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Abstract

Numerical simulations of dilute polymer solutions are considered through the FENE
constitutive model. More advanced closure approximations than the well-known FENE-
P model are investigated in order to close the polymer stress term: the FENE-L and
the FENE-LS. From an in-depth study of the properties of such closures, better suited
variations are proposed. The center-of-mass diffusion term is added to the Fokker-
Planck equation and the corresponding term in the polymers equations is derived as it
may be useful for solving the Eulerian problem. It however seems to brings complexity
in this case and a modified diffusion term is proposed to overcome such problems, but
has not already been tested in practice. Finally, an Eulerian Newtonian turbulent
channel at Reτ ≈ 300 is simulated and the history of the velocity gradients experienced
by 100 tracked particles are recorded. The passive response of the polymers is then
computed and the different constitutive models are compared. The most significant
differences between the FENE-P and the more complex models appear in regions where
the dumbbells are suddenly stretched after having been in their coiled configuration for
a sufficient amount of time. These differences thus occur in highly transient flows.
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Introduction

Dilute polymer solutions are known for their interesting viscoelastic properties. Among
other things, the addition of polymers to a Newtonian solvent can have strong and
surprising effects on the flow turbulent behavior, even for fairly small polymer concen-
trations (of the order of a few ppm). In particular, a significant interest has been shown
for the effects of Elastic Turbulence (ET), Elasto-Inertial Turbulence (EIT) and Drag
Reduction (DR) or even Maximum Drag Reduction (MDR) during the last decades.
In fact, such phenomena are very interesting and still not yet fully understood as the
polymers seem to have antagonist effects on the flow properties depending on its tur-
bulent regime: it can trigger and enhance the chaotic motion of initially laminar flows
on the one hand (EIT) and it can damp the fluctuations of more turbulent flows on the
other hand (DR). The specific case of MDR, constituting a fundamental limit of the
DR, is also still an interesting open question as the mechanism of this limit is not yet
understood, even though several theories exist to explain the phenomenon.

In order to gain a better comprehension of the different dynamics of the physical
problem, numerical simulations can be a useful tool as they offer a wider access to
the data of the flow considered, compared to experimental studies. As always, the
difficulty is however to derive meaningful models that accurately describe the interesting
physics and that can be simulated in reasonable amount of time, whereas experiments
benefit from the exact physical behavior of the system but suffer from the often poor
data accessibility, sometimes necessary to understand the intrinsic mechanisms of the
problem.

Since the impact of each single polymer on the fluid cannot reasonably be consid-
ered numerically, it is important to rely on the theories of continuum mechanics and
micro-rheology to derive macroscopic constitutive models that take into account the mi-
croscopic effect of the polymer molecules on the surrounding fluid. Such effect is taken
into account in practice through an extra stress term added to the classical Newtonian
stress.

However, in order to derive such term, it is necessary to have access to the expression
of the impact of a polymer molecule on the fluid. But again, this would be unfeasible to
derive the analytical expression of such influence for a general real polymer according to
the complexity of such molecule. Several conceptual levels of approximation can thus
be introduced in order to simply the description of a polymer and derive analytical
expressions of the forces it exerts on the fluid. The most widely used approximation is
the dumbbell model, which describes a polymer chain as two massive beads interacting
with the flow through hydrodynamic drag and Brownian forces and connected between
each other by a spring of given rigidity. The dumbbell model combined with a specific
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non-linear spring law yields the well known FENE (Finitely Extensible Non-linear Elas-
tic) model. The difficulty of such a model lies is the fact that the system of equations
that can be obtained is not closed. One of the methods to overcome this problem is to
try to close the system by introducing closure approximations. The most widely used
closure rely on the well-known Peterlin approximation yielding the FENE-P constitu-
tive model for the polymer stress, but such approximation is quite crude from a physical
and statistical point of view. The similarity between the results of the FENE-P and
higher fidelity results (of the general FENE model) are thus limited to some specific
configurations: mainly steady flows and high polymer extensions.

The motivation is thus to be able to yield more accurate results (than the FENE-P)
in more realistic flow configurations that are similar to the EIT or DR regimes, by
investigating more advanced and physically meaningful closure approximations. The
models that are considered here for that purpose have originally been derived by Lielens
et al. [6, 7].

The present work starts by deriving the classical FENE dynamics in Chap. 1. The
more advanced closure approximations are then presented in Chap. 2 and an in-depth
analysis is performed to better understand some of their inherent limitations in Chap. 3.
Chapter 4 focuses on the comprehension of a specific problem occurring when center-
of-mass diffusion of the polymers is considered. Finally, an application of the models
to a turbulent channel flow is performed in Chap. 5.
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Chapter 1

Polymer modeling

The contribution of the polymers on the solvent are modeled through an additional
term in the expression of the stress. More precisely, the stress of the fluid writes

σ̂ij = −p̂δij + 2µÊij + τ̂p
ij, (1.0.1)

where p̂ is the pressure, µ the dynamic viscosity of the Newtonian solvent, Ê is the
strain rate tensor and τ̂ p the polymer stress tensor. The momentum equation of the
fluid then writes

∂ûi

∂t̂
+ ûj ∂ûi

∂x̂j
= −1

ρ

∂p̂

∂x̂i
+ ν ∂2ûi

∂x̂j∂x̂j
+ 1

ρ

∂τ̂p
ij

∂x̂j
, (1.0.2)

where ν is the kinematic viscosity of the solvent. Since incompressible fluid flows are
considered here, the momentum equation should be complemented by the continuity
equation:

∂ûi
∂x̂i
= 0. (1.0.3)

Note that in the following of this work, when confusion is possible, the notation ⋅̂ refers
to dimensional quantities.

In order to compute the polymer stress tensor and be able to solve the fluid equations,
it is necessary to have access to the elementary forces that the polymers exert on the
solvent. Such information is however only accessible on average as one cannot take into
account each and every molecule in the solution. Still, it is required to have access to the
different polymer forces that come into play. Unfortunately, polymers are characterized
as very long flexible molecules composed of many monomers and it is therefore not
realistic to take into account the precise effect of all the molecule. Different conceptual
levels of approximations exist for describing the polymer dynamics.

1.1 Freely jointed chain
First, note that the focus is here on long flexible linear polymers only. The first ap-
proximation is to consider each monomer as a rigid rod and that the joints that attach
the monomers between each other are perfectly flexible. This is called the freely jointed
chain model. The hypothesis on the perfectly flexible joints is however not valid in
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practice. In fact, the angles between two joints cannot take any value in reality as these
are not perfectly flexible and also because the polymers need to avoid self interaction
(e.g. the joint cannot have an angle of 180○ as it means that the monomers would
be superposed on each other). This can nonetheless be accommodated by considering
a greater polymer size than it is in reality, since the angle restrictions lead to more
extended chains.

Considering a polymer molecule at equilibrium, all the bonds are agitated by the
Brownian forces, such that the polymer configuration is constantly evolving. One can
still define a time-averaged mean-square distance ⟨Q̂2⟩

0
between the two very ends of

the chain. It is then possible to introduce the Kuhn step size bK and the number of
Kuhn steps in the chain NK such that

⟨Q̂2⟩
0
= NKb

2
K. (1.1.1)

Finally, note that even if the joints are not perfectly flexible in practice, the influence
of the orientation of two rods (between each other) decreases exponentially as the
number of rods that separate them increases. As an approximation, one can thus
consider each rod as a random step, in the sense that two steps are independent of each
other (not valid in practice between two adjacent rods, but becomes overall satisfying
as the length of the chain increases).

1.1.1 Random walks

At equilibrium, neglecting the excluded volume effect, one can start from one end of
the polymer and progressively build up the hole chain by adding NK successive random
walks of step size bK. Since the NK random walks are considered uncorrelated between
each other, if the number of rods is sufficiently large, the sum of the random walks
(each of them being a three-dimensional vector) can be considered as a normal random
variable. In fact, considering the connector or end-to-end vector Q̂ with norm Q̂ that
connects both ends of the chain, if one end is fixed at the origin, the probability that the
other end lies between Q̂ and Q̂ + dQ̂ is ψ̂0(Q̂)dQ̂, where ψ̂0 is called the equilibrium
configurational probability distribution and follows a Gaussian distribution:

ψ̂0(Q̂) = ( 1√
2πσ
)3 e− Q̂2

2σ2 , (1.1.2)

where σ2 is the general variance of the distribution.
Note that this expression does not prevent any end-to-end polymer extension. In

fact, any positive Q̂ is associated with a non-vanishing probability density distribution.
The polymer cannot however extents to an infinite length in practice and one then
understands that the expression of ψ̂0 is not valid anymore for too large Q̂.

Considering that the polymer end-to-end vector follows ψ̂0, it is possible to relate σ2

to ⟨Q̂2⟩
0

(from Eq. 1.1.1) through the expression of the equilibrium probability density
distribution: ⟨Q̂2⟩

0
= ˆ Q̂2ψ̂0(Q̂)dQ̂ = 3σ2 = NKb

2
K. (1.1.3)
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However, in the literature one rather considers β2, such that β2 ≡ 1/(2σ2) and it yields

⟨Q̂2⟩
0
= NKb

2
K = 3

2

1

β2
. (1.1.4)

1.1.2 Entropic spring force

Considering now that the polymeric chain is stretched to a prescribed and fixed end-to-
end vector Q̂, the likelihood of that configuration can be accessed through ψ̂0. Accord-
ing to the theory of statistical mechanics, the fact that a configuration is more probable
than another is directly linked to the number of microstates of each macrostate1. In
this case, the microstates are the precise orientation of each of the monomers and
the macrostate is the end-to-end vector. One knows that the number of microstates,
noted Ω, is directly proportional to the probability density distribution of Q̂, such that
Ω(Q̂) = cψ̂0(Q̂), with c a proportionality constant. From the statistical definition of
entropy S, the entropy of any macrostate writes

S = kB lnΩ = kB ln (cψ̂0) = kB (ln c + 3 ln( β√
π
) − β2Q̂2) , (1.1.5)

with kB the Boltzmann constant.
If the enthalpy of the chain does not depend on its configuration, its free energy W

becomes W = −TS, with T the absolute temperature. The work needed to stretch the
chain from Q̂ to Q̂ + dQ̂ is then

F̂ sp
i dQ̂i = ∂W

∂Q̂i

dQ̂i = −T ∂S

∂Q̂i

dQ̂i = kBTβ
2∂Q̂

2

∂Q̂i

dQ̂i = 2kBTβ
2Q̂

∂Q̂

∂Q̂i

dQ̂i

= 2kBTβ
2Q̂
Q̂i

Q̂
dQ̂i = 2kBTβ

2Q̂idQ̂i,

(1.1.6)

where F̂
sp = 2kBTβ2Q̂ is the force needed to stretch the chain. Alternatively, the

restoring force of the chain is F̂
sp = −2kBTβ2Q̂. Using Eq. 1.1.4:

F̂
sp = −2kBTβ

2Q̂ = − 3kBT

NKb2K
Q̂ = −ĤQ̂, (1.1.7)

with Ĥ ≡ 2kBTβ2 = (3kBT )/(NKb2K), the spring constant.
This interesting result points out the fact that a polymer chain at equilibrium behaves

as a linear (or Hookean) spring as Ĥ does not depend on the end-to-end vector. Note
that the expression of the restoring force does not prevent the polymer to extend beyond
any maximal extension. This is in accordance with what was already noted for Eq. 1.1.2.
One can thus anticipate the fact that this kind of linear force will only be valid for small
polymer extensions.

1The macrostate denotes the macroscopic configuration (the end-to-end vector Q̂ in this case) and
the microstate denotes the microscopic configuration (the precise orientation of each random step in
this case). In fact, several microstates are possible for obtaining a single macrostate (here several
combinations of rods orientation can lead to the same end-to-end vector Q̂).
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Figure 1.2.1: Schematic of a dumbbell.

1.2 Coarse graining
The entropic spring force discussed in the previous section is a polymer property in
the sense that it only depends on the nature of the polymer. The goal is now to
analyze the impact of the flow on these chains. Neglecting the interactions between
the polymers themselves, one can consider two main contributions of the flow on the
polymer dynamics: the Brownian forces exerted by the fluid particles on the polymers
(this comes from the internal energy of the fluid) and the drag force of the flow which
makes the polymers follow the flow, stretch and rotate with it. One will thus have to
consider the impact of these different forces on the polymers in addition to the restoring
entropic force.

Starting from the exact flexible linear polymer, different conceptual levels of ideal-
ization are possible, starting with the already mentioned freely jointed chain. However,
it would be impossible to account for the flow forces at each of the joints of the hole
chain. The first idea is then to split the freely jointed chain in N segments that are
attached at each other by the ends. Each segment i of the chain can be modeled by a
spring of extension Q̂i and the effect of the flow is considered at the ends of the spring.
In such a configuration, the Brownian and drag forces are only taken into account at
N + 1 specific points, called the beads. This approximation is called the bead-spring
chain model. Finally, the coarser model is called the dumbbell model. It assumes that
the freely jointed chain behaves as a spring and that the applied forces are only taken
into account at the spring ends. It is equivalent to the bead-spring chain model with
N = 1. A schematic of the dumbbell representation is shown in Fig. 1.2.1. Note that in
these models (bead-spring chain and dumbbell), the mass of the polymer is assumed to
be concentrated at the beads and the springs are assumed massless. Finally note that
only the dumbbell model will be considered in the following.

1.2.1 Dumbbell dynamics

Defining the position vectors ŷ and ẑ of each of the dumbbell beads as in Fig. 1.2.1,
one can define the position of the center of mass x̂. Since the dumbbell only possesses
two massive beads, the center of mass corresponds to the geometric center, such that

x̂ = ŷ + ẑ
2

. (1.2.1)
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F̂
sp

F̂
B

F̂
d

Figure 1.2.2: Forces acting on each bead, with F̂
d

the drag force, F̂
B

the Brownian
force and F̂

sp
the spring force.

Finally, the end-to-end or connector vector Q̂ is related to the bead position vectors:

Q̂ = ŷ − ẑ. (1.2.2)

The configuration of a dumbbell is then fully defined by either the position of its
two beads or the position of its center of mass and its connector vector. One can thus
associate a probability density to each configuration and define the total probability
density distribution Ψ̂ = Ψ̂(x̂, Q̂, t̂).

In order to understand the motion of the bead, one has to do a force balance. The
different forces applied on the beads are schematized in Fig. 1.2.2. For a bead located
at ŷ their expressions are (it can also be derived for a bead located at ẑ)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F̂
d = ζ (u∞(ŷ) − dŷ

dt̂
) ,

F̂
B = −kBT∇x̂ ln Ψ̂,

F̂
sp = −Ĥ(Q̂)Q̂ = −ĤH(Q̂)Q̂,

(1.2.3)

with ζ the drag coefficient of the bead and u∞ the freestream velocity of the flow2. In
order to stay general, the spring constant is expressed as a function of the dumbbell
end-to-end distance. Indeed, as was anticipated in Sec. 1.1.2, this linear force will only
be valid for small polymer extensions, such that a more sophisticated spring force will
have to be considered at some point. Note that Ĥ(Q̂) is decomposed into a constant
dimensional part Ĥ and a non-dimensional function of the end-to-end distance H(Q̂).
One understands that in the simple case of a linear spring force, H = 1.

Eventually, for a bead at position ŷ Newton’s law writes

m
d2ŷ

dt̂2
= F̂ d + F̂ B + F̂ sp

, (1.2.4)

with m the mass of the bead. However, the inertia of the polymers can be considered
small with respect to the other terms. This is equivalent to saying that the polymers
perfectly follow the flow. The equation of motion then reduces to

F̂
d + F̂ B + F̂ sp = 0. (1.2.5)

2Note that hydrodynamic interaction is not taken into account here as the drag force exerted on a
bead of a dumbbell is not influenced by the other bead. In more realistic models, additional terms may
be considered in the expression of the drag force in order to take such influence into account [8]. Note
also that the influence of the other dumbbells are not taken into account as well as they are considered
sufficiently far apart from each other. This constitutes the dilute polymer solution assumption.
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Using the expressions of the forces and rearranging the terms, it yields.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dŷi
dt̂
= u∞i (ŷ) − kBT

ζ

∂ ln Ψ̂

∂ŷi
− Ĥ
ζ
H(Q̂)Q̂i,

dẑi
dt̂
= u∞i (ẑ) − kBT

ζ

∂ ln Ψ̂

∂ẑi
+ Ĥ
ζ
H(Q̂)Q̂i.

(1.2.6)

Computing the average of the two above equations and subtracting them gives one
equation for the center of mass and one equation for the connector vector3:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx̂i
dt̂
= u∞i (ŷ) + u∞i (ẑ)

2
− kBT

2ζ

∂ ln Ψ̂

∂x̂i
,

dQ̂i

dt̂
= (u∞i (ŷ) − u∞i (ẑ)) − 2kBT

ζ

∂ ln Ψ̂

∂Q̂i

− 2Ĥ

ζ
H(Q̂)Q̂i.

(1.2.8)

If the polymer characteristic size is small enough compared to the characteristic scale
of the flow4, the flow velocity at the beads may be approximated as a linear variation
of the velocity at the center of mass:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u∞i (ŷ) ≈ u∞i (x̂) + Q̂j

2

∂u∞i
∂x̂j
∣
x̂

,

u∞i (ẑ) ≈ u∞i (x̂) − Q̂j

2

∂u∞i
∂x̂j
∣
x̂

.

(1.2.9)

Injecting this in the previous system yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂i
dt̂
= u∞i (x̂) − d∂ ln Ψ̂∂x̂i

,

dQ̂i

dt̂
= Q̂j

∂u∞i
∂x̂j
∣
x̂´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

ˆ̇γij

−D∂ ln Ψ̂
∂Q̂i

− 1

2λH
H(Q̂)Q̂i,

(1.2.10)

where d is the center-of-mass diffusivity, ˆ̇γ is the velocity gradient tensor, D is the
configurational diffusivity and λH is the Rouse relaxation time scale5. These parameters
are thus defined as

d ≡ kBT

2ζ
, D ≡ 2kBT

ζ
, λH ≡ ζ

4Ĥ
. (1.2.11)

3Using Eq. 1.2.1–1.2.2 and applying the chain rule, one can show that
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂ŷi
+ ∂

∂ẑi
= ∂

∂x̂i
,

∂

∂ŷi
− ∂

∂ẑi
= 2 ∂

∂Q̂i

.
(1.2.7)

4The validity of this assumption may be questionable in cases where the characteristic scales of
the flow are very small and the typical elongation of the polymers are large. This could arise in
microchannels or even in highly turbulent flows.

5Further analysis shows that in the case of a fluid at rest (polymer relaxation) and considering
a linear spring approximation (H = 1), the dumbbells exponentially return toward their equilibrium
configuration in a characteristic time λH.
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Considering now the general Fokker-Planck equation for the total probability density
distribution

∂Ψ̂

∂t̂
+ ∂

∂x̂i
(dx̂i

dt̂
Ψ̂) + ∂

∂Q̂i

(dQ̂i

dt̂
Ψ̂) = 0 (1.2.12)

and injecting the results of Eq. 1.2.10, it yields

∂Ψ̂

∂t̂
+ ∂

∂x̂i
(u∞i Ψ̂) − d ∂2Ψ̂

∂x̂k∂x̂k
+ ∂

∂Q̂i

(ˆ̇γijQ̂jΨ̂) −D ∂2Ψ̂

∂Q̂k∂Q̂k

− 1

2λH

∂

∂Q̂i

(H(Q̂)Q̂iΨ̂) = 0
(1.2.13)

and considering an incompressible flow:

∂Ψ̂

∂t̂
+u∞i ∂Ψ̂∂x̂i −d ∂2Ψ̂

∂x̂k∂x̂k
+ ∂

∂Q̂i

(ˆ̇γijQ̂jΨ̂)−D ∂2Ψ̂

∂Q̂k∂Q̂k

− 1

2λH

∂

∂Q̂i

(H(Q̂)Q̂iΨ̂) = 0. (1.2.14)

The role of the diffusion coefficients that were introduced in Eq. 1.2.10 is now clear.
However in practice, the center-of-mass diffusion of polymers is often small and could
be neglected. In order to stay general, this term is kept in the following developments.
Note also that this term is often kept and even amplified numerically is order to add
numerical diffusion to the problem which stabilizes the advective term.

In many cases, the dumbbells density at a specific point and their configurations are
unrelated to each other. The total probability density function Ψ̂ can then be decou-
pled between a polymer density n̂p and a configurational probability density function
ψ̂, where the spatial dependency is explicitly taken into account in n̂p, but is only
considered as a parameter in ψ̂. It writes

Ψ̂(x̂, Q̂; t̂) = n̂p(x̂; t̂)ψ̂(Q̂; t̂, x̂). (1.2.15)

Moreover, it is common to assume that the density of dumbbells is constant in space,
such that

Ψ̂(Q̂; t̂, x̂) = n̂pψ̂(Q̂; t̂, x̂). (1.2.16)

Injecting this result in Eq. 1.2.14 gives

∂ψ̂

∂t̂
+u∞i ∂ψ̂

∂x̂i
+ ∂

∂Q̂i

(ˆ̇γijQ̂jψ̂)−d ∂2ψ̂

∂x̂k∂x̂k
−D ∂2ψ̂

∂Q̂k∂Q̂k

− 1

2λH

∂

∂Q̂i

(H(Q̂)Q̂iψ̂) = 0. (1.2.17)

For the following developments, it is important to define the configurational average
of a quantity. It is noted ⟨⋅⟩ and consists in integrating the product of this quantity
with the total probability density distribution Ψ̂ on the configuration space noted Ω,
which is the space of all admissible connector vectors Q̂:

⟨⋅⟩ = ˆ
Ω

⋅ Ψ̂(x̂, Q̂; t̂)dQ̂ (1.2.18)

and using the homogeneous fluid assumption

⟨⋅⟩ = n̂p

ˆ
Ω

⋅ ψ̂(Q̂; t̂, x̂)dQ̂. (1.2.19)
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1.2.2 Extra stress

The dumbbells dynamics affects the flow through the total stress tensor. In fact, the
total stress of a dilute solution of non-interacting particles into a Newtonian solvent can
be computed as the sum of the classical Newtonian stress and the extra stress, coming
from the particles. In this case, the extra stress can be divided into two contributions:
the contributions from the Brownian forces and the drag force.

First, it is possible to show that the extra stress coming from the Brownian forces
only adds a constant isotropic term (which seems quite logical). More precisely, the
contribution of the Brownian forces to the total stress tensor is −2n̂pkBTδij. Being
constant and isotropic, this term is commonly integrated into the pressure term. In
fact, since the pressure term is defined within a constant, it can be redefined by taking
this term into account.

Then, the extra stress coming from the drag forces takes the form

− n̂p

2
(⟨Q̂iF̂

sp
j ⟩ + ⟨Q̂jF̂

sp
i ⟩) − n̂pkBTδij. (1.2.20)

Summing all the contributions, the total stress writes

σ̂ij = −p̂δij − 2n̂pkBTδij + 2µÊij + − n̂p

2
(⟨Q̂iF̂

sp
j ⟩ + ⟨Q̂jF̂

sp
i ⟩) − n̂pkBTδij. (1.2.21)

Integrating the Brownian constant isotropic contribution into the pressure, the extra
stress is exclusively composed of the drag force contribution and the total stress writes⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ̂ij = −p̂δij + 2µÊij + τ̂p
ij,

τ̂p
ij = − n̂p

2
(⟨Q̂iF̂

sp
j ⟩ + ⟨Q̂jF̂

sp
i ⟩) − n̂pkBTδij.

(1.2.22)

Note that using the general expression of the spring force defined in Eq. 1.2.3, the extra
stress or polymer stress takes the form

τ̂p
ij = n̂p (Ĥ ⟨H(Q̂)Q̂iQ̂j⟩ − kBTδij) . (1.2.23)

In order to compute the polymer stress, one then needs to compute the term ⟨H(Q̂)Q̂iQ̂j⟩
which is unknown. It is however possible to derive an equation where it appears by
multiplying the Fokker-Planck equation (Eq. 1.2.17) by Q̂iQ̂j and integrating over the
configurational space. It gives

∂

∂t̂
⟨Q̂iQ̂j⟩ + u∞i ∂

∂x̂i
⟨Q̂iQ̂j⟩ − ˆ̇γik ⟨Q̂jQ̂k⟩ − ˆ̇γjk ⟨Q̂iQ̂k⟩

= 2Dδij + − 1

λH
⟨H(Q̂)Q̂iQ̂j⟩ + d ∂2

∂x̂k∂x̂k
⟨Q̂iQ̂j⟩ , (1.2.24)

where integration by parts has been used with the fact that the configurational proba-
bility density function ψ̂ quickly tends toward 0 as Q̂ approaches the boundary of the
configurational space Ω, as well as for the gradient of ψ̂ (with respect to Q̂).

Note that the polymer stress term needed in the momentum equation is generally
unclosed. In fact, an equation for ⟨Q̂iQ̂j⟩ has now been derived, but it still depends on
this unknown polymer stress tensor. The goal will then be to find appropriate closure
approximations to close this problem.
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1.3 Non-dimensionalization
The particularity of the physical problem considered is the fact that there exists fun-
damentally two different length scales: the typical flow length scale and the polymer
length scale. This is often the case for non-Newtonian fluid flows which are composed
of particles immersed in a Newtonian solvent since the length scale of the particles is
often smaller than the length scale of the flow. One should however recall that this is
generally not always the case and that it is an assumption that has been made previ-
ously in Sec. 1.2.1. Some quantities will thus have to be non-dimensionalized differently
considering whether they refer to the flow or the polymer. However, some other quan-
tities such as the characteristic time scale could be defined from flow quantities and
polymer quantities as well.

In this work, the equations are non-dimensionalized by a flow characteristic lengthL, a flow characteristic velocity U and a polymer characteristic length Q. All the
quantities will be non-dimensionalized by the flow characteristic length and velocity,
apart from the explicitly polymer related variables, such as the connector vector or the
configurational probability density function. Note that the chosen time scale is thus
a flow time scale and not a polymer time scale. The non-dimensionalization from a
polymer time scale is done in App. A.

The non-dimensionalization of the independent variables then leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi = x̂iL ,
Qi = Q̂iQ ,
t = UL t̂,

⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x̂i
= 1L ∂

∂xi
,

∂

∂Q̂i

= 1Q ∂

∂Qi

,

∂

∂t̂
= UL ∂

∂t
.

(1.3.1)

Other quantities are non-dimensionalized as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ̇γij = UL γ̇ij,
ψ̂ = Q3ψ,

τ̂p
ij = τp

ij

n̂pkBT
.

(1.3.2)

Using the above results, Eq. 1.2.17 becomes

Dψ
Dt
+ ∂

∂Qi

(γ̇ijQjψ) − dUL ∂2ψ

∂xk∂xk
− DLUQ2

∂2ψ

∂Qk∂Qk

− L
2λHU ∂

∂Qi

(H(Q)Qiψ) = 0. (1.3.3)

Rearranging the terms and using the expressions of the configurational diffusivity, the
Rouse relaxation time scale and the spring constant from Eq. 1.2.11, the above equation
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becomes

Dψ
Dt
+ ∂

∂Qi

(γ̇ijQjψ) − dUL°≡1/Pe

∂2ψ

∂xk∂xk

− 1

2

L
λHU±≡1/Wi

⎛⎝
⟨Q̂2⟩

0

3Q2

∂2ψ

∂Qk∂Qk

+ ∂

∂Qi

(H(Q)Qiψ)⎞⎠ = 0. (1.3.4)

The Peclet number is noted Pe and defined as Pe = UL/d. It represents the relative
importance of the momentum diffusion of the flow with respect to the center-of-mass
diffusion of the particles. Note that as was already mentioned, the center-of-mass
diffusivity is usually very small. In practice it manifests itself by a very large Peclet
number: Pe≫ 1. The Weissenberg number is noted Wi and defined as Wi = λHU/L. It
measures the relative importance of the characteristic polymer time scale with respect
to the characteristic flow time scale.

The next step is to choose the precise values of L, U and Q. The flow characteristic
quantities depend on the specific flow configuration, so that it will be specified later,
depending on the exact problem considered. The polymer characteristic size can how-
ever be fixed. There are multiple choices, but in the non-dimensional Fokker-Planck
equation, one term suggests that

Q2 = NKb2K
3
= ⟨Q̂2⟩

0

3
⇔ Q =

¿ÁÁÀ⟨Q̂2⟩
0

3
, (1.3.5)

which seems appropriate. The Fokker-Planck equation then rewrites

Dψ
Dt
+ ∂

∂Qi

(γ̇ijQjψ) − 1

Pe
∂2ψ

∂xk∂xk
− 1

2Wi
( ∂2ψ

∂Qk∂Qk

+ ∂

∂Qi

(H(Q)Qiψ)) = 0. (1.3.6)

Finally, from Eq. 1.2.23, the expression of the non-dimensional polymer stress is

τp
ij = ⟨H(Q)QiQj⟩ − δij (1.3.7)

and following the same procedure as for the Fokker-Planck equation, Eq. 1.2.24 rewrites

D ⟨QiQj⟩
Dt

− γ̇ik ⟨QjQk⟩ − γ̇jk ⟨QiQk⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▿⟨QiQj⟩

= 1

Wi
(δij − ⟨H(Q)QiQj⟩)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶−τp

ij

+ 1

Pe
∂2 ⟨QiQj⟩
∂xk∂xk

. (1.3.8)

Notice that the first three terms constitute the upper-convected derivative of the term⟨QiQj⟩ (the upper-convected derivative is noted ▿⋅) and that the fourth term is directly
proportional to the polymer stress tensor.

The equations of the flow can also be non-dimensionalized similarly. From Eq. 1.0.2–
1.0.3:

∂ui
∂t
+ uj ∂ui

∂xj
= − 1

ρU2

∂p̂

∂xi
+ νLU ∂2ui

∂xj∂xj
+ n̂pkBT

ρU2

∂τp
ij

∂xj
. (1.3.9)
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The pressure is then naturally non-dimensionalized as

p = p̂

ρU2
. (1.3.10)

The non-dimensional number in front of the viscous term is similar to the Reynolds
number (to its inverse), but one has to keep in mind that ν is the kinematic viscosity
of the solvent and not of the dilute polymer solution. The Reynolds number writes

Re = ρUL
ηT

, (1.3.11)

where ηT is the solution dynamic viscosity and is defined as the sum of the solvent
dynamic viscosity µ and the polymers zero-shear viscosity ηP = n̂pkBTλp. Defining a
concentration parameter ε that takes into account the influence of the polymer viscosity
on the solution:

ε = µ/ηT, (1.3.12)

the Reynolds number rewrites

Re = εUL
ν

(1.3.13)

and the non-dimensional number in front of the viscous term takes the form ε/Re.
Using the expression of the zero-shear polymer viscosity, the non-dimensional number

in front of the divergence of the polymer stress can be written as

ηP

ρλpU2
= (1 − ε)ηT

ρλpU2
= (1 − ε)νU 1

λpU = (1 − ε)νUL L
λpU = 1 − ε

ReWi
. (1.3.14)

The non-dimensional momentum equation takes the form

∂ui
∂t
+ uj ∂ui

∂xj
= − ∂p

∂xi
+ ε

Re
∂2ui
∂xj∂xj

+ 1 − ε
ReWi

∂τp
ij

∂xj
. (1.3.15)

It is very clear that the concentration parameter control the intensity of the influence
of the polymers on the flow. In fact, if ε = 1, the problem is said to be one-way coupled
as the momentum equation reduces to the Newtonian case, however the polymers equa-
tions can still be solved knowing the solution of the fluid. In this case, the polymers do
not influence the fluid. Another extreme case is when ε = 0. In that case, the fluid is
entirely composed of polymers and thus represents a polymer melt (the dilute solution
hypothesis is however not valid anymore).

The continuity equation trivially becomes

∂ui
∂xi
= 0. (1.3.16)

1.4 Spring function
Different spring functions will lead to different macroscopic models. In fact, the general
framework exposed in the previous sections can be particularized to specific spring
functions, starting with the simpler linear spring force that yields H = 1. A more
sophisticated spring function is exposed in Sec. 1.4.2.
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1.4.1 Oldroyd-B model

Considering now a Hookean spring force, such that H(Q̂) = 1, Eq. 1.3.7–1.3.8 rewrite

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τp
ij = ⟨QiQj⟩ − δij,
D ⟨QiQj⟩

Dt
− γ̇ik ⟨QjQk⟩ − γ̇jk ⟨QiQk⟩ = 1

Wi
(δij − ⟨QiQj⟩) + 1

Pe
∂2 ⟨QiQj⟩
∂xk∂xk

.
(1.4.1)

Ones realizes that the second equation provides an equation for ⟨QiQj⟩, such that
the polymer stress is closed and the contribution of the polymers to the fluid can be
computed. Also, one can define the non-dimensional conformation tensor as Aij ≡⟨QiQj⟩, such that the above system rewrites

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τp
ij = Aij − δij,
DAij

Dt
− γ̇ikAjk − γ̇jkAik = 1

Wi
(δij −Aij) + 1

Pe
∂2Aij

∂xk∂xk
.

(1.4.2)

Alternatively, for this simple model, rather than solving the equation for the confor-
mation tensor and then computing the polymer stress one can easily directly derive an
equation for the polymer stress tensor:

Dτp
ij

Dt
− γ̇ikτp

jk − γ̇jkτp
ik + τ

p
ij

Wi
− 1

Pe
∂2τp

ij

∂xk∂xk
= 2Eij. (1.4.3)

Neglecting the center-of-mass diffusivity, this provides a constitutive equation called
the Oldroyd-B model: ▿

τp
ij + τ

p
ij

Wi
= 2Eij. (1.4.4)

An interesting particular case is the one of a steady uniaxial extensional flow. For
this academic flow configuration, the velocity gradient writes

γ̇ =E = ε̇⎛⎜⎝
1 0 0
0 −1

2 0
0 0 −1

2

⎞⎟⎠ , (1.4.5)

where ε̇ is the non-dimensional strain rate. Note that the velocity gradient tensor is
symmetric in this case such that it is equal to the strain rate tensor. Injecting the above
result in Eq. 1.4.4, a steady solution can be found for the polymer stress:

τ p = ⎛⎜⎝
2ε̇Wi

1−2ε̇Wi 0 0
0 − ε̇Wi

1+ε̇Wi 0
0 0 − ε̇Wi

1+ε̇Wi

⎞⎟⎠ . (1.4.6)

As can be seen, for the particular value ε̇ = (2Wi)−1, the polymer stress (τp
11) grows

unbounded, which has no sense from a physical point of view. This is a practical
consequence of the linear spring force that does not prevent any elongation.

17



1.4.2 Warner spring and FENE model

As already discussed several times, assuming a linear spring law does not impose any
bounds on the polymer extension and more generally, it is similar for any spring law
that has an infinite domain. As already mentioned, this infinite extensibility makes no
sense from a physical point of view as each polymer chain possesses a finite maximum
extension. Considering again the freely jointed chain approximation, the maximal ex-
tension of the chain is the sum of the length of each rod. Taking this into account, it is
possible to write the expression of the average end-to-end distance as a function of the
applied force and this is known as the Langevin function. The inverse of that function
then yields the spring force (as a function of the polymer extension). The Langevin
function is however not analytically invertible, but it is possible to find an analytical
approximation to the inverse Langevin function. A typical approximation is the Warner
spring force, yielding the Warner spring function

H(Q̂) = 1

1 − Q̂2/Q̂2
max

, (1.4.7)

where Q̂2
max is the square of the maximum extension that a dumbbell can take. The

dumbbell model complemented with the Warner spring force is referred to as the FENE
(Finite Extensible Nonlinear Elastic) model. In practice, the Warner spring force then
presents a singularity at Q̂ = Q̂max, such that the force needed to extends a dumbbell
to its maximal extension is infinite, or inversely, an infinite force would yield a finite
extension Q̂max.

Considering the non-dimensionalization used before naturally yields

H(Q) = 1

1 −Q2/b, with b = Q̂2
maxQ = 3Q̂2

max⟨Q̂2⟩
0

, (1.4.8)

where b is the non-dimensional polymer maximum square extension, also called the
non-dimensional extensibility parameter. In this context, Eq. 1.3.8 rewrites

D ⟨QiQj⟩
Dt

− γ̇ik ⟨QjQk⟩ − γ̇jk ⟨QiQk⟩ = 1

Wi
(δij − ⟨ QiQj

1 −Q2/b⟩) + 1

Pe
∂2 ⟨QiQj⟩
∂xk∂xk

, (1.4.9)

with the polymer stress tensor

τp
ij = ⟨ QiQj

1 −Q2/b⟩ − δij. (1.4.10)

The difficulty is that now, the spring force term is unclosed as it cannot generally be
expressed as a function of the conformation tensor. This is due to the non-linearity of
the spring force (or the fact that the spring function is not a constant with respect to
Q). The consequence is that there is no closed form expression for the polymer stress
tensor and one will have to find alternatives in order to compute it anyway.

The first option is to directly solve for the configurational probability distribution
function ψ in the Fokker-Planck equation. The problem of this approach is the high
dimensionality because of the positional and configurational dependency of ψ. Indeed
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if one is interested in a three-dimensional flow, the problem is six-dimensional. This
makes it a very computationally intensive method, unsuited to real flow applications
but high fidelity.

The second method is to use Brownian dynamics simulations to follow the dumbbells
through the dumbbells equations of motion (Eq. 1.2.5) where the Brownian force term
is modeled as a stochastic force, using Wiener processes. The main limitation of this
method is the convergence rate of the statistics, which is quite low. This can however
also constitutes a high fidelity solution of the FENE equations.

Finally, the method that is used in this work is to derive closure approximations to
try to express the average of the non-linear term as a function of the known quantities.
The difficulty is then to find good closure approximations.

1.4.3 FENE-P closure approximation

The first proposed and simpler closure approximation of the unclosed term

⟨ QiQj

1 −Q2/b⟩ (1.4.11)

is known as the Peterlin approximation, leading to the FENE-P model. It consists in
considering a pre-averaged spring function HP(Q) = H(⟨Q⟩), such that the spring force
becomes

F sp
P (Q) = −HP(Q)Q = − Q

1 − ⟨Q2⟩ /b, (1.4.12)

where the P subscript denotes the Peterlin approximation. The unclosed term thus
becomes

⟨H(Q)QiQi⟩ ≈ ⟨HP(Q)QiQj⟩ = ⟨ QiQj

1 − ⟨Q2⟩ /b⟩ = ⟨QiQj⟩
1 − ⟨Q2⟩ /b = ⟨QiQj⟩

1 − ⟨QiQi⟩ /b, (1.4.13)

which is an explicit function of the conformation tensor. Using the Peterlin approx-
imation and the non-dimensional conformation tensor notation, the equation for the
conformation tensor then writes

DAij

Dt
− γ̇ikAjk − γ̇jkAik = 1

Wi
(δij − Aij

1 −Akk/b) + 1

Pe
∂2Aij

∂xk∂xk
, (1.4.14)

with the polymer stress tensor

τp
ij = Aij

1 −Akk/b − δij. (1.4.15)

The conformation tensor equation is then closed and and the polymer stress is expressed
as a function the conformation tensor, such that one can solve for A and then computes
τ p. Note that in the following, the notation A will be used to denote the trace of the
conformation tensor: A ≡ Akk = tr (A).

The FENE-P closure model has been used quite a lot to model dilute polymer
solution fluids in complex flow configurations. In particular this model has been used
extensively for Eulerian simulations of drag reduction and elasto-inertial turbulence.
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The Peterlin approximation however introduces strong deviations from the actual FENE
dynamics. In fact, the pre-averaged square extension has some impact on the polymer
statistics and this has already been extensively studied by Keunings [5].

The first thing to realize is the fact that through the pre-averaging approximation,
only the mean square extension ⟨Q2⟩ is bounded, but it is generally not the case for the
dumbbells extension Q (nor square extension Q2). In fact, considering a fluid volume
element that contains many dumbbells, it is equivalent to saying that for the FENE
model, all the dumbbells (non-dimensional) extension cannot exceed

√
b, while for the

FENE-P model, the dumbbells can do so as long as the averaged square extension is
bounded.

Another limitation lies in the fact that the polymer stress tensor is directly expressed
as a function of the conformation tensor, meaning that for any conformation tensor A,
there exists only one polymer stress tensor τ p. This is however not the case for the
general FENE model6 as shown extensively in one-dimensional problems by Keunings
[5]. In fact, the FENE dynamics presents an hysteretic behavior between the confor-
mation tensor and the polymer stress tensor, coming from the fact that the later is not
expressed as a direct function of the former. The consequence is that any model ex-
pressing τ p = τ p(A) (as the FENE-P does) is not able to show the hysteretic behavior.

Finally, it has been shown that the results of the FENE-P are in good accordance
with the FENE results for steady flows. However, for highly transient flows, the results
are often quite wrong. Since the objective is to derive good closure approximations
in order to solve turbulent flows, where the velocity gradients are very chaotic and
unpredictable, it is of paramount importance to find closure approximations that are
able to represent the hysteresis and if possible, that are qualitatively correct in transient
flows.

6From Sec. 1.4.2, recall that there exists different ways of computing the polymer stress. The method
employed here consists in closure approximation but more elaborate and higher fidelity methods exist
(though more computationally intensive) which enable assessment of the accuracy of any closure model.
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Chapter 2

FENE-L and FENE-LS closure
approximations

Before diving into the development of more advanced models, note that the derivations
of the models presented in this section were introduced by Lielens et al. [6, 7]. These
articles are considered as a reference for the developments made in this chapter.

In the previous chapter, the Fokker-Planck equation has been multiplied by QiQj be-
fore being integrated on the configuration space, in order to derive a transport equation
for the conformation tensor A. The goal of this section is to apply the same procedure
for another quantity, in order to derive a second transport equation, which will also
eventually exhibit unclosed terms.

The quantity that will be considered here is Q4. Multiplying Eq. 1.3.6 by Q4 and
integrating over Ω gives

D ⟨Q4⟩
Dt

− 4γ̇ij ⟨QiQjQ
2⟩ = 1

Wi
(10 ⟨Q2⟩ − 2 ⟨H(Q)Q4⟩) + 1

Pe
∂2 ⟨Q4⟩
∂xk∂xk

. (2.0.1)

It is then possible to define the radial dispersion of dumbbells B ≡ ⟨Q4⟩ and using the
notation of the conformation tensor:

DB
Dt
− 4γ̇ij ⟨QiQjQ

2⟩ = 1

Wi
(10A − 2 ⟨H(Q)Q4⟩) + 1

Pe
∂2B

∂xk∂xk
. (2.0.2)

Considering the transport equations for A and B, there are now several unclosed terms
and in order to make the distinction between all of them, one introduces the following
notations: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

DAij

Dt
− γ̇ikAjk − γ̇jkAik = 1

Wi
(δij −Asp

ij ) + 1

Pe
∂2Aij

∂xk∂xk
,

DB
Dt
− 4γ̇ijBd

ij = 1

Wi
(10A − 2Bsp) + 1

Pe
∂2B

∂xk∂xk
,

(2.0.3)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Asp
ij = ⟨H(Q)QiQj⟩ = ⟨ QiQj

1 −Q2/b⟩ ,
Bd

ij = ⟨QiQjQ
2⟩ ,

Bsp = ⟨H(Q)Q4⟩ = ⟨ Q4

1 −Q2/b⟩
(2.0.4)
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and the sp and d notations respectively refer to the spring force and drag force terms.
Injecting the above results in Eq. 1.4.10 also yields

τp
ij = Asp

ij − δij. (2.0.5)

As was done for the FENE-P with the Peterlin approximation, one then needs to
find appropriate closure approximations to express the unclosed terms as functions of
the known quantities. This kind of developments have been studied in details by Lielens
et al. [6, 7] using a very general framework. Only the essential explanations are kept
here in order to remain clear and concise.

2.1 Decoupled canonical subspace
Before considering more complex closure approximations (than the classical Peterlin
approximation) it is useful to enumerate the different properties and restrictions of the
configurational probability distribution function ψ. In order to do so, one can define
the space of admissible configurational probability distributions, noted Φ. The three
properties of ψ are the positivity, a normalization condition and a symmetry condition1.
More mathematically:

∀Q ∈ Ω,∀ψ ∈ Φ ∶
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψ(Q) ≥ 0,ˆ
Ω

ψ(Q)dQ = 1,
ψ(−Q) = ψ(Q),

(2.1.1)

where Ω is the configurational space, or the space of admissible connector vector Q.
Considering now a finite maximal extension of the dumbbells, Ω is defined as

∀Q ∈ Ω ∶Q ⋅Q ≤ b, (2.1.2)

which describes a centered ball of radius
√
b.

The set of admissible distributions Φ is of infinite dimension, but one can consider
only a subset of Φ noted Φc (Φc ⊂ Φ) of finite dimension. This is called the canonical
subspace and its dimension is noted m. One can then choose a set p = {α,β, ...} of
m parameters and write a parameterized distribution, called canonical configurational
distribution with this set. The distribution belongs to the canonical subspace and is
noted ψc

p. The goal is to approximate the general configurational distribution function ψ
by restricting its number of degree of freedom. Of course, the choice of the parameters
and of the expression of ψc

p is crucial in obtaining a good approximation. A very
important point is that, depending on the parameterization of the canonical probability
density distribution, it may not stay inside its canonical subspace under the FENE
dynamics described by the Fokker-Planck equation.

1The symmetry condition is there to take into account the fact that the probability of finding a
dumbbell with a given configuration (at a given position) is the same as finding the same dumbbell
in the opposite configuration. In fact, since both beads of a dumbbells are the same and its center of
mass is also its geometrical center, inverting both beads should not be noticeable.
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More concretely, the way the configurational distribution function ψ comes into
account is through the configurational space average ⟨⋅⟩. One can thus approximate
this average by the canonical configurational space average noted ⟨⋅⟩c:

⟨⋅⟩ = ˆ
Ω

⋅ ψ(Q)dQ ≈ ˆ
Ω

⋅ ψc
p(Q)dQ = ⟨⋅⟩c . (2.1.3)

Note that the canonical distribution should still satisfy the properties of the distribution
functions belonging to Φ (Eq. 2.1.1) since Φc ⊂ Φ.

The difficulty here is to deal with multivariate distributions (Q is of dimension
three). In fact, it is especially hard to derive good and meaningful parameterized
canonical distribution functions in such a high dimensional space. One way to alleviate
this problem is to introduce another layer of approximation, which yields the decoupled
canonical subspace. It consists in assuming a decoupled influence of the extension and
orientation of the dumbbells by the mean of two decoupled distributions:

ψc
p(Q) = ψQ

p (Q)ψu
p (u), (2.1.4)

where u =Q/Q is the dumbbell orientation, ψQ
p is called the canonical extension prob-

ability distribution and ψu
p is called the canonical orientation probability distribution.

The integral over the configurational space can then be decomposed as

ˆ
Ω

⋅ ψc
p(Q)dQ =

ˆ √b

0

‹ ⋅ ψQ
p (Q)ψu

p (u)Q2dQdu

= ˆ
√
b

0

Q2ψQ
p (Q) (

‹ ⋅ ψu
p (u)du)dQ,

(2.1.5)

where the volume element dQ transforms into dQdS = dQQ2du, where dS is the surface
element (for a given Q) and du the infinitesimal solid angle. The closed double integral‚

is computed over the unit sphere.
The properties (Eq. 2.1.1) of the decoupled canonical distribution function still need

to be satisfied. One imposes ψQ
p ≥ 0 and ψu

p ≥ 0 and in order to make ψc
p even, one needs

to consider an even orientation distribution ψu
p , that is ψu

p (u) = ψu
p (−u). Moreover,

one could want to choose a normalized orientation distribution function ψu
p such that

‹
ψu
p (u)du = 1. (2.1.6)

Using Eq. 2.1.5–2.1.6, ˆ
Ω

ψc
p(Q)dQ =

ˆ √b

0

Q2ψQ
p (Q)dQ, (2.1.7)

and using the normalization property of the canonical configuration distribution,

ˆ √b

0

Q2ψQ
p (Q)dQ = 1. (2.1.8)

Finally, one can define a canonical radial probability distribution ρc
p(Q) ≡ Q2ψQ

p (Q).
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It is then possible to compute the different averaged quantities using the decoupled
canonical approximation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aij ≈ (ˆ
√
b

0

Q2ρc
p(Q)dQ) (

‹
uiujψ

u
p (u)du)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Aij/A
,

A ≈ ˆ
√
b

0

Q2ρc
p(Q)dQ,

B ≈ ˆ
√
b

0

Q4ρc
p(Q)dQ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Asp
ij ≈ (

ˆ √b

0

Q2

1 −Q2/bρc
p(Q)dQ)Aij

A
,

Bd
ij ≈ BAij

A
,

Bsp ≈ ˆ
√
b

0

Q4

1 −Q2/bρc
p(Q)dQ.

(2.1.9)
From the above results, several interesting observations can be made. First, the drag
term for B is closed and expressed as a combination of the conformation tensor and
the radial dispersion. Moreover, the spring unclosed tensor for the conformation tensor
equation has been simplified such that it is directly proportional to A. The only
remaining unclosed terms of the system are thus scalars which greatly simplifies the
closure problem. As was done for the conformation tensor, one notes tr (Asp) as

Asp ≈ ˆ
√
b

0

Q2

1 −Q2/bρc
p(Q)dQ. (2.1.10)

Finally, one realizes that only the radial probability distribution function has to
be restricted to a canonical subset. In fact, the orientation probability distribution
function is left unspecified. This also greatly simplifies the parameterization work as
the distribution is simply one-dimensional rather being a trivariate distribution. The
benefits of the decoupling approximation are now clear.

The above results can be injected in Eq. 2.0.3 and 2.0.5:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

DAij

Dt
− γ̇ikAjk − γ̇jkAik = 1

Wi
(δij − Asp

A
Aij) + 1

Pe
∂2Aij

∂xk∂xk
,

DB
Dt
− 4B

A
γ̇ijAij = 1

Wi
(10A − 2Bsp) + 1

Pe
∂2B

∂xk∂xk

(2.1.11)

with
τp
ij = Asp

A
Aij − δij. (2.1.12)

Note that the condition for a model to show the hysteretic behavior is that Asp is not
only a function of A.

2.2 Parameterization of ρc

The goal is now to restrict the number of degrees of freedom for the radial probability
density distribution. Note first that since there are two unclosed terms, two parameters
are needed and these are denoted α and β respectively, such that the radial probability
density distribution is noted ρc

α,β. The challenge is now to come up with a meaningful
and proper parameterization so that ρc

α,β exhibits the right behavior. In order to do so,
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one can refer to higher fidelity simulations (solution of the discretized Fokker-Planck
equation or stochastic Brownian dynamics) that can have access to such distributions
for specific flows in order to visualize the different possible shapes that it can take. The
specific evolution of the configurational probability distribution is studied in details for
one-dimensional flows (and three-dimensional extensional flows) in the work of Keun-
ings [5] and Lielens et al. [6]. From there, for different kind of flows, the configurational
probability density distribution seems to show a plateau at low to moderate polymer
extensions, but exhibits a large peak at high extensions. This is however not true at
equilibrium since the configurational probability density distribution locally takes the
form of a Gaussian distribution (as discussed in Sec. 1.1.1).

Finally, one should keep in mind that since the goal is to express the unclosed
terms as a function of the known quantities, the more complex the expression of ρc

α,β

is, the more complex the developments will be (this is not a general rule). Also for
too complex expressions, the analytical analysis of the properties of the closure could
become difficult. By extension, for too complex ρc

α,β, it could be impossible to write
analytical expressions for the unclosed terms.

2.2.1 FENE-L

In order to approximate the higher fidelity results described above, ρc
α,β takes the shape

of a uniform distribution followed by a Dirac. The position of the Dirac is fixed at Q = α
whereas the relative importance of the uniform distribution over the Dirac is controlled
by the β parameter. The expression of the radial probability distribution function is
then

ρc
α,β(Q) = 1 − β

α
[1 −Hα(Q)] + βδα(Q), (2.2.1)

whereHα and δα are the Heavyside and Dirac distribution respectively, located atQ = α.
ρc
α,β should satisfy the properties mentioned in Sec. 2.1 such that it should be normalized

(which is the case here) and positive. Also the maximal dumbbell extension should be
Q =√b such that the support of ρc

α,β is [0,√b]. This implies that (α,β) ∈ [0,√b]×[0,1].
A graphical representation of ρc

α,β is shown in Fig. 2.2.1. The name of the model is
taken from the L-shaped radial probability distribution function.

ρc
α,β

Q

βδα1−β
α

√
bα

Figure 2.2.1: Representation of the FENE-L radial probability distribution function
ρc
α,β.

The quantities A, B, Asp and Bsp can be computed using the FENE-L canonical
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radial distribution. Their expressions are

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A ≈ βα2 + (1 − β)α2

3
,

B ≈ βα4 + (1 − β)α4

5
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Asp ≈ βα2

1 − α2/b + (1 − β)b(
√
b

2α
ln(√b + α√

b − α) − 1) ,
Bsp ≈ βα4

1 − α2/b + (1 − β)b2 (
√
b

2α
ln(√b + α√

b − α) − 1 − α
2

3b
) .
(2.2.2)

At this point, note that the precise analytical expressions of Asp and Bsp coming from
definite integrals differ from the original articles of Lielens et al. [6, 7]. After careful
mathematical investigation, it seems to be an error (developments available in App. B).
In the following, the present (considered correct) expressions are used to derive the
different results. Note that this suspected error will result in significant changes in the
properties of the model.

The goal is then to invert the expressions of A and B in order to express α and β
as functions of A and B, so that it can be injected in the expressions of Asp and Bsp.
Both unclosed terms will then be expressed as functions of the known quantities. The
inversion of the first two equations can be done an gives the relations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
α2 = 5B

3A ±√9A2 − 5B,
β = (9A2 − 5B) ±√(9A2 − 5B)9A2

10B
.

(2.2.3)

Note that since it would not add any value, these results are not injected in the expres-
sion of Asp and Bsp.

The above expressions present a surprising result as the same couple (A,B) can give
rise to two different couples (α,β). The change of variable is therefore not bijective.
Depending on the sign chosen in Eq. 2.2.3, the solution will be noted (α,β) for the ’+’
sign and (α̃, β̃) for the ’−’ sign. Also, the ’+’ solution will be called the natural solution,
while the ’−’ will be called the ghost solution. Note also that Asp(α,β) ≠ Asp(α̃, β̃) and
the same holds for Bsp. At first, there seems to be an intrinsic problem with the model.
In fact, when solving the problem in the (A,B) space, both natural and ghost solutions
a priori exist and one could not know which one to choose. Only the natural solution
will be considered at first and this will be justified later.

Another technical difficulty is the square root in the expression of α2. In fact, in
order for (α,β) to remain real, the argument of the square root should be positive,
which adds the condition

B ≤ 9

5
A2, (2.2.4)

that is not satisfied a priori. Such conditions are sometimes complex to deal with
numerically, depending on the kind of solver used.

2.2.2 FENE-LS

The closure expressions of the FENE-L model being quite complex analytically, it is
difficult to really understand the behavior of the model. Also, the complexity of the
closure expressions can slow down the numerical solver as evaluating these expressions
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is expensive. This is thus the motivation to mathematically simplify the expression of
ρc
α,β and derive a new model which is called the FENE-LS and stands for simplified

FENE-L. The choice is to approximate the uniform distribution of the FENE-L by a
Dirac at some location Q = α/R where R is a constant whose value will be specified
later. The expression of the radial probability distribution is then

ρc
α,β(Q) = (1 − β)δα/R + βδα, (2.2.5)

and the parameters lie in the same parameter space as for the FENE-L model: (α,β) ∈[0,√b] × [0,1]. A graphical representation of ρc
α,β is shown in Fig. 2.2.2.

(1 − β)δα/R βδα

α/R α
√
b

Q

ρc
α,β

Figure 2.2.2: Representation of the FENE-LS radial probability distribution function
ρc
α,β.

The same developments as for the FENE-L can be made here. The expressions of
the quantities of interest are thus

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A ≈ α2 (β + 1 − β

R2
) ,

B ≈ α4 (β + 1 − β
R4
) ,
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Asp ≈ α2 (β 1

1 − α2/b + 1 − β
R2

1

1 − α2/(R2b)) ,
Bsp ≈ α4 (β 1

1 − α2/b + 1 − β
R4

1

1 − α2/(R2b))
(2.2.6)

and inverting the two first equations yields

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α2 = 2R2B

A(R2 + 1) 1

1 ±√1 − 4R2B
A2(R2+1)2

,

β = AR2

α2 − 1
R2 − 1 .

(2.2.7)

The same comment about the non-bijectivity of the mapping (A,B) → (α,β) holds,
but note that only the natural solution will again be used (this will be justified later).
The argument of the square root also needs to be positive such that

B ≤ (R2 + 1)2
4R2

A2 (2.2.8)

should be imposed. Note that this has the exact same form as the equivalent condition
for the FENE-L (Eq. 2.2.4). In fact, one notices that if R2 = 5, the condition is exactly
the same. The R constant is thus fixed to

√
5 in order to obtain similar results than

for the FENE-L with the hope that the Dirac distribution at α/R well approximates
the uniform distribution.
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In order to simplify even further this simplified model, it is possible to approximate
the square root by a linear expression, such that the above condition disappears. Since
the argument of the square root can a priori vary between 0 and 1, it is difficult to
apply a rigorous Taylor expansion. The square root is thus approximated as√

1 − 4R2B

A2(R2 + 1)2 ≈ 1 − γ 4R2B

A2(R2 + 1)2 , (2.2.9)

where γ is a constant that needs to be fixed in order to obtain a meaningful approx-
imation. It can be showed that B = A2 corresponds to a Dirac distribution. This
distribution can be achieved in the FENE-LS model for β = 1 and from Eq. 2.2.7, β = 1
implies that α2 = A. All these results are illustrated in the next section (Sec. 2.2.3).

Injecting Eq. 2.2.9 into Eq. 2.2.7 and using B = A2, A = α2 and β = 1, it is possible to
show that γ = (R2 + 1)/(2R2). Injecting the square root approximation with the value
of γ in the natural expression of (α,β) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α2 = AR2

A2(R2+1)
B − 1 ,

β = A2(R2+1)
B − 2
R2 − 1 .

(2.2.10)

One last approximation is to consider that the second term in the expressions of Asp

and Bsp can be approximated as
1

1 − α2/(R2b) ≈ 1, (2.2.11)

such that the final approximated closure expressions are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Asp = α2 (β 1

1 − α2/b + 1 − β
R2
) ,

Bsp = α4 (β 1

1 − α2/b + 1 − β
R4
) , (2.2.12)

where only the natural solution has been considered. Again, in order to obtain the
explicit expressions of Asp and Bsp in terms of A and B, one can inject Eq. 2.2.10 in
the above expressions, but this is not done here.

As several mathematical simplifications were introduced in the FENE-LS model, it
may be useful to distinguish between two submodels. The FENE-LS0 model denotes
the FENE-LS model without any mathematical approximation whereas the FENE-LS1

model denotes the FENE-LS model taking into account the approximations of both the
square root in the expressions of α2 and β and the fraction in the expressions of Asp

and Bsp. The version of the FENE-LS model that is used in the reference article [7] is
the FENE-LS1 (simply called FENE-LS).

Finally, note that the different approximations present in the FENE-LS1 model
makes it deviate from the radial probability distribution originally presented. In fact,
the unclosed terms are not exactly defined anymore through the integral of ρc

α,β be-
cause of the different approximations. It would thus be wrong to try to understand the
solution in terms of ρc

α,β.

28



2.2.3 FENE-P

It is interesting to understand that it is also possible to derive the well known FENE-P
model through this general formalism. In fact, considering only one parameter α and
the simple canonical radial distribution

ρc
α = δα(Q), (2.2.13)

A and Asp are expressed as

A = α2, Asp = α2

1 − α2/b, (2.2.14)

such that
Asp = A

1 −A/b. (2.2.15)

From Eq. 2.1.12, the polymer stress tensor then write

τp
ij = Aij

1 −A/b − δij, (2.2.16)

which is the expression of the polymer stress tensor of the FENE-P constitutive model.
It is now clear, from the distribution of ρc

α, that the FENE-P model corresponds to
the case where all the dumbbells in an infinitesimal volume element have the same
extension.

Note that, using the same expression of the canonical radial probability density
distribution, the radial dispersion of the dumbbells B can also be computed: B = α4 =
A2. The evolution equation for B is however useless as it is directly expressed as a
function of A. Note also that the FENE-P model can be seen as a degenerate case of
the FENE-P and FENE-LS0 models where β = 1.
2.3 First numerical implementation
It is interesting to analyze the polymer response to simple flow configurations and in
order to compute such a response, the polymer equations can be solved numerically.
But before diving into more advanced numerical experiments, it is interesting to verify
the implementation of the equations by comparing it with the same numerical results
of the reference articles.

Two different kinds of flows are considered: a simple shear flow and a biaxial exten-
sional flow. Note that in both configurations, the velocity gradient tensor is constant
in space such that the problem is considered zero-dimensional. In fact, the different
polymer variables only depend on time. Note also that in this case, the advective term
disappear. Center-of-mass diffusion is thus not considered here since the problem has
no spatial extent. Equation 2.0.3 becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂Aij

∂t
= γ̇ikAjk + γ̇jkAik − 1

Wi
(Asp

A
Aij − δij) ,

∂B

∂t
= 4B

A
γ̇ijAij + 1

Wi
(10A − 2Bsp) . (2.3.1)
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For obtaining the steady solution, the above equations are particularized by consid-
ering vanishing time derivatives and the system is solved numerically (for the FENE-L
and FENE-LS only since an analytical solution is quite easy to derive for the FENE-P
model). Alternatively, an explicit Runge-Kutta 4th order method have been imple-
mented for integrating the above system of equations in time and obtaining the transient
solution.

Note that the described numerical setup (system of equations and algorithm) is
quite general an may be applied to any zero-dimensional Eulerian simulation (where
the velocity gradient is constant in space but can vary in time) or to any Lagrangian
simulation (since the advection term also disappear) as long as the center-of-mass dif-
fusion is neglected. In fact, the only different inputs that will particularize this problem
are: the kind of closure approximation chosen (to compute Asp and Bsp), the differ-
ent polymer parameters (Wi and b) and the imposed (time varying) velocity gradient
tensor.

In order to compare the results with the ones of the reference article, it is important to
mention that the non-dimensionalization performed in the reference is different from the
one considered here, since the time and the velocity gradients are non-dimensionalized
through the polymer time scale and not the flow time scale (as done in this work). The
results will thus have to be adapted in order to be comparable and these adaptations are
explained in App. A. One of the practical implication is that the shear (or elongation)
rate of the reference plays the role of the Weissenberg number while the shear (or
elongation) rate considered here is fixed to 1 (or 0 in relaxation). In the following of
this section, the shear (or elongation) rate non-dimensionalized by the polymer time
scale will thus be treated as the Weissenberg number Wi.

2.3.1 Simple shear flow

For the simple shear flow configuration, the velocity gradient is of the form

γ̇ =
⎡⎢⎢⎢⎢⎢⎣
0 γ̇ 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , (2.3.2)

where γ̇ is the shear rate. The results are compared for the steady and transient
cases (where the steady results are computed for various Wi). For the steady case, the
quantities of interest are the shear viscosity and the first normal stress coefficient, noted
η and N1 respectively. Using the transformation from the appendix and the definitions
of N1 and η from the reference article, these may be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N1 = τp

11 − τp
22

Wi
,

η = τp
12

Wi2
.

(2.3.3)

The results of the steady computations are shown in Fig. 2.3.1. As can be seen, these
are very similar with the ones of the article, which gives confidence in the implemen-
tation of the different models. Note that the results of the FENE-L and FENE-LS1
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are confounded in practice such that the results of the FENE-LS1 are not shown for
readability.

(a) Non-dimensional viscosity η.

(b) Non-dimensional first normal stress coefficient N1.

Figure 2.3.1: Steady verification of the implementation. The results are visualized as a
function of Wi, with b = 50. The results issued from the reference article are represented
by dashed curves, while the results obtained from this work are shown as continuous
curves. Both styles of curve are barely differentiable in the figures. FENE-P, green;
FENE-L, red.

For the transient simulation, the system starts from the equilibrium and is then
submitted to a constant shear rate (γ̇ = 1) from t = 0 to t = 4Wi, after which the system
relaxes (γ̇ = 0) until t = 5Wi. The Weissenberg number is set to Wi = 10 (as the velocity
gradient in the reference) and the numerical time step is set to 10−3Wi. The results are
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presented in Fig. 2.3.2 and as can be seen, these are still in good agreement with the
ones of the reference article. Small differences have to be noted, but could potentially
be explained by graphical errors introduced through the digitization process of the
reference results. The present implementation thus seems quite correct. Note however
that for the result of the first normal stress difference, a bigger difference is noticeable
for the FENE-LS1 at the stress overshoot. This difference could not be explained.

(a) Shear stress τp
12.

(b) First normal stress difference τp
11 − τp

22.

Figure 2.3.2: Transient verification of the implementation. The shear stress τp
12 and

the first normal stress difference τp
11 − τp

22 are visualized as a function of time (non-
dimensionalized with the polymer time scale), with b = 50 and Wi = 10. The results
issued from the reference article are represented by dashed curves, while the results
obtained in the present work are shown as continuous curves. FENE-P, green; FENE-
LS1, orange; FENE-L, red.
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However it is surprising to see that the results of the FENE-L seem to be in good
agreement with the one of the reference article. In fact, as explained earlier, the expres-
sion of the closure approximation of the FENE-L appears to be false in the reference,
such that the solution should be different than the one obtained here. In order to verify
this, Fig. 2.3.3 illustrates the same transient experiment where the expression of the
FENE-L was taken from the reference article. As can be seen, the result of the FENE-L
model is now very different from the one of the article. This illustrates the fact that
Lielens et al. did apparently not use the same expression as the one presented in the
reference [7] for simulating this small numerical problem. Differences are noticeable as
well for the steady simulation and for the first normal stress difference, but are not
shown since it would not add any valuable information.

Figure 2.3.3: Same simulation as in Fig. 2.3.2b, by considering the expressions of the
closure approximation of the reference article for the FENE-L model (see App. B for
the precise expressions).

2.3.2 Biaxial extensional flow

For the biaxial extensional flow configuration, the velocity gradient is of the form

γ̇ =
⎡⎢⎢⎢⎢⎢⎣
ε̇ 0 0
0 ε̇ 0
0 0 −2ε̇

⎤⎥⎥⎥⎥⎥⎦ , (2.3.4)

where ε̇ is the elongation rate.
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(a) Second normal stress difference (τp
11 − τp

33)/Wi.

(b) Trace of the conformation tensor A.

Figure 2.3.4: Transient verification of the implementation. The second normal stress
difference (divided by Wi) (τp

11−τp
33)/Wi and the mean square extension A are visualized

as a function of time (non-dimensionalized with the polymer time scale), with b = 50
and Wi = 6. The results issued from the reference article are represented by dashed
curves, while the results obtained in the present work are shown as continuous curves.
FENE-P, green; FENE-LS0, blue; FENE-LS1, orange; FENE-L, red.

Only the transient simulation is shown for this specific configuration. Again, the
system starts from the equilibrium and is then submitted to a constant elongation rate
(ε̇ = 1) from t = 0 to t = 1.5Wi, after which the system relaxes (ε̇ = 0) until t = 2Wi.
The Weissenberg number is set to Wi = 6 and the numerical time step to 10−4Wi. The
results are presented in Fig. 2.3.4 and as can be seen, these are again in quite good
general agreements. Note however, that this is now the results of the FENE-L that seem
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to deviate from the reference and this difference is more pronounced for the shear stress
than for the mean square extension. Note that again, using the closure expression of the
FENE-L presented in the reference yields to even more different results (not shown).
This is again a very strange result that could not be explained. Still, even if it does
not constitute a flawless justification, all the results obtained in this work seem to yield
quite the same steady state value for all more advanced models (both for the simple
shear and the biaxial extension), whereas the results obtained for the steady state value
of the shear stress with the FENE-L in Fig. 2.3.4a significantly differ from the one of
the FENE-LS1 (and of the FENE-LS0 that is shown here as a justification).

2.3.3 Larger b

The extensibility parameter b is quite small in the above simulations compared to the
typical values it can takes for EIT or MDR simulations (O(102) bigger). The simple
shear transient simulation is again performed for a larger value of b and the results are
shown in Fig. 2.3.5. The evolution of the polymer stress is surprising for the FENE-LS1

model as both results diverges during the relaxation period, while the other models
seem to behave quite ordinarily2. Note moreover the similarity between the FENE-L
and the FENE-LS0 results, such that the advantage of distinguishing both FENE-LS
submodels is now clear. This diverging behavior cannot be explained for now and thus
motivates the need for a more detailed analysis of the properties of the different closure
approximations.

2This phenomenon can also be observed for a biaxial extensional flow, but for different values of
the parameters: Wi = 1, b = 450, with a period of extension of 4Wi. The results are not shown.
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(a) Shear stress τp
12.

(b) First normal stress difference τp
11 − τp

22.

Figure 2.3.5: Transient simulation of simple shear followed by relaxation for a larger b.
The results are visualized as a function of the non-dimensional time t, with b = 450 and
Wi = 10. FENE-P, green; FENE-LS0, blue; FENE-LS1, orange; FENE-L, red.
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Chapter 3

In-depth understanding of the
FENE-L and FENE-LS models

The complexity of the present closure problem is that it typically involves two differ-
ent spaces: the (α,β)-space and the (A,B)-space. In fact, the interesting physical
interpretations mainly lie in the (α,β)-space as it gives direct insights on the radial
probability distribution of the dumbbells ρc

α,β. However, the problem is typically solved
in the (A,B)-space which makes the mathematical developments sometimes easier in
that space. In the end, both way of thinking and visualizing the data are useful and
will be used throughout the following of this work. Note however that, as stated in the
previous section, it makes no sense to try to understand the behavior of the FENE-LS1

model in the (α,β)-space, such that its analysis will be limited to the (A,B)-space.

3.1 Boundaries of the domains and bijectivity
Since A and B are expressed as functions of α and β and that such parameters are
restricted to a specific domain, it is obvious that A and B will also be restricted to
some domain. The first step is then to determine the boundaries of the problem in the(A,B)-space but it is important to define some notations first. Fig. 3.1.1 represents the(α,β)-space with its different boundaries named b1 (β = 0), b2 (α =√b), b3 (β = 1) and
b4 (α = 0). Note also the specific limit b⋆ at β = 1/(R2 + 1) which is not a boundary of
the (α,β)-space, but will play a particular role.

α/√b

β

0 1

1

b1

b2

b3

b4

b⋆

Figure 3.1.1: Representation of the boundaries in the (α,β)-space.
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For each of the closure approximations, it is possible to consider the expressions
A = A(α,β) and B = B(α,β) and eliminate α (resp. β) so that B can be expressed
as a function of A and β (resp. α): B = B(A,β) (resp. B = B(A,α)). Then, since
α ∈ [0,√b] and β ∈ [0,1], to each A can be associated a minimal and maximal B, which
then forms the boundaries of the (A,B)-domain. This can be computed analytically
and the expressions of the boundaries of each model are presented in App. C. These
are also shown graphically in Fig. 3.1.2 in order to visualize them.

One can see that the boundary b4 is degenerated into a single point in the (A,B)-
space1. Also, the boundary b3 is shared by all the closure approximations. This bound-
ary is in fact a fundamental limit since it corresponds to a Dirac distribution located
at Q = α, which is the least dispersed distribution that could take place, corresponding
thus to a minimum of B. As explained in Sec. 2.2.3, this boundary represents the
admissible domain of the FENE-P closure approximation. It is also one of the fun-
damental limit of the general FENE model [6]. Moreover, the admissible domains of
the FENE-L and FENE-L0 models are exactly the same as shown by the envelope of
the curves in Fig. 3.1.2. However, the mapping of the boundaries from the (α,β) to
the (A,B)-space is not the same for both models. In fact, the boundary b2 extends
until b3 for the FENE-LS0 but stops when it crosses b1 for the FENE-L. Also, the b1

curves differ for both models (it is confounded with b3 for the FENE-LS0), but yet,
the boundaries b1 (FENE-L) and b⋆ are the same. Finally, an interesting thing is the
apparition of b⋆ as a boundary in the (A,B)-space although it is not a boundary in the(α,β)-space.

Having now a better understanding of the admissible values for A and B, it is possible
to discuss in more details the case of the natural and ghost solutions. For the FENE-L
closure approximation, one can show that for the ghost solution, β̃ < 0. In fact,

β̃ = (9A2 − 5B) −√(9A2 − 5B)9A2

10B
= √9A2 − 5B

10B
(√9A2 − 5B −√9A2) (3.1.1)

with the expression inside of the parenthesis being always negative. Also, from the
expression of b1, note that 9A2 − 5B ≥ 0 ⇔ B ≤ B1 (where B1 corresponds to the
expression of B on the curve b1). This means that, imposing that the argument of the
square root is positive is equivalent to impose that the solution cannot cross the b1

boundary. Alternatively, one quickly understands that β ≥ 0. In order to prove that
β ≤ 1, one can see that the maximum of β occurs when B is minimized. Knowing that
the minimal value of B is B3 = A2, one well recovers that the maximum value of β is
1. The same kind of reasoning can be done for proving that α ∈ [0,√b]. The ghost
solution is then unphysical whereas the natural solution is totally appropriate. The
ghost solution can thus be rejected and the transformation between the (A,B) and(α,β)-space becomes a one-to-one mapping so that there is no more ambiguity in what
solution choosing.

1It seems logical since this boundary corresponds to a zero extension and a Dirac located at Q = 0.
Note that potential problems could arise on b4 since, for (A,B) = (0,0), the value that the solution
would take in the (α,β)-space is ambiguous. However, this boundary is a non-physical extreme case
and not too much care should be given to it.
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Figure 3.1.2: Comparison of the different boundaries in the (A,B)-space for each of
the closure approximations. The domain of the FENE-LS0 closure is presented in a
separated figure as several curves are the same as for the FENE-L. The admissible
domain of a model is represented by the envelope of all the curves (including the b⋆
boundary for the FENE-LS0). FENE-L, red; FENE-LS1, orange; FENE-LS0, blue.

This is quite different for the FENE-LS0 closure model. In fact, using again the
same kind of procedure, one can show that β̃ ∈ [0,1/(R2 + 1)] and β ∈ [1/(R2 + 1),1]2
such that both solutions lead to appropriate values of β. However, it is not true for
α since α ∈ [0,√b] but some admissible values of (A,B) can yield α̃ > √b, such that

2The line b⋆ in the (α,β)-space delimits the admissible domains of the natural and ghost solutions.
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only the natural solution makes sense for these values. A more detailed analysis shows
that for values of (A,B) lying between the curves b2 and b3, the ghost solution yields
α̃ > √b. In this region, the result is as for the FENE-L since the ambiguity is not
present anymore and only the natural solution is considered. However, for values of(A,B) that lie inside of the curvilinear triangle defined by the curves b1, b2 and b⋆,
both solutions exist and make sense such that the ambiguity persists.

For the FENE-LS0, the fact that one couple (A,B) can potentially lead to two ad-
missible couples (α,β) and (α̃, β̃) could have been anticipated. In fact, ρc

α,β is composed
of two Dirac distributions: (1−β)δα/R and βδα and one can check that the special cases(β = 0, α = α′R) and (β = 1, α = α′) yield the exact same distribution, that is ρc

α,β = δα′ .
Moreover, note that these special cases correspond respectively to the boundaries b1

and b3, which shows why these are confounded.
In general, the fact that two admissible solutions (α,β) exist for a given (A,B)

cannot be explained exclusively by the fact that the same probability distribution can
be reached by different sets of parameters (α,β). The converse is however true as if
different sets of (α,β) lead to the same ρc

α,β, it will necessary lead to the same (A,B)
and (Asp,Bsp) by extension.

3.2 Permeability of the boundaries in pure relaxation
In order to understand the problem arising with the FENE-LS1 closure approximation
that was shown in Fig. 2.3.5, it is useful to try to analyze how the solution evolves
in the (A,B)-space. Such a trajectory is shown in Fig. 3.2.1. As can be seen, it
appears that at some point, the solution computed from the FENE-LS1 model leaves
its admissible domain and as it does, the numerical solution behave in a very random
and unpredictable way. Note however that the solutions issued from the FENE-L and
FENE-LS0 models totally stay in their admissible domain (which upper bound is the
dashed curve in Fig. 3.2.1).

The problem being solved numerically, such phenomena are frequent and often asso-
ciated to a bad time discretization or a bad integration scheme. In fact, if the solution
approaches a given boundary and that the time step is too large, it is possible for the
solution to cross the boundary, thus leading to non-physical results3. However here,
the solution keeps crossing the boundary at the exact same location no matter how
small the time step is, which suggests that the problem does not come from a bad time
discretization, but that the analytical solution itself tends to leave its admissible space.

Moreover, note that this problem appears when the imposed shear rate is zero (when
the system relaxes back to equilibrium). This scenario is however a very fundamental
mechanism and should not lead to any issue, such that it could illustrate a potential
intrinsic problem with the model. An analytical investigation of the mathematical
problem is necessary to seek whether the boundaries are permeable analytically or not.
What is meant by permeable is the fact that when the solution tends toward a boundary
from the inside of the domain, the evolution vector is oriented in such a way that the

3Such problems mainly occur with explicit time stepping methods and implicit time stepping algo-
rithms usually remove such issues. One should keep in mind that the problem is solved numerically
by considering an explicit time stepping method in this case (Runge-Kutta 4th order).
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solution naturally crosses the boundary.

Figure 3.2.1: Comparison of the evolution of the solution in the (A,B)-space between
the FENE-LS0, FENE-LS1 and FENE-L closure approximations. The parameters are
the same as in Fig. 2.3.5. The plot is a zoom of the boundaries presented in Fig. 3.1.2,
where the dashed curve corresponds to the boundary b⋆, the top continuous black curve
to the boundary b1 of the FENE-LS1 and the bottom continuous black curve to the
boundary b3. FENE-L, red; FENE-LS0, blue; FENE-LS1, orange.

In order to understand whether it is possible or not for the evolution vector to
make the solution leave its domain, it is necessary to check whether it points inward
or outward of the domain. To do so, one can analyze the sign of the scalar product
between e.g. the inward normal vector of the boundary curves and the evolution vector
evaluated at the same boundaries, such that a negative scalar product would make the
solution leave its domain.

Considering a given boundary bi and the associated quantities Bi, αi, βi, Asp
i and

Bsp
i , the inward normal to this boundary (in the (A,B)-space) is noted ni and expressed

as

ni(A) = ± 1√
1 + (dBi

dA )2 (
−dBi

dA
1
)∝ 4 ± (−dBi

dA
1
) , (3.2.1)

where the ’+’ sign has to be chosen for the lower boundaries (b3) and the ’−’ sign has to
be chosen for the upper boundaries (b1 and b2 for the FENE-L and FENE-LS1, but b⋆

4Note that the normalizing function [1+(dBi/dA)2]−1/2 is always strictly positive and bounded (the
slope of the boundaries are never infinite here), such that one can simply hide it behind a proportionality
factor, since it won’t influence the sign of the dot product.
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and b2 for the FENE-LS0) in order to choose the inward normal. The evolution vector
is noted X and is defined as

X = (DA/DtDB/Dt) , (3.2.2)

with the notation X i referring to the evolution vector evaluated at the boundary bi.
In order to compute the expression of the evolution vector, one needs to obtain an

equation for A. Taking the trace of the equation for the conformation tensor (Eq. 2.1.11)
yields ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

DA
Dt
− 2γ̇ijAij = 1

Wi
(3 −Asp) + 1

Pe
∂2A

∂xk∂xk
,

DB
Dt
− 4B

A
γ̇ijAij = 1

Wi
(10A − 2Bsp) + 1

Pe
∂2B

∂xk∂xk
,

(3.2.3)

which is the general system of equations for A and B, considering the drag term as well
as the center-of-mass diffusion.

Since the departure of the solution from its domain seems to happen without diffusion
and even in relaxation, the stretching and the center-of-mass diffusion terms are not
considered. Also, since the advective terms vanish for the two simple problems that
were considered, the above system simplifies to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂A

∂t
= 1

Wi
(3 −Asp) ,

∂B

∂t
= 1

Wi
(10A − 2Bsp) . (3.2.4)

In this context, the scalar product becomes

X i ⋅ni = ± 1

Wi
1√

1 + (dBi

dA )2 [10A − 2B
sp
i + dBi

dA
(Asp

i − 3)]
∝ ± [10A − 2Bsp

i + dBi

dA
(Asp

i − 3)] .
(3.2.5)

Note that X i ⋅ni generally varies along a boundary such that in order to study its sign
along all the curve, it should be expressed as a function of A5. The major difficulty
of this analysis will thus be to systematically express the closure terms Asp and Bsp

as functions of A for each of the boundary considered. Only the final conclusions are
provided since it would be quite heavy to show the hole developments.

3.2.1 FENE-LS1

The boundary b3 is impermeable, as for the boundary b2. Note however that the later
is somewhat special since the norm of the evolution vector tends toward ∞, but its

5It is also possible to express the dot product as a function of α or β (mainly for the FENE-L or
FENE-LS0 models). Though, it is less general since the fact that the dot product is expressed as a
function of α or β depends on the boundary considered. It is however still an appropriate option as it
sometimes facilitates the mathematical evaluation of some terms, such it has also been used in practice
for the computations.

42



orientation still tends to make the solution come back into its domain. It is different
for the boundary b1 since it is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
impermeable for A ∈ [0, 3R2 − 7

R2 − 1 ] = [0,2],
permeable for A > 3R2 − 7

R2 − 1 = 2,
(3.2.6)

considering R2 = 5. An interesting remark is that B1 is defined for A ∈ [0, b/R2] (see
App. C), such that the length of the permeable zone (from 2 to b/R2) depends on the
value of b. In fact, if b ≤ 2R2 = 10 the boundary b1 is not permeable at all. However,
as b increases, the length of the permeable zone defined as the portion of b1 between
A = 2 and A = b/R2 grows. For large extensibility parameters, the boundary b1 is nearly
totally permeable (relative to its total domain) making this model unsuitable for large
b.

Note however that the limit b = 10 is in practice very small such that it is not suitable
for the vast majority of applications. Note also that since it is possible to reach b1

within the simple case of a constant applied shear rate (and biaxial extensions) followed
by relaxation, it is very likely that it can be reached for any more complex shearing
history. In fact, the ultimate goal being to apply such kind of closure approximations
to turbulent flows where the evolution of the velocity gradients are chaotic and quite
difficult to predict, it is likely to encounter a velocity gradient history that makes the
solution leave its admissible domain.

It is difficult to precisely assess what makes the b1 boundary of that domain per-
meable, but one could argue that the different mathematical simplifications made the
closure approximation lose its physical consistency. The fact that this model fails in
such a simple test case makes it non-applicable to more complex flows and it will thus
simply not be used nor analyzed anymore in the following of this work. The focus will
be on the FENE-L and the FENE-LS0 closure approximations.

3.2.2 FENE-L and FENE-LS0

The results are qualitatively the same for both models. In fact, all the boundaries are
impermeable. Note that on the boundary b2 the norm of the evolution vector tends
toward ∞ but is again oriented toward the interior of the domain. In general, the fact
that the boundary b2 seems unreachable can be understood from the shape of ρc

α,β on
that boundary. In fact, on b2, α = √b which is the largest value it can take, so that
for all three models, the radial canonical probability distribution presents a Dirac at
the maximum extensibility. This means that the dumbbells do have a non-vanishing
probability of reaching their maximal extension. However, one should keep in mind
that for a FENE dumbbell, the force needed to extend the dumbbell to its maximal
extension is infinite, or said differently, it is impossible to reach the maximal extension
so that the radial probability distribution should go to 0 as Q tends to

√
b. For these

particular canonical distribution, it corresponds to the fact that α cannot reach
√
b.

As already mentioned, the boundary b3 corresponds to a single Dirac distribution
located at Q = α, which is also an extreme case. This being also an extreme case for the
general FENE model, the boundary can thus naturally not be crossed. Finally, note
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that since the boundaries b1 (for the FENE-L) and b⋆ (for the FENE-LS0) cannot be
crossed, the conditions for the square roots in the expressions of α and β are always
satisfied without the need of an additional constraint, in relaxation at least.

3.3 Permeability of the boundaries for arbitrary ve-
locity gradients

In order to study more complex problems, it is possible to analyze how could the
impermeable boundaries react under the action of arbitrary velocity gradients. Only
neglecting the diffusion terms in Eq. 3.2.3 and keeping a general velocity gradient tensor
as well as the material derivative, it yields

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DA
Dt
− 2γ̇ijAij = 1

Wi
(3 −Asp) ,

DB
Dt
− 4B

A
γ̇ijAij = 1

Wi
(10A − 2Bsp) . (3.3.1)

In this system, the stretching term is quite similar for both equations such that the
velocity gradient term can be eliminated. It yields the relation

DB
Dt
= 2B

A

DA
Dt
+ 1

Wi
(10A − 2Bsp + 2B

A
(Asp − 3)) (3.3.2)

such that for any γ̇, DB/Dt can be expressed as a function of DA/Dt. In general, the
dot product between the inward normal and the evolution vector writes

X i ⋅ni ∝ ± [DBi

Dt
− dBi

dA
DA
Dt
] (3.3.3)

and using the above relation (Eq. 3.3.2):

X i ⋅ni ∝ ± [(2Bi

A
− dBi

dA
) DA

Dt
+ 1

Wi
(10A − 2Bsp

i + 2Bi

A
(Asp

i − 3))] . (3.3.4)

An interesting observation is the fact that the boundaries b3 and b1 (for the FENE-
L) or b⋆ (for the FENE-LS0) are quadratic in A (from App. C). On these curves, one
can thus write Bi = ciA2 (with ci a multiplicative constant which may differ from one
curve to another). Notice then that on these boundaries,

dBi

dA
= 2ciA = 2Bi

A
, (3.3.5)

such that the above equation simplifies to

X i ⋅ni ∝ ± [10A − 2Bsp
i + dBi

dA
(Asp

i − 3)] , (3.3.6)

which is the exact same expression that for the relaxation case (Eq. 3.2.5). This is a
very powerful result since the fact of adding an arbitrary stretching to the equations
does not change the permeability properties of the considered boundaries, which are
then still impermeable.
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For the b2 boundary, since the relation B2(A) is not quadratic, the same simplifica-
tion does not hold such that DA/Dt does not vanish. Using the expression of DA/Dt
from Eq. 3.3.1 the dot product becomes

X i ⋅ni ∝ ± [2(2Bi

A
− dBi

dA
) γ̇ijAij + 1

Wi
(10A − 2Bsp

i + dBi

dA
(Asp

i − 3))] . (3.3.7)

Again, this is very similar to the results obtained for pure relaxation. More precisely,
the first term is the stretching term whereas the second one is proportional to the
relaxation term of Eq. 3.2.5. The term multiplying γ̇ijAij being finite, if neither the
velocity gradient nor the conformation tensor are infinite, the stretching term is bounded
on b2. However, since the relaxation term tends to ∞ on b2, the results are exactly
those of the pure relaxation (taking the limit of the solution going to b2) no matter the
velocity gradient. This means that b2 is also impermeable whatever the action of the
fluid on the polymers.

The fact that all the boundaries of the solution are impermeable is a very strong
results. It proves that both the FENE-L and the FENE-LS0 closure approximations
are consistent and can be used for solving dilute polymer solutions for any kind of
flow. Note however, that until now, the center of mass diffusion of the dumbbells was
neglected. Even if this is a very reasonable assumption from a physical point of view,
this term is generally artificially amplified in numerical simulations in order to stabilize
the non-linear advection term. Since the ultimate goal is to solve the coupled Eulerian
equations numerically, it is important to analyze the impact of the diffusion as well.
This analysis is done in Chap. 4.

Finally, as already mentioned the fact that all boundaries of the FENE-L and FENE-
LS0 model are always impervious directly imposes the positivity of the argument of the
square root in the expression of α and β. It means that, contrary to what has been
exposed by Lielens et al. [6, 7], there is no need for an additional restriction on the values
of B. The fact, that such a condition is needed in the simulations of the first article
deriving the FENE-L closure approximation [6] probably comes from the suspected
errors in the expression of Asp and Bsp (as explained in Sec. 2.2.1). In fact, the same
permeability analysis has been performed considering the same closure expressions as in
the reference articles and the results showed that the boundary b1 was in fact permeable
for some values of A.

3.4 Interpretation of zero-dimensional flow results
Now that the properties and limits of the models are more clear, and moreover, since
it has been demonstrated that the boundaries of the FENE-L and FENE-LS0 are im-
permeable, it is interesting to analyze and understand the polymer response to simple
zero-dimensional flows. Three major kinds of flow have been investigated: the simple
shear, the uniaxial and the biaxial extensional flow. Note that in such cases, the equa-
tions and the numerical setup considered in Sec. 2.3 are still valid. The specific forms
of the velocity gradient tensor applied to the simple shear and biaxial extensional flow
configurations have already been described in Eq. 2.3.2 and 2.3.4. For the uniaxial
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extensional flow, one has

γ̇ =
⎡⎢⎢⎢⎢⎢⎣
ε̇ 0 0
0 − ε̇

2 0
0 0 − ε̇

2

⎤⎥⎥⎥⎥⎥⎦ , (3.4.1)

where ε̇ is the elongation rate (as for the biaxial extensional flow).
Note that in order to consider more realistic polymer parameters, one chooses Wi =

50, b = 2500 (such parameters typically correspond to the EIT phenomenon).

3.4.1 Inception of flow followed by relaxation

(a) Simple shear flow. (b) Simple shear flow.

(c) Biaxial extensional flow. (d) Biaxial extensional flow.

Figure 3.4.1: Visualization of the polymer response when submitted to the inception of
specific zero-dimensional flows followed by relaxation. The initial condition is denoted
by the symbol × and the steady solution is denoted by the symbol ○. The curves are
traveled clockwise in the (A,B) representation, but anti-clockwise in the (α,β)-space.
The line style refers to the flow intensity: low intensity, dotted curves; medium intensity,
dashed curves; high intensity, continuous curves. Alternatively, the color refers to the
constitutive model considered: FENE-LS0, blue; FENE-L, red.

First, one considers a system that starts at equilibrium and that is submitted to a
constant velocity gradient tensor from t = 0 to t = 10Wi and then relaxes back (γ̇ = 0)
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until t = 20Wi. For each kind of flow, three different velocity gradient intensities are
considered. For the simple shear flow, one has γ̇ = 1, γ̇ = 1.4 and γ̇ = 3 and for the
uniaxial and biaxial extensional flow, one has ε̇ = 0.04, ε̇ = 0.05 and ε̇ = 0.1. Note
that for both extensional flows, the velocity gradient has a significantly larger impact
on the polymers, such that it is important to reduce the time step of the simulation
(recall that an explicit time stepping method is used). In fact, for the simple shear flow,
the numerical time step is 10−3Wi, whereas for the extensional flows, the time step is
10−4Wi. An important remark is that no matter how large the velocity gradient is, it
seems to be always possible to find a sufficiently small numerical time step in order for
the solution to remain physical6 (for these simple flows at least). Indeed, this shows
that the boundaries seem impermeable, as theoretically anticipated.

Different results from the simulation are shown. The evolution of the solution in the(A,B) and (α,β)-space is presented in Fig. 3.4.1 and the evolution of some components
of the polymer stress tensor are presented in Fig. 3.4.2. Since the results of both
extensional flows were very similar, only the biaxial extensional flow case is presented.

Analyzing the evolution of the solution in the (A,B) or (α,β)-space, the first obser-
vation is the similarity of the FENE-L and the FENE-LS closure approximation. This
is very clear in the (A,B)-space representation as both curves are barely distinguish-
able for the extensional flow and only slightly differ at some point before reaching their
steady state value for the simple shear flow. Another difference between both models
is more noticeable in the (α,β)-space representation as the solution of the FENE-LS0

seems to be squeezed along β between 1/(R2+1) and 1, when compared to the FENE-L.
This seems however totally logical as, since only the natural solution has been chosen
for the FENE-LS0, its admissible domain lies between β = 1/(R2 + 1) and β = 1.

Another interesting remark is the fact for the simple shear flow, the steady state
values of both models are different but get closer as the shear rate increases (this is well
illustrated in Fig. 3.4.1b). An intuitive explanation to this phenomenon is that when
the polymers are highly stretched, their radial probability density distribution tends
toward a Dirac distribution (all the dumbbells inside a fluid elements have the same
extension). Since the Dirac distribution is inside the canonical set of distributions Φc of
both models, in the limit where the radial probability density distribution of the FENE
model becomes a single Dirac, both models are exact. Note also that the boundary b3

(which is the lower curve in the (A,B)-space and the upper boundary in the (α,β)-
space) is the admissible domain of the FENE-P model, such that in the limit of large
and steady shear, all the models are similar (including the FENE-P).

As already mentioned, the (α,β) representation is more suited to the physical un-
derstanding of the polymers behavior as it directly relates to the canonical radial prob-
ability distribution ρc

α,β. In fact, the polymers start by extending without significantly
changing the shape of ρc

α,β, as β is more or less constant in the beginning. This means
that some polymers start to extend but others keep a rather small length. As α more
or less reaches its peak, β starts to increase, meaning that the large polymers stop
extending while the smaller continue to be stretched. For the simple shear, one can
see that α even decreases, such that the more extended polymers becomes slowly less
extended as the less extended polymers extend. Eventually, provided that the polymers

6This was tested for simple shear flows with values of the shear rate as big as γ̇ = 100.
47



are sufficiently stretched by the flow (sufficiently high γ̇), β tends toward 1, such that
the radial probability distribution nearly becomes a Dirac distribution meaning that all
the polymers are extended and approximately reaches the same extension. It is even
simpler for the extensional flows as α monotonously grows until the solution reaches
β = 1 and all the polymers are evenly extended. In fact, even for the smaller elongation
rates, it seems that the steady solution lies on β = 1, but one should realize that this is
obviously not true for all ε̇ as in the limit ε̇ = 0, the equilibrium solution is recovered
(very different from β = 1). The fact that all models tend to reach the b3 boundary for
steady flows points out why the FENE-P closure approximation is apparently sufficient
for describing simple steady flow configurations.

In the relaxation phase, this is first α then β that decays. This means that the
dumbbells all start by being less and less extended but still keep more or less the same
extension between each other and only when their extension is sufficiently low, some
dumbbells stop while other keep shortening, until the equilibrium radial probability
distribution is reached.

Finally, it is interesting to note that the polymers seems to react in a quite similar
way to three different and fundamental velocity gradient tensors.

As was already the case for the biaxial extensional flow in Fig. 3.4.1, the polymer
stress curves of the FENE-L and FENE-LS0 are barely distinguishable and the differ-
ences are more significant for the simple shear flow, even though the results are again
very similar between both models. Note that for the normal stress difference7, the
difference between the FENE-P and the more advanced models is as expected, as the
FENE-L and FENE-LS0 solutions exhibit an hysteresis, whereas the FENE-P solution
does not. The idea that the hysteretic behavior of the FENE cannot be reproduced by
the FENE-P model originates from the results of the one-dimensional Fokker-Planck
equation [5]. When generalizing such theory in a three-dimensional configurational
space Ω, one should be careful as it is not true for all components of the stress tensor
separately. In fact, Fig. 3.4.2b shows that the polymer shear stress obtained with the
FENE-P is also not a one-to-one function of the mean square extension. The funda-
mental difference between the one-dimensional and the three-dimensional theories is the
fact that the relationship between the stress and the conformation is now a tensorial
relation: τ p = τ p(A), whereas it was a simple scalar relation in the case of the one-
dimensional study. Looking at the relation between one particular stress component
e.g. τp

12 and one particular conformation component e.g. A is not sufficient anymore to
characterize the ability of a model to present an hysteresis.

The previous discussion for the (A,B) and (α,β) trajectories however holds for the
stress tensor as the steady state values of the polymer stress (any component) seem to
be quite similar for all models. Another clear observation is that the polymer stress
versus mean square extension curve is very similar for all models (even for the shear
stress) in relaxation after having reached the steady state solution. This could have
been anticipated from Fig. 3.4.1 since as already seen, all solutions nearly follow b3

after having reached their steady state values, such that the values of A and Asp are
more or less the same for all models and the same is true for the polymer stress tensor.

7Following the definition of the velocity gradient for the biaxial extensional flow, only the second
normal stress difference is non zero.
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As already explained several times, it is now clear that the differences between the
FENE-P and the more advanced closure models occurs only in unsteady flows.

(a) Simple shear flow. (b) Simple shear flow.

(c) Biaxial extensional flow.

Figure 3.4.2: Visualization of the polymer stress response as a function of the mean
square extension when submitted to the inception of specific zero-dimensional flows
followed by relaxation. The curves are traveled clockwise. The meanings of the line
styles and colors corresponds to the ones of Fig. 3.4.1. The FENE-P stress response is
added in green.

3.4.2 Periodic excitation

In all the previous numerical experiments, the polymer were stretched and relaxed
only once and for a sufficiently long time such that the steady state solution could be
reached. Even if it gives interesting insight about the physics of the system, it is quite
a limited flow configuration. In fact, in real turbulent flow, the polymers are likely
to be submitted to rapid velocity gradients changes without having time to reach any
steady state solution. It is thus interesting to analyze the results of a time varying flow
excitation.

In this case, the system is first submitted to a constant velocity gradient in order
to reach a steady state solution, after which the shear or elongation rate will start to
oscillate. Since the results of the extensional flows do not add any new information,
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the focus is on simple shear here. From t = 0 to t = 10Wi, one imposes γ̇ = 3 such that
the system can be considered to have reached steady state. Then the shear rate start
to oscillate from t = 10Wi to t = 20Wi as

γ̇(t) = −3 sin(2πf t

10Wi
), (3.4.2)

where f is the frequency of the oscillations. Note that since 10Wi is the time during
which the system is oscillating, f is also the number of entire cycles performed.

Figure 3.4.3 shows the solutions for f = 4 and f = 100. The trajectory in the (α,β)-
space illustrates that all the models again yield the same solution once the steady state
value is reached as β ≈ 1. This is true even for quite fast time varying shear rates
(f = 100). The stress tensors computed from each models are also very similar between
each other and it is interesting to see that the polymer shear stress reaches a limit
cycle oscillation, which is then the same for all three models considered. Note that
only the (α,β) representation and the shear stress versus means square extension are
shown because the other figures (first normal stress difference and (A,B) trajectories)
are redundant.

(a) f = 4. (b) f = 4.

(c) f = 100. (d) f = 100.
Figure 3.4.3: Visualization of the polymer response when submitted to an oscillating
simple shear flow. The curves of Fig. 3.4.3b and 3.4.3d are traveled clockwise. The
meanings of the line styles and colors corresponds to the ones of Fig. 3.4.2.
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It seems that once the solution reaches the boundary b3 (FENE-P domain), it cannot
significantly deviate from it. There is however an infinite amount of possible velocity
gradient history and it is difficult to make an extensive study of all the possible case.
A better understanding of the behavior of the different models will be made possible
by considering turbulent velocity gradient histories in Sec. 5.3.

3.5 One-dimensional channel flow simulation
In order to come closer to a real channel flow configuration, a steady one-dimensional
channel flow simulation is considered in this section. In fact, making the assumption
that the flow variables may only vary along z (except for the pressure that may also
vary along x in order to drive the flow) and considering vanishing spanwise and wall
normal velocity, the unique relevant momentum equation becomes (from Eq. 1.3.15)

∂u

∂t
= 3

Re
+ ε

Re
∂2u

∂z2
+ 1 − ε

Re
∂τp

13

∂z
, (3.5.1)

where the streamwise pressure gradient has been fixed to −3/Re in order to obtain a
bulk velocity of 1 in the steady Newtonian limit.

One should pay attention to the fact that the wall normal coordinate is noted z and
not y as often considered in the literature. As already explained, the concentration
parameter is a coupling parameter between the solvent and the polymers equations. If
ε = 0, the fluid is a polymer melt and if ε = 1, the equations are one-way coupled. In
practical flow applications involving dilute polymer solutions, the concentration param-
eters is often fairly high: ε ≈ 0.9 − 1.

From a practical point of view, in order to solve the hole system of equations (com-
plex fluid and polymers), the velocity gradient needs to be evaluated and used in the
polymers equations. In this simple one-dimensional case, the velocity gradient is com-
puted as

γ̇ =
⎡⎢⎢⎢⎢⎢⎣
0 0 γ̇
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , with γ̇ = ∂u
∂z
. (3.5.2)

Again, one should pay attention to the fact that the velocity gradient does not have the
exact same shape as in Eq. 2.3.2. Also, the boundary conditions for the velocity are
no-slip boundary conditions at the channel walls (z = ±1). The polymers equations do
not need any boundary condition in the case where center-of-mass diffusion is neglected.
However, if diffusion is considered, boundary conditions generally have to be chosen at
both walls and for all the polymers variables. Instead of doing this, one rather neglects
diffusion on the very edges of the channel, such that the equations are local at these
points and no boundary condition is required. Note that the treatment of the boundary
conditions for the polymers constitutive equations is still an open question.

Time marching is used for computing the steady solution, starting at equilibrium and
considering a 4th order explicit Runge-Kutta time integration method. The different
derivatives (needed for computing the shear rate, the divergence of the polymer stress
tensor and the center-of-mass diffusion terms of A and B) are evaluated using finite
differences, with a 4th order central scheme both for the first and second derivatives.
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Finally note that 80 evenly distributed discrete points are considered along z for all the
following computations.

In order to build up the complexity progressively, the solution is first computed by
considering the one-way coupled equations (ε = 1). Also, center-of-mass diffusion is
still not considered initially since, the flow being completely laminar, there is not much
need for added diffusion (from a numerical point of view). In this specific case, the
polymer variables depend on the wall normal coordinate, but only through the local
velocity gradient. In fact, the diffusive term could make a variable at one point in
space influence its neighbors and similarly, the two-way coupled system would make
the polymers influence the flow through the gradient of the polymer stress which would
then influence back the polymer neighbors. That being not the case at first, the problem
is equivalent to a zero-dimensional simple shear problem where the applied shear rate
is simply a function of the position.

(a) FENE-LS0. (b) FENE-L.

(c) FENE-P.

Figure 3.5.1: Residuals of different relevant variables as a function of the number of
iterations. B, black; A11, red; A33, orange; A13, green; u, blue.

In order to assess the accuracy of the numerical solution, the residuals of the different
variables can be computed. These are calculated as the (discrete) integrals over the
channel of the evaluated time derivatives of each relevant variable (right-hand side of
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each equation). The residuals are however not normalized such that the important
information is the relative decay of the residual and not its absolute magnitude. The
results are shown in Fig. 3.5.1. As can be seen, the solutions obtained for all models are
converged as the residuals decay of at least 10 orders of magnitude for all the relevant
variables, before stalling.

Figure 3.5.2 shows the profiles of different polymer quantities. The first thing to
notice is the similarity of all the closure approximations. As was already explained in the
previous section, all models tend to be equivalent for steady simple flow configurations
and this is verified here. Then, an interesting phenomenon is the fact that the channel
center is the point where the polymer solution changes the fastest contrary to the well
know parabolic velocity profile of a channel flow. The fact that all the polymer variables
seem to vanish at z = 0 can be explained by the fact that at this point, the shear rate is
zero, such that the solution is exactly the equilibrium solution. To be precise, τp

11 − τp
33

and τp
13 both vanishes, but A and B do not exactly vanish as their equilibrium values

are not 0.

(a) Mean square extension A. (b) Radial dispersion B.

(c) First normal stress difference τp
11 − τp

33. (d) Polymer shear stress τp
13.

Figure 3.5.2: Steady solution of the one way coupled channel flow problem, where the
profiles of different relevant polymer variables are shown. Each figure is composed of
three curves (one for each model), but these are barely differentiable. FENE-LS0, blue;
FENE-L, red; FENE-P, green.
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Figure 3.5.3 shows the same solutions in the (A,B) and (α,β)-space. The (A,B)-
representation leads to the same conclusion as above in the sense that all models seem
to approximately reach b3, which is also the domain of the FENE-P. An interesting
observation can however be made from Fig. 3.5.3b as one can see that the values of(α,β) are quite different (even at steady-state) for all models at the channel center. This
could have been anticipated from the results of the previous section as the equilibrium
values (α0, β0) of all models are quite different (such that at the channel center, (α,β)
are different for all models). Note however, that only the very central points exhibits
such high differences and as can be seen in Fig. 3.5.2, this does not seem to have any
significant impact on the shear stress or on the polymer quantities.

One should also understand that since the A and B profiles are symmetrical, the
same holds for α and β, such that each point of Fig. 3.5.3a–3.5.3b in fact represents
two symmetric points of the channel.

(a) (A,B)-representation. (b) (α,β)-representation.

Figure 3.5.3: Steady solution of the one way coupled channel flow problem presented in
the (A,B) and (α,β)-space. The curves of Fig. 3.5.3a are again barely differentiable.
FENE-LS0, blue; FENE-L, red.

In order to analyze the impact of the coupling on the final solution, two coupled
simulations are considered, with ε = 0.90 and ε = 0.95. The impact of this weak coupling8

being quite limited, it is rather the relative difference between the two-way coupled and
the one-way coupled simulation that is investigated. This relative difference is computed
as

X ′ = Xε −X
max (X) , (3.5.3)

where X ′ is the relative difference of the solution, X is the solution computed with ε = 1
andXε denotes the solution obtained for a given concentration parameter ε. Figure 3.5.4
shows the relative differences between the FENE-L and FENE-P constitutive models
only as the results are very similar for the FENE-LS0.

The first thing that can be seen is that the center of the channel is left unmodified by
the coupling of the equations. In fact, the differences between the one-way and two-way

8The term weak coupling is to be understood in the sense that the concentration parameter is quite
high. It however corresponds to the typical values considered for dilute polymer solutions.
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(a) Mean square extension A′. (b) Radial dispersion B′.

(c) First normal stress difference (τp
11 − τp

33)′. (d) Polymer shear stress τp
13
′.

Figure 3.5.4: Relative difference between the steady solutions of the FENE-L and the
FENE-P models obtained with ε = 0.95 and ε = 0.9 and the one-way coupled solution
(ε = 1). The discrete marker indicators ○ are not shown for readability. ε = 0.95, dashed
line; ε = 0.9, dotted line.

coupled equations are mainly located near the edges of the channel, but this constitutes
the largest part in practice. One should notice the interesting behavior of the mean
square extension A, that seems to present an overshoot near the walls. In fact, for ε = 1,
the maximum of A is located at the wall, while for smaller concentration parameters
this maximum is shifted inside of the channel. Finally, the maximum relative difference
between the one-way and two-way coupled solution is about 6% (for the first normal
stress difference), which is quite small.

The last complexity step of this problem is to add center-of-mass diffusion. One
should recall that the influence of the diffusive terms are controlled by the Peclet num-
ber: the lower the Peclet number is, the more center-of-mass diffusion is taken into
account in the equations. Typical values of the Peclet number in real flows are about
106. However, it is often massively decreased in practice for balancing the non-linear
advective term.

In this case, diffusion can however lead to unwanted effects. In fact, as the Peclet
number decreases, the solution at the channel center leaves its admissible domain at
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some point, by crossing the b1 boundary for the FENE-L or the b⋆ boundary for the
FENE-LS0. Again, note that this problematic phenomenon is not associated to a bad
numerical resolution. Several different methods were in fact considered without altering
the behavior of the solution: smaller time steps, finer spatial discretization, higher order
derivatives evaluation, slowly decaying Peclet number (starting from the above steady
solution without center-of-mass diffusion), and others. This problem is analyzed in
details in the next chapter.
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Chapter 4

Diffusion problem

Even if diffusion has the effect of damping the perturbations and smoothing the ex-
trema of the variables, it seems to bring complexity in this precise case. This is quite
unexpected since, as already mentioned several times, diffusion usually tends to make
things more stable numerically.

It is useful to try to understand what could arise when diffusion is added. The
very first effect is the smoothing (in space) of the different polymer variables. Said
differently, no maximum can be created nor amplified when diffusion is added to the
problem. In the (A,B)-space, it means that the solution cannot extend further to the
left (resp. right) than the minimal (resp. maximal) value and the same holds for the
top and the bottom. However, it is possible for a point at a specific location to be
shifted to the top/bottom/left/right depending on the position of its neighbors, as long
as it does not create a new maximum.

Particularizing the diffusion to the channel flow configuration, one can already an-
ticipate what could happen at the center of the channel: the results of the previous
chapter show that the curvature of A and B at the channel center are positive, such that
the addition of diffusion will increase both values. This corresponds to a translation of
the lower extension point to the top-right in the (A,B)-space.

This is in fact what happens in practice when diffusion is added. However, the
impact of diffusion seems to be stronger on B such that the lower extension point is
more shifted up than right. When center-of-mass diffusion becomes too important,
or said differently, when the Peclet number becomes too small, it can have the effect
of making that point cross the boundary b⋆ (or b1 for the FENE-L) and thus leave
its admissible space. Note also that this boundary corresponds to the zone where the
argument of the square root in the expression of α and β becomes negative. In fact,
when the solution crosses that boundary, α and β become complex.

Numerical experiments showed that the crossing of that boundary does not only
appear when the polymers are submitted to a shear rate (e.g. when the channel flow
develops), but it can also happen in relaxation. Again, the permeability of the bound-
aries is thus questionable and it is interesting to analyze the impact of the diffusion
from an analytical point of view.
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4.1 Permeability of the boundaries with diffusion
In order to study this phenomenon, the same kind of procedure than what was done for
the relaxation and the stretching can be followed for the diffusion. In order to simplify
the developments it will however only be done for the case of pure relaxation, as it was
numerically shown that it can be sufficient for boundary permeability.

From Eq. 3.2.3, only the stretching term is thus ignored, which gives the equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂A

∂t
= 1

Wi
(3 −Asp) + 1

Pe
∂2A

∂xk∂xk
,

∂B

∂t
= 1

Wi
(10A − 2Bsp) + 1

Pe
∂2B

∂xk∂xk

(4.1.1)

and considering an arbitrary boundary i, the dot product becomes

X i ⋅ni ∝ ± [ 1

Wi
(10A − 2Bsp

i − dBi

dA
(3 −Asp

i )) + 1

Pe
( ∂2Bi

∂xk∂xk
− dBi

dA
∂2Ai

∂xk∂xk
)] . (4.1.2)

One well recognizes the first term as it is the same as for pure relaxation. Also the
second term is the diffusive one, such that if Pe → +∞, the pure relaxation result is
recovered. From the above simple and general result, it is already possible to draw two
conclusions. First, if one assumes that the profiles of A and B are sufficiently smooth,
their Laplacian is bounded and since the norm of X tends toward +∞ at b2 for pure
relaxation, the impact of diffusion (compared to relaxation) vanishes at b2. Diffusion
will thus have no impact on the permeability of b2. Moreover, the permeability of the
other boundaries will be determined by the sign and the magnitude of the second term.
However, note that more or less nothing can be said about the sign of that term since
it depends on the second derivative of the solution around the point of interest, which
completely depends on the specific flow configuration.

In order to better understand the reasoning, the expression of the scalar product
can be particularized to a specific model and a specific boundary. The FENE-LS0

closure approximation and the boundary b3 are chosen here because of the simplicity of
the expression of the relaxation term, but it could be extended to the FENE-L model
and/or to the b1/b⋆ boundary. In this specific case, the dot product becomes

X i ⋅ni ∝ 4A

Wi
+ 1

Pe
( ∂2B

∂xk∂xk
− 2A ∂2A

∂xk∂xk
) . (4.1.3)

In order for this boundary to become permeable, the diffusive term needs to be negative
and the Peclet number sufficiently low. The fact of having a negative diffusive term
corresponds to having a sufficiently high curvature of A compared to the one of B. In
parallel, having a low Peclet number corresponds to having a relatively large center-
of-mass diffusion. However, as already said, such reasoning is not really helpful in the
sense that there is no condition on the values that the second derivative may take at a
given point, such that these are left unspecified.

Since the analysis in the (A,B)-space does not lead to any significantly better un-
derstanding, it could be interesting to make this analysis in the (α,β)-space. Note also
that the admissible domain in this space is rectangular such that classical diffusion1

1Classical diffusion is to be understood in the sense that the diffusive term is a simple Laplacian
of the variable of interest.
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on α and β could not make the solution leave the space. Also it is easier to analyze
whether the solution leaves the domain or not since it is sufficient to look only at the
sign of Dα/Dt or Dβ/Dt (depending on the boundary) and there is no need to compute
the dot product. The difficulty will therefore lie in the inversion of the system and the
expression of each terms as functions of α and β.

4.2 Equations in the (α,β)-space
In order to perform the permeability analysis in the (α,β)-space, the first step is to
transform the evolution equations for A and B into evolution equations for α and β.
Note that in order to remain general, the stretching and center-of-mass diffusion terms
are considered as well as the total derivatives.

Considering the system

{A = A(α,β),
B = B(α,β), (4.2.1)

and computing the total time derivatives gives 2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

DA
Dt
= ∂A
∂α

Dα
Dt
+ ∂A
∂β

Dβ
Dt

,

DB
Dt
= ∂B
∂α

Dα
Dt
+ ∂B
∂β

Dβ
Dt

,

(4.2.2)

where the quantities ∂A/∂α, ∂A/∂β, ∂B/∂α and ∂B/∂β depend on the model consid-
ered. The goal is now to inverse this system in order to express Dα/Dt and Dβ/Dt as
functions of DA/Dt and DB/Dt. One may think that it should be easier to start from
the expressions α = α(A,B) and β = β(A,B) so that, the system does not need to be
inverted. However, this would have needed the expressions of ∂α/∂A, ∂α/∂B, ∂β/∂A
and ∂β/∂B which are different depending on the type of solution chosen (natural or
ghost solution). This kind of ambiguity does not appear in the above system since the
expressions of Eq. 4.2.1 are uniquely defined for any pair (α,β). This choice is then
made in order to stay general again3.

The inverted system takes the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dα
Dt
= 1

J
(∂B
∂β

DA
Dt
− ∂A
∂β

DB
Dt
) ,

Dβ
Dt
= 1

J
(−∂B

∂α

DA
Dt
+ ∂A
∂α

DB
Dt
) , (4.2.3)

2Given a general function f = f(α,β), the following holds:

Df

Dt
= ∂f

∂t
+ u∞k ∂f

∂xk
= ∂f

∂α

∂α

∂t
+ ∂f

∂β

∂β

∂t
+ u∞k (∂f∂α ∂α

∂xk
+ ∂f

∂β

∂β

∂xk
)

= ∂f

∂α
(∂α
∂t
+ u∞k ∂α

∂xk
) + ∂f

∂β
(∂β
∂t
+ u∞k ∂β

∂xk
) = ∂f

∂α

Dα

Dt
+ ∂f

∂β

Dβ

Dt
.

3Note that for the FENE-L model, one could have quite generally considered the natural solution,
but it is not the case for the FENE-LS0 model as explained in Sec. 3.1.
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where J is the determinant of the Jacobian matrix related to the change of variables(A,B)→ (α,β). It is expressed as

J = ∂A
∂α

∂B

∂β
− ∂A
∂β

∂B

∂α
(4.2.4)

and will simply be called Jacobian in the following. Equation 3.2.3 can be injected in
the above system in order to give

Dα
Dt
= 2γ̇ijAij ( 1

J
[∂B
∂β
− 2B

A

∂A

∂β
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αd

+ 1

Wi
( 1
J
[∂B
∂β
(3 −Asp) − ∂A

∂β
(10A − 2Bsp)])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αrel

+ 1

Pe
( 1
J
[∂B
∂β

∂2A

∂xk∂xk
− ∂A
∂β

∂2B

∂xk∂xk
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
αdiff

(4.2.5)

where each term corresponds to a different physical meaning: αd the drag force exerted
by the flow, αrel the spring force of the dumbbells (and the configurational diffusion)
and αdiff the center-of-mass diffusion. The same equation can be obtained for β (with
the same notations) but is not written here for readability. However, it has the same
shape and one only has to replace ∂B/∂β by −∂B/∂α and −∂A/∂β by ∂A/∂α in order
to write it. In the above equation, note that in order to be consistent, the different
terms should be expressed as functions of α and β. However, as already mentioned,
this generally depends on the model considered and leads to quite heavy expressions.
This is thus kept in the above general form and the further mathematical developments
are not detailed here. Only the conclusions about the permeability of the boundaries
will be exposed.

Note that the Laplacian of A and B still needs to be expressed in terms of α and β
by applying the chain rule twice. Considering a general function f = f(α,β), where f
can either be A or B, it yields

∂2f

∂xk∂xk
= ∂f
∂α

∂2α

∂xk∂xk
+ ∂f
∂β

∂2β

∂xk∂xk
+ ∂2f
∂α2

∂α

∂xk

∂α

∂xk
+ 2 ∂2f

∂α∂β

∂α

∂xk

∂β

∂xk
+ ∂2f
∂β2

∂β

∂xk

∂β

∂xk
.

(4.2.6)
As can be seen, the Laplacian of A or B does not simply transforms into the Laplacian
of α and β but non linear terms appear such as the square of the gradient of α or β
and the product of the gradients of α and β. This could be expected since, as was said
earlier, classical diffusion on α and β cannot make the solution leave its admissible
domain (since it is rectangular). From the observation that the solution can actually
leave its domain, it seems logical that the diffusive terms in the evolution equations of
α and β are not simply Laplacians.

In order to differentiate the impact of each terms, these are treated separately in
Sec. 4.2.1–4.2.3.
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4.2.1 Drag force

In the evolution equation of α, the drag term is always positive and bounded, but it
cancels in the evolution equation of β. These results are similar for both the FENE-L
and FENE-LS0 closure approximation. It well underlines the role played by the drag
force on the dumbbells. In fact, it has the effect of stretching the dumbbells and this
manifests in the radial probability distribution through the shifting of the distribution
at higher extensions. However, the shape of the canonical distribution is left unaltered
by the drag force.

4.2.2 Relaxation

The expression of this term is quite complex and difficult to analyze in general. It is
however possible to express it on the different boundaries as before in order to under-
stand the role played by the relaxation on the permeability properties of the boundaries.
On b3, βrel is negative and bounded (for both models). On b1, βrel is positive for both
models. However it is bounded for the FENE-LS0 but infinite for the FENE-L. For the
FENE-L, αrel → −∞ on b2, but for the FENE-LS0, αrel → −∞ above b⋆ and αrel → +∞
below b⋆. Since αd is finite on b2, its influence is negligible compared to the effect of
αrel.

Finally, on b⋆ (for the FENE-LS0), βrel tends toward +∞ from above and toward−∞ from below. This means that without considering center-of-mass diffusion, the
boundary b⋆ is impermeable such that if a solution is initially above (resp. below)
b⋆, it will remain above (resp. below) it. It shows that (without diffusion at least)
it is totally reasonable to consider only the natural solution (α,β) and to discard the
ghost one. In fact, the boundaries of the subspace above b⋆ are totally impermeable.
However, this is not the case for the subspace below b⋆ since b2 is permeable over there.

It is interesting to realize that the boundary b⋆ plays the same role for the FENE-LS0

as the boundary b1 for the FENE-L. In fact, they both correspond to the same curve
in the (A,B)-space and to the zone where β = β̃ because the argument of the square
root is 0. Also, a singularity appears in βrel such that the solution tends to be repelled
by this boundary. Finally, the boundary b2 is impermeable above that same curve.

4.2.3 Center-of-mass diffusion

From Eq. 4.2.6, note that the ∂2f/∂β2 term (where f = A or B) is 0 for both models.
This comes form the specific expressions of A and B that linearly depend on β (see
Eq. 2.2.2 and 2.2.6). Using this result, the diffusive terms write

αdiff = ∂2α

∂xk∂xk
+ 1

J
(∂B
∂β

∂2A

∂α2
− ∂A
∂β

∂2B

∂α2
) ∂α
∂xk

∂α

∂xk
+ 2

J
(∂B
∂β

∂2A

∂α∂β
− ∂A
∂β

∂2B

∂α∂β
) ∂α
∂xk

∂β

∂xk
,

βdiff = ∂2β

∂xk∂xk
+ 1

J
(∂A
∂α

∂2B

∂α2
− ∂B
∂α

∂2A

∂α2
) ∂α
∂xk

∂α

∂xk
+ 2

J
(∂A
∂α

∂2B

∂α∂β
− ∂B
∂α

∂2A

∂α∂β
) ∂α
∂xk

∂β

∂xk
.

(4.2.7)
Notice that the first term of each equation simply becomes the Laplacian of α or β.

The goal of the following is then to compute the values of these two terms at the
boundaries and see whether they can make the solution leave its admissible space or
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not. However, as was already found for the same study in the (A,B)-space, the sign
of αdiff and βdiff can generally depend on the values of the gradients of α and β at
the boundaries. In the most general situation, the only thing that can be said is that(∂α/∂xk)(∂α/∂xk) is positive since it is the square of the norm of the gradient of α.
There is however a specific situation in which some other terms are restricted to some
values.

Consider a general solution. If it enters in contact with a specific boundary at some
point, the point (α,β) at which the solution touches the boundary is necessary an
extremum (since the domain is rectangular). If that specific point is on a boundary of
the spatial domain (in the x-space), nothing much can be said. However, if that point
is inside the spatial domain, it means that the gradient of either α or β vanishes and
that the sign of the Laplacian of α or β is known. In fact, considering that the solution
touches the boundary b2, that point is at the maximum along α, such that its Laplacian
is negative and its gradient vanishes. On b1 (resp. b3), the gradient of β vanishes and
the point reaches a minimum (resp. maximum) along β, such that the Laplacian of β is
positive (resp. negative). Finally, on b⋆ (for the FENE-LS0), the gradient of β vanishes
and if the solution comes from above (resp. below) b⋆, the Laplacian of β is positive
(resp. negative). Assuming now that the above hypothesis is true (the solution enters
in contact with the boundaries somewhere inside of its x-space), the terms αdiff and
βdiff are much simpler and a conclusion can generally be drawn.

On b2, αdiff < 0 such that the diffusion cannot make b2 permeable. Note also that
because of the singularity in the relaxation term, the diffusion cannot make b2 permeable
even if the above condition is not fulfilled (the other terms in αdiff being finite anyway).
On b3, βdiff < 0 such that the boundary stays impermeable even with diffusion. For the
FENE-LS0 model, βdiff > 0 on b1 such that the permeability is also left unaltered by the
diffusion (even if that boundary is not really interesting anymore as only the natural
solution can be considered).

This is however different on the boundary b1 for the FENE-L and the boundary b⋆
for the FENE-LS0

4. Since the results at these boundaries are similar, only the case of
the b⋆ boundary is treated here. Depending on whether b⋆ is approached from above
or from below, βdiff → −∞ or +∞ respectively. This means that diffusion will have the
effect of making the solution be attracted by the boundary. However, the relaxation
term has the opposite effect such that the relaxation and the diffusion compete against
each other to determine whether βdiff tends toward + or −∞ above b⋆ (but this is
the opposite below b⋆). More concretely, there is a threshold for the gradient of α
that generally depends on Pe,α and b such that if the gradient is below the threshold,
the relaxation term dominates and the boundary repels the solution. However, if the
center-of-mass diffusion dominates, the solution is attracted by the boundary (above
the boundary, βdiff → −∞ and below the boundary, βdiff → +∞).

The issue is that on that boundary, the Jacobian J is 0, such that the system is
not invertible. This means that both Dα/Dt and Dβ/Dt grow unbounded when the
solution tends toward that boundary. When diffusion dominates, the solution is then
attracted toward that zone, but on that precise boundary, a singularity exists and the
solution diverges. This is in fact what is observed by visualizing the evolution of the

4Note once again the equivalence of these boundaries for both models.
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channel flow solution in the (α,β)-space as the central point of the channel gets closer
and closer to the boundary b⋆ (or b1 for the FENE-L) and diverges when it enters in
contact with it.

One should note that the way the diffusion has been added to the originally well-
behaved system of equations was through the Fokker-Planck equation. In fact, the
origin of this term is totally appropriate from a physical point of view. The fact that
the diffusion seems to be artificial and lead to unexpected results probably comes from
the canonical subspace approximation. In fact, as explained in Sec. 2.1, the canonical
subspace is not necessarily invariant under the Fokker-Planck equation, such that a
canonical probability density distribution may leave its canonical subspace depending
on its specific parameterization. As shown in the original article of Lielens et al. on
the FENE-L [6], the admissible space of the general FENE model is convex in the(A,B)-space, such that center-of-mass diffusion would probably not add any issue.

4.3 Modified diffusion
The problem underlined in the previous section makes the center-of-mass diffusion not
usable in practice. This is quite an important problem since it makes the FENE-L
and FENE-LS0 models nearly impossible to use for EIT or MDR Eulerian simulations
considering the still quite low Peclet number used nowadays. To alleviate this problem,
either numerical tools should be developed in order to be able to increase the Peclet
number (or said differently, to be able to accommodate a very small diffusion term) or
a modified diffusion term should be considered in order for the solution not to leave it
admissible space anymore. A possible way for the second solution is proposed here.

As was already mentioned several times, the fact that the solution is potentially
able to leave its admissible domain comes from the fact that the diffusion is applied
on A and B and that the admissible (A,B)-space is not rectangular. More precisely,
this can happen because the (A,B)-domain is concave (on its upper boundary). An
alternative is to apply the diffusion on α and β. In fact, the (α,β) admissible domain
is rectangular such that this kind of diffusion could not make the solution cross its
boundaries. However, since the problem is typically solved in the (A,B)-space, the
modified diffusion in the (α,β)-space should be transformed back into the (A,B)-space.

The idea is thus to consider the α and β diffusive terms as simple Laplacians:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
αdiff = ∂2α

∂xk∂xk
,

βdiff = ∂2β

∂xk∂xk
.

(4.3.1)

The procedure that was used for deriving the evolution equations of α and β can be
followed the other way around such that injecting back Eq. 4.2.5 (and the equivalent
evolution equation for β) into Eq. 4.2.2 yields

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
DA
Dt
− 2γ̇ijAij = 1

Wi
(3 −Asp) + 1

Pe
Adiff,

DB
Dt
− 4B

A
γ̇ijAij = 1

Wi
(10A − 2Bsp) + 1

Pe
Bdiff,

(4.3.2)
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which is the same equation as Eq. 3.2.3 where the Laplacians have been replaced by
more general diffusive terms that take the form

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Adiff = ∂A

∂α

∂2α

∂xk∂xk
+ ∂A
∂β

∂2β

∂xk∂xk
,

Bdiff = ∂B
∂α

∂2α

∂xk∂xk
+ ∂B
∂β

∂2β

∂xk∂xk
.

(4.3.3)

As was done before, the Laplacians then need to be expressed in terms of A and B.
Considering a general function g = g(A,B) that could be α or β and applying the chain
rule twice gives

∂2g

∂xk∂xk
= ∂g
∂A

∂2A

∂xk∂xk
+ ∂g
∂B

∂2B

∂xk∂xk
+ ∂2g
∂A2

∂A

∂xk

∂A

∂xk
+ ∂2g
∂B2

∂B

∂xk

∂B

∂xk
+ 2 ∂2g

∂A∂B

∂A

∂xk

∂B

∂xk
.

(4.3.4)
Particularizing the above expression to α or β and injecting this in Eq. 4.3.3 gives
the general expressions of the modified diffusive terms for A and B. This is however
not written explicitly here as the expressions are quite long and would not add any
comprehension.

In order to explicitly write the full expressions of the diffusive terms, one should then
compute the different partial derivatives (that are specific to each constitutive model
considered): ∂g/∂A, ∂g/∂B, ∂2g/∂A2, ∂2g/∂B2, ∂2g/∂A∂B, where g again represents
α or β and also ∂f/∂α, ∂f/∂β where f again represents A or B and express all these
derivatives as functions of A and B. Note however that, by lack of time, the above
expressions have not been computed such that the modified diffusion method has thus
not been tested yet in practice.

Finally, note that there are still different ways to solve the polymers equations. In
fact, the modified diffusion, as presented here, only comes into account in the equations
for A and B (Eq. 4.3.2). However, this does not a priori suggest the form of the diffusive
terms in the equations for Aij. In order to take the modified diffusion into account,
one could for example solve for the mean square extension A and all the conformation
tensor components except from A11, A22 or A33, which can be computed from the two
other diagonal elements and the trace. Another solution would be to solve for all the
components and the mean square extension and to rescale the tensor in order to obtain
the proper value of the trace. This is thus still an open question.
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Chapter 5

Passive polymer response to a
turbulent channel flow

The ultimate goal is to analyze the influence of the polymers on turbulence. However,
only the one-way influence of the turbulence on the polymers is studied in this work. In
order to do so, several particles are tracked from an Eulerian Newtonian turbulent flow
simulation and at the same time, the velocity gradients that they experience over time
are recorded. These velocity gradients are then introduced in the Lagrangian equations
for the polymers and the polymer responses are computed without having to take into
account the center-of-mass diffusion term.

In doing so, it is clear that the effects of the polymers dynamics on the turbulent
coherent structures are not taken into account. Nonetheless, this procedure allows to
compare rigorously the different polymer models between each other. In fact, in this
case the polymers always experience the same flow conditions, whatever the model used
(which wouldn’t have been the case in a coupled simulation since the flow would have
been altered differently by each model). Moreover, the procedure is less numerically
challenging in the sense that the coupled equations sometimes need a very small time
step to remain stable, which is less critical for a Newtonian simulation. One should also
mention the fact that the polymers equations are thus made considerably simpler in
the sense that these are transformed into ordinary differential equations in time where
the velocity gradients are imposed from the Newtonian simulation. Also the non-linear
advective terms vanish which makes useless the addition of spurious diffusion, so that
it can safely be not considered and the problem of diffusion explained in the previous
chapter is therefore bypassed.

In the end, this can be seen as a satisfactory intermediary step in considering the
effect of new complex models on the physics of interest.

5.1 Turbulent Newtonian channel flow
The flow configuration considered in this case is a plane channel flow. The stream-
wise and spanwise directions are considered infinite by the mean of periodic boundary
conditions, but still the computational domain has to be finite such that the ex and
ey extents of the domain are respectively L̂x and L̂y. Additionally, no-slip boundary
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conditions are applied at the walls. The half channel width is ĥ and the center of the
channel corresponds to ẑ = 0, such that the walls are located at ẑ = ±ĥ. A schematic
of the channel is shown in Fig. 5.1.1. Finally, it is important to stress that the wall
normal direction is ez while the spanwise direction is ey.

ex

ey

ez 2ĥ

L̂x

L̂y

Figure 5.1.1: Channel representation.

The equations that are solved are the incompressible Navier-Stokes equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ûi
∂x̂i
= 0,

∂ûi

∂t̂
+ ûj ∂ûi

∂x̂j
= −1

ρ

∂p̂

∂xi
+ ν ∂2ûi

∂x̂j∂x̂j
+ f̂i, (5.1.1)

where û is the velocity, p̂ the pressure, f̂ an eventual forcing term, ρ the fluid density
and ν the fluid kinematic density. Another important quantity is the bulk velocity Ûb

defined as

Ûb = 1

2ĥL̂xL̂y

ˆ ĥ

−ĥ
ˆ L̂y

0

ˆ L̂x

0

ûdx̂dŷdẑ. (5.1.2)

These equations can be non-dimensionalized be choosing a characteristic length scaleL and velocity U . The independent variables thus transform has:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xi = x̂iL ,
t = UL t̂,

⇒
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂

∂x̂i
= 1L ∂

∂xi
,

∂

∂t̂
= UL ∂

∂t
.

(5.1.3)

The flow variables can then be non-dimensionalized as such:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = ûiU ,
fi = LU2

f̂i,

p = 1

ρU2
p̂,

⇔
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ûi = Uui,
f̂i = U2

L fi,
p̂ = ρU2p.

(5.1.4)
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Using these expressions, the incompressible Navier-Stokes equations write

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

UL ∂ui∂xi
= 0,

U2

L ∂ui
∂t
+ U2

L uj ∂ui∂xj
= −U2

L ∂p

∂xi
+ νUL2 ∂2ui

∂xj∂xj
+ U2

L fi,

⇔
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ui
∂xi
= 0,

∂ui
∂t
+ uj ∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui
∂xj∂xj

+ fi,
(5.1.5)

where the well known Reynolds number is defined as

Re ≡ UL
ν

(5.1.6)

and represents the ratio between inertia and viscous forces. The bulk velocity can also
be non-dimensionalized as

Ub = ÛbU = 1

2ĥL̂xL̂y

ˆ ĥ

−ĥ
ˆ L̂y

0

ˆ L̂x

0

udx̂dŷdẑ = 1

2hLxLy

ˆ h

−h
ˆ Ly

0

ˆ Lx

0

udxdydz, (5.1.7)

where the quantities ĥ, L̂x and L̂y have been non-dimensionalized by the characteristic
length of the channel to give h, Lx and Ly respectively.

In order to drive and control a plane channel flow, there are two main choices: either
the pressure gradient is fixed and the bulk velocity can be calculated from the flow
solution, or the bulk velocity is fixed and the pressure gradient is tuned in order to
obtain the prescribed bulk velocity. In this case, the second method is used, so that the
bulk velocity is prescribed. A natural choice for the characteristic velocity is thus the
bulk velocity and one also chooses the channel half width as the problem length scale.
This then yields ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re = Reb = Ûbĥ

ν
,

h = 1,
Ub = 1

2LxLy

ˆ 1

−1
ˆ Ly

0

ˆ Lx

0

udxdydz = 1.
(5.1.8)

where Reb is the bulk Reynold number, which has to be fixed.
In order to drive the flow in the ex direction, one needs to impose a pressure gradient

in that direction. However, since the boundary conditions are periodic along ex, the
pressure should also be periodic along ex. Moreover, if the streamwise pressure gradient
is fixed, it does not let any streamwise pressure fluctuation develop. The technique is
then rather to apply a streamwise body force. The body force fi thus have the shape
fi = fδi1 and its magnitude (f) is tuned in order to obtain a non-dimensional bulk
velocity of 1. This is done in practice by adding an equation for the bulk velocity.
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To summarize, the non-dimensional flow equations to solve are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ui
∂xi
= 0,

∂ui
∂t
+ uj ∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui
∂xj∂xj

+ fδi1,
1

2LxLy

ˆ 1

−1
ˆ Ly

0

ˆ Lx

0

udxdydz = 1,
(5.1.9)

and the bulk Reynolds number is chosen to be Reb = 5000.
5.1.1 Turbulent statistics analysis

In order to verify the solution of the problem, one has to compute meaningful flow
variables and check their correctness. In this case, since the goal is to develop a turbulent
flow it is important to consider statistics. These will be the mean flow, the root-mean-
squared (RMS) velocity fluctuations and the Reynold shear stress. These variables will
be non-dimensionalized and expressed in wall units.

The friction velocity û⋆ is defined as

û⋆ ≡
√

τ̂w
ρ
, (5.1.10)

where τ̂w is the wall shear stress. The wall shear stress can be related to the driving
force of the flow (the forcing term here) and it is possible to show that it is related to
the volume averaged body force, noted F̂ (by doing a force balance) as

τ̂w = ρĥF̂ = ρÛ2
bF (5.1.11)

and
τw = τ̂w

ρÛ2
b

= F (5.1.12)

naturally appears as the non-dimensionalized wall shear stress. Injecting this result in
the expression of the friction velocity yields

û⋆ = Ûb
√
F (5.1.13)

and again

u⋆ = û⋆
Ûb
=√F (5.1.14)

naturally appears as the non-dimensionalized friction velocity.
The wall Reynolds number can be defined as

Reτ ≡ ĥû⋆
ν

(5.1.15)

and using the expression of the Reynolds number:

Reτ = Rebû⋆
Ûb

= Rebu⋆. (5.1.16)
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More generally, rather than being expressed at the integral scale (scale of the channel),
the flow quantities may also be expressed in wall units. A quantity expressed in wall
units will generally be denoted ⋅+. Here are some examples with the velocity and the
wall normal coordinate: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u+ = û

û⋆ = u

u⋆ ,
z+ = ẑû⋆

ν
= Reb

ẑû⋆
hÛb

= Rebzu⋆ = zReτ .
(5.1.17)

Note however that since the volume averaged non-dimensional forcing term F generally
varies in time, the friction velocity and the wall Reynolds number are also functions
of time. In order to express the turbulent quantities in wall units, the time average of
both quantities are then used.

The average for the turbulent statistics is noted ⋅ and is defined as

⋅ = 1

LxLyT

ˆ t0+T
t0

ˆ Ly

0

ˆ Lx

0

⋅ dxdy dt, (5.1.18)

where t0 is the initial averaging time and T is the duration of the averaging window. In
fact, the turbulence analyzed here is stationary and invariant under a ex or ey trans-
lation, which makes this average procedure well suited for the problem. An averaged
turbulent quantity can then only vary along the wall normal direction. The fluctuations
of a quantity are noted ⋅′ and defined as

⋅′ = ⋅ − ⋅. (5.1.19)

Finally, another important statistical operation is the root-mean-squared fluctuations
of a quantity, noted ⋅′rms and defined as

⋅′rms =
√(⋅′)2. (5.1.20)

The turbulent statistics of interest that were computed here are the mean streamwise
velocity u, the RMS of the velocity fluctuations u′rms, v′rms and w′rms and the Reynolds
shear stress u′w′. Note that all these quantities are expresses in wall units such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+ = u

u⋆ ,
(u′rms)+ = u′rms

u⋆ ,

u′w′+ = u′w′
u2⋆ .

(5.1.21)

Note also that in this problem, the spanwise and wall normal mean velocities, as well
as the other components of the Reynold stress tensor should vanish if one considers an
infinite averaging window. The duration of the averaging T being finite in practice,
this is however not the case. Some of these quantities will thus be presented as well in
order to assess the convergence of the turbulent statistics. The same holds for the fact
that the problem is symmetrical along the channel center: the statistics of the upper
and lower parts will be compared rather than being used to complete the statistics.
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5.1.2 Dedalus: a flexible spectral solver

In order to solve efficiently the Navier-Stokes equations, the Dedalus framework is
used. This is a spectral solver that aims at solving very arbitrary sets of partial dif-
ferential equations (though it was originally developed for fluid flows) such that the
equations are entered symbolically. It uses spectral space discretization and among
other things, it can solve initial value problems. In this case, the problem reduces to a
system of ordinary (coupled and non-linear) differential equations, which is solved by
implicit-explicit time integration. This is written in Python and parallelized using
MPI. Note that the version 2 of Dedalus was used in this project for compatibility
reasons with other codes, although version 3 exists.

The power of spectral methods is their efficiency when at least two dimensions are
periodic (which is the case here) and the fact that the spatial discretization does not
induce any dissipation error. It also needs less grid points (or degree of freedom) in
order to be accurate as long as the solution is smooth.

Different types of spectral discretization are accessible. In this case, the basis were
discretized using Fourier decomposition in the periodic directions and Chebyshev poly-
nomials decomposition in the wall normal direction. Note that thanks to the spectral
decomposition of the solution, exact derivative and interpolation is possible even be-
tween two grid points. For time integration, a Runge-Kutta IMEX method has been
used for implicit-explicit time stepping. More precisely, the 3rd-order 4-stages method
has been considered.

5.1.3 Numerical considerations

The non-dimensional extents of the domain in the periodic directions are Lx = π and
Ly = 1. Also, the number of elements in each directions are (Nx,Ny,Nz) = (128,96,192)
and the non-dimensional time step is ∆t = 2.5 ⋅ 10−3. Note that considering a non-
dimensional bulk velocity of 1 and a non-dimensional channel length of π, the non-
dimensional flow-through time is π.

The initial condition is the one of a laminar Poiseuille flow. However, in order to
trigger turbulence faster, blowing-suction boundary conditions were initially applied at
the walls for a duration of 10 non-dimensional time. It consists in imposing a non-zero
wall normal velocity at the wall to add perturbations to the flow. As explained by
Dubief et al. [3], the goal is to numerically mimic an experimental turbulence transition
method. In this case, the expression of the blowing-suction boundary condition was

w∣z=±1 = A sin(8π x

Lx

) sin(8π y

Ly

), (5.1.22)

with A = 0.15. Also note that this boundary condition was progressively activated
during 3 non-dimensional time using a linear ramp before being maintained at its pre-
scribed intensity for 7 non-dimensional time and then being stopped at once to recover
the classical no-slip boundary condition.

The initial time of the turbulent simulation corresponds to the instant where the no-
slip boundary condition is recovered. The simulation has been computed for 750 non-
dimensional time (which corresponds to approximately 240 flow-through time) before
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starting to collect any statistics, after which all the statistics were recorded with a
sampling period of 10−2 non-dimensional time from t = 750 until t = 1650.
5.1.4 Statistics convergence

The first quantities to compute are the wall Reynold number Reτ and the friction
velocity u⋆. In fact, these are needed to express all the other variables in wall units,
but can also be used to study the convergence of the turbulent statistics. Figure 5.1.2
shows the time evolution of the instantaneous wall Reynolds number1 as well as its
cumulative time average defined as

1

t

ˆ t0+t
t0

Reτ (t̃)dt̃. (5.1.23)

As can be seen, the wall Reynolds number fluctuates quite intensely between 274 and
310 and at the end of the averaging window, its value is Reτ ≈ 292, corresponding to a
friction velocity of u⋆ ≈ 0.058. Figure 5.1.2 shows that the cumulative average seems to
converge toward a quite steady value, such that the averaging duration T = 900 seems
to be sufficient for computing the other statistics. Note that the averaging duration
approximately corresponds to 286 flow-through time.

Figure 5.1.2: Evolution of the instantaneous Reτ and its cumulative time average as a
function of time between t = 750 and t = 1650.

As already explained, another way to assess the convergence of the solution is to
analyze the typical variations of quantities that should vanish when considering an

1Since the wall Reynolds number and the friction velocity are directly proportional (through the
Reynolds number), it is sufficient to consider only one of them.
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infinite averaging window. Figure 5.1.3 shows the wall normal evolution the mean
spanwise velocity. Note that both sides of the channel are shown on the same half
channel. As can be seen, the spanwise mean flow fluctuates (along z) around 0 with a
maximum magnitude of less than half a percent of the mean streamwise velocity. This
well shows that the statistics are converged.

Figure 5.1.3: Mean spanwise velocity evolution in wall units relative to the mean stream-
wise velocity in wall units. Bottom wall, continuous curve (blue); top wall, dash-dotted
curve (red).

5.1.5 Statistics verification

In order to verify the flow, the turbulence statistics are compared with the results of
Dubief et al. [4] as the channel flow considered in this article corresponds to Reτ = 300
(compared to Reτ = 292 in this work).

The mean streamwise velocity profile u+ is shown in Fig. 5.1.4. The results are
almost identical to the one of the article (and to the wall bounded turbulence theory)
in the viscous sublayer but larger differences appear above the buffer region. The
results can however still be considered as satisfactory, as the differences remain quite
small. Figures 5.1.5 and 5.1.6 show the same kind of comparison for the Reynolds shear
stress and the RMS of velocity fluctuations. One can also see that, again the results
are quite similar with the ones obtained in the reference article. Note that for each
turbulent quantity of interest the statistics of both walls are very similar, which gives
again confidence in the fact that the statistics are well converged.

Small differences between the present results and the one of the article could come
from several things: the wall Reynolds number of this simulation is not exactly 300, the
spatial discretization of both studies are quite different (spectral decomposition here
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and finite difference in the article) and the size of the domain is not exactly the same.

Figure 5.1.4: Logarithmic law of the wall. Comparison of the mean streamwise velocity
profile in wall units with the reference article. The black dotted curves correspond to
the theoretical profiles of the law of the wall (in the viscous sublayer and in the log-
law region). Bottom wall, continuous curve (blue); top wall, dash-dotted curve (red);
reference result, dashed curve (green).
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Figure 5.1.5: Comparison of the Reynolds stress profile in wall units with the literature.
Bottom wall, continuous curve (blue); top wall, dash-dotted curve (red); literature
result, dashed curve (green).

Figure 5.1.6: Comparison of the RMS velocity profiles in wall units with the literature.
Bottom wall, continuous curves; top wall, dash-dotted curves; literature result, dashed
curves. (u′rms)+, red; (v′rms)+, blue; (w′rms)+, green.
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5.2 Particle tracking
Even if it may seem to be a straightforward process, it is useful to give some information
on the way the tracking of the particles is performed in the particular context of a
parallelized pseudo-spectral solver.

In order to track the position of a particle in time, the simple explicit Euler time
integration method is used. In fact, at the time instant n, knowing the position of a
particle, noted x(n), and having a way of evaluating its velocity, noted u(n), its position
at the next time step will be

x(n+1) = x(n) +u(n)∆t, (5.2.1)

where ∆t is the chosen time step. In practice, the tracking is done on the fly, meaning
that the trajectories of the particles are progressively integrated while the flow solution
is computed. In this case, the time step ∆t is thus the same as the Eulerian simulation.
This choice (same time step and explicit Euler time integration) has been made for
the sake of simplicity2. Finally note that since the goal is to record the history of
the velocity gradients experienced by a particle, the velocity gradients tensor is also
evaluated each time that the velocity of a particle is computed.

This algorithm requires to be able to have access to the flow velocity (and the velocity
gradients) at any position in the domain3. The issue being that the velocity is commonly
defined at the discrete grid points, if the particle is not exactly located at such positions,
the velocity needs to be interpolated. Usually, this interpolation is done by performing
a weighted average of the neighbor grid points velocities. The advantage of the spectral
solver is the fact that the problem variables are numerically encoded using their spectral
coefficients. This means that it is possible to analytically interpolate the velocity and
its gradient at any point by considering the linear combination of the spectral modes
weighted by their appropriate coefficients.

From the article of Burns et al. [1] about Dedalus version 2, considering a general
field f to be interpolated at the point x = (x, y, z),

f(x, y, z) =∑
n
∑
kx

∑
ky

fkx,ky ,nϕkx(x)ϕky(y)Tn(z), (5.2.2)

where ϕkx corresponds to the kx-th Fourier mode (x-decomposition), ϕky corresponds to
the ky-th Fourier mode (y-decomposition) and Tn corresponds to the n-th Chebyshev
mode (z-decomposition). The coefficient fkx,ky ,n then corresponds to the modes ϕkx ,
ϕky and Tn. The expressions of the different modes are

{ϕk(x) = exp (ikx),
Tn(z) = cos (narccos (z)), (5.2.3)

2More advanced time integration methods could be used but these are also more computationally
expensive. The goal in this case was however to be able to track the position of several particles
without significantly slowing the flow computation.

3Note that considering different time steps for the particle tracking and the flow computation would
potentially require to have access to the velocity at a given point and between two time steps, which
significantly increases the computation time.
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where the x and y Fourier modes have the same expression. Knowing these expressions
also allows to compute the gradient of f , in order to derive an analytical expression
for the spatial interpolation of the gradient. Note that in practice, f represents the
different velocity components (u, v and w).

This method has the advantage of being accurate, but notice that any interpolation
requires to loop over the entire spectral coefficients matrix4 in order to be exact. This
is quite heavy in practice compared to a more classical interpolation method where
the number of neighbors taken into account is quite limited. This technique possesses
however another advantage since it is highly parallelizable. In fact, in Dedalus, each
processor only has access to a certain slice of the coefficient matrix. Equation 5.2.2 can
then be rewritten in order to make the local sums over the spectral coefficients of each
processor appear. Each processor can then compute its contribution to the global sum
such that the workload is shared.

In practice, 100 particles are tracked from t = 1650 to t = 1990 and these are initially
evenly distributed on a yz-plan of the channel. As an illustration, Fig. 5.2.1 shows the
wall normal position of 10 particles as a function of time.

Figure 5.2.1: Evolution of the z-position of 10 particles (out of 100) as a function of
time. The particles are advected by a channel flow which is described in Sec. 5.1.

5.3 Polymer response
Having access to the velocity gradient experienced by each particle, the Lagrangian
equations of the polymers can be solved. One can consider the same system of equations
that was used for simulating the polymer response to zero-dimensional flows (Eq. 2.3.1),
where the partial time derivative is now to be understood as a Lagrangian time deriva-
tive: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dAij

dt
− γ̇ikAjk − γ̇jkAik = 1

Wi
(δij − Asp

A
Aij) ,

dB
dt
− 4B

A
γ̇ijAij = 1

Wi
(10A − 2Bsp) . (5.3.1)

4One could also consider only a fraction of the coefficient matrix and obtain an approximation of
the interpolation, but this has not been done in this case.
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The parameters that are chosen in this simulation are Wi = 5 and b = 3600 (these
can correspond to a DR case). A natural choice for the initial conditions would be
to start from equilibrium. However, the length of the simulation being quite limited
compared to Weissenberg number (the simulation lasted 340 non-dimensional flow time,
which corresponds to 68Wi), such initial condition makes the initial transient solution
unnecessarily long. In fact, during this initial transient solution, the polymers are
not already adapted to the flow and the system cannot be considered as statistically
steady. Another better suited choice is to make the polymer start from a Newtonian
one-dimensional steady channel flow solution. In that case, the initial condition of a
particle depends on the shear rate which is a linear function of the initial height of the
particle. Using such kind of initial condition makes the initial transient solution much
shorter.

The above system is again numerically integrated using a 4th order explicit Runge-
Kutta method. The time step ∆t = 1.25 ⋅ 10−3 is chosen twice smaller that the one of
the Eulerian simulation. Note also that in the Runge-Kutta algorithm, intermediary
steps are performed such that the velocity gradients need to be evaluated between the
different time steps. In order to do so, a linear time interpolation is performed, such
that the velocity gradient at a given time is computed as a linear combination of the
velocity gradient at the previous and next registered time instants.

It is however important to mention that a late error has been spotted in the im-
plementation of the velocity gradient interpolation. In fact, some results appearing
suspicious, a verification showed a significantly non-zero trace of the velocity gradients
experienced by the polymers, although a divergent free velocity field was imposed in the
flow equations. An in depth verification showed that the implementation of the inter-
polation of the velocity gradients was wrong, leading to wrong velocity gradients (even
if some components are correct). By lack of time, these interpolations could unfortu-
nately not be performed again. Having in mind that the velocity gradients experienced
by the polymers can thus not be interpreted as coming from a channel flow, the poly-
mer response is however still valid. In fact, the following results must be interpreted
as a generalization of Sec. 2.3 where more general time varying velocity gradients are
considered.

5.3.1 Polymer trajectories

The first comparison that can be made between the different constitutive models is to
observe the time evolution of some polymer quantities by following a particle. This
is of course not perfectly representative of the characteristics of the different closure
approximations, but it helps visualizing how different the models can be. Note that even
though the FENE-P constitutive model does not need an equation for B to compute
the polymer stress, it can still be computed in order to be compared to the results of
the other models. The same holds for α and β. From Sec. 2.2.3,

B = A2, α2 = A and β = 1. (5.3.2)
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(a) Mean square extension A.

(b) α.

(c) β.

Figure 5.3.1: Time evolution of different polymer quantities related to a specific particle,
being advected by the turbulent flow. Pay attention to the fact that the flow cannot
be interpreted as a channel flow. FENE-L, red; FENE-LS0, blue; FENE-P, green.

Figure 5.3.1 shows the time evolution of some quantities related to a specific particle.
The first thing that can be seen is that the FENE-P mean square extension is generally
higher that the one of the other models. One should however notice that all models
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react to the flow history in a perfectly coordinated manner, such that no lag can be
observed between the different responses5 and only the amplitudes of the variations
seem to differ.

Figure 5.3.1c shows the limitation of the FENE-P model in the sense that it is
limited to β = 1 from the simple shape of its radial canonical distribution ρc

α. In fact,
as can be seen by comparing Fig 5.3.1b and 5.3.1c, the differences in terms of canonical
distributions mainly occur when β < 1 and these tend to behave in a similar way when
β ≈ 1. More precisely, a low β-parameter corresponds to the fact that the low extension
polymers have a significant weight in the distribution ρc

α,β, such that in order to give
the same mean square extension, the FENE-P radial probability distribution should
exhibits a smaller α and this is what is observed in practice.

However, the differences between the mean square extension of the different mod-
els do not seem to be only functions of the value of β as can be seen by comparing
Fig. 5.3.1a and 5.3.1c. In fact, α also seems to play a role in the sense that when α is
small, no significant difference can be observed for A. This can directly be explained
from Eq. 2.2.2–2.2.6 as the value of A for both more advanced models decreases with
decreasing β but is also directly proportional to α2. From the expression of A for the
FENE-P (Eq. 5.3.2), one understands that for small values of α, the difference of A is
small (even if β < 1), but for larger values of α, β starts to play a more significant role.
The largest differences of A may thus be observed for large α and small β.

As explained, this small comparison only gives insights of some more general ten-
dencies. In order to be more rigorous, it is important to consider statistics over the
different particles.

5.3.2 Correlated polymer quantities

Although not already proved, since the α-parameter can be seen as a measure of the
polymers extension, it is clear that it is directly influenced by the flow. However, it
is hard to gain a better comprehension of the driving phenomena in the variation of
β. This represents though a fundamental difference between the FENE-P and more
advanced models and it is thus interesting to understand how it can vary. As explained
in Sec. 4.2.1, an interesting point is the fact that β is not directly influenced by the
flow. In fact, one can generally write

dβ
dt
= dβ

dt
(α,β) , (5.3.3)

where α is itself directly influenced by the velocity gradients, such that β is still indi-
rectly linked to the flow by α.

Numerically, dβ/dt can be estimated using simple time finite differences. Figure 5.3.2
shows the link between dβ/dt and α through an histogram that has been computed over
all particles and time instants with the FENE-L model (a very similar histogram have
been obtained for the FENE-LS0 model and is not shown). As can be seen, high positive
values of dβ/dt are only accessible at high α and inversely, negative values of dβ/dt

5This has been verified numerically by checking that the different maxima occur at the same time
for each model.
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are only accessible at low α. This can be qualitatively understood by saying that β
increases when α is high and β decreases when α is low. This kind of behavior have
already been encountered in Sec. 2.3 (as shown by the shape of the (α,β)-trajectory
in Fig. 3.4.1b–3.4.1d) and is now generalized to more complex flows. Considering a
small α-parameter (probably because the flow is weak such that the polymers are in
their coiled configuration) as well as a small β-parameter, if α suddenly significantly
increases, dβ/dt instantaneously follows α, but β takes some time to reach higher values
(the typical rate of increase of β is less than 0.4 per non-dimensional flow time as can be
seen in Fig. 5.3.2). In that specific case, during a small period of time, α is high while β
is still relatively low. This situation thus corresponds to high differences in A between
the different models (mainly between the FENE-P and the more advanced models) as
explained previously. However, if α does not decreases too rapidly, β will eventually
get closer to 1, such that this difference decreases again. This reasoning totally justifies
why the difference between the FENE-P and the other models seems to be dictated by
transient phenomena.

Figure 5.3.2: Histogram between α and dβ/dt for the FENE-L model. The number of
bins along each dimension is 150. The color represents the density of samples in each
bin.

In order to illustrate more precisely the mechanism that makes the FENE-P model
significantly differ from the more advanced constitutive models during short periods
of high dumbbells extensional rate, a small numerical experiment is set up. The goal
is to isolate specific events that occur for each particle and that illustrate the present
point. A low and a high threshold for α are considered: αL and αH respectively. The
interesting events are when α has been smaller than αL for a period of time larger than
∆tL and went then from αL to αH is less than ∆tR. Each time a particle experiences
such kind of event, its polymer quantities are recorded from the time α = αL until the
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time where α decreases and becomes again smaller than αH. In this case, the different
parameters were chosen as

αL = 0.4, αH = 0.7, ∆tL = 6 and ∆tR = 4. (5.3.4)

(a) β-parameter. (b) Scalar measure of the stress (Asp/A)′.

(c) Number of samples Ns.

Figure 5.3.3: Time evolution of the ensemble average of β and (Asp/A)′. These ensemble
averages are performed over specific events corresponding to sudden high increases of
the α-parameter. The precise characteristics of such events are described in Eq. 5.3.4.
Figure 5.3.3c shows the evolution of the number of samples available as a function
of time. The black dashed line in Fig. 5.3.3a–5.3.3b shows the Weissenberg number.
FENE-L, red; FENE-LS0, blue.

During the recording times, for each time instant (starting when α = αL for each
event), the mean of the quantities of interest are computed in order to build some kind
of averaged evolution of the polymer variables. The quantities that were investigated
are the β-parameter and Asp/A. In fact, the latter is the scalar proportionality factor
between the conformation tensor and the polymer stress tensor and it can be seen as
some scalar measure of the stress. More precisely, this is the relative difference between
that term and the corresponding term for the FENE-P model that is considered (the
objective being to analyze the differences between the models). From Sec. 2.2.3, the
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term Asp/A for the FENE-P model is (1 −A/b)−1. The relative difference then writes

(Asp

A
)′ = (Asp

A
− 1

1 −A/b)(1 −A/b) = Asp1 −A/b
A

− 1. (5.3.5)

Figure 5.3.3 shows the results of these ensemble averaged responses. As can be seen,
the number of samples is quite limited, resulting in poorly converged statistics. Error
bars or standard deviations are however not shown for readability. One also understands
from Fig. 5.3.3c that for the number of samples quickly decreases such that the ends of
the responses have to be interpreted carefully. Nevertheless, the conclusion is still very
clear as β increases toward 1 in a characteristic time of about Wi. The scalar measure
of the stress reaches a peak during the rise of β (as β is still quite small but α is already
high) and decreases to 0 as β gets closer to 1. Naturally, A and B also follows the same
kind of tendency as in Fig. 5.3.3b and are not shown. Such really illustrate from where
the differences between the FENE-P and the more complex closure approximations
come.

5.3.3 Impact of the flow

Knowing that the differences between the models occur at high sudden increases of α
does not explain to which typical flow event such phenomena are associated. In fact, it
is interesting to try to understand when α suddenly increases. A significant limitation
here is the lack of interpretation of the velocity gradients, since these are not deviatoric
and cannot be considered as coming from a turbulent channel flow.

An interesting topological reasoning allows to decompose the influence of the velocity
gradients on the dumbbells through the eigenvalues of the velocity gradients. This
analysis is however mainly limited to deviatoric velocity gradients, which is not the
case here. The influence of the velocity gradients on the stretching of the polymers can
still be evaluated through the strain rate tensor Eij = (γ̇ij + γ̇ji)/2, being the symmetric
part of the velocity gradients tensor. More precisely, one can build a scalar quantity
representing some kind of norm of the strain rate: ∣E∣ = √EijEij. The correlation
between the rate of increase of α, dα/dt (computed using time finite differences) and
the norm of E can be visualized through the use of an histogram.

As can be seen in Fig. 5.3.4, the minimum of dα/dt can be achieved for relatively
small ∣E∣ and the maximum of dα/dt can be achieved for bigger ∣E∣. However, one
quickly understands that such flow scalar quantity is not sufficient for explaining cor-
rectly the high dumbbells extension rate. It is however difficult to find better correla-
tions for such general velocity gradients history.
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Figure 5.3.4: Histogram between
√
EijEij and dα/dt for the FENE-L model. The

number of bins along each dimension is 150. The color represents the density of samples
in each bin.

5.3.4 Drag reduction

The drag reduction mechanism directly comes from the interaction of the polymers
with the near wall coherent structures of wall bounded turbulent flows, such as high-
low speed streaks, quasi-streamwise vortices and hairpin vortices. All of these structures
are somewhat characterized by coherent vortices. In practice, the polymers thus play a
special role in such regions and it is then interesting to seek whether differences between
the FENE-P and more elaborated models arises near these structures.

As shown by Dubief and Delcayre [2], a useful and accurate vortex identification
parameter is the Q-criterion. It is defined as

Q = 1

2
(ΩijΩij −EijEij) = −1

2
γ̇ij γ̇ji, (5.3.6)

with Ωij = 1
2 (γ̇ij − γ̇ji) the anti-symmetric part of the velocity gradient tensor γ̇. Note

that the Q criterion is the second invariant of the velocity gradient tensor. From the
above expression, one understands that it can be seen as a measure of the rotation rate
compared to the strain rate, so that it seems in fact to be a good vortex identification
criteria.

In parallel, an interesting polymer quantity is the polymer elastic potential ep. Since
polymer drag reduction mainly comes from the interaction of the polymers and the near
wall vortices, it seems logical that some energy is being exchanged between the flow
and the polymers. As explained by Sid [9], the elastic potential energy of a Lagrangian
polymer varies through energy exchanges with the kinetic energy of the flow, noted
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ek and through dissipation originating from the drag of the solvent on the dumbbells
beads. The first contribution is well known and quite general, but the second one is
harder to derive and generalize to more advanced closure approximations such as the
FENE-L or FENE-LS0. Only the first contribution is thus considered here as it is also
the one that is conserved (in the hole system). The rate of energy transfer from the
flow kinetic energy ek to the polymer elastic potential energy ep is expressed as

Pk,p ∝ τp
ijSij. (5.3.7)

In practice, this term should be multiplied by a factor depending on the concentration
parameter ε. The system being however one-way coupled in this case (by construction),
only the varying term is considered.

The goal is then to compare the correlation of Q and the above rate of energy
transfer Pk,p for each model. If significant differences occur between the results of the
FENE-P and the other more advanced models, it is likely that such models could be
more accurate (or at least bring differences) for simulating polymer drag reduction.
However, as already explained several times, one cannot generally interpret the present
velocity gradients as coming from a channel flow. It is thus not possible in practice to
analyze the polymer response near turbulent coherent structures of a channel flow. The
correlation between Q and Pk,p is thus not studied here.

However, it is still interesting to understand how can Pk,p be correlated to polymer
quantities. Figure 5.3.5 shows the correlation between Pk,p and dα/dt again by the
mean of an histogram. As can be seen, negative values of Pk,p exclusively yields negative
values of dα/dt. The correlation is less strong for positive values of Pk,p, but one notices
that the peak of dα/dt is associated to positive values of Pk,p. The sudden increases of
α are thus linked to energy transfers from the flow to the polymers (as was expected)
and since the main differences between the models mainly occurs during such events,
it is likely that the use of the FENE-L or FENE-LS0 models for simulating DR could
yield different results than the ones that can be obtained with the simpler FENE-P
model.
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Figure 5.3.5: Histogram between Pk,p and dα/dt for the FENE-L model. The number
of bins along each dimension is 150. The color represents the density of samples in each
bin.
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Conclusion

A detailed analysis permitted to show that the FENE-LS model proposed by Lielens
et al. [7] (called FENE-LS1 here) is not appropriate as the model equations can make
the system leave its admissible domain. However, a modified more rigorous version
of the FENE-LS (called FENE-LS0 here) has shown consistent results and appears to
be a good alternative to the FENE-LS. Moreover, it has been shown that the original
expression of the FENE-L model [6, 7] presents a suspected error that has a profound
impact on the model behavior. In fact, the corrected model appears to be self-consistent
(as the FENE-LS0) in the sense that its equations cannot make the system leave its
admissible space.

Small verification and simple flow cases helped understanding the general behavior
of the different models considered. It illustrated once again the similarity between the
different closure approximations at steady state and for high extensions. A better in-
vestigation of the canonical radial probability density distribution ρc

α,β helped to better
understand the system physically, mainly through the (α,β)-space representation.

Although the opposite effect is usually observed, the addition of artificial center-of-
mass diffusion appeared to bring complexity in this case. In fact, although rigorous
for a general FENE distribution, spatial diffusion can make a canonical distribution
leave its restricted admissible space, resulting in unwanted effects. In order be able to
tolerate significant amounts of diffusion (although not representative of the reality), a
modified diffusion technique has been suggested, but has not already been tested in
practice.

Being not able to run a full coupled Eulerian simulation with the more advanced
models, the impact of the turbulence on the different polymer models was analyzed
by imposing the velocity gradients experienced by tracked particles from an Eulerian
Newtonian turbulent channel flow in the polymers equations. An error has however
lately been spotted in the interpolation of the velocity gradient, making the interpreta-
tion of the results as the polymer response to a turbulent channel flow inaccurate. The
computed polymer response could nevertheless be interpreted as the one of a general
and unknown flow and still permitted to gain a better comprehension of the differences
between the FENE-P and the more advanced models. More concretely, it has been
shown that the FENE-P yielded different result each time that the dumbbells were
suddenly submitted to a large stretching after a significantly long time of being in a
lower extension configuration. Such differences could have an impact on the simulation
results of turbulent flows such as DR or MDR.
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Appendix A

Polymer time scale
non-dimensionalization

Considering a polymer time scale rather than a flow time scale for non dimensionalizing
the equations yields

t = t̂

λp ⇒ ∂

∂t̂
= 1

λp

∂

∂t
(A.0.1)

and
ˆ̇γij = 1

λp γ̇ij, (A.0.2)

width λp a polymer characteristic time scale. Rearranging the terms, the Fokker-Planck
equation (Eq. 1.2.17) then becomes

∂ψ

∂t
+λpUL uk

∂ψ

∂xk
+ ∂

∂Qi

(γ̇ijQjψ)− dλp

L2 ∂2ψ

∂xk∂xk
−Dλp

Q2

∂2ψ

∂Qk∂Qk

− λp

2λH

∂

∂Qi

(H(Q)Qiψ) = 0,
(A.0.3)

where the last term naturally suggests the Rouse relaxation time as the polymer time
scale. Notice the apparition of the Weissenberg number in front of the advective term
as Wi = λpU/L. Considering λp = λH and from the expression of the Peclet number
(Pe = UL/λp), the following transformation holds:

dλp

L2 = dUL λ
pUL = Wi

Pe
. (A.0.4)

Using Eq. 1.2.11,
Dλp

Q2
= kBT

2HQ2
(A.0.5)

and considering the same expression of the polymer length scale as before:

Q2 = kBT

H
= ⟨Q̂2⟩

0

3
, (A.0.6)

the above expressions become
Dλp

Q2
= 1

2
. (A.0.7)
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The Fokker-Planck equation non-dimensionalized with the polymer time scale thus
writes

∂ψ

∂t
+Wiuk

∂ψ

∂xk
+ ∂

∂Qi

(γ̇ijQjψ)−Wi
Pe

∂2ψ

∂xk∂xk
−1
2

∂2ψ

∂Qk∂Qk

−1
2

∂

∂Qi

(H(Q)Qiψ) = 0 (A.0.8)

which is the form used in the work of Lielens et al. [7] where the total derivative is
written explicitly and the diffusive term is considered.

In order to compare results coming from the two different kind of non-dimensionalization,
it is interesting to be able make the link between these two. This link is constituted by
the Weissenberg number as it represents the ratio between the polymer and the flow
time scale: Wi = λp/λf.

Denoting (⋅)p and (⋅)f as quantities non-dimensionalized by the polymer or flow
characteristic time respectively, the following holds:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tf = t̂

λf = t̂

λp

λp

λf = tpWi,

γ̇f = λf ˆ̇γ = λp ˆ̇γ
λf

λp = γ̇p

Wi
.

(A.0.9)
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Appendix B

Differences with the closure
expressions of the reference article

In order to compute Asp and Bsp, the following definite integrals have to be computed

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Asp = β ˆ

√
b

0

Q2

1 −Q2/bδα(Q)dQ + 1 − β
α

ˆ α

0

Q2

1 −Q2/bdQ,
Bsp = β ˆ

√
b

0

Q4

1 −Q2/bδα(Q)dQ + 1 − β
α

ˆ α

0

Q4

1 −Q2/bdQ.
(B.0.1)

The integrals that involves the Dirac distribution are straightforward to compute but
the others are not so trivial. One can however check that the expressions

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ˆ Q

0

Q̃2

1 − Q̃2/bdQ̃ = b
3/2
2

ln(√b +Q√
b −Q) − bQ,ˆ Q

0

Q̃4

1 − Q̃2/bdQ̃ = b
5/2
2

ln(√b +Q√
b −Q) − b2Q − Q

3b

3
,

(B.0.2)

are correct by differentiating the right-hand sides. Evaluating then these at Q = α and
injecting them in the above expression yields the closure expressions that were exposed
in this work: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Asp ≈ βα2

1 − α2/b + (1 − β)b(
√
b

2α
ln(√b + α√

b − α) − 1) ,
Bsp ≈ βα4

1 − α2/b + (1 − β)b2 (
√
b

2α
ln(√b + α√

b − α) − 1 − α
2

3b
) . (B.0.3)

In both articles of Lielens, deriving the FENE-L closure approximation in a one-
dimensional [6] or three-dimensional [7] space, the closure expression found for Asp and
Bsp seem however to differ as they are expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Asp ≈ βα2

1 − α2/b + (1 − β)b(
√
b

α
ln(√b + α√

b − α) − 1) ,
Bsp ≈ βα4

1 − α2/b + (1 − β)b2 (
√
b

α
ln(√b + α√

b − α) − 1 − α

3
√
b
) . (B.0.4)
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Notice that factor 2 difference before the natural logarithm and the difference with the
last term of Bsp. Note also that for the developments in the one-dimensional space [6],
the expression of Asp should be multiplied by 2 and the expression of Bsp should be
multiplied by 4, but this does not change the observed problem.
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Appendix C

Boundaries in the (A,B)-space

Below are listed the expression of the boundaries of the different models as graphically
represented in Fig. 3.1.2:

FENE-L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 ≡ B = 9A2

5
, A ∈ [0, b/3],

b2 ≡ B = b2
5
(6A
b
− 1) , A ∈ [b/3, b],

b3 ≡ B = A2, A ∈ [0, b],
b4 ≡ B = 0, A = 0,

FENE-LS0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 ≡ B = A2, A ∈ [0, b/R2],
b2 ≡ B = b2

R2
((R2 + 1)A

b
− 1) , A ∈ [b/R2, b],

b3 ≡ B = A2, A ∈ [0, b],
b4 ≡ B = 0, A = 0,
b⋆ ≡ B = (R2 + 1)2

4R2
A2, A ∈ [0,2b/(R2 + 1)],

FENE-LS1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 ≡ B = R2 + 1
2

A2, A ∈ [0, b/R2],
b2 ≡ B = R2 + 1

1 + A
bR

2
A2, A ∈ [b/R2, b],

b3 ≡ B = A2, A ∈ [0, b],
b4 ≡ B = 0, A = 0.

(C.0.1)
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