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List of Acronyms

A great number of acronyms are introduced throughout this Master’s thesis. This section regroups every
one of them, presented in alphabetical order. For each one, we write what the acronym stands for as well as
a brief definition or explanation on the matter.

BADD Bandwidth-Adapted Dynamical Decoupling. Sequence obtained by minimization of the infidelity
with a minimal pulse separation as a constraint.

CDD Concatenated Dynamical Decoupling. DD sequences created by concatenating two smaller sequences.

CPMG Carr-Purcell-Meiboom-Gill. The first DD sequence, consisting of equidistant spin-flips and aiming
at suppressing pure dephasing.

DD Dynamical Decoupling. An Hamiltonian Engineering schemes that averages out a specific part of the
Hamiltonian using a specific sequence of pulses.

DFS Decoherence-Free Subspaces. Subspace of the total Hilbert space unaffected by decoherence up to a
global phase factor.

HOPS Hierarchy Of Pure States. A reformulation of the NMQSD equation which aims at avoiding the
computational cost resulting from the functional derivative that appear in the equation.

KDD Knill Dynamical Decoupling. Sequence of composite pulses constructed to increase the robustness of
XY4 to systematic errors in the control field.

LODD Locally Optimized Dynamical Decoupling. Sequence obtained by minimization of the infidelity
using a minimization algorithm.

MAXDD Maximal Dynamical Decoupling. DD strategy which aims at averaging out all possible dynamics.

NMQSD Non-Markovian Quantum State Diffusion. A stochastic method used to study non-markovian
dynamics of a quantum system interacting with a bosonic field.

OFDD Optimized Noise Filtration Dynamical Decoupling. Sequence obtained by minimization of the
integral over the filter function using a minimization algorithm.

QDD Quadratic Dynamical Decoupling. Sequence analytically constructed by concatenation of UDD se-
quences.

QEC Quantum Error Correction. Strategy to correct quantum errors after they occurred by detecting them
(using measurement schemes) and figuring out the correct recovery operation.

QEM Quantum Error Mitigation. Strategy to avoid quantum errors. Some examples of such schemes are
DFS and DD.

SD Spectral Density. A distribution that characterizes how much a quantum system is coupled to each
frequency of the bosonic bath that models the environment.
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SELDD Selective Dynamical Decoupling. DD strategy which aims at averaging out specific dynamics,
leaving some useful dynamics left for computation purposes.

SELKDD Selective Knill Dynamical Decoupling. sequence of composite pulses constructed to increase the
robustness of CPMG to systematic errors in the control field.

UDD Uhrig Dynamical Decoupling. Sequence of non-equidistant pulses which achieves the highest possible
filtering for low frequencies.

URDD Universally Robust Dynamical Decoupling. Sequence constructed by optimizing the phase of the
pulses in order to increase the robustness.

XY4 This does not really stand for something. XY4 is a sequence composed of spin-flips and phase-flips
and is the first MAXDD strategy constructed.
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Introduction

It is a well-known fact that quantum mechanics allows quantum systems to be in coherent superposition of
states. Let us take a two-level system to explain what is meant by this statement. This system possesses
two levels of energy and thus two basis states: a ground state |g⟩ of lesser energy and an excited state |e⟩ of
higher energy. Classically, the system can only be in one of the two states. The classical state space of the
system then consists of the two basis states |g⟩ and |e⟩. Quantum physics, however, allows for a much bigger
state space that we call the Hilbert space. According to quantum physics, any linear combination of these
two states, provided that the norm of the state |ψ⟩ is equal to 1, is a perfectly valid state of the quantum
system. That is, the most general state of a two-level quantum system can be written as |ψ⟩ = α |g⟩+ β |e⟩
with α and β two complex numbers that satisfy the condition |α|2 + |β|2 = 1. These states are called
coherent superposition of states. The particularity of these superposed quantum states is that they hold
hidden quantum information in the complex numbers α and β. In fact, measuring the system would result
in the state |g⟩ being measured with probability |α|2 or |e⟩ with probability |β|2. After the measurement,
the state will either collapse to |g⟩ or |e⟩ and the information stored in α and β will be destroyed. This
hidden quantum information can thus not be directly measured, and hence can be considered hidden to our
reality, but definitely bear verifiable consequences which can be exploited. The discussion above takes as
an example the most elementary building block for the storage and processing of quantum information, a
two-level quantum system that we call a quantum bit, or qubit, but a similar discussion can be made with
an arbitrary d-level quantum system with d > 2; we then talk of qudit.

|e⟩

|g⟩

z

x

y

|ψ⟩

Figure 1: The so-called Bloch sphere provides a nice geometrical representation of the state of a qubit
|ψ⟩ = cos(θ/2) |e⟩+eiφ sin(θ/2) |g⟩ where the parameters α, β have been traded with the polar and azimuthal
angles θ and φ. This figure was created using the LATEXpackage blochsphere.

Let us now consider two qubits instead of one. Classically, four states are allowed: |g1g2⟩, |g1e2⟩, |e1g2⟩
and |e1e2⟩. Quantum mechanically, as in the previous case, the state space is much bigger and all coherent
superpositions of these four states are valid. This allows for strange but interesting states such as the Bell
state |ψ⟩ = 1√

2
(|g1g2⟩+ |e1e2⟩). As in the previous case, a measurement on the first qubit would result in
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the state |g1⟩ or |e1⟩ being measured with probability 1
2 . However, after the measurement, the total state

will either collapse to |g1g2⟩ or |e1e2⟩ depending on the result, which leads to the strange conclusion that
a measurement on the first qubit has instantaneously affected the second qubit. This leads to correlation
between the measurement of the first and second qubit that would not occur if the system was treated
classically: the two qubits are said to be entangled and, similarly, the quantum state is called an entangled
state. Quantum entanglement is a strange property that has no counterpart in classical physics.

Figure 2: Representation of the non-classical correlation between two consecutive measurements of entangled
qubits. When the first qubit is measured, there is a 50% chance for the ground state or the excited state to
be measured and the wave function collapses to either |g1g2⟩ or |e1e2⟩ depending on the outcome. Because
of this wave function collapse, the probabilities of each outcome of the measurement on the second qubit is
affected by the outcome of the first measurement.

Those so-called entangled states are now commonly used to enable new scientific advances and the creation
of new quantum technologies; many fields of research are taking advantage of entanglement and therefore
depend on the reliability on which those states can be prepared, maintained and controlled [1,2]. Such areas
of research are, for instance, the fields of quantum metrology, where highly non-classical states are used to
perform precision measurements [3–5], or quantum cryptography [6, 7]. But one of the most famous field of
study relying on entanglement of quantum systems is certainly quantum information processing [8], which
makes use of entangled states to perform computation with quantum algorithms that offer significant speed
up over their classical counterparts.

However, those non-classical states of quantum systems on which various quantum technologies rely are
unstable due to unwanted interaction with their environment. Because of the undesirable coupling between
the system and its environment, quantum states degrade from a coherent superposition of states to a mixture
of states, destroying the quantum information stored in the system as well as the useful entanglement prop-
erties. We say that the quantum system relaxes. If the relaxation occurs due to dissipation of energy, we say
that the relaxation is longitudinal and the relaxation rate is characterized by the relaxation time T1. On the
other hand, if the relaxation occurs due to pure dephasing, that is without dissipation of energy, the relax-
ation is transverse and characterized by a relaxation time T2. This process is called decoherence [9–11] and
critically limits the performance of current quantum technologies. Qubits of a quantum computer become
unreliable after a certain time, causing the proliferation of errors throughout the computation, for instance.
Accordingly, the relaxation times T1 and T2 are two of the fundamental quantities that characterize the qual-
ity of a qubit implementation. Some promising qubit implementations and the maximal longevity obtained
with such implementations are summarized in Fig.3. This coherence loss due to unwanted coupling stands
as a huge obstacle for all technology that makes use of quantum information and quantum entanglement
and great efforts have been made to address this problem. Numerous schemes have been developed in the
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past decades to extend the lifetime of qubits and qudits. The two main strategies to fight decoherence are
Quantum Error Correction and Quantum Error Mitigation.

Figure 3: Presentation of some qubit implementation and the maximum coherence time achieved. Figure
taken from Ref. [12].

Quantum Error Correction (QEC) [8,13–15] aims at correcting errors after they occurred and is believed
to be the key to achieve arbitrary long and accurate quantum computation. It consists in encoding a logical
qubit (or qudit) into several physical qubits (or qudits) in such a way that, when an error occurs, it is
possible to detect that error and apply the necessary operation to correct it and retrieve the initial quantum
state. However, a Quantum Error Correction Code can only correct so many errors at a time and quickly
becomes overwhelmed by the proliferation of errors, due to both decoherence and imperfect quantum control
over the system. A major result in the field of QEC was the demonstration of the threshold theorem, which
shows that arbitrary long and accurate computation is, in principle, possible using quantum error correction
codes provided that the physical error rate is below a certain threshold, which value depends on various
parameters [15]. However, the computational cost of the relevant QEC scheme is usually extremely high1

and the error rate should be lowered even further than the threshold in order to implement the necessary
QEC code in practice. It is thus fundamental to develop schemes to mitigate errors, hence the development
of Quantum Error Mitigation schemes.

As its name indicates, Quantum Error Mitigation (QEM) aims at mitigating errors instead of correcting
1For example, using a specific QEC code architecture called the surface codes, a single logical qubit should be encoded into

104 physical qubits in order to achieve arbitrary long computation if the error rate per qubit is in the order of 0.1% [16]; current
prototypes of quantum computers only consist of a few hundred qubits for the most advanced ones.
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Figure 4: Representation of a QEC protocol.

them after they happened. Two fundamentally different QEM strategies are Decoherence-Free Subspaces
(DFS) [17,18] and Dynamical Decoupling (DD). A DFS scheme makes use of symmetries in the interaction
Hamiltonian between the system and the environment and consists in encoding the qubits or qudits in a
subspace of the total Hilbert space which rests unaffected (up to a global phase factor) by the errors resulting
from the interaction Hamiltonian. This elegant approach to QEM is appealing because after the encoding
procedure, no further control or resource is required. Quantum computation can then safely be performed
as long as the state of the system stays in this specific subspace. However, this approach only works if the
interaction Hamiltonian is known and if it exhibits enough symmetries to construct that subspace. If either
of these two conditions is not satisfied, other schemes are needed, such as Dynamical Decoupling (DD) which
is the subject of this Master’s thesis.

Dynamical Decoupling is a technique inspired by Spin Echo in Nuclear Magnetic Resonance (NMR) [19]
and consists in averaging out the unwanted terms in the Hamiltonian by the application of a sequence of
pulses. It was first introduced in 1998 when Lorenza Viola and Seth Lloyd showed that, by applying a
series of spin-flip to a qubit, it was possible to average out the term of the Hamiltonian responsible for
pure dephasing [20]. They showed that, in principle, arbitrary long lifetime could be achieved simply by
increasing the frequency at which these spin-flips are applied. A year later, L. Viola developed a general
theory of dynamical decoupling [21]. She demonstrated that, by choosing the proper sequence of pulses,
one could average out any unwanted term in the Hamiltonian, and also showed how to construct such a
sequence. This work paved the way for the development of dynamical decoupling; in the last two decades,
more complex sequences were found and new techniques have emerged to construct optimized sequences with
higher performances. On the experimental front, the efficacy of dynamical decoupling was proven numerous
times on various implementation of qubits, such as in NV center [22,23], trapped ions [24,25], NMR [26,27]
or superconducting qubits [28].

The objective of this Master’s thesis is twofold. The first and principal objective is to write a review of
the current knowledge on dynamical decoupling. Accordingly, we will introduce different protocols developed
in the past two decades in the interest of extending the lifetime of a single qubit. Each sequence will be
introduced in the context of optimizing a previous sequence or overcoming a problem encountered by the
previous protocols. We will therefore start by a presentation of the most basic DD sequence and build up
to the more complex and performing ones. The ambition behind this approach is that, by the end of the
reading, one would not only have been introduced to the state-of-the-art protocols of dynamical decoupling,
but would also, and most importantly, understand the different optimization procedures that lead to improved
protocols. The second objective is to use a state-of-the-art method for studying non-Markovian behaviors of
open quantum system, called the Hierarchy Of Pure States (HOPS), in the context of dynamical decoupling.
We will make use of an exact analytical solution for a qubit undergoing DD and decoherence to validate the
results obtained from the HOPS method and bring some insight into the regime of validity of HOPS in the
context of studying decoherence and dynamical decoupling. We will then offer some perspectives for future
utilization of the HOPS method in this context.

This work is structured as follows. In Section 1, we develop the decoherence model used throughout
the sections and demonstrate the degradation of quantum information due to the interaction Hamiltonian.
This will illustrate the issue encountered in the development of quantum technologies. This section is
also dedicated to the derivation of the HOPS equations and the utilization of HOPS for the analysis of
a decohering qubit. We then follow the pioneering work of L. Viola [21] in Section 2 in order to explain
how a DD sequence can average out part of the Hamiltonian and how to construct such a sequence. In
Section 3, we start by introducing the most basic dynamical decoupling sequence. Then, we introduce a
first optimization procedure and present a few interesting results. The protocols established throughout this
section are designed to increase the relaxation time T2, which means that dissipation of energy is not taken
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into account just yet. In the following section, we address this issue and construct a sequence to that effect.
We then present another method for increasing the performance of this new sequence. In Section 5, we then
present some important sequences. Each sequence will be introduced in the context of solving a particular
problem of dynamical decoupling, resulting either from the theory itself or the experimental implementation.
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Chapter 1

Decoherence

As explained in the introduction, decoherence is the result of interactions between a system and its envi-
ronment. When decoherence occurs, entanglement and coherence are damaged; the quantum properties of a
quantum system are destroyed. Decoherence is thus believed to be at the heart of the quantum-to-classical
transition [29], explaining paradoxes such as Schrödinger’s cat [8]. In this section, we will present a model
of decoherence for a qubit interacting with a bosonic field, i.e. the spin-boson model. The objective of
this section is threefold. First, this should illustrate the problem encountered when developing quantum
technologies and the importance of QME and QEC schemes. Secondly, the methods presented in this section
to study decoherence as well as the spin-boson model for decoherence will be used throughout this Master’s
thesis and it is thus important to introduce them beforehand. Finally, it is important to go through the
analytical derivation of Section 1.4 as a similar derivation will be made later on in the context of studying
some important dynamical decoupling sequences.

This section will start by a quick reminder (or introduction depending on how familiar you are with
quantum mechanics) on how to treat closed and open quantum systems. Afterwards, we will present the
spin-boson model. Once the spin-boson model is introduced, we will introduce two methods for studying the
dynamics of a qubit, those two methods being used throughout this Master’s thesis. The first method will
consist in an analytical derivation of the time-evolution operator and will be used when only pure dephasing
is taken into account (that is when no dissipation of energy occurs), while the second method consists of the
derivation of a stochastic equation for which a numerical solver is already implemented in the OQLiège Julia
library. The second method will be introduced in the context of adding dissipation effects to the model.

1.1 Closed quantum system
In quantum mechanics, the dynamics of a closed quantum system is entirely determined by its Hamiltonian.
For a given system with an Hamiltonian HS (which can certainly be time-dependent), a specific Hilbert
space HS will contain all valid quantum states |ψ⟩. By solving the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = HS(t) |ψ(t)⟩ (1.1)

with respect to an initial condition |ψ(t0)⟩, one can find the time evolution of the system’s state, |ψ(t)⟩. The
system’s state will then follow a path in the Hilbert space, this path being determined by the Hamiltonian.
In order to find |ψ(t)⟩, one can define the time-evolution operator U(t, t0). The time-evolution operator is a
unitary operator whose job is to give the state |ψ(t)⟩ when applied to the state |ψ(t0)⟩. This means that we
want U(t, t0) to satisfy

U(t, t0) |ψ(t0)⟩ = |ψ(t)⟩ (1.2)

and
U†(t, t0) |ψ(t)⟩ = |ψ(t0)⟩ . (1.3)
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By plugging this into the Schrödinger equation, we find that the equation becomes

iℏ
d

dt
U(t, t0) = HS(t)U(t, t0) (1.4)

for which the solution is given by

U(t, t0) = T← exp

{
−i
ℏ

∫ t

t0

HS(t
′)dt′

}
. (1.5)

The factor T← in Eq.(1.5) is called the time-ordering operator : its job is to ensure that every operator
is applied in chronological order when U(t, t0) is applied to |ψ(t0)⟩. For a closed quantum system, all we
need to do is to calculate the time-evolution operator in order to study the dynamics of the system. Once
the time-evolution operator is known, one can find |ψ(t)⟩ and then calculate the expectation value of any
operator A acting on the Hilbert space of the system using

⟨A⟩ψ = ⟨ψ(t)|A |ψ(t)⟩ . (1.6)

Another way to proceed is by defining the density operator ρ(t) = |ψ(t)⟩ ⟨ψ(t)|. It is straightforward to show
that the density operator at time t can be found using

ρ(t) = |ψ(t)⟩ ⟨ψ(t)| = U(t, t0) |ψ(t0)⟩ ⟨ψ(t0)|U†(t, t0) = U(t, t0)ρ(t0)U
†(t, t0). (1.7)

Deriving this equation with respect to time leads to the Liouville von-Neumann equation which is essentially
the equivalent of the Schrödinger equation when dealing with density operators instead of wave functions:

d

dt
ρ(t) =

−i
ℏ
[HS(t), ρ(t)]. (1.8)

The density operator will be particularly useful when dealing with open quantum system. Instead of cal-
culating the wave function and expectation values using Eq.(1.6), one can find the density operator and
calculate expectation values by tracing over the system using the equation

⟨A⟩ρ = Tr [Aρ]. (1.9)

1.2 Open quantum system
Suppose that a system of interest S is interacting with an environment B, where B stands for the bath that
models the environment. Considering the system and the environment altogether, we have a closed system
whose Hamiltonian can be written as

H = HS ⊗ 1B + 1S ⊗HB +HSB (1.10)

where HS and HB are the Hamiltonian of the system and the bath respectively and HSB is the interaction
Hamiltonian that couples the system to its environment. We could now define ρtot(t) as the total density
operator and solve the Liouville von-Neuman equation. However, the bath generally possesses a large number
of degrees of freedom, which makes this procedure an inefficient way to tackle the problem. The spin-boson
model of the environment, for instance, has an infinite number of degrees of freedom which thus leads to a
density operator ρtot(t) of infinite size. Additionally, the dynamics of the bath is not necessarily relevant
as we would like to focus on the system of interest and we thus need a way to get rid of the unwanted
information about the dynamics of the bath such that we can reduce the size of the problem as much as
possible.

This is typically done by defining the reduced density operator of the system as

ρS(t) = TrB [ρtot(t)] (1.11)
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where the total density operator is traced over the degrees of freedom of the bath. By defining the reduced
density operator as such, one can find that the expectation value of any operator A acting only on the system
can now be calculated using

⟨A⟩ρtot = ⟨A⟩ρS = TrS [AρS ] (1.12)

instead of Eq.(1.9). The useful information about the system is thus stored in the reduced density operator
which contains all the information necessary to calculate the expectation values of any operator acting on
the Hilbert space of the system. Instead of computing the total density operator, one now only needs to find
the reduced density operator.

A common method to study the dynamics of open quantum systems is through the derivation of a
Quantum Master Equation (QME). Basically, it consists in developping the Liouville von-Neumann equation,
Eq.(1.8), for the reduced density operator. When dealing with Markovian behaviors, that is when the system
and bath’s dynamics is assumed to be independent from its past states, a QME is relatively easy to find [11].
However, this approximation is valid when considering the system’s dynamics on a timescale much larger
than the correlation time of the environment, which is not a valid approximation when studying dynamical
decoupling, as we shall see later on. In order to study dynamical decoupling, we need to account for some non-
Markovian dynamics which calls for more complex methods. Non-Markovian QME are considerably harder
to derive, but some work on dynamical decoupling showed that DD effects can be accounted for by using a
Redfield equation [28, 30], where the Markov approximation is not entirely made and some non-Makrovian
behaviors is thus accounted for.

In order to describe non-Markovian behaviors for systems where non-Markovian QME cannot be easily
derived, a different method to study open quantum systems is through Stochastic Simulation Methods [11].
It consists of realizing independent runs of a stochastic process and calculate the desired expectation values
by statistical means. One such method is the Hierarchy Of Pure States (HOPS) [31] which was recently
implemented in the Uliège Quantum Optics Julia library by Baptiste Debecker. It is an exact method
created to study non-Markovian behaviors of a quantum system interacting with a bosonic bath. In this
Master’s thesis, the HOPS method will be used to study the more complex dynamical decoupling sequences
and environment models.

For the most simple systems, one can decide to calculate directly the time-evolution operator and use
it to find the different components of ρS(t). This approach can be used to study the simplest sequences
of dynamical decoupling as well as the most basic model of decoherence. In this section, we will use this
approach to study the exact dynamics of a qubit undergoing pure dephasing. Later on, a similar derivation
of U(t, t0) will be used to study two sequences of pulses designed for that same model.

1.3 The spin-boson model
The spin-boson model describes the dynamics of a two-level system, i.e. a qubit, interacting with a bath
which consists of an infinite number of bosonic field modes. This model allows for the analysis of important
properties of decoherence because of its exact analytical solution and has been extensively studied because of
that [9, 11, 32–34]. Using this model, we can study the purest form of decoherence: pure dephasing without
dissipation of energy. By changing the coupling strength with the different modes of the bosonic field (or
equivalently by changing the spectral density, as we will se later on), it is possible to reproduce different
properties of decoherence. Trapped ion and superconducting circuits have been used recently to simulate the
spin-boson model with different spectral density, including the Ohmic spectral density [35,36] and Lorentzian
spectral density [37] that we will focus on.

The spin-boson model is characterized by a total Hamiltonian of the system+bath given by

H =
ℏω0

2
σz︸ ︷︷ ︸

≡HS

⊗1B + 1S ⊗
∑
k

ℏωkb†kbk︸ ︷︷ ︸
≡HB

+ ℏσz ⊗
∑
k

(
gkb
†
k + g∗kbk

)
︸ ︷︷ ︸

≡HSB

, (1.13)

with HS and HB the Hamiltonian of the system and bath respectively and HSB the interaction Hamiltonian.
In this expression, gk is the coupling constant between the mode k of the bosonic bath and the system and
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bk (resp. b†k) is the annihilation (resp. creation) operator of the mode k. Because we are dealing with a
bosonic bath, the operators bk and b†k satisfy the commutation relations

[bq, bk] = 0 =
[
b†q, b

†
k

]
(1.14)

and [
bq, b

†
k

]
= δqk. (1.15)

The system Hamiltonian HS is characterized by a transition angular frequency ω0 between the ground
state and the excited state. Because the Pauli operator σz possesses eigenvalues ±1, HS describes a two-
level system with a ground state |1⟩ of energy −ℏ

2ω0 and an excited state |0⟩ of energy ℏ
2ω0.1 The bath

Hamiltonian HB , on the other hand, is a typical Hamiltonian for a bosonic bath made of an infinite number
of modes k of frequency ωk. In order to lighten the notations, we will from now on omit the tensor product
’⊗’ as well as the identity operators from Eq.(1.13) and simply write

H = HS +HB +HSB . (1.16)

In order to study this model, different methods can be used. First, we will present an analytical method.
Two approximations will be made during the derivation. The first one consists in assuming that the initial
state is a separable product state, such that there is no entanglement at t0 between the system and the
bath. Mathematically, we have ρtot(t0) = ρ(t0) ⊗ ρB(t0). Secondly, we assume that the environment is at
thermal equilibrium at t = t0, ρB(t0) = ρB = 1

ZB
e−βHB with ZB the partition function of the bath. After

the analytical derivation, we will show how to take dissipation into account and why another method should
be used when a dissipative term is added.

1.4 Calculation of the time-evolution operator
In order to calculate the time-evolution operator, we first need to switch to the rotating frame with respect
to HS +HB in order to simplify the Schrödinger equation. For those who are a bit rusty with the rotating
frame, a detailed explanation on how (and why it is advantageous) to move to the rotating frame can be
found in Appendix A. In order to move to the corresponding rotating frame, we use for the unitary operator
the time-evolution operator corresponding to the Hamiltonian HS +HB , given by

U(t) = T← exp

{
− i

ℏ

∫ t

0

(HS +HB)dt
′
}
. (1.17)

Since HS + HB is time independent, it commutes with itself at all times t and we can remove the time
ordering operator. We are left with

U(t) = exp

{
− i

ℏ
(HS +HB)t

}
= exp

{
− i

ℏ
HSt

}
exp

{
− i

ℏ
HBt

}
(1.18)

because HS and HB commute. For the last equality, it can be proved that the exponential can be split if
the two operators commute with each other by using the Baker-Campbell-Hausdorff formula. The proof was
done explicitly in Ref. [38]. The effective Hamiltonian in the rotating frame is thus expressed as

H̃SB(t) = U†(t)HSBU(t)

=

(
exp

{
+
i

ℏ
HSt

}
exp

{
+
i

ℏ
HBt

})
ℏσz

∑
k

(
gkb
†
k + g∗kbk

)(
exp

{
− i

ℏ
HSt

}
exp

{
− i

ℏ
HBt

})
= ℏei

ω0
2 σzσze

−iω0
2 σz

∑
k

ei
∑
q ωqb

†
qbqt
(
gkb
†
k + g∗kbk

)
e−i

∑
q ωqb

†
qbqt.

(1.19)

1It is worth to point out that a different convention assigns the state |0⟩ to the lower energy state and |1⟩ to the higher
energy state. However, in quantum computation, assigning |1⟩ and |0⟩ the other way around is quite common.
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Because the exponential of the Pauli operator σz can be expressed as (see Appendix B for the proof)

exp
{
i
ω0

2
σz

}
= cos

(ω0

2

)
1+ i sin

(ω0

2

)
σz, (1.20)

it is straightforward to see that the exponential exp
{
iω0

2 σz
}

satisfy the commutation relation2[
exp
{
i
ω0

2
σz

}
, σz

]
= 0. (1.21)

Using this commutation relation, one can simplify Eq.(1.19) and write

H̃SB(t) = ℏσz
∑
k

ei
∑
q ωqb

†
qbqt
(
gkb
†
k + g∗kbk

)
e−i

∑
q ωqb

†
qbqt. (1.22)

The next step is to use the similarity transform formula developed in [38] for bosonic systems, which read,
for all a ∈ C,

eab
†
kbktb†ke

−ab†kbkt = eatb†k, (1.23a)

eab
†
kbktbke

−ab†kbkt = e−atbk. (1.23b)

It can also be proved that the annihilation and creation operators bk and b†k satisfy the commutation relations[
eab

†
kbkt, b†q

]
= 0, (1.24a)[

eab
†
kbkt, bq

]
= 0, (1.24b)

when q ̸= k. Using Eq.(1.23) and Eq.(1.24), we can greatly simply Eq.(1.22) which now reads

H̃SB(t) = ℏσz
∑
k

(
gke

iωktb†k + g∗ke
−iωktbk

)
. (1.25)

This effective Hamiltonian now governs the dynamics of the system in the rotating frame and we can thus
calculate the corresponding time-evolution operator

Ũ(t, t0) = T← exp

{
−i
ℏ

∫ t

t0

H̃SB(t
′)dt′

}
. (1.26)

In order to eliminate the time ordering operator, we can expand the time-evolution operator as a Magnus
series (see Appendix C for an introduction to the Magnus expansion) which leads to

Ũ(t, t0) = exp{Ω(t)} = exp

{ ∞∑
k=0

Ωk(t)

}
(1.27)

with the first two terms of the Magnus series Ω(t) given by

Ω0(t) =
−i
ℏ

∫ t

t0

dt′H̃SB(t
′),

Ω1(t) =
1

2

(
−i
ℏ

)2 ∫ t

t0

dt1

∫ t1

t0

dt2

[
H̃SB(t1), H̃SB(t2)

]
.

One can show that the commutation relations of the operators bk and b†k, Eq.(1.14) and (1.15), lead to
the commutator

[
H̃SB(t1), H̃SB(t2)

]
being equal to some factor times the identity operator, which leads

2Note that any analytic function f of an operator A commutes with A. This can be proved by expanding f(A) as a Taylor
series and realize that An commutes with A for all powers n. This property is thus not unique to the Pauli operators.
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to the first term of the Magnus series being equal to a global phase factor that we can eliminate without
approximation. The following terms of the Magnus series consisting of higher orders of the commutator,
they will all cancel out, which leaves the term Ω0(t) as the only survivor of the Magnus expansion (up to a
global phase factor). The time-evolution operator is thus given by

Ũ(t, t0) = exp

{
−i
ℏ

∫ t

t0

H̃SB(t
′)dt′

}
. (1.28)

Calculating the integral leads to

Ũ(t, t0) = exp

{
σz
2

∑
k

[
2gk
ωk

(
1− eiωk(t−t0)

)
eiωkt0b†k − h.c.

]}

≡ exp

{
σz
2

∑
k

[
αk(∆t)e

iωkt0b†k − h.c.
]} (1.29)

where ’h.c.’ means the Hermitian conjugate of the first term in bracket and where we have defined

αk(∆t) =
2gk
ωk

(
1− eiωk∆t

)
(1.30)

with ∆t = t − t0. We then define the operator B(t, t0) =
∑
k

(
αk(∆t)e

iωkt0b†k − h.c.
)

acting on the bath
such that the time-evolution operator can be written in the simplified form

Ũ(t, t0) = exp
{
−σz

2
⊗B(t, t0)

}
. (1.31)

The time evolution of the system in the rotating frame is entirely determined by the operator Eq.(1.31)
and includes all dynamics that result from the interaction Hamiltonian. Decoherence can therefore be studied
by calculating the components of the reduced density operator in the rotating frame, ρ̃S(t), which is given
by

ρ̃S(t) = Tr
[
Ũ(t, t0)ρ̃tot(t0)Ũ

†(t, t0)
]
. (1.32)

Translated in the rotating frame, the assumptions described previously on the initial state and on the state
of the environment lead to

ρ̃tot(t0) = ρ̃S(t0)⊗ ρ̃B(t0) (1.33)

with

ρ̃B(t0) =
i
ℏHB(t0−t0) ρBe

−i
ℏ HB(t0−t0)

= ρB(t0).

We can then focus on specific components of the 2× 2 matrix ρ̃(t) by calculating

ρ̃ij(t) = ⟨i|TrB
[
Ũ(t0, t)(ρ̃(t0)⊗ ρB)Ũ

†(t0, t)
]
|j⟩ . (1.34)

We choose the represent the reduced density operator in the computational basis {|0⟩ , |1⟩} where |0⟩ (resp.
|1⟩) is the eigenstate of eigenvalue +1 (resp. −1) of the Pauli operator σz. One can then show that the
time-evolution operator applied to the states |0⟩ and |1⟩ results in the following operators acting on the
environment:

Ũ(t0, t) |0⟩ = exp

{
−1

2
B(t, t0)

}
|0⟩ ⟨0| Ũ(t0, t) = ⟨0| exp

{
−1

2
B(t, t0)

}
Ũ(t0, t) |1⟩ = exp

{
1

2
B(t, t0)

}
|1⟩ ⟨1| Ũ(t0, t) = ⟨1| exp

{
1

2
B(t, t0)

}
.
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It is then possible to calculate the components ρ̃ij using Eq.(1.34) and the relations above. We will do the
explicit calculation for the off-diagonal component ρ̃10(t), but the derivation of the other components can
be done similarly. We have

ρ̃10(t) = ⟨1|TrB
[
Ũ(t0, t)(ρ̃(t0)⊗ ρB)Ũ

†(t0, t)
]
|0⟩

= ⟨1| ρ̃(t0) |0⟩TrB
[
exp

{
1

2
B

}
ρB exp

{
1

2
B

}]
= ρ̃10(t0) TrB

[
ρB exp

{
1

2
B

}
exp

{
1

2
B

}]
= ρ̃10(t0) TrB

[
ρB exp

{∑
k

(
αk(∆t)e

iωkt0b†k − h.c.
)}]

where the cyclicity of the trace was used to gather the operators exp{B/2} on the right-hand side in the
bracket. The trace Tr [ρB exp{B}] is the expectation value of exp{B} in the environment state ρB and we
can then write3

TrB

[
ρB exp

{∑
k

(
αk(∆t)e

iωkt0b†k − h.c.
)}]

=
∏
k

〈
exp
{
αk(∆t)e

iωkt0b†k − h.c.
}〉

ρB,k
(1.35)

where ⟨·⟩ρB,k is the expectation value for the thermal mode ρB,k = 1
ZB
e−βℏωkb

†
kbk . This function is known as

the Wigner characteristic function of the bath mode k and is a common function in quantum optics [9, 11].
It has a nice analytical expression given by〈

exp
{
αk(∆t)e

iωkt0b†k − h.c.
}〉

ρB,k
= exp

{
−1

2
|αk(∆t)|2 coth

(
ℏωk
2kBT

)}
. (1.36)

Putting everything together, we come up with the simple expression for the off-diagonal component

ρ̃10(t) ≡ ρ̃10(t0)e
−Γ(t) (1.37)

where we have defined the decoherence function Γ(t) as

Γ(t) =
1

2

∑
k

|αk(∆t)|2 coth
(

ℏωk
2kBT

)
. (1.38)

Using the definition of αk(∆t), we finally obtain

Γ(t) = 4
∑
k

|gk|2

ω2
k

[1− cos(ωk∆t)] coth

(
ℏωk
2kBT

)
. (1.39)

A similar derivation for the other components of the reduced density matrix gives us the following result :

ρ̃S(t) =

(
ρ̃00(t0) ρ̃01(t0)e

−Γ(t)

ρ̃10(t0)e
−Γ(t) ρ̃11(t0)

)
. (1.40)

In the reduced density matrix, the off-diagonal elements correspond to the coherences. The decoherence
function is a real positive function, which means that the coherences decay exponentially with time. The

3Because of the commutation relation
[
bk, b

†
q

]
= [bk, bq ] =

[
b†k, b

†
q

]
= 0 for q ̸= k, the exponential of the sum over all modes

can be expressed as a product over all modes of an exponential.
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decay of the off-diagonal elements then corresponds to a loss of coherence where a pure, coherent superposition
of state is degraded over time into a mixture of state.

Remark. Switching back from the rotating frame to the Schrödinger representation adds an additional
phase factor exp{iω0t} to the off-diagonal components of the reduced density matrix. Because the argument
of the exponential is imaginary, it does not produce any loss of coherence. This factor originates from the
system Hamiltonian HS and generates oscillations of the off-diagonal component at the frequency ω0.

In order to study the decoherence function, we can switch to the continuum limit in order to have an
expression of Γ(t) as an integral over all frequencies ω of the bath instead of a sum over all the modes by
defining the Spectral Density4 (SD)

J(ω) = 4
∑
k

|gk|2δ(ω − ωk), (1.41)

which leads to

Γ(t) =

∫ ∞
0

dω
J(ω)

ω2
[1− cos (ω∆t)] coth

(
ω

2kBT

)
. (1.42)

which is the main result of this section. The decoherence function therefore only depends on the temperature
T and the spectral density of the bath J(ω). The spectral density describes entirely the influence of the
environment on the system. It basically states ’how much’ the system couples with each frequency of the
bosonic field. The choice of J(ω) will depend on the environment that we wish to model. Two common
choices are the Ohmic spectral density and the Lorentzian spectral density. These spectral densities will be
introduced shortly. It is however preferable to introduce the different quantities describing decoherence in
our model beforehand.

A first quantity of interest is 1− exp (−Γ(t)) which quantifies how much coherence is lost at time t. This
quantity is independent on the initial state of the system and entirely depends on the spectral density and
the temperature. Equivalently, exp (−Γ(t)) represents how much coherence is left.

The quantity usually used in quantum information processing to quantify the reliability of qubits and
qudits is the quantum fidelity [39, 40], which is essentially a measure of how close two quantum states are.
In the context of quantum information storage, this would characterize how close a quantum state at time
t is to the initial quantum state at time t0. In the context of this Master’s thesis, we consider a quantum
system in a pure quantum state |ψ(t0)⟩ which suddenly undergoes decoherence at time t0, that is the system
is closed for times below t0. In that case, the quantum fidelity at time t is given by

F(ρ(t), |ψ(t0)⟩ ⟨ψ(t0)|) = ⟨ψ(t0)| ρ(t) |ψ(t0)⟩ . (1.43)

Considering a qubit in the most general pure state |ψ(t0)⟩ = α |0⟩ + β |1⟩, with |α|2 + |β|2 = 1, and the
reduced density matrix Eq.(1.40) with ρ̃(t0) = ρ(t0) = |ψ(t0)⟩ ⟨ψ(t0)|, we can calculate the quantum fidelity
as follows

F(ρ̃(t), |ψ(t0)⟩ ⟨ψ(t0)|) = (α∗ ⟨0|+ β∗ ⟨1|)ρ̃(t)(α |0⟩+ β |1⟩)

= |α|2ρ̃00(t) + |β|2ρ̃11(t) + α∗βρ̃01(t) + αβ∗ρ̃10(t)

= |α|4 + |β|4 + 2|α|2|β|2e−Γ(t).
(1.44)

Because of the normalisation condition, we have

F(ρ̃(t), |ψ(t0)⟩ ⟨ψ(t0)|) = |α|4 + |β|4 + 2|α|2|β|2e−Γ(t)

≤ |α|4 + |β|4 + 2|α|2|β|2

=
(
|α|2 + |β|2

)2
= 1.

4It should be noted that there exists different conventions to the definition of the spectral density which differ in the value
of the factor that appears in Eq.(1.41). We used the same definition as in Ref. [20] by choosing a factor 4 in front of the sum.
Another common choice is to replace this factor by a factor π, this convention being the one used by Baptise Debecker in the
implementation of the HOPS method in the OQLiège Julia library. In order to match the analytical results with the numeric
results using the HOPS method, we should then add a multiplicative factor 4/π to our definition of the spectral density.

22



The fidelity is therefore a real number in the interval [0, 1] and the objective of quantum error mitigation
schemes is to keep the fidelity as close to 1 as possible during the computation. Usually, a high fidelity
between 99% and 99.99% or higher is required [41]. Equivalently, we can define the infidelity as 1−F which
we aim to reduce.

1.4.1 Ohmic spectral density
The Ohmic spectral density is characterized by a coupling that increases linearly with ω until it reaches a
cut-off frequency ωc beyond which it is equal to zero. It is common to use a decreasing exponential in order
to implement a smooth cut-off instead of an infinitely sharp cut-off. It is thus given by

Jo(ω) = αωe−ω/ωc (1.45)

where α characterizes the overall coupling strength. Because the spectral density is a frequency, α is an
adimensionnal parameter. This function peaks at ω = ωc with a value of αωce .

Figure 1.1: Ohmic spectral density for any parameter α and ωc.

The choice of the Ohmic spectral density as a decoherence model throughout the paper is motivated by
its utilisation in some pioneering works on dynamical decoupling [20,41]. Using the same spectrum makes it
possible to verify some of our results with previous works. The coherence loss 1− exp{−Γ(t)} and infidelity
1−F are plotted in Fig. 1.2 for a temperature of kBT/ℏωc = 10−2 which is considered the low temperature
regime [20] where quantum fluctuations are responsible for the decoherence of the quantum system. We
used the entangled state |ψ(t0)⟩ = 1√

2
(|0⟩+ |1⟩) to compute the infidelity. Because the infidelity and the

coherence loss behave exactly the same way5, we will from now on only plot the coherence loss in order to
avoid redundant plots.

For ℏωc ≫ kBT , the decoherence function has a nice analytical solution [11] given by

Γ(t) ≈ α

2
ln
(
1 + ω2

c t
2
)
+ α ln

[
sinh

(
tkBTℏπ

)
tkBTℏπ

]
. (1.46)

There are clearly two timescales appearing in this expression: a thermal characteristic time τβ = ℏπ
kBT

and a
vacuum characteristic time τc = 1

ωc
. Because ℏωc ≫ kBT , we have τc ≪ τβ . For ωct ≪ 1 ≪ πℏωc

kBT
, a series

expansion reveals that the decoherence function is given by

Γ(t) ≈ α

2
ω2
c t

2 +
α

6

(
kBT

πℏ

)2

t2. (1.47)

5One can see from Eq. (1.44) that the fidelity decreases with the exponential factor that appears in the coherences ρ01(t)
and ρ10(t). The only difference between the two expressions is dependence on the initial state.
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Because ℏωc ≫ kBT , the thermal term can be neglected compared to the vacuum term, revealing a simple
expression

Γ(t) ≈ α

2
ω2
c t

2. (1.48)

This means that below the characteristic time τc, the coherence loss obeys the exponential law

ρ01(t)/ρ01(t0) = e−
α
2 ω

2
c t

2

, (1.49)

and we now understand that ωc is the characteristic frequency indicating the timescale at which a qubit
looses its coherence.

Figure 1.2: Coherence loss and infidelity as a function of the dimensionless parameter ωct for different orders
of magnitude of the coupling strength and a temperature of kBT/ωc = 10−2. Because we are interested in
the high fidelity regime, it makes sense to always plot these quantities in the logarithmic scale in the following
sections, when it is possible.

It is clear that quantum information can only be stored with high fidelity for a timescale smaller than
τc ∼ 1

ωc
, which is called the correlation time of the environment. ωc, on the other hand, is the characteristic

frequency of the decoherence process. For a coupling strength α equal to 1 and 0.1, a qubit can only be
stored with a fidelity higher than 99% for a fraction of the correlation time. Lower coupling strengths can
improve the lifetime of the qubit, but not drastically.

1.4.2 Lorentzian spectral density
The Lorentzian spectral density has, as its name indicates, the shape of a Lorentzian centered at some
frequency ωc. A parameter κ characterizes the width of the distribution. It is given by

JL(ω) =
4

π

gκ

2

κ

(ω − ωc)2 + κ2
(1.50)

where g serves the same purpose as α for the Ohmic SD, except that this time g is not adimensional and
has the unit of a frequency. This function peaks at ω = ωc with a value of 4

π
g
2 .

The motivation behind the choice of the Lorentzian spectral density in this Master’s thesis is twofold.
First, as we will see later on, the HOPS method that will be used when dissipation should be added is
only implemented for a Lorentzian spectral density. Secondly, it will be interesting to see how qubits with
different spectral densities will differ in how they react to a dynamical decoupling protocol.

First, we should find the characteristic frequencies describing the decoherence process of a Lorentzian
density. In order to do that, we performed a series expansion around t = 0 and considered once again the
low temperature regime in order to leave out the thermal contribution, which leads to

Γ(t) =

∫ ∞
0

dω
gκ2

2

1

κ2 + (ω − ωc)2
1− cos (ωt)

w2
≈
∫ ∞
0

dω
gκ2

2

1

κ2 + (ω − ωc)2
t2

2
=

1

8
gκt2(π + 2arctan (ωc/κ)).

(1.51)
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Figure 1.3: Lorentzian spectral density for ωc/κ = 10.

For a Lorentzian centered at ωc ≫ κ, this leads to the nice analytical expression

Γ(t) ≈ π

4
gκt2. (1.52)

We thus have the same exponential law as in the Ohmic case, except that the characteristic frequency ωc is
replaced by the frequency √

gκ. However, this expression is only valid in the limit t→ 0: a series expansion
of (1 − cos (ωt) to the second order reveals that the integral does not converge over the range of frequency
[0,∞[. This issue did not occur in the Ohmic case because the integration had a nice analytical solution on
which a series expansion was more easily done.

Figure 1.4: Coherence loss for the Lorentzian spectral density using different parameters.

In order to see if the characteristic frequency √
gκ really relates to the coherence time of the qubit, we

plotted the coherence loss for different values of κ and ωc (see Fig. 1.4) and intended to empirically find the
relevant timescales. We find two characteristic frequencies Ω1 and Ω2. Ω1 relates to the coherence time of
the system, indicating the timescale at which the qubit totally loses its coherence, which is given by

τ1 =
1

Ω1
=

ω2
c

gκ2
. (1.53)

It thus corresponds the relevant timescale when studying decoherence produced by a Lorentzian SD. Mind
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that these calculations have been done at zero temperature, thus considering coth
(

ℏω
kBT

)
= 1.6. The second

characteristic frequency Ω2 =
√
gκ is the one analytically derived above.

In order to see how the spectral density affects a dynamical decoupling procedure, one can, by tunning
the Lorentzian parameters, design a Lorentzian spectral density which leads to the same decoherence time
as a Ohmic spectral density. In order to do that, we first use the same value for the parameter ωc in both
spectral densities. Then, we get the value of g such that both spectral densities peak at almost the same
value: because the peaks match by choosing g = π

2eαωc ≡ γ, we chose a value of g/γ equal to 0.8 and
1.5. Then, we varied the value of the parameter κ and plotted the coherence loss corresponding to the
tuned Lorentzian and the Ohmic SD in order to find the value of κ for which the qubit with Lorentzian
SD and Ohmic SD have the same decoherence properties7. Doing so, we construct two spectral densities of
corresponding coherence time ∼ 1/ωc (see Fig. 1.5). The decoherence rate for the Lorentzian SD’s seem
to differ from the Ohmic one for times t > 1/ωc but perfectly match with the Ohmic one at smaller times.
Because we are interested in the high fidelity regime, we will consider that these three spectrum yield the
same decoherence properties in the regime of interest. In conclusion, we have constructed two new spectral
densities that yield similar decoherence properties but with different distributions.

Figure 1.5: Three spectral densities of similar coherence time but with different distributions.

1.5 Adding dissipation

In the previous section, we have only considered a purely dephasing qubit in the spin-boson model. In this
model, no dissipation is taken into account, which means that the population of the excited state is not
affected by the interaction with the environment. When dissipation is taken into account, the decoherence
process of a qubit can be considered as resulting from two relaxation processes, that is a transverse relaxation
due to pure dephasing and a longitudinal relaxation due to dissipation [8]. These two processes are char-
acterized by a relaxation time T1 and T2 for the longitudinal and transverse relaxation times respectively.
Because T1 is generally greater than T2, pure dephasing is usually the physical process limiting the storage
of quantum information with high fidelity. The superconducting qubit of IBM [42], for example, typically
have a longitudinal relaxation time several times greater than the transverse relaxation time.

6Because the Lorentzian SD will mainly be used with HOPS and because HOPS is implemented at zero temperature, it
makes sense to study them at zero temperature to begin with.

7The decoherence properties will never match completely, but we wish the coherence losses to match in the regime of interest,
that is for low infidelity where quantum information can still be used reliably.
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Neglecting dissipation may however not be a valid approximation and it may be necessary to take it into
account in certain situations. According to Ref. [32], in order to incorporate dissipative dynamics, one should
add a tunneling term ∆0σx to the system’s Hamiltonian in Eq.(1.13), with ∆0 a characteristic frequency
which gives the timescale of the dissipation. Another way to incorporate dissipation would be to add an
interaction Hamiltonian of the form ℏσx ⊗

∑
k

(
gkb
†
k + g∗kbk

)
which, for a system Hamiltonian HS = ℏω0

2 σz

with ω0 = ωc and using a Lorentzian SD, leads to the well known and extensively studied James-Cummings
model on resonance [11, 43] and is approximated by the interaction Hamiltonian ℏ

∑
k

(
gkσ−b

†
k + g∗kσ+bk

)
using σ+ = |1⟩ ⟨0| and σ− = |0⟩ ⟨1|.

Adding dissipative that way may not seem that complicated, but it actually prohibits an analytical
derivation such as the one worked through in the previous section. In order to study the dynamics of a qubit
undergoing both dephasing and dissipation, one needs more complex methods such as a Quantum Master
Equation (QME) or a stochastic simulation method. Because QME are deterministic equations whereas
stochastic simulations are, as their name indicates, stochastic, QME might seem like to way to go in order
to study our dissipative system without having to calculate statistical means. However, QME are only
easy to derive for time-independent Hamiltonian and Markovian systems, that is when we can make the
approximation that the system’s dynamics does not depend on its history, i.e. when all memory effects are
neglected and the dynamics at time t do not depend on the system’s state at time t′ < t. Unfortunately,
Dynamical Decoupling is non-Markovian, which makes the derivation of a QME a hard endeavor.

Fortunately, a stochastic method called the Hierarchy Of Pure States (HOPS) [31] was recently imple-
mented in the OQLiège Julia Library by B. Debecker and allows us to deal with non-Markovian behaviors
and time-dependent Hamiltonian. The HOPS method is a numerically exact method designed to calculate
the dynamics of a system interacting with a bosonic field. It is a clever reformulation of a method called
Non-Markovian Quantum State Diffusion (NMQSD) [44] where the interaction with the environment is en-
capsulated in a stochastic term of a Schrödinger equation. The equation is then solved a certain number of
times and the reduced density matrix is calculated by averaging over all trajectories. In order to understand
the different parameters of the simulation as well as the underlying mechanism of the solver, we dedicated
the next subsection to the derivation of the NMQSD and HOPS equations. We also attempt to provide some
insight into the numerical implementation of HOPS. In the following subsection, HOPS will then be used to
replicate the analytical results for the purely dephasing qubit and dissipation will eventually be taken into
account.

1.5.1 NMQSD and HOPS

In order to understand the HOPS method, one must first go through the derivation of the NMQSD equation.
Accordingly, we will first derive the NMQSD equation. We will explain how the reduced density matrix is
constructed by calculating numerous times the solution of a stochastic equation, driven by a stochastic
process which is entirely described by the correlation function, the equivalent of the spectral density in the
time domain. Once the ideas behind NMQSD are explained and the equation is derived, HOPS will be
introduced.

Non-Markovian Quantum State Diffusion

Let us start with a general Hamiltonian of a system interacting with a bosonic field

H = HS + ℏ
∑
k

(
g∗kLb

†
k + gkL

†bk

)
+
∑
k

ℏωkb†kbk (1.54)

with HS the system Hamiltonian which may or may not be time-dependent. In this equation, L is the
operator of the interaction Hamiltonian that acts on the system. It may or may not be hermitian. Notice
that, if HS = ℏω0

2 σz, choosing L = L† = σz leads to the purely dephasing qubit model and choosing L = σ−

leads to the James-Cummings model. Moving to the rotating frame with respect to HB =
∑
k ℏωkb

†
kbk leads
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to the Hamiltonian
H(t) = HS + ℏ

∑
k

(
g∗kLb

†
ke
iωkt + gkL

†bke
−iωkt

)
≡ HS + LB†(t) + L†B(t)

(1.55)

where we defined B(t) = ℏ
∑
k gke

−iωktbk as the bath operator. Considering the system and environment
altogether, the total wave function can be calculated by solving the Schrödinger equation

iℏ∂t |Ψ(t)⟩ = H(t) |Ψ(t)⟩ . (1.56)

The idea is then to make use use of the so-called Bargmann coherent states [45] of the bosonic field. A
Bargmann coherent state of the mode k of the bath is defined as

|zk⟩ = exp
(
zkb
†
k

)
|0k⟩ (1.57)

with zk a complex number and |0k⟩ the ground state of the mode k. This definition leads to the three
interesting properties

1

π

∫
d2zk exp

(
−|zk|2

)
|zk⟩ ⟨zk| = 1k, (1.58a)

bk |z⟩ = zk |z⟩ , (1.58b)

b†k |z⟩ =
∂

∂zk
|z⟩ , (1.58c)

defining |z⟩ = |z1⟩⊗ · · ·⊗ |zk⟩⊗ · · ·⊗ |zN ⟩ with N → ∞ the number of modes in the bosonic field. Eq.(1.58a)
is especially interesting as it leads to

|Ψ(t)⟩ = 1 |Ψ(t)⟩ = 1

πN

∫
d2z exp

(
−|z|2

)
⟨z|Ψ(t)⟩ |z⟩

≡ 1

πN

∫
d2z exp

(
−|z|2

)
|ψ(t, z∗)⟩ |z⟩

(1.59)

when we extend it to the N modes of the bosonic field and define |ψ(t, z∗)⟩ = ⟨z|Ψ(t)⟩ as the system’s state
relative to the bath state |z⟩. Because it is constructed by projecting the entire state onto the bath state
|z⟩, this wave function exists in the Hilbert space of the system. Notice first that the knowledge of the
state |ψ(t, z∗)⟩ for all z∗ is sufficient to construct the entire wave function. Secondly, calculating the reduced
density matrix using Eq.(1.58a) leads to

ρS(t) = TrB [|Ψ(t)⟩ ⟨Ψ(t)|]

=

∫
d2z

exp
(
−|z|2

)
πN

|ψ(t, z∗)⟩ ⟨ψ(t, z∗)| .
(1.60)

This integral can be calculated using a Monte Carlo integration [46]. As a reminder, the Monte Carlo
integration method, in its simplest form, consists in estimating the integral

I =

∫
dxf(x)h(x) (1.61)

by calculating the average of the function h(x),

h =
1

N

N∑
n=1

h(xn), (1.62)

using X = (x1, . . . xN ) a random sample generated from the distribution f(x). Considering the Monte Carlo
integration to solve Eq.(1.60), one can construct the reduced density matrix by averaging |ψ(t, z∗)⟩ ⟨ψ(t, z∗)|
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over a certain number of trajectories, using for the random variable z∗ a complex Gaussian distribution. We
finally have

ρS(t) ≈
1

ntraj

ntraj∑
n=1

|ψ(t, z∗n)⟩ ⟨ψ(t, z∗n)| (1.63)

with ntraj the number of trajectories and Z =
(
z∗1 , . . . z

∗
ntraj

)
a random sample generated by the complex

Gaussian distribution exp
(
−|z|2

)
/πN .

Now, we may try to find an equation for |ψ(t, z∗)⟩ by projecting the Schrödinger equation Eq.(1.56) onto
the bath state |z⟩. This leads to

iℏ∂t ⟨z|Ψ(t)⟩ = HS ⟨z|Ψ(t)⟩+ L ⟨z|B†(t) |Ψ(t)⟩+ L† ⟨z|B(t) |Ψ(t)⟩ (1.64)

where the terms ⟨z|B†(t) |Ψ(t)⟩ and ⟨z|B(t) |Ψ(t)⟩ can be calculated using the properties ⟨z| b†k = z∗k ⟨z| and
⟨z| bk = ∂

∂z∗k
⟨z| which result from Eq.(1.58b) and Eq.(1.58c). Eq.(1.64) now reads

iℏ∂t |ψ(t, z∗)⟩ = HS |ψ(t, z∗)⟩+ ℏL
∑
k

g∗kz
∗
ke
iωkt |ψ(t, z∗)⟩+ ℏL†

∑
k

g∗ke
iωkt

∂

∂z∗k
|ψ(t, z∗)⟩

= HS |ψ(t, z∗)⟩+ iℏLη∗(t, z∗) |ψ(t, z∗)⟩+ ℏL†
∑
k

g∗ke
iωkt

∂

∂z∗k
|ψ(t, z∗)⟩

(1.65)

where we defined in the last line

η∗(t, z∗) = −i
∑
k

g∗kz
∗
ke
iωkt. (1.66)

We can rewrite ∂
∂z∗k

as

∂

∂z∗k
=

∫
ds
∂η∗(s, z∗)

∂z∗k

δ

δη∗(s, z∗)
(1.67)

using the chain rule for functional derivatives and calculate the derivative ∂η∗(s,z∗)
∂z∗k

= −ig∗keiωks. This leads
to

i∂t |ψ(t, z∗)⟩ =
1

ℏ
HS |ψ(t, z∗)⟩+ iLη∗(t, z∗) |ψ(t, z∗)⟩ − iL†

∫
ds
∑
k

|gk|2e−iωk(t−s)
δ

δη∗(s, z∗)
|ψ(t, z∗)⟩ .

(1.68)
It is clear that the last term containing the integral over time will be the non-Markovian term containing
all the memories of the system’s history. In order to preserve causality, |ψ(t, z∗)⟩ must be independent of
η∗(s) for all s > t, which means that δ

δη∗(s,z∗) |ψ(t, z
∗)⟩ = 0 for s > t. That being said, the upper limit of

the integral can be set to be equal to t. We also consider a pure initial state |Ψ(t = 0)⟩ = |ϕ0⟩ ⊗ |0⟩ with
|0⟩ the ground state of the environment at zero temperature, which means that the system’s state at t = 0
is independent of η∗(s) for all s. Particularly, δ

δη∗(s,z∗) |ψ(t = 0, z∗)⟩ = 0 for all s < 0. This means that all
states |ψ(t, z∗)⟩ for t > 0 will also be independent of η∗(s) for s < 0. Having that in mind, the lower limit of
the integral can be set to 0, which means that the memory term can be integrated over [0, t] instead of the
entire axis.

Noticing that z∗ only appear through η∗(t, z∗), we can write the equation as

∂t |ψ[η∗(t)]⟩ =

[
− i

ℏ
HS + Lη∗(t)− L†

∫ t

0

ds
∑
k

|gk|2e−iωk(t−s)
δ

δη∗(s)

]
|ψ[η∗(t)]⟩ . (1.69)
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Recalling the previous sections, one element of this equation should seem familiar: the sum
∑
k |gk|

2 appear-
ing in the memory term. We find that∑

k

|gk|2e−iωk(t−s) =
1

π

∫ ∞
0

dωπ
∑
k

|gk|2δ(ω − ωk)e
−iω(t−s)

=
1

π

∫ ∞
0

dωJ(ω)e−iω(t−s)

≡ α(t− s)

(1.70)

where we defined the spectral density8 as J(ω) = π
∑
k |gk|

2
δ(ω − ωk) as well as the correlation function

α(τ) =
∑
k

|gk|2e−iωkτ =
1

π

∫ ∞
0

dωJ(ω)e−iωτ . (1.71)

While the spectral density encapsulates all the information on the influence of the environment on the
system’s dynamics in the frequency domain, the correlation function does the exact same thing in the time
domain. Plugging the definition of the correlation function in Eq.(1.69), we find the Non-Markovian Quantum
State Difusion (NMQSD) equation,

∂t |ψ[η∗(t)]⟩ =
[
− i

ℏ
HS + Lη∗(t)− L†

∫ t

0

dsα(t− s)
δ

δη∗(s)

]
|ψ[η∗(t)]⟩ . (1.72)

Because the equation must be solved for a (large) sample of the random variable z∗ using a Gaussian
distribution and because z∗ only appears through η∗(t), the NMQSD equation is a stochastic equation driven
by a Gaussian stochastic process η∗(t). Because it is Gaussian, the entire stochastic process is described by
the statistical moments M[η∗(t)], M[η(t)η(s)] and M[η(t)η∗(s)] using the statistical mean

M[·] = 1

πN

∫
d2z exp

(
−|z|2

)
[·]. (1.73)

Calculating the moments introduced above, one finds that the only non-zero moment is the variance

M[η(t)η∗(s)] = α(t− s), (1.74)

which means that the stochastic process is entirely characterized by the correlation function. The idea of
the NMQSD method is then the following: (i) generate a sample of ntraj functions η∗(t) using a complex
distribution entirely characterized by the variance α(t), (ii) for each element of the sample, solve Eq.(1.72)
and finally (iii) construct the reduced density matrix by averaging the ntraj solutions.

The hiccup with this approach is that it involves a functional derivative, which is not an easy operation
to perform numerically. The HOPS method was created specifically to overcome that issue.

Hierarchy Of Pure States

As stated in the previous section, a functional derivative is not an easy operation to implement numerically.
In order to avoid dealing with such derivatives, it is possible to define a set of auxiliary states. Let us first
write again the NMQSD equation below for convenience,

∂t |ψ[η∗(t)]⟩ =
[
− i

ℏ
HS + Lη∗(t)− L†

∫ t

0

dsα(t− s)
δ

δη∗(s)

]
|ψ[η∗(t)]⟩ . (1.75)

8Notice that the definition of the spectral density is not quite the same as in the last section; various convention are used
for its definition. The convention used for the implementation of HOPS in OQLiège is the one with a factor π in front of the
sum. Because another convention was used for the analytical derivation, i.e. the convention used by L. Viola in Ref. [20] with
a factor 4, we should be careful when comparing the analytical results with numeric results from HOPS: when the results from
the two different methods will be compared, an appropriate factor must be added.
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In order to remove the functional derivative of Eq.(1.75), we define the first auxiliary state
∣∣ψ(1)(t)

〉
as

∣∣∣ψ(1)(t)
〉
=

∫ t

0

α(t− s)
δ

δη∗(s)

∣∣∣ψ(0)(t)
〉
≡ Dt

∣∣∣ψ(0)(t)
〉

(1.76)

where we use the notation
∣∣ψ(0)(t)

〉
for the ’main’ state, i.e. the one that appears in Eq.(1.75) and define

the operator Dt for convenience. Using this definition, the NMQSD now reads

∂t

∣∣∣ψ(0)(t)
〉
= [−iHS + Lη∗(t)]

∣∣∣ψ(0)(t)
〉
− L†

∣∣∣ψ(1)(t)
〉

(1.77)

Instead of a functional derivative, the NMQSD equation now includes an auxiliary state that we need to
calculate. In order to do that, we calculate the derivative of this first auxiliary state. This leads to

∂t

∣∣∣ψ(1)(t)
〉
= (∂tDt)

∣∣∣ψ(0)(t)
〉
+Dt∂t

∣∣∣ψ(0)(t)
〉
. (1.78)

The two terms can be calculated separately which leads to a nice equation if we use a specific correlation
function, namely the correlation function of a single-mode

α(τ) = ge−ωτ , ω ∈ C, τ ≥ 0. (1.79)

Remark. While this may seem like a rather restrictive assumption, this particular correlation function
actually corresponds to the correlation function of a Lorentzian spectral density. Moreover, it is also possible
to derive HOPS using a multi-mode correlation function of the form α(τ) =

∑
j gje

−ωjτ which can be used
to approximate any spectral density. We will consider the single-mode in the rest of the derivation for
simplicity.

Noticing that ∂tDt = −ωDt for the single-mode function correlation, that we have the commutation
relation [Dt, η

∗(t)] = α(0) and defining the second auxiliary state through DtDt

∣∣ψ(0)(t)
〉
≡ D2

t

∣∣ψ(0)(t)
〉
≡∣∣ψ(2)(t)

〉
, we find the following equation for the first auxiliary state,

∂t

∣∣∣ψ(1)(t)
〉
=

[
− i

ℏ
HS + Lη∗(t)− ω

] ∣∣∣ψ(1)(t)
〉
+ Lα(0)

∣∣∣ψ(0)(t)
〉
− L†

∣∣∣ψ(2)(t)
〉
. (1.80)

Similarly, the functional derivative that appears in the equation of the first auxiliary state was removed by
introducing yet another auxiliary state. The derivation of the equation Eq.(1.80) can be repeated for the
second auxiliary state; as one might expect, a third auxiliary state will appear in the equation in order to
remove once again the functional derivative. Repeating this process an infinite number of times, we find the
following equation for the kth auxiliary state,

∂t

∣∣∣ψ(k)(t)
〉
=

[
− i

ℏ
HS + Lη∗(t)− kω

] ∣∣∣ψ(k)(t)
〉
+ kLα(0)

∣∣∣ψ(k−1)(t)
〉
− L†

∣∣∣ψ(k+1)(t)
〉
. (1.81)

This equation can be proven by induction, i.e. by assuming that it is true for k′ = k and showing that it
is true for k′ = k + 1. Mathematically speaking, we have traded a single differential equation involving a
functional derivative for an infinite number of coupled differential equations. This was done by constructing
a so-called hierarchy of pure states in which the state

∣∣ψ(0)(t)
〉

is the physical state while additional states are
fictitious states created to account for memory effects, i.e. for non-Markovian behaviors. In practice, we can
truncate the set of equations by choosing kmax the number of auxiliary states. kmax should be chosen high
enough to ensure that the solution is converged. Eq.(1.81) forms the single-mode linear HOPS equations.

Numerically, one first has to specify the number of auxiliary states (→ kmax), the number of trajectories
(→ ntraj) and the timestep (→ dt) for the numerical integration of the HOPS equation. For each trajectory,
a random function η∗(t) (i.e. a random noise) is generated with a stochastic process with a variance given by
the correlation function. In OQLiège, the noise is implemented with an Ornstein Uhlenbeck process. Once
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the noise is generated, the system of coupled differential equations is solved and the reduced density matrix
is constructed by averaging over the set of trajectories.

A few remarks are in order. First, as it has already been stated, Eq. (1.81) is only valid for a single-mode
correlation function. A multi-mode HOPS equation can be derived, but HOPS is only implemented for a
single-mode correlation function at the moment in OQLiège. This means that, currently, only a certain
type of spectral density can be studied using HOPS, that is Lorentzian spectral densities. Secondly, the
linear HOPS equation derived above is not quite the HOPS equation implemented in OQLiège; instead, the
non-linear HOPS equation is used, which is more efficient in terms of the number of trajectories needed to
obtain a converged solution. Non-linear HOPS is the equivalent of linear HOPS but starting the derivation
from non-linear NMQSD [47] instead of the NMQSD equation derived in this section. However, because the
derivation of the non-linear NMQSD is far more tricky and because the objective of this section was only to
provide some insight into the mechanism of the HOPS method, we did not work out the demonstration of
non-linear HOPS. The single-mode non-linear HOPS equation is given by

∂t

∣∣∣ψ(k)(t)
〉
=

[
− i

ℏ
HS + Lη∗(t)− kω

] ∣∣∣ψ(k)(t)
〉
+ kLα(0)ψ

(k−1)
t −

(
L† −

〈
L†
〉
t

) ∣∣∣ψ(k+1)(t)
〉
. (1.82)

with

η∗(t) = η∗(t) +

∫ t

0

dsα∗(t− s)
〈
L†
〉
s
. (1.83)

where the stochastic process is shifted according to a term dependent on the correlation function in order to
optimize the sampling and reduce the number of trajectories needed to approximate well enough the reduced
density matrix.

It also should be noted that only a certain type of Lorentzian can be studied in the single-mode imple-
mentation of HOPS, that is Lorentzian with most of their spectral density localized in the positive axis of
the frequencies. This is due to the fact that a Lorentzian spectral density corresponds to the correlation
function of Eq.(1.79) only if we can make the approximation

α(τ) =
1

π

∫ ∞
0

dωJ(ω)e−iωτ ≈ 1

π

∫ ∞
−∞

dωJ(ω)e−iωτ =
gκ

2
e−(κ−iωc)τ . (1.84)

If a significant part of the distribution is located in the negative frequencies, then the approximation cannot
be made and the spectral density does not correspond to a single-mode correlation function.

1.5.2 Decoherence using HOPS
Before using HOPS with dissipation added into the mix, it is necessary to validate the HOPS method by
comparing the results for the single purely dephasing qubit with the analytical results introduced previously.
In order to do that, we will calculate the off-diagonal component ρ01(t) of the reduced density matrix using
the analytical derivation and HOPS. Because HOPS takes an initial state as an input, we decided to choose
an initial state |ψ(t = 0)⟩ = 1√

2
(|0⟩+ |1⟩) for which the density matrix consists of all components equal to

1
2 . Recall that ρ01(t) has the nice analytical expression

ρ01(t) = ρ01(t0)e
−Γ(t) (1.85)

with Γ(t) the decoherence function given by

Γ(t) =

∫ ∞
0

dωg(ω, t) (1.86)

and g(ω, t) defined as

g(ω, t) = J(ω)
1− cos (ωt)

ω2
. (1.87)
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Figure 1.6: Real (a) and imaginary part (b) of the correlation function from Eq.(1.71) for the parameters
ωc = 10.0, g = 0.5 and κ = 1.5 (blue lines) vs the single-mode from Eq.(1.79) implemented in HOPS (red).
At any point in the range considered, the approximate and the real correlation function differ by less than
2× 10−2.

The parameters of the Lorentzian have to be chosen such that the spectral density satisfies in excellent
approximation Eq.(1.84). Choosing ωc = 10.0, g = 0.5 and κ = 1.5, we find a correlation function (see Fig.
1.6) approximated up to 10−2 for all times.

Fixing these parameters, we surprisingly found that the results do not agree (see Fig. 1.7b). However,
integrating g(ω, t) over the entire axis, thus including non-physical negative frequencies, we find a perfect
match between the analytical function and the HOPS simulation (see Fig. 1.7a). Increasing drastically the
simulation parameters kmax, ntraj as well as the number of timesteps tf/dt did not improve the agreement.
This leads us to believe that a significant enough part of the spectrum is localized in the negative frequencies
and that the correlation function is not approximated well enough. However, we noticed that increasing
considerably the parameter ωc did not result in any improvement either, which meant that problem lied
somewhere else. In order to have a better idea of the part of the integrand that is localized in the negative

Figure 1.7: Off-diagonal component of the reduced density matrix, using HOPS (blue line) and the analytical
derivation (red line). The integration over frequencies in the analytical expression was done on the positive
frequencies only (b) and on the entire axis (a). We set Ω = g κ

2

ω2
c

and the simulation parameters are set to
(kmax, tf/dt, ntraj) = (5,2000,400) with Ωtf = 0.15.
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axis, we plotted g(ω, t) as a function of ω/ωc for different times t. The results (displayed in Fig. 1.8) show
that for small enough times, the integrand corresponds to a Lorentzian distribution around ω = ωc. However,
as time increases, a second peak appears at ω = 0 and the part of the distribution located in the negative
frequency domain becomes significant; looking at the integrand, we then see two distributions, one around
ω = ωc and one around ω = 0, the later seemingly becoming more and more significant with times while the
former seems upper bounded.

Figure 1.8: Integrand g(ω, t) as a function of the frequency for different times.

The results described above are very bothersome because it seems like the negative frequencies resulting
from the single-mode correlation function, as seemingly insignificant as they can be, prohibit the analysis
of decoherence. However bothersome, this is an interesting result; we came across a physical system for
which the dynamics is not well taken into account with HOPS because the non-physical negative frequencies
inevitably introduced by the correlation function used in HOPS have a significant impact on the dynamics.
We however managed to find a regime of parameters (g, ωc, κ) for which decoherence can be studied. We
describe below the thought process which leads us to the estimation of the regime of parameters which
enables the study of decoherence with HOPS.

Appropriate regime of parameters

In order to find the relevant regime of parameters, we derived two conditions that the Lorentzian must obey.
The first condition on the parameters of the Lorentzian comes directly from Eq.(1.84) which states that the
integration over the positive frequencies must be approximated by the integration over the entire axis. This
leads to the necessary condition

ωc ≫ κ . (1.88)

The idea behind the second condition is also fairly straightforward. Basically, we want to avoid the distri-
bution around ω = 0 from building up enough significance in the relevant timescale. In order to do that, we
calculated the value of g(ω, t) at ω = 0 and ω = ωc. At ω = ωc, the value of the integrand is given by

g(ω = ωc, t) =
gκ2

2

1

κ2
1− cos (ωct)

ω2
c

=
g

2

1− cos (ωct)

ω2
c

(1.89)

which can be upper bounded as

g(ω = ωc, t) ≤ g
1

ω2
c

. (1.90)
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On the other hand, g(ω, t) has a 0
0 limit at ω = 0 because of 1−cos (ωt)

ω2 . However, a series expansion reveals
that

g(ω = 0, t) =
gκ2

2

1

κ2 + ω2
c

[
t2/2− t4ω2/24 +O(t6ω4)

]
ω=0

=
gκ2

2

1

κ2 + ω2
c

t2

2
.

(1.91)

In order to find the timescale below which the negative frequencies do not contribute significantly, we enforce
the condition

g(ω = 0, t) ≪ g(ω = ωc, t) ⇔ t2 ≪ 4
κ2/ω2

c + 1

κ2
. (1.92)

Because κ/ωc ≪ 1, we can neglect κ2/ω2
c compared to 1 and write the final condition

t≪ 2

κ
. (1.93)

This inequality indicates the timescale below which the negative frequencies resulting from HOPS do not
significantly alienate the results. In other words, this indicates the strict regime of validity of the single-mode
HOPS method. In the context of studying decoherence, we would like to study the dynamics on a timescale
given by τ ∼ 1/Ω =

ω2
c

gκ2 which means that the parameters of the Lorentzian must be chosen such that they
satisfy the inequality

ω2
c

gκ2
≪ 2

κ
(1.94)

which leads to the following condition on the coupling strength,

g ≫ ω2
c

2κ
. (1.95)

Discussion

Besides enabling us to tune our parameters in order to use HOPS in the context of this thesis, the results
above are fundamentally interesting. In order to understand why they are interesting, one should take a
look at the form of the Lorentzian spectral density and its correlation function,

J(ω) =
gκ2

2

1

κ2 + (ω − ωc)2

α(τ) ≈ gκ

2
e−(κ+iωc)τ .

(1.96)

Recall that the correlation function characterizes entirely the influence of the environment on the system’s
dynamics. It also characterizes entirely the memory effects, i.e. the non-Markovian effects, of the interaction,
which is why it appears in the memory term of the HOPS equation Eq.(1.81) and the NMQSD equation
Eq.(1.72). A memory-less interaction, i.e. a Markovian interaction, corresponds to the limit κ→ ∞ [48], for
which the Lorentzian tends to

lim
κ→∞

gκ2

2

1

κ2 + (ω − ωc)2
=
g

2
, (1.97)

which corresponds to a correlation function which has the form of a Dirac delta function centered at τ = 0.
It follows that 1/κ corresponds to the memory time, or correlation time [48]. Because we demonstrated that
the regime of validity of the HOPS method in this context is given by the condition t≪ 2/κ, this indicates
that the negative frequencies will inevitably have a significant impact in the Markovian limit κ → ∞. It
thus seems that single-mode HOPS is a method to study non-Markovian dynamics which might not be able
to retrieve the Markovian dynamics as a limiting case, at least in the context of a purely dephasing qubit;
whereas most methods for studying open quantum systems rely on the Markovian limit and have trouble
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incorporating non-Markovian behaviors, single-mode HOPS is a method designed to take non-Markovianity
into account which encounters difficulties in the Markovian limit.

The condition Eq.(1.93) thus requires that the maximal time considered be much lower than the memory
time of the interaction. In other words, in the context of the purely dephasing qubit, the negative frequencies
resulting from the Lorentzian spectral density start to get enough significance in the timescale of the memory
effects, thus resulting in seemingly untrustworthy results. One can wonder whether the introduction of the
multiple modes in HOPS could mitigate this issue; adding modes of negative weight could possibly help
mitigating the effects of the negative part of the Lorentz distributions.

In order to overcome this issue, we derived the condition Eq.(1.95) which basically consists in asking our
system to undergo a decoherence process in a timescale much smaller than the memory time. We thus notice
that the regime of validity of HOPS actually corresponds to the strong coupling regime. This corresponds to
a strongly decohering system where the coherence time is smaller than the timescale of the non-Markovian
dynamics. In other words, whereas most non-Markovian methods for studying open quantum system rely on
the weak coupling approximation (e.g. the time-convolutionless projection operator technique [11]), HOPS
seems to enable the analysis of decoherence mainly in the strong coupling regime.

Although a more complete and deeper discussion should be made about this result, this goes beyond the
scope of this Master’s thesis and future work should be dedicated to the analysis of the validity of the HOPS
method in the context of the purely dephasing spin-boson model.

Dephasing and dissipation

Choosing κ/ωc = 0.075 and g = 1.6
ω2
c

κ , we find a near perfect match between the analytical result (when
integrating over the positive frequencies only) and the simulation (see Fig. 1.9). We plotted in Fig.
1.9 the fidelity and the population of the excited state ρ00(t) (which is supposed to stay constant when
no dissipation is taken into account) for the purely dephasing qubit. Although a qualitative analysis of
decoherence is possible with simulation parameters that are not highly demanding9, larger values of ntraj,
kmax and lower values of dt are required in order to simulate the dynamics with greater accuracy which
increases considerably the running time of the algorithm as well as the computational memory required.
Because the computer used is neither fast nor endowed with a great RAM capacity, we had to lower as much
as possible the simulation parameters in order to facilitate the computation. One can find in Appendix E
the procedure followed in order to find the relevant simulation parameters.

Figure 1.9: Time evolution of the coherence and the population of the excited state for a purely dephasing
qubit. The simulation parameters were fixed at (kmax, tf/dt, ntraj) = (6,10000,1100) which resulted in a
80-minutes computation time on a laptop. Because the population of the excited state is supposed to stay
constant at a value of 0.5, we see that these parameters lead to an error of ∼ 10−3.

9Typically, the parameters (kmax, tf/dt, ntraj) = (5,3000,400) result in a computation time of 6 to 8 minutes. The compu-
tation time then grows linearly with the number of trajectory and quadratically with the number of steps.
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In order to take into account dissipation, we should either add a tunneling term ∆0σx or an interaction
term ℏσx⊗

∑
k

(
gkb
†
k + g∗kbk

)
. However, the tunneling term alone does not lead to non-unitary effects that we

experience in open quantum system. Furthermore, we would prefer the dissipative term to involve a coupling
to a bosonic field, because the spectral density presented previously will be very important for the analysis
of dynamical decoupling protocols. It then makes sense to add the interaction term ℏσx⊗

∑
k

(
gkb
†
k + g∗kbk

)
.

We then considered a total interaction Hamiltonian10 of the form

HSB = ℏ
[
cos2(θ/2)σz + sin2(θ/2)σx

]∑
k

(
gkb
†
k + g∗kbk

)
, (1.98)

with θ ∈ [0, π] a parameter that indicates the relative significance of the dissipative and dephasing behaviors.
The fidelity of the qubit as well as the population of the excited state and the ground state are plotted

in Fig. 1.10 for θ = 0, 1.2 and π. It clearly demonstrates that dissipation is taken into account with this
Hamiltonian, as the population of the excited state is affected by the Hamiltonian when θ > 0. The three
cases considered in Fig. 1.10 yield similar behaviors in terms of fidelity, but the population of the excited
state is constant for θ = 0 and not constant for θ = 1.2 and θ = π. When dissipation of energy is wished to
be considered in the context of dynamical decoupling, this interaction Hamiltonian will be used in HOPS.
However, it should be pointed out that the ambition with the model is not to simulate a realistic experimental
set-up but to highlight the decoupling properties of some dynamical decoupling protocols. Whether this type
of interaction Hamiltonian describes a physical system is not the question of this Master’s thesis; here, the
model is merely a tool used to study dynamical decoupling. However, because the Hamiltonian of Eq.(1.98)
for θ = 0 and θ = π are known models for studying the purely dephasing qubit and the spontaneous decay
(i.e. dissipation) of a qubit, it makes sense to use it in the range θ ∈ [0, π] as a tool to study the effects of
dissipation and dephasing altogether. Note that it is not clear whether the dynamics represented in Fig.
1.10 for θ > 0 are ’exact’, in the sense that the appropriate regime of parameters derived in the previous
section does not necessarily hold in the context of a dissipative qubit.

Figure 1.10: Fidelity and population of the excited state for the interaction Hamiltonian HSB(θ). The
simulation parameters were fixed at (kmax, tf/dt, ntraj) = (6,10000,500).

10I also chose a system Hamiltonian Hs = ℏω0
2
σz with ω0 = ωc. The motivation behind this choice is to retrieve, at θ = π,

the same dynamics as in Ref. [11] for the spontaneous decay of a two-level system.
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1.6 Discussion
The results above illustrate the effect of decoherence rather well: the exponential decay of the coherence
of a qubit decreases the fidelity below the relevant threshold in a certain timescale, given by τ ∼ 1/ωc in
the Ohmic model and τ ∼ 1

g
ω2
c

κ2 in the Lorentzian model. The fundamental issue is that this time is usually
rather small, leading to a small lifetime for most qubit implementations (see Fig. 3 for a summary of some
promising qubit implementations and their coherence time). Higher fidelity on a greater timescale is required
for any quantum technology.

In this Master’s thesis, we will explore a clever technique designed to increase the lifetime of a qubit by
orders of magnitude, called dynamical decoupling. In order to study the efficacy of the different sequences
of dynamical decoupling, we will use as a quantum system a qubit interacting with its environment via the
spin-boson model. Different methods will be used to study dynamical decoupling: an analytical derivation
similar to the one made in Section 1.4 for the simplest systems (a single qubit undergoing a series of spin-
flips) and numerical computation of the components of the reduced density matrix using the HOPS method
for systems where no analytical derivation is possible. Depending on the method used, different spectral
densities should be used. It is thus necessary to clearly state which spectral densities will be used from now
on depending on the method of analysis.

Analytical solution for the time-evolution operator ? The Ohmic spectral densitiy of Fig. 1.1 for
various coupling strength (α = 1.0, 0.1 or 0.01) will be used. The Lorentzian spectral densities of Fig.
1.5 may also be used when it is interesting to compare different distributions. The timescale is, in all
cases, given by 1/ωc such that all time-dependent functions will be plotted as a function of ωct.

HOPS method necessary ? Because the HOPS method is implemented only for Lorentzian distributions
almost entirely located in the positive frequency domain, only specific Lorentzians will be used when
the HOPS method is applied. The timescale is given by (g κ

2

ω2
c
)−1 and the parameters should be chosen

such that the entire distribution is located in the positive frequency domain. As we have demonstrated
in the previous section, the parameters g = 1.6ω

2

κ , ωc = 10, κ = 0.75 can be chosen such that the
negative frequencies of the spectral density do not influence the dynamics on the relevant timescale.
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Chapter 2

General Theory of Dynamical
Decoupling

In 1999, the authors of Ref. [21] showed that, by applying a control field on a system interacting with its
environment, one could engineer the Hamiltonian in such a way that all unwanted interaction would be
averaged out, therefore suppressing the unwanted dynamics generated by this Hamiltonian. In this type of
Hamiltonian engineering, the objective is to design a control field that effectively implements the quantum
operation

E : B(HS) → B(HS) : S 7−→ E(S) = 0 (2.1)
which acts on the Hilbert space of the system and whose job is to cancel out the unwanted operators S of
the total Hamiltonian. This quantum operation can be used to suppress unwanted effects from the system
Hamiltonian HS as well as dynamics generated by the interaction Hamiltonian HSB . In this section, we
will follow the derivation worked out in that article in order to explain how to implement such a quantum
operation using a sequence of pulses. Such a sequence of pulses is called a dynamical decoupling sequence,
or DD sequence. First, we need to derive the time-evolution operator of the system+environment under
periodic driving generated by a periodic control field. Then, we will be able to construct a control field such
that the quantum operation Eq.(2.1) is applied.

2.1 Dynamics of a system under periodic driving
Let us consider a system of interest of Hamiltonian HS interacting with an environment, modeled by a bath
of Hamiltonian HB . The total Hamiltonian can be expressed as

H = HS +HB +HSB (2.2)

with HSB the interaction Hamiltonian containing all unwanted dynamics induced by the system-bath cou-
pling. One can show that the most general form for the Hamiltonian is the Schmidt decomposition

H =
∑
α

Sα ⊗Bα (2.3)

with Sα and Bα operators acting on the system and the bath respectively. We define the interaction space
IS ⊆ B(HS) as the vector space of bounded linear operators spanned by the operators Sα that are originated
from the interaction Hamiltonian HSB , with B(HS) the space including all bounded linear operators acting
on the state space HS of the system. Now, let us choose a control algebra CS ⊆ B(HS). The control
algebra contains all the operations that can be applied on the system to implement a DD sequence. We will
implement DD by adding an extra term Hcf (t) ∈ CS , the ’control field’, to the total Hamiltonian, so that

H(t) =
∑
α

Sα ⊗Bα +Hcf (t). (2.4)
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We will restrict ourselves to cyclic control fields such that

Ucf (t) = T←e−
i
ℏ
∫ t
0
dt′Hcf (t

′) = Ucf (t+ Tc) (2.5)

with Tc the period of the control field Hcf (t) = Hcf (t+Tc) and T← the time ordering operator. As explained
previously, the time ordering operator ensures that the operators are applied in chronological order. We can
now move to the rotating frame with respect to Hcf (t), using as the unitary operator the time-evolution
operator expressed in Eq.(2.5). The effective Hamiltonian in the rotating frame is thus given by

H̃(t) = U†cf (t)

[∑
α

Sα ⊗Bα

]
Ucf (t) =

∑
α

[
U†cf (t)SαUcf (t)

]
⊗Bα. (2.6)

In the rotating frame, the time-evolution operator corresponding to this effective Hamiltonian is given by

Ũ(t) = T←e−
i
ℏ
∫ t
0
dt′H̃(t′) (2.7)

where we would like to eliminate the time ordering operator in order to find an analytical solution. One
method to remove this operator consists using a Magnus expansion in Eq.(2.7). More information on the
Magnus expansion can be found in Appendix C, but the idea is that the time ordering operator of a time-
evolution operator

U(t) = T←e
∫ t
0
dt′A(t′) (2.8)

can be removed if we expand the argument of the exponential as a Magnus series, resulting in the operator

U(t) = eΩ(t) = e
∑∞
k=0 Ωk(t) (2.9)

with Ω(t) =
∑
k Ωk(t) the Magnus series. The first three terms of the Magnus series are given in Appendix

C. Using the Magnus expansion in Eq.(2.7) leads to

Ũ(t) = exp

{
− i

ℏ

∫ t

0

dt1H̃(t1)−
1

2ℏ2

∫ t

0

dt1

∫ t1

0

dt2

[
H̃(t1), H̃(t2)

]
+ . . .

}
. (2.10)

Because the Hamiltonian is periodic, thanks to Hcf (t), the next step is to evaluate the expression after Nth
cycles of period Tc, i.e. at time tN = NTc. This gives

Ũ(tN ) = T←e−
i
ℏ
∫ tN
0 dt′H̃(t′) = T←e−

i
ℏN

∫ Tc
0

dt′H̃(t′)

= exp

{
− i

ℏ
N

Tc

∫ Tc

0

dt1H̃(t1)Tc −
1

2ℏ2
N

Tc

∫ Tc

0

dt1

∫ t1

0

dt2

[
H̃(t1), H̃(t2)

]
Tc + . . .

}
(2.11)

which we can summarize with the notation

Ũ(tN ) = exp
{
−i
[
H

(0)
+H

(1)
+ . . .

]
tN

}
(2.12)

with

H
(0)

=
1

ℏTc

∫ Tc

0

dt′H̃(t′) (2.13a)

H
(1)

=
1

2ℏ2Tc

∫ Tc

0

dt1

∫ t1

0

dt2

[
H̃(t1), H̃(t2)

]
(2.13b)

for the first terms of the Magnus series. A small enough period Tc ensures that the Magnus expansion can
be approximated to only the lowest-order term H

(0)
, so we can for the purpose of this development consider

the fast control limit which consists in considering the double limit N → ∞ and Tc → 0 with tN = NTc.
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From a physical point of view, that would mean applying an infinite number of infinitely fast cycles during
a finite time tN . Using this assumption, we can write

Ũ(tN ) = exp
{
−iH(0)

TN

}
. (2.14)

In this limit, the entire dynamics of the system will be determined by the average Hamiltonian

H
(0)

=
1

ℏTc

∫ Tc

0

dt′H̃(t′). (2.15)

The objective is now to design the right control field such that the average Hamiltonian does not contain
any of the unwanted operators present in the interaction Hamiltonian.

2.2 Desired average Hamiltonian
In order to construct the right control field, we first need to choose a finite group of unitary operators
G = {gj , j = 1, . . . |G|}, i.e. operators such that gjg

†
j = 1, that generates the control algebra CS with g1 = 1.

Once such a group is chosen (and we will see how to choose it based on the Hamiltonian later on), we can
define the superoperator

ΠG : B(HS) → B(HS) : S 7−→ S = ΠG(S) =
1

|G|
∑
gj∈G

g†jSgj (2.16)

as the quantum operation that we want to implement using the control field, as we shall explain later on.
We can prove that applying this superoperator on some operator S leads to an operator S that commutes
with every operators gj of the group G, thereby belonging to the so-called commutant of CS , i.e. the space
that contains all operators of B(HS) that commute with every operator of CS . For any unitary operators gi,
we can show that

g†iSgi =
1

|G|
∑
gj∈G

g†i g
†
jSgjgi

=
1

|G|
∑
gj∈G

(gjgi)
†
S(gjgi)

=
1

|G|
∑
gk∈G

g†kSgk

with gk = gjgi. Because G constitutes a group, if {gj , j = 1, . . . |G|} contains every element of G, then so
does {gk = gjgi, j = 1, . . . |G|}. This leads to

g†iSgi = S ⇔
[
S, gi

]
= 0 (2.17)

In fact, ΠG is the projector onto the commutant of CS ; we also say that ΠG projects onto a subspace invariant
under G, also called a G-invariant subspace [21]. A quantum operation such as Eq.(2.16) is also called a
(quantum dynamical) symmetrization procedure [49]. The idea is then to implement that quantum procedure
using the control field such that the averaged Hamiltonian Eq.(2.15) is equal to

H
(0)

= ΠG(H) =
1

|G|
∑
α

∑
j

g†jSαgj ⊗Bα =
∑
α

Sα ⊗Bα, (2.18)

which is of the form (2.3) but with every operator Sα replaced by their corresponding averaged operator Sα.
An appropriate choice of the group G can lead to Sα = 0 for any unwanted operator Sα. In fact, the first
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step when constructing a dynamical decoupling sequence is to find a group G that satisfies ΠG(S) = 0 for
all operators S of the interaction space IS , with IS ⊆ B(HS) the linear space of bounded operators spanned
by the system operators present in the interaction Hamiltonian HSB . If we succeed in finding such a group,
that is sometimes called the decoupling group, then implementing the symmetrization procedure ΠG results
in all unwanted operators being averaged out to zero.

Now that we showed that the right decoupling group can average out any unwanted operator, the objective
is to understand how to implement

H
(0)

=
1

|G|
∑
j

g†jHgj (2.19)

from the Hamiltonian derived in Eq.(2.15),

H
(0)

=
1

ℏTc

∫ Tc

0

dt′H̃(t′). (2.20)

2.3 Control field design
This can be done using a sequence of ideal pulses, that is operations of infinitely short duration and infinitely
great strength that implement a unitary operator that acts on the system. Such ideal pulses are also called
δ-pulses. This sequence of total duration Tc consists of |G| pulses Pj occurring at times tj , with the first
pulse P1 occurring at t1 > 0 and the last one P|G| at t|G| = Tc. The time-evolution operator corresponding
to such a sequence is given by

Ucf (t) =



P0 = 1 if t0 = 0 < t < t1

P1P0 if t1 ≤ t < t2
...

...
Pj−1Pj−2 . . . P0 if tj−1 ≤ t < tj
...

...
P|G|−1P|G|−2 . . . P0 if t|G|−1 ≤ t < t|G| = Tc

(2.21)

with
∏|G|
j=1 Pj = 1 in order to obtain a periodic control field Ucf (t + Tc) = Ucf (t). This creates a step-wise

constant propagator and the pulses can be chosen to design the desired propagator at each step. Therefore,
choosing the pulses such that

gj = Pj−1Pj−2 . . . P0, j = 1, . . . |G|, (2.22)

leads to the propagator

Ucf (t) =



g1 if t0 = 0 ≤ t < t1

g2 if t1 ≤ t < t2
...

...
gj if tj−1 ≤ t < tj
...

...
g|G| if t|G|−1 ≤ t < t|G| = Tc

. (2.23)

This choice leads to the propagator Ucf (t) "visiting" every element of the decoupling group G during the
sequence. A pulse Pj is thus used to steer the Hamiltonian H̃(t) from g†jHgj to g†j+1Hgj+1. Because the
pulses are ideal, i.e. of infinitely short duration, the switching is instantaneous. Plugging this propagator
into Eq.(2.20) results in the average Hamiltonian

H
(0)

=
1

ℏ
∑
j

τjg
†
jHgj (2.24)
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Figure 2.1: Representation of the time evolution of the propagator Ucf (t). The pulses are represented as
narrow Gaussian distributions, which in the limit of the ideal δ-pulses correspond to Dirac delta functions.
Note that it is not possible to plot an operator and that this figure only aims at providing a visual represen-
tation of Eq. (2.21).

where we defined τj =
tj−tj−1

Tc
the dimensionless parameter that characterizes the duration of the step at

which the propagator has the value gj . It is now straightforward to verify that, by dividing the sequence
into |G| intervals of same duration ∆t = Tc/|G|, hence by using equidistant pulses, the average Hamiltonian
is now given by

H
(0)

=
1

ℏ
1

|G|
∑
j

g†jHgj (2.25)

which is precisely the Hamiltonian of Eq.(2.19) corresponding to the quantum dynamical symmetrization
procedure described previously. From the definition of the pulses, we get

gj+1 = Pjgj , (2.26)

which means that we can simply find the pulses needed to implement the symmetrization procedure using
the relations

Pj = gj+1g
†
j ∀j = 1, . . . |G| − 1 , (2.27a)

P|G| = g1g
†
|G| . (2.27b)

2.4 Summary
To sum up, we have explained how a Hamiltonian can be averaged out by the symmetrization procedure in
Eq.(2.16) if the right decoupling group G = {gj} is chosen. Once the relevant group is found, we have shown
that a DD sequence can be implemented using a sequence of pulses {Pl, tl}, k = 1, . . . L with L the number
of pulses in the sequence, where each pulse Pl is chosen according to the relations (2.27). It is worth pointing
out that the construction of the pulses depends on the path chosen along the elements of G, which means that
there can be (and there are) more than one sequence of pulses that implements the same symmetrization
procedure. Any DD sequence is entirely characterized by the decoupling group and the pulse sequence. We
can now define the set of unitary operators Γ = {γλ} as a generating set of G such that every element of G
can be expressed as a product of elements of Γ; the elements of Γ are the generators of G. Because of the
construction of the pulses described in Eq.(2.27) and because G is a group of unitary operators, each pulse
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Pl is an element of G and can thus be expressed as a product of the generators. We now realize that, in order
to implement a pulse sequence experimentally, we only need to implement the generators γλ of a generating
set Γ.

2.5 Examples

In this section, we will apply the theory derived in the previous section to construct two dynamical decou-
pling sequences. The first sequence, called the Carr-Purcell-Meiboom-Gill sequence, or CPMG sequence, is
designed to protect a qubit against pure dephasing. The second one, the so-called XY 4 sequence, is designed
to protect a qubit against all possible errors. This includes pure dephasing as well as dissipative dynamics.

2.5.1 Carr-Purcell-Meiboom-Gill

The Hamiltonian responsible of the pure dephasing of a qubit was introduced in Section 1.3 in the context of
the spin-boson interaction. The most general form of the interaction Hamiltonian of a purely dephasing qubit
is given by HSB = σz ⊗ B with B some operator acting on the environment. In this case, the unwanted
system operator is σz and the objective is to find the decoupling group that averages it out. One such
decoupling group of order |G| = 2 is given by G = {1, σx}. In fact, one can easily verify that this decoupling
group satisfies ΠG(HSB) = 0 and the explicit calculation is done below,

ΠG(S = σz) =
1

2

[
σz + σ†xσzσx

]
=

1

2

[
σz − σ†xσxσz

]
=

1

2
[σz − σz] = 0. (2.28)

where we have used the anticommutation relation {σx, σz} = 0 for the Pauli operators. Because |G| = 2, it
follows that two δ-pulses are needed in the DD sequence. Using the relations derived in Eq.(2.27), we find

P1 = σx1 = σx,

P2 = 1σx = σx.
(2.29)

In the case of the CPMG sequence, the two pulses are identical and correspond to spin-flips. The generating
set thus possesses one element and is given by Γ = {X}, using the notation X ≡ σx. A sequence of period Tc
can then be constructed by applying two spin-flip separated by an interval of time ∆t = Tc/2. This protocol
can be summarized as

∆t−X −∆t−X. (2.30)

The sequence mentioned above is called a Selective Dynamical Decoupling strategy (SELDD) because the
pulse sequence has been carefully designed to average out operators belonging to a certain subspace of B(HS),
leaving some terms of the Hamiltonian unchanged. Such SELDD can only be designed if enough information
is known about the interaction with the environment and when it exhibits certain symmetries.

2.5.2 XY4

The most general interaction Hamiltonian that contains all types of errors that can occur on a qubit is given
by HSB =

∑
α σα⊗Bα with α = x, y, z. Three operators need to be averaged out, namely σx, σy and σz. A

sufficient decoupling group is given by G = {1, σx, σy, σz}, as one can verify by explicitly calculating ΠG(σα)
for α = x, y, z. As an example, the calculation for α = y can be found below:

ΠG(S = σy) =
1

4

[
σy + σ†xσyσx + σ†yσyσy + σ†zσyσz

]
=

1

4

[
σy − σ†xσxσy + σy − σ†zσzσy

]
= 0 (2.31)
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As explained previously, the construction of the pulses depend on the path chosen along the elements of G.
By choosing g1 = 1, g2 = σx, g3 = σy and g4 = σz, one can find the following pulses:

P1 = σx,

P2 = σyσz = −iσz,
P3 = σzσy = −iσx,
P4 = σz.

Up to a c-factor, this leads to the pulses {X,Z,X,Z} where X = σx, Z = σz. This consists in a series of
spin-flip and phase-flip. The generating set is thus Γ = {X,Z} and the protocol can be summarized as

∆t−X −∆t− Z −∆t−X −∆t− Z (2.32)

with ∆t = Tc/4. This sequence is a Maximal dynamical decoupling strategy (MAXDD) because it averages
out the all set of Pauli operators, resulting in a qubit protected against all kinds of errors.

2.6 Discussion
A few remarks relative to the theoretical development above are in order.

First, in order to obtain Eq.(2.25), we assumed τj identical for all j, i.e. we assumed the pulses equidis-
tant in time. However, averaged out Hamiltonians can be obtained using DD procedures consisting of
non-equidistant pulses, with τj ̸= τi for some i, j, and performance can be enhanced by designing sequences
that way. The temporal location of the pulses in the sequence is a parameter that can definitely be optimized.
Examples of such optimized sequences are Uhrig Dynamical Decoupling (UDD) [41, 50] and Quadratic Dy-
namical Decoupling (QDD) [51] which we will present in the next sections. Some algorithms used to optimize
the spacing of the pulses are presented in Refs. [52–54] and will be introduced shortly. In the next chapter,
we will present some interesting optimized sequences based on the optimization of the temporal location of
the pulses.

Secondly, we focused in the developments above on finding a sequence of pulses that averages out the
Hamiltonian as in Eq.(2.18), where each element gj of the group G is ’visited’ once, resulting in a sequence
of |G| pulses. However, nothing prevents us from designing longer pulse sequences with the elements of
G appearing more than once in Eq.(2.18). Despite the burden of having to use more pulses separated by
smaller time intervals to implement that kind of sequences, such methods can be advantageous as they allow
dynamical decoupling to occur using bounded strength control instead of ideal δ-pulses, as we will see later
on. UDD and QDD are also examples of sequences for which every element of G is visited more than once
in the period Tc.

Thirdly, as the fast control limit used to simplify the Magnus expansion in Eq.(2.14) can obviously
not be attained experimentally, higher terms of the Magnus series will contribute to the dynamics of the
system. Advanced DD sequences can be designed to achieve higher-order decoupling. We say that kth-order
decoupling will be achieved when terms up to H

(k−1)
are successfully averaged out. Using concatenation

methods [55], it is possible to create Concatenated Dynamical Decoupling (CDD) sequences that can achieve
arbitrarily high orders of decoupling. Another way to increase the order of the decoupling is to design
symmetric-cycles, i.e. sequences for which Ucf (Tc − t) = Ucf (t). It can be shown that such a sequence
automatically leads to H

(k)
= 0 for odd k [21].

Fourthly, ideal δ-pulses are obviously not experimentally implementable; experimental set-ups lead to
realistic pulses with bounded strength and finite duration. This issue will be addressed in Chapter 5 where
we will demonstrate that dynamical decoupling can still be realized with realistic pulses.

Finally, dynamical decoupling has the side effect of reducing the control that we possess over the system.
Since the whole interaction space IS will be averaged out by the DD sequence, all operators belonging to that
subspace will be useless for computation purposes. In fact, only the operators belonging to the commutant
of CS will be left unchanged by the symmetrization procedure. When a maximal DD strategy is used, no
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control over the system remains. It thus seems that dynamical decoupling is fundamentally incompatible with
quantum computation; while developing selective DD sequences helps in leaving some dynamics available,
it seems impossible to keep full control over our system while performing dynamical decoupling. However,
some clever schemes have been developed in order to overcome that problem. Dynamically Error-Corrected
Gates (DECG) [56] can be constructed by modifying a DD sequence in such a way that, in addition to
fighting decoherence, the sequence effectively implements a quantum gate. This approach is possible because
of the introduction of additional pulses inside a given sequence, the design of those pulses depending greatly
on the environment model used. Another approach consists in encoding a set of qubits [57], thus allowing
the construction of quantum gates that commute with the DD pulses.

2.7 Cayley graph
Before moving on to the analysis of different Dynamical Decoupling sequences, it is worth spending some
time explaining the concept of a Cayley graph in the context of dynamical decoupling [58,59] as it provides
an elegant representation of a DD sequence. So far, a specific DD sequence is characterized by a decoupling
group, G = {gi}, and a sequence of pulses P = {Pl, tl}. As stated earlier, the sequence of pulses depends
on the path chosen along the elements of G. Another way to define (and discover) a DD sequence of pulses
is through the construction of a so-called Cayley graph, an elegant representation of the structure of the
decoupling group. In order to construct a Cayley graph, one only needs the decoupling group G and a
generating set Γ. Once the graph is constructed, it is trivial to find the sequence of pulses that implements
the relevant symmetrization procedure.

Now let us consider a decoupling group G = {gi} and a generating set Γ = {γλ} and create the so-called
Cayley graph of G with respect to Γ, G(G,Γ). One can do that by following two simple steps :

1. Assign to each element of G a ’vertex’.

2. Join each vertex gi to the vertices gj by a directed ’edge’ characterized by a ’color’ λ if gj = γλgi.

Once these steps are completed, the only remaining task to construct a pulse sequence is to choose a cyclic
path along the graph. Then, the pulse sequence is constructed by following the path, starting from the
vertex corresponding to the identity and each edge corresponding to a pulse. Let us consider the simple
example of one qubit for which we want to apply a maximal dynamical decoupling procedure. In this case,
the decoupling group is G = {1, X, Y, Z} with X ≡ σx, Z ≡ σz and Y = XZ and a generating set is
Γ = {X,Z}, resulting in the XY4 sequence mentionned previously. Following the two steps described above,
the corresponding Cayley graph is depicted in Fig. 2.2a and an example of cyclic path along this graph is
represented in Fig. 2.2b. Following this path leads to the pulse sequence X → Z → X → Z.

Cayley graphs prove useful for the task of finding a pulse sequence which uses only the pulses defined in
the generating set. One simply needs to find the Cayley graph of the decoupling group with respect to the
generating set containing the generators that we want to use (for example, the quantum gates that we can
perform with high-fidelity) and choose one of the several cyclic paths.
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(a) (b)

Figure 2.2: Cayley graph of G = {1 ≡ Id,X, Y, Z} with respect to Γ = {X,Z}.
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Chapter 3

Selective Dynamical Decoupling

In this section, we will investigate different Selective Dynamical Decoupling (SELDD) strategies in the
context of preserving the coherence of a single purely dephasing qubit interacting with a bosonic field, i.e.
the spin-boson model presented in Section 1.3. We will first present the CPMG sequence, the most basic DD
sequence which was introduced for the first time in Ref. [20]. Then, we will investigate different approaches
to the optimization of the SELDD sequence by considering the pulses location in the sequence as a set of
parameters that we can optimize over.

The spin-boson model with pure dephasing is extremely convenient because it enables an exact derivation
of the time-evolution operator as well as the off-diagonal components of the reduced density matrix. This
derivation will be similar to the one made in Section 1.4, except that an additional term in the system
Hamiltonian will account for the control field. Because of the nice analytical solution for this system, we
will be able to validate the HOPS method in the context of dynamical decoupling.

3.1 CPMG

As stated previously, the CPMG sequence is designed to average out the interaction Hamiltonian HSB =
σz ⊗B and consists of a sequence of period Tc with two successive (ideal) spin-flips applied at t = Tc/2 and
t = Tc. The protocol can be summarized by

CPMG ≡ ∆t−X −∆t−X. (3.1)

with ∆t = Tc/2. Another way to write Eq.(3.1) is

CPMG ≡ U(∆t)XU(∆t)X (3.2)

with U(∆t) the free-evolution propagator for a duration ∆t. This sequence can be implemented using the
control field Hamiltonian

Hcf (t) =
π

2
ℏ

2N∑
n=1

δ(t− t(n)p )σx (3.3)

where t(n)p = t0 + n∆t and N is the number of sequences of period Tc that we wish to apply. For a given
period Tc, the parameter N will determine the total time tN = NTc, whereas for a given number of sequences
N the parameter Tc will do this job.

49



Figure 3.1: Cayley graph representation of the CPMG sequence.

3.1.1 Analytical derivation of the system’s dynamics
Adding this control field to the total Hamiltonian of Eq.(1.13) leads to the Hamiltonian

H =
ℏω0

2
σz︸ ︷︷ ︸

≡HS

+
π

2
ℏ

2N∑
n=1

δ(t− t(n)p )σx︸ ︷︷ ︸
≡Hcf (t)

+
∑
k

ℏωkb†kbk︸ ︷︷ ︸
≡HB

+ ℏσz ⊗
∑
k

(
gkb
†
k + g∗kbk

)
︸ ︷︷ ︸

≡HSB

(3.4)

governing the dynamics of the system. In the rotating frame with respect to HS +HB , the effective Hamil-
tonian governing the dynamics of the system is now given by

H̃(t) =
π

2
ℏ

2N∑
n=1

δ(t− t(n)p )ei
ω0
2 σztσxe

−iω0
2 σzt︸ ︷︷ ︸

≡H̃cf (t)

+ ℏσz ⊗
∑
k

(
gke

iωktb†k + g∗ke
−iωktbk

)
︸ ︷︷ ︸

≡H̃SB(t)

. (3.5)

Because the approximation of the ideal pulse is made, we can consider that, during a pulse, the interaction
Hamiltonian H̃SB(t) does not contribute. We can then distinguish two propagators: the propagator of the
free evolution Ũ0(t, t0) where the control field is null and the propagator of the pulse ŨP (t

(n)
p ). The total

time-evolution operator of a sequence of period Tc is then given by

Ũtot(t0 + 2∆t, t0) = ŨP2
Ũ0(t0 + 2∆t, t0 +∆t)ŨP1

Ũ0(t0 +∆t, t0). (3.6)

The free-evolution propagator is essentially the same as in Section 1.4 where no control field is considered
and is thus given by Eq.(1.29). The propagator is written again below for convenience,

Ũ(t, t0) = exp

{
σz
2

∑
k

[
αk(∆t)e

iωkt0b†k − h.c.
]}

(3.7)

with
αk(∆t) =

2gk
ωk

(
1− eiωk∆t

)
. (3.8)

and ∆t = (t− t0). The pulse propagator can be easily calculated and we obtain

ŨP (t
(n)
p ) = lim

δt→0
ŨP (t

(n)
p − δt, t(n)p + δt)

= lim
δt→0

exp

{
−iπ

2

∫ t(n)
p +δt

t
(n)
p −δt

δ(t− t(n)p )ei
ω0
2 σzt

′
σxe
−iω0

2 σzt
′

}
= exp

{
ei
ω0
2 σzt

(n)
p

(
−iπ

2
σx

)
e−i

ω0
2 σzt

(n)
p

}
= (−i)ei

ω0
2 σzt

(n)
p σxe

−iω0
2 σzt

(n)
p

(3.9)

for the propagator corresponding to the pulse at time t(n)p . For the last equality, we used the property

eBf(A)e−B = f(eBAe−B) (3.10)
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for any two operators A and B as well as the expression of the exponential of a Pauli operator derived in
Appendix B. Knowing both propagators, we can now calculate the time-evolution operator of Eq.(3.6). In
order to simplify the calculation, 1 = ŨP1Ũ

†
P1

can be inserted between the second free evolution and the
second pulse, which leads to

Ũtot(t0 + 2∆t, t0) = ŨP2
ŨP1︸ ︷︷ ︸

(∗)

(∗∗)︷ ︸︸ ︷
Ũ−1P1

Ũ0(t0 + 2∆t, t0 +∆t)ŨP1
Ũ0(t0 +∆t, t0) (3.11)

where the factors (∗) and (∗∗) are calculated separately for convenience. In order to do that, one needs to
use the following relations for the exponential of a Pauli operators:[

eασz , eβσz
]
= 0 (3.12a)

eασz = e−ασzσx (3.12b)

for all α, β ∈ C. Having that in mind, we can calculate (∗),

(∗) = −ei
ω0
2 σz(t0+2∆t)σxe

−iω0
2 σz(t0+2∆t)ei

ω0
2 σz(t0+∆t)σxe

−iω0
2 σz(t0+∆t)

= −ei
ω0
2 σz(t0+2∆t)σxe

−iω0
2 σz∆tσxe

−iω0
2 σz(t0+∆t)

= −ei
ω0
2 σz(t0+2∆t)ei

ω0
2 σz∆tσxσxe

−iω0
2 σz(t0+∆t)

= exp
{
i
ω0

2
σz2∆t

}
,

(3.13)

and (**),

(∗∗) = exp

{
−σz

2

∑
k

(
αk(∆t)e

iωk(t0+∆t)b†k − h.c.
)}

. (3.14)

Plugging (∗) and (∗∗) in Eq.(3.11), we find the time-evolution operator

Ũtot(t1, t0) = exp
{
i
ω0

2
σz(t1 − t0)

}
exp

σz2
∑
k

αk(∆t)(1− eiωk∆t
)︸ ︷︷ ︸

≡ηk(∆t)

eiωkt0b†k − h.c.


 (3.15)

with tn = t0 + 2n∆t and where we defined

ηk(∆t) = αk(∆t)
(
1− eiωk∆t

)
. (3.16)

After N sequences, the propagator becomes

Ũtot(tN , t0) = Ũtot(tN , tN−1) . . . Ũtot(t1, t0). (3.17)

This can be calculated using Eq.(3.15) and leads to

Ũtot(tN , t0) = exp
{
i
ω0

2
σz(tN − t0)

}
exp


σz
2

∑
k

ηk(∆t)
N∑
n=1

e2i(n−1)ωk∆t︸ ︷︷ ︸
≡ηk(N,∆t)

eiωkt0b†k − h.c.


 (3.18)

with

ηk(N,∆t) = ηk(∆t)

N∑
n=1

e2i(n−1)ωk∆t = ηk(∆t)
1− e2iN∆t

1− e2i∆t
. (3.19)
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This propagator can be compared with the propagator in Eq.(1.29). One can first notice the additional
factor exp

{
iω0

2 σz(tN − t0)
}

which corresponds to the effect of the pulse sequence on the system Hamiltonian
HS . This factor will be responsible for the mitigation of the oscillations of the off-diagonal components
generated from the system Hamiltonian. The other difference is the factor ηk(N,∆t) that appears instead
of αk(tN − t0) (Eq.(1.30)) in the term responsible for decoherence. This corresponds to the effect of the
pulse sequence on the interaction Hamiltonian. Repeating the exact same steps as in Section 1.4, we find
the decoherence function

ΓCPMG(tN ) =
1

2

∑
k

|ηk(N,∆t)|2 coth
(

ℏωk
2kBT

)
(3.20)

that replaces the previous decoherence function (Eq.(1.38)), corresponding to the free evolution without
control field,

Γ0(tN ) =
1

2

∑
k

|αk(2N∆t)|2 coth
(

ℏωk
2kBT

)
. (3.21)

In the continuum limit, Eq.(3.20) becomes

ΓCPMG(tN ) =
1

2

∑
k

|ηk(N,∆t)|2 coth
(

ℏωk
2kBT

)

=
1

2

∑
k

4|gk|2

ω2
k

∣∣1− eiωk∆t
∣∣4∣∣∣∣1− e2iNωk∆t

1− e2iωk∆t

∣∣∣∣2 coth( ℏωk
2kBT

)

=
1

2

∑
k

4|gk|2

ω2
k

4[1− cos (ωk∆t)]
2 sin

2 (Nωk∆t)

sin2 (ωk∆t)
coth

(
ℏωk
2kBT

)
= 2

∫ +∞

0

dω
J(ω)

ω2
[1− cos(ω∆t)]

2 sin
2 (Nω∆t)

sin2 (ω∆t)
coth

(
ℏω

2kBT

)
,

(3.22)

using ∣∣1− eiωk∆t
∣∣4 = 4|1− cos (ωk∆t)|2,∣∣∣∣1− e2iNωk∆t

1− e2iωk∆t

∣∣∣∣2 =
sin2 (Nωk∆t)

sin2 (ωk∆t)
.

(3.23)

All effects of the CPMG sequence on the decoherence properties are accounted for in this decoherence
function.

3.1.2 Performance of the sequence
In this section, we will analyse the performances of the CPMG sequence using the decoherence function
derived above. As a starting point, we will consider the fast control limit of an infinitely short sequence
applied an infinite number of times. According to the results presented in the previous chapter, this should
lead to all decoherence effects being suppressed and we will prove that this is indeed the case. Then, we will
compare the decoherence functions with and without pulses applied in order to illustrate how performing
dynamical decoupling can be.

Fast control limit

It is interesting to consider the limiting case of the fast control limit which consists in the double limit
∆t → 0

N → ∞
tN = t0 + 2N∆t

. (3.24)
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In order to study this limiting case, it is helpful to do a series expansion of ηk(N,∆t) around ∆t = 0. The
function ηk(N,∆t) is written below for convenience,

ηk(N,∆t) = αk(∆t)(1− eiωk∆t)
1− e2iN∆t

1− e2i∆t
=

2gk
ωk

(1− eiωk∆t)2
1− e2iN∆t

1− e2i∆t
. (3.25)

Because N∆t is a constant, the series expansion gives

ηk(N,∆t) = 2
gk
ωk

(
1− e2iN∆t

)[
− i

2
ωk∆t−

i

24
ω3
k∆t

3 +O
(
∆t5

)]
. (3.26)

Using this series expansion, we can express |ηk(N,∆t)|2 as

|ηk(N,∆t)|2 = 2|gk|2[1− cos (2N∆t)]

[
∆t2 +

1

12
ω2
k∆t

4 +O(∆t6)

]
(3.27)

which is upper bounded by

|ηk(N,∆t)|2 ≤ 4|gk|2
[
∆t2 +

1

12
ω2
k∆t

4 +O(∆t6)

]
. (3.28)

It then becomes clear that, in the double limit of Eq.(3.24), we have

|ηk(N,∆t)|2 → 0 ∀ modes k (3.29)

this means that in the fast control limit, decoherence is entirely suppressed and

ΓCPMG(tN ) ≈ 0 +O(∆t2) (3.30)

Dynamical decoupling as a filter function

A first result can be obtained by comparing the parameters |ηk(N,∆t)|2 and |αk(2N∆t)|2 of the decoherence
functions obtained in Eq.(3.20) and Eq.(3.21). These parameters characterize the decoherence rate induced
by the mode k of the bosonic field and should be reduced in order to increase the coherence time of the
qubit. We have shown previously that they can be developed as

|ηk(N,∆t)|2 = 16
|gk|2

ω2
k

[1− cos(ωk∆t)]
2 sin

2 (Nωk∆t)

sin2 (ωk∆t)
(3.31)

and

|αk(2N∆t)|2 = 8
|gk|2

ω2
k

[1− cos(ωk2N∆t)]. (3.32)

One can decide to compare the decoherence function by comparing these two factors for any mode k. Because
the factor 8 |gk|

2

ω2
k

appears in both terms, we will instead compare the terms

α =
|ηk(N,∆t)|2

8 |gk|
2

ω2
k

= 2[1− cos(ωk∆t)]
2 sin

2 (Nωk∆t)

sin2 (ωk∆t)
(3.33)

and

β =
|αk(2N∆t)|2

8 |gk|
2

ω2
k

= [1− cos(ωk2N∆t)]. (3.34)

Using Mathematica, one easily finds that

β − α = 2 cos(ωk∆t)
sin2 (Nωk∆t)

cos2 (ωk∆t/2)
. (3.35)
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Because sin2 (Nωk∆t)
cos2 (ωk∆t/2)

≥ 0 for all N and for all ωk∆t, the sign of β−α will be entirely determined by the sign
of cos (ωk∆t). This leads to the conclusion that

β − α ≥ 0 ∀ωk∆t ∈ [0, π/2] (3.36)

and, equivalently, that
|ηk(N,∆t)|2 ≤ |αk(2N∆t)|2 (3.37)

for all modes k satisfying
ωk∆t ∈ [0, π/2]. (3.38)

In other words, for a given sequence of period Tc = 2∆t, the decoherence induced by the modes k correspond-
ing to frequencies satisfying Eq.(3.38) will be reduced compared to the case where no pulse is applied, and
that for any number of sequences N . However, the modes k corresponding to higher frequencies can result
in higher decoherence rate in the presence of pulses. From this result, we understand that the sequence
of pulses essentially acts as a filter function [52] in the decoherence function which reduces the coupling
strength of the frequencies

ω <
π

2∆t
. (3.39)

In practice, ∆t has to be chosen such that the highest frequency of the bath, i.e. the frequency ωc above
which the spectral density cuts off, satisfies the condition

ωc∆t ≲ 1. (3.40)

If ∆t and ωc satisfy the condition above, then the decoherence rate corresponding to each mode k will
be reduced and thus so will be the overall decoherence rate. This filter function perspective of dynamical
decoupling is more obvious in the continuum limit where the decoherence function is given by

ΓCPMG(tN ) = 2

∫
dω
J(ω)

ω2
[1− cos(ω∆t)]

2 sin
2 (Nω∆t)

sin2 (ω∆t)
coth

(
ℏω

2kBT

)
, (3.41a)

Γ0(tN ) =

∫
dω
J(ω)

ω2
[1− cos (ω2N∆t)] coth

(
ℏω

2kBT

)
, (3.41b)

where we can define fCPMG(ω∆t,N) and f0(ω∆t,N) as former α and β:

fCPMG(ω∆t,N) = 2[1− cos(ω∆t)]
2 sin

2 (Nω∆t)

sin2 (ω∆t)
, (3.42a)

f0(ω∆t,N) = [1− cos (ω2N∆t)]. (3.42b)

Putting Eq.(3.42) into Eq.(3.41) leads to

ΓCPMG(tN ) =

∫
dω
J(ω)

ω2
fCPMG(ω∆t,N) coth

(
ℏω

2kBT

)
, (3.43a)

Γ0(tN ) =

∫
dω
J(ω)

ω2
f0(ω∆t,N) coth

(
ℏω

2kBT

)
. (3.43b)

In this equation, the decoherence function is given by an integral over all frequencies of the spectral density
over ω2, multiplied by two factors: a factor that depends on the temperature and a filter function f(ω∆t,N)
whose job is to filter certain frequencies.

The filter functions of Eq.(3.42) are plotted in Fig. 3.2 for increasing time. A first observation is that
the filter function of the free evolution (without pulse) filters low frequencies satisfying

ωt ≲ 1 (3.44)
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Figure 3.2: Filter functions without pulse (blue lines) and with the CPMG sequence (orange lines). The
filter function was plotted for increasing number of sequences N (N = 1, 20, 30 and 40), corresponding to
increasing time tN , with smaller values of N corresponding to lighter tones of blue (resp. orange).

such that, as time increases, the filter function filters less and less frequencies. The value of the filter function
stays however smaller or equal to 2 for all frequencies at all times. The CPMG filter function, on the other
hand, exhibits different properties. Frequencies satisfying

ωTc ≲ 2 (3.45)

are filtered at all times, with Tc = 2∆t. The efficiency of the filter function, however, decreases as time
increases. For higher frequencies, the value of the filter function can get much greater than 1, which means
that the decoherence effects induced by those frequencies are increased compared to the no-pulse scenario.
This means that dynamical decoupling filters all frequencies smaller than the frequency of the DD sequence
while increasing the decoherence rate corresponding to higher frequencies.

Coherence loss of a qubit

Now that the filter function nature of dynamical decoupling has been presented, the actual gain in terms
of fidelity (or equivalently infidelity) can be demonstrated by specifying a spectral density and choosing a
sequence’s period.

For an Ohmic spectral density of cut-off frequency ωc, we can infer from the previous discussion that a
sequence of period Tc ∼ 2/ωc (or shorter) is necessary to filter the relevant frequencies. We plotted in Fig.
3.3 the infidelity of a qubit of initial state |ψ⟩ = 1√

2
(|0⟩+ |1⟩) interacting with a bosonic bath as presented in

Section 1.4 for the Ohmic spectral density for different coupling strengths. As expected, a relevant decrease
of the infidelity is first observed for periods Tc satisfying

ωc∆t = ωcTc/2 ≲ 1, (3.46)

while sequences of longer periods result in greater decoherence. Evidently, decreasing the period even further
leads to improved performances, meaning that we are able to reach a lower infidelity for an extended period
of time. The value of the infidelity that we are able to reach with a given period, however, still largely
depends on the coupling strength. While periods of Tc ∼ 2/ωc are sufficient to ensure a fidelity increase

55



Figure 3.3: Infidelity of a qubit in the initial state |ψ⟩ = 1√
2
(|0⟩+ |1⟩) interacting with its environment via

the spin-boson model with Ohmic spectral density described in Section 1.4, plotted for different coupling
strengths (α = 1.0, 0.1 and 0.01). The dashed line corresponds to the infidelity when no control field is
applied while the solid lines correspond to the infidelity when a CPMG sequence (of period indicated in the
graph legend) is applied.

compared to the free evolution, much smaller periods are necessary to attain the fidelity threshold presented
previously.

Instead of fixing the period of the sequence and calculate the infidelity at times t, one can also decide
to fix the number of pulses and compute the infidelity at various times t (see Fig.3.5). This will give us
information about the fidelity that we can reach if the number of pulses is the limiting physical quantity
that we wish to reduce. This point of view will be useful when comparing two different sequences because it
will allow us to easily verify which sequence gives a superior fidelity with a lesser number of pulses.

It is interesting to reproduce Fig. 3.4 for different spectral densities which yield similar coherence times.
Such spectral densities were introduced in Section 1.4 precisely for such analysis and were plotted in Fig.
1.5. In Fig. 3.5, the infidelity for a fixed number of pulses is plotted for two types of spectral densities
(Ohmic SD and two Lorentzian SD’s). Comparing the infidelity for both Lorentzian SD’s, it first appears
that the CPMG sequence is less effective for the broader Lorentzian (g/γ = 0.8, κ = 175.0); both systems
yield similar coherence times without dynamical decoupling, but the coherence time increases slightly less
for the broader Lorentzian when the CPMG sequence is applied. This can be explained by the filter function
formalism of dynamical decoupling; we have learned from Fig. 3.2 that, for a given period Tc, frequencies
lower than 2/Tc are filtered whereas higher frequencies can be amplified. This means that the performance
of the DD sequence will depend on the form of the spectral density beyond the cut-off frequency ωc. Now
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Figure 3.4: Infidelity for a fixed number of pulses (solid lines) and for the free-evolution (dashed lines). The
infidelity was calculated for α = 1.0, 0.1 and 0.01 (from top to bottom).

looking at Fig. 1.5, one can see that the Lorentzian (g/γ = 1.5, κ = 70.0) has a harder cut-off beyond the
frequency ωc. This means that for a DD sequence satisfying Tc ≲ 2/ωc, the intervals of frequencies that
are amplified by the DD sequence correspond to smaller values of the spectral density. A smoother cut-off
hence results in reduced performances. This discussion highlights one important aspect of DD sequences:
the performance of a given sequence will depend greatly on the spectral density.
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Figure 3.5: Infidelity for a fixed number of pulses (solid lines) and for the free-evolution (dashed lines). Three
spectral densities introduced in Section 2.6 are studied, including the Ohmic spectral density used above.
The coupling strength of the Ohmic spectral density is fixed at αc = 1.0 and the Lorentzian’s are fixed to
g/γ = 0.8 and 1.5 with γ = α0

κωc
e as defined in Section 2.6.

3.2 Optimizing the pulses temporal location

As stated in Section 2.2, a sequence of pulses (i) does not have to consist of equidistant pulses and (ii) can
visit each element of the decoupling group more than once. Having that in mind, we can try and optimize the
CPMG sequence by using N non-equidistant pulses instead of two for a given period Tc. Because the control
field has to be cyclic, N is an even number. The control field for one sequence, with the approximation of
unbounded δ-pulses, can be modeled by the Hamiltonian

Hcf (t) =
π

2
ℏ

N∑
j=1

δ(t− tj)σx = Hcf (t+ Tc) (3.47)

where the positions of the pulses {tj} are parameters of the sequence that are yet to be fixed. Having made
the approximation of unbounded δ-pulses, we can set the interaction Hamiltonian equal to zero when a pulse
is applied, resulting in the following time-evolution operator,

Ũtot(Tc, T0) = Ũ0(tN+1, tN )ŨP (tN )Ũ0(tN , tN − 1)ŨP (tN−1) . . . ŨP (t2)Ũ0(t2, t1)ŨP (t1)Ũ0(t1, t0) (3.48)
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with
ŨP (tn) = (−i)ei

ω0
2 σztnσxe

−iω0
2 σztn

and Ũ0(tn+1, tn) = exp

{
σz
2

∑
k

(
αk(tn+1 − tn)e

iωktnb†k − h.c.
)} (3.49)

the expression of the pulse applied at tn and the free-evolution in the time interval [tn, tn+1] respectively.
αk(tn+1 − tn) is defined by

αk(tn+1 − tn) = 2
gk
ωk

[
1− eiωk(tn+1−tn)

]
(3.50)

and is independent of t0. Equation (3.48) can be developed as

Ũtot(Tc, t0) = Ũ0(tN+1, tN )

N−1∏
n=0

ŨP (tn+1)Ũ0(tn+1, tn)

(up to a c-number) = Ũ0(tN+1, tN )

N−1∏
n=0

(
σxe
−iω0σztn+1 exp

{
σz
2

∑
k

(
αk(tn+1 − tn)e

iωktnb†k − h.c.
)})

.

Now we can move all σx to the left, taking into account that as a σx permutes with an exponential of σz, the
sign of the exponential is changed. As a result, the factor relative to the value n = 0 will not change sign as
it will permute with no σx, the one relative to n = 1 will change sign one time as it will permute with one
σx, the one relative to n = 2 will change sign 2 times (resulting in no change of sign), etc. At the end of the
day, we are left with the product of N Pauli matrices σx which is nothing but the identity operator as N is
even. This results in the expression

Ũtot(Tc, t0) = Ũ0(tN+1, tN )

N−1∏
n=0

(
e(−1)

n+1iω0σztn+1 exp

{
(−1)n

σz
2

∑
k

(
αk(tn+1 − tn)e

iωktnb†k − h.c.
)})

=

(
N∏
n=1

exp{(−1)niω0σztn}

)(
N∏
n=0

exp

{
(−1)n

σz
2

∑
k

(
αk(tn+1 − tn)e

iωktnb†k − h.c.
)})

= exp

{
N∑
n=1

(−1)niω0σztn

}
exp

{
N∑
n=0

(−1)n
σz
2

∑
k

(
αk(tn+1 − tn)e

iωktnb†k − h.c.
)}

.

(3.51)
The propagator once again consists of two factors, the first one exp

{∑N
n=1(−1)niω0σztn

}
corresponding to

the effect of the sequence on the system Hamiltonian HS and the second factor corresponding to its effects
on the interaction Hamiltonian. Defining

µk(N,Tc) ≡
N∑
n=0

(−1)nαk(tn+1 − tn)e
iωktn , (3.52)

we can write the total propagator for one period Tc as

Ũtot(Tc, t0) = exp

{
iω0σz

N∑
n=1

(−1)ntn

}
exp

{
σz
2

∑
k

(
µk(N,Tc)e

iωkt0b†k − h.c.
)}

. (3.53)

As αk(tn+1 − tn) does not depend on t0 as previously mentioned, the only dependence on t0 appears in the
factor eiωkt0 . We can now calculate the total propagator after J sequences of period Tc, in a similar way as
was done previously in the case of the CPMG sequence. This ultimately leads to

Ũtot(t0 + JTc, t0) = exp

{
iω0σzJ

N∑
n=1

(−1)ntn

}
exp

{
σz
2

∑
k

(
µk(N,Tc, J)e

iωkt0b†k − h.c.
)}

(3.54)
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with

µk(N,Tc, J) ≡ µk(N,Tc)

J−1∑
j=0

eiωkjTc

 = µk(N,Tc)
1− eiωJTc

1− eiωTc
. (3.55)

Because this expression is similar to Eq.(1.29) and Eq.(3.18), this leads to a decoherence function given by

Γ(t) =
1

2

∑
k

|µk(N,Tc, J)|2 coth
(

ℏωk
2kBT

)
. (3.56)

In the continuum limit, the function above becomes

Γ(t) =
1

2

∫
dω
J(ω)

ω2

∣∣∣∣∣
N∑
n=0

(−1)n
(
1− eiω(τn+1−τn)Tc

)
eiωτnTc

∣∣∣∣∣
2
sin2

(
J ωTc2

)
sin2

(
ωTc
2

) coth

(
ℏωk
2kBT

)
(3.57)

where we have defined τn = tn/Tc as the adimensional parameter that represents the localization of the nth
pulse in the sequence. Defining the filter function

f(ωTc, N, J) =
1

2

∣∣∣∣∣
N∑
n=0

(−1)n
(
1− eiω(τn+1−τn)Tc

)
eiωτnTc

∣∣∣∣∣
2
sin2

(
J ωTc2

)
sin2

(
ωTc
2

) , (3.58)

we can write Eq.(3.57) as

Γ(t) =

∫
dω
J(ω)

ω2
f(ωTc, N, J) coth

(
ℏωk
2kBT

)
. (3.59)

Using this decoherence function and filter function, we can investigate how the utilization of non-equidistant
pulses can result in enhanced performances. Various approaches have been used to find the perfect pulse
sequence and we will present below some interesting results.
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3.2.1 Uhrig dynamical decoupling
In an article of 2007 [41], Götz S. Uhrig derived in a different manner the decoherence function of Eq.(3.59)
and the filter function of Eq.(3.58). He was interested in optimizing a single cycle of N pulses and of total
time T 1, which corresponds to the filter function of Eq.(3.58) for J = 1,

fUhrig(ωT ;N) =
1

2
|y(ωT ;N)|2 (3.60)

with

y(ωT ;N) =

N∑
n=0

(−1)n
(
1− eiω(τn+1−τn)T

)
eiωτnT . (3.61)

He then realized that y(ωT ;N) = 0 for ωT = 0 and that the N free parameters τn enabled him to require
his sequence to fulfill N conditions. His conditions were that the first N derivatives of y(ωT ;N) with respect
to ωT be equal to zero, that is

dn

dzn
y(z;N) = 0 n = 1, . . . N. (3.62)

Solving the N equations above, one can find the optimal temporal location of the N pulses. This leads to
the nice analytical solution

τn = sin2
(

nπ

(2N + 2)

)
. (3.63)

Figure 3.6: Pulses location {τn} for the UDD and CPMG sequence. Note that the CPMG sequence has
been symmetrized such that the first pulse is applied at the time ∆t/2 instead of ∆t. This is done so that
the sequence does not end with a pulse.

The result is thus a sequence of N pulses inter-spaced according to Eq.(3.63) called a Uhrig Dynamical
Decoupling (UDD) sequence. We can summarize the sequence as

UDDN (T ) = U(t1 − t0)XU(t2 − t1)X . . .XU(tN − tN−1)XU(T − tN ) (3.64)

with tn = τnTc for n = 1, . . . N and U(tn − tn−1) the free-evolution propagator in the time range [tn−1, tn].
Although one needs an even number of pulses in order to retrieve the initial state after the sequence, UDD
also works with an odd number of pulses. In order to retrieve the initial state, one only needs to apply an

1Because the sequence is not constructed to be applied periodically, it makes sense to use the notation T instead of Tc.
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additional pulse X at the end of the sequence. The UDD sequence for any number of pulses N (even or odd)
is then defined by

UDDN (T ) = XNU(t1 − t0)XU(t2 − t1)X . . .XU(tN − tN−1)XU(T − tN ). (3.65)

As it was rigorously proved in Ref. [60], the UDD sequence is the sequence that achieves the highest decoupling
order for a given number of pulses, which makes it optimal in this sense. It can be shown that a UDD sequence
of N pulses (N being even or odd) achieves Nth order decoupling, which means that the terms of the Magnus
expansion H

(k)
for k ≤ N − 1 are successfully eliminated by the decoupling procedure. In theory, it is thus

possible to achieve arbitrary high-order decoupling by increasing the number of pulses N , with the number
of pulses required only increasing linearly with the desired order.

Figure 3.7: UDD filter function as a function of ωTc/N .

The UDD filter function for increasing number of pulses is plotted in Fig. 3.7 in order to see more clearly
how the filtering is affected by the addition of more conditions as defined in Eq.(3.62). Two main behaviors
appear when N is increased: (i) the filtering of low frequencies, i.e. ωT/N ≲ 1, is increased dramatically
and (ii) the amplification of higher frequencies is overall higher when N is greater. This means that UDD
sequences with a greater number of pulses will result in a better suppression of frequencies ω ≲ N/T at the
cost of amplifying the decoherence due to larger frequencies.

We can compare a UDD sequence with a sequence of equidistant pulses with the same number of pulses
in order to see how the filtering is improved. This leads to Fig. 3.8 where we have plotted the filter function
for 4, 8, 16 and 32 pulses using the CPMG and UDD scheme. One can clearly see how advantageous the
UDD sequence is for filtering low frequencies. It produces however an overall greater amplification of higher
frequencies. Having that in mind, one can assume that UDD is only advantageous over the CPMG sequence
when the entire spectral density is located in the range of filtered frequencies. If a significant part of the
spectral density is located beyond ω ∼ N/T , the greater amplification of the decoherence rate for those
frequencies provided by the UDD scheme might lower its performance significantly. In order to study the
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Figure 3.8: UDD and CPMG filter function for different number of pulses.

relative performance of the CPMG and UDD sequence, we constructed a plot similar to Fig. 3.4; we fixed
the number of pulses N and calculated the coherence loss for a range ωcT with T the duration of the N -pulses
protocol, considering N equidistant pulses and N pulses applied according to the UDD scheme presented in
Eq.(3.63).

The results are plotted in Fig. 3.9. It is clear that, for short duration protocols, it is highly advantageous
to use the pulse intervals provided by the UDD schemes; for N = 12, coherence losses as low as ∼ 10−15

were calculated for α = 0.01 for UDD while the CPMG sequence resulted in a coherence loss of ∼ 10−7 for
the same coupling strength. However, as expected from the previous discussion, the performance provided
by UDD for longer protocols is degraded and beyond a certain point CPMG becomes more advantageous. In
order to see more clearly the regime where CPMG works best, we can re-scale the horizontal axis of Fig. 3.9,
plotting the coherence loss as a function of (2/N)ωcT instead of ωcT . This leads to Fig. 3.10 which shows
that the CPMG sequence outperforms the corresponding UDD sequence for sequence’s duration satisfying
(2/N)ωcT ≳ 0.4, that is when the pulse interval of the CPMG sequence satisfies ωc∆t ≳ 0.2. It is worth to
point out that increasing the number of pulses shifts the UDD-CPMG transition to the left, meaning that
the regime where CPMG outperforms UDD extends to shorter duration as the number of pulses increases.
For the number of pulses considered, however, the transition occurs around (2/N)ωcT ∼ 0.4.

We plotted in Fig. 3.11 the filter functions corresponding to the UDD40, UDD4 and CPMG sequences
as a function of ω

ωc
for the sequences’ duration satisfying 2

N ωcT = 0.4 as well as the Ohmic spectral density.
Around the frequency ∼ 10ωc, the spectral density has decreased by a factor of the order of magnitude
∼ 10−3 compared to its maximal value, such that the spectral density beyond that point has no significant
impact on the total decoherence rate when one integrates over all frequencies. At this frequency, while the
CPMG sequence still corresponds to a filter function smaller than one, thus still providing some kind of
filtering, the UDD filter functions are now in the amplification regime, with filter functions in the order of
magnitude fUDD4 ∼ 1 and fUDD40 ∼ 100. This means that a range of frequency that do not significantly
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Figure 3.9: Coherence loss for fixed numbers of pulses as a function of the total sequence’s duration for
equidistant pulses (blue lines) and UDD pulses (red lines). Different values of the coupling strength were
considered, namely α = 1.0, 0.1 and 0.01 (from top to bottom).

Figure 3.10: Coherence loss for fixed numbers of pulses as a function of (2/N)ωcT for equidistant pulses
(blue lines) and UDD pulses (red lines).

contribute to the total decoherence rate are sufficiently amplified, because of the UDD scheme, to become
significant, thus lowering the advantage that UDD has over CPMG. For 2

N ωcT = 0.4 and N = 4, as we can
see from Fig. 3.10, this effect is not quite large enough to result in a UDD sequence less performing than
the CPMG sequence. However, for N = 40, where the amplification is two orders of magnitude greater at
the same frequency, the CPMG sequence becomes more performing than UDD.

We demonstrated in this section that the Uhrig dynamical decoupling sequence produces a better filtering
of low frequencies at the expanse of producing a higher amplification of the higher frequencies. This means
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Figure 3.11: Filter function for UDD40, UDD4 and CPMG with the sequence’s duration satisfying 2
N ωcT =

0.4 (top) and Ohmic spectral density plotted in the logarithmic scale (bottom).

that the highest filtered frequency should be high enough such that, in the ideal case, the entirety of the
spectral density is located in the filtered range of frequencies. When a significant enough part of the
distribution is amplified by the filter, the UDD sequence will lose its efficiency and become less performing
that the basic CPMG sequence. The superiority of the UDD sequence over the basic CPMG sequence was
demonstrated experimentally on different types of qubit [54,61–63].

3.2.2 Locally optimized dynamical decoupling

A different approach to DD optimization is presented in [54]. The idea is to fix the period Tc as well as the
number of pulses N and let the pulses temporal location vary. The infidelity can then be computed as a
function of the pulses temporal location as

f : Rn → [0, 1] : (τ1, . . . , τN ) 7→ f(τ1, . . . , τN ) (3.66)

and the problem becomes a minimization problem that can be efficiently tackled by the Nelder-Mead Simplex
Algorithm [64]. The infidelity can for example be computed using the analytical formula in Eq.(3.57) or using
HOPS. If the infidelity is a physical quantity that we can measure with precision in an experimental set-up,
it is a priori possible to perform the algorithm using experimental feedback. The sequences resulting from
the minimization algorithm are called Locally Optimized Dynamical Decoupling (LODD) sequences.

In order to numerically calculate the LODD sequences, one needs to specify the spectral density and use
a method capable of calculating the dynamics of the qubit with accuracy. For a single qubit undergoing
pure dephasing, the analytical results introduced previously can be used. For more complex systems, one
can possibly use HOPS or a relevant quantum master equation. However, when the spectral density is not
known with accuracy, the LODD sequences must be calculated using experimental feed-back.

A fundamental issue of the LODD sequences is that they result from an N -dimensional optimization
procedure. Nelder-Mead, or most optimization algorithm for that matter, does not perform well when N
is too large. This prohibits the construction of many-pulses LODD sequences for long quantum memory
application.
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Four-pulses LODD sequences

We have implemented the Nelder-Mead algorithm in Julia in order to study the LODD sequences and replicate
the results of [54]. The parameters of the Nelder-Mead algorithms were chosen according to [64], but we also
allowed the utilization of the adaptive parameters introduced in [65] in order to tackle higher-dimensional
problems more efficiently, which can be useful when a large number of pulses are involved. The infidelity
function was implemented first using the decoherence function of Eq.(3.57), which enables the construction
of locally optimized selective dynamical decoupling to overcome pure dephasing in the spin-boson model.

We first used the Nelder-Mead algorithm for four pulses using the Ohmic spectral density. The Nelder-
Mead algorithm requires an initial guess for the pulses locations; the chosen initial guess is the symmetrized
CPMG sequence2 applied two times

∆t/2−X −∆t−X −∆t−X −∆t−X −∆t/2, (3.67)

i.e. the initial guess consists of equidistant pulses, but one could try other sequences as an initial guess, e.g.
the UDD sequence. The LODD sequence was calculated for different values of the sequence’s duration T ,
ranging from 0.2/ωc to 6/ωc. For each value of ωcT , the algorithm returns a vector of dimension 4 containing
the localization of each pulse of the sequence, i.e. the quantities {τn = tn/T} which correspond to the pulses
location in time {tn} scaled with respect to the sequence’s duration T . Plotting {τn} as a function of ωcT , we
can understand how the optimal placement of the pulses changes as the duration of the protocol increases.
The resulting sequences are plotted in Fig. 3.12 and the corresponding coherence loss is plotted in Fig.
3.13.

Figure 3.12: LODD sequences for four pulses for various values of ωcT ranging from 0.2 to 6 (a) and from
10−0.7 (∼ 0.2) to 100.2 (b). The plot (b) is plotted in a logarithmic scale. The UDD and CPMG sequences
are represented in red and black respectively.

As could be expected, as the protocol gets shorter, the pulses’ localization asymptotically tends to the one
given by the UDD sequence. This demonstrates that the Uhrig dynamical decoupling sequence is optimal, in
some sense. However, as the duration of the protocol gets longer, the LODD sequences gradually move away
from UDD. Although the LODD sequence may seem to correspond to the symmetrized CPMG sequence of
Eq.(3.67) at ωcT ∼ 1.3, a closer look reveals that the exact symmetrized CPMG sequence is never actually
obtained and thus never corresponds to the optimal choice for pulses placement. The LODD sequences thus
correspond to "unknown" sequences, in the sense that the placement of the pulses for those sequences has

2The symmetrized CPMG sequence is a reformulation of the classic CPMG sequence which makes it cyclic. It also corresponds
to the UDD sequence for 2 pulses.
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not been analytically derived and nor are they common choices or intuitive in any sense. These sequences are
highly non-trivial and are constructed by a specific design of the filter function that takes into consideration
how well the low frequencies are filtered as well as how much the higher frequencies are amplified. For a
given duration ωcT , the LODD sequence is the perfect balance between high filtering of low frequencies
and low amplification of high frequencies. For very short duration protocols, since the amplified frequencies
correspond to a part of the spectral density with values close to zero, the LODD sequence only has to take
into consideration how well low frequencies are filtered and it thus makes sense to recover the UDD sequence
which is, by construction, the best filter for low frequencies.

Figure 3.13: Coherence loss of the LODD sequences, compared to the CPMG and UDD sequences.

Using LODD, we can even demonstrate that UDD is the optimal filter by modifying a bit the Ohmic
spectral density so that the cut-off is now represented by a Heavyside function,

Jmodif.
0 (ω) = αω θ(ωc − ω). (3.68)

Using this spectral density and choosing a range of duration T for which the whole spectral density is being
filtered3, we can numerically compute the LODD sequence in order to find the sequence that provides the
highest filtering of low frequencies. We computed the LODD sequences for ωcT ranging from 1 to 2.54 (we
can plot the filter function and show that the spectral density is localized entirely in the filtered range of
frequency). The results are displayed in Fig. 3.14 and demonstrate that the highest possible filtering is
provided by the UDD sequence as the results show that the LODD sequences are exactly equal to the UDD
sequences.

Spectral density dependence of LODD

Because the infidelity is the quantity minimized by the Nelder-Mead algorithm, LODD sequences are expected
to depend crucially on the spectral density. It is thus interesting to translate the results of Fig. 3.12 to the
spectral densities presented in Fig. 1.5. The results can be found in Fig. 3.15 and show that the UDD
sequence does not appear as optimal in the range of ωcT considered and the CPMG sequence appears instead.
This can be explained by the great amplification properties of UDD for the high frequencies; because the
Lorentzian SD have a much softer cut-off JL ∝ 1

ω2 than the Ohmic SD which exponentially decays to zero, the
amplification of the higher frequencies will cause Uhrig dynamical decoupling to dramatically underperform.

3Notice that this is not possible using the Ohmic SD because the spectral density only tends to zero such that there is always
some part of the spectrum that is amplified by the filter function. Because θ(ωc − ω) = 0 for ω > ωc, the SD is exactly equal
to zero beyond the cut-off.
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Figure 3.14: LODD sequences for the modified Ohmic spectral density defined in Eq.(3.68).

This should highlight one very important property of LODD: because of how the sequences are con-
structed, LODD provides ultimately the best DD sequence for a given spectral density at the cost of being
very specific to the system considered.

Figure 3.15: LODD sequences for the Ohmic SD (blue dots) and the two Lorentzian presented in Fig. 1.5
with the broader Lorentzian represented by the green diamonds and the thinner one represented by the
yellow inverted triangles. The CPMG and UDD sequences are represented in black and red respectively.

Periodic application of LODD sequences

In the previous discussion, the goal was to create a sequence of specific duration T using a fixed number of
pulses. However, for some applications, one may not know exactly for how long the qubit is wished to be
protected. Instead, we may want to create a periodic sequence of pulses that we apply over and over again
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until we no longer need to. In this context, one can wonder whether the sequences obtained in Fig. 3.12 are
still the optimal ones. This question can be answered by using in the Nelder-Mead algorithm the decoherence
function of Eq.(3.57) for different numbers of sequences, i.e. for different values of J . For a value of J = 2
for example, the algorithm calculates the coherence loss after the application of two sequences. The results
are plotted in Fig. 3.16 for J = 1, 2, 5 and 10 and are quite interesting.

Figure 3.16: LODD sequences for different values of J . The CPMG and UDD sequences are once again
represented in black and red respectively.

The results indicate that most LODD sequences of Fig. 3.12, when applied periodically, are no longer
optimal. Instead of those complex sequences, the CPMG sequence actually becomes the better choice, which
is quite unexpected because the CPMG sequence did not even appear as an optimal sequence in Fig. 3.12.
Although UDD remains the best sequence for short duration protocols, we can see that LODD gradually
(and slowly) converges to the CPMG sequence for shorter and shorter duration. We can distinguish three
regimes that appear in Fig. 3.16 :

• the UDD regime for sequences of short duration T ≲ 0.6/ωc, where the UDD sequence appears as the
optimal sequence,

• the LODD regime for long sequences of duration T ≳ 2.5/ωc, where non-trivial sequences unique to
LODD are optimal,

• and the CPMG regime which stands between them, where the CPMG sequence surprisingly appears
as the optimal sequence.

It is interesting to focus on the range ωcT ∈ [0.4, 0.9] where the UDD regime crosses the CPMG regime.
The results plotted in Fig. 3.17 demonstrate that the CPMG regime gradually extends to the left, essentially
taking over as the ’best’ DD sequence. The LODD regime, on the other hand, is not of great interest because
it accounts for sequences that result in high coherence losses, due to the fact that the period of those sequences
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is essentially too great compared to the correlation time τc ∼ 1/ωc to produce a satisfactory filter function.
We generalized the results for 6 and 8 pulses; in the interest of not overcrowding the section, we decided to
move this discussion to Appendix 4.

Figure 3.17: LODD sequences of different values of J .

The main result of the discussion above and of Appendix 4 is the following statement: "any dynamical
decoupling sequence of non-equidistant pulses, when applied periodically a sufficiently large number of times,
is believed to become less efficient that the corresponding sequence of equidistant pulses". Depending on
the application in mind, it thus might be advantageous to trade those complex non-equidistant sequences
for the basic CPMG sequence. Note that the calculations leading us to this conclusion cannot be considered
as a proof of this statement and merely suggest that this extension of the CPMG regime appears for any
number of pulses.

3.2.3 Optimized noise filtration through dynamical decoupling
Instead of minimizing the infidelity, which forces us to choose a spectral density and thus results in a sequence
that depends greatly on this choice, one could decide to minimize the integral over the filter function of
Eq.(3.58) only, leaving out the spectral density in order to create a spectrum-independent DD sequence.
What should be minimized is therefore the area under the filter function. This approach leads to Optimized
Noise Filtration through Dynamical Decoupling (OFDD) and was introduced in Ref. [66] as a way to create
DD sequence that could prove more robust to errors in the environment model and to lower the dimension
of the optimization problem in order to facilitate the construction of optimized sequence using experimental
feed-backs.

In practice, we only try to minimize the integral over a range ω ∈ [0, ωD] with ωD some cut-off frequency.
This new parameter will later on be optimized for a given spectral density. The quantity to be minimized is
thus

f(T,N, J) =

∫ ωD

0

f(ωT,N, J)dω (3.69)

with f(ωT,N, J) the filter function of Eq.(3.58). This function can be written as

f(ωDT,N, J) =

∫ ωD

0

f(
ω

ωD
ωDT,N, J)dω (3.70)

and a change of variable leads to

f(ωDT,N, J) = ωD

∫ 1

0

f(ω̃ωDT,N, J)dω̃ (3.71)
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where the integration is done with respect to the adimensional parameter ω̃. Because the protocol duration
T only appears through the adimensional parameter ωDT , we used the notation f(ωDT,N, J) instead of
f(T,N, J) for the function to be minimized. Minimizing the function f(ωDT,N, J) written as in Eq.(3.71)
enables the construction of plots similar to Fig. 3.12 which are entirely independent of the frequency ωD as
it only appears as a scaling factor in front of the integral which we can omit without modifying the resulting
sequences. Once again, the Nelder-Mead Simplex Algorithm can be used to minimize f(ωDT,N, J).

Figure 3.18: OFDD sequences for a number of pulses N equal to 4 (a), 6 (b) and 8 (c). The UDD and
CPMG sequences are represented in red and black respectively.

Using Nelder-Mead on the position of the pulses for a given number of pulses N and J = 1, we computed
the OFDD sequences over the range ωDT ∈

[
0.5N2 , 9.0

N
2

]
(displayed in Fig.3.18). Because the pace at which

Nelder-Mead converges depends greatly on the initial guess, we chose as the initial guess for ωDT = 0.5N2
the UDD sequence. Then, for the highers value of ωDT , we chose as the initial guess the OFDD sequence of
the slightely lower value of ωDT . This dramatically reduces the running time of the algorithm and increases
its performance, because the algorithm starts running with an initial guess close to the optimal sequence.
We see that the OFDD sequence tends to the UDD sequence for small enough ωcT 2

N , similarly to the LODD
sequence. Once again, the CPMG sequence does not appear. For large ωDT 2

N ≳ 6, we observe a dramatic
change in the pulses location that appears as a discontinuity. Although similar discontinuities are observed
in the original paper [66], it should be noted that the algorithm did not converge at this particular point.
Because the initial guess of the following iteration is the result of this unconverged iteration, and because
the algorithm is very sensitive to the choice of the initial guess, our results after the discontinuity, despite
their similarity to the results of Ref. [66], should not be trusted.

The sequences represented in Fig. 3.18 provide the optimal filter for each value of ωDT . In an experi-
mental set-up, only one of those sequences correspond to the optimal OFDD sequence that should be applied
for a given protocol duration; in order to find which OFDD sequence is best for a given spectral density, one
has to fix the duration T of the protocol and find the parameter ωD that provides the best filtering. This
amounts to a one dimensional optimization procedure that can be realized with, once again, the Nelder-Mead
Simplex Algorithm using either experimental feedback or a calculation of the coherence loss or the infidelity.

We have plotted in Fig. 3.19a the optimal OFDD sequences in the range ωcT ∈ [0.5, 6] for 4 pulses using
the Ohmic spectral density. For each value of ωcT , Nelder-Mead was used to find the parameter ωD which
results in the lowest coherence loss. The initial guess was initially chosen as ωD = ωc for ωcT = 0.5, then
the initial guess of the following iteration, i.e. for the next value of ωcT , was chosen as the value of ωD from
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(a) OFDD sequences for the Ohmic spectral density.
(b) Coherence losses of the OFDD, LODD, UDD and CPMG
sequences for the Ohmic spectral density.

Figure 3.19

(c) Ratio of the coherence loss for the OFDD sequence over
the coherence loss for the LODD sequence as a function of
ωcT .

Figure 3.19

the previous iteration. We however realized after plotting ωD as a function of ωcT that an initial guess of
ωD = 5ωc for ωcT = 0.5 was a much better choice.

The corresponding coherence loss can also be found in Fig. 3.19b together with the coherence losses
corresponding to the UDD, CPMG and LODD sequences. The OFDD sequence turns out to be almost as
effective as the LODD sequences. We have plotted in Fig. 3.19c the ratio between the coherence loss for
the OFDD and LODD sequences, showing that LODD outperforms OFDD by lowering the coherence loss
by a factor of 1.5 for the shorter sequences.

3.2.4 Optimized bandwidth-adapted dynamical decoupling

In the last sections, we have introduced various approaches that aim at optimizing the temporal location
of the pulses in the sequence. These approaches had the same objective, that is finding the "best" filter
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function, but used different means to find the answer. These optimized sequences are summarized below:

UDD Uhrig optimized the filter function so that it provides the highest possible filtering for the frequencies
lower than ∼ 2/Tc. The weakness of this approach is that higher frequencies are greatly amplified such
that the spectral density must be close to zero beyond ∼ 2/Tc for that approach to perform well.

LODD In order to overcome that problem, one can directly minimize the infidelity using an optimization
algorithm, e.g. the Nelder-Mead Simplex algorithm. This approach requires a given duration T for the
protocol and gives, ultimately, the best sequence for the number of pulses and the duration considered.
The downside, in this case, is that the protocol is designed for a specific spectral density. One could
decide to perform the optimization using experimental measurement of the infidelity instead of guessing
the spectral density, but the hiccup is that, forN pulses, we have aN -dimensional optimization problem
which can require a high number of iterations. Furthermore, the infidelity would need to be measured
with high enough accuracy.

OFDD We can decide to use the optimization algorithm to minimize the integral over the filter function on
the range ω ∈ [0, ωD], leaving out the spectral density. As in the LODD approach, one needs to fix the
duration of the protocol T as well as the number of pulses and the algorithm gives as output the optimal
location of the pulses for a specific value of ωDT . Then, the optimal choice for the parameter ωD for
a given spectral density can be found by using a one-dimensional minimization algorithm. The big
advantage of this method is that it reduces the optimization problem from a N -dimensional to a one-
dimensional optimization which is more easily tackled. This means that the infidelity must be measured
or calculated less times. When the infidelity is computed with HOPS or measured experimentally, the
lowering of the dimension of the optimization problem is very much appreciated.

However, none of the approaches described above have considered the fact that there could be some constraint
on the minimum pulse separation. This is due to the fact that realistic pulses, as we shall discuss in the next
section, have a finite duration which prohibits infinitely fast control. For a given system, we thus may find
that the sequences given by the UDD, LODD and OFDD procedures for optimization are experimentally
impossible to realize because they would require the application of pulses separated by a time interval smaller
than the duration of a single pulse. This issue was addressed in Ref. [67] and K. Khodjasteh, T. Erdélyi
and L. Viola came up with a solution with the introduction the Bandwidth-Adapted Dynamical Decoupling
(BADD). The idea is to use an optimization algorithm on the infidelity, not unlike LODD, except that a
constraint on the minimum separation of the pulses is added and that the number of pulses is not fixed.
Basically, the algorithm takes as an input the spectral density, the total duration T and the minimum
achievable pulse separation and the output consists of the number of pulses N and their location in the
sequence {τn}. The outcome of the procedure is the construction of the sequence that corresponds to the
smallest value of the infidelity while satisfying the constraint that we imposed.

Studying the BADD sequences, they came to the sad conclusion that a dynamical decoupling procedure
by itself is not able to extend the lifetime of a qubit to an arbitrary long time with an arbitrary low infidelity.
The lowest possible infidelity achievable for a given protocol duration T will depend on the minimum pulse
interval achievable. This statement from Ref. [67] basically leads to the conclusion that dynamical decoupling
alone is not sufficient to achieve arbitrary long and accurate quantum computation.

3.3 Benchmarking HOPS in the context of dynamical decoupling
Because of the nice analytical solution for the decoherence function in the case of the purely dephasing qubit
undergoing a series of spin-flips, it is possible to benchmark the results of the HOPS method in the context
of dynamical decoupling. We considered a purely dephasing qubit as in Fig. 1.9, using the same spectral
density parameters. Recall that those parameters had to satisfy the conditions κ ≪ ωc and g ≫ ω2

c/2κ in
order to avoid the accumulation of the spurious dynamics generated by the non-physical negative frequencies
used in HOPS. It is not yet clear whether the same conditions should be satisfied in the context of dynamical
decoupling. However, as a starting point, it makes sense to use HOPS in the regime of validity derived
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earlier. We have thus chosen the parameters κ/ωc = 0.075 and g = 1.6
ω2
c

κ which allowed us to match
the simulation and the analytical results to a maximal time tf = 0.6/Ω with Ω = g κ

2

ω2
c
. We should also

keep similar simulation parameters and add a control field to the system Hamiltonian. The pulses were
implemented using a time-dependent Hamiltonian of the form Hcf (t) =

π
2 a(t)σx with a(t) equal to a sum of

a bunch of normalized Gaussian distributions of width σ localized at the timing of the pulses. The limiting
case of the ideal pulses corresponds to the limit σ → 0.

(a) Train of pulses as implemented in
HOPS.

(b) Fidelity of a dephasing qubit when a CPMG sequence of period ωcTc = 2
(red) and ωcTc = 10/7 (blue) is applied. We also plotted the fidelity of
the dephasing qubit without DD (dashed line). The initial state |ψ⟩ =
|0⟩+i|1⟩√

2
was chosen. The simulation parameters were set at (kmax, tf/dt,

ntraj)=(7,20000,800).

Figure 3.20

We first intended to implement a sequence of equidistant pulses. We implemented the symmetrized
CPMG sequence for different periods of the sequence and calculated the fidelity of the qubit using both
HOPS and the analytical function. The results are plotted in Fig. 3.20b. The solid lines correspond to
the evolution of the qubit as computed by the HOPS method. One can then see the evolution of the qubit
within the sequence and observe sudden changes in the dynamics occuring when a pulses is applied. The dots
correspond to the calculation of the coherence at the end of a DD sequence using the analytical solution.
Qualitatively, the results match; we observe a dramatic decrease of the decoherence rate which is more
significant when the period of the dynamical decoupling sequence is decreased. However, the exact value
of the fidelity at the end of a period Tc does not match in a satisfactory way with the simulations from
HOPS for either of the sequences considered. The simulation parameters kmax and ntraj were increased and
the timestep dt was decreased but this did not result in a better agreement with the theoretical prediction.
However, decreasing the width of the Gaussian increases the performance of the DD sequence and leads to
a numerical calculation closer to the theoretical prediction. Note that decreasing the width of the Gaussian
was followed by a decrease of the timestep dt for the numerical integration in order to make sure that the
pulses were similarly integrated numerically.

Once again, calculating the fidelity of the qubit with the negative frequencies taken into account leads to
a slight deviation from the exact solution (see Fig. 3.21). Because of our previous discussion on the impact
of the negative frequencies on the HOPS method, we expect the simulation results to converge to the solution
which considers negative frequencies in the integration when the width of the Gaussian is further reduced.
This indicates that the regime of parameters chosen specifically to avoid the build up of spurious dynamics
generated by negative frequencies does not prevent the issue from occurring in the context of studying a DD
sequence.
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Figure 3.21: Fidelity of a qubit undergoing a CPMG sequence, calculated using the standard analytical
derivation (diamonds), the analytical derivation with the negative frequencies considered (stars) and the
HOPS method (dots). In the interest of making the plot more intelligible, only the values of the fidelity at
the end of a cycle was kept.

3.3.1 Impact of the negative frequencies on the relative performances of DD
sequences

As it has been stated previously, the regime of parameters chosen specifically to avoid undesirable effects of
the non-physical negative frequencies in the HOPS simulation for the purely dephasing qubit does not prevent
those same negative frequencies from influencing the dynamics of the same qubit undergoing a dynamical
decoupling procedure. However, making accurate prediction on the fidelity of a qubit after applying a DD
sequence is not necessary to obtain some interesting results. Instead, it may be interesting to compare the
relative performances of two different dynamical decoupling sequences. If the negative frequencies of HOPS
do not influence the relative performances, then it could a priori still be used as a tool to create DD sequences
and compare different protocols.

In order to find out how useful HOPS can still be, we compared the UDD sequence of four pulses
with the symmetrized CPMG sequence. The results can be found in Fig. 3.22. The periods and the two
sequences were chosen such that the relative performance of the two sequences is alienated when the negative
frequencies are considered. In other words, we chose to compare with the CPMG sequence a UDD sequence
which is supposed to be more performing according to the exact solution, but appears less performing when
the negative frequencies are taken into account. This is precisely what we observe in Fig. 3.22: according
to the exact analytical solution, up to two applications of the UDD sequence yield a better fidelity than the
CPMG sequence. After three cycles, UDD is outperformed by CPMG. However, when negative frequencies
are taken into account, the UDD sequence is always outperformed by the CPMG sequence.

The HOPS results indicate that the UDD sequence is indeed less performing than the CPMG sequence.
This supports the idea that HOPS accounts for the spurious dynamics generated by the negative frequencies
in such a way that the relative performance of two sequences according to HOPS can differ from the theoretical
prediction based on the exact analytical solution.

Note that the fact that the UDD sequence appears less performing because of the negative frequencies
can be explained by the fact that the filter function is even with respect to the frequency ω, that is the value
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Figure 3.22: Time evolution of a qubit undergoing a UDD (red) and a CPMG (blue) sequence, calculated
using the standard analytical derivation (diamonds), the analytical derivation with the negative frequencies
considered (stars) and the HOPS method (dots). The simulation parameters were fixed at (kmax, tf/dt,
ntraj)=(7,10000,800).

of the filter function at ω is equal to its value at −ω. It follows that the additional negative frequencies and
the positive frequencies will be treated equally by the DD sequence and that we can construct an ’effective’
spectral density

Jeff (ω) =
gκ

2

κ

κ2 + (ω − ωc)2
+
gκ

2

κ

κ2 + (ω + ωc)2
(3.72)

which is defined exclusively on the positive frequency domain (displayed in Fig.3.23a). This effective spectral
density is the one implemented in HOPS and is constructed by adding two Lorentzians on top of each other,
one centered at the frequency ωc and the other centered at −ωc. It thus mean that the effective coupling to
each frequency of the bath will be higher. In the range of frequencies where the UDD sequence out-performs,
the higher coupling will tend to favor UDD over CPMG. Equivalently, in the range of frequencies where
CPMG outperforms, the higher coupling will tend to favor CPMG over UDD. It is crucial to understand
that this effective spectral density is not equal to the Lorentzian SD times a multiplicative factor. This
means that the increase of the coupling is more significant in some range of frequencies. We plotted in
Fig.3.23c the relative augmentation of the coupling strength for each frequency. In the low frequencies, i.e.
the range of frequency where UDD performs best, the augmentation of the coupling strength rapidly drops
from 100% to 0.1%. However, in the amplification regime, where UDD is dramatically outperformed by
CPMG because of its amplification properties, the augmentation steadily increases. Because

lim
ω→∞

Jeff (ω)− J(ω)

J(ω)
= lim
ω→∞

κ2 + (ω − ωc)
2

κ2 + (ω + ωc)2
= 1, (3.73)

the augmentation of the coupling strength keeps on increasing in the amplification regime. It essentially
means that the effective spectral density has a softer cut-off. Because of the extreme amplification of high
frequencies provided by UDD, we have already pointed out that UDD is extremely sensitive to the form of
the spectral density beyond the cut-off; it is thus not surprising that the overall higher coupling will favor the
CPMG sequence over UDD. That being said, one can understand how the issue of the negative frequencies
prevent us from constructing DD sequences based on a careful design of the filter function.
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(a) The effective spectral density (solid line) and the
Lorentzian spectral density (dashed line). The colored
area between the two functions corresponds to the nega-
tive frequencies added to the Lorentzian in order to create
the effective SD.

(b) To Fig.3.23a have been added the filter functions of
the UDD (red) and the CPMG (blue) sequences used in
HOPS to get Fig.3.22. The range of frequency where
UDD (resp. CPMG) outperforms the other sequence is
colored in red (resp. blue).

(c) The ratio Jeff (ω)−J(ω)

J(ω)
indicates the relative augmen-

tation of the coupling strength at the frequency ω.

Figure 3.23

Once again, it should be pointed out that the HOPS simulations slightly deviate from the theoretical
predictions. Because decreasing the timestep did not help and neither did increasing the number of auxillliary
states and the number of trajectories, this is most likely due to the finite duration of the pulses.

We therefore come to the conclusion that single-mode HOPS is not, at least in the regime of parameters
considered, fitted to compare the relative performances of two dynamical decoupling protocols based on
specific designs of the filter function. It is still not clear whether a regime of parameters that allows accurate
analysis of dynamical decoupling protocols can be found. It is also not clear whether HOPS multi-modes
can help in mitigating this issue through the introduction of modes of negative weight.
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Chapter 4

Maximal Dynamical Decoupling

In the previous section, we introduced several SELDD sequences which, in the context of a purely dephasing
qubit, are sufficient to increase the lifetime of said qubit to some extent. However, dissipation should
at some point be taken into account. When dissipation is taken into account, as already mentioned, the
decoherence process of a qubit can be considered as resulting from two relaxation processes, that is a
transverse relaxation due to pure dephasing and a longitudinal relaxation due to dissipation [8]. These two
processes are characterized by relaxation times T1 and T2 for the longitudinal and transverse relaxation
respectively. Usually, T2 is smaller than T1, meaning that pure dephasing is the physical process that limits
our ability to reliably store quantum information.

Using SELDD to eliminate pure dephasing, we have seen that the lifetime of the qubit can be extended
by orders of magnitude. This amounts to increasing T2 by orders of magnitude, such that at some point
T1 can become smaller than T2, meaning that dissipation becomes the limiting physical process prohibiting
the storage of quantum information; we arrive at a point where dissipation should be taken into account in
order to extend the qubit’s lifetime even further. This is where Maximal Dynamical Decoupling (MAXDD)
strategies should be used instead of SELDD.

We have explained earlier than dissipative dynamics can be taken into account by adding an extra
term in the Hamiltonian, this term being either a tunneling term ∆0σx or an interaction Hamiltonian
of the form ℏσx

∑
k

(
gkb
†
k + g∗kbk

)
or ℏ

∑
k

(
gkσ−b

†
k + g∗kσ+bk

)
. One can easily check that the SELDD

strategy considered in the previous section does not average out either of these terms, meaning that another
decoupling group is needed to deal with dissipative behaviors. In this chapter, we will use as an interaction
Hamiltonian the Hamiltonian presented in Eq.(1.98) (written again below for convenience) in order to account
for dissipation and dephasing.

HSB(θ) = ℏ
[
cos2(θ/2)σz + sin2(θ/2)σx

]∑
k

(
gkb
†
k + g∗kbk

)
, (4.1)

We plotted in Fig. 4.1 and Fig. 4.2 the evolution of the qubit undergoing pure dissipation (θ = π in
Eq.(4.1)) with and without a classic CPMG sequence of period Tc = 1/(1.6ωc) applied, for two initial states
|ψ(0)⟩ = |0⟩+|1⟩√

2
and |ψ(0)⟩ = |0⟩+i|1⟩√

2
. This shows that decoherence is not prevented by the application of

a CPMG sequence of spin-flips and more complex sequences are needed to deal with complex interaction
Hamiltonian such as the one introduced in Eq.(4.1).

Remark. Because the pulses commute with the operator σx of the interaction Hamiltonian HSB(θ = π),
one could wonder why the dynamics of the qubit is modified by the sequence. This is explained by the effects
of the CPMG sequence on the system Hamiltonian HS = ℏω0

2 σz. Because the pulses anti-commute with HS ,
the system Hamiltonian is affected by the DD sequence. Accordingly, because the spontaneous decay of a
two-level system depends not only on the interaction Hamiltonian but also on the system Hamiltonian (see
the section on the James-Cummings model on resonance and the James-Cummings model with detuning in
Ref. [11]), this means that the dynamics of the dissipative qubit undergoing a series of spin-flips is non-trivial.
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We also observe that the choice of the initial state impacts the decoherence rate, the decoherence rate being
greater for the initial state |ψ(0)⟩ = |0⟩+i|1⟩√

2
.

Figure 4.1: Fidelity and population of the excited state for θ = π with (red) and without (blue) a control
field applying a CPMG sequence of spin-flips for the initial state |ψ(0)⟩ = |0⟩+|1⟩√

2
. The simulation parameters

were fixed at (kmax, tf/dt, ntraj)=(6,5000,400).

Figure 4.2: Fidelity and population of the excited state for θ = π with (red) and without (blue) a control field
applying a CPMG sequence of spin-flips for the initial state |ψ(0)⟩ = |0⟩+i|1⟩√

2
. The simulation parameters

were fixed at (kmax, tf/dt, ntraj)=(6,5000,400).

In this section, we will first present the XY4 sequence mentioned in Section 2.5. Then, we will present
two more complex protocols that achieve higher-order decoupling, namely Concatenated and Quadratic
dynamical decoupling.
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4.1 XY4
The XY4 sequence has already been mentioned in Section 2.5; we showed in this previous section how to
construct it by choosing the relevant decoupling group. It is however interesting to construct the sequence
in another manner, using a method called concatenation which consists of merging two existing sequences
in order to create a new one.

We now know that the decoupling group Gx = {1, σx} averages out the operator σz as it was proven in
Eq.(2.28) where we demonstrated that the symmetrization procedure on σz using Gx results in ΠGx(σz) = 0.
One can easily see that swapping all the operators σx and σz in Eq.(2.28) still gives the same results. This
would correspond to the symmetrization procedure ΠGz (σx) = 0 with Gz = {1, σz}. We now understand
that, because Gx is a decoupling group for σz, Gx is a decoupling group for σx. The sequence of pulses is
then given by the same sequence as CPMG but replacing the spin-flips X = σx with phase-flips Z = σz. We
thus have two protocols,

p1 = ∆t−X −∆t−X for σz,
p2 = ∆t− Z −∆t− Z for σx,

(4.2)

which, separately, are sufficient to average out one of the unwanted terms of the Hamiltonian but not the
other. By concatenating the two protocols, it is possible to create a single protocol that averages out both
terms. Concatenation of DD procedure was first introduced in Ref. [55] and consists in replacing the free-
evolution of a sequence by another sequence. For example, concatenating p1 and p2 leads to the sequence

p1→2 = p1 − Z − p1 − Z

= ∆t−X −∆t−X − Z −∆t−X −∆t−X − Z

= ∆t−X −∆t− Y −∆t−X −∆t− Y

(4.3)

where we have used Y = XZ. The same derivation can be done using p3 = ∆t − Y − ∆t − Y which is a
sequence that also averages out σx and this would lead to

p1→3 = ∆t−X −∆t− Z −∆t−X −∆t− Z (4.4)

which is precisely the sequence that was found in Section 2.5 that achieves maximal dynamical decoupling.
The protocols p1→3 and p1→2 are actually equivalent as they correspond to the same decoupling group
G = {1, σx, σxσz, σz}.

In order to illustrate the efficacy of this XY4 sequence compared to the classic CPMG sequence of spin-
flips, we computed the fidelity and population of the excited state when both sequences are applied, using
an interaction Hamiltonian consisting of both dissipative and dephasing terms, HSB(θ = 1.2). The results
are displayed in Fig.4.3. Note that in order to make the results more intelligible, we removed the evolution
of the qubit within the sequence and only plotted the fidelity and the population of the excited state at the
end of each cycle. The period of the XY4 sequence was set to Tc = 1/(1.6ωc) and the period of the CPMG
sequence was set to 2Tc in order to obtain the same pulse interval ∆t between each pulse.
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Figure 4.3: Fidelity and population of the excited state with the interaction Hamiltonian HSB(θ = 1.2)
with a CPMG sequence (green), a XY4 sequence (red) and no sequence (blue) applied. The initial state is
|ψ(0)⟩ = |0⟩+i|1⟩√

2
and the simulation parameters were fixed at (kmax, tf/dt, ntraj) = (6,10000,300).

4.2 Concatenated dynamical decoupling
The simplest sequences, such as CPMG and XY4 for example, can only decouple a qubit up to the first
order of the Magnus expansion. This means that the errors resulting from higher-order terms will eventually
build up as we keep applying the sequence periodically. In order to avoid that, one must seek more advanced
DD sequences that achieve higher-order decoupling. One way to increase the order of the decoupling is to
concatenate the simplest sequence, the same way we have done in the last section to create the XY4 sequence,
thus resulting in Concatenated Dynamical Decoupling (CDD) sequences [55]. The concatenation process for
the XY4 sequence is rather simple: writing the sequence at the 0th level of concatenation as

p(0) ≡ U(∆t)XU(∆t)ZU(∆t)XU(∆t)Z (4.5)

with U(∆t) the free-evolution propagator that has the exact same meaning as the notation −∆t− which was
used in the last section, we can define the sequence at the (l + 1)th level of concatenation by

p(l+1) ≡ p(l)Xp(l)Zp(l)Xp(l)Z, n = 0, 1, . . . (4.6)

In such a sequence, each level l of the concatenation will average the term of order l + 1 of the Magnus
expansion. In theory, one can then eliminate the undesired Hamiltonian up to an arbitrary high order of the
Magnus expansion simply by repeating the concatenation procedure described above. Concatenation can be
done on any sequence with any number of pulses; one can think about successive concatenation of OFDD,
LODD or UDD sequences for example.

It is important to point out that, although arbitrary high-order decoupling can be achieved in theory,
physical constraint will eventually limit the level of concatenation that can be attained. First, the number of
pulses in the sequence increases exponentially with the level of concatenation, such that in order to achieve
(l+1)th order decoupling by concatenating XY4 sequences successively, one would need a total of N ≲ 4(l+1)

pulses in the sequence. Then, all of those pulses are separated by a pulse interval ∆t, which makes the total
duration of the sequence Tc ≲ 4(l+1)∆t. This means that if the total duration of the sequence is fixed, i.e.
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we need to protect the qubit for a specific duration, the pulse interval decreases as ∆t ≳ Tc/4
(l+1); the

minimum pulse interval decreases exponentially with the level of concatenation. Because the minimum pulse
interval achievable by an experimental set-up is not zero, this results in a maximum level of concatenation
for a given experimental set-up and duration.

One can wonder why we wrote N ≲ 4(l+1) instead of N = 4(l+1). At first sight, it might seem like each
level of concatenation multiplies the number of pulses by exactly four. However, one finds that some of the
additional pulses will correspond to the identity operator. These pulses can then be left out. It is interesting
to illustrate this by explicitly calculate the concatenated XY4 sequence up to the first level of concatenation,
that is p(1) in Eq.(5.5). One finds that the corresponding sequence is

p(0) ≡ X − Z −X − Z

⇒ p(1) ≡ X − Z −X − ZX −X − Z −X − ZZ −X − Z −X − ZX −X − Z −X − ZZ
(4.7)

where we left out the free-evolution propagator U(∆t) between the pulses in order to avoid an unnecessary
long formula (each dash − corresponds to a free evolution U(∆t)). We can replace ZX by the pulse Y as
they are equal up to a phase factor (Y being defined as Y = XZ). Now notice that the pulse ZZ appears
two times in the sequence. Because Z is unitary and hermitian, ZZ is nothing but the identity operator.
We can thus leave these two identity pulses out and write the final sequence as

C(1)XY 4 ≡ X − Z −X − Y −X − Z −X −X − Z −X − Y −X − Z −X (4.8)

which is a 14 pulses sequence instead of a 16 pulses sequence as one could have expected. We introduced here
the notation C(l)XY 4 for the concatenated XY4 sequence with lth level of concatenation. The fidelity of a
qubit undergoing the C(1)XY 4 and XY 4 sequences is plotted in Fig.4.4 in order to illustrate the superiority
of this new sequence.

Figure 4.4: Relative performance of the C(1)XY 4 ≡ CXY 4 and XY 4 sequences for the Hamiltonian
HSB(θ = 1.2). In order to ensure a fair comparison, we used for both sequences the same pulse inter-
val ∆t. The duration of the XY4 sequence is set to Tc = 1

1.6ωc
. In the interest of making the results more

intelligible, we only plotted the value of the fidelity at the end of a period. The simulation parameters were
fixed at (kmax, tf/dt, ntraj) = (6,10000,700).
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4.3 Quadratic dynamical decoupling
Throughout Chapter 3, we presented many SELDD sequences constructed by optimizing the pulses placement
in the sequence and one can wonder whether similar sequences can be constructed when different types of
pulses are considered. LODD sequences can easily be constructed, provided that calculating the infidelity is
possible using either HOPS or a non-Markovian quantum master equation. However, because no analytical
development is possible in this case and thus no filter function can be defined, it is a priori not trivial to
generalize OFDD and UDD. Similar sequences can however be obtained by concatenation, using the exact
same method as in Section 4.1 but using OFDD or UDD sequences instead of the CPMG sequence.

Quadratic Dynamical Decoupling [51, 68, 69] is a sequence constructed by concatenation of two UDD
sequences. As a reminder, the UDD sequence introduced previously is given by

UDDN (Tc) ≡ U((τ1 − 0)Tc)XU((τ2 − τ1)Tc)X . . .XU((τN − τN−1)Tc)XU((1− τN )Tc) (4.9)

with {τn} are the temporal localization of the pulses in the sequence and are given by

τn = sin2
(

nπ

2N + 2

)
, n = 1, . . . , N (4.10)

and U(∆t) corresponds to the free-evolution propagator for a duration ∆t. A more convenient way to write
this sequence is

UDDN (Tc) ≡ U(δ1Tc)XU(δ2Tc)X . . .XU(δNTc)XU(δN+1Tc) (4.11)

defining the pulses separations {δn} as

δn = sin2
(

nπ

2N + 2

)
− sin2

(
(n− 1)π

2N + 2

)
, n = 1, . . . , N + 1. (4.12)

This sequence was constructed using spin-flips X in order to eliminate pure dephasing of a qubit, but that
same sequence can be constructed using phase-flips Z to eliminate dissipation. In order to differentiate the
two sequences, we define

XN1
(Tc) ≡ U(δ1Tc)XU(δ2Tc)X . . .XU(δN1

Tc)XU(δN1+1Tc),

ZN2
(Tc) ≡ U(δ1Tc)ZU(δ2Tc)Z . . . ZU(δN2

Tc)ZU(δN2+1Tc).
(4.13)

Concatenation the two sequences as we have done in the previous section, we find

QDDN1,N2(Tc) = XN1(δ1Tc)ZXN1(δ2Tc)Z . . . ZXN1(δN2Tc)ZXN1(δN2+1Tc) (4.14)

the resulting QDD sequence composed of an inner and outer UDD sequence of N1 and N2 pulses respectively.
Because the inner sequence appears N2+1 times, the total number of X pulses is equal to N1(N2+1) whereas
the total number of Z pulses is equal toN2. In this sequence, the location of the Z pulses of the outer sequence
is given by

τzn = sin2
(

nπ

2N2 + 2

)
∀n = 1, . . . N2. (4.15)

On the other hand, the location of the X pulses of the nth inner sequence is given by

τx,nm = τzn−1 + sin2
(

mπ

2N1 + 2

)(
τzn − τzn−1

)
= τzn−1 + sin2

(
mπ

2N1 + 2

)
δzn ∀m = 1, . . . N1 (4.16)

with τz0 = 0.
Because a UDD sequence of N pulses achieves (N − 1)th order decoupling on the error it is designed

to suppress, the QDD sequence achieves (N1 − 1)th order decoupling on the errors {σy, σz} and (N2 −
1)th order decoupling on the errors {σy, σx}, such that decoherence is entirely eliminated to the order
min {(N1 + 1), (N2 + 1)}. The rigorous proof of this statement was done in Ref. [51] for N = N1 = N2 and
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generalized for any N1, N2 in Ref. [68]. Using N2 = N1 = N , we can then achieve (N − 1)th order maximal
decoupling using a total number of N(N + 1) +N = N2 + 2N ∝ N2 pulses.

QDD can then achieve arbitrary high-order decoupling using a number of pulses which increases quadrat-
ically with the order. This result is particularly interesting when compared with the CDD sequence described
in the previous section as we observe an exponential gain on the number of pulses needed to achieve the
same order of decoupling. An extensive analysis of the QDD sequence can be found in Refs. [68, 69] and
shows that QDD works best with N1 = N2.

We plotted the HOPS results for the fidelity of a qubit undergoing QDD with N1 = N2 = 4 (which
amounts to a 20 pulses sequence) in Fig.4.5. In order to proceed to a fair comparison between the QDD
and XY4 sequences, we fixed the duration T of the QDD sequence to be equal to five times the duration of
the XY4 sequence. This means that after a duration T , either 20 pulses are applied according to the QDD
sequence or 5 sequences of 4 pulses are applied according to XY4.

Figure 4.5: Relative performance of the XY4, CXY4 and QDD4,4 sequences for an HamiltonianHSB(θ = 1.2).
The simulation parameters were fixed at (kmax, tf/dt, ntraj) = (6,10000,700).

Remark. This comparative figure was reproduced for different values of ntraj and tf/dt in Appendix E
in order to make sure that the results are converged with respect to the simulation parameters.
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Chapter 5

Some Important Results in the Field of
Dynamical Decoupling

In this chapter, we will go through some important results in the field of dynamical decoupling that we have
not mentioned until now. These results will each be introduced in the context of solving a particular problem
that comes either directly from dynamical decoupling theory or from the experimental implementation of
DD. This chapter will essentially focus on the consequences of the utilization of realistic pulses. That is, the
pulses are neither ideal (in the sense that they are not infinitely short and of infinite strength) nor perfectly
implemented by a given experimental set-up.

5.1 Dynamical decoupling using bounded control strength

So far the approximation of unbounded and infinitely fast pulses has been made. However, δ-pulses are not
physically implementable because, for a given experimental set-up, a pulse will only be able to reach a finite
maximum strength and last for a finite, non-zero, duration. The approximation made earlier stating that
the interaction Hamiltonian is equal to zero during the pulses will thus not be valid. It is thus interesting
to spend some time reflecting on Section 2: we showed how the relevant symmetrization procedure could
create an averaged out Hamiltonian and effectively decouples the system from the bath, but we have made
the approximation of the ideal δ-pulses a bit early in the derivation and one can wonder whether the results
still hold in the case of bounded strength control. The issue was addressed in Ref. [58] where it was shown
that symmetrization could still occur using non-ideal pulses assuming that an Eulerian DD sequence is used.
In the next subsection, we will work out the proof of this previous statement. The demonstration is rather
similar to the one made in Section 2 in the case of ideal pulses.

5.1.1 Proof that dynamical decoupling occurs with non-ideal pulses

At the end of the derivation of Section 2, we proved that by choosing a decoupling group G = {gj , j = 1, . . . |G|},
one could construct the following symmetrization procedure:

ΠG : B(HS) → B(HS) : S 7−→ S = ΠG(S) =
1

|G|
∑
gj∈G

g†jSgj . (5.1)

By choosing a relevant decoupling group, one can then average out the unwanted operators, thus removing
unwanted effects from the system’s dynamics. We showed that this operation can be implemented by the
right sequence of pulses and that such sequence can be found by choosing some cyclic path on the Cayley
graph G(G,Γ) where Γ = {γλ} is a generating set of G. In the derivation, however, we used ideal pulses Pj to
instantaneously flip the evolution Hamiltonian from H̃j−1 = g†j−1Hgj−1 to H̃j . In this section, we will use a
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smooth transition from H̃j−1 to H̃j in order to remove discontinuities. Using smooth transition, implemented
by bounded strength pulses of undetermined shapes, it is possible to implement the symmetrization procedure
if a specific path is used along the Cayley graph G(G,Γ): an Eulerian cycle [58,59]. An Eulerian cycle consists
of a cyclic path that uses each edge exactly once such that from each vertex, there is exactly one departing
edge of each color, resulting in a sequence of total length L = |Γ||G| [58]. An example of Eulerian cycle for
the maximal decoupling of 1 qubit is given in Fig. 5.1. We will now dive into a derivation similar to the one
of Section 3 and show that the main result of the previous derivation can be obtained in the case of bounded
control when a Eulerian path is used.

(a) (b) (c)

Figure 5.1: Cayley graph of G = {1, X, Y, Z} with respect to Γ = {X,Z} (a). A non-Eulerian and Eulerian
path are represented in (b) and (c) respectively.

First, let us consider a decoupling group G = {gj} and its (not unique) generating set Γ = {γλ},
λ = 1, . . . |Γ|. We consider a path that forms an Eulerian cycle on the Cayley graph G(G,Γ) and we assume
that we are able to implement each generator with the use of a control Hamiltonian over a finite time interval
∆t as

γλ = T← exp

{
− i

ℏ

∫ ∆t

0

dt′hλ(t
′)

}
∀λ ∈ {1, . . . , |Γ|} (5.2)

with hλ(t) an implementable control Hamiltonian. Our sequence will consist of L = |G||Γ| intervals of
duration ∆t = T

|G||Γ| . The corresponding graph will possess L edges pl ∈ Γ = {γλ} and the Eulerian cycle
will follow the path p1 → p2 → · · · → pL, visiting the different vertices in the order g0 → g1 → · · · →
gL−1 → gL = g0 starting from the identity (g0 = 1). During the lth subinterval, the Hamiltonian hl(t) will
ensure a smooth transition of the propagator Ucf (t) from gl−1 to gl by smoothly implementing pl. In other
words, the pulse pl is now implemented during the lth subinterval whereas, in the case of ideal δ-pulses, it
was implemented instantaneously at the end of the lth subinterval (or equivalently ’between’ the lth and
(l + 1)th subintervals because of the infinitesimally small duration of the pulse). A visual representation is
displayed in Fig.5.2, taking the basic CPMG sequence as an example.

In the δ-pulse case scenario, we would have had a propagator Ucf (t) given by

Ucf (l∆t+ t) = plUcf ((l − 1)∆t), t ∈ [0,∆t[, l = 1, . . . |Γ||G| (5.3)

with Ucf (l∆t+ t) = gl, Ucf ((l− 1)∆t) = gl−1 and pl = glg
†
l−1 the lth δ-pulse, as expressed in Eq.(2.21) and

Eq.(2.23) and represented in Fig. 2.1 . In the present case, this translates to

Ucf ((l − 1)∆t+ t) = ul(t)Ucf ((l − 1)∆t), t ∈ [0,∆t[, l = 1, . . . |Γ||G| (5.4)

with ul(t) = T← exp
{
− i

ℏ
∫ t
0
dt′hl(t

′)
}

and Ucf ((l − 1)∆t) = gl−1. Equation (5.2) ensures that ul(∆t) = pl

such that Ucf (l∆t) = plgl−1 = gl. Now that we have an expression for the action of the control field Ucf (t),
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Figure 5.2: CPMG sequence with δ-pulses (blue) and bounded pulses (orange). In the case of the CPMG
sequence, one can easily see by drawing the Cayley graph that the original sequence ∆t − X − ∆t − X is
Eulerian. A rectangular shape was chosen for the pulses for the sake of simplicity, but there is no constraint
on the shape, leaving the possibility for pulse shaping.

we can calculate the average Hamiltonian at first order as defined in Eq. (2.13a),

ℏH(0)
=

1

T

∫ T

0

dtU†cf (t)H0Ucf (t)

=
1

T

L∑
l=1

∫ ∆t

0

dtU†cf ((l − 1)∆t)u†l (t)H0ul(t)Ucf ((l − 1)∆t)

=
1

T

L∑
l=1

U†cf ((l − 1)∆t)

[∫ ∆t

0

dtu†l (t)H0ul(t)

]
Ucf ((l − 1)∆t)

=
1

T

L∑
l=1

g†l−1

[∫ ∆t

0

dtu†l (t)H0ul(t)

]
gl−1.

Because the sequence is Eulerian, we can now separate the sum
∑L
l=1 as a double-sum over the different

colors λ and vertices gj and use T = ∆t|G||Γ| in order to obtain the expression

ℏH(0)
=

1

|G|

|G|∑
j=1

g†j−1

 1

|Γ|

|Γ|∑
λ=1

1

∆t

∫ ∆t

0

dtu†λ(t)H0uλ(t)

gj−1 ≡ QG(H0) (5.5)

where we have defined the quantum operation QG(·). We recognize in this expression the quantum dynamical
symmetrisation Eq.(2.16) and define the quantum operation FΓ(·)

FΓ : B(HS) → B(HS) : S 7−→ FΓ(S) =
1

∆t|Γ|

|Γ|∑
λ=1

∫ ∆t

0

dtu†λ(t)Suλ(t) (5.6)

such that
ℏH(0) ≡ QG(H0) ≡ ΠG [FΓ(H0)]. (5.7)

I will now prove that in the situation considered, QG(H0) = ΠG(H0), following the work from Ref. [58]. Recall
that CS is the control algebra of the decoupling group G and that ΠG is the projector onto the commutant
of CS , which we will call C′S . The proof consists of two steps.
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(i) We have assumed that hλ(t) ∈ CS for all λ ∈ {1, . . . |Γ|} and t ∈ [0,∆t[, which leads to uλ ∈ CS as well.
This means that every element Y in the commutant of CS , that is Y ∈ C′S , will satisfy FΓ(Y ) = Y , which is
straightforward to prove because of the form of FΓ in Eq. (5.6) : since Y commutes with uλ(t) ∈ CS , we can
permute the two operators and realize that u†λ(t)uλ(t) = 1 because they are unitary operators.

(ii) Now, let us consider any X ∈ B(HS). Calculating QG [QG(X)], we see that

QG [QG(X)] = ΠG [FΓ[ΠG [FΓ(X)]]]

(∗) = ΠG [ΠG [FΓ(X)]]

(∗∗) = ΠG [FΓ(X)] = QG(X).

In order to get (*), we realized that, ΠG being a projector onto C′S , (i) implies that FΓ[ΠG [FΓ(X)]] =
ΠG [FΓ(X)]. Also, since ΠG is a projector, ΠG [ΠG(X)] = ΠG(X) which leads to (**). The conclusion of this
derivation is that QG(X) is a projector since QG [QG(X)] = QG(X). The definition of Q leads to it being a
projector onto a subspace of C′S . It follows that QG = ΠG if and only if QG and ΠG have identical actions
on C′S . Since we proved in (i) that QG(Y ) = ΠG(Y ) for all Y ∈ C′S , it is clear that QG = ΠG .

5.1.2 Discussion

We demonstrated above that the symmetrization procedure capable of generating averaged out Hamiltonian
can be implemented using non-ideal pulses, that is pulses of bounded control strength and finite non-zero
duration. The only constraint imposed is that the DD sequence must follow an Eulerian cycle on the Cayley
graph. For a given decoupling group, an Eulerian DD sequence can be found by tracing a Cayley graph for
a given generating set and construct the sequence of pulses accordingly. When tracing the Cayley graph is
a painful process, one can also find an Eulerian DD sequence by the knowledge of a non-Eulerian sequence.
This can be done by taking the non-Eulerian sequence and adding to the sequence the hermitian adjoint of
the initial sequence. For the XY4 sequence, for example, this gives

XY 4 ≡ ∆t−X −∆t− Z −∆t−X −∆t− Z

(XY 4)† ≡ (∆t−X −∆t− Z −∆t−X −∆t− Z)
†

= ∆t− Z −∆t−X −∆t− Z −∆t−X

(XY 4)(XY 4)† ≡ ∆t−X −∆t− Z −∆t−X −∆t− Z −∆t− Z −∆t−X −∆t− Z −∆t−X

which is precisely the sequence represented in Fig. 5.1c.
In the demonstration, no heavy constraint was imposed on the shape of the pulses. This leaves the

possibility for pulse shaping [70], that is designing the shape of the pulses to improve performance. This also
allows for the development of a new field of dynamical decoupling where we do not attempt to create short and
strong pulses but quite the opposite: the objective is to apply a continuous field over the sequence. We then
talk of Continuous Dynamical Decoupling. A framework for the design of continuous dynamical decoupling
sequences was developed in [71]. In this interesting article, they introduce a geometrical perspective of
dynamical decoupling, where the interaction Hamiltonian can be seen as an error vector in RN , with N =
n2 − 1 and n the dimension of the Hilbert space of the system. For example, for a single qubit for which
dim (HS) = 2, the error vector is a three dimensional vector S⃗ ∈ R3. In this framework, a DD sequence
has the effect of rotating the error vector such that, by choosing a sequence for which the rotation occurs
on a plane that contains the error vector, it is possible average out the error vector with the rotating wave
approximation if the rotation is fast enough (that is if the DD sequence is of sufficiently short duration). δ-
pulses dynamical decoupling, which is sometimes called ’bang-bang ’ dynamical decoupling, can be recovered
as a limiting case in that framework by considering infinitely fast π rotations. Using this framework, designing
a DD sequence is done by calculating the error vector and finding the operator that performs a rotation on
the relevant plane.
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ax(t)σx

z

x

y

S⃗

Figure 5.3: Representation of the error vector S⃗ for the purely dephasing qubit. Applying a control field
corresponding to an Hamiltonian Hctrl(t) = ax(t)σx corresponds to a rotation around the x axis. The CPMG
sequence corresponds to the limiting case of two infinitely fast π rotations around the x axis.

5.2 Errors in the control field

Another problem that affects the performance of a dynamical decoupling strategy is the errors in the control
field due to imperfect control at the experimental level. The actual propagator of a realistic pulse will then
differ from the desired pulse propagator corresponding to the ideal pulse, therefore affecting the performance
of DD schemes. Because of the errors induced by the DD sequence, it can even create more errors than it
corrects. The issue of imperfect control is not unique to dynamical decoupling; great efforts have been made
to overcome this issue in the field of quantum control. In the field of dynamical decoupling, the response to
the problem of imperfect control has been the development of robust dynamical decoupling.

z

x

y

S⃗

S⃗id S⃗real

(a) Representation of the error vector after an
ideal pulse (blue) and after an imperfect pulse
(red).

z

z⊥

S⃗

S⃗1

(b) If the CPMG sequence is applied with a
sufficiently high frequency, performing the ro-
tating wave approximation leads to the z com-
ponent of the error vector being averaged out.
This can be seen as a projection of the error
vector on the z⊥ plane. However, using im-
perfect pulses, the projection is imperfect and
the resulting error vector has a non-zero com-
ponent on the z⊥-plane.

Figure 5.4: Geometric representation of the effect of an imperfect CPMG sequence on the error vector.

In order to illustrate the issue, we can take the CPMG sequence and use the geometric perspective
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introduced previously. Two kinds of imperfection can occur due to the CPMG sequence [30]. First, a pulse
can over-rotate or under-rotate the error vector. This kind of error is usually referred to as a flip-angle
error. Secondly, the pulse can have a small undesirable component ϵzσz or ϵyσy which leads to a small
rotation around another axis. This is referred to as an axis-misspecification. After several imperfect pulses,
the errors eventually build up. The objective of robust DD sequences is to prevent the errors introduced by
the individual pulses from building up. A visual representation of flip-angle and axis-misspecification errors
in a CPMG sequence is presented in Fig.5.4.

A first technique to mitigate errors due to imperfect control is to use a maximal decoupling strategy
instead of a selective one. Take the geometric representation of the CPMG sequence (see Fig. 5.4a), for
example. Without control field, the error vector has a non-zero component on the z axis only. In order to
average this component, the CPMG sequence performs a rotation around the x axis. However, because of
imperfect control, the application of a pulse induces a non-zero component of the error vector on the x axis.
The CPMG sequence alone is not able to correct this error. However, the application of a XY4 sequence
solves this issue as the phase-flip sequence will average out the error component induced by the spin-flip
sequence on the x axis. In conclusion, each individual sequence of the XY4 sequence partially corrects the
imperfection caused by the other one. We can say that the XY4 have some self-correcting properties, in a
sense.

In order to improve the self-correcting properties of the XY4 sequence, one can concatenate a bunch
of XY4 sequence on top of each other [55]. In a similar way as to how each layer of the XY4 sequence
corrects the imperfection of the other layer, each level of concatenation will correct the errors created by the
lower levels. The effect of the XY4 sequence on the error vector as well as the effect of the concatenated
XY4 sequence to the first level of concatenation are represented in Fig. 5.5. Because concatenation can be
repeated an arbitrary number of times, it is possible to design sequences with arbitrary high robustness.

z

z⊥

S⃗

S⃗1S⃗2

(a) Effect of the XY4 sequence on the error vector. S⃗1

represents the effect of the first layer of the XY4 sequence
on the error vector, while S⃗2 represents the effect of the
second layer of the XY4 sequence on S⃗1.

z

z⊥

S⃗

S⃗
(1)
1

S⃗
(1)
2

S⃗
(2)
1

S⃗
(2)
2

(b) Effect of the concatenated XY4 sequence on the error
vector to the first level of concatenation. S⃗(1)

2 is the error
vector resulting from the first level of concatenation while
S⃗

(2)
2 is the error vector resulting from the second level.

Figure 5.5: Effects of imperfect XY4 and CXY4 sequences on the error vector.

As stated previously when concatenation was presented, concatenating sequences increases exponentially
the number of pulses in the sequence and it is thus an inefficient way to treat control errors. Fortunately,
other schemes have been developed. One such scheme is called Knill Dynamical Decoupling (KDD). The
idea is to replace a pulse by a so-called composite pulse [72]. The composite pulse effectively implements
the original pulse, but does so through the implementation of five different pulses. Let us illustrate this
for the X pulse. As stated earlier, this pulse implements a π rotation around the x axis; in the context of
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KDD, we then use the notation πx ≡ X. More generally, we call πϕ the pulse that implements a π rotation
around the axis forming an angle ϕ with the x axis and belonging to the (x, z) plane (see Fig.5.6 for a
visual representation of the corresponding rotational plane). The strategy introduced in Ref. [73] consists in
replacing this single π pulse by a series of π pulses around tilted axis. This ultimately gives

π0 7→ ππ/6 − π0 − ππ/2 − π0 − ππ/6 (5.8)

where π0 is the original X pulse. More generally, any pulse πϕ can be replaced by the corresponding
composite pulse

πϕ 7→ Kϕ ≡ πϕ+π/6 − πϕ − πϕ+π/2 − πϕ − πϕ+π/6 (5.9)

where Kϕ can be referred to as a Knill pulse around the ϕ axis. These composite pulses are constructed
such that systematic errors in the individual pulses can be compensated at the end of the protocol.

ϕ = π/6

z

x

y

ϕ = π/2

z

x

y

ϕ = 0

z

x

y

Figure 5.6

It follows that the CPMG sequence can be replaced by the selective KDD1 sequence of 10 pulses

SELKDD ≡ K0 −K0 (5.10)

with
K0 = ∆t/2− ππ/6 −∆t− π0 −∆t− ππ/2 −∆t− π0 −∆t− ππ/6 −∆t/2 (5.11)

where ∆t = T/10 if T is the total duration of the SELKDD sequence. The CPMG sequence of 2 pulses have
then been traded with a 10 pulses sequence which is supposed to be more robust.

It follows that the XY4 sequence can be modified in a similar way, which results in the 20 pulses KDD
sequence presented for the first time in Ref. [74],

KDD ≡ K0 −Kπ/2 −K0 −Kπ/2. (5.12)

The performance of this sequence was demonstrated experimentally in Refs. [73, 75]. It was constructed
in the context of creating a sequence more robust to systematic over and under-rotation in the individual
pulses, that is systematic flip-angle errors.

In order to illustrate the superiority of KDD in terms of control error suppression, we introduced a
systematic flip-angle error in the pulses implemented in HOPS. The flip-angle error is implemented by
replacing the ideal σi-pulse Hamiltonian H ideal

pulse =
π
2σiδ(t− tpulse) by

HFA
pulse ≡

π

2
(1 + ϵ)σiδ(t− tpulse) (5.13)

1The CPMG sequence of composite pulse is not commonly used in literature such that it does not really have a name. In
the original article [73], the notation "CP Robust 180" was used to present the sequence. We decided to refer to this sequence
as SELKDD instead.

93



Figure 5.7: Performance of the XY4, CXY4, QDD4,4 and SELKDD sequences for HSB(θ = 1.2). We see that
SELKDD is not sufficient to suppress decoherence as efficiently as the other sequences because dissipative
effects are taken into account.

where FA stands for "flip-angle" [30]. The parameter ϵ indicates the amplitude of the error. The relative
performance of the XY4 and KDD sequences for different values of ϵ can be found in Fig.5.9. It illustrates
that the introduction of flip-angle errors in the control field lowers greatly the performance of the XY4
sequence, whereas the KDD sequence is not affected as much, thus revealing its robustness to over and
under-rotations. The robustness of the CXY4 sequence was also considered in Fig.5.10; it shows that the
CXY4 sequence proves more effective than KDD in the timescale considered. However, because the fidelity
seems to drop more rapidly for the CXY4 sequence, it seems that the flip-angle errors build up faster such
that one could expect KDD to outperform CXY4 if we keep applying the sequences periodically.

Having that in mind, we can now realize that the phase ϕ of the pulses is a new parameter that can be
tuned. One can then construct a sequence of N π-pulses

πϕ1
− πϕ2

− · · · − πϕN (5.14)

and consider the phases {ϕk} as parameters that can be optimized. An approach was presented in Ref. [76]
in order to find the optimal robust sequence in the context of a purely dephasing qubit undergoing flip-angle
errors and leads to a sequence known as Universally Robust Dynamical Decoupling (URDD). the URDD
sequence is given by the formula

URDDN ≡ πϕ1
− πϕ2

− · · · − πϕN (5.15)

for even N ≥ 4 and with the phases {ϕk} given by

ϕk =
(k − 1)(k − 2)

2
Φ(N) + (k − 1)ϕ2 ∀k = 2, . . . N. (5.16)

such that ϕ1 and ϕ2 are free parameters that are commonly set to 0 and π/2 respectively [30] and Φ(N) is
given by

Φ(N) =

{
π
m ifN = 4m
2mπ
2m+1 ifN = 4m+ 2.

(5.17)
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Figure 5.8: Performance of the XY4, CXY4, QDD4,4 and KDD sequences for HSB(θ = 1.2). KDD does not
seem to provide additional suppression properties. This is because no control errors were artificially added
to the simulation: the addition of systematic errors should lower the performances of the other sequences
enough to reveal the superiority of KDD in terms of control error suppression. According to Ref. [30], KDD
only outperforms the other sequences in a regime where the flip-angle error dominates; in a system with slow
decoherence but high flip-angle error, the KDD sequence would be the appropriate choice.

This sequence, once again, proves robust to systematic over and under-rotation errors because these system-
atic errors in the net rotation of each of the pulses compensate at the end of the sequence. A similar approach
is presented in Ref. [77] in order to increase the robustness of continuous DD sequences; in that case, the
phase is a continuous parameter and the authors used some machine learning to solve the optimization
problem.

Another fundamentally different way to increase robustness of a sequence is by pulse shaping. With pulse
shaping, the robustness can be increased at the level of the individual pulse. An interesting approach to
pulse shaping is presented in Ref. [70] and uses a Quantum Optimal Control algorithm to shape the pulse.
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Figure 5.9: Effects of systematic flip-angle errors in the DD pulses on the performance of the sequence. The
period of the XY4 sequence was set to T = 1

2.5ωc
and the period of the KDD sequence was chosen equal to

5T such that the same number of pulses are applied for the same duration for each sequence, in order to
provide a fair comparison between the two sequences.

Figure 5.10: Effects of systematic flip-angle errors in the DD pulses on the performance of the XY4, CXY4
and KDD sequences. The duration of the CXY4 sequence was fixed such that the pulse interval of the CXY4
sequence is equal to the pulse interval of the KDD and XY4 sequences.
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Conclusion

Summary

The aim of this Master’s thesis was to provide a state of the art on dynamical decoupling and to benchmark
the HOPS method in this context.

In the first chapter, we have presented a particularly useful model for studying decoherence in a single
qubit, namely the spin-boson model. The spin-boson model consists of a two-level system interacting with a
bosonic field. Depending on the form of the interaction Hamiltonian, different methods have been presented
to study decoherence. When the interaction Hamiltonian caused pure dephasing without dissipation of
energy, an exact analytical solution was derived. When it involved a term responsible for dissipation, a
method based on a stochastic Schrödinger equation was presented, called the HOPS method. In this chapter,
we first studied pure dephasing using the analytical results. This enabled us to introduce the timescale of
the decoherence process as well as the different spectral densities used throughout the thesis. Then, we
intended to use the analytical results in order to validate the HOPS method in the context of a decohering
qubit. This task unexpectedly led to an interesting discussion on the regime of validity of the HOPS method
as well as the impact of the non-physical negative frequencies which appear in the HOPS equation. We
demonstrated that the negative frequencies introduced by the Lorentzian distribution, as small as they can
be, bear a significant impact on the dynamics in the relevant timescale. In order to overcome that problem,
we derived a regime of parameters that prevents the negative frequencies to build up enough importance in
this timescale. Finally, using this regime of parameters, we could validate the HOPS method in the context of
a purely dephasing qubit and calculate the time evolution of said qubit when including dissipative behaviors.

In this second chapter, we followed the work of Ref. [21] and presented the theory of dynamical decoupling.
We showed how, using a sequence of pulses, it is possible to implement a quantum operation that effectively
averages out the unwanted operators of an Hamiltonian. We also showed how to construct the relevant
sequence based on the form of the undesired system-bath interaction Hamiltonian and illustrated the process
with two simple examples.

In the next chapter, we focused on selective dynamical decoupling protocols which aim at averaging out
the term responsible for pure dephasing. We analytically derived the time evolution of the qubit undergoing
pure dephasing and a series of spin flips. Using this analytical derivation, we first presented the most basic
DD sequence, namely the CPMG sequence. We then presented a few procedures aiming at optimizing the
position of the pulses in order to increase the performance of a dynamical decoupling sequence. Altogether,
four sequences were presented and tested, namely the CPMG, UDD, LODD and OFDD sequences, each
having their respective advantages and disadvantages. Another sequence called BADD was introduced
briefly in the context of presenting the fundamental limit of dynamical decoupling resulting from the finite
width of the pulses. In this chapter, we then used the exact analytical derivation to validate the results
obtained with HOPS. Our results first demonstrated that HOPS captures well the effects of a DD protocol
on the Hamiltonian such that it could be used to demonstrate the efficacy of DD. However, the negative
frequencies introduced by HOPS were showed to prohibit the replication of the exact analytical results. This
prevents us from making arbitrarily accurate prediction. Moreover, a fair comparison of the performances of
different sequences is also prohibited because of those same negative frequencies; it was shown that a more
performing sequence can appear as less performing according to the HOPS method.
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In Chapter 4, we introduced several sequences aiming at suppressing dissipative effects as well as dephas-
ing effects. We first constructed the most basic sequence, called XY4, using a concatenation method. The
same concatenation method was then used to add several levels of concatenation to the XY4 sequence, creat-
ing a so-called Concatenated DD sequence which results in a higher order of decoupling. We then introduced
another sequence which aimed at providing the same order of decoupling as CDD but using a lower number
of pulses. This scheme, called Quadratic DD, was created in much the same way XY4 was constructed,
but using a UDD sequence as the building block instead of CPMG. The three sequences introduced in this
section were compared using HOPS.

Finally, in the last chapter, we addressed, in the context of dynamical decoupling, a fundamental problem
in the field of Quantum Control, that is the issue of dealing with realistic control fields. In the context of
dynamical decoupling, the first problem to address was to prove validity of the theory when non-ideal pulses
are considered. This led to the conclusion that the utilization of an Eulerian dynamical decoupling sequence
was sufficient to ensure the implementation of the averaging operation with non-ideal pulses. Afterwards,
we addressed the issue of errors in the control field. This led to the definition of the phase of a pulse, a new
parameter that can be optimized to increase the robustness of a sequence to errors in the control field. Two
sequences were introduced in this context, namely the Knill DD sequence and the Universally Robust DD
sequence. We then introduced systematic control errors in the Hamiltonian and demonstrated the superiority
of KDD over XY4 in terms of robustness to control errors.

Perspectives

Although dynamical decoupling has been studied for over two decades, the field still has much to offer. In
this section, we provide some perspectives on two problematics in the field of dynamical decoupling which
have not yet been extensively studied.

Dynamical decoupling on qudits

A wide variety of dynamical decoupling protocols have been developed in order to decouple a single qubit
from its environment. This includes the bang-bang DD sequences presented in this Master’s thesis, the
continuous dynamical deocupling sequences introduced in Ref. [71] or even feedback-based strategies [78].
For multi-qubit systems, a method was presented in Ref. [79] which consists of nesting single-qubit dynamical
decoupling sequences in a manner similar to the concatenation method. In the last decade, various sequences
have been implemented experimentally.

However, not as much work has been done on the design and optimization of qudit dynamical decoupling.
While qubits are the most common elementary quantum systems considered for quantum information storage
and processing, elementary quantum systems with more than two levels, i.e. qudits, are currently considered
to enable better performance in some quantum technologies. Some rapidly evolving fields such as quantum
cryptography [80, 81], quantum metrology [3, 82] and quantum computing [83] could benefit greatly from
trading qubits with qudits. This recent interest for qudit systems calls for the development of new techniques
to protect quantum information and entanglement in those more complex systems. We thus expect a renewed
interest in the field of dynamical decoupling in the following years, as the field of qudit dynamical decoupling
had not yet been fully explored and could potentially be of great interest for the developing quantum
technologies.

In theory, the framework presented in Ref. [71] should help in the construction of qudit DD sequences,
although not much work, to the extent of our knowledge, has followed up on this article. Some works have
only recently started to focus on this subject. The CPMG sequence was generalized in Ref. [84] for a qudit
system. A method for protecting an arbitrary quantum operation on a 3-level system, i.e. a qutrit, based on
continuous DD was presented in Ref. [85] and was extended to the case of a d-level system. Only in 2022
has the first experimental implementation of dynamical decoupling on a 3-level system been reported [86].
In the APS march meeting of this year, a presentation was dedicated to the development of a new formalism
for robust qudit dynamical decoupling and Hamiltonian engineering [87]. The corresponding paper was only
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very recently published and presents a geometrical formalism constructed for the purpose of facilitating the
design of qudit DD sequences satisfying some robustness requirements.

The optimization procedures mentioned in this Master’s thesis have not yet been extended to the qudit
systems. This is, however, not surprising. The UDD sequences and the OFDD sequences, for example,
are constructed by an optimal design of the filter function, for which the expression is known from the
analytical derivation made in Section 3.2. Because no such analytical solution is known in the context of a
qudit undergoing a DD sequence, it is not trivial to repeat these two optimization procedures. The LODD
sequences, on the other hand, can be obtained if the infidelity of a qudit undergoing DD can be computed
using some non-Markovian method. However, in order to compute LODD sequences, one would need a
sufficiently accurate method. Because the algorithm can converge slowly for a high number of pulses, it
would also be preferable that said method enables fast calculation of the infidelity. No one has so far focused
on qudit-LODD, but the idea of generalizing it to the d-level system is exciting. In particular, since the
LODD sequences presented in Section 3.2.2 are shown to converge to the UDD sequence for short duration
protocols, generalizing LODD to qudit-systems could possibly lead to the generalization of Uhrig Dynamical
Decoupling in the context of qudit DD.

Reconciling quantum control and dynamical decoupling

As we have briefly stated earlier, quantum control and dynamical decoupling might seem fundamentally
incompatible at first sight. The effect of a dynamical decoupling sequence can be seen as a projection of the
system operators appearing in the Hamiltonian onto a subspace of B(HS) called the commutant of the control
algebra CS . Using the right control algebra, projecting an unwanted Hamiltonian onto the commutant of CS
can result in a effective suppression of said Hamiltonian. However, this has the side effect of reducing greatly
the control that we possess over the system; the operators that we can still use for computation purposes are
now all included in the commutant of CS . For a single qubit undergoing the CPMG sequence, for example,
the only (non-trivial) remaining operation is the spin-flip. For the same qubit undergoing a XY4 sequence,
the commutant of CS merely consists of the identity operator.

In order to overcome this issue, it is possible to encode a logical qubit into several physical qubits
[88]. If this interaction Hamiltonian has certain symmetries, it is a priori possible to perform dynamical
decoupling and design enough quantum gates that commute with the control algebra such that enough
control remains over the system. Another strategy introduced in Ref. [56] consists of introducing additional
pulses in a sequence such that the DD sequence effectively implements an arbitrary quantum operation on top
of protecting the system against potential errors. Those sequences are called Dynamically Error-Corrected
Gates (DECG). This strategy is extremely interesting but involves a great number of pulses. Moreover, it is
not trivial to incorporate optimized sequences such as KDD and UDD in the formalism. Instead, in order to
increase the self-correcting properties of the quantum gate, DECG can be concatenated in a manner similar
to the one presented in Section 4.2. However, because the number of pulses increases exponentially with
the level of concatenation, this means that concatenation will only be possible up to a certain level in an
experimental set-up.

A recent article has proposed a new exciting formalism for the design of error-corrected quantum gates
[85]. Instead of adding additional pulses to a bang-bang DD sequence, the authors decided to use the
framework of continuous dynamical decoupling in order to come up with a formalism for the design of
arbitrary quantum gates protected from general noise. This formalism is extremely convenient as it can
be extended to the design of qudit quantum operations. However, the process of designing a continuous
sequence for a given system and desired quantum gate following this formalism is absolutely not trivial.

We strongly believe that this last strategy should be investigated more deeply in the context of designing
state preparation protocols. The objective of a state preparation protocol is to bring a quantum system
from an initial quantum state to a target state. This problem is not easily solved for some highly non-
classical states, such as the d-level anticoherent states considered for quantum metrology [3], and some
highly non-trivial control fields need to be designed. Various techniques have been developed in order solve
this quantum control problem. One such technique is called Quantum Optimal Control [89] and consists of
a set of methods designed to find the optimal control field that solves a particular quantum control problem.
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Because robustness constraints can be added in certain QOC algorithms, it is possible to design a control
field which has some robustness to implementation errors. However, on top of errors in the control field,
decoherence should also be taken into account. Because the framework introduced in Ref. [85] aims at
designing a control field that decouples a system from its environment while performing an operation on the
system, it seems perfectly suitable to increase the robustness of a state preparation protocol to decoherence.

General conclusion

As stated in the introduction of this Master’s thesis, the objective of this work was twofold. First, we
attempted to write a review of the current state of the art in the field of dynamical decoupling. Secondly,
we intended to benchmark the HOPS method in the context of dynamical decoupling.

Throughout this master’s thesis, we introduced various optimization procedures aiming at increasing the
performance of a given sequence. One procedure was based on the optimization of the pulses location inside
the sequence. This led to the presentation of the UDD, OFDD and LODD sequences (see Tab. 5.1 for a
summary of the respective advantages and disadvantages of each sequence). Another procedure consisted
in concatenating DD sequences on top of each other. Thus lead to the introduction of the QDD sequence,
believed to be the best analytical DD sequence up to date [30], in the sense that it provides the highest order
of maximal decoupling for a given number of pulses. Finally, we briefly introduced another optimization
protocol based on an optimal choice of the pulses phase. The KDD and URDD sequences were presented in
this context.

At first, our intentions with HOPS was to replicate the analytical results in order to validate the method
in the context of dynamical decoupling. Because the method is fairly new, no work on dynamical decoupling
had previously used the HOPS method for simulating the performance of a DD sequence, to the extent of our
knowledge. We also hoped to use the method to calculate the LODD sequences in the context of maximal
dynamical decoupling. However, manipulating HOPS revealed to be a much harder endeavor than expected.

The first problem occurred when studying the purely dephasing qubit model, a system which has been
used extensively to study decoherence properties throughout the years. Studying this supposedly simple
system, we found that the analytical results did not match with the HOPS results as they should. After
much work, we found that the issue came from negative frequencies which build up enough significance over
time to alienate the results from HOPS. We then intended to find the timescale at which these negative
frequencies become significant and this led to the calculation of an appropriate regime of parameters for
studying pure dephasing with HOPS.

Having finally obtained satisfying results with HOPS, we intended to use this method in the context
of dynamical decoupling. We expected that keeping the same regime of parameters would allow for an
accurate replication of the analytical results. However, we found that the negative frequencies once again
played an important role in the dynamics of the system undergoing DD such that we were not able to
obtain a satisfactory match with the analytical function. This time, we were not able to find an appropriate
regime of parameters. Having given up on the possibility to make accurate prediction of the fidelity of a qubit
undergoing DD, we intended to check whether two DD sequences could still be accurately compared. We thus
computed the fidelity with HOPS, using the UDD and CPMG sequence and found that the normally under-
performing sequence was showed to outperform the other according to HOPS. This led to the unfortunate
conclusion that the problem of the negative frequencies seems to prohibit a fair comparison of two DD
sequences.

Although problematic when the objective is to compare two sequences, we should point out that HOPS
still captures well the effect of a dynamical decoupling sequence on a quantum system. Using HOPS, we
were still able to replicate qualitative results about the CPMG sequence. We could show that increasing
the frequency of the spin-flips resulted in a better suppression of the dephasing process and that the CPMG
sequence alone could not suppress dissipative effects. HOPS also captured well the decoupling properties
of the MAXDD strategies XY4, CXY4 and QDD4,4. In this regime of parameters, although the negative
frequencies seemingly prohibit an accurate analysis of the performance of the sequence, HOPS can still be
used to demonstrate the decoupling properties of sequences. It is then possible to use HOPS to demonstrate
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the efficiency of non-trivial DD protocols on qudit systems. Moreover, it is possible to include control field
errors. The results of Chapter 5 indicate that the robustness of the KDD sequence to flip-angle errors is
well taken into account; HOPS can then be used to analyse the robustness of a DD sequence to errors in
the control field. The model for control field errors introduced in Chapter 5 only took flip-angle errors into
account, but axis-misspecification errors can also be added quite easily.

Future work should be dedicated to the analysis of the regime of validity of the HOPS method and the
impact of the negative frequencies. The first step should be to verify whether HOPS multi-mode suffers
from the same issue as its single-mode counterpart. If the problem persists, one could then try to overcome
the issue in the context of dynamical decoupling by deriving an appropriate regime of parameters where
HOPS predicts well enough the dynamics of the dephasing qubit undergoing SELDD. However, it is not
clear whether this regime of parameters could be relevant for dissipative systems or qudit systems; it would
solve the issue in a very particular context without solving the underlying problem, just as the regime of
parameters for the analysis for decoherence did not help in the context of dynamical decoupling.

In the context of dynamical decoupling, future work should focus on the development of optimized DD
sequences for qudit systems. The first step would be to derive basic DD sequences using the frameworks
of Refs. [71, 87]. Using HOPS, it is possible to verify that the sequences decouple the system from its
environment. Using concatenation methods, MAXDD sequences could then be constructed from simple
SELDD sequences, and tested using HOPS. In order to optimize the pulses location, different methods could
be investigated. First, more efforts could be made in order to derive an analytical function describing the
dynamics of a qudit undergoing a simple DD sequence. If we are to find such a solution, the UDD, OFDD
and LODD sequences could be generalized simply by repeating the optimization procedures described in
this thesis. If an analytical solution is not possible, one can try to compute the LODD sequences using
HOPS or any other method which describes the dynamics of a qudit undergoing DD. As stated previously, a
generalized LODD sequence for qudit could lead us to the generalization of the UDD sequence. This could
then lead to the generalization of the QDD sequence.

More work should also concentrate on the utilization of dynamical decoupling in the context of imple-
menting a high-fidelity quantum gate or state preparation protocol. This should be done by making use of
the frameworks of Refs. [56,85], each providing an exciting formalism for the construction of error-corrected
quantum operations. Because HOPS captures the decoupling properties of a DD sequence and because any
time-dependent Hamiltonian can be implemented in the solver, it is possible to use this method to verify
some theoretical results.
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Appendix A

Moving to the Rotating Frame

Suppose that an Hamiltonian H(t) governs the dynamics of a quantum system. In order to find the wave
function |ψ(t)⟩, one would need to solve the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (A.1)

However, this equation is often very complex and some tricks are sometimes needed to simplify the equation.
One of those tricks consists in moving to the rotating frame. It consists of defining a unitary operator R(t)
that will account for a certain dynamic of the system. Having defined such unitary operator, we will define
a new state |ϕ(t)⟩ as

|ϕ(t)⟩ = R(t) |ψ(t)⟩ (A.2)

or equivalently
|ψ(t)⟩ = R†(t) |ϕ(t)⟩ (A.3)

because the operator is unitary. In order to retrieve the state |ψ(t)⟩ (which is the objective of the procedure),
one now needs to find the time evolution of the new state |ϕ(t)⟩. Taking the time derivative of Eq.(A.2)
leads to

iℏ
d

dt
|ϕ(t)⟩ = iℏ

(
d

dt
R(t) |ψ(t)⟩+R(t)

d

dt
|ψ(t)⟩

)
. (A.4)

We can use Eq.(A.1) and then replace all |ψ(t)⟩ using Eq.(A.3) to end up with the equation

iℏ
d

dt
|ϕ(t)⟩ =

[
iℏ
d

dt
R(t)R†(t) +R(t)H(t)R†(t)

]
|ϕ(t)⟩ (A.5)

which is nothing more than Schrödinger’s equation for the state |ϕ(t)⟩ with the effective Hamiltonian
H̃(t) =

[
iℏ d
dtR(t)R

†(t) +R(t)H(t)R†(t)
]
. By moving to the rotating frame, we thus constructed an ef-

fective Hamiltonian H̃(t) which governs the time evolution of a state |ϕ(t)⟩. Then by applying R†(t) to the
state |ϕ(t)⟩, it is possible to find the state |ψ(t)⟩ for which the time evolution is governed by the Hamiltonian
H(t). By choosing the appropriate unitary operator R(t), it is sometimes possible to greatly simply the
Schrödinger equation.

In particular, let us consider the Hamiltonian H(t) = H0(t) + H1(t). The Schrödinger equation with
respect to this Hamiltonian may be hard to solve and it might be simpler, in some cases, to consider the
Hamiltonians H0(t) and H1(t) separately. This can be done by using the unitary operator

R(t) = U†0 (t, t0) (A.6)

with U†0 (t, t0) the time-evolution operator that corresponds to the dynamics generated by H0(t), which thus
satisfies

iℏ
d

dt
U0(t, t0) = H0(t)U0(t, t0). (A.7)
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Having defined R(t), we can calculate the effective Hamiltonian constructed by this rotation and we find
that

H̃(t) = iℏ
d

dt
U†0 (t, t0)U0(t, t0) + U†0 (t, t0)[H0(t) +H1(t)]U0(t, t0). (A.8)

Using the equation equivalent to Eq.(A.7) for U†0 (t, t0) in order to simply the first term on the right-hand
side of the equation above, we find that the first term cancels out with part of the second one, resulting in

H̃(t) = U†0 (t, t0)H1(t)U0(t, t0). (A.9)

The problem was thus translated from the Schrödinger equation with the HamiltonianH(t) to the Schrödinger
equation

iℏ
d

dt
|ϕ(t)⟩ = H̃(t) |ϕ(t)⟩ (A.10)

with H̃(t) = U†0 (t, t0)H1(t)U0(t, t0).
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Appendix B

Exponential of Pauli Operators

Let us consider n⃗ a unitary vector and σ⃗ = (σx, σy, σz) a vector containing all Pauli operators. Using the
properties of the Pauli operators, one can calculate explicitly the exponential exp{iθ(n⃗ · σ⃗)} for any θ and
any unit vector n⃗. Since the operator n⃗ · σ⃗ commutes with itself, the exponential can be expanded as follows

exp{iθ(n⃗ · σ⃗)} =

∞∑
n=0

inθn

n!
(n⃗ · σ⃗)n. (B.1)

Since the Pauli operator are Hermitian and unitary, they satisfy the properties

(n⃗ · σ⃗)2n = 1

(n⃗ · σ⃗)2n+1 = n⃗ · σ⃗

for all n ∈ N. Because of these properties, it makes sense to separate in Eq.(B.1) the odd and even terms,
which leads to

exp{iθ(n⃗ · σ⃗)} =

∞∑
n=0

i2nθ2n

(2n)!
(n⃗ · σ⃗)2n +

∞∑
n=0

i2n+1θ2n+1

(2n+ 1)!
(n⃗ · σ⃗)2n+1

=

∞∑
n=0

(−1)nθ2n

(2n)!
1+ i

∞∑
n=0

i2nθ2n+1

(2n+ 1)!
(n⃗ · σ⃗).

(B.2)

Now the only remaining thing to do is to recognise that

∞∑
n=0

(−1)nθ2n

(2n)!
= cos(θ) (B.3)

∞∑
n=0

i2nθ2n+1

(2n+ 1)!
= sin(θ) (B.4)

which straightforwardly leads to the identity

exp{iθ(n⃗ · σ⃗)} = cos(θ)1+ i sin(θ)(n⃗ · σ⃗). (B.5)
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Appendix C

Magnus Expansion

When confronted with a differential equation

U̇(t) = A(t)U(t), U(0) = U0 (C.1)

with A(t) a n× n matrix, the solution
U(t) = e

∫ t
0
A(t′)dt′U0 (C.2)

no longer holds true in general when n > 1. In fact, it only does when the matrices A(t) at different times
commute, that is when A(t1)A(t2) = A(t2)A(t1) ∀t1, t2. In the most general scenario, the solution is then

U(t) = T←e
∫ t
0
A(t′)dt′U0 (C.3)

with T← the time-ordering operator. The Magnus expansion expresses the solution of Eq.(C.3) as

U(t) = eΩ(t) with Ω(t) =

∞∑
k=0

Ωk(t). (C.4)

and with the first terms of the Magnus series given by [90]

Ω0(t) =

∫ t

0

dt1A(t1),

Ω1(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A(t1), A(t2)],

Ω2(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]).

As one can see, the first term of the Magnus series is the argument of the exponential in Eq.(C.3), while
the additional terms are corrections involving commutators of the Hamiltonian at different times. One can
easily verify that if they commute, the solution of Eq.(C.3) is retrieved. A more extensive introduction to
Magnus expansion can be found in Ref. [90].
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Appendix D

Locally Optimized Dynamical
Decoupling for More than Four Pulses

We showed in Section 4.3.2 the emergence of three regimes as we increase the number of applied sequences
J , namely the CPMG, UDD and LODD regime. The data indicated that the CPMG regime shifts to smaller
duration when J is increased, essentially extending onto the former UDD regime. Physically, that would
mean that an optimal sequence of non-equidistant pulses, when applied periodically, eventually becomes less
optimal than the CPMG sequence of equidistant pulses. The CPMG sequence, which did not appear as
optimal originally, that is when a single sequence was consider, becomes an optimal choice over a wide range
of protocol duration T when we wish to apply a DD sequence periodically. These results were obtained for
four pulses, but it is interesting to take more than four pulses into consideration in order to generalize the
results a bit more.

In order to do that, the first step is to construct once again Fig. 3.12 for different numbers of pulses
N . We chose to focus on N = 4, 6 and 8 because increasing the number of pulses even more becomes more
challenging computational-wise. The results are plotted in Fig. D.1. Notice that the horizontal axis had
to be scaled as a function of the number of pulses because, as we kept increasing the number of pulses,
the whole structure shifted to the right. This is of course easily explained by the fact that increasing the
number of pulses increases the range ωcT over which the sequence is effective, essentially shifting each LODD
sequence to the right side of the plot, i.e. to a larger duration ωcT . Another adjustment that we made is
the choice of the initial guess required by the algorithm; because Nelder-Mead is very sensitive to the initial
guess, especially for high-dimensional optimization problems, choosing the CPMG sequence as the initial
guess over the whole range 2

N ωcT lead to convergence issues in both extremities of the range. In order to
avoid that, we chose the initial guess for the first iteration, i.e. for the smallest value of 2

N ωcT , to be equal
to the UDD sequence. For the following iterations, we chose as the initial guess the output of the previous
iteration, i.e. the optimal sequence for a slightly shorter protocol duration. This prevents convergence issues
and increases the efficiency of the algorithm.

Analyzing Fig. D.1, we can first notice that the LODD sequences as a function of 2
N ωcT for N = 6 and

8 exhibit a behavior similar to the one observed for N = 4: LODD asymptotically tends to UDD for short
duration protocols, and as the duration increases the pulses tend to move closer to the center of the sequence
while pairing up with one of its neighbour. At one point, the pulses, still paired up, start to move away
from the center. For N = 6, we observe a breakdown of the symmetry of the control field; the two pulses
closest to the center, still paired up, start to move away from the center by choosing a specific ’direction’.
However, another run of the algorithm with slightly different parameters showed the pair choosing the other
direction which leads us to believe that this is essentially an artefact probably caused by the finite accuracy
of the integration over all frequencies in the definition of the decoherence function. Because the initial guess
for the sequence is the output of the previous iteration, a significant enough fluctuation of the middle-pulses
position due to numerical error can lead the following iterations to favor one direction over the other. Similar
behaviors were observed in studying OFDD sequences in Section 4.3.3.
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Figure D.1: LODD sequences for N = 4, 6 and 8. The horizontal axis has been scaled according to the
number of pulses as 2

N ωcT and the vertical axis corresponds to the pulses location in time scaled with respect
to the sequence’s duration.

We plotted in Fig. D.2 our results for 2
N ωcT ranging from 0.08 to 0.9. The adaptive parameters1

introduced in Ref. [65] were used for N = 6 and 8 in an attempt to increase the algorithm’s performances.
We can now replicate the plot Fig. 3.17 for different number of pulses. Our results are plotted in Fig.

D.3 for N = 4 (a), 6 (b) and 8 (c). The values of J chosen were J = 1, 5 and 25. Unfortunately, fine tuning
the parameters and optimization of the initial guess as explained previously has not prevented the algorithm
from suffering small fluctuations, likely due to numerical accuracy, for short duration sequences, especially
for J = 25 and N = 8. Although the plots for J = 5 and J = 25 seem very similar for 6 and 8 pulses, a
closer look on the data reveals that the sequences (for all periods T ) keep moving from the UDD line to the
CPMG line as J increases. These results indicate that the extension of the CPMG regime to the left occurs
for larger numbers of pulses and we can now infer that this result can be generalized for any number N of
pulses.

However, for the same value of J , the CPMG regime seems to shift to the right when N increases which
seems to indicate that the UDD sequences are more "stable" when the number of pulses is larger. In other
words, when applying a UDD sequence of 4 pulses J times might lead to a less efficient protocol than 4J
equidistant pulses separated by ∆t, applying a UDD sequence of N > 4 pulses J times can be more efficient
than applying NJ equidistant pulses separated by the same ∆t.

The conclusion of this Appendix is the following: any DD sequence of non-equidistant pulses, when applied
periodically a sufficient number of times, is believed to become less efficient that the corresponding sequence
of equidistant pulses, making the symmetrized CPMG sequence optimal when the DD sequence must be
applied an unknown number of times. However, when the number of pulses in the sequence increases, the
non-equidistant sequences are more stable in the sense that a greater number of sequences must be applied
for the CPMG sequence to perform better. Although the analysis presented above is not a proof of the

1The adaptive parameters consists of a fine tuning of the Nelder-Mead parameters for which the values of these parameters
change with the dimension of the optimization problem. According to Ref. [65], these parameters are expected to improve the
algorithm’s performance, which it did.
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Figure D.2: LODD sequences for N = 4, 6 and 8.

previous statement, our results suggest that it is true for any number of pulses in the case of the SELDD
sequence of decoupling group G = {1, σx}.

It could be interesting to do a similar analysis for MAXDD sequences, but a few complications have to be
taken into account. The analytical derivation used to compute the coherence loss cannot be generalized for the
case of the MAXDD protocol which means that more complex methods are necessary to compute the function
to be minimized (coherence loss or infidelity). One can think about the state-of-the-art HOPS method which
can be used to study complex DD sequences. However, because the HOPS method is stochastic and the
infidelity is computed as a statistical mean over a finite number of iterations, the Nelder-Mead algorithm is
likely to suffer from more convergence issues due to unsatisfactory accuracy. This would make the plots Fig.
D.3 harder to construct as highly demanding simulation parameters would need to be chosen to obtain the
sufficient accuracy. The other solution is to use a deterministic Quantum Master Equation (QME). However,
QME for non-Markovian systems are considerably harder to derive.
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(a)

Figure D.3: LODD sequences for increasing number of pulses for 4 pulses (a), 6 pulses (b) and 8 pulses (c).

(b)

Figure D.3: LODD sequences for increasing number of pulses for 4 pulses (a), 6 pulses (b) and 8 pulses (c).
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(c)

Figure D.3: LODD sequences for increasing number of pulses for 4 pulses (a), 6 pulses (b) and 8 pulses (c).
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Appendix E

Convergence of the HOPS Method

As stated in Section 1.5.1, the numerical calculations performed using HOPS require three simulation pa-
rameters to be set, namely

• the number of auxiliary states kmax,

• the number of timesteps for the numerical integration tf/dt

• and the number of trajectories ntraj.

Before using the results obtained via the HOPS method, it is thus necessary to make sure that the results
are converged with respect to these simulation parameters. The parameters are then chosen high enough to
ensure a converged solution but as low as possible in order to lower the computational cost of the simulation.
Such a convergence analysis can be found below for the dephasing qubit as well as the qubit undergoing the
MAXDD sequences XY4, CXY4 and QDD.

E.1 Dephasing qubit
Firstly, we decided to fix the number of auxiliary states to kmax = 6. This initial choice was based on
some preliminary results indicating that six auxiliary states were enough to ensure a converged solution with
respect to this parameter. We then converged the solution with respect to the three simulation parameters
as follows:

(i) We set the number of timesteps to tf/dt = 6000 and varied the number of trajectories. For each value
of ntraj, we calculated the fidelity and the population of the excited state, which is supposed to stay
constant. We then fixed ntraj accordingly.

(ii) We then varied the number of timesteps and calculated once again the fidelity and population of the
excited state. We then fixed tf/dt accordingly.

(iii) Finally, we varied the number of auxiliary states.

The results of the steps (i), (ii) and (iii) are presented in Figs. E.1a, E.1b and E.1c respectively. The results
of (i) show that the number of trajectories seem already converged up to 10−2 for ntraj = 700. For the
following calculations, we however decided to set ntraj equal to 1100. The results of (ii) indicate that the
the number of timesteps can be fixed to 8000, which guarantee a converged solution up to 10−2 as well. We
however decided to set tf/dt equal to 10000. Finally, the results of (iii) demonstrate that the initial guess of
kmax = 6 ensures a converged solution with respect to the number of auxiliary states.
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(a) Convergence on the number of trajectories (b) Convergence on the number of timesteps

(c) Convergence on the number of auxiliary states

Figure E.1: Convergence of the HOPS results for the purely dephasing qubit. The exact analytical prediction
is represented by a solid, red line.
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E.2 Maximal dynamical decoupling sequences
We decided to fix the number of auxiliary states to kmax = 6, as previous results indicated that six auxiliary
states were sufficient to account for the non-Markovian dynamics of a dynamical decoupling sequence. Pre-
liminary results also indicated that the number of trajectories ntraj = 300 already ensured a convergence of
the solution. We thus decided to study the convergence with respect to the number of timesteps first. The
results (displayed in Fig. E.2) indicate that the solution is converged up to 10−3 for a number of timesteps
equal to 10000 for the XY4 sequence, whereas the solution is already converged to that order for a number
of timesteps equal to 9000 for the other two sequences. We then fixed tf/dt = 10000 and varied the number
of trajectories (results displayed in Fig. E.3). While a number of trajectories equal to 500 is necessary to
converge the solution up to 10−3 for the XY4 sequence, ntraj = 300 already ensures a convergence up to
10−3 for the CXY4 and QDD sequences.

Figure E.2: Convergence on the number of timesteps.

Figure E.3: Convergence on the number of trajectories.
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