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Résumé
La nouvelle Politique Agricole Commune (PAC) impliquant une nouvelle définition de la sen-

sibilité des parcelles à l’érosion a ravivé les débats entre scientifiques, agriculteurs et décideurs
politiques. Différentes méthodes et modèles existent pour étudier l’érosion, mais la communauté
scientifique déplore un manque de données permettant de mesurer la distribution spatiale de ce
phénomène. Cette étude se focalise sur un bassin versant agricole de Belgique centrale en région
limoneuse. Le modèle WaTEM/SEDEM (WS) permettant de modéliser l’érosion et la déposition
à l’échelle d’un bassin versant est comparé à l’approche par différence de modèles numériques
d’altitudes (MNA). Dans cette méthode, deux MNA acquis à des périodes différentes sont sous-
traits l’un à l’autre pour identifier les zones de déposition (différence positive) et d’érosion (dif-
férence négative). Différentes sources de données de MNA ont été exploitées : Modèle Numérique
de Terrain (MNT) et Modèle Numérique de Surface (MNS) Lidar et photogrammétriques, sur
une échelle temporelle d’une décennie. Les résultats montrent que la déposition modélisée avec
WS se concentre dans les axes d’écoulement concentré (thalwegs). Les MNT Lidar, qui sem-
blent les plus fiables pour étudier ce phénomène, confirment cette tendance, avec une proportion
de déposition supérieure de 40% dans les thalwegs par rapport aux versants. En parallèle, les
cartes de différences de MNA sont employées dans une analyse statistique visant à identifier
les variables influençant la répartition spatiale de l’érosion et de la déposition. Les résultats
montrent qu’il est possible de prédire les différences d’altitude sur base d’un modèle dont les
variables explicatives impliquent des variables topographiques, climatiques et de pratiques agri-
coles. L’utilisation de MNT et MNS, sous réserve d’une prise en compte de l’imprécision associée
ainsi que de l’influence de la végétation pour les MNS, montre des résultats encourageants dans
leur exploitabilité pour étudier l’érosion sur une décennie.

Abstract
The new Common Agricultural Policy (CAP) has led to a new definition of the fields sen-

sitivity to soil erosion. It revived the debates between scientists, farmers, and policy makers.
Different methods and models exist to study erosion, but soil scientists point out a lack of data to
study the spatial distribution of this phenomenon. This study focuses on an agricultural catch-
ment of central Belgium in the Loess belt. We compared the model WaTEM/SEDEM (WS)
enabling to model the spatial distribution of erosion and deposition at a catchment level to the
difference of Digital Elevation Model (DEM) method. In this method, two DEMs, acquired
at different periods, are subtracted from each other to spot the zones experiencing deposition
(positive difference) and the eroded zones (negative difference). Different DEM data sources
are exploited: Digital Terrain Model (DTM), Digital Surface Model (DSM), from Lidar and
photogrammetry on a temporal scale of one decade. The results show that deposition modeled
with WS is concentrated in the rills. The lidar DTMs, which seem the most reliable to study
this phenomenon confirm this tendency, with a proportion of deposition 40% higher in the rills
than in the inter-rills. In parallel, we carried out a statistical analysis of the maps of DEM differ-
ences to identify the variables influencing the spatial distribution of erosion and deposition. Our
results show that it is possible to predict the elevation differences based on a model including
variables that involve topography, climate and agricultural practices. Taking into account the
uncertainty and the influence of vegetation, DTM and DSM show encouraging results in their
usability to study erosion over one decade.
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Chapter 1

Introduction

1.1 Context
Erosion is a topic of major concern in the agricultural sphere nowadays. The Common Agri-

cultural Policy (CAP) for 2023-2027 entered into application on the 1st of January 2023 (Euro-
pean Commission, nd). It implies several changes in comparison with the previous CAP, espe-
cially on the conditionality principle Good Agricultural and Environmental Conditions (GAEC)
which defines the "minimum land management reflecting site-specific conditions to limit ero-
sion"(European Commission, 2015). In Belgium and more specifically in Wallonia, this results,
among others, in a new classification of erosion risk at the parcel level which is not always
received positively by the farmers (Rotili, 2023). The previous methodology to determine the
erosion risk, called "R10/R15" was only based on the fact that the parcel presents more than
50 ares or 50% of its area with a slope higher or equal to 10% (R10) or 15% (R15). The new
methodology relies on the soil sensibility to erosion (based on the texture and organic matter
content), the topography (slope gradient and slope length), and the rainfall aggressivity (ero-
sivity) (SPW, 2023). In order to realize why this is so important, it is essential to understand
the process of erosion and the negative impacts associated. Indeed, the better this process will
be understood, the better the side-effects can be avoided through an appropriate management
of the agricultural soils.

1.2 What is soil erosion
Soil erosion is a process that involves the detachment of soil particles, their transport and

their deposition elsewhere. Different agents can be responsible for the detachment: water, wind,
agricultural practices, gravity, glaciers, and crop harvesting. Erosion can cause an alteration of
the soil surface and modify the relief (Dautrebande et al., 2006).

In Belgium and more specifically in Wallonia, the main types of erosion occurring in agricul-
tural soil are erosion caused by water, tillage and soil loss due to harvesting. Some landslides
can also happen (Dautrebande et al., 2006). Erosion can cause different problems occurring on-
and off-site, which are likely to lead to important costs.

• On-site effects: Those problems are particularly important in agricultural land and
include the reduction of cultivable soil depth and the decline in soil fertility. Both problems
result from the redistribution of soil particles within the field and the loss of soil from the
field, the breakdown of soil structure and the decline in organic matter and nutrients.
The loss of soil productivity can lead to an increase in fertilizer use and ultimately to the
abandonment of land for agriculture. This can have consequences on food production and

2



food security and can decrease the value of land.

• Off-site effects: Those effects occur downstream in the catchment, or downwind and re-
sult from sedimentation. The accumulation of sediments in rivers, canals, drainage ditches
or reservoirs can enhance the risk of flooding by reducing their transport or storage capac-
ity. It can also shorten the design life of hydroelectric and irrigation systems. Moreover,
chemicals such as nitrogen and phosphorous can be adsorbed to sediments, which can ulti-
mately cause eutrophication of the surface water bodies once the sediments are transferred
to them. Another consequence of erosion is the release of CO2 to the atmosphere, which
makes it a contributor to climate change. Indeed, erosion causes the breakdown of soil
aggregates into primary particles of clay, silt and sand. The soil organic carbon held on
clays is therefore oxidized and released in the atmosphere in the form of CO2 (Morgan,
2005).

Originally, soil erosion is a natural process but it has been increased over the last decades due
to modification of the drivers through human activities. Indeed, human activities are likely to
influence the first three factors of erosion, identified as: "(i) erosivity of the erosive agent or its
capacity to detach and transport soil particles; (ii) erodibility of the soil or the inverse of the soil’s
resistance against the detachment and transport of its particles; (iii) plant and litter cover; and
(iv) slope of the terrain" (Morgan, 2005). This will be illustrated by several examples. We can
distinguish the external drivers (rainfall) that are indirectly affected by human activities through
climate change, and the drivers directly affected by human activities. Climate change scenarios
expect an increase in rainfall erosivity especially in the Mediterranean climate regions with more
intense rainfalls in autumn (Stolte et al., 2016). In Belgium, the precipitation intensity is also
expected to increase. In the most pessimistic scenario (RCP 8.5), both the number of days
with at least 10 mm of rainfall and the 99th centile of daily precipitations - two indices used to
describe extreme rainfalls - increase by 2100 (IRM, 2020). Agricultural practices have a direct
impact on the drivers. Ploughing can enhance the erosivity of the surface runoff and enhance
soil erodibilty by destroying soil aggregates and reducing the formation of new aggregates due
to a reduction of soil organic matter content. The use of heavy machinery in agricultural fields
is likely to cause compaction of the topsoil which reduces the infiltration capacity. The density
of vegetation is often reduced in croplands in comparison with natural vegetation. The soil
surface is therefore less protected against rainsplash and has less resistance to overland flow
(Stolte et al., 2016). Finally, even if the slope of the terrain is not affected by humans, the slope
length of the parcel can be modified by grouping different parcels together into longer ones. This
phenomenon was widely observed in Belgium since the last century and can increase the risk of
erosion at a parcel level when the parcel length is increased in the slope direction (Dautrebande
et al., 2006).

The main problem of erosion is that the rate at which this phenomenon occurs currently
is higher than the pedogenesis rate. Verheijen et al. (2009) defined the concept of tolerable
soil erosion as: "any actual soil erosion rate at which a deterioration or loss of one or more
soil functions does not occur", with actual soil erosion meaning "the cumulative amount of soil
lost by all recognized erosion types". They estimated that the current tolerable erosion rates in
Europe range from ca. 0.3 to 1.4 t.ha−1.yr−1 (corresponding to soil formation rates), while the
actual soil erosion rates vary between 3 and 40 t.ha−1.yr−1. Particularly, they noted that soil
erosion rates only appear to exceed tolerable rates in cultivated soils or in soils affected by other
human disturbances. Tilled arable soils seem to experience an important difference between soil
formation and erosion rates, with reported erosion rate ranges being many times greater than
reported soil formation rate ranges.
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1.3 Methods used to quantify erosion
Different methods exist to estimate erosion. Each of those methods has its own advantages

and side-effects and associated costs that need to be taken into consideration when selecting the
method to undertake in the case of the study.

A common data measured in erosion studies is the runoff and sediment export at the catch-
ment outlet. In those cases, the outlet is equipped with a flume, a flowmeter and a sampler
to measure the water flow and the suspended sediment concentration (Van Oost et al., 2005a;
Cantreul et al., 2020). Nevertheless, even if this approach enables to calibrate or validate erosion
models, it does not give any information about the spatial distribution of erosion and deposition
(Van Oost et al., 2005a).

Plot studies use bounded or unbounded plots of a fixed size to measure runoff produced from
rainfall events. Those can be either simulated by using rainfall simulators or monitored from
natural precipitations (Parsons, 2019). This method has been largely used in the United States
of America for the development of the Universal Soil Loss Equation (Wischmeier & Smith, 1978).

Field surveys and monitoring are other approaches that can be used to estimate erosion in
fields or small catchments. During field surveys, experts identify rills and gullies and estimate
their volume (Parsons, 2019). Van Oost et al. (2005a) converted the volumetric estimation of rills
and gullies into erosion rates with a constant bulk density. They also identified the deposits and
measured the sediment thickness. Then, they converted the sediment volumes into deposition
rates with the value of the bulk density of the deposits. The monitoring can also concern the
land use, soil surface roughness, soil surface crusting stage, crop cover, which might be useful
input data in the models.

For a long-term erosion study, diachronic soil surveys that rely on the comparison of an
historic soil map with more recent observations might be an option to consider. They enable
to show trends in the evolution of the soil profiles properties in the landscape, by spatializing
the erosion and deposition processes, but very accurate quantifications are impossible (Pineux
et al., 2017b).

Another option investigated to measure erosion is the measurement of change in the soil
surface level. Erosion pins are among the most widely used methods to do so. Those consist of
pins made out of iron, wood, or any other cheap and readily available material that is not likely
to rot or decay. The pins are distributed in the study area and driven into the soil to a certain
depth. The top of the pin that is above the surface is measured and serves as the reference
measurement. After a certain period, the new pin height is measured and changes in the soil
surface can be determined by comparing the two measures (Hudson, 1993).

Another similar approach concerns the use of graduated rulers. Those rulers are placed in
the fields at chosen locations and the erosion or deposition is measured after a certain amount
of time (Cantreul et al., 2020). With graduated rulers the principle is the same as with erosion
pins, but the height above the soil surface can be read directly on the ruler.

The development of remote sensing techniques has improved recently. It is therefore now
possible to acquire more and more precise Digital Elevation Models (DEMs) (Lisein et al.,
2017). The spatial distribution of erosion and deposition can be estimated by computing the
difference of 2 DEMs acquired at different time intervals. The change in elevation between the
2 DEMs is computed as δE = Z2 − Z1 where Z2 refers to the more recent DEM and Z1 to the
oldest one. In the DEM of Difference (DoD), negative and positive values show respectively
erosion and deposition (Williams, 2012). Nevertheless, an important condition to the use of this
method is that the DEMs have to be taken at the same period in the crop rotation (Pineux
et al., 2017a).
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Tracing is a different approach that consists in using natural and fallout radionuclides to
study soil erosion. The most widely used radionuclides are 137Cs, 210Pb and 7Be (Parsons,
2019). 137Cs is a globally distributed fallout radionuclide that comes from nuclear weapons
testing in the 1960s and from the power plant accident of Chernobyl in 1986. However, sev-
eral authors consider that due to its short half-life (30.17 years) and the inhomogeneous spatial
distribution of the fallout in Central and Western Europe caused by the Chernobyl accident,
its use as an erosion tracer is limited. Therefore, some suggest using other radionuclides such
as 239+240Pu and 10Be that are respectively suitable for short (decadal) and long (millennial)
-term erosion rates estimations (Loba et al., 2021). The principle of this method is to measure
the concentration of the radionuclide considered in a location where the soil is assumed to be
undisturbed (upper parts of slopes) and to compare the radionuclide concentration at different
locations. For example, Zhidkin et al. (2023) estimated soil erosion with 137Cs and computed
the annual rate of soil erosion as :

A = (Zn − Z0) × ρ × 25 × 100/(Z0 × T ) (1.1)

with: A: the annual rate of soil erosion (negative value) or sediment accumulation (positive
value) (t.ha−1.yr−1); Zn: the 137Cs reserve in the sampling point (kBq/m2); Z0: the initial
Chernobyl derived 137Cs fallout (kBq/m2); ρ: soil bulk density (g/cm3); T : the duration of
the estimated period (30 years from the moment of the Chernobyl accident to the sampling);
25: the depth of soil sampling; 100: unit conversion factor. This method relies on several
assumptions about the tracers: (a) Uniform local fallout distribution. (b) 137Cs fallout is
rapidly adsorbed onto soil particles. (c) Subsequent redistribution of 137Cs reflects sediment
movement. (d) Estimates of rates of soil loss can be derived from measurements of soil 137Cs
inventories (Walling & Quine, 1992).

1.4 Modeling erosion
Models are widely used to estimate and represent erosion in a wide range of conditions

(Morgan, 2005). The most famous model is the USLE equation (Universal Soil Loss Equation)
(Wischmeier & Smith, 1978). This empirical model is meant to compute the diffuse erosion,
with as basis equation:

A = R × K × LS × C × P (1.2)

where: A: annual average soil erosion (Mg.ha−1.yr−1), R: rainfall-runoff erosivity factor
(MJ.mm.h−1.yr−1), K: soil erodibility factor (Mg.h.MJ−1.mm−1), LS: slope length and
steepness factor (dimensionless), C: land cover and management factor (dimensionless), P :
soil conservation or prevention practices factor (dimensionless). The RUSLE (Revised Universal
Soil Loss Equation) is an adaptation of this model (Renard et al., 1997).

The model that we use in this study is the WaTEM/SEDEM (WS) model. It is a spatially
distributed soil loss and sediment delivery model based on the RUSLE equation. It is divided
into two modules, where WaTEM (Water and Tillage Erosion Model) concerns water and tillage
erosion (Van Oost et al., 2000) and SEDEM (SEdiment DElivery Model) refers to sediment
transport and sedimentation (Van Rompey et al., 2001). A complete description of the model
can be found in the WaTEM/SEDEM Manual (Notebaert et al., 2006). In the WaTEM module,
the RUSLE equation is adapted to a two-dimensional landscape by using the unit contributing
area instead of the slope length in the computation of the slope length factor (L). The principle
of the water erosion model is to consider the erosion rate (EP T ot) as the sum of the potential

5



for rill (EP R) and inter-rill erosion (EP IR) (equation 1.3).

EP T ot = EP R + EP IR = R × K × L × S × C × P (1.3)

For each cell, the sediment inflow and the sediment of the cell is compared to the transport
capacity (equation 1.4). If the sediment inflow is higher than the transport capacity, deposition
occurs.

TC = kT C × EP R (1.4)

The amount of sediment leaving the cell is then equal to the transport capacity. Then, the
potential inter-rill erosion is computed as:

EP IR = a × R × K × SIR × C (1.5)

where
SIR = 5.0 × Sg0.8 (1.6)

and a is a coefficient. Sg is the slope gradient (m/m)

The tillage erosion, which is due to variations in tillage translocation over a landscape is
controlled by the change in the slope gradient. In convexities, erosion happens while accumula-
tion takes place in concavities. First, the net downslope flux due to tillage translocation (Q) is
computed as:

Q = ktil × S = −ktil × dh

dx
(1.7)

with ktil, the tillage transport coefficient, and S the slope gradient. Then, the local erosion or
deposition rate (Et) is calculated as:

Et = ρb × dh

dt
= −dQ

dx
= ktil × d2h

d2x
(1.8)

1.5 Problematic and hypothesis
One of the main problems faced by scientists to study erosion is the lack of spatially dis-

tributed data, which are essential to calibrate and validate spatially distributed models (Batista
et al., 2019). Jetten et al. (2003) pointed out the fact that only a few studies compare the pre-
dicted erosion patterns to the observed ones, while the majority of the model tests and sensitivity
analyses focus on outlet-based data only.

More particularly in the case of the use of the WaTEM/SEDEM model, some authors report
a lack of representativity in the spatial distribution of deposition in the catchment (Zhidkin
et al., 2023). Indeed, the output of the model shows deposition mainly in the valley bottom
or in the rills, while in reality, some landscape features such as field boundaries, grass strips,
or other topographic and soil properties parameters are likely to influence the deposition rate.
This "problem" is in fact inherent to the way the model is constructed. Based on the equations
presented before (1.3-1.8), it appears that the deposition has 2 possible sources. It can either
be due to the tillage erosion (1.7,1.8) or to the water erosion (1.3-1.6). Between those two
components, only the water erosion is divided into inter-rill and rill erosion. Therefore, this is
the one that should be more investigated to understand why the model has the tendency to
show less deposition in the inter-rills. In this component, the deposition is controlled by the
value of Tc, the transport capacity. If we combine the equations, we obtain for a bare soil and
without particular soil conservation practices (C = 1 and P = 1):

TC = ktc × (EP T − EP IR) = R × K × kT C × (LS − aSIR) (1.9)
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Here, it is important to understand all the parameters of the equation. The only one that has
not been explained yet is kT C , which is the transport capacity coefficient (in m). It "describes
the proportionality between the potential for rill erosion and the transport capacity. It can be
interpreted as the theoretical upslope distance that is needed to produce enough sediment to reach
the transport capacity at the grid cell, assuming a uniform slope and discharge" (Van Rompey
et al., 2001). This coefficient needs to be calibrated and validated before its use in the model.
The hypothesis of this study is that this coefficient is not uniform in the catchment and the
aim will be to determine which variables may influence its value. All in all, it is clear that the
topographic variables play an important role in the spatial distribution of deposition modeling in
WaTEM/SEDEM. In more recent studies, other parameters such as tillage direction are tested to
determine their influence on erosion and deposition in the inter-rills in agricultural catchments.

Therefore, the aim of this study is to test whether deposition can actually occur in the
inter-rills. Moreover, the parameters that influence erosion and deposition will be determined.

The estimation of erosion and deposition will be made by using the Difference of DEM ap-
proach. This method has already been used in this specific catchment and has shown encouraging
results, even if it faced technical issues related to ground control points (Pineux et al., 2017a).

A particularity of this study relies on the scale at which it is conducted. In terms of spatial
scale, the study area is a small agricultural catchment. This is different from most approaches
that focus either on the field scale or on large catchments. The temporal scale is of around 10
years. It is therefore neither an event-based approach nor a long-term study, which are the most
common scales used in erosion studies.
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Chapter 2

Materials and methods

2.1 Study area
The study area is a small agricultural catchment of 124 ha located in Chastre, in the province

of Walloon Brabant, in the Belgian loess belt (figure 2.1). The coordinates of the outlet are
50°36’23.111"N, 4°35’42.542"E. The catchment is dominated by agricultural areas (98%). The el-
evation varies between 128 and 161 m and the slope ranges from 0 to 9%. A complete description
of the catchment can be found in Pineux et al. (2017a) and Cantreul et al. (2020).

Figure 2.1: Catchment presentation and location

The catchment is divided into 12 main parcels, which are sometimes subdivided into smaller
ones depending on the annual cultural plan. The crop rotation consists in mainly sugar beat

8



(Beta vulgaris), winter wheat (Triticum aestivum), potatoes (Solanum tuberosum), maize (Zea
mays), chicory (Cichorium intybus), and barley (Hordeum vulgare). Linen (Linum usitatissi-
mum) and rapeseed (Brassica napus) can also be found. The complete representation of the
parcel division and the crop rotation is presented in figure 2.2. The parcels identified as n°12
are always planted with maize which is dedicated to wild fauna for hunting purposes. The map
presenting the number of the parcels can be found in figure 2.8 in section 2.4.1.
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Figure 2.2: Crop rotation from 2013 to 2022

Over the past years, and especially in July 2021, some important rainfall events happened
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in the catchment. This event caused the formation of gullies in the fields (figure 2.3). This is
important to take into account because the farmer rearranged the soil in order to fill in the gullies.
This was observed on the field (figure 2.4) and is also clearly visible on the orthophotoplan of
2022 provided on WalOnMap (https://geoportail.wallonie.be), as shown in figure 2.5.

Figure 2.3: Gullies observed in the fields (Gilles Swerts)

Figure 2.4: Observation of soil translocation on the field (Gilles Swerts)

Figure 2.5: Orthophotoplan WalOnMap 2022 showing the filling of gullies by the farmer
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2.2 Available data
The catchment is equipped with several instruments such as a meteorological station that

measures, among others, the precipitations on a 5min time step. In addition to this, field surveys
are done every month to determine the FCR classification (Facies, Crop cover, Roughness), based
on the methodology of Cerdan et al. (2001).

Every year since 2011, aerial surveys were carried out with drones, also called Unmanned
Aerial Vehicles (UAVs) to produce DEMs of various resolutions by using photogrammetry. For
this data source, it is important to distinguish between the Digital Terrain Model (DTM) and
the Digital Surface Model (DSM). The latter takes into account the vegetation or buildings
while for the first only the ground elevation is computed. This can have a large influence on the
analysis. Most of the DEMs produced for the catchment using UAVs were DSM, except in 2022
for which a DTM was also produced. However, in order to avoid a too important influence of
the vegetation, most of the DSMs were acquired during the winter.

Another source for the DEM is the "Service Public de Wallonie", through the WalOnMap geo-
portal (https://geoportail.wallonie.be). Again, there are 2 types of DEMs available (DTM
and DSM). They were acquired in 2013-2014 (Lidar acquisitions: 12/12/2012 to 09/03/2014)
and 2021-2022 (Lidar acquisitions from 19-02-2021 to 05-03-2022). An overview of all the DEMs
available with the source, the flight dates and the resolution is presented in table 2.1.

Table 2.1: Source, date and resolution of DEMs available

Source (UAV/WalOnMap) Date DTM/DSM Resolution

WalOnMap

2013-2014 DTM

1m
DSM

2018 DSM

2021-2022

DTM
DSM
DTM 0.5mDSM

UAV

11-12-12

DSM

∼0.12m
12-12-13 ∼0.12m
23-05-14 ∼0.12m
??-12-15 ∼0.15m
13-12-16 ∼0.12m
13-03-17 ∼0.25m
06-02-18 ∼0.3m
14-02-19 ∼0.3m
17-03-20 ?*

21-04-22 DTM 0.5m
DSM 0.018m

*No DSM was found

2.3 DEM analysis

2.3.1 Influence of the vegetation

Prior to the difference of DEMs and the statistical analysis, an investigation of the data quality
is necessary. More precisely, since there are different DEM types (DSM and DTM), it is essential
to determine which data source is the most relevant to use. To do so, a visual comparison based
on transects in the catchment was carried out. The data provided on WalOnMap have the
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advantage to be either DTM and DSM and can therefore be compared to see to what extent
the vegetation influences the values.

2.3.2 Uncertainty analysis

For each DEM, some uncertainty is present, due to the precision of the measurement and
building process of the DEM. It is important to make sure that the potential errors in the DEM
due to precision remain lower than the changes that can be expected in the elevation. The
precision in Z of the different DEMs can be found in table 2.2. Another verification approach
consists in comparing different points in the catchment that are not supposed to encounter an
elevation change over the years. Such points can be for example located on infrastructures
such as buildings or roads. Since the catchment is mostly composed of agricultural fields, the
only elements that can be used as "reference" are the road and the path around the catchment
boundaries.

Table 2.2: Precision of DEMs

Data source Precision in z
DSM 2013 (UAV) around 0.04 m (Pineux et al., 2017)
DSM and DTM 2022 (UAV) around 0.07 m

DSM and DTM WalOnMap 0.12 m on the whole Walloon territory
(https://geoportail.wallonie.be)

2.3.3 Difference of DEM

As explained earlier, the difference of DEMs have 2 data sources: the DEMs produced by UAV
flight data acquisition and the DEMs provided by WalOnMap. To make sure that the results
can be compared, the time extent has to be similar. Therefore, since the available WalOnMap
DEMs were collected in 2013-2014 and 2021-2022, the DEMs produced by UAVs that will be
used are the ones of 2013 and 2022. The difference of DEM is always computed as:

∆DEM = DEMrecent − DEMold (2.1)

The resolution of the WalOnMap DEMs will be 1 m. This will serve as the reference for the
DEMs produced with UAVs flights, which will be resampled to 1 m resolution (using the bilinear
method). The projection system chosen for this study is the Belgian Lambert 72 (EPSG:31370).

2.3.4 Transects

In order to estimate in a more qualitative way the influence of the field boundaries, flow
accumulation streams or transition features in the catchments, some transects were made across
the catchment (figure A.11 in the appendix) to visualize the elevation changes related to erosion
and deposition. The DEMs produced at different years were compared to determine if they can
be used to observe the temporal evolution of erosion and deposition.

2.4 Statistical analysis
One of the objectives of this study is to determine which variables can influence the spa-

tial distribution of erosion and deposition. To do so, a statistical analysis will be conducted.
The variables are represented by different raster layers and the observations will be created by
extracting the values of the raster layers for a certain number of points in the catchment area.
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2.4.1 Variables tested

Based on the literature review, variables that may influence erosion were identified and for
each variable, a raster layer was created.

• Slope
The slope is an important topographic parameter influencing erosion and deposition. It
was determined in QGIS based on the DEM of 2013-2014 provided on WalOnMap and
expressed in percent.

• Curvature
The slope curvature was determined with the "Slope, Aspect, Curvature" tool provided in
the QGIS "SAGA" tools, with the "general curvature" section. The DEM that served as
basis for this was the DEM of 2013-2014 provided on WalOnMap.

• Flow accumulation - contributing area
The contributing area to flow accumulation was determined based on the DEM of 2013-
2014 provided on WalOnMap. It was first filled using the "FillDepressionsPlanchonAnd-
Darboux" function of the WhiteboxTools toolbox in QGIS. Then, the functions "D8Pointer"
and "D8FlowAccumulation" of the same toolbox were used successively.

• Tillage direction
Tillage direction was determined based on the interpretation of the orthophoto plans pro-
vided on WalOnMap between the years 2012 and 2021, with the assumption that the tillage
direction corresponds to the sowing direction. First, the tillage direction was determined
as its deviation compared to the North (corrected to range between 0 and 180°). Then,
the difference between the aspect and this angle was taken in order to have for each pixel
the angle between the aspect and the tillage direction.

• Distance to field boundaries
The "distance to fields boundaries" variable was created using the "Euclidean distance"
tool in QGIS. The field boundaries were determined based on the parcel maps between
2012 and 2022. Since some parcels were subdivided into smaller ones depending on the
year, only the main parcels were taken into account.

• R factor
The R factor is one of the parameters used in the USLE equation. It is used to represent
the erosivity of the rainfall. To compute this parameter, the rainfall data sampled at
a 5 minutes frequency in the catchment between 2012 and 2022 were used. Different
methods and equations are encountered to compute the R-factor. The chosen method for
this study is the Python rfactor package (Gobeyn et al., 2021a), developed for Flanders
(Belgium) (Gobeyn et al., 2021b). R is defined as the mean yearly rainfall erosivity factor
(MJ.mm.ha−1.h−1.year−1):

R = 1
n

n∑
j=1

(
mj∑
k=1

Ek(I30)k)j (2.2)

with j the index of the year considered, k the index of the rainfall event. Ek(I30)k or EI30
is the erosion index where Ek is the kinetic energy of the rainfall event (J.m−2) and I30 is
the maximum 30 minute intensity of an event (mm.h−1).

For each rainfall event k, Ek is computed as:

E =
o∑

r=1
er∆Vr (2.3)
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with r, the index of the data point in the time interval, o the number of data points, ∆Vr

the amount of rain observed in a 10-minute time interval and er the unit rainfall energy
(J.m−2.mm−1).

er = 11.12 × i0.31
r (2.4)

where ir is the rainfall intensity during the time interval of 10 minutes (mm.h−1). Since
the data available in the catchment are at a sampling resolution of 5 minutes, they have
been resampled to a 10 minutes frequency prior to the R computation. Then, the rainfall
erosivity index (EI30) was computed and summed for each year in order to determine the
R-value per year. The R factor is homogeneous in the catchment, and cannot be used as a
variable to differentiate the parcels, but it will be used to compute the next variable, the
C factor.

• C factor
The C factor corresponds to the land cover and management factor of the USLE and
RUSLE equation. According to Renard et al. (1997), it is computed as:

C =
∑n

i=1 SLRi × EIi

EItot
(2.5)

where i refers to the time interval, EI is the rainfall erosivity index computed in the R
factor and SLR corresponds to the Soil Loss Ratio:

SLR = PLU × CC × SC × SR × SM (2.6)

with: PLU : Prio Land Use subfactor, CC: Canopy-Cover subfactor, SC: Surface-Cover
subfactor, SR: Surface-Roughness subfactor, SM : Soil-Moisture subfactor. In this study,
according to the methodology applied in Wallonia by Bielders et al. (2011), PLU and SM
will be equal to 1. The PLU computation implies many different parameters that require
long-term experimentation on field plots. The SM subfactor is also hard to compute.
Its value is fixed at 1, considering that soil moisture is close to field capacity. The CC
subfactor equals to:

CC = 1 − Fc × e(−0.1.H) (2.7)
in which Fc is the fraction of soil covered by the canopy and H (ft) is the mean height at
which raindrops fall after reaching the canopy. The SC subfactor is :

SC = e(−b×Sp×( 0.24
Ru

)0.08) (2.8)

where b is an empirical coefficient (fixed to 0.035 (Bielders et al., 2011)), Sp is the per-
centage of soil covered by crop residues and Ru is the surface roughness (in), for Ru⩾0.24
inches. The surface roughness is "a function of the surface’s random roughness, which
is defined as the standard deviation of the surface elevations when changes due to land
slope or nonrandom tillage marks (such as dead furrows, traffic marks, and disk marks)
are removed from consideration" (Allmaras et al. 1966, in (Renard et al., 1997)). The SR
subfactor is computed as:

SR = e(−0.66×(Ru−0.24)) (2.9)
where Ru is still the surface roughness (in). The input values of the Fc and Sp parameters
were derived from the FCR classification data according to table 2.3.

Table 2.3: Fc and Sp values derived from C factor (crop cover) of the FCR classification

Classes Percentage of area covered by
either canopy or litter (%) Value taken for Fc Value taken for Sp

C1 0-20 0.1 10
C2 21-60 0.4 40
C3 61-100 0.8 80
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The value of H was derived for each date and crop type from the graphs produced in the
study of Bielders et al. (2011). Since this study did not take into account the phacelia,
the height of this crop was considered as linen. The plantation and harvest dates were
assumed to be identical to the ones taken in this study. Another hypothesis is the fact
that only the main crop was taken into account in this computation; since there was no
sufficient information about the presence or type of an intercrop, the crop height was fixed
to 0 before the sowing and after the harvest date. This is not supposed to have a large
influence on the computation of the CC factor because the information of the canopy
or litter cover (FC) is still taken into account in the FCR classification. Moreover, the
sensitivity analysis (figure 2.6) shows that for a low canopy cover, the height has a small
influence on the CC value.

Figure 2.6: Sensitivity analysis of the
influence of H on CC

Figure 2.7: Sensitivity analysis of the
influence of Ru (in inches) on SC

For the surface roughness, the roughness index of the FCR classification could not be used
as input data since it does not correspond to the same type of roughness. Indeed, in the
FCR classification, roughness is divided into classes from 0 to > 15 cm and defined as
the "difference in the heights of the deepest part of microdepressions and the lowest point
of their divide" (Cerdan et al., 2001). This implies that in this case, the non random
roughness (tillage and disks marks, ...) are taken into account and this is not in line with
what is required for the Ru parameter in equations 2.8 and 2.9. Therefore, the roughness
data were taken from the report of Bielders et al. (2011), in the same way as for H. The
date ranges of the data is limited and the missing values were fixed to 0 (same for phacelia).
Because equation 2.9 is only applicable for Ru⩾0.24 and SR equals 1 otherwise, the SR
parameter was equal to 1 most of the time.

For the SC parameter (equation 2.8), Ru was fixed to 0.24 inches, according to what
was done in Bielders et al. (2011). Indeed, the sensitivity analysis (figure 2.7) shows that
rugosity has a low influence on the value of SC.

For each date at which the FCR data were available, an SCR value was computed and
multiplied by the EI computed in the R factor method (cumulated erosivity from the
previous date). Then the products were summed for each parcel and divided by the total
erosivity index (2013-2021).

The C factor computation covers the period 2013-2021.

The final output is a raster map (figure 2.8) where each parcel (or sub-parcel) gets a C
value. For grass and woods, the map was completed with values taken from Cantreul et al.
(2018), respectively 0.003 and 0.082.
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Figure 2.8: Map of the C factor and parcel numbers

• IC (connectivity index)
The connectivity index (IC) can be calculated in a GIS environment. It represents the
potential connectivity between the different parts of a watershed. It takes as input data
an elevation map and weighting factors and is calculated as:

IC = log10
Dup

Ddn
= log10( WS

√
A∑

i
di

WiSi

) (2.10)

where Dup is the upslope component in which W : average weighing factor of the upslope
contributing area (dimensionless), S: average slope gradient of the upslope contributing
area (m/m), A: upslope contributing area (m2) and Ddn is the downslope component
with di: length of the ith cell along the downslope path (in m), Wi: weight of the ith cell
(dimensionless) and Si: slope gradient of the ith cell (m/m) (Borselli et al., 2008). The
IC appears to depend on the pixel size, and was computed for this specific catchment
by Cantreul et al. (2018). They determined that the most suitable pixel size is 1 m. To
compute the IC factor, the methodology of Borselli et al. (2008) was applied using the
Spatial Analyst extension of the ArcMap software, and according to what was done in both
studies (Borselli et al., 2008; Cantreul et al., 2018), the C factor was used as weighting
factor (W ). The elevation map used was the WalOnMap DTM of 2013-2014.

• LS factor
For the LS factor (slope length factor of the RUSLE equation), different options were
investigated. It was first computed on QGIS with the LSfactor function of the ’SAGA
> Terrain Analysis > Hydrology’ tool. The input maps were a slope map (in radians)
made with the same reference map as previously, the DTM of 2013-2014 provided on
WalOnMap, and the catchment area. The method chosen was the algorithm of ’Desmet
& Govers, 1996’. The other default parameters were kept unchanged. The second option
was the LS map produced by the model WaTEM/SEDEM with the algorithm of Govers.
The collinearity test (correlation matrix) between the variables will determine which of
the two options will be kept in the statistical analysis.

• Cultivation intensity
This last factor is not quantitative but a qualitative factor that was added to highlight
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the differences in cultivation practices between the parcels. As shown in figure 2.2, some
parcels experience more intense and shorter crop rotations than others, with an alternate
between cereals and tuber crops such as sugar beet, potatoes, or chicory every 2 years.
Those cultivation practices are likely to cause soil loss due to crop harvesting. In order
to see if there was a difference in terms of erosion, the parcels with the shorter rotations
of tuber crops were assigned a value of 2, the longer rotations had a value of 1 while the
parcels that are always covered with maize had a value of 0.

2.4.2 Sampling method

An important objective of this study is to determine if there is a difference in terms of
deposition in the rills and inter rills. To do so, a random sample of 500 points was produced
in the catchment. The non-arable zones (forests and grass) were excluded from the analysis, as
well as parcel n°10, where the gullies were filled by the farmer (see section 2.1).

2.4.3 Statistical analysis

Outliers detection

The first step of the analysis consisted in checking for outliers in the dependent variable in
the datasets (the Difference of DEMs). To do so, the 25th percentile (Q1) and the 75th percentile
(Q3) of the datasets were computed and enabled to determine the Interquartile Range (IQR).
Then, each individual observation was analyzed and considered as an outlier if:

obs < Q1 − 1.5 × IQR or obs > Q1 + 1.5 × IQR (2.11)

However, in order to avoid the loss of information associated with areas that potentially experi-
ence more erosion/deposition, this determination was followed by a visual interpretation of those
outliers in the QGIS environment. Based on their respective values and in comparison with the
values observed in the adjacent pixels, the points were removed from the dataset (considered as
outliers) only if their value was considered as unlikely to represent erosion/deposition or if they
were too different from the surrounding pixels.

Collinearity analysis

Then, a collinearity analysis was performed to test the correlation between the (quantitative)
variables, by using a correlation matrix. The highly correlated variables were removed from the
analysis.

Principal Component Analysis

After that, a Principal Components Analysis (PCA) was done on the dataset in R, using
the FactoMineR library. This enabled us to see the relations between the variables and their
potential contribution to explaining the phenomenon of erosion and deposition, as well as their
possible interactions.

Multiple Linear Regression

Then, based on this, a Multiple Linear Regression (MLR) was carried out in R. It was divided
into different steps, presented in figure 2.9. The principle of the MLR is to compute a linear
regression based on the value of different independent variables in order to predict the value of
the dependent variable. The MLR was performed on the same variables as the ones used in the
PCA. The three DoD variables were successively considered as the dependent variable, while
the rest were the independent ones. Different combinations of input variables were tested and
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compared based on the value of the Akaike Information Criterion (AIC) and the adjusted R2.
The model with the highest adjusted R2 and the lowest AIC was selected.

Figure 2.9: Flow chart of the Multiple Linear Regression

Model validation

Two types of model validation were performed. First, a Monte Carlo Cross-validation was
carried out. It consists in running the model several times and having for each run a new
sampling of a certain proportion of "train" and "test" data points. Then, it computes the mean
value (over the x runs) of some parameters such as the Root Mean Squared Error (RMSE) of
the model as well as its standard deviation. In this case, 100 repetitions were made, with 90%
of "train" data and 10% of "test" data. In addition to this, other parameters such as the relative
RMSE (rRMSE), the Ratio of Performance to deviation (RPD) and the percent bias (PBias)
were extracted and computed as follows:

RMSE =
√∑

(xobs − xpred)2

nobs
(2.12)

where xobs and xpred are the observed and predicted values of erosion/deposition, respectively
and nobs is the number of observations.

rRMSE = RMSE

xobs
(2.13)

where xobs is the mean value of the observations.

RPD = σobs

RMSE
(2.14)

with σobs, the standard deviation of the values observed.

PBias =
∑

(xpred − xobs)∑
xobs

× 100 (2.15)

The second validation approach consisted of sampling about 120 new random points in the
catchment and using the model to predict their deposition/erosion based on the value of the
independent variables. Then, the predictions were compared to the observations and the quality
of the predictions were assessed trough the values of the RMSE, rRMSE, RPD, and PBias.
The analysis was performed separately for the 3 Differences of DEM data sources (WalOnMap
(DTM and DSM) and drones).
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2.5 WaTEM/SEDEM Modeling

2.5.1 General settings description

For the WaTEM/SEDEM modelings, different input parameters are needed (description
adapted from Notebaert et al. (2006)):

• Elevation map

• Parcel map: each parcel is numerated from 1 to n, and some values are assigned for each
land use type: -2: roads and build-up area, -1: rivers, 10000: forests, 20000: pasture, 0:
outside the studied area.

• River routing map (optional)

• Crop factor - C factor (RUSLE): can be either a value (identical for the entire catchment)
or a map. The default value is 0.37 for croplands, 0.001 for forests and 0.01 for pasture.

• Ponds: location of ponds or retention pools in the area.

• Soil erodibility factor - K factor (RUSLE): can be either a value (identical for the entire
catchment) or a map. The default value is 35 (expressed in kg.m−2.h.MJ−1.mm−1).

• Ptef: Parcel: can be either a value (identical for the entire catchment) or a map: "rep-
resents how much a given pixel contributes to water transport, compared with a referential
base (plain arable land)". The default value is fixed to 0 for cropland and 75 for both
pasture and forest.

• Parcel connectivity: can vary between 0 and 100 and "represents to what extent water
transport is stopped at the parcel border". It means that for a value of 90, 10% of the
water can reach the adjacent parcel. The default values are set to 10 for a connection to
croplands and 75 for pasture and forest.

• Rainfall erosivity - R-factor (RUSLE): value expressed in MJ.mm.m−2h−1. The default
value is 0.087.

• Transport capacity coefficient (kT C): maximum sediment mass that can be trans-
ported in a pixel. A low, high and limit value can be adapted. Default values are 75, 250
and 0.1, respectively.

• Slope length factor - LS (RUSLE): different options for the algorithm to use.

• Tillage transport coefficient (ktill): 600 kg/m2

• Bulk density: a constant value on the whole catchment, with as default value 1350 kg/m3

For the different modelings, the spatial resolution is 20m, which is the default resolution in
WaTEM/SEDEM. The elevation map was the DTM WalOnMap 2013-2014, resampled to 20m
resolution. Since the model was built for Flanders, the default values of the different input
parameters are supposed to be close to what we could expect for Wallonia. However, the model
is aging and the more recent computations of those parameters show differences with the default
values included in WaTEM/SEDEM. Therefore, the following input parameters were adapted:

• K factor(soil erodibility): the latest computation of this factor was performed in 2022
by Maugnard et al. (2022). Based on the maps produced in the report, the value of 0.06
t.h.MJ−1mm−1 was chosen. This value had to be converted in kg.h.m−2.MJ−1mm−1 to
match the requirements of WaTEM SEDEM. This results in a value of 60 kg.h.m−2.MJ−1mm−1.

• R factor(rainfall erosivity): still according to the report of Maugnard et al. (2022), a value
of approximately 750 MJ.mm.m−2.h−1 was selected, resulting in 0.075 MJ.mm.m−2.h−1
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for WaTEM SEDEM.

The output maps representing water erosion, tillage erosion, and total erosion can be ex-
pressed in ton/ha or in mm. In this study, we use the mm in order to simplify the comparison
with the DoDs that are expressed in m. The model also provides the total sediment production,
the total sediment deposition, and the total sediment export (in t). The different outputs will
be compared.

2.5.2 Influence of the connectivity

First, the influence of the parcel connectivity was tested. The connectivity to cropland was
set to 0, 30, 50, 70, and 100. The parcel map (figure 2.10) was created in the same way as for
the tillage direction, taking into account the parcel division which is the most often observed
through the years.

Figure 2.10: Parcel map 20m resolution used as input in WaTEM/SEDEM

The rest of the input parameters were kept to the default values.

2.5.3 Influence of parcel division

Then, in order to test the influence of the parcel division in the modeling, several runs were
made using different values of connectivity (0 and 100) with the catchment considered as one
unique parcel (figure 2.11).
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Figure 2.11: Parcel map 20m resolution used as input in WaTEM/SEDEM (homogeneous
catchment)

2.5.4 Adaptation of the C factor

In this section, the influence of the C factor was tested, by replacing the default value of 0.37
by the map produced for the catchment (section 2.4.1), with an individual value for each parcel.
The connectivity was set to 70, as the most common connectivity value considered nowadays in
Belgium is 30%. As a reminder, in our case, a connectivity value of 70% corresponds to 30% of
water transferred to the next parcel. This run is supposed to be the closest to reality.

2.5.5 Influence of filling the DTM

For this last trial, the exact same input parameters were used as in the previous section,
except for the DTM that was first filled using the functions presented in section 2.4.1.

2.6 Evolution of the streams in the catchment
One advantage of this experimental catchment is the fact that it is now followed for a relatively

long period (around 10 years). The frequent fields surveys and the monitoring of the different
devices present in the catchment enabled to follow the catchment closely. This was done by
Gilles Swerts who witnessed some changes in the flow paths around the years/ seasons, depending
among others on the agricultural practices. Since different DEM sources are also available, a test
was made to see if those changes in flow paths were also visible with the DEMs at 1m resolution.
So, in addition to the flow accumulation map produced for the WalOnMap DTM of 2013-2014,
several flow accumulation maps were produced based on the WalOnMAp DTM of 2021-2022 and
UAV DTM of 2022, using the same QGIS functions (see section 2.4.1). For the WalOnMap DTM
of 2021-2022 that was in Lambert 2008 (EPSG:3812), the flow accumulation was first produced
and then reprojected in Lambert 72 (EPSG:31370), because doing the opposite (reproject the
DTM first) produced unexpected results.
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2.7 Comparison of the model approach and the difference of
DEMs

We will compare the modeling approach using WaTEM/SEDEM with the DoD by different
means. First, a visual interpretation will be performed by comparing the output map of WS
considered as the most realistic (parcel division, connectivity set to 70%, C map and DTM not
filled) with the DoDs. Diverging as well as converging zones will be visually compared. Then,
we will quantify the proportion of deposition occurring in the inter-rills and in the rills in the
DoDs. To do so, different zones were defined in the catchment as shown in figure 2.12. The
rills zone was created by using a 10m buffer around the accumulation flows. The inter-rills
zone corresponds to the rest of the catchment. Note that the vegetated zone was removed from
the analysis in both zones. For each zone (rills and inter-rills), the sum of the deposition was
computed and then divided by the area of the zone. This corresponds to the mean value of
deposition. Then, the mean deposition in the rills was divided by the mean deposition in the
rest of the catchment.

Figure 2.12: The zones defined to characterize the distribution of deposition in the catchment
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Chapter 3

Results

3.1 DEM analysis

3.1.1 Influence of the vegetation

A visual analysis of 5 transect lines chosen arbitrarily in the catchment (figure A.1 in the
appendix) to compare the elevation differences between the DSM and DTM shows that for the
WalOnMap data, the influence of vegetation is particularly high in the strips of vegetation.
For example, in line 4, an important peak can be observed in the DSM (figures 3.1 and 3.2).
Therefore, to avoid misinterpretation of the elevation changes values, the vegetation strips will
be excluded from the statistical analysis.

Since the only UAV-sourced data for which the DTM and the DSM are present is the year
2022, a comparison was also made for this year (figure 3.2). It shows higher differences between
the DSM and the DTM, even outside the vegetation strips. This can be explained by the fact
that the flight occurred in April 2022, which implies that vegetation was also present in the
fields, which influences the elevation value in the DSM. In order to avoid this effect, it would
be logical to choose the DTM instead of the DSM for the UAV data. However, a comparison
between the WalOnMap and UAV data was carried out with the same transects (figure 3.4),
and for 2022, the DTM appears to be the most different from the other data sources. For 2013,
the UAV DSM tends to be similar to both the DSM and the DTM of WalOnMap (figure 3.3).

3.1.2 Uncertainty analysis

The location of the points taken for the comparison on the road and path is shown in figure
3.5. The elevation of the pixel in the different rasters is shown in table 3.1. The differences of
elevation compared to the WalOnMap DTM of 2013-2014 is shown in table 3.2. The average of
the absolute difference and the standard deviation were computed for each dataset, after having
removed the eventual NAs. Except for the UAV DTM of 2022, the differences remain globally
lower than the precision in Z (see table 2.2), which is encouraging regarding the reliability of the
data sources. The higher differences in elevation with the UAV DTM of 2022 are in line with
the observations of the transect approach (section 3.1.1). This is another argument to use the
DSM of 2022 instead of the DTM for the UAV, even if the acquisition dates are not similar as
is normally required.
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Figure 3.1: Differences between the DTM (mnt) and DSM (mns) of the transect lines for
WalOnMap data of 2013-2014
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Figure 3.2: Differences between the DTM (mnt) and DSM (mns) of the transect lines for
WalOnMap data of 2021-2022
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Figure 3.3: Differences between the DTM (mnt) and DSM (mns) of the transect lines for
WalOnMap data of 2013-2014 and the drone DSM of 2013
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Figure 3.4: Differences between the DTM (mnt) and DSM (mns) of the transect lines for
WalOnMap of 2021-2022 and drone data of 2022
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Figure 3.5: Location of the "control points"

Table 3.1: Elevation (in m) of the "Control points" in the different DEM data sources

UAV WalOnMap
id DSM 2013 DSM 2022 DTM 2022 DSM 2013 DTM 2013 DSM 2022 DTM 2022
1 144.01 143.99 143.83 143.98 143.98 144.06 144.03
2 135.42 135.48 135.23 135.43 135.43 135.47 135.42
3 NA 129.98 129.79 130.06 130.01 130.04 129.98
4 155.19 155.16 155.02 155.19 155.19 155.26 155.19
5 159.18 159.21 159.00 159.21 159.21 159.29 159.22
6 158.18 NA NA 158.18 158.18 158.20 158.17
7 158.13 NA NA 158.08 158.07 158.14 158.08
8 158.90 NA NA 159.00 159.00 159.04 159.00
9 157.44 157.50 157.36 157.57 157.57 157.67 157.57
10 158.72 158.91 158.74 159.01 159.01 158.99 158.96
12 158.25 158.24 158.11 158.46 158.46 158.29 158.24
13 154.47 154.45 154.06 154.51 154.50 154.58 154.50
14 155.40 155.32 155.11 155.41 155.40 155.46 155.39
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Table 3.2: Elevation differences (in m) of the "Control points" in the different DEM data
sources, compared to DTM WalOnMap 2013-2014

UAV WalOnMap
id DSM 2013 DSM 2022 DTM 2022 DSM 2013 DTM 2013 DSM 2022 DTM 2022
1 0.029 0.008 -0.155 0.000 0.000 0.080 0.053
2 -0.008 0.049 -0.198 0.000 0.000 0.040 -0.007
3 NA -0.034 -0.223 0.050 0.000 0.033 -0.032
4 0.003 -0.032 -0.169 0.000 0.000 0.072 0.000
5 -0.025 0.003 -0.206 0.000 0.000 0.080 0.007
6 -0.005 NA NA 0.000 0.000 0.023 -0.012
7 0.054 NA NA 0.005 0.000 0.063 0.005
8 -0.099 NA NA 0.000 0.000 0.038 -0.003
9 -0.130 -0.075 -0.206 0.000 0.000 0.100 0.003
10 -0.294 -0.104 -0.268 0.000 0.000 -0.025 -0.048
12 -0.212 -0.221 -0.346 0.000 0.000 -0.170 -0.215
13 -0.030 -0.047 -0.442 0.010 0.000 0.080 0.003
14 -0.001 -0.084 -0.298 0.005 0.000 0.053 -0.015

mean 0.068 0.051 0.193 0.005 0 0.066 0.031
sd 0.105 0.075 0.089 0.014 0 0.070 0.063

3.1.3 Difference of DEM

Based on the DEM analysis performed in section 3.1.1 and 3.1.2, three Differences of DEMs
(DoDs) maps were produced (figure 3.6): the differences between the UAVs DSM of 2022 and
2013 (a), the differences between the WalOnMap DTMs of 2021-2022 and 2013-2014 (b), and
the differences between the WalOnMap DSMs of 2021-2022 and 2013-2014 (c). The different
DoDs are also presented separately in the annex (figure A.2, A.3, A.4). As a reminder, positive
values (blue) are assigned to deposition while negative values (red) correspond to erosion (section
2.3.3). Our first observation is that, on the perspective of the whole catchment, the two data
sources (drones versus WalOnMap) do not show the same tendencies in terms of the spatial
distribution of erosion and deposition. The range of erosion and deposition seems to be higher
for the drone DoD than for the WalOnMap DoD.

On the drone DoD, we observe deposition in the upper parts of the catchment, as well as in
the lower parts of some parcels.

The DTM DoD shows erosion in most of the catchment and deposition in parcels 8, 9, 10, and
11. In both cases, we observe that deposition is not only located in the rills as it is the case in
the WS modeling. The DSM DoD shows the same tendencies as the DTM DoD, but seems to be
influenced by eventual different flight dates since we observe lines that do not seem to represent
reality. For each DoD, some statistical parameters (mean, standard deviation, minimum and
maximum values) were computed with the zonal statistics tool in QGIS. This was done for the
whole catchment area and for the catchment without the vegetation strips (mainly areas covered
with trees), by using a mask. The results are shown in table 3.3.
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Figure 3.6: Differences of DEMs (DoD)

When comparing the statistical parameters for the whole catchment and for the catchment
without vegetation, we see that the main difference is observed in the minimum and maximum
values, especially for the DSMs. This also results in a reduction of the standard deviation. This
distinction was made in order to capture what were the main tendencies observed in the fields
in terms of erosion and deposition. The mean and median values remain small (not more than
a few centimeters). This also enables us to see that even when removing the most sensitive
zones (trees), some extreme values remain in the DoD, as we can see in the minimum and
maximum values that are not likely to represent real soil erosion or deposition. Therefore, it
will be necessary to check for eventual outlier values prior to the statistical analysis.

Table 3.3: Zonal statistics of the different DoDs (values expressed in m)

DoD source mean sd min max
DTM Walonmap -0.001 0.060 -1.443 0.651
DSM Walonmap 0.033 0.452 -15.891 17.851Total catchment

drone -0.005 0.526 -11.197 17.350
DTM Walonmap 0.000 0.058 -1.443 0.651
DSM Walonmap 0.020 0.174 -15.971 8.666Catchment without

vegetation strips drone -0.029 0.096 -1.159 6.155

3.2 Statistical analysis

3.2.1 Variables

The different variables maps are presented in the appendix (figure A.10). Note that the flow
accumulation variable was presented as its log10 in order to improve the visual interpretation
only.

3.2.2 Outliers detection

The histograms of the DoD values of the points are presented in figure 3.7. A boxplot of the
DoD values is presented in figure A.5 in the appendix.
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(a) (b)

(c)

Figure 3.7: Histograms of the DoD values (in m) of the sampling points: (a) DTM WalOnMap
, (b) DSM WalOnMap and (c) drone DSM

We can observe that the distribution is normal and concentrated between -10 and 10 cm,
but some points present higher values. Therefore, an outliers analysis was conducted. The
comparison of the DoD to the IQR enabled to spot 15 points as outliers (figure 3.8). However,
an inspection of those data showed that an important part of the points identified as outliers
were located near the field boundaries. The value of their erosion or deposition was checked
and compared to the surrounding pixel values of the DoD maps. If the values were not too
different, the point was kept in the analysis and removed from the outliers. If the value seemed
to be highly influenced by the field boundaries and by the depressions or bumps caused by the
mechanical engines, or by the ancient presence of a grass strip, the point was considered as an
outlier. This resulted in only 5 points considered as outliers.
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Figure 3.8: Outliers detection

3.2.3 Colinearity between the variables

The correlation matrix (table 3.4) revealed that the slope and the LS were highly correlated.
Since two options were available for the LS, only the one with the lowest correlation with
the slope was kept for the statistical analysis (LS computed with WaTEM/SEDEM). The two
WalOnMap DoDs are also highly correlated but this was expected and is not a problem since
the multiple linear regression will be made separately for the different dependent variables.

Table 3.4: Correlation matrix of the variables

C factor curvature distance to
field boundaries DoD drone flow

accumulation IC LS (WaTEM/
SEDEM Govers) LS (SAGA) DoD DSM DoD DTM slope tillage

direction
C factor 1.000
curvature -0.017 1.000

distance to
field boundaries 0.018 -0.049 1.000

DoD drone 0.032 -0.046 0.027 1.000
flow accumulation -0.079 -0.046 0.057 0.015 1.000

IC 0.066 -0.121 0.037 0.009 0.047 1.000
LS (WaTEM/

SEDEM Govers) 0.082 -0.020 0.000 0.005 -0.020 0.486 1.000

LS (SAGA) 0.026 0.041 0.056 -0.041 -0.043 0.507 0.526 1.000
DoD DSM 0.478 -0.366 0.162 0.104 0.010 0.022 -0.033 -0.238 1.000
DoD DTM 0.404 -0.498 0.218 0.239 0.030 0.087 -0.048 -0.169 0.872 1.000

slope 0.007 0.038 0.044 -0.034 -0.068 0.491 0.511 0.972 -0.263 -0.185 1.000
tillage

direction 0.098 0.069 -0.222 0.081 -0.050 0.129 0.225 0.255 -0.300 -0.291 0.278 1.000

3.2.4 Principal components analysis

The principal component analysis (PCA) used 11 variables, including one qualitative vari-
able (the cultivation intensity) and 10 quantitative variables listed here with the corresponding
abbreviations used in the figures.
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• DoD DTM WalOnMap: mnt

• DoD DSM WalonMap: mns

• DoD DSM drone: drone

• Slope: slope

• LS factor: LS-gov

• Tillage direction: till-dir

• Flow accumulation: flowacc

• Curvature: curvature

• Index of connectivity: IC

• C factor: C

• Cultivation intensity: cult-int

In the first step of the analysis, the plots of the individuals on the different axes were analyzed
to spot potential outliers (figure 3.9).

Figure 3.9: Plot of the individuals on the dimensions 1 and 2 (left) and 3 and 4 (right)

The point 408 was identified as such and considered as an outlier in the rest of the analy-
sis. Then, the correlation circles (figure 3.10) were produced and the correlations between the
variables and the principal components (the axes) were computed. The correlation circles of the
other main axes are presented figure A.6 in the appendix. The plot of the "eigenvalues" (figure
3.11) of each principal component revealed that most of the information is in the first and the
second components, but the 4 first components (corresponding to the dimensions or axes in the
circles of correlation) can be retained in the analysis (eig > 1).
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Figure 3.10: Circle of correlation on the 2 first axes

Figure 3.11: Graph of the ’eigenvalues’ of the principal axes of the PCA

The values of the correlation of the variables with the principal components that have a
high significance level (p-value ≤ 0.05) are shown in the annex (figure A.7). The observation
of the correlation circles combined with the value of the correlation between the variables and
the principal dimensions show that on the first dimension mnt and mns are highly correlated to
each other, and are also correlated to the C factor and negatively correlated to the curvature.
On the second dimension, we observe a correlation between the IC, the slope and LS. This
correlation might imply an interaction between the variables, that will be tested in the MLR.
The plots of the individuals (after removing point 408) with a distinction between the modalities
of the "cultivation intensity" factor (figure 3.12) did not show a clear contrast in the distribution
of the points along the axes.
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Table 3.5: Model selection - multiple linear regression

Variables Parameters
model n° C curvature dist flowacc IC LS_gov slope till_dir cult_int slope*IC slope*LS_gov R2-adj AIC
M1 x*** x*** x*** x* x*** x x*** x*** 0.527 -1605.6
M2 x*** x*** x** x . x** x x*** x x*** 0.620 -1698.1
M3 x*** x*** x*** x* x*** x*** x*** 0.528 -1607.6
M4 x*** x*** x*** x* x* x x*** x*** x 0.526 -1603.8
M5 x*** x*** x*** x* x** x x** x*** x 0.526 -1604.0

DTM

M6 x*** x*** x** x . x x x x x*** x x 0.618 -1694.4
M1 x*** x*** x* x* x* x . x*** x*** 0.505 -1425.6
M2 x*** x*** x x x . x * x*** x x*** 0.601 -1516.3
M3 x*** x*** x* x* x** x*** x*** 0.502 -1424.1
M4 x*** x*** x* x* x. x. x*** x*** x 0.504 -1423.8
M5 x*** x*** x* x* x* x. x*** x*** x 0.505 -1424.8

DSM

M6 x*** x*** x x x x x** x x*** x x 0.600 -1514.1
M1 x x x x x x x x* 0.002 -989.3
M2 x x x x x x x . x x 0.003 -988.9
M3 x. 0.004 -997.2
M4 x x x x x x x x * x 0.000 -987.4
M5 x x x x x x x x* x 0.000 -987.3

drone

M6 x x x x x x x x x x x -0.001 -984.9
legend: x:variable included in the model, level of significance of the variable: ∗ ∗ ∗ (p-val<0.001), ∗∗ (p-val <0.01), ∗ (p-val<0.05), . (p-val<0.1).

Figure 3.12: Plot of the individuals with distinction based on the variable ’cultivation intensity’

3.2.5 Multiple linear regression

The different variables combinations and the performance parameters associated are pre-
sented in table 3.5.

The different models can be explained as follows:

• M1 All the quantitative variables

• M2 All the quantitative variables and the qualitative variable (cultivation intensity)

• M3 Only the quantitative variables that were at least significant (p-value ≤ 0.05) in the
first run

• M4 All the quantitative variables and the interaction term between slope and the IC factor

• M5 All the quantitative variables and the interaction term between slope and LS factor

• M6 All the variables and the 2 interaction terms

For the Walonmap datasets (DTM and DSM), the second model (M2) was selected. For the
drone dataset, none of the models performed really well. Indeed, the model with the highest

36



adjusted R2 (remaining low) and the lowest AIC had only one independent variable. Therefore,
the same model as for Walonmap was chosen in order to enable comparison.

3.2.6 Model validation

The results of the Monte Carlo validation are presented in table 3.6 and figure 3.13. Note that
since the values are computed for each of the 100 runs, only the mean values of the parameters
are presented in this section. The boxplots presenting the variation observed over the different
runs are presented in figures A.8 in the appendix.

Figure 3.13: Boxplots of the RMSE (in m) of the Monte Carlo validation over 100 runs for the
three datasets

Table 3.6: Mean values of the parameters of the Monte Carlo validation

source RMSE (m) rRMSE (-) RPD (-) Pbias (%)
DTM 0.033 -12.272 1.625 22.5
DSM 0.040 2.202 1.584 -5.4
drone 0.077 -4.639 1.000 5.7

The results of the ’testing’ points validation are presented in table 3.7 and figure 3.14.

Table 3.7: Parameters of the "testing points" validation

source RMSE (m) rRMSE (-) RPD (-) Pbias (%)
DTM 0.038 9.300 1.532 -9.9
DSM 0.046 1.424 1.482 -12.4
drone 0.082 -3.982 1.012 -7.5

In addition to this, for the DTM model, the ’test’ points were ordered based on the absolute
difference between the predicted value and the observed one and plotted in the catchment (figure
3.15). This does not enable us to see a particular distribution in the quality of the representation
of the points.
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(a) (b)

(c)

Figure 3.14: Plot of the observed values as a function of the predicted values for the ’test’
dataset: (a) DTM WalOnMap, (b) DSM WalOnMap and (c) drone DSM

Figure 3.15: Representation of the absolute difference between observation and predictions of
the test points DTM
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3.3 WaTEM/SEDEM modeling
The outputs of the WaTEM/SEDEM modeling in terms of sediment production, deposition

and export are presented in table 3.8.

Table 3.8: Comparison of the model outputs in WaTEM/SEDEM

section DTM
filled ?

Parcel
division? C factor Connectivity Total sediment

production (t)
Total sediment
deposition (t)

Total sediment
export (t)

0 2836 2590 246
30 2794 2554 240
50 2766 2530 236
70 2739 2507 233

no yes 0.37

100 2685 2459 226
0 2906 2709 197

Connectivity
& parcel division

no no 0.37 100 2901 2704 197
C factor no yes map 70 2154 1970 184

Filling the DTM fill yes map 70 2165 1975 181

The maps presenting water erosion, tillage erosion and total erosion are presented in figures
3.16 and 3.17.

3.3.1 Connectivity and parcel division

Since the influence of connectivity and parcel division are linked to each other, their analysis
will be performed simultaneously. Indeed, if there is no parcel division, there is no need to
specify a value of connectivity between the parcels, and changing the connectivity value does
not influence the outputs of the model (or very slightly). When we distinguish the different
parcels, we observe that the higher the connectivity, the lower the sediment production (and
deposition and export). Regarding the spatial distribution of erosion and deposition, it does
not influence the tillage erosion but we can see some differences in the water erosion. We can
also observe that the connectivity does not influence the proportion of sediment deposition or
export, which remains constant. As a reminder, in the case of the WaTEM/SEDEM model, the
value of the connectivity specified "represents to what extent water transport is stopped at the
parcel border" (see section 1.4). It means that the more we increase the value of connectivity,
the more we "isolate" the field.

The reduction of sediment production due to the increase in connectivity can be explained
by the fact that the more we increase the connectivity, the less water can go from one parcel
to another. Since water is the agent responsible for water erosion, if there is less water flow, it
results in less erosion.

3.3.2 Adapted C factor

The adaptation of the C factor to the local conditions shows a decrease in the sediment
production in comparison with the default parameters. When analyzing the spatial distribution
of the erosion and deposition, it can be observed that the modeled deposition remains mainly
located in the rills while erosion mainly occurs in the inter-rills. We can also clearly see the
sensitivity of parcel n°10, where three important erosion axes are present. This corresponds to
what was observed in the fields (see section 2.1).

3.3.3 Influence of filling the DTM

Filling the DTM did not greatly influence the model outputs in this catchment. This can be
explained by the fact that a function to remove the pits is already included in the WaTEM/SE-
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Figure 3.16: WS output maps testing influence of connectivity with parcel division
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Figure 3.17: WS outputs maps testing influence of connectivity without parcel division,
influence of C factor and filling DTM
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DEM model. Moreover, an analysis of the pits that were removed showed that only a few pits
were removed and they were relatively small.

3.4 Evolution of the streams in the catchment
The map of the different streams computed is presented in figure 3.18. Even if the accu-

Figure 3.18: Accumulation flows computed based on different DEMs over time and Lidaxes
from WalOnMap

mulation flows remain globally similar over the years, there are some differences. The lidaxes
computed for 2022 with the WalOnMap and drone DTM are similar. We can also observe
that the different accumulation flows stay located in the "uncertainty zone" of the WalOnMap
lidaxes. This uncertainty zone corresponds in fact to the possible variations of the traces of
the fluxes (WalOnMap - Géoportail de la Wallonie, 2021). It can also be noted that the real
situation in the fields might be slightly different since some small channels are present between
the flowmeters and sampling devices.

3.5 Comparison of the model approach and the difference of
DEMs

Figure 3.19 presents a comparison of two DoD (drone and DTM Walonmap) and the Wa-
TEM/SEDEM total erosion output, with a focus on two zones that present similarities (A and
B) and differences (C) in the pattern observed in terms of erosion and deposition. As observed
before, the WS outputs are characterized by deposition being mostly concentrated in the thal-
wegs. The aim of this comparison is to see if more deposition is also observed in the thalwegs
with the DoD approach. The visual comparison reveals that we can indeed observe deposition

42



Figure 3.19: Comparison of the DoD with the model output of WaTEM/SEDEM

in the thalwegs with the DoD approach, but this remains located in specific zones (as in A and
B) and is not generalized. We also observe diverging patterns like in zone C where we see mainly
deposition in the DTM DoD while the WS outputs model mostly erosion and the DSM DoD
shows erosion in the upper parts of the field and deposition in lower parts. In order to quantify
this tendency, zonal statistics were produced for 2 different zones in the DoDs: the rills and the
inter-rills (after having removed the vegetation strips). The results are shown in table 3.9. As
we can see, depending on the data source of the DoD, we observe a higher (for the WalOnMap
DEMs) or lower (for the drone DSMs) proportion of deposition in the rills in comparison with
the inter-rills.

Table 3.9: Proportion of total deposition (in m/m2) for rills and inter-rills and ratio (-)

Zone DTM DSM drone
Inter-rills 0.021 0.037 0.021
Rills 0.030 0.041 0.018
Rills/inter-rills 1.4 1.1 0.9
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3.6 Transects approach
The transects presented in the figure 3.20, enable to show some tendencies. The first obvious

observation concerns the transitions between the parcels (lines 3 and 5). Then, we can see that
some DSMs show a clear influence of crop growth (left part of line 3 drones for 2013 and 2015).
The drone lines do not enable to see a clear direction in the evolution of the soil elevation. What
we observe is that there are variations of about 50 cm throughout the entire period. We still
observe the tendency of the drone DTM of 2022 to be lower than the rest of the data sources.
This is an indication that reinforces the choice of using the DSM and not the DTM for the
drone DoD, because doing so would have caused to "observe" erosion in the whole catchment.
Regarding the WalOnMap lines, we do not observe this variation of 50 cm, but when focusing
on some zones identified as experiencing deposition near the thalwegs (section 3.5) such as lines
1 and 6, we observe this phenomenon in the transects.

44



Figure 3.20: Transect lines - evolution
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Chapter 4

Discussion

4.1 DEM analysis
The differences observed between the drone DoD and the WalOnMap DoDs are surprising and

do not encourage full trust in those data as an actual representation of erosion and deposition.
However, some interpretations are to be made.

The erosion observed in the upper parts of the catchment in the drone DoD are not in line
with what is expected. Indeed, in the basic definition of erosion, sediments are expected to be
transported downwards in the catchment. It could have been interesting to compute the DoD
for every year to see if the temporal evolution always follows the same pattern. An investigation
of the DSMs available revealed that some of them could not be used because there was either
a problem in the construction of the DSM (this is the case for 2014 and 2018) or a too high
influence of the vegetation (2015). Moreover, it is better to compare DSM for years in which the
crop rotation is similar (Pineux et al., 2017a). The only suitable DoD that could be used is the
one for 2017-2013. This DoD, presented in figure A.12 shows the same pattern as 2022-2013,
which is encouraging.

The choice of using one or another type of data (drone DSMs or Lidar DTMs) is not trivial and
depends on different factors. Drone DSMs have the advantage to enable fine spatial resolution
(up to a few centimeters in our case) as well as better precision in z compared to WalOnMap
data. However, the precision in x, y can be lower and influenced by the choice of the ground
control points. The flight parameters may also influence the DSMs, with for example "border
effects" due to a lower overlapping of the images near the borders of the surveyed area. The
relatively low costs associated with photogrammetry enable to compute DSMs frequently. Lidar
DTMs provided by WalOnMap have the advantage to cover a larger area (Wallonia) that might
be useful for large-scale studies. The cost of this technology and the scale at which it is applied
do not enable to compute new DEMs frequently. In conclusion, depending on the study to
undertake, the most cost-effective solution should be chosen.

4.2 Statistical analysis

4.2.1 Variables

Based on the observations expressed before about the differences between the DTMs and
DSMs, it could be surprising to use the DSM DoDs in the statistical analysis to try to explain
erosion and deposition. Indeed, the first assumption would be that since DSMs are influenced
by vegetation, they do not properly represent reality in terms of erosion and deposition when
they are subtracted from each other. However, the comparison of the WalOnMAp DTM and
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DSM (section 3.1.1) did not show important differences between the two data sources. Since for
the drone data only DSMs could be exploited, it was decided to also use WalOnMap DSMs to
enable comparison.

The choice of some variables remains based on arbitrary choices regarding the algorithms
of the methods used for the computation. The computation of the C factor faced some issues
related to data availability, for the input parameters needed. This was for example the case for
the value of the roughness or the crop height, which were extracted from another study (Bielders
et al., 2011). In order to improve the accuracy of the C factor computation of this catchment,
it would be useful to monitor the soil roughness with one of the three techniques presented and
used in Bielders et al. (2011). Moreover, information about the intercrops planted would be
necessary (type of crop, date of sowing, and harvesting (if applicable)). However, it was noted
that the data collected in the experimental catchment of Chastre were useful and already more
complete than in most of the cases.

4.2.2 Outliers detection

The method chosen for the outlier detection could be improved. The method has the advan-
tage of avoiding removing data points that could represent more extreme erosion or deposition
events, that are more likely to be real and not due to precision issues in the DEMs. However,
the side effect is that after the detection based on the IQR, the visual interpretation relies on
an arbitrary choice of the operator. Moreover, this method would not be suitable for a larger
amount of outliers to check. In order to improve this method, we could either use an algorithm
that could compare the data with the surrounding pixels and determine its deviation compared
to them, based on a predefined rule or more simply remove all the outliers identified with the
IQR method.

4.2.3 Principal Components Analysis

The PCA revealed a positive correlation between the WalOnMap DoDs and the C factor.
This means that a high deposition is associated with a high value of C. In the RUSLE equation,
the opposite is true, since more erosion is associated with a high C. However, the fields that tend
to be the most exposed to erosive rainfall events during critical crops periods (high C) also tend
to be located more in the lower parts of the catchment (near the outlet), which also corresponds
to a zone where more deposition is observed in the WalOnMap DoDs. The hypothesis here is
thus that other variables influence the occurrence of deposition in those fields. This reminds us
that correlation does not always mean causality.

In the same way, the negative correlation of curvature with the WalOnMap DoD could be
interpreted as more erosion (negative DoD) occurring when curvature is positive, while more
deposition occurs in negative curvatures. In the WS model, tillage erosion is negatively correlated
with the curvature (see equation 1.7 in section 1.4), thus deposition (positive DoD) should be
linked to positive curvature. In our case, curvature was computed at a 1m resolution, aiming to
represent local depressions or bumps in the fields. However, we could not observe a clear pattern
in the catchment (see map in the annex) and it is difficult to interpret the link between the two
variables. A visual inspection of the relation between the DTM and the curvature showed
that curvature seems to be positive on ’hills’ and negative on the ’rills’, which could explain
the negative correlation between the DoD and the curvature. To improve this interpretation, it
would be useful to have more insight into the algorithm used in the curvature computation (from
(Zevenbergen & Thorn, 1987)) and to test other spatial resolutions. However, this correlation
might be an indication that tillage erosion might play an important role in the total erosion in
the catchment. A study of Van Oost et al. (2005b) conducted in another catchment in central
Belgium showed that the relative importance of tillage erosion and water erosion to total soil
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redistribution on agricultural land has shifted in the last decades, with a higher contribution of
tillage erosion.

4.2.4 Multiple Linear Regression

The performance of the MLR is assessed by the parameters computed in the model validation.
The same tendencies are observed for the different parameters depending on the data source,
with a better performance of the DTM and a lower for the drone dataset. First, let us analyze
the Monte-Carlo validation, which was based on the dataset used for the model construction.
Over the different runs, the RMSE presents a mean value of a few centimeters. The RMSE
is the lowest for the DTM and the highest for the drone dataset. The rRMSE compares the
RMSE to the mean observed values. Low (absolute) values indicate good performance, meaning
that the drone and DSM could perform better than the DTM. However, our data are distributed
around 0, with positive and negative values, and the mean value being really close to 0. It might
explain the deviation of the rRMSE values compared with the other parameters. The rRMSE
seems to be a parameter that is not suitable for this analysis. The RPD compares the RMSE
to the standard deviation of the observations and represents the part of the variability in the
validation dataset that is explained by the model. It means that "RPD values of 2, 3 and 4
mean that, respectively, 50%, 66.67% and 75% of the total variation in the validation dataset
is caught by the model" (Meersmans et al., 2011). For the WalOnMap datasets, the model
explains about 40% of the variability. For the drone dataset, the value is close to 1, meaning
that the RMSE is similar to the variability observed. The advantage of the PBias is that it
characterizes the systematic error included in the model and enables to see its direction (over
- or under-estimation). It is expressed in %. The percent bias is low for the 3 datasets. The
performance of the model seems to be the best for the DTM DoD, but the inspection of the
boxplots presenting the variation of the parameters over the runs (figure A.8 in the appendix)
shows that it is also the data source for which the variability is the highest.

This interpretation should be compared to other similar spatially distributed models from
the literature. Unfortunately, most of the calibration and validation of erosion models are done
on the sediment production at the outlet (Jetten et al., 2003).

Then, the analysis of the "testing points" validation shows the same tendencies, even if the
values should not be compared since the approach is different. The negative values of PBias
reveal that there is a tendency of the model to underestimate the predictions. The plots of
the observations compared to the predictions reveal that the WalOnMap datasets perform well
(points aligned on the x=y function), but not the drone model. The regression equation com-
puted between the predicted and observed points seems to be influenced by the points that are
close to 0, as we would expect it to be more vertical.

The plot of the test points in the catchment based on their score on the quality of the
predictions (low absolute difference between observations and predictions) did not reveal clear
tendencies in the distribution of the points with the best or lowest score. It would be possible
to determine if other parameters influence the quality of the prediction.

This study showed that it is possible to build a model that predicts spatially distributed
erosion and deposition based on the values of the different variables and considering that ero-
sion and deposition is assessed through the difference of DTMs approach. However, even with
the encouraging validation parameters of the model, it should be noted that the erosion and
deposition events remain limited in terms of range (most are limited to low values) that could be
blended with the precision errors of the DTMs. More investigations are needed to verify if the
performance of the model can be assessed. Nevertheless, this type of model and the variables
included in it could be used to improve the determination of the transport coefficient capacity
(kT C) in WaTEM/SEDEM, with a spatially dependent value that varies with the variables.
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4.3 Comparison of model approach and difference of DEMs
To compare the outputs of the model with the DoDs, some considerations need to be taken

into account. First, the output maps of WS are expressed in mm and represent a mean annual
value. In contrast, the DoDs are expressed in m and cover a period of about 10 years. Secondly,
the WS outputs enable us to see the separate effects of tillage erosion and water erosion. In
the DoD, we can only see the total erosion/deposition, including wind erosion and soil loss due
to harvesting. Moreover, soil translocations can happen (as observed in parcel 10 after the
formation of gullies), as well as soil imports resulting from crop harvesting. It could have been
interesting to contact the farmers to know the quantity of soil added (or returned) to the field
after tuber crops harvesting, but the contacts were hard to find and the topic remains sensitive.
Anyhow, there is always a soil loss at the end of the whole process of crop harvesting. Even if
soil is brought back to the field after the harvest, the amount of soil is supposed to be lower
or equal to the amount of soil that is removed from the fields with the crops. Thirdly, the two
maps present different resolutions, with 20m for the WS outputs and 1m for the DoDs.

However, taking all these considerations into account, it is still possible to observe similar
patterns in the different approaches, especially when focusing on specific areas. We spotted
deposition in the rills, as predicted with WaTEM/SEDEM, but we also observed deposition in
other parts of the catchment

The statistics computed for the rills in comparison with the one of the inter-rills produce
diverging results depending on the data source of the DoD. We could consider that the DTM
is the most reliable because the influence of the vegetation is removed. We could then con-
clude that the tendency of observing more deposition in the thalwegs (rills) as it is modeled by
WaTEM/SEDEM is confirmed. The results show 40% more deposition in the rills than in the
inter-rills. However, we should keep in mind that the uncertainty in Z associated with the DTM
is higher than the uncertainty of the drone DSM.

The WaTEM/SEDEM modeling could be improved with a calibration of the kT C based on
the sediment export at the outlet of the catchment (Van Rompey et al., 2001). However, for
this particular study, since kT C can not be spatially adapted, it would not be likely to influence
in a large extent the spatial distribution of erosion and deposition, which was the main focus
compared to the sediment production at the outlet.

In order to improve the comparison of the WS outputs with the DoD, an approach could
be to compute successive models year after year with adapted parameters each year and sum
the different outputs to determine the total erosion pattern over the whole period instead of
on a mean yearly basis. However, this would require a new DTM for each year as input data.
Another option could be to use the LandSoil model that computes a new DEM after each rainfall
or ploughing event based on eroded and deposited soil particles (Cantreul et al., 2020).

The possibility to distinguish the different parcels based on their C value and to specify a value
of connectivity between the parcels improves the representativeness of the spatial distribution of
erosion and deposition. However, some other considerations could be taken into account such as
the tillage direction compared to the slope direction. Moreover, the conversion of output maps
from t/ha to mm is based on a bulk density of 1350 kg/m3 uniform for the whole catchment.
A more realistic option would be to consider the fact that the bulk density depends on different
factors including the soil organic matter and land use and climate conditions (Robinson et al.,
2022).
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4.4 Transects
The variations of about 50 cm observed in the drone DSMs might be representative of the

changes experienced by the agricultural soils in terms of freeze-thaw of wetting-drying cycles,
or cultivation practices. Vegetation also influences the DSM as was observed in lines 3 and 5.

The WalOnMap transects enable to see deposition occurring based on a comparison of DEMs
separated by a 10 years period. Line 4 was traced across one of the rills that formed on a flow
axis that was observed in the fields to see if this was visible in the transects. The 2022 drone
profile shows indeed a possible rill formation in the bottom of the thalweg, but it is not obvious.
The analysis should be repeated to the other rills observed to see if tendencies can be extracted.
The rill formation is not visible in the WalOnMap transects. The hypothesis explaining this is
that the rills were filled before the 2022 Lidar survey.

The "disparition" or smoothing of the transitions between the fields observed in line 5 should
not be attributed to erosion since it results from the removal of the grass strip that was located
there. The differences observed in elevation are therefore likely to be due to differences in
vegetation.

4.5 Future perspectives
The use of DoD to estimate erosion and deposition at a catchment level is a promising

method for the future but some precautions need to be taken. A better characterization of the
potential error included in the DEMs is essential. The error can be due to different steps of
the analysis, like the methodology chosen for the DEM computation, and the resolution chosen.
Moreover, the successive treatments applied to the DEMs such as resampling to other spatial
resolutions or reprojecting to another coordinate system could also affect the final product. The
evolution of the techniques also induces uncertainties, since the exact same methodology is not
undertaken for all the DEM computations. In all cases, it is important to make sure that the
changes observed are not due to precision differences in the measurements, especially because
the erosion and deposition events are often limited to a range of a few centimeters, that may
correspond to the precision in z.

More particularly, the use of DSMs requires particular attention regarding the influence that
vegetation can have on the data. In order to improve the usability of those data, it would be
interesting to make sure that all the flights are made on a similar date and to fully characterize
the state of the catchment at this time (date of sewing, last plowing, potential recent soil
addition/translocation, etc.). An option could be to focus only on a part of the catchment
for which we are 100% sure that the soil was bare at the time of the flight. If the required
information is not available, an option could be to use the orthophoto-plans computed with the
DSMs to determine the stage of crop growth based on indices such as the Normalized Difference
Vegetation Index (NDVI).

As soon as those issues will be addressed, the use of DoD or the transect approach could be
an option to fill the data gap faced by scientists to calibrate and validate spatially distributed
models.

In this study, the high resolution of the DSMs was not exploited since the DSMs computed at
a 1m resolution were used. It could be interesting to test if the increase in the spatial resolution
would improve the interpretation of the DoD or the transect approach.

The linear model built for this catchment could be improved by different means. First, more
points could be taken into account in the training dataset to capture more variation. Then, other
variables could be tested such as the topographic position index or a factor linking the slope
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to the tillage direction. Some other options of parameters could also be tested, such as other
types of curvatures, other algorithms for the LS factor, or a multi-direction flow accumulation.
Moreover, we could test different spatial resolutions. In this case, regarding the small size of
the catchment, the type of soil was not considered as having an important influence on erosion
or deposition but an extension of this approach to larger areas could require adding the soil
properties in the analysis. For example, the soil erodibility factor (K factor of the RUSLE
equation) depends among others on the soil texture, organic matter content, structure and
permeability (Renard et al., 1997).

Other options would be to focus on specific parts of the catchment separately, such as the
upper parts, the slopes and the valleys for example. We could also analyze erosion and deposition
separately.

Now that the model built for this specific catchment has shown encouraging results in terms
of validation parameters, it could be used to make future predictions of erosion and deposition.
Different scenarios could be possible to study, by adapting the raster layers used in the variables.
For example, we could test several crop rotations or cultural practices by changing the C factor
or adapting the tillage direction. It would also be interesting to test the sensitivity of the model
to the variables, and especially to the C factor.
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Chapter 5

Conclusion

The aim of this study was to characterize the spatial distribution of erosion and more specifi-
cally deposition in a small agricultural catchment. To do so, several approaches were investigated
and compared: the difference of DEMs and the WaTEM/SEDEM model. For the DoD, different
data sources were used and compared to see to what extent they could be used in assessing the
spatial distribution of erosion and deposition. The WalOnMap DoDs revealed a tendency in line
with the WaTEM/SEDEM model outputs, with more deposition occurring in the rills than in the
inter-rills (ratio of 1.4 for the DTM). The drone DoDs, in contrast, showed a higher proportion
of deposition in the inter-rills, which could be influenced by the presence of vegetation.

In addition to the DoD, a statistical analysis was conducted to determine the parameters
influencing these processes. The multiple linear regression enabled to build a model that seems
to predict well the erosion and deposition for the DoD computed with the WalOnMap DTM.
However, a better characterization of uncertainty associated to the DTM is needed to make
sure that the changes observed in terms of elevation are not due to imprecision. Several options
were discussed to improve the model, including testing different spatial resolutions or different
algorithms or methodologies for some variables such as LS, tillage direction, or curvature. The
type of model and the variables tested in this study could be used to improve spatially distributed
models such as WaTEM/SEDEM.

The drone DSMs, if computed on a bare soil can enable to see tendencies in erosion and
deposition with the DoD approach. The transects approach revealed that DSM computed each
year enabled to see a variation in the elevation, but this analysis was not able to extract clear
observation of erosion or deposition in specific features. A more in-depth and systematic analysis
could be done to determine if patterns can be seen. This could be performed on a higher
resolution to see to what extent it influences the analysis.

For the WalOnMap DTMs, the transect approach enable spot deposition in the thalwegs,
which was in line with the WaTEM/SEDEM model outputs.

In conclusion, even if some developments are still required in terms of uncertainty associated
with DEMs, they seem to be a promising approach for improving the knowledge about the
spatial distribution of erosion and deposition. The DoD as well as the transects approach can
be useful methods to study this process on a 10-year interval.
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Appendix A

Additional figures

This appendix contains figures providing additional details to complement the discussion in
chapters 3 and 4.

Figure A.1: Transect lines to compare the DEMs data sources
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Figure A.2: DoD DTM WalOnMap

Figure A.3: DoD DSM WalOnMap
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Figure A.4: DoD DSM drone 2022-2013

Figure A.5: Boxplot of DoD points
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(a) (b)

(c)

Figure A.6: Circles of correlation of the PCA

(a) (b)

(c) (d)

Figure A.7: PCA: significant correlations of the variables on the main axes
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(a) (b)

(c)

Figure A.8: Boxplots of the parameters of the Monte Carlo validation
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Figure A.9: Variables of statistical analysis (1)
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Figure A.10: Variables of statistical analysis (2)

Figure A.11: Location of transect lines in the catchment
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Figure A.12: DoD DSM drone 2017-2013
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