤ ZH (2.8)

The relationship between these bounds highlights the potential optimality gap in

the solution space and guides us in developing effective scheduling strategies for the

job shop problem. Moreover, the relaxation problem allows us to find a solution

that is less than two times the optimal solution when the inequality (2.4) is applied

25



2.4. Ranking Method

on all possible sets S. Indeed, from the inequalities 2.7 and 2.8 we can write:

ZH ≤ 2 ∗ Zopti. (2.9)

2.4.2. A single machine scheduling problem to our job shop

problem

The single machine scheduling problem described in the previous section with its

lower bound can be adapted to our job shop problem.

Let’s consider the linear optimization problem that minimizes the total weighted

completion time with the following constraints, inspired by the previous section

2.4.1:

• Constraints on the processing time for each operation j of each job i (see 2.3):

Ci,j ≥ bi,j + pi,j,

• Precedence constraints (see 2.1):

Ci,j+1 ≥ Ci,j + ai,j + bi,j+1 + pi,j+1 ∀j ∈ {1, ..., ni − 1} ∀i

• Constraints on the set S of operations that are processed on the same

machine (see 2.6):

∑
i∈S

piCi ≥
1

2

∑
i∈S

p2i +
1

2

(∑
i∈S

pi

)2

Imposing this constraint on every set S of operations is intractable if we want to

solve the problem with a linear program. Considering only pairs of operations

on each machine already result in 91,417 constraints, and including all possible

triples would introduce 4,590,413 additional constraints.

A study of the set of operations that are in S will be done in chapter 3.

Solving this linear optimization problem gives completion times of the operations

that respect the precedence constraints but not the capacity of the machine. There

26



2.5. Branch and Bound Algorithm

is no constraint on the machines such that (2.2). Therefore, the completion times

provide a lower bound on the objective value since we cannot do better without

violating the precedence constraints. The completion times are the solution to the

relaxed problem.

In addition, the completion times can be seen as a ranking, an order in which the

operations can be processed. Based on this order, the real completion times (that

respect the capacity of the machines) can be computed with one of the methods

described in section 2.2.2.

To sum up, the linear optimization problem that minimizes the total weighted

completion times, subject to the given constraints, can be solved using a linear

program. However, this problem is a relaxation of the actual problem, meaning

that the obtained solution provides a lower bound on the optimal objective value.

By solving the relaxation problem, we can determine the completion times for each

operation. These completion times represent a ranking or order in which the

operations can be processed. To obtain a feasible schedule, we can sort the

completion times in increasing order and process the operations accordingly.

While the relaxation problem’s objective value serves as a lower bound, the real

value of the objective can be computed based on the feasible schedule obtained.

This real objective value represents an upper bound on the optimal objective value.

Therefore, through the relaxation problem, we establish a lower bound on the

objective value, while the feasible schedule derived from it establishes an upper

bound. The gap between these two bounds provides insight into the potential

optimality of the solution space and guides us in developing strategies to improve

scheduling decisions for the job shop problem.

2.5. Branch and Bound Algorithm

Branch and bound methods [8, 7] are exact methods used to solve optimization

problems, including scheduling problems. These methods work by breaking down the

problem into smaller sub-problems (“branch” step) and using a tree-based search to

27



2.5. Branch and Bound Algorithm

explore the space of possible solutions. Each branch is a subset of possible solutions.

To evaluate each subset, a lower bound of the solution is calculated by analyzing

the choices made in a specific branch (“bound” step). This lower bound provides an

optimistic estimate of the potential solutions that can be generated by the branch.

If the lower bound of a branch exceeds the current best solution, the entire branch

can be pruned from the tree. Indeed, if the best solution we can reach in this branch

is the lower bound and if the lower bound is already larger than the current best

solution, the best solution cannot be in this branch.

2.5.1. Branching

Our branch and bound algorithm starts with a first feasible schedule, the root. The

upper bound of the root is the objective of the schedule and the lower bound is the

bound given by the ranking method.

Each node of the tree can have two children, two different subsets of solutions, by

imposing an order between two operations on the same machine. The order can be

either k before l or l before k. For each child, the new lower bound is computed with

the ranking method with the additional constraint. For the first child, the operation

k is processed before the operation l on the machine m and the constraint is written

such that

Cl ≥ Ck + pl.

For the second child, the operation l is processed before the operation k on the

machine m and the constraint is written such that

Ck ≥ Cl + pk.

2.5.2. Selection of the constraint

A constraint is identified by the machine and the two operations. To choose the

machine and its two operations, we determine three different deterministic and one

non-deterministic strategies:

1. Critical machine and first operations (CM-FO):

28



2.5. Branch and Bound Algorithm

We determine the critical machine, which is the machine with the highest

sum of processing times for its operations. We select the first operation on

the critical machine and continue selecting operations until no more can be

selected. We then move to the next critical machine and repeat the process.

Based on the ranking method’s order and completion time values, we select

the first successive pair of operations for which their completion times are too

close together. So for increasing indices i from 2 to the number of operations

scheduled on that machine, if the completion time of operation i is lower than

the sum of the completion time of operation i− 1 and the processing time of

the operation i, the pair of operations i−1 and i is selected for the constraint.

2. Critical machine and largest violation (CM-LV):

We choose the critical machine as before and select the two successive

operations for which the difference between the completion time of operation

i and the sum of the completion time of operation i − 1 and the processing

time of the operation i is the largest.

3. Largest job (LJ):

The largest job is the one with the most operations. We select the first

operation of the largest job for which the completion time is less than the

sum of the completion time of the previous operation on the machine and its

processing time. The pair of operations is the operation of the largest job

and the previous operation on the machine.

4. Critical machine and one of the 5 largest violations (CM-5LV): We choose the

critical machine as before and select the five pairs of successive operations

for which the difference between the completion time of operation i and the

sum of the completion time of operation i− 1 and the processing time of the

operation i are the largest. We then choose randomly among these five pairs.

Each time a new constraint is added, the ranking method returns another ranking

and the lower bound increases. The ranking is modified and two successive

operations may not be adjacent anymore. To be sure that the indices will not

change with the ranking, we use the initial schedule’s set of indices to identify the

operations and not the set of indices based on the ranking.

29



2.5. Branch and Bound Algorithm

2.5.3. Tree structure and search

For the tree-based search, we use a node structure. A node consists in:

• The lower bound given by the ranking method. Precisely, the lower bound is

computed by evaluating the objective on the completion times obtained with

the ranking method.

• The upper bound is the objective of the current schedule. The order of the

schedule is given by the ranking method and the real completion times are

obtained with the second method of subsection 2.2.2.

• The constraint of the branch that creates the node.

• The parent of the node, which is itself a node. Knowing the parent allows us

to go up the tree and to have the list of constraints to apply.

The search process begins with the root node, which corresponds to the initial

schedule that does not impose any constraint on the operation order. The search

algorithm recursively explores the child nodes of the current node to identify optimal

solutions. Different expansion strategies can be followed to expand the tree. We use

four strategies:

1. Breadth-first search (BFS), where we expand the shallowest node in the fringe.

The priority is the depth and the fringe is equivalent to a FIFO queue (First

In First Out).

2. Greedy search (GS), where we expand the node with the minimum upper

bound. The priority is the upper bound of the node and the fringe is equivalent

to a priority queue.

3. Best-node search (BNS), where we expand the node with the minimum lower

bound. The priority is the lower bound of the node and the fringe is equivalent

to a priority queue.

To implement these strategies, a priority queue called the fringe is used, which

orders nodes based on their priorities. The node with the lowest priority is selected

first. Initially, the fringe contains only the root node. The tree is expanded as long

as the fringe is not empty and the desired number of nodes to explore has not been

30



2.5. Branch and Bound Algorithm

reached. At each step, the lowest priority node is removed from the fringe and its

two children are generated, representing the next possible constraint. It is possible

that no further constraints can be added, in which case no child nodes are added

to the fringe, and the next node in the queue is considered. Moreover, it is also

possible that adding the next constraint to the problem leads to infeasibility. In

this case, the search process is halted. If the lower bound of a child node is higher

than the current minimum objective, the node is not added to the fringe, and the

search process in that direction is halted. The pseudo-code of the branch and

bound algorithm is given in 2.

2.5.4. Lukewarm start

The tree-based search requires solving the optimization problem with a linear

program at each node. To speed up the time taken to solve the problem at each

node, we can use a technique we call Lukewarm start (LS).

The Gurobi solver [20] that solves linear programs offers a parameter called “start,”

which can be used to set the initial value of a variable. By doing so, the solver can

initiate the optimization process closer to the optimal solution, which often reduces

the computation time required to obtain the optimal solution. Indeed, a node and

its children differ by only one constraint and the solver can focus on finding a feasible

solution that satisfies the new constraint only. If the solver starts from zero, it has

to explore a larger search space, which can be time-consuming and computationally

expensive.

We tested both approaches, with and without a warm start. We ran the branch and

bound algorithm for ten nodes for all the strategies that choose the constraint for

the branching and search strategies. We tested two different sets: S=[0,0,0,0,0,0,0]

(1) and S=[0,0,1,0,0,0,0] (17).

Table 2.2 presents the execution time of the entire algorithm, including the sum of

the time taken by each node to optimize and create the model. We can observe the

optimization time does not follow a consistent pattern: the warm start technique

sometimes takes longer, and sometimes shorter, than the non-warm start approach.

31



2.5. Branch and Bound Algorithm

Algorithm 2 Branch and Bound

fringe← priority queue
schedule← Init()
ranking, ← Ranking(schedule)
up bound← Objective(schedule)
low bound← Objective(ranking)
priority ← 0
root← Node(up bound, low bound)
fringe.push((root, priority))
obj best← obj curr
best← root
i← 0
while len(fringe) > 0 and i ≤ nb nodes do

priority, item← fringe.pop()
if item.upper bound < obj best then

best← item
obj best← item.upper bound

constraint list← constraintList(item)
constraint next← constraintNext(item)
for j = 1 to 2 do

ranking, feasible←Ranking(schedule, constraint list, constraint next)
if feasible then

low bound← Objective(ranking)
if low bound < obj best then

real← CompletionTimes(curr, ranking)
up bound← Objective(real)
priority ←Priority()
child← Node(up bound, low bound, item, constraint next + j)
fringe.push((child, priority))

end for
i← i + 1

return best

32



2.5. Branch and Bound Algorithm

It is worth noting that the optimization time constitutes only a small fraction of the

overall time required to run the branch and bound algorithm. The majority of the

time is consumed in creating the model, which is reconstructed entirely at each node.

This is because creating a copy of the model for each child is a time-consuming task,

and sharing the parent’s model with its children is not feasible due to the differing

modifications made by each child. Therefore, an alternative approach must be found

to reduce the time required for model construction.

33



2.6. Dives

Constraint Search Total time Optimization time Model time
strategy strategy LS no LS LS no LS LS no LS

S=[0,0,0,0,0,0,0]

CM-FO
BFS 1.2285 1.1767 0.029 0.029 1.0719 0.9967
GS 1.189 1.1404 0.039 0.031 1.0745 1.0786

BNS 1.1943 1.1247 0.035 0.016 1.0547 0.9688

CM-LV
BFS 1.2253 1.156 0.052 0.048 1.0888 1.0002
GS 1.2244 1.1404 0.034 0.048 1.0977 0.9374

BNS 1.2253 1.156 0.037 0.0 1.1034 1.0001

LJ
BFS 1.2721 1.2028 0.048 0.015 1.0739 0.9845
GS 1.2725 1.2028 0.033 0.0 1.0388 0.9846

BNS 1.2865 1.2028 0.019 0.048 1.0706 0.9688

CM-5LV
BFS 1.3462 1.2686 0.032 0.011 1.0973 1.0323
GS 1.4237 1.2611 0.026 0.023 1.1515 1.0139

BNS 1.3173 1.3159 0.025 0.013 1.0544 1.0226

S=[0,0,1,0,0,0,0]

CM-FO
BFS 4.3217 4.2334 1.656 1.701 4.1027 4.0924
GS 4.3028 4.2334 1.621 1.642 4.1776 4.0614

BNS 4.303 4.2334 1.679 1.685 4.1437 4.0301

CM-LV
BFS 4.3924 4.3059 1.707 1.717 4.2244 4.1089
GS 4.3334 4.2856 1.668 1.747 4.1453 4.1261

BNS 4.322 4.3343 1.662 1.705 4.2039 4.0823

LJ
BFS 4.3969 4.3115 1.694 1.659 4.1121 4.0766
GS 4.4126 4.3271 1.757 1.734 4.2065 4.061

BNS 4.3975 4.3115 1.62 1.732 4.1315 4.0924

CM-5LV
BFS 4.5205 4.3987 1.756 1.637 4.2178 4.0711
GS 4.4577 4.3965 1.746 1.731 4.1403 4.1448

BNS 4.4298 4.3747 1.735 1.675 4.1527 4.1151

Table 2.2.: Total time to run the algorithm, sum of the times of each node to optimize
the model and sum of the times of each node to create and optimize the
model, for the branch and bound algorithm for 10 nodes for the different
constraint and expansion strategies and two sets S, with and without the
warm start technique.

2.6. Dives

In the context of tree-based search, the term “dive” refers to the process of exploring

deeper into the tree structure. This process involves exploring a particular branch

of the tree until the search reaches a leaf node or a node that meets the termination

34



2.6. Dives

condition of the algorithm.

The dive approach provides a solution to avoid building an entirely new model at

each node during a partial exploration of the tree. By keeping the same model

within each dive, the algorithm can use the information and constraints already

established, saving computational resources and improving efficiency. This practice

of keeping the same model throughout the dive is commonly referred to as a “warm

start” in optimization.

In this subsection, we introduce an implementation of the dive approach and

demonstrate its effectiveness in efficiently exploring numerous nodes in a short

amount of time. Additionally, we explore how the dive approach can be integrated

with the branch and bound method. Furthermore, we discuss the evaluation of

different constraint strategies (see subsection 2.5.2) that determine the selection of

the constraint added in a new node.

2.6.1. Implementation of a dive

In the context of our job shop problem, a dive refers to the process of initiating

the exploration of a tree at the root and progressively moving deeper by adding a

new constraint to the model at each node until either the lower bound exceeds the

best-known objective or until there is no more constraint to add to the model.

To begin a dive, a model is built with the initial constraints, including the precedence

constraints and the constraints on the set of operations S. This model is maintained

throughout the process. At each node, a new constraint is added to the model in

order to further refine the search. The specific constraint added at each node is

determined by the constraint strategy chosen. The dive proceeds by selecting two

operations, labeled i and j, for the constraint according to the strategy. The order

in which i and j are applied, whether i comes before j or vice versa, is determined

randomly. By repeatedly adding new constraints at each node and exploring deeper

into the tree, the search continues until either there are no more constraints to add

or the lower bound exceeds the best-known upper bound.

In some cases, the specific order in which the i and j operations are applied may

result in infeasibility. This means that the optimization problem at the node

35



2.6. Dives

cannot be solved using the current constraints. In such cases, a potential solution

is to remove the last constraint that was added to the model and apply the same

constraint again but with the i and j operations in the opposite order.

The dive approach, unlike the branch and bound method, allows us to add

multiple constraints simultaneously. Therefore, one possible strategy is to select

two pairs of successive operations that have the largest difference between the

completion time of operation i and the sum of the completion time of operation

i − 1 and the processing time of operation i. This strategy is referred to as

CM-2LV.

However, when randomly selecting the order for the operations within each pair,

infeasibility issues can arise occasionally. Resolving such infeasibility is more

complex because it involves dealing with multiple constraints.

To address this, one potential solution is to modify the order of one or both pairs

and/or remove a constraint. These adjustments can help alleviate the infeasibility

and allow for a valid solution to be found.

To conclude, maintaining the model throughout the dive can potentially reduce

processing time compared to the traditional branch and bound algorithm. At each

node of the tree, a new constraint is added to the model and the optimization process

is repeated. Unlike the branch and bound algorithm, where the entire model is

constructed from scratch at each node, this approach builds on the previous model,

potentially saving time and computational resources.

2.6.2. Efficiency of a dive: Comparison of the performances

with the branch and bound method

In order to evaluate the efficiency of the dive approach, we conducted experiments

to compare its performance to the traditional branch and bound algorithm.

Specifically, we measured the processing time required for each method to explore

a given number of nodes in the search tree. In order to ensure a fair comparison,

we always apply the same order on the two operations i and j selected for the

constraint: “operation i before operation j”. If this order leads to infeasibility, we

apply the order “operation j before operation i”.

36



2.6. Dives

To evaluate the performance of both methods, we conducted two tests for each of

the three strategies using three different sets, namely S = [1, 1, 1, 1, 1, 1, 1], S =

[0, 0, 1, 0, 0, 0, 0] and S = [0, 0, 0, 0, 0, 0, 0], with a total of 1000 nodes explored in

each test. The results of our experiments are presented in Table 2.3, which reports

the average processing times for each method.

Upon comparing the processing times of the two methods, it is evident that the dive

approach consistently outperforms the branch and bound method for each constraint

strategy. This conclusion is supported by the fact that the processing times for the

dive method are consistently lower than those for the branch and bound method

under all four constraint strategies and for the three sets S. The processing times

for the dive method are typically on the order of minutes or even less, whereas the

branch and bound method tends to require significantly more time.

The difference in processing times for the branch and bound method is particularly

noticeable when dealing with sets S = [1, 1, 1, 1, 1, 1, 1] and S = [0, 0, 1, 0, 0, 0, 0],

which introduce a larger number of constraints (respectively 99,463 constraints and

1,665, see Tables A.4 and A.1) that must be defined again at each node. Even when

dealing with more complex sets, the dive approach only experiences a slight increase

in processing time, remaining highly efficient.

S Constraint Time in min
strategy BnB dive

[1,1,1,1,1,1,1]

CM-FO 28:15 1:00
CM-LV 19:00 1:10

LJ 33:00 1:19
CM-5LV 20:20 1:04

[0,0,1,0,0,0,0]

CM-FO 9:42 0:32
CM-LV 9:21 0:33

LJ 10:09 0:47
CM-5LV 4:21 0:29

[0,0,0,0,0,0,0]

CM-FO 3:02 0:21
CM-LV 3:06 0:22

LJ 3:38 0:38
CM-5LV 1:14 0:19

Table 2.3.: Comparison of processing times for dive and branch and bound methods
for the four constraint strategies and three sets S.

37



2.6. Dives

2.6.3. Integration of dives in branch and bound method

The dive approach offers the advantage of faster exploration of a number of nodes

than the branch and bound method, allowing us to execute multiple dives in a

relatively short time frame. This enables us to attempt to reach a low objective

value. Subsequently, we can exploit the lowest objective value discovered during the

dive phase to initiate the branch and bound method.

To accelerate the branch and bound process, it is crucial to implement efficient

pruning techniques. Pruning is performed when the lower bound exceeds the upper

bound, indicating that further exploration of that particular branch is unnecessary.

Consequently, finding an initial upper bound with the dive approach could facilitate

quicker pruning in the branch and bound method.

38



3. Evaluation

In this chapter, we discuss the strategies outlined in Chapter 2. All the Figures and

Tables that are in this chapter are derived from the first problem instance. For the

sake of clarity, the corresponding Figures and Tables derived from the second and

third instances can be found in the respective sections of the appendix.

3.1. Simulating Annealing

Simulated annealing is a popular optimization algorithm used to tackle various

combinatorial optimization problems. One important factor that can influence the

performance of simulated annealing is the choice of neighborhood structure. In

this study, we investigate the effect of different neighborhood structures and

window sizes on the performance of simulated annealing for solving a job shop

scheduling problem.

Our objective is to explore the three different neighborhood structures and

evaluate their impact on the quality of the solutions obtained. The first

neighborhood involves swapping two adjacent operations within a window of

varying sizes. The second neighborhood extends the first one by swapping three

operations within the window. Finally, the third neighborhood is a more complex

neighborhood where an optimization problem is solved at each iteration.

By examining these three neighborhood structures, we aim to determine the

relationship between window size and solution quality, as well as identify the most

effective approach for our job shop scheduling problem. Through extensive

experiments and analysis, we gain insights into the performance of simulated

annealing and its sensitivity to the choice of neighborhood structure.

39



3.1. Simulating Annealing

3.1.1. First neighborhood

To explore the effect of the window size w on the performance of simulated annealing,

we tested twenty different sizes, ranging from one to twenty. The pairs of operations

that were interchanged at each iteration of the simulated annealing algorithm were

adjacent within a window of a size 2 ∗ w, i.e. from 2 to 40. For each window size

w, we ran the algorithm ten times for a fixed number of iterations (40,000), with

an initial temperature of 1000 and a cooling rate of 0.9999. After 40,000 iterations,

the final temperature is 18.3119. We recorded the best solution found for each test.

Each test was conducted in approximately seven minutes, the size does not affect

the time complexity of the algorithm. The mean of the objective value over the ten

tests for each different window size is shown in Figure 3.1, with error bars indicating

the standard deviation of means over the tests. The reference objective value is

8,286,958, which is the objective value of the initial schedule used for all tests.

We then compared the quality of the solutions obtained using different window sizes

and analyzed the effect of window size on the convergence rate.

Our results show that the choice of window size has a significant impact on the

quality of the solution obtained by simulated annealing. Specifically, we find that

larger neighborhood sizes lead to better objective values. The decrease in objective

value is significant for window sizes from one to ten, while it is considerably less

significant for sizes from ten to twenty until being constant around an objective

value of 3,200,000. The best objective value was achieved with a window size of

w = 19, which was 3,185,492.

These results suggest that the choice of window size should be carefully considered

when using simulated annealing to solve scheduling problems.

For the second instance of the problem, we observe that the objective value tends

to decrease as the window size increases, although not consistently. The variability

in the results is slightly higher compared to the first instance. It is important

to note that the scale of the first and second instances differs, which can lead to

confusion when comparing the variability. However, it appears that similar to the

first instance, a larger window size tends to result in a lower objective value.

Regarding the third instance, we observe that the objective value significantly

decreases with window sizes ranging from 1 to 7 and then remains relatively

40



3.1. Simulating Annealing

Figure 3.1.: Mean objective value over 10 tests for different window sizes w using
the first neighborhood

constant. This suggests that a sufficiently large window size is needed to achieve

good results. Therefore, if we choose a large window size such as w = 20, we can

obtain favorable outcomes, even with the third instance.

These findings highlight the significance of carefully selecting the window size when

utilizing simulated annealing for solving scheduling problems. It demonstrates the

impact of window size on the quality of solutions obtained and emphasizes the need

for experimentation and optimization to determine the most effective window size

for specific problem instances.

3.1.2. Second neighborhood

In addition to the experiments conducted with the first neighborhood, we also

performed similar tests using the second neighborhood. The second neighborhood

is an extension of the first neighborhood, where instead of swapping two

operations, we swap three operations within a window of a certain size. However,

the results obtained with the second neighborhood, shown in Figure 3.2 were less

41



3.1. Simulating Annealing

conclusive compared to the first neighborhood.

In the experiments with the second neighborhood, we followed a similar setup as

before, testing twenty different window sizes ranging from one to twenty. We ran the

simulated annealing algorithm ten times for each window size with a fixed number

of iterations (40,000), an initial temperature of 1000, and a cooling rate of 0.9999.

The final temperature achieved after 40,000 iterations is 18.3119.

Unlike the first neighborhood, the results obtained with the second neighborhood

do not show a clear trend when observing the objective values in relation to the size

of the window. The standard deviation of the objective values is considerably large,

indicating high variability in the obtained solutions.

For the second neighborhood, we observe that a window size of 20 resulted in the

lowest objective value, which is around 2,500,000. However, it is important to note

that there are also instances where high objective values are obtained, reaching

around 6,000,000.

Based on these findings, we can conclude that the second neighborhood is not as

effective as initially expected. The objective values obtained using the second

neighborhood were highly variable, making it difficult to determine a clear

relationship between window size and solution quality. Therefore, it is not possible

to draw definitive conclusions regarding the impact of window size on the

performance of simulated annealing when using the second neighborhood.

The previous observations hold true for the second instance of the problem as well.

However, the results obtained with the third instance present a notable contrast

compared to the first two instances. In fact, the outcomes obtained with the third

instance align with those obtained using the first neighborhood. Specifically, we

observed a significant decrease in the objective value with window sizes ranging

from 1 to 6, followed by a relatively constant value.

It is worth noting that the variability in the results is remarkably low, as all ten

tests for each window size converge to the same objective value. Without a larger

number of instances, we cannot draw conclusions about the second neighborhood

on smaller instances like the third.

To conclude, the second neighborhood demonstrated its effectiveness only for the

42



3.1. Simulating Annealing

Figure 3.2.: Mean objective value over 10 tests for different window sizes w using
the second neighborhood

third instance of the problem and cannot be generalized to solve industrial-scale

job shop problems. It is evident that different problem instances may require

different approaches, and the choice of neighborhood structure should be tailored

accordingly. The results highlight the importance of carefully considering the

problem characteristics and exploring various neighborhoods to identify the most

suitable approach for optimizing different types of scheduling problems.

3.1.3. Third neighborhood

The experiments for the third neighborhood were conducted with an initial

temperature of 100, a cooling rate of 0.9965, and a total of 2627 iterations,

resulting in a runtime of approximately 8 minutes With 24 combinations tested at

each iteration, a total of 63,048 schedules were evaluated.

However, the results obtained with the third neighborhood are inconclusive. Similar

to the second neighborhood, Figure 3.3 does not show a clear trend in the objective

values as a function of the window size. Additionally, the objective values display

43



3.1. Simulating Annealing

significant variation and do not reach low values. Most tests yield high objective

values, with only a few tests achieving objective values around 5,500,000. These

values are obtained with window sizes of 14 and 16. Moreover, the objective reached

for the second and the third instances are also lower than that achieved with the

first and the second neighborhoods.

Considering the lack of consistent results and the high variability in objective values,

it is challenging to draw definitive conclusions regarding the impact of window size

on the performance of simulated annealing when using the third neighborhood.

However, based on these findings, we can conclude that employing a more complex

neighborhood does not appear to be beneficial for solving our three instances of job

shop scheduling problem.

Figure 3.3.: Mean objective value over 10 tests for different window sizes w using
the third neighborhood

3.1.4. Conclusion

In this study, we conducted experiments to evaluate the impact of different

neighborhood structures and window sizes on the performance of simulated

44



3.2. Ranking Method

annealing for a job shop scheduling problem.

For the first neighborhood, larger window sizes lead to better objective values, with

the best result achieved at a window size of 19. However, the results for the second

and third neighborhoods are inconclusive, showing high variability and no clear

relationship between window size and solution quality. In addition, since the results

obtained with the third neighborhood are inconclusive, it suggests that exploring

more complex neighborhood structures may not be necessary.

These findings emphasize the importance of carefully selecting the neighborhood

structure and the window size when using simulated annealing for scheduling

problems. While the first neighborhood shows promising results, the second and

third neighborhoods do not provide consistent improvements.

In summary, the choice of neighborhood structure and window size significantly

influences the performance of simulated annealing for job shop scheduling,

highlighting the need for further research to explore alternative approaches.

3.2. Ranking Method

We explored the effect on the performance of the ranking method of the set S ⊂ V

of jobs on which the constraint 2.6 is applied. We tested different sets composed of

these subsets of operations for each machine, including:

1. All the pairs of operations

2. All the operations

3. All the operations except one

4. All the pairs of successive operations

5. All the triples of successive operations

6. All the sets of 4 successive operations

7. All the sets of 5 successive operations

Each subset can be included or excluded from S. When the subsets 1 and 4 are both

included in S, the same constraint is applied multiple times since pairs of successive

45



3.2. Ranking Method

Figure 3.4.: Values of the lower bound and number of constraints of the ranking
method over different sets S

operations are also pairs of operations. Each of the subsets enumerated can be part

or not of the S. We denote the set S where constraint 2.6 is applied to all successive

pairs as S = [0, 0, 0, 1, 0, 0, 0] (x), where x is the set identification number.

The tables A.1, A.2, A.3, and A.4 report the lower bound, objective, time and

number of constraints for each set of S to solve the first instance.

3.2.1. About the lower bound

The values of the lower bound and number of constraints of the ranking method

over different sets S is shown in Figure 3.4. We observed three clusters of lower

bound values:

• Around 830,000 (high-value cluster): all sets include the subset 3 “All

operations except one”. The highest lower bound is 833,278 and is reached

four times. The sets [1,0,1,0,1,1,1] (88) and [1,0,1,1,1,1,1] (96) both reach

this value and are distinguished by the subset 4. The sets [1,1,1,0,1,1,1] (120)

and [1,1,1,1,1,1] (128) also reach this value and are distinguished by the

subset 4. These two pairs of sets differ from the subset 2.

46



3.2. Ranking Method

Figure 3.5.: Values of the lower bound and number of constraints of the ranking
method over different sets S including only the subsets 1, 2, 3 and 4

• Around 590,000 (middle-value cluster): all of the sets have in common that

they do not include the subset 3 and include the subset 2.

• Around 200,000 (low-value cluster): all of the sets have in common that they

do not include the subsets 3 and 2. The lowest lower bound is 181,927 and it

is reached by set [0,0,0,0,0,0,0] (1).

Moreover, Figure 3.4 shows that the total number of constraints does not have an

impact on the lower bound. The discussion over the three clusters does not include

any reference to the last three subsets 5, 6 and 7, which suggests that they do

not influence the lower bound. This is confirmed by Figure 3.5 where we can still

distinguish the three clusters. Figure 3.5 reports the values of the lower bound and

number of constraints of the ranking method over different sets S including only the

subsets 1, 2, 3 and 4. The description of these sets is reported in the table A.5.

In general, we can observe that the last three constraints and the total number of

constraints do not have a huge influence on the lower bound.

47



3.2. Ranking Method

Figure 3.6.: Values of the objective and number of constraints of the ranking method
over different sets S

3.2.2. About the objective

The values of the objective and the number of constraints of the ranking method

over different sets S is shown in Figure 3.6. We observed that whatever the set S

and the number of constraints, the objective value is around 3,000,000. The

minimum objective value is 2,969,619 and is reached by the set [1,0,0,0,1,0,1] (70).

The lower bound of this set is 202,442 which is part of the low-value cluster.

The minimum objective value with a lower bound in the high-value cluster is

3,083,040 and is reached by the set [0,0,1,0,1,1,1] (24). The lower bound value is

831,859.

3.2.3. Conclusion

Regardless of the set applied, the ranking method consistently yields an objective

value of approximately 3 million. The ranking method achieves this objective in

under a second, while simulated annealing takes seven minutes and 40,000

iterations to reach 3,100,000. Therefore, if we have access to an efficient solver of

48



3.3. Branch and Bound Algorithm

linear programs, the ranking method provides a superior solution in significantly

less time than simulated annealing. Furthermore, the influence of the sets is

primarily concentrated on the lower bound, whereby three distinct clusters can be

identified. Additionally, all the observations and conclusions derived from the first

problem instance remain valid for the second and third instances.

3.3. Branch and Bound Algorithm

3.3.1. Selection of the parameters to improve the pruning

Efficient pruning is essential for the success of the branch and bound algorithm.

Pruning occurs when the lower bound of a node exceeds the current best objective.

In this subsection, we explore three parameters that could influence the pruning

process and improve its efficiency: the choice of the set S, the constraint strategy

and the expansion strategy.

Choice of the set S

The selection of the set S could significantly impact the pruning effectiveness. To

enhance pruning, we need to choose a set S that provides a high initial lower bound

without slowing down the tree search. One promising alternative is the set S =

[0, 0, 1, 0, 0, 0, 0] (17). This set is composed of the unique subset “All the operations

except one” subset and exhibits a lower bound in the high-value cluster. Moreover,

using this set in the ranking method has shown promising results in terms of solving

the problem efficiently. Notably, S = [0, 0, 1, 0, 0, 0, 0] (17) requires the minimum

number of constraints while still achieving a high-value cluster lower bound for the

three instances of the problem.

Choice of the constraint strategy

The constraint strategy (see Section 2.5.2) is another parameter that can

significantly influence pruning efficiency in the branch and bound approach

49



3.3. Branch and Bound Algorithm

through the lower bound. The faster the lower bound increases when we add

constraints to the model, the faster we can expect to prune the search.

We present a detailed evaluation of the four different constraint strategies

(CM-FO, CM-LV, LJ and CM-5LV) in terms of their impact on the lower bound

evolution during dive iterations. Two different sets of constraints S ([0,0,1,0,0,0,0]

and [0,0,0,0,0,0,0]) are considered to examine the strategy’s performance under

different scenarios.

Figures 3.7 and 3.8 report the evolution of the lower bound of ten dives, employing

the four different constraint strategies (CM-FO, CM-LV,LJ and CM-2LV) and two

sets S ([0,0,1,0,0,0,0] and [0,0,0,0,0,0,0]).

The dives are executed independently, ensuring that each dive ends when its lower

bound exceeds the best objective discovered during that specific dive. The intention

is to obtain a comprehensive overview of the performances of the dives without

allowing a single dive’s exceptionally low objective to influence the others. In order

to achieve this, we have adjusted the dive technique to enable pruning when the

lower bound equals the best objective of the current dive, rather than maintaining

a shared objective across all dives. This approach ensures that each dive’s progress

remains independent and unaffected by the outcomes of other dives.

Firstly, it is important to note that pruning does not occur at the same objective

value for different constraint strategies. Some strategies are more susceptible to

reaching a good objective value faster during the exploration process.

Among the constraint strategies considered, the CM-FO strategy exhibits the

highest increase in lower bound. After approximately 1300 constraints are added

to the model, the lower bound reaches the upper bound at around 3,500,000.

The CM-LV and CM-5LV strategies have the second highest lower bound increase,

and their lower bounds behave similarly. For the set [0,0,1,0,0,0,0], the lower

bound reaches the upper bound between 2,500,000 and 2,750,000 after adding 2500

constraints. Similarly, for the set [0,0,0,0,0,0,0], the lower bound reaches the upper

bound after adding around 2800 constraints. Although these strategies have a

slower increase rate compared to CM-FO, they still demonstrate significantly

higher growth than the LJ strategy.

50



3.3. Branch and Bound Algorithm

In contrast, the lower bound of the LJ strategy exhibits only a slight increase initially,

with the lower bound remaining under 1 million even after adding 1,000 constraints.

Pruning occurs after adding more than 3,500 constraints, with the lower bound

reaching slightly below 3,500,000. This suggests that the scheduling is significantly

influenced by the critical machine rather than the size of jobs.

In summary, the constraint strategies CM-FO, CM-LV, and CM-5LV are the most

promising strategies in terms of their lower bound growth and then demonstrate

potential for improving the pruning process. Additionally, all the observations and

conclusions derived from the first problem instance remain valid for the second and

third instances.

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure 3.7.: Evolution of the lower bound for 10 dives with the constraint strategies
CM-FO and LJ and two sets S

51



3.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure 3.8.: Evolution of the lower bound for 10 dives with the constraint strategies
CM-LV and CM-5LV and two sets S

Choice of the expansion strategies

In addition to the set S and the constraint strategy, the branch and bound method

can be influenced by a third parameter: the expansion strategy.

We tested a first expansion strategy, the Breadth-First Search (BFS) strategy. With

BFS, we prioritize visiting all nodes at the same depth before moving on to the next

depth. This expansion strategy has the potential to increase the lower bound of the

problem. Increasing this value allows us to decrease the optimality gap, and thus to

determine how close the solution is to the optimal solution.

To gain a comprehensive understanding of the branch and bound method, we ran it

for a duration of 16 hours using two different constraint strategies: Critical Machine

52



3.3. Branch and Bound Algorithm

First Operation (CM-FO) and Critical Machine Largest Violation CM-LV. In both

experiments, we used a schedule that was obtained from the dive approach, as

discussed in Section 3.4. This schedule achieved an objective value of 2,422,458,

which is the most optimal result attained during a two-hour dive approach run. We

started with a new model. The constraints associated with the best schedule found

during the dive approach are not added initially to the model. The initial lower

bound is then only 825,303.

Using CM-FO strategy with the BFS expansion strategy, we visited a total of

123,487 nodes within the 16-hour timeframe. Surprisingly, the global lower bound

was 825,448. On the other hand, with the CM-LV strategy and the BFS expansion

strategy, we visited 111,360 nodes. The global lower bound was 826,459. In both

strategies, no pruning was performed, and we did not encounter a node where

further constraints could not be added.

Despite the extensive exploration of nodes and the considerable number of visited

nodes, none of the approaches was able to achieve an objective value better than

the initial one even after 16 hours. Additionally, the lower bound did not increase

significantly as expected. Its value remained close to the initial lower bound. This

observation can be attributed to the fact that even if 123,487 nodes were visited,

we only reached a depth of 17. This indicates that a maximum of 17 constraints

were added to the model. Figures 3.7 and 3.8 provide a visual representation of

this observation. It highlights the need for a larger number of constraints before

a significant increase in the lower bound becomes apparent. The BFS expansion

strategy was also inconclusive on the second and third instances of the problem,

even though the third is smaller.

When evaluating the breadth-first search (BFS) expansion strategy, it became clear

that this approach does not effectively increase the global lower bound. This leads

us to a simple conclusion: the best node search strategy, which involves expanding

the node with the lowest lower bound, is unlikely to provide more conclusive results

about the lower bound.

Expanding nodes based on the lowest lower bound does not address the underlying

issue of limited lower bound improvement. Instead, it would lead to a similar

exploration pattern as the BFS strategy, potentially resulting in a comparable

53



3.3. Branch and Bound Algorithm

optimization gap. Therefore, it is evident that the choice of the expansion strategy

alone cannot be relied upon to achieve a significant global increase in the lower

bound within the branch and bound method.

Conclusion

Even when applying parameters that favor pruning, it is evident that pruning alone is

not effective in achieving significant improvements in the branch and bound method.

Without pruning, the branch and bound approach essentially reverts to a simple

method of complete exploration. Given the large size of the three instances of

the problem at hand and the use of the breadth-first search expansion strategy, it

becomes apparent that a schedule better than the initial one is not attainable.

3.3.2. Results of the branch and bound method

Taking into account the limitations of pruning and the challenges posed by the

problem’s size, it becomes evident that alternative strategies are needed to improve

the branch and bound method’s performance. In light of this observation, a more

promising approach is to adopt the “greedy search” expansion strategy, with the

hope of achieving better schedules. Additionally, it is worth considering the

constraint strategy that facilitates the most rapid reduction in the upper bound,

independently of the lower bound.

With these considerations in mind, let us now consider the evolution of the upper

bound across multiple dives, using various constraint strategies. Figures 3.9 and

3.10 report the evolution of the upper bound across ten dives, employing the four

different constraint strategies (CM-FO, CM-LV,LJ and CM-2LV) on two sets S
([0,0,1,0,0,0,0] and [0,0,0,0,0,0,0]).

It is notable that all ten dives using the CM-FO and LJ constraint strategies

display an increasing upper bound. In contrast, the two constraint strategies that

show promise are CM-LV and CM-5LV. Their upper bounds show a similar

pattern, initially experiencing a slight decrease, followed by subsequent increases.

However, after the addition of approximately 600 constraints, a significant

54



3.3. Branch and Bound Algorithm

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure 3.9.: Evolution of the upper bound for 10 dives with the constraint strategies
CM-FO and LJ and two sets S

55



3.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure 3.10.: Evolution of the upper bound for 10 dives with the constraint strategies
CM-LV and CM-5LV and two sets S

56



3.3. Branch and Bound Algorithm

reduction is observed, occasionally reaching values as low as 2,500,000.

In our experiments, we further investigated the branch and bound algorithm with

the greedy search expansion strategy, using the CM-LV and CM-5LV constraint

strategies for a duration of two hours. The CM-LV strategy resulted in visiting

17,167 nodes, while the CM-5LV strategy visited 14,954 nodes. However, despite

the extended computational time and exploring various constraint strategies, we

did not find a better schedule than the initial one obtained from the dive approach.

In addition, the same observations about the evolution of the upper bound and

the efficiency of the greedy search strategy can be made for the second and third

instances of the problem.

3.3.3. Conclusion

In this study, we explored the application of the branch and bound algorithm to our

job shop scheduling problem, aiming to find an optimal schedule. We investigated

various aspects of the branch and bound method, including the choice of the set S,

the constraint strategies, and the expansion strategies, with the goal of improving

the pruning process and overall performance.

Regarding the choice of the set S, we identified that selecting the set

S = [0, 0, 1, 0, 0, 0, 0] (17) provided a high initial lower bound while minimizing the

number of constraints required initially in the initial model.

We evaluated four constraint strategies (CM-FO, CM-LV, LJ, and CM-5LV) and

their impact on the pruning process. The CM-FO strategy demonstrated the fastest

pruning, requiring approximately 1300 constraints to initiate pruning. The CM-LV

and CM-5LV strategies exhibited comparable performance, achieving lower bounds

between 2,500,000 and 2,750,000 after adding around 2500-2800 constraints. These

constraint strategies proved promising in increasing the lower bound during the

branch and bound algorithm, unlike the LJ strategy.

We also investigated the impact of the expansion strategies on the branch and bound

method. The Breadth-First Search (BFS) expansion strategy did not result in a

significant global increase in the lower bound, even after exploring a large number

of nodes. This observation suggests that the best node strategy, which selects nodes

57



3.4. Dive

based on the lowest lower bound, is unlikely to yield different results. Therefore, the

expansion strategy alone does not provide a substantial improvement in the lower

bound within the branch and bound method.

Considering the limitations of pruning and the challenges posed by the problem’s

size, alternative strategies are needed to enhance the branch and bound method’s

performance. Although the use of the “greedy search” expansion strategy shows

promise for obtaining better schedules, this strategy was not conclusive.

In conclusion, the branch and bound method with specific parameter choices for

the pruning cannot help achieve good lower bounds. Moreover, choosing specific

parameters that increase the upper bound is also not conclusive. We did not find a

better schedule than the one obtained through alternative approaches such as the

dive approach. Therefore, further investigations and alternative techniques are

required to tackle the scheduling problem effectively and find optimal or

near-optimal schedules. Additionally, all the observations and conclusions derived

from the initial problem instance remain valid for the second and third instances.

3.4. Dive

3.4.1. Selection of the constraint strategies

The application of the dive approach presents a valuable advantage to explore a

significant number of nodes, surpassing the efficiency of the branch and bound

method in terms of node exploration as seen in Section 2.6.2. By executing

multiple dives within a relatively short time span, we increase the probability of

discovering an initial low objective before initiating the branch and bound method.

In our experimental analysis, we conducted a series of dives over a two-hour duration,

focusing on specific constraint strategies that exhibit a decrease in the upper bound.

The evolution of the upper bound of the different constraint strategies ver ten dives

is illustrated in Figures 3.9 and 3.10.

The constraint strategies of interest in this analysis are CM-LV and CM-5LV,

which demonstrate potential for reducing the upper bound.

58



3.4. Dive

(a) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure 3.11.: Evolution of the lower bound and the upper bound for 10 dives with
the constraint strategy CM-2LV and two sets S

Additionally, we explored the constraint strategy specific to the dive approach,

namely CM-2LV. Figure 3.11 reports the evolution of the lower bound and the

upper over ten dives and two sets S, [0,0,1,0,0,0,0] and [0,0,1,0,0,0,0], for that

constraint strategy. We observe the same behavior as the CM-LV constraint

strategy. However, the advantage of the CM-2LV strategy lies in its faster

execution time, as indicated in Table 3.1. This implies that we have the potential

to conduct a greater number of dives within a two-hour timeframe.

Despite observing an increase in the upper bound across the ten dives using the CM-

FO strategy (as shown in Figure 3.9), it is worth noting that this strategy exhibits

the lowest execution time among all the tested approaches (see Table 3.1). Therefore,

when aiming to conduct a higher number of dives within the two-hour timeframe,

59



3.4. Dive

Constraint Time in minutes
strategy S = [0, 0, 1, 0, 0, 0, 0] S = [0, 0, 0, 0, 0, 0, 0]
CM-FO 6:30 2:34

LJ 17:18 12:48
CM-LV 10:12 7:12
CM-5LV 12:57 10:22
CM-2LV 6:36 4:59

Table 3.1.: Time to perform 10 dives with different constraint strategies with 2
different sets S

the CM-FO strategy can prove to be a valuable choice. While the upper bound may

not be ideal, the advantage of reduced execution time allows for a greater exploration

of the solution space, potentially leading to the discovery of more optimal schedules.

Consequently, considering the trade-off between execution time and upper bound

performance, the CM-FO strategy presents an interesting option for maximizing the

number of dives performed within the allotted time frame.

In conclusion, the constraint strategies that are interesting to achieve a low objective

value during the dive approach are CM-FO, CM-LV, CM-5LV, and CM-2LV. And

this, for the three instances of the problem.

3.4.2. Results

In our experimental analysis, we conducted a series of dives over a two-hour duration

with the set S = [0, 0, 1, 0, 0, 0, 0]. The outcomes of these dives are presented in Table

3.2.

Constraint Upper Lower Number of Number of
strategy bound bound constraints added dives
CM-LV 2,430,527 1,966,009 2,014 130
CM-5LV 2,400,752 2,196,444 2,343 106
CM-2LV 2,425,140 2,047,498 2137 210
CM-FO 3,060,762 988,225 59 208

Table 3.2.: Comparison of Upper Bounds, Lower Bounds, Constraints Added, and
Number of Dives for Different Constraint Strategies within a 2-Hour Dive
Approach Run

60



3.4. Dive

We observe that using the CM-FO strategy allowed us to conduct a remarkable total

of 208 dives within the allocated time frame. However, it is important to highlight

that despite the extensive exploration, this strategy yielded the largest upper bound

out of the four constraint strategies tested. While the CM-FO strategy enabled a

significant number of dives, it is evident that its performance in terms of achieving

the best objective was not as favorable as desired. The CM-FO strategy may have

explored a wide range of solutions but struggled to find an optimal or near-optimal

schedule. We have to note that the same conclusion can be done for the second

instance.

However, the application of the CM-FO strategy to the third instance yields a

comparable upper bound of around 123,000, similar to the other constraint strategies

(see Table A.19). Examining the distribution of the best objective values obtained

from 100 dives see A.24d), we observe that none of the dives achieved a value below

126,000. Hence, obtaining a CM-FO result reaching 123,000 is more exceptional.

In contrast, the CM-5LV strategy achieved the lowest upper bound among the tested

strategies. Although it involved a relatively low number of dives (106 dives), it

demonstrated better performance in terms of objective attainment.

The CM-2LV strategy falls in between the CM-FO and CM-5LV strategies, offering

a trade-off between upper bounds and the number of dives performed. It achieved

a moderate upper bound and involved a substantial number of dives (210 dives).

This indicates a balanced exploration strategy that managed to strike a compromise

between thoroughly exploring the search space and achieving a relatively favorable

objective.

In our analysis, we have observed that the constraint strategies CM-LV, CM-5LV,

and CM-2LV, which prioritize the largest violation in selecting constraints, have

consistently achieved relatively low objective values of around 2,400,000. This raises

the question of whether it is necessary to wait for the full two-hour duration to obtain

these favorable objective values.

To investigate this further, we have constructed histograms depicting the

distribution of the best objective values obtained from 100 independent dives for

each of the constraint strategies (CM-LV, CM-5LV, and CM-2LV). The

histograms, shown in Figure 3.12, provide insights into the variability and range of

61



3.4. Dive

objective values attained within this set of dives. The time to perform the 100

dives is reported in Table 3.3.

(a) CM-LV (b) CM-5LV

(c) CM-2LV

Figure 3.12.: Distribution of best objective values from 100 dives for constraint
strategies CM-LV, CM-5LV, and CM-2LV

We observe that for all three constraint strategies, only a small fraction of dives (less

than 5) out of the 100 dives resulted in an objective value lower than 2,500,000. This

suggests that a significant number of dives is necessary to ensure the attainment of

a low objective value. Among the constraint strategies tested, the CM-2LV strategy

emerges as the most promising choice. In 100 dives, it achieves objective values

below 2,500,000 more frequently than the other strategies. Additionally, the CM-

2LV strategy demonstrates faster execution times, allowing for a greater number of

dives within the allotted timeframe.

Importantly, the CM-2LV strategy also demonstrates its efficiency when applied

to the other two instances. It consistently delivers lower objective values more

62



3.4. Dive

Constraint strategy Time (in hours)
CM-LV 1:44:47
CM-5LV 2:02:47
CM-2LV 1:02:39

Table 3.3.: Time to perform 100 dives with constraint strategies CM-LV, CM-5LV,
and CM-2LV

frequently than the alternative strategies over the 100 dives.

In summary, our analysis suggests that a significant number of dives is necessary

to attain a low objective value in the scheduling problem. The CM-2LV constraint

strategy stands out as the preferred option, as it not only achieves desirable

objectives more frequently within 100 dives but also completes the dives in less

time compared to the other strategies.

3.4.3. Conclusion

In conclusion, the dive approach offers a valuable advantage to explore a

significant number of nodes compared to the branch and bound method. By

conducting multiple dives within a relatively short time span, the chances of

discovering an initial low objective value before initiating the branch and bound

method are increased.

In our experimental analysis, we focused on specific constraint strategies that

exhibited a decrease in the upper bound over ten dives. The constraint strategies

of interest were CM-LV, CM-5LV, and CM-2LV.

The CM-2LV strategy, specific to the dive approach, showed promising results. It

achieved objective values lower than 2,500,000 more frequently than the other

strategies within 100 dives. Additionally, the CM-2LV strategy demonstrated

faster execution times, allowing for a greater number of dives within the allocated

two-hour timeframe.

While the CM-5LV strategy achieved the lowest upper bound among the tested

strategies, it involved a relatively lower number of dives. On the other hand, the

CM-FO strategy allowed for a remarkable total of 208 dives within the two-hour

63



3.5. Mix of Methods

duration, but yielded the largest upper bound.

Overall, our analysis indicates that a significant number of dives is necessary to

ensure the attainment of a low objective value in the scheduling problem. The CM-

2LV constraint strategy stands out as the preferred option, as it not only achieves

desirable objectives more frequently within 100 dives but also completes the dives

in less time compared to the other strategies. It strikes a balance between objective

attainment and dive efficiency, making it an effective choice in the dive approach.

3.5. Mix of Methods

The simulated annealing algorithm is an optimization technique that relies on an

initial schedule to guide its search process. The performance of the algorithm heavily

depends on the initial schedule. In the previous section 3.1.1, we investigated the

application of simulated annealing using a specific initial schedule where jobs are

programmed sequentially, one after the other. This initial schedule, starting with a

high initial objective, provides ample room for improvement.

To explore alternative initial schedules, we consider two effective methods: the

ranking method and the dive method. Both of these methods offer initial schedules

that exhibit favorable objective values compared to the sequential approach. The

simulated annealing algorithm could be used to upgrade the initial schedules

obtained from the dive and ranking methods. Using the power of simulated

annealing, we hope to refine these initial schedules and achieve further

improvements in the optimization process.

3.5.1. Simulated annealing after the ranking method

In our first experiment, we used the ranking method to generate an initial schedule.

This schedule was obtained by applying the ranking approach with the set S =

[1, 0, 0, 0, 1, 0, 1] (70), which yielded the lowest objective value among all the tested

sets. The initial value of the objective is 2,984,830.

To optimize the initial schedule, we ran the simulated annealing algorithm with a

64



3.5. Mix of Methods

fixed number of iterations (40,000), an initial temperature of 1000, and a cooling

rate of 0.9999. After 40,000 iterations, the algorithm reached a final temperature of

18.3119.

The test duration lasted approximately 7 minutes, during which we observed a

significant improvement in the objective value. The resulting objective value

obtained was 2,092,161, indicating a reduction from the initial objective value.

This outcome highlights the effectiveness of the simulated annealing algorithm in

optimizing the initial schedule provided by the ranking method.

The summary of the first experimentation on the three instances is reported in

Table 3.4. For the three instances, the simulated annealing algorithm is effective to

decrease the initial objective value obtained from the ranking method.

Instance Set S Initial Final Percentage
objective objective of reduction

1 [1,0,0,0,1,0,1] (70) 2,984,830 2,092,161 29.9%
2 [1,1,0,0,1,1,1] (104) 2,925,468 2,240,060 23.4%
3 [0,0,0,0,0,1,1] (4) 131,632 121,194 7.9 %

Table 3.4.: Objective values of initial and final schedules obtained with the ranking
method and the simulated annealing algorithm

3.5.2. Simulated annealing after the dive method

In our second experiment, we used the dive method to generate an initial schedule.

We initialized the dive method with the schedule obtained from the ranking method

with the set S = [0, 0, 1, 0, 0, 0, 0]. The dive method was then applied using the

CM5LV constraint strategy and the set S = [0, 0, 1, 0, 0, 0, 0]. The value of the

objective of the schedule obtained is 2,400,752.

Similar to the previous experiment, we employed the simulated annealing algorithm

with a fixed number of iterations (40,000), an initial temperature of 1000, and a

cooling rate of 0.9999. The chosen neighborhood for exploration was the first one,

with a window size of 20.

During the approximately 7-minute test duration, we observed a significant

improvement in the objective value. The resulting objective value obtained was

65



3.5. Mix of Methods

2,009,964, which demonstrated a decrease compared to the initial objective value.

This outcome emphasizes the effectiveness of the simulated annealing algorithm in

optimizing the initial schedule provided by the dive method.

The summary of the second experimentation on the three instances is reported in

Table 3.5. For the three instances, the simulated annealing algorithm is effective in

reducing the initial objective value obtained from the dive approach, although the

percentage of reduction for the third instance is very small.

Instance Constraint Initial Final Percentage
strategy objective objective of reduction

1 CM-5LV 2,400,752 2,009,964 16.3%
2 CM-2LV 2,540,168 2,163,092 14.8%
3 CM-LV 122,988 119,685 2.7%

Table 3.5.: Objective values of initial and final schedules obtained with the dive
method and the simulated annealing algorithm

The second experiment was repeated using the dive approach to generate an initial

schedule. But this time, the initial schedule selected has an objective value that

is not the lowest obtained during two hours of dives. The summary of the third

experiment for the three instances is presented in Table 3.6.

The simulated annealing algorithm effectively improves the initial schedules

generated by the dive method for all instances in this third experiment. However,

starting from a schedule with a higher objective value does not allow us to achieve

objective values as low as those obtained in the second experiment. For the first

two instances, although the objective values obtained in the second experiment

were slightly higher compared to the initial objectives of the first experiment, they

were still relatively close. For the third instance, the objective value obtained in

the third experiment was even higher than the initial objective value of the second

experiment.

3.5.3. Conclusion

In this section, we explored the combination of the simulated annealing algorithm

with alternative initial scheduling methods, namely the ranking method and the

66



3.5. Mix of Methods

Instance Constraint Initial Final Percentage
strategy objective objective of reduction

1 CM-5LV 2,740,849 2,024,809 26.1 %
2 CM-2LV 2,680,832 2,177,864 18.7 %
3 CM-LV 138,058 123,012 10.9 %

Table 3.6.: Objective values of initial and final schedules obtained with the dive
method and the simulated annealing algorithm

dive method.

By using the ranking method, we obtained initial schedules with favorable objective

values compared to the sequential approach. The simulated annealing algorithm was

then used to further optimize these initial schedules further. The results show that

the simulated annealing algorithm effectively improved the initial schedules obtained

from the ranking method, resulting in significant reductions in the objective values

for all tested instances.

Similarly, we applied the dive method to generate initial schedules and took the

best ones. The simulated annealing algorithm was used to refine these initial

schedules, resulting in reductions in objective values. However, when the simulated

annealing algorithm is applied starting from a schedule with a higher objective

value, the objective values obtained were not as low as those obtained in the

previous experiment.

In the end, the combination of the simulated annealing algorithm with the best

schedule of the dive method is the most promising strategy to achieve the lowest

objectives for our three instances.

Overall, the combination of simulated annealing with alternative initial scheduling

methods proved to be effective in improving the initial schedules and achieving better

optimization results than using either method alone. These results demonstrate

the potential of simulated annealing as a valuable tool for refining and improving

schedules with good initial objectives obtained from different methods, leading to

improved optimization results.

67



4. Conclusion

4.1. Brief Summary and Conclusion

This thesis addresses the challenges posed by large-scale job shop scheduling

problems. The main objective is to explore the performance and limitations of

established optimization techniques, namely simulated annealing, branch and

bound, and dives, when applied to industrial-size problems.

The research makes use of the ranking method, an approach that uses linear

programming relaxation to generate initial schedules with low objective values.

The ranking method consistently outperforms the simulated annealing algorithm

in terms of speed and objective value, achieving remarkable results within seconds.

Additionally, the dive approach is proposed as an alternative to the branch and

bound method. By maintaining the same model within each dive and introducing

random order constraints, the dive approach enables deeper exploration of the search

space. It outperforms the branch and bound method and produces schedules with

low objective in less than 100 dives.

Comparative analyses between the simulated annealing algorithm, ranking method,

and dive approach highlight the benefits of combining these methods. The simulated

annealing algorithm enhances the initial schedules obtained from the ranking method

and dive approach, leading to further optimization and improved objective values.

In conclusion, this thesis demonstrates the limited effectiveness of the branch and

bound method for large-scale job shop problems. The ranking method, dive

approach, and simulated annealing algorithm provide valuable tools for generating

high-quality initial schedules and refining them to achieve optimal results.

68



4.2. Future Work

4.2. Future Work

Following this thesis, a promising avenue for future research lies in improving the

computation of the lower bound within the context of the branch and bound

algorithm. The lower bound serves as a critical component in pruning search

branches and optimizing the algorithm’s efficiency. Enhancing the accuracy and

efficiency of lower bound computations can lead to more effective pruning

strategies and, consequently, faster convergence toward optimal or near-optimal

schedules.

Moreover, alternative perspectives can be adopted when approaching the

scheduling problem. Future research can explore the application of constraint

programming as an alternative approach to scheduling optimization in TOOWHE.

Constraint programming offers a declarative modeling framework that allows for

the representation of complex constraints and their relationships. By formulating

the scheduling problem using constraints and using specialized constraint solvers,

it becomes possible to systematically explore the solution space and find

high-quality schedules. Testing constraint programming in the context of

TOOWHE scheduling can provide insights into its applicability, scalability, and

performance compared to other optimization algorithms. This involves formulating

the scheduling problem using constraints that capture the specific requirements

and constraints of TOOWHE, such as job dependencies, resource limitations, and

client orders.

Given the increasing prominence of artificial intelligence, another perspective is to

explore reinforcement learning. Reinforcement learning algorithms excel in

learning optimal decision-making policies through interactions with an

environment. In the context of TOOWHE, where schedules could be updated

dynamically as new jobs arrive based on client orders, reinforcement learning can

offer a flexible and adaptive approach to scheduling. By formulating the scheduling

problem as a Markov decision process (MDP) and employing reinforcement

learning techniques, such as Q-learning or deep reinforcement learning, it becomes

possible to train an agent to make scheduling decisions based on the current state

of the system. The agent can learn to balance various objectives, such as

minimizing makespan, maximizing resource utilization, or meeting client deadlines,

69

https://toowhe.com/
https://toowhe.com/
https://toowhe.com/
https://toowhe.com/


4.2. Future Work

while adapting to changing conditions in real-time.

Exploring the integration of reinforcement learning in TOOWHE can shed light

on the feasibility, effectiveness, and advantages of using this approach for dynamic

scheduling. It opens up possibilities for developing intelligent scheduling algorithms

that can continuously adapt and optimize schedules as new jobs arrive, leading to

improved efficiency and customer satisfaction.

In conclusion, exploring these potential future research directions might contribute

to the field of scheduling optimization within the context of TOOWHE. By

focusing on improving the computation of the lower bound in the branch and

bound algorithm, investigating the application of constraint programming, and

considering the integration of reinforcement learning, researchers can enhance

scheduling practices and uncover novel approaches for optimizing schedules.

70

https://toowhe.com/
https://toowhe.com/


List of Figures

1.1 Extract of a Gantt chart from TOOWHE . . . . . . . . . . . . . . . 3

1.2 Gantt chart of a job shop problem . . . . . . . . . . . . . . . . . . . 5

2.1 Illustration of a precedence constraint of the job Ji . . . . . . . . . . 15

2.2 Illustration of a constraint on the capacity of the machine m . . . . 16

3.1 Mean objective value over 10 tests for different window sizes w using

the first neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Mean objective value over 10 tests for different window sizes w using

the second neighborhood . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Mean objective value over 10 tests for different window sizes w using

the third neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Values of the lower bound and number of constraints of the ranking

method over different sets S . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Values of the lower bound and number of constraints of the ranking

method over different sets S including only the subsets 1, 2, 3 and 4 47

3.6 Values of the objective and number of constraints of the ranking

method over different sets S . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Evolution of the lower bound for 10 dives with the constraint

strategies CM-FO and LJ and two sets S . . . . . . . . . . . . . . . 51

3.8 Evolution of the lower bound for 10 dives with the constraint

strategies CM-LV and CM-5LV and two sets S . . . . . . . . . . . . 52

3.9 Evolution of the upper bound for 10 dives with the constraint

strategies CM-FO and LJ and two sets S . . . . . . . . . . . . . . . 55

3.10 Evolution of the upper bound for 10 dives with the constraint

strategies CM-LV and CM-5LV and two sets S . . . . . . . . . . . . 56

71

https://toowhe.com/


List of Figures

3.11 Evolution of the lower bound and the upper bound for 10 dives with

the constraint strategy CM-2LV and two sets S . . . . . . . . . . . . 59

3.12 Distribution of best objective values from 100 dives for constraint

strategies CM-LV, CM-5LV, and CM-2LV . . . . . . . . . . . . . . . 62

A.1 Instance 2: Mean objective value over 10 tests for different window

sizes w using the first neighborhood . . . . . . . . . . . . . . . . . . 81

A.2 Instance 3: Mean objective value over 10 tests for different window

sizes w using the first neighborhood . . . . . . . . . . . . . . . . . . 82

A.3 Instance 2: Mean objective value over 10 tests for different window

sizes w using the second neighborhood . . . . . . . . . . . . . . . . . 82

A.4 Instance 3: Mean objective value over 10 tests for different window

sizes w using the second neighborhood . . . . . . . . . . . . . . . . . 83

A.5 Instance 2: Mean objective value over 10 tests for different window

sizes w using the third neighborhood . . . . . . . . . . . . . . . . . . 83

A.6 Instance 3: Mean objective value over 10 tests for different window

sizes w using the third neighborhood . . . . . . . . . . . . . . . . . . 84

A.7 Instance 2: Values of the lower bound and number of constraints of

the ranking method over different sets S . . . . . . . . . . . . . . . . 100

A.8 Instance 2: Values of the lower bound and number of constraints of

the ranking method over different sets S including only the subsets

1, 2, 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.9 Instance 3: Values of the lower bound and number of constraints of

the ranking method over different sets S . . . . . . . . . . . . . . . . 101

A.10 Instance 3: Values of the lower bound and number of constraints of

the ranking method over different sets S including only the subsets

1, 2, 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.11 Instance 2: Values of the objective and number of constraints of the

ranking method over different sets S . . . . . . . . . . . . . . . . . . 102

A.12 Instance 3: Values of the objective and number of constraints of the

ranking method over different sets S . . . . . . . . . . . . . . . . . . 102

A.13 Instance 2: Evolution of the lower bound for 10 dives with the

constraint strategies CM-FO and LJ and two sets S . . . . . . . . . 103

72



A.14 Instance 2: Evolution of the lower bound for 10 dives with the

constraint strategies CM-LV and CM-5LV and two sets S . . . . . . 104

A.15 Instance 3: Evolution of the lower bound for 10 dives with the

constraint strategies CM-FO and LJ and two sets S . . . . . . . . . 105

A.16 Instance 3: Evolution of the lower bound for 10 dives with the

constraint strategies CM-LV and CM-5LV and two sets S . . . . . . 106

A.17 Instance 2: Evolution of the upper bound for 10 dives with the

constraint strategies CM-FO and LJ and two sets S . . . . . . . . . 107

A.18 Instance 2: Evolution of the upper bound for 10 dives with the

constraint strategies CM-LV and CM-5LV and two sets S . . . . . . 108

A.19 Instance 3: Evolution of the upper bound for 10 dives with the

constraint strategies CM-FO and LJ and two sets S . . . . . . . . . 109

A.20 Instance 3: Evolution of the upper bound for 10 dives with the

constraint strategies CM-LV and CM-5LV and two sets S . . . . . . 110

A.21 Instance 2: Evolution of the lower bound and the upper bound for

10 dives for the constraint strategy CM-2LV and two sets S . . . . . 111

A.22 Instance 3: Evolution of the lower bound and the upper bound for

10 dives for the constraint strategy CM-2LV and two sets S . . . . . 112

A.23 Instance 2: Distribution of best objective values from 100 dives for

constraint strategies CM-LV, CM-5LV, and CM-2LV . . . . . . . . . 114

A.24 Instance 3: Distribution of best objective values from 100 dives for

constraint strategies CM-LV, CM-5LV, CM-2LV and CM-FO . . . . 115

73



List of Tables

1.1 Problem Sizes for Three Instances: Number of Jobs, Operations

(Including Operations on Machines with Infinite Capacity), and

Machines (Including Machines with Infinite Capacity) . . . . . . . . . 12

2.1 Comparison of Execution Time for the 2 Methods to Get the

Completion Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Total time to run the algorithm, sum of the times of each node to

optimize the model and sum of the times of each node to create and

optimize the model, for the branch and bound algorithm for 10 nodes

for the different constraint and expansion strategies and two sets S,

with and without the warm start technique. . . . . . . . . . . . . . . 34

2.3 Comparison of processing times for dive and branch and bound

methods for the four constraint strategies and three sets S. . . . . . . 37

3.1 Time to perform 10 dives with different constraint strategies with 2

different sets S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Comparison of Upper Bounds, Lower Bounds, Constraints Added,

and Number of Dives for Different Constraint Strategies within a 2-

Hour Dive Approach Run . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Time to perform 100 dives with constraint strategies CM-LV, CM-

5LV, and CM-2LV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Objective values of initial and final schedules obtained with the

ranking method and the simulated annealing algorithm . . . . . . . . 65

3.5 Objective values of initial and final schedules obtained with the dive

method and the simulated annealing algorithm . . . . . . . . . . . . . 66

3.6 Objective values of initial and final schedules obtained with the dive

method and the simulated annealing algorithm . . . . . . . . . . . . . 67

74



List of Tables

A.1 Instance 1: Study of the effect of the set S on the ranking method -

Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Instance 1: Study of the effect of the set S on the ranking method -

Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 Instance 1: Study of the effect of the set S on the ranking method -

Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.4 Instance 1: Study of the effect of the set S on the ranking method -

Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.5 Instance 1: Study of the effect of the set S on the ranking method

with only the subset 1, 2, 3 and 4. . . . . . . . . . . . . . . . . . . . . 89

A.6 Instance 2: Study of the effect of the set S on the ranking method -

Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.7 Instance 2: Study of the effect of the set S on the ranking method -

Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.8 Instance 2: Study of the effect of the set S on the ranking method -

Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.9 Instance 2: Study of the effect of the set S on the ranking method -

Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.10 Instance 2: Study of the effect of the set S on the ranking method

with only the subset 1, 2, 3 and 4. . . . . . . . . . . . . . . . . . . . . 94

A.11 Instance 3: Study of the effect of the set S on the ranking method -

Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.12 Instance 3: Study of the effect of the set S on the ranking method -

Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.13 Instance 3: Study of the effect of the set S on the ranking method -

Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.14 Instance 3: Study of the effect of the set S on the ranking method -

Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.15 Instance 3: Study of the effect of the set S on the ranking method

with only the subset 1, 2, 3 and 4. . . . . . . . . . . . . . . . . . . . . 99

A.16 Instance 2: Time to perform 10 dives with different constraint

strategies with 2 different sets S . . . . . . . . . . . . . . . . . . . . . 112

75



A.17 Instance 3: Time to perform 10 dives with different constraint

strategies with 2 different sets S . . . . . . . . . . . . . . . . . . . . . 113

A.18 instance 2: Comparison of Upper Bounds, Lower Bounds,

Constraints Added, and Number of Dives for Different Constraint

Strategies within a 2-Hour Dive Approach Run . . . . . . . . . . . . 113

A.19 instance 3: Comparison of Upper Bounds, Lower Bounds,

Constraints Added, and Number of Dives for Different Constraint

Strategies within a 2-Hour Dive Approach Run . . . . . . . . . . . . 113

A.20 Instance 2: Time to perform 100 dives with constraint strategies CM-

LV, CM-5LV, and CM-2LV . . . . . . . . . . . . . . . . . . . . . . . . 114

A.21 Instance 3: Time to perform 100 dives with constraint strategies CM-

LV, CM-5LV, CM-2LV and CM-FO . . . . . . . . . . . . . . . . . . . 115

76



Bibliography

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job

shop scheduling. Management Science, 34:391–401, 1988.

[2] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck

procedure for job shop scheduling. Management science, 34(3):391–401, 1988.

[3] David Applegate and William Cook. A computational study of the job-shop

scheduling problem. ORSA Journal on computing, 3(2):149–156, 1991.

[4] Arash Asadpour. An analysis of the weighted round robin rule in an online

environment. Technical report, Working Paper, IOMS Department, Stern

School of Business, New York University, 2015.

[5] Kenneth R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.

[6] Dimitris Bertsimas and Robert Weismantel. Optimization over intergers.

Dynamic Ideas, 2005.

[7] APG Brown and ZA Lomnicki. Some applications of the “branch-and-bound”

algorithm to the machine scheduling problem. Journal of the Operational

Research Society, 17(2):173–186, 1966.

[8] Peter Brucker and Bernd Jurisch. A new lower bound for the job-shop

scheduling problem. European Journal of Operational Research, 64(2):156–167,

1993.

[9] Xiaoqiang Q. Cai, Xianyi Wu, and Xian Zhou. Optimal Stochastic Scheduling,

volume 207 of Operations Research and Management Science. F.S. Hillier, 2014.

[10] Jacques Carlier. The one-machine sequencing problem. European Journal of

Operational Research, 11:42–47, 1982.

77



Bibliography

[11] Jacques Carlier and Eric Pinson. An algorithm for solving job shop problem.

Management Science, 35:164–176, 02 1989.

[12] Edward G. Coffman. Computer and Job Shop Scheduling Theory. John Wiley,

1976.

[13] Giacomo Da Col and Erich Teppan. Industrial-size job shop scheduling with

constraint programming. Operations Research Perspectives, 9:100249, 08 2022.

[14] Mauro Dell’Amico and Marco Trubian. Applying tabu search to the job-shop

scheduling problem. Annals of Operations Research, 41:231–252, 09 1993.

[15] Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop

scheduling problems. European Journal of Operational Research, 109(1):137–

141, 1998.

[16] H. Fisher and G.L. Thompson. Probabilistic Learning Combinations of Local

Job-Shop Scheduling Rules. Prentice-Hall, 1963.

[17] Rudolf Fleischer and Michaela Wahl. On-line scheduling revisited. Journal of

Scheduling, 3(6):343–355, 2000.

[18] Jose Framinan, Rainer Leisten, and Rubén Garćıa. Manufacturing Scheduling

Systems - An Integrated View on Models, Methods and Tools. Springer, 11 2014.

[19] Simon French. Sequencing and Scheduling: an Introduction to the Mathematics

of the Job Shop. Horwood, 1982.

[20] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[21] Randolph Hall. Handbook of Healthcare System Scheduling, volume 168 of

Operations Research and Management Science. F.S. Hillier, 2012.

[22] Scott Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated

annealing. Science (New York, N.Y.), 220:671–80, 06 1983.

[23] Stephen Lawrence. Resouce constrained project scheduling: An experimental

investigation of heuristic scheduling techniques (supplement). Graduate School

of Industrial Administration, Carnegie-Mellon University, 1984.

[24] Kangbok Lee, Joseph Y.-T. Leung, and Michael L. Pinedo. Makespan

minimization in online scheduling with machine eligibility. 4OR, 8(4):331–364,

78



Bibliography

2010.

[25] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[26] Nicole Megow, Marc Uetz, and Tjark Vredeveld. Models and algorithms for

stochastic online scheduling. Mathematics of Operations Research, 31(3):513–

525, 2006.

[27] John F Muth and Gerald L Thompson. Industrial scheduling. Prentice-Hall,

1963.

[28] E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job shop

problem. Management Science, 42(6):797–813, 1996.

[29] Eugeniusz Nowicki and Czes law Smutnicki. An advanced tabu search algorithm

for the job shop problem. Journal of Scheduling, 8:145–159, 04 2005.

[30] Michael Pinedo and Xiuli Chao. Operations Scheduling with Applications

in Manufacturing and Services. Operations Scheduling with Applications in

Manufacturing and Services. Irwin/McGraw-Hill, 1999.

[31] Michael L Pinedo. Scheduling: Theory, Algorithms, And Systems. Springer,

2015.

[32] Maurice Queyranne. Structure of a simple scheduling polyhedron. Mathematical

Programming, 58(1-3):263–285, 1993.

[33] R.A. Rutenbar. Simulated annealing algorithms: an overview. IEEE Circuits

and Devices Magazine, 5(1):19–26, 1989.

[34] Subhash C. Sarin, Balaji Nagarajan, and Lingrui Liao. Stochastic Scheduling:

Expectation-Variance Analysis of a Schedule. Cambridge University Press, 2010.

[35] Andreas S. Schulz. Scheduling to minimize total weighted completion time:

Performance guarantees of lp-based heuristics and lower bounds. In William H.

Cunningham, S. Thomas McCormick, and Maurice Queyranne, editors, Integer

Programming and Combinatorial Optimization, pages 301–315, 1996.

[36] Yuri Sotskov, Nadezhda Sotskova, Tsung-Chyan Lai, and Frank Werner.

Scheduling under Uncertainty: Theory and Algorithms. Belarusian Science,

79



Bibliography

2010.

[37] Yuri Sotskov and Frank Werner. Sequencing and Scheduling with Inaccurate

Data. 01 2014.

[38] Robert H Storer, S David Wu, and Renzo Vaccari. New search spaces for

sequencing problems with application to job shop scheduling. Management

science, 38(10):1495–1509, 1992.

[39] ED. Taillard. Parallel taboo search techniques for the job shop scheduling.

ORSA Journal on Computing, 6(2):108–17, 1994.

[40] Eric Taillard. Benchmarks for basic scheduling problems. european journal of

operational research, 64(2):278–285, 1993.

[41] Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-

scale job-shop problems. In PPSN, volume 2, pages 281–290, 1992.

[42] ChaoYong Zhang, PeiGen Li, ZaiLin Guan, and YunQing Rao. A tabu search

algorithm with a new neighborhood structure for the job shop scheduling

problem. Computers & Operations Research, 34(11):3229–3242, 2007.

80



A. Appendix

A.1. Simulated Annealing

A.1.1. First neighborhood

Figure A.1.: Instance 2: Mean objective value over 10 tests for different window
sizes w using the first neighborhood

81



A.1. Simulated Annealing

Figure A.2.: Instance 3: Mean objective value over 10 tests for different window
sizes w using the first neighborhood

A.1.2. Second neighborhood

Figure A.3.: Instance 2: Mean objective value over 10 tests for different window
sizes w using the second neighborhood

82



A.1. Simulated Annealing

Figure A.4.: Instance 3: Mean objective value over 10 tests for different window
sizes w using the second neighborhood

A.1.3. Third neighborhood

Figure A.5.: Instance 2: Mean objective value over 10 tests for different window
sizes w using the third neighborhood

83



A.1. Simulated Annealing

Figure A.6.: Instance 3: Mean objective value over 10 tests for different window
sizes w using the third neighborhood

84



A.2. Ranking method

A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0, 0, 0, 0] 181927 3279809 0.0576 0
2 [0, 0, 0, 0, 0, 0, 1] 200244 3011397 0.0674 1544
3 [0, 0, 0, 0, 0, 1, 0] 193710 3083911 0.0668 1572
4 [0, 0, 0, 0, 0, 1, 1] 200467 2975769 0.0872 3116
5 [0, 0, 0, 0, 1, 0, 0] 189347 3203426 0.0716 1600
6 [0, 0, 0, 0, 1, 0, 1] 200699 2996660 0.084 3144
7 [0, 0, 0, 0, 1, 1, 0] 194292 3118612 0.0716 3172
8 [0, 0, 0, 0, 1, 1, 1] 200790 2986312 0.1036 4716
9 [0, 0, 0, 1, 0, 0, 0] 185748 3212681 0.0577 1631
10 [0, 0, 0, 1, 0, 0, 1] 200627 3011488 0.072 3175
11 [0, 0, 0, 1, 0, 1, 0] 194272 3094417 0.0801 3203
12 [0, 0, 0, 1, 0, 1, 1] 200791 3005745 0.0951 4747
13 [0, 0, 0, 1, 1, 0, 0] 189907 3231182 0.0829 3231
14 [0, 0, 0, 1, 1, 0, 1] 200950 2980719 0.1132 4775
15 [0, 0, 0, 1, 1, 1, 0] 194699 3120312 0.1061 4803
16 [0, 0, 0, 1, 1, 1, 1] 201025 3023492 0.1224 6347
17 [0, 0, 1, 0, 0, 0, 0] 825303 3310618 0.1852 1665
18 [0, 0, 1, 0, 0, 0, 1] 831428 3106474 0.2565 3209
19 [0, 0, 1, 0, 0, 1, 0] 829394 3140986 0.2364 3237
20 [0, 0, 1, 0, 0, 1, 1] 831631 3085004 0.2642 4781
21 [0, 0, 1, 0, 1, 0, 0] 828167 3272964 0.2368 3265
22 [0, 0, 1, 0, 1, 0, 1] 831753 3086324 0.2748 4809
23 [0, 0, 1, 0, 1, 1, 0] 829734 3148876 0.2677 4837
24 [0, 0, 1, 0, 1, 1, 1] 831859 3083040 0.2758 6381
25 [0, 0, 1, 1, 0, 0, 0] 826959 3281326 0.1997 3296
26 [0, 0, 1, 1, 0, 0, 1] 831807 3124380 0.2717 4840
27 [0, 0, 1, 1, 0, 1, 0] 829813 3166520 0.2646 4868
28 [0, 0, 1, 1, 0, 1, 1] 831949 3106081 0.2962 6412
29 [0, 0, 1, 1, 1, 0, 0] 828664 3297546 0.2733 4896
30 [0, 0, 1, 1, 1, 0, 1] 832033 3116899 0.2934 6440
31 [0, 0, 1, 1, 1, 1, 0] 830069 3166210 0.2828 6468
32 [0, 0, 1, 1, 1, 1, 1] 832110 3107793 0.3092 8012

Table A.1.: Instance 1: Study of the effect of the set S on the ranking method - Part
1

85



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

33 [0, 1, 0, 0, 0, 0, 0] 578794 3314103 0.0568 34
34 [0, 1, 0, 0, 0, 0, 1] 588741 3004586 0.0694 1578
35 [0, 1, 0, 0, 0, 1, 0] 585313 3119377 0.0716 1606
36 [0, 1, 0, 0, 0, 1, 1] 589064 3016931 0.0904 3150
37 [0, 1, 0, 0, 1, 0, 0] 583114 3248747 0.0653 1634
38 [0, 1, 0, 0, 1, 0, 1] 589148 3016893 0.0955 3178
39 [0, 1, 0, 0, 1, 1, 0] 585727 3144809 0.0858 3206
40 [0, 1, 0, 0, 1, 1, 1] 589330 3035357 0.098 4750
41 [0, 1, 0, 1, 0, 0, 0] 581034 3240448 0.07 1665
42 [0, 1, 0, 1, 0, 0, 1] 589143 3027669 0.0864 3209
43 [0, 1, 0, 1, 0, 1, 0] 585777 3138813 0.0935 3237
44 [0, 1, 0, 1, 0, 1, 1] 589381 3054901 0.1014 4781
45 [0, 1, 0, 1, 1, 0, 0] 583626 3276595 0.0801 3265
46 [0, 1, 0, 1, 1, 0, 1] 589427 3042301 0.101 4809
47 [0, 1, 0, 1, 1, 1, 0] 586084 3144104 0.1081 4837
48 [0, 1, 0, 1, 1, 1, 1] 589572 3063484 0.1123 6381
49 [0, 1, 1, 0, 0, 0, 0] 825305 3310618 0.1816 1699
50 [0, 1, 1, 0, 0, 0, 1] 831428 3106474 0.2383 3243
51 [0, 1, 1, 0, 0, 1, 0] 829394 3140986 0.2538 3271
52 [0, 1, 1, 0, 0, 1, 1] 831631 3085175 0.2714 4815
53 [0, 1, 1, 0, 1, 0, 0] 828167 3272710 0.2403 3299
54 [0, 1, 1, 0, 1, 0, 1] 831753 3093080 0.2695 4843
55 [0, 1, 1, 0, 1, 1, 0] 829735 3145579 0.2702 4871
56 [0, 1, 1, 0, 1, 1, 1] 831859 3086587 0.2856 6415
57 [0, 1, 1, 1, 0, 0, 0] 826961 3281326 0.2039 3330
58 [0, 1, 1, 1, 0, 0, 1] 831807 3124380 0.2585 4874
59 [0, 1, 1, 1, 0, 1, 0] 829813 3162888 0.261 4902
60 [0, 1, 1, 1, 0, 1, 1] 831949 3107589 0.2909 6446
61 [0, 1, 1, 1, 1, 0, 0] 828664 3300143 0.2621 4930
62 [0, 1, 1, 1, 1, 0, 1] 832033 3116899 0.2848 6474
63 [0, 1, 1, 1, 1, 1, 0] 830069 3162430 0.2988 6502
64 [0, 1, 1, 1, 1, 1, 1] 832110 3107793 0.3168 8046

Table A.2.: Instance 1: Study of the effect of the set S on the ranking method - Part
2

86



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

65 [1, 0, 0, 0, 0, 0, 0] 190646 3167833 0.9699 91417
66 [1, 0, 0, 0, 0, 0, 1] 202189 3006167 0.9962 92961
67 [1, 0, 0, 0, 0, 1, 0] 196635 3164387 1.0019 92989
68 [1, 0, 0, 0, 0, 1, 1] 202328 2977206 1.0135 94533
69 [1, 0, 0, 0, 1, 0, 0] 193222 3132126 0.9833 93017
70 [1, 0, 0, 0, 1, 0, 1] 202442 2969619 0.9988 94561
71 [1, 0, 0, 0, 1, 1, 0] 196992 3121287 0.988 94589
72 [1, 0, 0, 0, 1, 1, 1] 202505 2973191 1.0479 96133
73 [1, 0, 0, 1, 0, 0, 0] 190646 3167926 0.973 93048
74 [1, 0, 0, 1, 0, 0, 1] 202189 2991483 1.0146 94592
75 [1, 0, 0, 1, 0, 1, 0] 196635 3164455 1.0263 94620
76 [1, 0, 0, 1, 0, 1, 1] 202328 2978460 1.0628 96164
77 [1, 0, 0, 1, 1, 0, 0] 193222 3158710 1.0384 94648
78 [1, 0, 0, 1, 1, 0, 1] 202442 2974039 1.0513 96192
79 [1, 0, 0, 1, 1, 1, 0] 196992 3125697 1.0094 96220
80 [1, 0, 0, 1, 1, 1, 1] 202505 2979043 1.0112 97764
81 [1, 0, 1, 0, 0, 0, 0] 829153 3253629 1.1677 93082
82 [1, 0, 1, 0, 0, 0, 1] 833063 3109814 1.1802 94626
83 [1, 0, 1, 0, 0, 1, 0] 831247 3212501 1.1816 94654
84 [1, 0, 1, 0, 0, 1, 1] 833174 3095569 1.2177 96198
85 [1, 0, 1, 0, 1, 0, 0] 830349 3251148 1.1864 94682
86 [1, 0, 1, 0, 1, 0, 1] 833222 3096808 1.2211 96226
87 [1, 0, 1, 0, 1, 1, 0] 831465 3182889 1.2084 96254
88 [1, 0, 1, 0, 1, 1, 1] 833278 3109570 1.2412 97798
89 [1, 0, 1, 1, 0, 0, 0] 829153 3244039 1.1835 94713
90 [1, 0, 1, 1, 0, 0, 1] 833063 3125863 1.1889 96257
91 [1, 0, 1, 1, 0, 1, 0] 831247 3196506 1.2058 96285
92 [1, 0, 1, 1, 0, 1, 1] 833174 3094303 1.2066 97829
93 [1, 0, 1, 1, 1, 0, 0] 830349 3255099 1.1946 96313
94 [1, 0, 1, 1, 1, 0, 1] 833222 3098883 1.2588 97857
95 [1, 0, 1, 1, 1, 1, 0] 831465 3184476 1.2082 97885
96 [1, 0, 1, 1, 1, 1, 1] 833278 3093070 1.2275 99429

Table A.3.: Instance 1: Study of the effect of the set S on the ranking method - Part
3

87



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

97 [1, 1, 0, 0, 0, 0, 0] 584159 3193486 0.976 91451
98 [1, 1, 0, 0, 0, 0, 1] 590550 3003782 1.0529 92995
99 [1, 1, 0, 0, 0, 1, 0] 587488 3158041 1.0109 93023
100 [1, 1, 0, 0, 0, 1, 1] 590732 3013860 1.0199 94567
101 [1, 1, 0, 0, 1, 0, 0] 585836 3183831 0.9571 93051
102 [1, 1, 0, 0, 1, 0, 1] 590749 2996877 1.0053 94595
103 [1, 1, 0, 0, 1, 1, 0] 587753 3160657 0.9993 94623
104 [1, 1, 0, 0, 1, 1, 1] 590854 3033677 1.0251 96167
105 [1, 1, 0, 1, 0, 0, 0] 584159 3193410 0.9658 93082
106 [1, 1, 0, 1, 0, 0, 1] 590550 3012728 1.0012 94626
107 [1, 1, 0, 1, 0, 1, 0] 587488 3159881 0.9937 94654
108 [1, 1, 0, 1, 0, 1, 1] 590732 3008064 1.0149 96198
109 [1, 1, 0, 1, 1, 0, 0] 585836 3181848 1.0101 94682
110 [1, 1, 0, 1, 1, 0, 1] 590749 2991563 1.0327 96226
111 [1, 1, 0, 1, 1, 1, 0] 587753 3137638 1.0182 96254
112 [1, 1, 0, 1, 1, 1, 1] 590854 3022448 1.0314 97798
113 [1, 1, 1, 0, 0, 0, 0] 829155 3253597 1.1521 93116
114 [1, 1, 1, 0, 0, 0, 1] 833063 3121792 1.1972 94660
115 [1, 1, 1, 0, 0, 1, 0] 831247 3193084 1.166 94688
116 [1, 1, 1, 0, 0, 1, 1] 833174 3088489 1.1943 96232
117 [1, 1, 1, 0, 1, 0, 0] 830351 3250560 1.1664 94716
118 [1, 1, 1, 0, 1, 0, 1] 833222 3096989 1.2104 96260
119 [1, 1, 1, 0, 1, 1, 0] 831465 3186501 1.1835 96288
120 [1, 1, 1, 0, 1, 1, 1] 833278 3100603 1.2032 97832
121 [1, 1, 1, 1, 0, 0, 0] 829155 3253581 1.1697 94747
122 [1, 1, 1, 1, 0, 0, 1] 833063 3131683 1.1978 96291
123 [1, 1, 1, 1, 0, 1, 0] 831247 3208796 1.193 96319
124 [1, 1, 1, 1, 0, 1, 1] 833174 3110636 1.1977 97863
125 [1, 1, 1, 1, 1, 0, 0] 830351 3255234 1.1731 96347
126 [1, 1, 1, 1, 1, 0, 1] 833222 3114926 1.2192 97891
127 [1, 1, 1, 1, 1, 1, 0] 831465 3197513 1.1778 97919
128 [1, 1, 1, 1, 1, 1, 1] 833278 3111996 1.2166 99463

Table A.4.: Instance 1: Study of the effect of the set S on the ranking method - Part
4

88



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0] 181927 3279809 0.063 0
2 [0, 0, 0, 1] 185748 3212681 0.0638 1631
3 [0, 0, 1, 0] 825303 3310618 0.1903 1665
4 [0, 0, 1, 1] 826959 3281326 0.2299 3296
5 [0, 1, 0, 0] 578794 3314103 0.0535 34
6 [0, 1, 0, 1] 581034 3240448 0.0759 1665
7 [0, 1, 1, 0] 825305 3310618 0.1989 1699
8 [0, 1, 1, 1] 826961 3281326 0.2418 3330
9 [1, 0, 0, 0] 190646 3167833 1.0445 91417
10 [1, 0, 0, 1] 190646 3167926 1.0514 93048
11 [1, 0, 1, 0] 829153 3253629 1.2909 93082
12 [1, 0, 1, 1] 829153 3244039 1.2453 94713
13 [1, 1, 0, 0] 584159 3193486 1.0392 91451
14 [1, 1, 0, 1] 584159 3193410 1.0799 93082
15 [1, 1, 1, 0] 829155 3253597 1.2829 93116
16 [1, 1, 1, 1] 829155 3253581 1.3056 94747

Table A.5.: Instance 1: Study of the effect of the set S on the ranking method with
only the subset 1, 2, 3 and 4.

89



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0, 0, 0, 0] 189079 3237570 0.0535 0
2 [0, 0, 0, 0, 0, 0, 1] 237606 3098261 0.0779 1540
3 [0, 0, 0, 0, 0, 1, 0] 225501 3049275 0.0686 1569
4 [0, 0, 0, 0, 0, 1, 1] 238698 3013458 0.1274 3109
5 [0, 0, 0, 0, 1, 0, 0] 213192 3047757 0.0783 1598
6 [0, 0, 0, 0, 1, 0, 1] 238745 2973546 0.1079 3138
7 [0, 0, 0, 0, 1, 1, 0] 226320 2970630 0.0977 3167
8 [0, 0, 0, 0, 1, 1, 1] 239266 3000039 0.134 4707
9 [0, 0, 0, 1, 0, 0, 0] 200976 3133319 0.084 1628
10 [0, 0, 0, 1, 0, 0, 1] 238602 3052526 0.098 3168
11 [0, 0, 0, 1, 0, 1, 0] 226271 3051347 0.095 3197
12 [0, 0, 0, 1, 0, 1, 1] 239385 3015376 0.1298 4737
13 [0, 0, 0, 1, 1, 0, 0] 213694 3100204 0.096 3226
14 [0, 0, 0, 1, 1, 0, 1] 239249 3038978 0.1336 4766
15 [0, 0, 0, 1, 1, 1, 0] 226804 2979578 0.1208 4795
16 [0, 0, 0, 1, 1, 1, 1] 239733 2980083 0.1463 6335
17 [0, 0, 1, 0, 0, 0, 0] 857209 3298164 0.2286 1660
18 [0, 0, 1, 0, 0, 0, 1] 879054 3162389 0.2677 3200
19 [0, 0, 1, 0, 0, 1, 0] 874292 3166683 0.2681 3229
20 [0, 0, 1, 0, 0, 1, 1] 880330 3109709 0.3045 4769
21 [0, 0, 1, 0, 1, 0, 0] 868985 3113918 0.263 3258
22 [0, 0, 1, 0, 1, 0, 1] 880405 3036858 0.3002 4798
23 [0, 0, 1, 0, 1, 1, 0] 875158 3124266 0.2919 4827
24 [0, 0, 1, 0, 1, 1, 1] 881002 3016258 0.3334 6367
25 [0, 0, 1, 1, 0, 0, 0] 863151 3205488 0.2848 3288
26 [0, 0, 1, 1, 0, 0, 1] 880243 3106458 0.3401 4828
27 [0, 0, 1, 1, 0, 1, 0] 875078 3182677 0.313 4857
28 [0, 0, 1, 1, 0, 1, 1] 881069 3100280 0.3134 6397
29 [0, 0, 1, 1, 1, 0, 0] 869523 3124783 0.288 4886
30 [0, 0, 1, 1, 1, 0, 1] 880945 3068304 0.3171 6426
31 [0, 0, 1, 1, 1, 1, 0] 875623 3143168 0.3156 6455
32 [0, 0, 1, 1, 1, 1, 1] 881483 3021505 0.3767 7995

Table A.6.: Instance 2: Study of the effect of the set S on the ranking method - Part
1

90



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

33 [0, 1, 0, 0, 0, 0, 0] 609123 3245370 0.0673 32
34 [0, 1, 0, 0, 0, 0, 1] 639082 3077052 0.0839 1572
35 [0, 1, 0, 0, 0, 1, 0] 632559 3133552 0.0829 1601
36 [0, 1, 0, 0, 0, 1, 1] 640527 3044327 0.1114 3141
37 [0, 1, 0, 0, 1, 0, 0] 625060 3097306 0.0815 1630
38 [0, 1, 0, 0, 1, 0, 1] 640542 2992689 0.1029 3170
39 [0, 1, 0, 0, 1, 1, 0] 633481 3042637 0.1256 3199
40 [0, 1, 0, 0, 1, 1, 1] 641241 2933748 0.146 4739
41 [0, 1, 0, 1, 0, 0, 0] 617167 3159414 0.0955 1660
42 [0, 1, 0, 1, 0, 0, 1] 640304 3077904 0.1103 3200
43 [0, 1, 0, 1, 0, 1, 0] 633385 3125316 0.0961 3229
44 [0, 1, 0, 1, 0, 1, 1] 641287 3035575 0.1387 4769
45 [0, 1, 0, 1, 1, 0, 0] 625611 3130348 0.099 3258
46 [0, 1, 0, 1, 1, 0, 1] 641085 3029928 0.1165 4798
47 [0, 1, 0, 1, 1, 1, 0] 633974 3052090 0.1438 4827
48 [0, 1, 0, 1, 1, 1, 1] 641731 2944475 0.1531 6367
49 [0, 1, 1, 0, 0, 0, 0] 857211 3298164 0.2294 1692
50 [0, 1, 1, 0, 0, 0, 1] 879055 3159102 0.2676 3232
51 [0, 1, 1, 0, 0, 1, 0] 874294 3162337 0.2753 3261
52 [0, 1, 1, 0, 0, 1, 1] 880333 3112462 0.2914 4801
53 [0, 1, 1, 0, 1, 0, 0] 868987 3113716 0.2543 3290
54 [0, 1, 1, 0, 1, 0, 1] 880408 3040749 0.3018 4830
55 [0, 1, 1, 0, 1, 1, 0] 875161 3124266 0.3176 4859
56 [0, 1, 1, 0, 1, 1, 1] 881005 3016241 0.317 6399
57 [0, 1, 1, 1, 0, 0, 0] 863153 3195684 0.2836 3320
58 [0, 1, 1, 1, 0, 0, 1] 880245 3128095 0.2944 4860
59 [0, 1, 1, 1, 0, 1, 0] 875080 3183084 0.2863 4889
60 [0, 1, 1, 1, 0, 1, 1] 881071 3096483 0.331 6429
61 [0, 1, 1, 1, 1, 0, 0] 869525 3116156 0.2675 4918
62 [0, 1, 1, 1, 1, 0, 1] 880947 3068973 0.3358 6458
63 [0, 1, 1, 1, 1, 1, 0] 875626 3129051 0.3172 6487
64 [0, 1, 1, 1, 1, 1, 1] 881486 3018228 0.356 8027

Table A.7.: Instance 2: Study of the effect of the set S on the ranking method - Part
2

91



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

65 [1, 0, 0, 0, 0, 0, 0] 205260 3123781 1.0626 91875
66 [1, 0, 0, 0, 0, 0, 1] 239573 3012939 1.1507 93415
67 [1, 0, 0, 0, 0, 1, 0] 227372 3055429 1.16 93444
68 [1, 0, 0, 0, 0, 1, 1] 240269 2954977 1.1843 94984
69 [1, 0, 0, 0, 1, 0, 0] 215404 3113334 1.1282 93473
70 [1, 0, 0, 0, 1, 0, 1] 240071 3032434 1.1611 95013
71 [1, 0, 0, 0, 1, 1, 0] 227752 3011248 1.1692 95042
72 [1, 0, 0, 0, 1, 1, 1] 240510 2971108 1.1895 96582
73 [1, 0, 0, 1, 0, 0, 0] 205260 3123859 1.0626 93503
74 [1, 0, 0, 1, 0, 0, 1] 239573 3005797 1.1818 95043
75 [1, 0, 0, 1, 0, 1, 0] 227372 3056065 1.1564 95072
76 [1, 0, 0, 1, 0, 1, 1] 240269 2967244 1.1902 96612
77 [1, 0, 0, 1, 1, 0, 0] 215404 3114341 1.1248 95101
78 [1, 0, 0, 1, 1, 0, 1] 240071 2977161 1.1768 96641
79 [1, 0, 0, 1, 1, 1, 0] 227752 2976273 1.1839 96670
80 [1, 0, 0, 1, 1, 1, 1] 240510 2992303 1.1902 98210
81 [1, 0, 1, 0, 0, 0, 0] 865194 3181245 1.2294 93535
82 [1, 0, 1, 0, 0, 0, 1] 881106 3064991 1.3413 95075
83 [1, 0, 1, 0, 0, 1, 0] 875941 3134435 1.3285 95104
84 [1, 0, 1, 0, 0, 1, 1] 881865 3069317 1.3444 96644
85 [1, 0, 1, 0, 1, 0, 0] 870508 3152538 1.3283 95133
86 [1, 0, 1, 0, 1, 0, 1] 881675 3037791 1.357 96673
87 [1, 0, 1, 0, 1, 1, 0] 876350 3124734 1.353 96702
88 [1, 0, 1, 0, 1, 1, 1] 882171 3022253 1.3846 98242
89 [1, 0, 1, 1, 0, 0, 0] 865194 3182241 1.2339 95163
90 [1, 0, 1, 1, 0, 0, 1] 881106 3061150 1.3326 96703
91 [1, 0, 1, 1, 0, 1, 0] 875941 3145133 1.3542 96732
92 [1, 0, 1, 1, 0, 1, 1] 881865 3052055 1.359 98272
93 [1, 0, 1, 1, 1, 0, 0] 870508 3154222 1.3373 96761
94 [1, 0, 1, 1, 1, 0, 1] 881675 3050714 1.372 98301
95 [1, 0, 1, 1, 1, 1, 0] 876350 3121366 1.3609 98330
96 [1, 0, 1, 1, 1, 1, 1] 882171 3027301 1.3876 99870

Table A.8.: Instance 2: Study of the effect of the set S on the ranking method - Part
3

92



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

97 [1, 1, 0, 0, 0, 0, 0] 619829 3133408 1.0454 91907
98 [1, 1, 0, 0, 0, 0, 1] 641337 3009736 1.1653 93447
99 [1, 1, 0, 0, 0, 1, 0] 634402 3058820 1.1544 93476
100 [1, 1, 0, 0, 0, 1, 1] 642207 2990305 1.18 95016
101 [1, 1, 0, 0, 1, 0, 0] 626889 3113610 1.1369 93505
102 [1, 1, 0, 0, 1, 0, 1] 641943 2986113 1.1747 95045
103 [1, 1, 0, 0, 1, 1, 0] 634843 3007289 1.1586 95074
104 [1, 1, 0, 0, 1, 1, 1] 642523 2925468 1.1962 96614
105 [1, 1, 0, 1, 0, 0, 0] 619829 3133408 1.0637 93535
106 [1, 1, 0, 1, 0, 0, 1] 641337 3017836 1.1685 95075
107 [1, 1, 0, 1, 0, 1, 0] 634402 3053092 1.1529 95104
108 [1, 1, 0, 1, 0, 1, 1] 642207 2982238 1.218 96644
109 [1, 1, 0, 1, 1, 0, 0] 626889 3112490 1.1525 95133
110 [1, 1, 0, 1, 1, 0, 1] 641943 2984605 1.2047 96673
111 [1, 1, 0, 1, 1, 1, 0] 634843 2996875 1.1644 96702
112 [1, 1, 0, 1, 1, 1, 1] 642523 2934815 1.2154 98242
113 [1, 1, 1, 0, 0, 0, 0] 865196 3182549 1.2362 93567
114 [1, 1, 1, 0, 0, 0, 1] 881109 3057696 1.3681 95107
115 [1, 1, 1, 0, 0, 1, 0] 875944 3143896 1.3442 95136
116 [1, 1, 1, 0, 0, 1, 1] 881868 3072141 1.348 96676
117 [1, 1, 1, 0, 1, 0, 0] 870510 3156516 1.352 95165
118 [1, 1, 1, 0, 1, 0, 1] 881678 3053756 1.3831 96705
119 [1, 1, 1, 0, 1, 1, 0] 876353 3086074 1.4462 96734
120 [1, 1, 1, 0, 1, 1, 1] 882174 3039813 1.3948 98274
121 [1, 1, 1, 1, 0, 0, 0] 865196 3183379 1.2427 95195
122 [1, 1, 1, 1, 0, 0, 1] 881109 3065287 1.3439 96735
123 [1, 1, 1, 1, 0, 1, 0] 875944 3131518 1.3213 96764
124 [1, 1, 1, 1, 0, 1, 1] 881868 3078819 1.3627 98304
125 [1, 1, 1, 1, 1, 0, 0] 870510 3153701 1.3169 96793
126 [1, 1, 1, 1, 1, 0, 1] 881678 3058526 1.3459 98333
127 [1, 1, 1, 1, 1, 1, 0] 876353 3087074 1.3622 98362
128 [1, 1, 1, 1, 1, 1, 1] 882174 3047629 1.3888 99902

Table A.9.: Instance 2: Study of the effect of the set S on the ranking method - Part
4

93



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0] 189079 3237570 0.0485 0
2 [0, 0, 0, 1] 237606 3098261 0.0956 1628
3 [0, 0, 1, 0] 225501 3049275 0.0815 1660
4 [0, 0, 1, 1] 238698 3013458 0.1014 3288
5 [0, 1, 0, 0] 213192 3047757 0.0754 32
6 [0, 1, 0, 1] 238745 2973546 0.0952 1660
7 [0, 1, 1, 0] 226320 2970630 0.0961 1692
8 [0, 1, 1, 1] 239266 3000039 0.123 3320
9 [1, 0, 0, 0] 200976 3133319 1.0964 91875
10 [1, 0, 0, 1] 238602 3052526 1.1202 93503
11 [1, 0, 1, 0] 226271 3051347 1.0976 93535
12 [1, 0, 1, 1] 239385 3015376 1.1348 95163
13 [1, 1, 0, 0] 213694 3100204 1.0903 91907
14 [1, 1, 0, 1] 239249 3038978 1.138 93535
15 [1, 1, 1, 0] 226804 2979578 1.2218 93567
16 [1, 1, 1, 1] 239733 2980083 1.3482 95195

Table A.10.: Instance 2: Study of the effect of the set S on the ranking method with
only the subset 1, 2, 3 and 4.

94



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0, 0, 0, 0] 12669 159814 0.0158 0
2 [0, 0, 0, 0, 0, 0, 1] 22701 140734 0.0204 427
3 [0, 0, 0, 0, 0, 1, 0] 20541 140187 0.0266 449
4 [0, 0, 0, 0, 0, 1, 1] 23076 131632 0.0314 876
5 [0, 0, 0, 0, 1, 0, 0] 17784 146796 0.0181 471
6 [0, 0, 0, 0, 1, 0, 1] 23091 136662 0.0388 898
7 [0, 0, 0, 0, 1, 1, 0] 20661 143143 0.0294 920
8 [0, 0, 0, 0, 1, 1, 1] 23208 134862 0.0338 1347
9 [0, 0, 0, 1, 0, 0, 0] 15178 149975 0.0297 500
10 [0, 0, 0, 1, 0, 0, 1] 23002 133179 0.0343 927
11 [0, 0, 0, 1, 0, 1, 0] 20692 144045 0.0284 949
12 [0, 0, 0, 1, 0, 1, 1] 23234 133650 0.0286 1376
13 [0, 0, 0, 1, 1, 0, 0] 17884 142453 0.048 971
14 [0, 0, 0, 1, 1, 0, 1] 23187 137243 0.0476 1398
15 [0, 0, 0, 1, 1, 1, 0] 20754 145183 0.0344 1420
16 [0, 0, 0, 1, 1, 1, 1] 23298 136392 0.0485 1847
17 [0, 0, 1, 0, 0, 0, 0] 75202 160731 0.0473 534
18 [0, 0, 1, 0, 0, 0, 1] 76933 146371 0.0463 961
19 [0, 0, 1, 0, 0, 1, 0] 76802 145838 0.0439 983
20 [0, 0, 1, 0, 0, 1, 1] 77292 146064 0.0498 1410
21 [0, 0, 1, 0, 1, 0, 0] 76311 155893 0.0463 1005
22 [0, 0, 1, 0, 1, 0, 1] 77244 148970 0.0475 1432
23 [0, 0, 1, 0, 1, 1, 0] 76899 150618 0.0419 1454
24 [0, 0, 1, 0, 1, 1, 1] 77370 150679 0.0693 1881
25 [0, 0, 1, 1, 0, 0, 0] 75855 160992 0.047 1034
26 [0, 0, 1, 1, 0, 0, 1] 77183 147309 0.0519 1461
27 [0, 0, 1, 1, 0, 1, 0] 76942 145778 0.0494 1483
28 [0, 0, 1, 1, 0, 1, 1] 77423 147415 0.0578 1910
29 [0, 0, 1, 1, 1, 0, 0] 76434 151706 0.0478 1505
30 [0, 0, 1, 1, 1, 0, 1] 77350 147391 0.0815 1932
31 [0, 0, 1, 1, 1, 1, 0] 77001 146096 0.0595 1954
32 [0, 0, 1, 1, 1, 1, 1] 77468 147798 0.0479 2381

Table A.11.: Instance 3: Study of the effect of the set S on the ranking method -
Part 1

95



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

33 [0, 1, 0, 0, 0, 0, 0] 57558 175288 0.0215 34
34 [0, 1, 0, 0, 0, 0, 1] 61161 149950 0.0167 461
35 [0, 1, 0, 0, 0, 1, 0] 60614 153708 0.031 483
36 [0, 1, 0, 0, 0, 1, 1] 61585 146130 0.0384 910
37 [0, 1, 0, 0, 1, 0, 0] 59720 158412 0.0141 505
38 [0, 1, 0, 0, 1, 0, 1] 61593 143607 0.0317 932
39 [0, 1, 0, 0, 1, 1, 0] 60782 148935 0.0424 954
40 [0, 1, 0, 0, 1, 1, 1] 61756 147168 0.0415 1381
41 [0, 1, 0, 1, 0, 0, 0] 58754 160804 0.0061 534
42 [0, 1, 0, 1, 0, 0, 1] 61482 146704 0.0316 961
43 [0, 1, 0, 1, 0, 1, 0] 60819 152965 0.0348 983
44 [0, 1, 0, 1, 0, 1, 1] 61765 150887 0.0405 1410
45 [0, 1, 0, 1, 1, 0, 0] 59864 155085 0.0278 1005
46 [0, 1, 0, 1, 1, 0, 1] 61701 143886 0.058 1432
47 [0, 1, 0, 1, 1, 1, 0] 60908 153896 0.035 1454
48 [0, 1, 0, 1, 1, 1, 1] 61857 146370 0.0469 1881
49 [0, 1, 1, 0, 0, 0, 0] 75203 162041 0.0226 568
50 [0, 1, 1, 0, 0, 0, 1] 76933 146371 0.0455 995
51 [0, 1, 1, 0, 0, 1, 0] 76804 145838 0.0455 1017
52 [0, 1, 1, 0, 0, 1, 1] 77292 145895 0.0585 1444
53 [0, 1, 1, 0, 1, 0, 0] 76314 156204 0.0431 1039
54 [0, 1, 1, 0, 1, 0, 1] 77244 149132 0.0527 1466
55 [0, 1, 1, 0, 1, 1, 0] 76901 150578 0.05 1488
56 [0, 1, 1, 0, 1, 1, 1] 77370 150522 0.0485 1915
57 [0, 1, 1, 1, 0, 0, 0] 75856 162279 0.0475 1068
58 [0, 1, 1, 1, 0, 0, 1] 77183 147154 0.0589 1495
59 [0, 1, 1, 1, 0, 1, 0] 76944 145719 0.0533 1517
60 [0, 1, 1, 1, 0, 1, 1] 77423 147141 0.0686 1944
61 [0, 1, 1, 1, 1, 0, 0] 76436 151666 0.0422 1539
62 [0, 1, 1, 1, 1, 0, 1] 77350 147387 0.0635 1966
63 [0, 1, 1, 1, 1, 1, 0] 77004 146096 0.0588 1988
64 [0, 1, 1, 1, 1, 1, 1] 77468 147794 0.0632 2415

Table A.12.: Instance 3: Study of the effect of the set S on the ranking method -
Part 2

96



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

65 [1, 0, 0, 0, 0, 0, 0] 15951 203892 0.1267 8352
66 [1, 0, 0, 0, 0, 0, 1] 23410 148842 0.1366 8779
67 [1, 0, 0, 0, 0, 1, 0] 21130 160501 0.1373 8801
68 [1, 0, 0, 0, 0, 1, 1] 23592 147646 0.1393 9228
69 [1, 0, 0, 0, 1, 0, 0] 18373 166155 0.1423 8823
70 [1, 0, 0, 0, 1, 0, 1] 23523 146150 0.1386 9250
71 [1, 0, 0, 0, 1, 1, 0] 21153 159754 0.1411 9272
72 [1, 0, 0, 0, 1, 1, 1] 23617 146761 0.1527 9699
73 [1, 0, 0, 1, 0, 0, 0] 15951 203897 0.1403 8852
74 [1, 0, 0, 1, 0, 0, 1] 23410 147067 0.1366 9279
75 [1, 0, 0, 1, 0, 1, 0] 21130 160302 0.1371 9301
76 [1, 0, 0, 1, 0, 1, 1] 23592 146581 0.1514 9728
77 [1, 0, 0, 1, 1, 0, 0] 18373 163239 0.1387 9323
78 [1, 0, 0, 1, 1, 0, 1] 23523 146551 0.1406 9750
79 [1, 0, 0, 1, 1, 1, 0] 21153 148269 0.1424 9772
80 [1, 0, 0, 1, 1, 1, 1] 23617 149365 0.167 10199
81 [1, 0, 1, 0, 0, 0, 0] 76205 179931 0.165 8886
82 [1, 0, 1, 0, 0, 0, 1] 77428 163532 0.1678 9313
83 [1, 0, 1, 0, 0, 1, 0] 77151 161543 0.1614 9335
84 [1, 0, 1, 0, 0, 1, 1] 77613 159253 0.1838 9762
85 [1, 0, 1, 0, 1, 0, 0] 76655 164978 0.1644 9357
86 [1, 0, 1, 0, 1, 0, 1] 77535 163226 0.1672 9784
87 [1, 0, 1, 0, 1, 1, 0] 77184 163150 0.1646 9806
88 [1, 0, 1, 0, 1, 1, 1] 77638 159224 0.196 10233
89 [1, 0, 1, 1, 0, 0, 0] 76205 180014 0.1566 9386
90 [1, 0, 1, 1, 0, 0, 1] 77428 163870 0.1719 9813
91 [1, 0, 1, 1, 0, 1, 0] 77151 162020 0.1644 9835
92 [1, 0, 1, 1, 0, 1, 1] 77613 159253 0.1878 10262
93 [1, 0, 1, 1, 1, 0, 0] 76655 164977 0.1875 9857
94 [1, 0, 1, 1, 1, 0, 1] 77535 163452 0.1826 10284
95 [1, 0, 1, 1, 1, 1, 0] 77184 163150 0.1685 10306
96 [1, 0, 1, 1, 1, 1, 1] 77638 159206 0.2009 10733

Table A.13.: Instance 3: Study of the effect of the set S on the ranking method -
Part 3

97



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

97 [1, 1, 0, 0, 0, 0, 0] 59199 213596 0.131 8386
98 [1, 1, 0, 0, 0, 0, 1] 61742 171816 0.118 8813
99 [1, 1, 0, 0, 0, 1, 0] 61057 174391 0.1282 8835
100 [1, 1, 0, 0, 0, 1, 1] 61967 164228 0.1423 9262
101 [1, 1, 0, 0, 1, 0, 0] 60140 176489 0.1377 8857
102 [1, 1, 0, 0, 1, 0, 1] 61897 159626 0.1322 9284
103 [1, 1, 0, 0, 1, 1, 0] 61117 167295 0.1425 9306
104 [1, 1, 0, 0, 1, 1, 1] 62034 158731 0.1656 9733
105 [1, 1, 0, 1, 0, 0, 0] 59199 213596 0.1516 8886
106 [1, 1, 0, 1, 0, 0, 1] 61742 171482 0.1358 9313
107 [1, 1, 0, 1, 0, 1, 0] 61057 174386 0.1386 9335
108 [1, 1, 0, 1, 0, 1, 1] 61967 164083 0.1661 9762
109 [1, 1, 0, 1, 1, 0, 0] 60140 176503 0.1329 9357
110 [1, 1, 0, 1, 1, 0, 1] 61897 159626 0.1469 9784
111 [1, 1, 0, 1, 1, 1, 0] 61117 167192 0.1465 9806
112 [1, 1, 0, 1, 1, 1, 1] 62034 158607 0.1568 10233
113 [1, 1, 1, 0, 0, 0, 0] 76206 179931 0.1447 8920
114 [1, 1, 1, 0, 0, 0, 1] 77428 163860 0.1797 9347
115 [1, 1, 1, 0, 0, 1, 0] 77153 162023 0.1516 9369
116 [1, 1, 1, 0, 0, 1, 1] 77613 159256 0.1825 9796
117 [1, 1, 1, 0, 1, 0, 0] 76657 162473 0.1672 9391
118 [1, 1, 1, 0, 1, 0, 1] 77535 163378 0.1659 9818
119 [1, 1, 1, 0, 1, 1, 0] 77185 163149 0.1703 9840
120 [1, 1, 1, 0, 1, 1, 1] 77638 159220 0.1583 10267
121 [1, 1, 1, 1, 0, 0, 0] 76206 179931 0.1618 9420
122 [1, 1, 1, 1, 0, 0, 1] 77428 163341 0.1602 9847
123 [1, 1, 1, 1, 0, 1, 0] 77153 162020 0.1751 9869
124 [1, 1, 1, 1, 0, 1, 1] 77613 159427 0.174 10296
125 [1, 1, 1, 1, 1, 0, 0] 76657 162472 0.1634 9891
126 [1, 1, 1, 1, 1, 0, 1] 77535 157696 0.1753 10318
127 [1, 1, 1, 1, 1, 1, 0] 77185 163145 0.1771 10340
128 [1, 1, 1, 1, 1, 1, 1] 77638 159214 0.1965 10767

Table A.14.: Instance 3: Study of the effect of the set S on the ranking method -
Part 4

98



A.2. Ranking method

identification S lower bound objective time (in s) number of
number constraints

1 [0, 0, 0, 0] 12669 159814 0.0189 0
2 [0, 0, 0, 1] 15178 149975 0.0121 500
3 [0, 0, 1, 0] 75202 160731 0.0451 534
4 [0, 0, 1, 1] 75855 160992 0.0486 1034
5 [0, 1, 0, 0] 57558 175288 0.0298 34
6 [0, 1, 0, 1] 58754 160804 0.0161 534
7 [0, 1, 1, 0] 75203 162041 0.0465 568
8 [0, 1, 1, 1] 75856 162279 0.0477 1068
9 [1, 0, 0, 0] 15951 203892 0.134 8352
10 [1, 0, 0, 1] 15951 203897 0.1431 8852
11 [1, 0, 1, 0] 76205 179931 0.1492 8886
12 [1, 0, 1, 1] 76205 180014 0.1752 9386
13 [1, 1, 0, 0] 59199 213596 0.1333 8386
14 [1, 1, 0, 1] 59199 213596 0.1509 8886
15 [1, 1, 1, 0] 76206 179931 0.1521 8920
16 [1, 1, 1, 1] 76206 179931 0.1808 9420

Table A.15.: Instance 3: Study of the effect of the set S on the ranking method with
only the subset 1, 2, 3 and 4.

99



A.2. Ranking method

A.2.1. About the lower bound

Figure A.7.: Instance 2: Values of the lower bound and number of constraints of the
ranking method over different sets S

Figure A.8.: Instance 2: Values of the lower bound and number of constraints of the
ranking method over different sets S including only the subsets 1, 2, 3
and 4

100



A.2. Ranking method

Figure A.9.: Instance 3: Values of the lower bound and number of constraints of the
ranking method over different sets S

Figure A.10.: Instance 3: Values of the lower bound and number of constraints of
the ranking method over different sets S including only the subsets 1,
2, 3 and 4

101



A.2. Ranking method

A.2.2. About the objective

Figure A.11.: Instance 2: Values of the objective and number of constraints of the
ranking method over different sets S

Figure A.12.: Instance 3: Values of the objective and number of constraints of the
ranking method over different sets S

102



A.3. Branch and Bound Algorithm

A.3. Branch and Bound Algorithm

A.3.1. Selection of the parameters to improve the pruning

Choice of the constraint strategy

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.13.: Instance 2: Evolution of the lower bound for 10 dives with the
constraint strategies CM-FO and LJ and two sets S

103



A.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.14.: Instance 2: Evolution of the lower bound for 10 dives with the
constraint strategies CM-LV and CM-5LV and two sets S

104



A.3. Branch and Bound Algorithm

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.15.: Instance 3: Evolution of the lower bound for 10 dives with the
constraint strategies CM-FO and LJ and two sets S

105



A.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.16.: Instance 3: Evolution of the lower bound for 10 dives with the
constraint strategies CM-LV and CM-5LV and two sets S

106



A.3. Branch and Bound Algorithm

A.3.2. Results of the branch and bound method

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.17.: Instance 2: Evolution of the upper bound for 10 dives with the
constraint strategies CM-FO and LJ and two sets S

107



A.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.18.: Instance 2: Evolution of the upper bound for 10 dives with the
constraint strategies CM-LV and CM-5LV and two sets S

108



A.3. Branch and Bound Algorithm

(a) CM-FO - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-FO - S = [0, 0, 0, 0, 0, 0, 0]

(c) LJ - S = [0, 0, 1, 0, 0, 0, 0] (d) LJ - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.19.: Instance 3: Evolution of the upper bound for 10 dives with the
constraint strategies CM-FO and LJ and two sets S

109



A.3. Branch and Bound Algorithm

(a) CM-LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-5LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-5LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.20.: Instance 3: Evolution of the upper bound for 10 dives with the
constraint strategies CM-LV and CM-5LV and two sets S

110



A.4. Dive

A.4. Dive

A.4.1. Selection of the constraint strategies

(a) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.21.: Instance 2: Evolution of the lower bound and the upper bound for 10
dives for the constraint strategy CM-2LV and two sets S

111



A.4. Dive

(a) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (b) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

(c) CM-2LV - S = [0, 0, 1, 0, 0, 0, 0] (d) CM-2LV - S = [0, 0, 0, 0, 0, 0, 0]

Figure A.22.: Instance 3: Evolution of the lower bound and the upper bound for 10
dives for the constraint strategy CM-2LV and two sets S

Constraint Time in minutes
strategy S = [0, 0, 1, 0, 0, 0, 0] S = [0, 0, 0, 0, 0, 0, 0]
CM-FO 5:37 1:47

LJ 16:16 12:05
CM-LV 9:19 6:21
CM-5LV 11:59 9:08
CM-2LV 5:48 4:13

Table A.16.: Instance 2: Time to perform 10 dives with different constraint strategies
with 2 different sets S

112



A.4. Dive

Constraint Time in minutes
strategy S = [0, 0, 1, 0, 0, 0, 0] S = [0, 0, 0, 0, 0, 0, 0]
CM-FO 0:28 0:22

LJ 1:17 1:32
CM-LV 0:48 0:49
CM-5LV 1:20 1:12
CM-2LV 0:33 0:31

Table A.17.: Instance 3: Time to perform 10 dives with different constraint strategies
with 2 different sets S

A.4.2. Results

Constraint Upper Lower Number of Number of
strategy bound bound constraints added dives
CM-LV 2,468,899 2,309,829 2,265 140
CM-5LV 2,490,272 2,374,428 2,295 109
CM-2LV 2,461,249 2,282,403 2329 226
CM-FO 3,271,120 888,374 2 194

Table A.18.: instance 2: Comparison of Upper Bounds, Lower Bounds, Constraints
Added, and Number of Dives for Different Constraint Strategies within
a 2-Hour Dive Approach Run

Constraint Upper Lower Number of Number of
strategy bound bound constraints added dives
CM-LV 122,988 92,794 107 2544
CM-5LV 123,032 107,199 352 1625
CM-2LV 123,413 115,799 485 3653
CM-FO 123,783 96,590 91 3014

Table A.19.: instance 3: Comparison of Upper Bounds, Lower Bounds, Constraints
Added, and Number of Dives for Different Constraint Strategies within
a 2-Hour Dive Approach Run

113



A.4. Dive

(a) CM-LV (b) CM-5LV

(c) CM-2LV

Figure A.23.: Instance 2: Distribution of best objective values from 100 dives for
constraint strategies CM-LV, CM-5LV, and CM-2LV

Constraint strategy Time (in hours)
CM-LV 1:35:06
CM-5LV 1:58:02
CM-2LV 0:57:39

Table A.20.: Instance 2: Time to perform 100 dives with constraint strategies CM-
LV, CM-5LV, and CM-2LV

114



A.4. Dive

(a) CM-LV (b) CM-5LV

(c) CM-2LV (d) CM-FO

Figure A.24.: Instance 3: Distribution of best objective values from 100 dives for
constraint strategies CM-LV, CM-5LV, CM-2LV and CM-FO

Constraint strategy Time (in minutes)
CM-LV 9:26
CM-5LV 12:48
CM-2LV 5:05
CM-FO 4:45

Table A.21.: Instance 3: Time to perform 100 dives with constraint strategies CM-
LV, CM-5LV, CM-2LV and CM-FO

115


