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Chapter 1
Introduction

Material development is and has always been a key element for the evolution of engineering.
The research and improvement of the characteristics of alloys and their manufacturing pro-
cesses is one of the broadest fields of study in technology. The current master thesis tries to
contribute to this researching effort through the application of Machine Learning and Artifi-
cial Intelligence techniques to improve the performance of phase-field simulations applied to
AlSi10Mg alloys.

This introductory chapter gives a quick summary of the project, the goals to achieve and
the procedure that is carried out, starting with some context in Section 1.1. To know further
about the material that this project works with Section 1.2 talks about the AlSi10Mg alloys,
their features, most relevant manufacturing processes and their possible applications. Con-
tinuing with more context regarding simulation techniques, Section 1.3 gives a brief summary
of the state of the art methods that use Machine Learning to improve the research in the
materials field. Finally, Section 1.4 finishes the chapter by giving an outline of the project
carried out in the master thesis and the procedure followed.

1.1 Context and goals

Research on materials is a fundamental piece of science and engineering development nowa-
days. To carry out accurate and useful tests is necessary a great amount of economical and
time resources, a high price to pay when those resources are not available. One solution to this
challenge is to develop the tests through simulation techniques, reproducing the phenomena
happening in reality with as much accuracy as possible.

The Materials and Solid Mechanics (MSM) team from the University of Liège works on the
research of phase-field simulation methods for AlSi10Mg alloys and other materials. Neverthe-
less, computational cost may be big for high resource demanding simulations, spending large
amounts of computational resources and time to obtain the desired results. This is the rea-
son that drives the team to new approaches using machine learning and artificial intelligence
techniques, training prediction algorithms to faster obtain accurate results.

The goal of this master thesis is to, through the use of neural networks and linear regression
algorithms, be able to predict the morphology of AlSi10Mg microstructures by providing their
mechanical properties, which in this case is the yield stress value.
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Chapter 1

1.2 The AlSi10Mg alloy and the LPBF manufacturing

The technology development has pushed material researching to find stronger, cheaper and
lighter alloys. Industries like automotive and aerospace intensively use aluminium-based alloys
due to their very high strength-to-weight ratio.

The Aluminium-Silicon-Magnesium alloys mainly contain between 5-10% of Si, 0.3-0.6%
of Mg and Al as the remaining material. They are able to reach very high strength properties
thanks to Si and Mg2Si precipitation hardening and Mg solid solution hardening, making it
an excellent choice for components of high-strength and low-weight requirements.

More specifically, the alloy used for this project is the AlSi10Mg, which has a composition
of around 90% of aluminium, 9% of silicon and 1% of magnesium. The use of this alloy is
widely extended in the aerospace sector for critical mechanical components and, due to its
very good heat conductivity, is also used in jet engine and automotive engine manufacturing.
For ease of modeling, the rest of the possible alloying materials, that could be iron, copper or
zinc, are completely neglected, as well as the possible porosities that could be induced by the
manufacturing processes.

The AlSi10Mg alloy is very often used for the Laser Powder Bed Fusion (LPBF) manufac-
turing process (Liu et al. (2019)). This is an additive manufacturing process that fabricates
metallic components with layer-by-layer addition of powder. After placing the layer of pow-
der, a laser selectively hits the surface, melting the metallic grains and forming layer by layer
the piece. The LPBF process achieves great mechanical properties and very complex shapes,
making it one of the emerging manufacturing techniques of the last decades. In Fig. 1.1 is
shown a more visual explanation of the process.

Figure 1.1: Laser Powder Bed Fusion manufacturing process.

The laser melts a thin layer of metallic powder, which rapidly cools down, acting as a fast
quenching and leaving an out of equilibrium structure. In AlSi10Mg alloys, this structure
exhibits a fine α-Al cellular microstructure surrounded by a Si-rich eutectic phase, as it can
be appreciated in Fig. 1.2a. Nevertheless, when given a slower cooling, either because of a
higher temperature of the fabrication plate (in LPBF process) or a later annealing treatment,
the eutectic phase decomposes, arriving to an Al matrix microstructure with globulized Si
precipitates, shown in Fig. 1.2b.
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Chapter 1

(a) Rapid cooling AlSi10Mg microstructure. (b) Slow cooling AlSi10Mg microstructure.

Figure 1.2: AlSi10Mg microstructures for LPBF process from Delahaye (2022).

The pseudoeutectic microstructure presents remarkable mechanical properties as the Si-
rich eutectic network acts as a load carrier and impedes the dislocation motion, leading to
a strengthening effect. Heat treatments that disintegrate the eutectic network may weaken
the properties of the alloys, as globular Si precipitates do not have such a strong hardening
effect. The yield stress, the property of interest in this project, also follows the same behavior,
reaching values of around 260 MPa (Delahaye (2022)) that may decrease to 200 MPa or less
in heat affected regions and components.

1.3 State of the art

The AlSi10Mg components manufacturing has been intensively researched during the last 20
years, and lately even more attention is pointed to it thanks to the outstanding properties
that new manufacturing processes such as LPBF give them. At the University of Liège, the
MSM team also contributes to this research, focusing on obtaining material properties though
both experimental and computational methods. This project is mainly based on the studies
carried out by the MSM team in PhD thesis such as Delahaye (2022) and close collaborators
in other universities like Macías et al. (2020).

These following sections that explain the tools used for the development of the project
are a quick introduction to give context and help the reader to understand the main parts of
the project. A summary of each of them and some articles that inspired the work are given.
Nevertheless, further information is provided in their corresponding chapters.

Yield stress calculation
This project gathers a set of very different fields, from material simulations to artificial

vision and machine learning techniques. Starting with the first one, the prediction of the
alloy mechanical properties is based on the same method used by Delahaye (2022), which is
broadly described in Chapter 2.

Phase-Field simulation
For obtaining a reliable source of data regarding the properties of the material, the mi-

crostructures are modeled using phase-field modeling. A phase-field model is a mathematical
model with the purpose of solving interfacial problems, based on the minimization of the free
energy function together with the application of the particular equations of each problem
(diffusion, fracture mechanics, viscous fingering...). This technique is relatively young-aged
but has rapidly been popularized, becoming a method of choice due to its polyvalence for
solving microstructure evolution problems. The MSM group has intensively worked on a
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Chapter 1

self-developed phase-field software (El Fetni et al. (2022)) that has been tested for simulated
AlSi10Mg alloys manufactured through LPBF process. The in-depth details of phase-field
simulations are far beyond the scope of this thesis and it is solely used as a tool for data
gathering. Further information can be found in specialized books or articles such as Biner
et al. (2017).

Computer vision and image analysis
Moving on to subsequent sections of the thesis, it is necessary to give an introduction to

the use of computer vision and image analysis to obtain the characteristics of a material. As
a way to standardize the analysis of experimental micrographies and microstructure features,
several softwares have been developed for their use in the metallurgy field. Some examples
may be ImageJ or Image-Pro, widely used for automatic analysis and feature quantification.
Nevertheless, as the images analyzed in this thesis are virtual ones, computed by phase-field
simulations, these options where discarded and instead a new software is developed through
the use of tools such as the OpenCV Python library.

Shape detection and volume fraction analysis are carried out, but they need to be trans-
formed to microstructural features. For developing this task the project relies on previous
researches on microstructure analysis (Campbell et al. (2018), Altschuh et al. (2017)), being
able to transform image data into features like precipitate radius, weight fraction of alloying
materials or many other parameters.

Machine learning algorithms
The final step of the project, once the phase-field simulation results are gathered and their

corresponding analysis of properties are carried out, is to generate microstructures through
the training of a machine learning algorithm.

Before feeding the data set to the prediction algorithm, it is compressed though a Varia-
tional Autoencoder (VAE) algorithm. This technique consists of a neural network architecture
that, when properly trained, is able to encode images into small latent vectors and decode
them afterwards by loosing relatively few accuracy on the quality of the image. The possibil-
ity of reducing the weight of the training data enables the later prediction algorithm to have
a faster and computationally cheaper training. The effectiveness of these kind of algorithms
has been proven for micrographies by several researching teams (Kim et al. (2021)), including
the MSM team (Fetni et al. (2023)) with promising results for their application in phase-field
micrographies.

After the encoding of the micrographies the problem left is a Single-Input-Multiple-Output
(SIMO) regression, as the latent vector needs to be obtained from a single value of the yield
stress. Several models are considered for developing this final task, each of them with its
unique characteristics that should fit the requirements of the input-output shape, data base
size and accuracy. Among those models are found Neural Networks (Goodfellow et al. (2016)),
that can be used as a multi-purpose tool for prediction tasks, Support Vector Machines (Cortes
and Vapnik (1995)), that work well with non-linear problems like this one, Random Forests
(Ho (1995)), very robust for small data sets and non-lineal problems, K-Nearest Neighbors,
very simple and intuitive algorithms, or Gaussian Process Regression (Jazbec et al. (2021),
Ashman et al. (2020)), that are probabilistic methods successfully tested together with VAE.
A more detailed comparison is given in Chapter 6, where several algorithms are tested to
obtain the best fitting one.
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1.4 Procedure and project outline

To have a clearer structure of the project a flow chart is shown in Fig. 1.3, where each section
is defined and illustrated.

Following the arrows and dividing the project into sections, it is possible to differentiate
four areas of work:

• Phase-Field simulations: launch of all the phase-field simulations in order to create
a proper data base that will be used for later predictions.

• Variational-Autoencoder: by using the previously built data base train a VAE neu-
ral network that is able to encode and decode the images. Once trained, the data
base images are encoded and the resulting latent vector is sent to train the regression
algorithm.

• Prediction of mechanical properties: the data base images are analyzed through
the use of computer vision in order to obtain the features of the microstructures. Those
features are later used to compute the yield stress. Each micrography is tagged with its
corresponding value of the yield stress and sent to the regression algorithm.

• Regression algorithm: once the latent vector (representing the encoded micrography)
and the yield stress are obtained the regression model is trained. After training, the final
model should be able to, by providing a value of the yield stress, obtain the corresponding
latent vector (encoded image). This latent vector is afterwards decoded in the VAE to
obtain back the reconstructed (predicted) image.

The final model should be able to, by providing it a value of the yield stress, obtain the
corresponding latent vector that can be later decoded into a full micrography.

This thesis follows a similar path, starting with the explanation of the model used for the
prediction of the yield stress through the use of the characteristics of the microstructure in
Chapter 2. Later on, the structure of the data base and its generation is described in Chap-
ter 3. The post-processing code developed for extracting the features from the micrographies
is widely explained in Chapter 4. Starting with the machine learning field, in Chapter 5 is de-
scribed the structure of the Variational Autoencoder and Chapter 6 talks about the regression
algorithm to finish the scheme. The final results of microstructure prediction obtained after
all the process are shown in Chapter 7, ending up with the conclusions and aspects to improve
in Chapter 8. As an addition to give more interest to the project, the final appendix talks
about the prediction of the strain-stress curve, with a similar methodology used to calculate
the yield stress (Chapter A).
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Figure 1.3: Flow chart defining the structure of the project.
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Chapter 2
Yield stress prediction

List of parameters

Symbol Designation Units
b magnitude of Burgers vector of α-Al phase [nm]
F̄ mean obstacle strength [N ]
fi volume fraction for phase i [−]
G shear modulus of α-Al phase [GPa]
ki scale factor of solid solution strengthening for element i [−]
l mean distance between precipitates [nm]
M Taylor’s factor [−]
rc critical radius for shearing [nm]
r̄d mean radius of the precipitates [nm]
Xd

v volume fraction of the Si precipitates [−]
Xα

wi weight fraction of compound i in α-Al phase [wt%]
αd constant related to the dislocation strengthening [−]
αp constant related to the precipitation strengthening [−]
ρd dislocation density [m−2]
ρd0 initial dislocation density [m−2]
σy yield stress [MPa]
σ0 intrinsic yield stress of aluminium [MPa]
σss solid solution strengthening component [MPa]
σp precipitation strengthening component [MPa]
σd dislocation strengthening component [MPa]

2.1 Literature review

Considering that the yield stress at the point of 0.2% of plastic deformation is the mechanical
property that is later predicted with a regression algorithm, it needs to be calculated in order
to have an adequate data base for training and validation. A brief literature research has
been done to find sufficiently accurate state of the art models that can analytically predict
this value.

A usual approach for calculating properties such as the yield stress is by the addition of
several components related to mechanisms that harden the material. This method can be
used for a wide variety of alloys, such as steels (Seo et al. (2016)) or aluminium alloys (Cheng
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et al. (2003)).

For the Al-Si-Mg alloys, which are the ones being used in this project, the hardening
contributions taken into account to predict the yield stress can differ depending on the study.
Approaches like the one carried out by Myhr et al. (2001) consider the hardening due to the
aluminium matrix together with the hardening caused by the solid solution of Si and Mg and
the hardening by Si precipitates. Other methods like the one used in Macías et al. (2020) also
add the contribution of dislocations in the material and the boundary of the eutectic region
impeding the dislocation movement.

Finally, due to its good results, the material studied and the ease of communication with
the author, the model chosen for the analytical calculation of the yield stress is the one used
by Delahaye (2022). The explanation and development of the model is given in Section 2.2.
To test the model, the results obtained by Delahaye (2022) are reproduced, based on the
parameters of Section 2.3. The final comparison between the available values of the yield
stress is presented in Section 2.4.

2.2 Equations and model development

First of all, it is necessary to take into account the microstructure of the material. As it is
mentioned in Section 1.2, the Al-Si alloys, when rapidly cooled like in the LPBF process, ac-
quire a biphasic structure composed by a series of Al-rich cells surrounded by a Si-rich eutectic
phase. Due to such a different composition of both phases the equations and parameters to
obtain the yield stress value of each phase differ slightly. Because of that, the yield stress of
each phase is individually calculated and afterwards an homogenization process is carried out
to obtain the overall value.

The yield stress at each phase is given by the addition of the different hardening contri-
butions as it is shown in Eq. (2.1).

σy = σ0 + σss + σp + σd (2.1)

where σ0 is the intrinsic yield stress of aluminium, σss is the contribution of the solid solu-
tion, σp is the contribution of the Si precipitates and σd is the contribution of the dislocations
of the material.

Solid solution strengthening
This strengthening is due to dissolved alloying elements within the aluminium matrix. In

the present case these alloying materials are silicon and magnesium. The difference between
the size of the Al atoms with the Si and Mg cause a distortion of the pure aluminium network,
hindering the movement of dislocations and thus increasing the Young and shear modulus.
For the modelling of the solid solution hardening, the approach given by Labusch (1970) is
the one used. Here the weight fraction of each alloying material is powered to an exponent
and weighted by a certain constant, as it is shown in Eq. (2.2):

σss =
∑

kiX
α
wi

2/3 (2.2)

where ki is the scale factor of the solid solution hardening of the material i and Xα
wi is its

weight fraction.

Precipitation strengthening

8
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The precipitation hardening is directly caused by the Si precipitates that impede the
movement of dislocations through the Al matrix. These precipitates are purely composed by
FCC Si diamond, that have a much higher shear modulus than the α-Al of FCC lattice, as
well as a much lower deformation. The hardening effect is given by the balance of the forces
of the obstacles and the tension lines in the dislocations. Depending on the strength of the
obstacle, which is given by the radius of the precipitate, two cases can be considered. In the
first one, where the precipitate is too hard to be sheared, the obstacle is bypassed by the
dislocation though the Orowan mechanism. In the second one, the precipitate is sheared by
the dislocation when it is not sufficiently hard.

Also there is an important distinction between the calculation of the precipitation hard-
ening in the cell phase and in the eutectic phase. The big difference in precipitate volume
fraction in each phase requires the use of different models for their analytical calculations.

In the cell phase, the proportion of precipitates is much lower and, through the applica-
tion of the Friedel formalism (Friedel (2013)) Eq. (2.3) defines the strengthening (Myhr et al.
(2001)):

σp =
M√

2αpGb2r̄d

√
3Xd

v

2π
F̄ 3/2 (2.3)

with M being the Taylor’s factor, G the shear modulus of α-Al phase, b the magnitude of
Burgers vector of α-Al phase, r̄d the mean radius of the precipitates, Xd

v the volume fraction
of the precipitates, αp a constant related to the precipitation hardening and F̄ the mean
obstacle strength. This last parameter depends on the mechanism the dislocations follow to
surpass the precipitates, either by the Orowan mechanism Eq. (2.4a) or the shearing of the
particle Eq. (2.4b).

F̄ = 2αpGb2
(
r̄d
rc

)
if r̄d < rc (2.4a)

F̄ = 2αpGb2 if r̄d > rc (2.4b)

Here rc is the critical radius of the precipitate which is the threshold value that separates
both dislocation movement methods.

In the eutectic phase, the Friedel formalism is not applied, Eq. (2.5) defines the pre-
cipitation strengthening (Chen et al. (2017)):

σp =
MF̄

bl
(2.5)

where l is the mean distance between precipitates, that was substituted in Eq. (2.3)
through the Friedel formalism.

Dislocation strengthening
The accumulation of dislocations increase their movement difficulty. This phenomenae

can be caused by plastic deformation or other treatments during the manufacturing process.
As the material is not considered to go under plastic deformation, the dislocation harden-
ing remains as a constant value to compute the yield stress, and is defined by the Taylor’s
relationship (Taylor (1934)) in Eq. (2.6):

σd = αdMGb
√
ρd (2.6)

9
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where αd is a constant related to the dislocation hardening and ρd is the dislocation
density, which remains constant here and can be always defined by its initial value ρd0

After obtaining the contributions of all the hardening mechanisms in both the cell and
eutectic phase Eq. (2.1) is used to obtain the yield stress value in each of the phases, (σy)cell
and (σy)eu. To finish, an homogenization process following the approach of Bouaziz and
Buessler (2002), Eq. (2.7) is applied in order to obtain the macroscopic value of the yield
stress.

σy = fcell(σy)cell + feu(σy)eu (2.7)

Here fcell and feu are the volume fraction of each of the phases in the overall material.

2.3 Input parameters

After defining the model for predicting the yield stress in Al-Si-Mg alloys, it is tested with an
example case to see if the construction is correct. For that, the example taken is the same as
in Delahaye (2022), where the parameters are defined in Table 2.1 and the results are later
compared with a series of experimental values. It is necessary to say that, as the calculations
of each phase are done separately until the homogenization, the parameters for the cell and
eutectic regions are different.

Parameters Units Value Reference
Cell Eutectic

σ0 [MPa] 10 Myhr et al. (2001)
ρd0 [m−2] 1013 Nicholson (1962)
f [vol.%] 0.8 0.2

Delahaye (2022)
r̄d [nm] 0 7

Xα
wSi [wt.%] 2.5 0

Xα
wMg [wt.%] 0.43 0
Xd

v [vol.%] 0 41.7
G [GPa] 25.4

Cheng et al. (2003)b [nm] 0.283
M [−] 3.06
αd [−] 0.3 Chen et al. (2017)
αp [−] 0.5

Myhr et al. (2001)kSi [Mpa.Wt%2/3] 66.3
kMg [Mpa.Wt%2/3] 29
rc [nm] 4.29-7.15
l [nm] - 50 Chen et al. (2017)

Table 2.1: Example parameters for the yield stress prediction from Delahaye (2022).

2.4 Results

The yield stress values obtained from the previously developed model are compared with other
predicted and experimental values.

Firstly, the contributions to the hardening are compared one by one in Table 2.2 to the
values of the original prediction done in Delahaye (2022) and provided by the author.

10
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Borlaf Delahaye
Cell Eutectic Cell Eutectic

σ0 10 10
σss 138.65 0 139 0
σp 0 444.58 0 445
σd 21.09 21.09 21 21
σy 169.73 475.67 170 476

(σy)T 230.92 231

Table 2.2: Yield stress contributions comparison between Delahaye (2022) and self prediction
models. Units in MPa.

When looking at the values of each computation is clear to see that the reproduction of
the model is successful, obtaining the same hardening contributions as the ones provided.
The results are also compared in Fig. 2.1 with the experimental values obtained in the studies
carried out by Delahaye (2022) and Macías et al. (2020), carried out with the same AlSi10Mg
alloy.

Figure 2.1: Comparison of the different contributions to the yield stress with experimental
data.

The predicted values get very close to the experimental ones, allowing us to use this
prediction model for the further steps of the project.
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Chapter 3
Data base generation

When developing a machine learning algorithm it is fundamental to create a good and reliable
data base. The performance of the algorithm and the quality of the predictions directly depend
on it. Because of this reason the data base is carefully constructed, making it sufficiently
large for the algorithm to learn but at the same not too much to avoid overfitting and have
reasonable training times.

This chapter gives an explanation of how the data base is constructed, with an overview
of the structure in Section 3.1, followed by the description of the files and variables obtained
from the phase-field simulations in Section 3.2. Afterwards, in Section 3.3 the microstructures
used for starting and launching a phase-field simulation are shown and described. The chapter
concludes in Section 3.4 with an example of a phase-field simulation, giving a more detailed
description of the evolution of the microstructure and its features, and mentioning which
features are later used for the machine learning algorithm training.

3.1 Structure of the data base

For preparing a proper data base it is necessary to consider a set of variables that make
the data base sufficiently diverse to have interesting results and a wide range of prediction
possibilities, but at the same time sufficiently small to avoid complexity and wrong predictions.

Considering this, a set of different values were given to three variables of the phase-field
simulations.

• Initial microstructure: is the structure of the material, with its corresponding distri-
bution of eutectic phase and Si solution, at the beginning of the simulation. There have
been used 3 different initial microstructures for building the data base, shown in
Section 3.3.

• Ṫ or rate of temperature rise: is the variable that gives the increase rate of the
temperature in a phase-field simulation. The evolution of the microstructure changes
depending on the value of Ṫ , having different temperatures and shapes of the eutectic
phase at the same time steps of the simulation for different values of Ṫ . For each initial
microstructure used for the simulations there are 18 different values of Ṫ . These
values range from Ṫ = 15 to Ṫ = 100 Kelvin per minute and are better outlined in
Fig. 3.1.

• Saving time step: is the virtual time at which the state of the microstructure is
captured, obtaining one micrography. Around 30 micrographies are obtained at each
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simulation, making it possible to follow the whole evolution of the microstructure.

Adding up all the saved micrographies the overall number of elements in the data base is
1620 micrographies. In Fig. 3.1 there is a more visual scheme of the structure of the data
base.

Figure 3.1: Data base structure.

The rest of the parameters in the phase-field simulations are kept the same. The physical
properties of the material are fixed and the thermal treatment given to the microstructure
starts at Ti = 400 K, with a constant increase of temperature given by Ṫ , until arriving to the
final temperature, Tf = 750 K, where it remains for the rest of the simulation. The saving
time step is also kept constant with a value of ∆t = 170 s.

3.2 Files obtained from phase-field simulations

The data contained in the data base is obtained from lots of phase-field simulations. These
simulations take as an input the initial state of the microstructure, shown in Section 3.3, and
every time they arrive to a saving time step they keep the current state of the microstructure.
This current state is defined by two variables, the quantity of Si in solid solution, XwSi, and
the phase parameter, η, which indicates weather the region is in cell or eutectic phase. Both
of them are defined for each node of the simulated microstructure, mapping all the surface
and defining the morphology of the microstructure.

These two variables are saved and compressed in a .npz file. At the same time, the file is
tagged with a series of characteristics that define the simulation and the time at which the
micrography is taken. The name of the file includes these characteristics as shown in Fig. 3.2.

Figure 3.2: File name of an element in the data base.
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• Ṫ value: increase rate of the temperature.

• Time: virtual time at which the micrography is taken.

• Start T: temperature at which the simulation starts.

• Current T: temperature at which the micrography is taken.

• Microstructure number: initial microstructure of the simulation.

3.3 Initial microstructures

Even though the value of Ṫ is changed for each simulation, the evolution of the microstructure
is roughly the same for all the cases. In order to add more diversity to the data base, three
different initial microstructures are used, giving a wider range of prediction to the machine
learning algorithm.

The first initial microstructure, shown in Fig. 3.3a, was provided by the MSM group at
the beginning of the project and has been modified to obtain the two other microstructures,
shown in Fig. 3.3b and Fig. 3.3c.

(a) Initial microstructure 1. (b) Initial microstructure 2.

(c) Initial microstructure 3.

Figure 3.3: Initial microstructures used to develop the data base.

The most efficient way found to modify the microstructure, obtaining a new one without
having to start from scratch, is to leave the centers of the precipitates fixed while their radii
are randomly redistributed. No new values of the radii are given, instead the original ones
are redistributed along the different centers. By doing this the cellular-eutectic structure
is conserved and, as the overall sum of the area of the precipitates and XwSi are kept the
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same, the physical properties of the material do not change, having all the microstructures
similar characteristics at the early stages of the simulation but very different evolutions. The
effectiveness of these modifications is demonstrated in Fig. 3.4, where the evolution of the
three different microstructures is shown for the case of Ṫ = 20 K/min.

Microstructure 1. Microstructure 2. Microstructure 3.

Initial state. Time = 0 s.

Microstructure 1. Microstructure 2. Microstructure 3.

Time = 680 s.

Microstructure 1. Microstructure 2. Microstructure 3.

Time = 1362 s.

Microstructure 1. Microstructure 2. Microstructure 3.

Time = 2044 s.

Figure 3.4: Evolution of the three microstructures in phase-field simulation for Ṫ = 20 K/min.

It is clear that, even though the modifications in the initial microstructures are small and
difficult to notice, the evolution of the precipitates is completely different.
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3.4 Example of a simulation

Once defined the structure of the data base and how to obtain all the elements composing it,
the simulations are launched.

Because how many they are, the phase-field simulations require high resources of com-
putation power. Due to this, it was decided to use the NIC5 cluster from the University of
Liège. The simulations are launched automatically with different parameters each, and once
well optimized it is possible to obtain a data base such as the one used in this project in
around 12 days using only 8 processing cores and 8 GB of RAM.

The files are saved in specific folders and tagged as it is shown in Fig. 3.5 to have them
well organized and ready to post-process, following the procedure described in Chapter 4.

Figure 3.5: Folder example in the data base.
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Chapter 4
Post-processing analysis

Once the phase-field simulations have been carried out, it is time to obtain the parameters
of interest. As seen in the flow chart that defines the project of Fig. 1.3, for every saved mi-
crostructure the corresponding micrography image is extracted. The microstructure features
are then used for the yield stress computation.

This chapter shows the procedure followed to obtain the value of σy and the necessary
parameters to calculate it, starting in Section 4.1 with the obtaining of the micrography and a
brief description of its morphology. In Section 4.2 are enumerated the features that need to be
extracted from the microstructure in order to calculate the yield stress. As the equations for
the yield stress computation change depending on the type of structure, Section 4.3 explains
the method followed to distinguish the cellular and eutectic regions. Finally, the technique
used to obtain each of the needed parameters is described in Section 4.4, together with the
computation of the yield stress and the results for a set of example microstructures.

All this process, as it is mentioned in previous chapters, is carried out through Python
scripts, highly supported by libraries such as Numpy and OpenCV who are widely used and
have very powerful and intuitive tools for computer vision tasks.

4.1 Creation and morphology of the micrographies

The starting point of the post-process is the outputted files of the phase-field simulations.
These are .npz compressed files that contain a description of the grid representing the mi-
crostructure. More concretely, each file includes the values of the η and XwSi variables in
every node of the grid, which determine the phase and the quantity of Si solute correspond-
ingly. These variables are enough to describe the micrography and extract the set of features
for the yield stress calculation.

The first thing done in the script is the creation of the micrography image, which represents
both the boundary that separates the cellular and eutectic phases, and the quantity of silicon
solute.

For the representation of the interface the η variable is loaded in an empty matrix. This
variable indicates weather the node is closer to a cellular phase or an eutectic phase, evaluating
it with a value between 0 and 1 correspondingly. To differentiate the phases the matrix is
thresholded, assigning a cellular phase to values below 0.5 and an eutectic phase to values
above. For that purpose, the threshold function of the OpenCV library is used, obtaining
figures such as the ones shown in Fig. 4.1.
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(a) Early stage precipitates. (b) Late stage precipitates.

Figure 4.1: Represented precipitates at early (a) and late (b) stages of the phase-field simu-
lation.

Those shapes represent the silicon precipitates within the eutectic phase. Through the use
of the findContours function the boundaries of the shapes representing the precipitates are
obtained and written in an empty matrix (Fig. 4.2) that will later represent the micrography.

(a) Early stage boundaries. (b) Late stage boundaries.

Figure 4.2: Precipitates boundaries at early (a) and late (b) stages of the phase-field simula-
tion.

Once having represented the interfaces the XwSi variable is loaded into an empty matrix
and scaled in such a way that the highest value becomes 255 (maximum brightness of a pixel)
and the rest are proportionally rescaled. The representation of the silicon solute is shown
in Fig. 4.3, where it is clear that the regions match with the previously obtained precipitate
boundaries due to the high Si concentration in the eutectic phase.
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(a) Early stage Si solute distribution. (b) Late stage Si solute distribution.

Figure 4.3: Silicon solute distribution at early (a) and late (b) stages of the phase-field
simulation.

Finally, the η and XwSi matrices are superposed and the final micrography is obtained
(Fig. 4.4). After post-processing all phase-field files the microghaphies are saved in a parallel
data base to be later introduced in the variational autoencoder, as described in Chapter 5.

(a) Early stage micrography. (b) Late stage micrography.

Figure 4.4: Final micrographies at early (a) and late (b) stages of the phase-field simulation.

4.2 Parameters of interest

Turning back to the needs of the regression model training it is clear that the next step is to
obtain the physical features of the microstructure in order to calculate the yield stress. After
trying several methods for finding the best possible quality of the results, the conclusion has
been to directly analyze the image generated in the previous section (Fig. 4.4), together with
the original output files containing the η and XwSi variables.

The parameters that are required to extract from the image are the necessary ones to
solve the equations for obtaining the yield stress, given in Chapter 2. Not all of them are
possible to obtain from the micrography, as values such as the dislocation density, ρ, can not
be obtained through an image. Therefore, the parameters extracted from the image are:
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• Weight fraction of silicon, XwSi: quantity of Si in solid solution.

• Volume fraction of cell phase, fcell: volume fraction that the cellular phase occupies.

• Volume fraction of eutectic phase, feu: volume fraction that the eutectic phase
occupies.

• Volume fraction of the precipitates, Xd
v : volume fraction occupied by the precipi-

tates. This value is calculated individually for both the cellular and eutectic phases.

• Mean radius of the precipitates, r̄d: average equivalent radius of the precipitates.
As most of the precipitates are not circles, the equivalent radius of the precipitates is
taken as the radius of a circle with the same surface as the precipitate. This value is
calculated individually for both the cellular and eutectic phases.

• Mean distance between precipitates, l: average distance between each precipitate
and its closest neighbor. After trying several methods, the most accurate results are
obtained by directly computing the value from rd and Xd

v rather than using computer
vision.

Further description of the obtaining of these parameters is given in Section 4.4. The
rest of the necessary parameters are obtained from Delahaye (2022) under the hypothesis of
considering the microstructures of both projects similar.

4.3 Structure determination

As it is explained in Chapter 2 the yield stress of the cellular and eutectic phases are calcu-
lated separately, followed by an homogenization process. Therefore, the parameters for each
phase are different and should be obtained individually. Before extracting the parameters it
is necessary to differentiate the cellular phase from the eutectic phase and, as the image only
contains the precipitates and the distribution of Si solute, it may be seen as an arbitrary pa-
rameter to designate. To stick as much as possible to experimental references, the parameters
that define the regions were adjusted to obtain similar values of volume fraction distribution
than in real microghraphies.

The procedure starts with the micrography, shown in Fig. 4.4, which is passed through a
blurring filter by using the GaussianBlur function from the OpenCV package. This, briefly
explained, lowers the brightness of the precipitates in the image while it increases the bright-
ness of the regions surrounding them. The result of applying a blurring filter is shown in
Fig. 4.5.

The blurred image is then passed through a threshold filter, where pixels with a brightness
above certain value are increased to the maximum, 255, and the rest are dropped to 0. This
threshold value is specifically selected so that the eutectic and cellular regions have a similar
volume fraction value than in real micrographies, between 0.75-0.85 for fcell and 0.15-0.25 for
feu. The image in Fig. 4.6a illustrates the division between cellular region (black) and the
eutectic region (white), while in Fig. 4.6b the precipitates inside the eutectic region, together
with the interface that is designated by the white line, are represented. In this specific
micrography the values of both regions volume fractions are fcell = 0.77 and feu = 0.23.
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(a) Original micrography. (b) Blurred micrography.

Figure 4.5: Micrography of early stage simulation (a) passed through a blurring filter (b).

(a) Micrography with differentiated phases. (b) Original micrography with delimited phases.

Figure 4.6: Micrography once thresholding is applied (a) and with delimited regions (b).

The code section that computes this image processing is given in Fig. 4.7, where the
blurring, the thresholding and the drawing of contours are carried out.

Figure 4.7: Code snippet to obtain the cellular and eutectic regions.

Once the two regions are identified, the parameters for the calculation of the yield stress
(r̄d, XwSi, Xd

v , ...) are obtained only analyzing their corresponding region.
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Other structure modelling possibilities
The model chosen of a cellular structure surrounded by an eutectic phase (cell+eu) proved

good results, that are later shown in Section 4.4. Nevertheless, from the visual evaluation of
the microstructures as they change through the course of the simulation, the structure may not
be considered a cell+eu one, as the eutectic wall tends to disappear, leaving instead an α-Al
matrix with Si precipitates structure (mat+prec). This can be appreciated in Fig. 4.8, where
an early stage simulation micrography is compared to a late stage one. The morphology of
the structure and the size and distribution of the precipitates is completely different, making
unclear that the same equations for calculating the yield stress that were shown in Chapter 2
can be applied.

(a) Early stage micrography. (b) Late stage micrography.

Figure 4.8: Early stage simulation micrography (a) compared to late stage simulation microg-
raphy (b). Structures are completely different.

The solution proposed for this uncertainty was to define two types of structures. The first
one, a biphasic structure of cellular phase and eutectic phase for early stages of the simulation,
where the equations of Chapter 2 can be applied. The second one, an α-Al matrix with Si
precipitates for late stages of the simulation. This second type of structure is considered, seen
from the equation solving point of view, 100% cellular phase with Si precipitates inside it,
therefore the equations for obtaining the yield stress are the ones used for the cellular phase
(Eq. (2.2), Eq. (2.3), Eq. (2.6)), together with the values fcell = 1 and feu = 0 of volume
fraction for the homogenization (Eq. (2.7)). Finally, the distinction between one phase and
the other is given by a structure defining parameter, whose value is higher in cell+eu cases
and lower in mat+prec cases, with a threshold value that, when reached, changes the set of
equations to predict the yield stress.

Despite the development of this new model, the results were not the ones expected. In
Fig. 4.9a is shown a graph that calculates the value of the yield stress throughout a whole
phase-field simulation (for all the microstructures extracted from the simulation) with Ṫ =
50. The red vertical line indicates the change between one set of equations (cell+eu on the
left) to another (mat+prec on the right).

There is a clear step between the values calculated by one set of equations and the other,
with a difference of 120 MPa. Meanwhile, the graph in Fig. 4.9b shows the calculation only
done with the set of equations of the cell+eu structure, having much more reasonable values
and a smoother evolution.
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(a) Two structures model (cell+eu and mat+prec). (b) One structure model (cell+eu).

Figure 4.9: Yield stress evolution for a simulation with Ṫ = 50 in both models of two (a)
and one (b) set of equations. The red vertical line in (a) indicates the change in the use of
equations.

Taking all this into account it is clear that, despite the uncertainty of the validity of
the cell+eu set of equations for the whole evolution of the microstructure, the best option
is to stick to a model of only one set of equations. As a conclusion for this small section,
all the calculations done regarding yield stress prediction are done through the methodology
described in Chapter 2 with a microstructure considered as a cellular phase surrounded by
eutectic walls (cell+eu).

Even though there is progress and research that can be done in this direction, the main
objective of this project is to determine the viability of using machine learning algorithms to
link micrographies to a value of the yield stress. Therefore, the exact value of the yield stress
does not have a determining effect on the final results.

4.4 Parameters determination

As explained in Section 4.2 the parameters are extracted from the micrography constructed
out of the phase-field output files. Each parameter is obtained through a particular method,
explained in every subsection and validated by showing its evolution in a complete phase-field
simulation. They are also compared to values from real microstructures, all referenced to the
ones obtained in Delahaye (2022).

The testing simulation launched to show the results is the evolution of the first microstruc-
ture included in the data base (Fig. 3.3a) with a value of Ṫ = 50.

4.4.1 Weight fraction of silicon

The weight fraction of silicon is the only parameter that is not extracted from the image
itself, but from the XwSi variable outputted by the phase-field simulation. Each node or
pixel, when talking about images, is contained either in the cellular or the eutectic phase and
has assigned the quantity of Si solute in it. This is determined by the phase differentiation
made in Section 4.3. The mean value of the Si solute quantity is calculated from each set of
pixels, obtaining (XwSi)cell and (XwSi)eu. The Python lines that follow this procedure are
shown in Fig. 4.10, where the parameter is obtained for both phases.
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Figure 4.10: Code snippet to calculate the variables (XwSi)cell and (XwSi)eu.

The code snippet shows the nested loop used to count the quantity of Si in each pixel
from the X_out matrix, which is, as mentioned before, the variable directly outputted by
phase-field that provides the Si quantity in the microstructure. The pixels are first classified
into the ones belonging to the eutectic phase or the cellular phase, and then the mean value
of XwSi is computed for each set. In Fig. 4.11 are represented the evolution of (XwSi)cell and
(XwSi)eu for the already mentioned example simulation.

(a) (XwSi)cell. (b) (XwSi)eu.

Figure 4.11: Weight fraction of silicon evolution in cellular (a) and eutectic (b) phases.

The order of magnitude of the value obtained is much lower that the one of reference in
Table 2.1. Nevertheless, the value is taken as valid as it is the data directly outputted from
the phase-field results.

4.4.2 Volume fraction of cell phase and eutectic phase

The volume fraction of the phases has a similar method of obtaining than the weight fraction
of silicon. In this case the image from where it is extracted is Fig. 4.6a. The white pixels
are counted one by one, and then the number is divided by the overall quantity of pixels,
obtaining the volume fraction of eutectic phase.

feu =
Sum of white pixels

Sum of all pixels
(4.1)

The value of fcell is the complementary.
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fcell = 1− feu (4.2)

Fig. 4.12 shows the code snippet that calculates both variables.

Figure 4.12: Code snippet to calculate the variables fcell and feu.

The code counts the pixels in white and black of the image that defines the two phases
(Fig. 4.6a), and then computes the volume fraction for each. The values obtained for the
example simulation are shown in Fig. 4.13, which are very close to the reference from Table 2.1.

(a) fcell. (b) feu.

Figure 4.13: Volume fraction of cellular (a) and eutectic (b) phases out of the overall mi-
crostructure.

4.4.3 Volume fraction of the precipitates

The volume fraction of the precipitates follows the same exact procedure as the volume fraction
of the phases, but the image used is the one shown in Fig. 4.1, which represents the precipitates
as white shapes. Each phase region has its own value of Xd

v . However, due to the morphology
of the microstructure (not real) and the way the regions of the phases are designated, the
value of (Xd

v )cell is always 0, meaning that there are no precipitates in the cellular phase.
This assumption agrees with the values of reference in Table 2.1 but it is worth mentioning
that this is not always the case, as Si precipitates can also be found within the cellular phase
(Delahaye (2022)). The procedure is coded in Fig. 4.14, where the filled_cont matrix is the
image that shows the precipitates in white and the background in black, as in Fig. 4.1.
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Figure 4.14: Code snippet to calculate the variable (Xd
v )cell.

The evolution of (Xd
v )eu is shown in Fig. 4.15. As a remark for the reader, the value

represents the volume fraction of precipitates over the volume of eutectic phase and not over
the overall volume of the microstructure.

Figure 4.15: Volume fraction of the precipitates in the eutectic phase.

4.4.4 Mean radius of the precipitates

As it is described in previous sections (Section 4.2) it is the mean value of the equivalent
radius of the precipitates. The first method suggested was to use the findContours function
from OpenCV in Fig. 4.1, that enables the detection of shapes in an image, together with the
contourArea function, that directly computes the area. The performance of this method was
not the one expected due to a bad shape detection.

Instead of trying to improve the previous method an equivalent way to obtain the mean
radius is proposed. The technique consists on, by also using the Fig. 4.1 image, count all the
white pixels (acting as a small piece of area each) and divide it by the number of precipitates,
obtaining the mean area of the precipitates. The result is also multiplied by the scale factor,
dx, to transform the units from pixels to meters. The average area of the precipitates is given
by:
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Ā =
Sum of white pixels

Number of precipitates
∗ dx2 (4.3)

with Ā being the mean area of the precipitates. Then the formula of the area of the circle
is used to obtain the mean radius.

r̄d =

√
Ā

π
(4.4)

This value should be calculated for both the cellular and eutectic phases. Nevertheless, as
mentioned in the previous subsection, the cellular phase is assumed to have no Si precipitates
and thus the value of (r̄d)cell is taken always as 0. The brief code snippet that calculates the
mean radius is shown in Fig. 4.16, where the variable counter is the same as in Fig. 4.14,
representing the sum of all the pixels that belong to precipitates.

Figure 4.16: Code snippet to calculate the variable (r̄d)cell.

The evolution of the (r̄d)eu variable throughout the example simulation is given in Fig. 4.17.

Figure 4.17: Mean radius of the precipitates in the eutectic phase.

The value of the mean radius increases from something close to the reference value, which
is r̄d = 7 nm, to values 3 or 4 times larger, an evolution that will later have a great impact in
the precipitation hardening contribution, and thus to the overall yield stress.

4.4.5 Mean distance between precipitates

The l parameter is another one with controversy, as at the beginning the procedure was as
simple as computing the mean distance between the centers of each precipitate and its closest
neighbor, later subtracting the values of the radii.

l =

∑N
i=1

[√
(cxi − c′xi)

2 + (cyi − c′yi)
2)
]

N
− 2r̄d (4.5)
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Results from this method are not the ones expected, as, even if the mathematical approach
is simple and intuitive for the current problem, the mean distance presented an unsteady
evolution at the early stages of the simulation, which completely changed the later results of
σy. This evolution is shown in Fig. 4.18.

Figure 4.18: Mean distance between the precipitates calculated with the dropped method.

Another approach is taken by searching in the bibliography, as many authors define the
mean distance between precipitates, l, as a function of the mean radius, r̄d, and the volume
fraction of the precipitates, Xd

v (Macías et al. (2020)):

l = r̄d

√
2π

3Xd
v

(4.6)

This method, whose results are shown in Fig. 4.19, presents an apparently more stable
evolution, and the order of magnitude of the parameter is the same than in both the results
of the previous method and the reference values of Table 2.1.

Figure 4.19: Mean distance between the precipitates calculated with the selected method.

The one line code snippet of the l formula is given in Fig. 4.20.

Figure 4.20: Code snippet to calculate the variable l.
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4.5 Results on the yield stress

Once the parameters for the yield stress calculation have been obtained the prediction of
its value through the method described in Chapter 2 can be carried out. The same set
of micrographies from the example simulation that is used in the previous sections (initial
microstructure number 1 and Ṫ = 50) is analyzed and the evolution of the yield stress is
shown in Fig. 4.21:

Figure 4.21: Yield stress evolution.

The yield stress, as it is expected, presents a sharp drop at the early stages of the simula-
tion, as it is expected because of the strong diffusion and the coarsening of the precipitates.
This is due to the high temperatures that the alloy is bearing, making its structure to change
and the eutectic wall, the main source of strengthening, to gradually disappear. In the late
stages of the simulation the microstructure stabilizes, presenting larger, more disperse and
less numerous precipitates that do not have such a strong hardening effect. As a visual aid for
understanding the evolution of the microstructure and associate it to the evolution of the yield
stress, Fig. 4.23 shows the set of micrographies that represent the evolution of the microstruc-
ture in the example simulation, observing a very strong difference between the beginning and
ending stages.

Finally, even though one set of results is from a real microstructure and the other one is
from a simulated microstructure, a comparison between the results in this project and the
ones in Delahaye (2022) regarding the hardening contributions of the yield stress is carried
out. From the simulated microstructures, the one saved at the first time step is chosen to
be analyzed, as it has more similar characteristics to the real one due to not being exposed
to heat treatments and keeping the original cellular-eutectic structure. Parameters used for
the reference computation are given in Table 2.1 while the microstructure simulated in this
project has the set of parameters shown in Table 4.1. The comparison of the results is shown
in Fig. 4.22, where it is clear that the hardening effects are very different.

The strengthening contributions of σ0 and σd are the same because of the use of the
same parameters in both calculations, while the contributions of σss decrease and the ones
of σp greatly increase. This difference is easily explained when looking at the difference of
the parameters used. On one hand, the lower σss is caused by a much smaller quantity of
Si solute in the eutectic (2.5% in the real alloy against 0.15% in the simulated one) and
the non-existence of Mg solute, as the simulated alloy does not contain magnesium. On the
other hand, the difference in the σp contribution comes from the distance between precipitates
parameter, l, which is much larger in the real microstructure (∼50 nm) than in the simulated
one (∼20 nm).
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Parameters Units Value
Cell Eutectic

σ0 [MPa] 10
ρd0 [m−2] 1013

f [vol.%] 0.74 0.26
r̄d [nm] 0 6.688

Xα
wSi [wt.%] 0.093 0.155
Xd

v [vol.%] 0 29.1
G [GPa] 25.4
b [nm] 0.283
M [−] 3.06
αd [−] 0.3
αp [−] 0.5
kSi [Mpa.Wt%2/3] 66.3
kMg [Mpa.Wt%2/3] 29
rc [nm] 10
l [nm] - 17.9

Table 4.1: Parameters for yield stress prediction in simulated microstructure at t = 0 and Ṫ
= 50 K/min.

Figure 4.22: Yield stress contributions for simulated microstrucure results and Delahaye
(2022) results.
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time = 0.05 s. time = 170.67 s. time = 341.04 s. time = 511.71 s.

time = 682.28 s. time = 852.45 s. time = 1023.41 s. time = 1193.98 s.

time = 1364.11 s. time = 1534.28 s. time = 1704.41 s. time = 1874.53 s.

time = 2044.96 s. time = 2215.13 s. time = 2385.30 s. time = 2555.43 s.

time = 2725.55 s. time = 2895.73 s. time = 3065.85 s. time = 3235.98 s.

time = 3406.10 s. time = 3576.28 s.

Figure 4.23: Microstructure evolution through phase-field simulation. Initial microstructure
number 1 and Ṫ = 50.
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Variational autoencoder

As a way to reduce the size of the training data set and the output size of the regression
algorithm the Variational Autoencoders (VAE) are very powerful tools that, through the use
of neural networks, enable the encoding of full resolution images to a small set of variables.
This, first of all, makes possible the training of the prediction algorithm, as too large output
sizes make non-viable for it to properly work. Further than that, a smaller output size and
therefore a lighter training data volume achieve a faster training of the algorithm and smaller
requirements of computational resources.

This chapter shows the whole process of construction of the VAE, giving a small state of
the art introduction to them in Section 5.1, together with the features that make it a good
choice for using it in this project. After that, the structure of the VAE that has been built
is explained in Section 5.2, detailing the number and size of the neural network layers as
well as their characteristics. Section 5.3 explains the training process that the VAE has had
to be able to successfully encode (reduce to a small latent vector) and decode (reconstruct)
micrographies. Finally, Section 5.4 shows the results of phase-field micrographies that have
been encoded and decoded, and a conclusion talking about the performance and the aspects
to improve.

5.1 Introduction to VAE and purpose to use them

Variational Autoencoders (Kingma and Welling (2013), Kingma et al. (2019)) are artifi-
cial neural network architectures that belong to the family of probabilistic graphical mod-
els (Airoldi (2007)). These models are able to expresses a conditional dependence structure
between random variables, enabling them to establish mathematical or numerical relations
between apparently independent variables.

The VAE are also sometimes related to regular Autoencoders (AE) (Kramer (1991)) due
to their similar structure, as both of them are neural network structures divided in two parts,
one for encoding and one for decoding. Nevertheless, the mathematical formulation of both
schemes is different, as AEs reduce the input directly to a latent vector (the set of variables
that contain the main features of the input, in our case an image), while the VAEs reduce
the input to a latent distribution and impose a constraint on it, forcing it to follow a normal
distribution. A graphical scheme of both methods is shown in Fig. 5.1 to better understand
the structure of the algorithms.
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(a) Autoencoder structure.

(b) Variational autoencoder structure.

Figure 5.1: Structures of AE and VAE.

VAEs have a complex structure consisting of a set of much more simple elements:

• Input: is the original data introduced that wants to be reduced to a smaller latent
vector.

• Encoder: a set of neural layers that, though a series of mathematical operations reduce
the input values until arriving to a small sized set of variables. It is important to take
into account that these variables are completely dependant on the values of the input
layer, therefore they can be considered as a reduced representation of them.

• Latent distribution: the set of variables directly obtained after the encoding, given
as a set of parameters of a predefined distribution in the latent space (µx and σx).

• Sampling: layer in the latent space where the latent distribution is imposed a normal
distribution. This makes sure the latent space is regularized.

• Latent vector: the set of defined parameters that are seen as a reduced representation
of the overall input. The size of this layer depends on the size of the input and the
quality that wants to be obtained at the reconstruction (larger latent vectors mean a
better reconstruction) but it usually goes down to 8 to 64 numbers.

• Decoder: the set of neural layers that reconstruct the latent vector into something as
similar as possible to the input given to the VAE.

• Reconstructed input: the information reconstructed from the latent vector. It should
be as similar as possible to the input of the VAE.

VAEs are used for a wide variety of applications, standing out image generation, data
compression, and even generation of realistic faces, objects, and more. Considering these
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particular properties and the structure of the algorithms, new images can be generated out
of already trained VAEs by introducing latent vectors that are later decoded. They are
particularly accurate when the images that are going to be predicted are similar to the training
images, but it is not always the case.

Applications have also been found for multiple purposes when using the VAEs as a tool.
These applications may go from predictive modeling of genetic and drug-induced perturba-
tions (Doncevic and Herrmann (2023)) to the design of new turbomachinery concepts (Zalger
(2017)). Several applications have also been found for the field of material sciences, as VAEs
can be very useful for the generation of new microstructures or for dimensionality reduction
of micrographies. Examples of these applications with successful results can be observed in
articles like Kim et al. (2021), a project very similar to this one where VAEs are used together
with regression models to create a set of synthetic microstructural images. Works have been
also carried out in the MSM group itself, as projects like Fetni et al. (2023) pursue the ac-
celeration of phase-field computations through dimensionality reduction of the micrographies
outputted by the software.

This project aims to, by providing a value of the yield stress, being capable of generating
a full micrography of an AlSi10Mg alloy. This can be achieved by training a VAE with
microstructural images (phase-field images in this case) and providing a latent vector, based
on that certain value of the yield stress, to generate the desired micrography using a trained
decoder. This could not be done with a machine learning prediction model alone such as a
regression model, as the output, which is the set of all pixels of the image, would be too large
for the algorithm to handle, reaching bad accuracy and too large training times. For training
a regression model that can predict the image, the VAE is used to reduce the dimensionality
by compressing it to its main features contained in the latent vector. This latent vector is
later fed to the regression model, as it is explained in Chapter 6.

Therefore, this project uses the VAE for two purposes. Firstly, the size reduction of
the training data set of the regression model. Secondly, the generation of new synthetic
micrographies that represent different states of the AlSi10Mg alloys, everything under the
context of phase-field simulations.

5.2 Structure of the VAE

Before talking about the VAE it is necessary to introduce the concept of Artificial Neural
Networks (ANN). These are machine learning models that reproduce the behavior of biological
neurons, being capable of carrying out very complex calculations by using large numbers of
interconnections between individual nodes called artificial neurons. Each neuron receives a
series of input values from the previous neurons, makes a calculation defined by internal
parameters of the neuron, and provides a new output value that is sent to the next neuron.
Neurons are displaced by layers in the network, having an input layer that receives the initial
data, a series of hidden layers that carry out the calculations, and an output layer that provides
the final result of the calculation (Fig. 5.2).

Neural networks are capable of reproducing all kinds of mathematical functions by com-
bining smaller operations carried out by each single neuron. The parameters within each
neuron are defined by training the network providing it examples of the input together with
the desired output. ANNs are capable of solving strong non-linear problems, making them
a very popular choice nowadays for many prediction tasks. Among those applications, the
ANNs are used to build new methods such as the VAE, composed by an encoder and decoder
made of several neuron layers that carry out the transformation of images into latent vectors
and vice versa.
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Figure 5.2: Simplified structure of an ANN.

There are infinite ways to shape the structure of a VAE, as the number of neural layers in
both the encoder and decoder, as well as the dimensions of each of them, are a choice of the
designer. A simple but effective structure has been constructed for the VAE in this project.
A clear and complete scheme of it is shown in Fig. 5.3.

As it can be observed, there are different types of layers within the VAE, each of them
with a unique function:

Input layer
Is the initial data provided to the VAE for its encoding. In the present case the original

images, with a resolution of 735x735 pixels, had to be reshaped into a 128x128 pixels reso-
lution. This carries a loss in quality of the image, but taking into account that the original
image would contain more than 500000 input values, a quantity too large to be handled due
to the high requirements of RAM memory, it was decided to reshape to the new resolution
that inputs around 16000 values. A comparison example of both the original and reduced
images is given in Fig. 5.4.

Convolutional layer
They are the main component of the neural network and consist of a set of filters (or

kernels) that make operations on certain regions, one after another, of the image or input
array. This process is better explained together with Fig. 5.5, where the kernel (composed
of trainable parameters) operates a certain input region to extract an output value that will
depend on the features of this same region.

Figure 5.5: Working of a convolutional layer.

These layers have the advantage of containing a smaller set of parameters, making them
easier to train, and are extraordinary good for detecting local patterns.
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Figure 5.3: Scheme of the VAE used in this project. The vector at each layer indicates the
shape of its output array.
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(a) Early stage simulation micrographies.

(b) Late stage simulation micrographies.

Figure 5.4: Comparison of two different micrographies at the original resolution of 735x735
pixels (left column) and with reduced resolution of 128x128 pixels (right column).

In the encoder are used the regular convolutional layers but the decoder is built with
transposed convolutional layer, who have the same behavior but work in the opposite direction,
increasing the size of the output compared to the input.

Batch normalization layer
These layers reshape the values of their input by applying two operations. The first one

is a re-centering of the values, changing them proportionally so that they follow a normal
distribution centered in 0. The second one is a re-scaling operation, making the values to
have a suitable size for an optimal encoding-decoding process.

Those layers do not affect much the final result of the VAE, but they are used to make
the training of the artificial neural network faster and more stable through use normalization.

Dense layer
Having a similar procedure than the convolutional layers, the dense layers perform a series

of operations in their inputs, but they are deeply connected with its preceding layer, which
means the neurons of the layer are connected to every neuron of its preceding layer. A
structure of a small neural network composed only by dense layers is shown in Fig. 5.6.

They are introduced in the small-sized parts of the encoder and decoder because they
contain a very large set of trainable parameters, therefore they are computationally expensive
when having large inputs. The advantage of using them is that they learn features from the
entire previous layer, allowing to acquire knowledge more effectively.
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Figure 5.6: Scheme of a neural network composed by dense layers.

Sampling layer
The sampling layer makes the main difference between a regular AE and a VAE. Instead

of outputting the vectors in the latent space, the encoder of VAE outputs parameters of a
pre-defined distribution in the latent space for every input. The sampling layer then imposes
a constraint on this latent distribution, forcing it to be a normal distribution. This constraint
makes sure that the latent space is regularized and smooth.

Reshaping layer
These layers do not influence the results of the VAE, as they only perform a reshaping of

the provided arrays so that they properly fit the next layer.

Output layer
Is the reconstructed image that has been obtained through the decoding of the latent

vector. It has the same shape as the input layer (128x128 pixels).

Looking again at the scheme of Fig. 5.3, the VAE constructed is composed of:

• 1 input layer containing the micrography image.

• 5 convolutional layers that progressively reduce the dimensions of the parameters, to-
gether with their corresponding batch normalization layers.

• 1 reshaping layer that flattens the array into a 1-dimensional vector.

• 1 dense layer that greatly reduces the size of the vector.

• 1 sampling layer that imposes a normal distribution to the latent space, obtaining the
latent vector of the inputted image.

• 2 dense layers that expand the latent vector in order to start the decoding process.

• 1 reshaping layer that transforms the 1-dimensional vector back into a 3-dimensional
array.

• 5 convolutional layers with their corresponding batch normalization layers to decode the
latent vector and obtain the reconstructed image.

• 1 output layer containing the reconstructed image.
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For creating this neural network structure the Python libraries Keras and Tensorflow have
been used. These packages are very powerful machine learning tools that enable the user to
create any kind of artificial intelligence algorithm, especially deep neural network structures.

The functions that have been mainly used to build the VAE are Conv2DTranspose and
Conv2D for the convolutional layers, BatchNormalization for the batch normalization layers
and Dense for the dense layers. For the reader to have a better understanding of the building
of the different sections in the VAE Fig. 5.7, Fig. 5.8 and Fig. 5.9 show the code snippets of
the encoder, sampling and decoder sections correspondingly written in Python.

Figure 5.7: Code snippet of the encoder.

Figure 5.8: Code snippet of the sampling layer.

Figure 5.9: Code snippet of the decoder.

5.3 Training process

Once the VAE is built the training data set is introduced to train the parameters of the
encoder and decoder. This training is carried out by encoding and decoding the images and
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reducing the loss function, which is the difference between the original and reconstructed
images. The loss function is defined in Fig. 5.10 written in Python code.

Figure 5.10: Code snippet of the loss function of the VAE.

The loss function is introduced in the VAE model and gradient descent optimization is
carried out. Many optimization algorithms can be used for training the VAE but the Adam
optimizer was the choice for this project as it is a robust, simple and efficient scheme that is
well suited for problems with a large quantity of parameters (Kingma and Ba (2014)). The
code snippet containing the training procedure is shown in Fig. 5.11.

Figure 5.11: Code snippet of the training process of the VAE.

Finally, the training progress of the model is saved every certain amount of epochs, keeping
the trained parameters of the encoder and decoder (Fig. 5.12). These parameters can be
reloaded afterwards for the encoding and decoding of future images.

There is one last detail not mentioned before and is the choice of the size of the latent
vector. In this project are tested and compared the performances of VAEs with latent vectors
of 8, 16 and 32 elements. As a reminder, a larger latent vector keeps better the features of the
encoded images but at the same time requires a larger amount of memory to save the latent
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Figure 5.12: Code snippet of the trained parameters saving of the VAE.

vectors (something that may be a problem for the learning of the later prediction model).
The results obtained for both sizes are shown in Section 5.4, together with a comparison and
a conclusion of which one should be used for training the regression model.

Several trainings of the VAE have been carried out in the cluster of ULiege, NIC5, taking
different times for unknown reasons despite requesting the same computational resources.
Nevertheless, as a conclusion the mean training speed is around 1 epoch every half an hour,
for the three cases of 8, 16 and 32 element sized latent vectors. When observing the results,
first decent image reconstructions are obtained after the 50 epochs but good performance is
achieved after the 150 epochs. Taking this into account, the VAE takes around 3 days of
training for reaching sufficiently good performance in image reconstruction. Further research
can be carried out to find the optimal neural network structure and hyperparameters of the
VAE for a better performance and shorter training times.

5.4 Results and conclusions

After training the VAE the parameters of the model are saved so that they can be loaded
again for the later encoding and decoding of images. The encoder and decoder are saved
individually and two different Python scripts are built to load them, shown correspondingly
in Fig. 5.13 and Fig. 5.14.

Figure 5.13: Code snippet of the image encoding. The image needs to be shortly processed
before being provided to the encoder.

To show the performance of the VAE for different microstructure morphologies four images
representing various stages of the simulation are taken from the phase-field results and passed
through encoding and decoding in the three VAEs trained (of 8, 16 and 32 element sized latent
vector). As the performance of the VAE improves with larger training periods, Fig. 5.15,
Fig. 5.16 and Fig. 5.17 show the reconstruction of the images for trainings of 50 (1 day),
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Figure 5.14: Code snippet of the image decoding. The reconstructed image is saved after the
prediction.

100 (2 days), and 150 (3 days) epochs of learning respectively. No significant improvement is
appreciated for further training. The figures show the original images in the first column and
the reconstruction for 8, 16 and 32 element sized latent vectors in the three next columns. The
images are taken from a phase-field simulation of the first initial microstructure (Section 3.3)
with Ṫ = 50.

By looking at the comparison between images it is possible to conclude several things.
Firstly, the more epochs the VAE is trained the better performance is acquired, always arriving
to a limit where the algorithm stops obtaining significant improvement. Secondly, larger
sizes of the latent vector are able to retain more characteristics of the image, improving the
reconstruction. The main drawback of increasing the size of the latent vector is a larger
computation afterwards in the image prediction. Finally, it is also important to say that
reconstructed images are more blurry because the VAE works with images of 128x128 pixels,
instead of the original 735x735 pixels, losing some quality and details.

The whole data base is passed by the VAE and encoded to reduce its size and speed up
the prediction algorithm training process. The size of the data base is significantly reduced
when encoding the images. Table 5.1 shows the size of the data base in original resolution
(735x735 pixels), reduced resolution (128x128 pixels) and encoded in latent vectors to have
an idea of this reduction.

Original res.
(735x735)

Reduced res.
(128x128)

8-element
vector

16-element
vector

32-element
vector

Size [MB] 834.6 25.3 0.099 0.198 0.396

Table 5.1: Size of the training data set before and after the VAE.

As it is evident, the VAE greatly reduces the size of the training data set, at the cost of
a small loss in image quality. By evaluating the quality of the image reconstruction and the
training times of the different prediction algorithms, shown in Table 6.1 in the next chapter,
the 32-element sized latent vector is chosen as the optimal size to obtain the best results.
From this point the results shown are all obtained with the VAE of 32-element sized latent
vector. The increase of the training times in the prediction algorithms with the size of the
latent vector is not very large, enabling us to keep a higher reconstruction quality by paying
small quantity of computational resources. However, the data set of this project is relatively
small and for cases with higher volumes of training data it may be convenient to reduce the
size of the latent vector, as the cost of the training processes in prediction algorithms rapidly
scales with the volume of the training data set.
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Original. 8 elements. 16 elements. 32 elements.

Initial state. Time = 0 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 512 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1024 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1536 s.

Figure 5.15: Reconstruction of micrographies with VAEs of different sized latent vectors.
Training duration of 50 epochs (1 day).
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Original. 8 elements. 16 elements. 32 elements.

Initial state. Time = 0 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 512 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1024 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1536 s.

Figure 5.16: Reconstruction of micrographies with VAEs of different sized latent vectors.
Training duration of 100 epochs (2 days).
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Original. 8 elements. 16 elements. 32 elements.

Initial state. Time = 0 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 512 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1024 s.

Original. 8 elements. 16 elements. 32 elements.

Time = 1536 s.

Figure 5.17: Reconstruction of micrographies with VAEs of different sized latent vectors.
Training duration of 150 epochs (3 days).
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Prediction algorithm

The final purpose of this project is to, given a value of the yield stress of an AlSi10Mg alloy,
be able to obtain a corresponding image of the microstructure. These predictions in cases
similar to ours are carried out normally by regression algorithms that, when providing a
series of training inputs and outputs, are capable of learning the relation between them and
reproduce the same results with completely new inputs.

Once reached this stage of the project it is clear that the input provided to the prediction
model is the yield stress, while the output received is a latent vector that is later decoded in
the VAE to finally obtain the desired micrography.

To have a clear idea of how regression models work and what is their expected performance
a brief introduction is given in Section 6.1. Then, getting closer to our particular problem, an
evaluation of the performance of several Single-Input-Multiple-Output (SIMO) algorithms is
carried out in Section 6.2 in order to find the ideal method for the image prediction. Finally,
Section 6.3 goes deeper in the chosen algorithm, explaining the reasons for using it and its
performance within the context of this project.

6.1 Introduction to regression models

Within the field of machine learning (Alpaydin (2020)) and data prediction there are an
infinite variety of problems, each of them with its unique features. The possible approaches
are normally divided into three broad categories, which correspond to learning paradigms,
depending on the nature of the signal or feedback available to the learning system. Fig. 6.1
shows a scheme representing the different classes of machine learning, together with some
examples of them.

• Supervised learning: the input and output objects are labeled. The training process
consists of making the algorithm to build a function that maps the new data on the
expected output values.

• Unsupervised learning: the data provided is not labeled, leaving the algorithm the
task of finding its structure. The algorithm learns by reaching for patterns that link the
provided data.

• Reinforcement learning: the algorithm (or so called agent in this case) interacts with
an environment in which it must achieve a certain goal. The agent receives rewards when
getting closer to the objective and in the process of learning changes its own features of
behaviour (decision making of the agent) to maximize that reward.
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Figure 6.1: Machine learning map indicating the classification of possible problems.

Defining our training data as a set of yield stress values that have each of them a latent
vector linked, and the goal of finding a general function that relates both sides, it is clear that
this project faces a problem of supervised learning.

The supervised learning problems can be at the same time divided into regression prob-
lems, where the algorithm must find the relationship between the input (independent variable)
and the output (dependent variable), and classification problems, where the input must be
classified into one of the possible categories. The regression problem is the one concerning to
this project, as the relation between the yield stress and the latent vector needs to be found.

Normally, regression models consist of defining a function that relates both sides, the
dependent (yi) and independent (xi) variable, through an unknown parameter (β) and an
error term (ei). This relation is expressed in its most simple way in Eq. (6.1).

yi = βxi + ei (6.1)

This equation may vary depending on the type of problem, the algorithm and the choice
of the user, but the principle behind it is the same. The prediction consists of, given an input
xi being capable of obtaining an output yi that follows as much as possible the tendencies of
the training data set. During the training a loss function, ϕ, is computed to evaluate how far
is the predicted data, f(xi, β), from the real solution yi. An example of this loss function can
be the squared error, defined in Eq. (6.2).

ϕ =
∑
i

(yi − f(xi, β))
2 (6.2)

To find the optimal prediction function the parameters β and ei are modified in order to
obtain the minimal value of ϕ. This is done using an optimization algorithm such as gradient
descent or any of its derived methods.

The shape of the variables in Eq. (6.1) depends on the shapes of the input and output of
the algorithm, as they can be a single element or multiple elements (vector, matrix). In the
present case the input is 1-element sized, as it only contains the value of the yield stress, while
the output is a multi-element array containing the corresponding latent vector. Therefore, the
problem to be solved is Single-Input-Multiple-Output (SIMO). These type of problems can be
handled with a wide variety of algorithms, among which is very popular the use of Artificial
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Neural Networks (ANN), as they are able to find with good accuracy the relation between
inputs and outputs. However, many other regression algorithms, such as random forest, KNN
or SVR, have a good performance in SIMO problems. To find the most suitable algorithm
for the prediction task an evaluation and comparison of the different models is carried out in
Section 6.2.

6.2 Single-Input-Multiple-Output models comparison

This section considers some of the most popular algorithms used for SIMO regression prob-
lems. For testing them the Python libraries Scikit Learn and Tensorflow, which have the
algorithms already implemented, are used. The image results shown in this sections are the
predictions of the regression algorithms for 32-element sized latent vectors and VAE decoder
with a training of 150 epochs (performance of the VAE shown in Fig. 5.17).

6.2.1 Random forest

Introduction and features

Random forest (Ho (1995)) is a regression algorithm derived from the decision tree learning
method (Kotsiantis (2013)). The decision tree algorithm classifies or regresses the data using
a set of chained true or false answers to certain questions. The tree is divided into three
categories of nodes, the root that contains the input values, the internal nodes that make the
data go through a series of different decisions, and the leafs that are the final output values.
Fig. 6.2 shows a scheme of this structure.

Figure 6.2: Random forest scheme. Several decision trees are computed and the optimal
solution is the outputted prediction.

Decision tree algorithms may have accuracy and overfitting problems (too dependent on
training data) and that is what random forest algorithms solve. Random forest generates a
large number of decision trees with small differences between each other, being capable to
find better global optimum features in expense of larger computational resources.

Advantages

• Reduced overfitting when compared to decision tree algorithms.

• High accuracy of the decisions.

• Robustness and stability. Good accuracy when doing predictions that differ from the
data set.
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Disadvantages

• Complex and difficult to interpret model.

• Computationally expensive.

• Risk of biased decisions.

Implementation and results

The random forest algorithm is implemented in the Scikit Learn library. The function used for
building the algorithm is RandomForestRegressor and to adapt the model to a SIMO shape
the function MultiOutputRegressor is included (Fig. 6.3).

Figure 6.3: Code snippet of the random forest algorithm implementation.

The training of the algorithm is carried out with the same data base used for the training
of the VAE, but instead of images the data provided are the corresponding latent vectors,
together with the yield stress value linked to every micrography. For the training data set
provided the training time of the algorithm is t = 19.64 seconds.

To evaluate the performance of the prediction a set of yield stress values have been pro-
vided to the algorithm, obtaining the corresponding latent vectors. After decoding the latent
vectors, the micrographies obtained are shown in Fig. 6.4.

σy = 250 MPa. σy = 230 MPa. σy = 210 MPa. σy = 190 MPa.

σy = 170 MPa. σy = 150 MPa. σy = 130 MPa. σy = 110 MPa.

Figure 6.4: Predicted micrographies using the random forest algorithm.
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6.2.2 Support vector machines (SVM)

Introduction and features

Support Vector Machines (Cortes and Vapnik (1995)), or Support Vector Regression algo-
rithms as it is usually called for regression models, are another method for solving supervised
learning problems. In classification problems they work by defining a hyperplane that divides
the data samples into different regions, maximizing their distance to the plane. Fig. 6.5 shows
an example in a 2-dimensional space. The mean value of the distance w is maximized when
defining the plane.

Figure 6.5: SVM scheme.

In regression problems the separation regions are substituted for real numbers.

Advantages

• Effective in high-dimensional spaces.

• Good generalization. The algorithm performs very good with unseen data.

• Robust against overfitting, making the predictions accurate instead of simply trying to
reproduce the training data.

Disadvantages

• Sensitive to hyperparameter tunning.

• Bad performance with noisy data.

• Difficult interpretation when used for regression problems.

Implementation and results

The SVM algorithm is also implemented in the Scikit Learn library. It is called by using the
SVR function and for the current problem is used together with the MultiOutputRegressor
function. Also a kernel needs to be introduced. There are plenty of kernel functions for
choosing, but the final choice has been a combination of a constant value together with an
exponential function (very common for all kinds of prediction problems), shown in Fig. 6.6.
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Figure 6.6: Code snippet of the SVM algorithm implementation.

Further research can be done to find a better fitting kernel function in order to obtain a better
performance of the algorithm.

The training is also carried out with the same data set as the previous case, taking only
a time of t = 1.78 seconds. The results for a set of different yield stress values are shown
in Fig. 6.7.

σy = 250 MPa. σy = 230 MPa. σy = 210 MPa. σy = 190 MPa.

σy = 170 MPa. σy = 150 MPa. σy = 130 MPa. σy = 110 MPa.

Figure 6.7: Predicted micrographies using the SVM algorithm.

6.2.3 K-nearest neighbors (KNN)

Introduction and features

The K-Nearest Neighbors algorithm (Fix and Hodges (1989)) works under a very simple
principle that is better explained for the classification problems. Starting from a 2-dimensional
map like the one shown in Fig. 6.8, the labeled data is introduced, naturally dividing itself
in different clusters depending on their features. A new element is introduced and a number
K of the nearest elements is selected, classifying the unknown element in the group of the
majority. The number K is a hyperparameter chosen before carrying out the prediction.
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Figure 6.8: K-Nearest Neighbors scheme.

When dealing with regression problems the mean value of the K neighbors is computed
and taken as the predicted value (Eq. (6.3)).

Y =
1

K

∑
i

yi (6.3)

Advantages

• Very simple and intuitive.
• Robust against noisy data.
• Very low use of computational resources.

Disadvantages

• Bad scalability, making it computationally expensive for large data sets.
• Very sensitive to hyperparameter tunning (K number).
• Sensitive to irrelevant features, making possible the predictions to be guided by unnec-

essary characteristics.

Implementation and results

KNN is also implemented in the Scikit Learn library. The model is simply built by us-
ing the KNeighborsRegressor function together with the GaussianProcessRegressor function
(Fig. 6.9).

Figure 6.9: Code snippet of the KNN algorithm implementation.
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The training time for this algorithm is extremely short, achieving good results in a time of
t = 0.07 seconds. The output for several values of σy is shown in Fig. 6.10. As this algorithm
is very dependent on hyperparameters, several values of K have been tested, finding a very
slight (negligible) change of computational time and results with the number of considered
neighbors.

σy = 250 MPa. σy = 230 MPa. σy = 210 MPa. σy = 190 MPa.

σy = 170 MPa. σy = 150 MPa. σy = 130 MPa. σy = 110 MPa.

Figure 6.10: Predicted micrographies using the KNN algorithm (K = 9).

6.2.4 Gaussian process regression (GPR)

Introduction and features

The Gaussian Process Regression (Williams and Rasmussen (1995)) model is an algorithm
that does not follow the same principles as the previous ones. Nevertheless, it is also taken
into account because of the initial suggestion of the co-supervisor of this project, Seifallah
Fetni, as well as for trying to reproduce the successful results in Kim et al. (2021).

This algorithm is a non-parametric bayesian approach that provides not only the prediction
but also an uncertainty measurement on it. As a simile for its proper explanation, a function
with the shape y = wx + ϵ is considered. The bayesian approach works by assigning a
distribution, p(w), on the parameter, w (Eq. (6.4)).

p(w|y,X) =
p(y|X,w) p(w)

p(y|X)
(6.4)

A gaussian distribution is assumed for the probability function that, when predicting
new data points, provides the mean and variance values, making possible to compute an
uncertainty range. As the GPR is a non-parametric algorithm, the probability distribution
of the parameters shown in this example (Eq. (6.4)) is substituted by the probability of the
functions that fit the training data.

Advantages

• Not only provides the prediction but also its uncertainty distribution.

• Being a non-parametric method it doesn’t assume a specific functional form for the
relationship between features and target, reaching a larger diversity of possible solutions.
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• Enables the modelling of a wide range of functions, from simple linear to strong non-
linear ones.

Disadvantages

• Low efficiency and high computational cost for large data sets.

• Very sensible to hyperparameter selection. This includes also the choice of the kernel
function.

• Not developed for multiple output problems.

Implementation and results

Luckily, the GPR algorithm is already implemented in a wide variety of Python libraries,
including Scikit Learn. The main drawback of this algorithm is that, when used for multiple
output problems, it gives a covariance matrix that is hard to interpret and it can not be
used together with the MultiOutputRegressor function. For this reason the elements of the
output are obtained individually from the input and not as a complete vector as they should
be, reducing the accuracy of the prediction. At the same time, the difficult to interpret
covariance matrix makes impossible to measure the uncertainty of the predictions, turning
useless the strongest point of this algorithm. Nevertheless, the implementation is shown in
Fig. 6.11.

Figure 6.11: Code snippet of the GPR algorithm implementation.

For the same training data set than for the previous algorithms the training time of the
GPR is t = 248.27 seconds, a very high value when compared to other methods. The
results for several yield stress values predictions are shown in Fig. 6.12.

6.2.5 Artificial neural networks (ANN)

Introduction and features

Artificial Neural Networks (Goodfellow et al. (2016)) are Deep Learning algorithms that try
to emulate the behaviour and working of neural connections. This structure is also used
in Chapter 5 for the construction of the VAE but because this case works with smaller sized
data the prediction problem requires a much smaller quantity of resources and shorter training
times.

The working principle is explained already in Section 5.1 but it is basically a set of in-
terconnected neurons organized in layers that receive an input value or values and carry out
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σy = 250 MPa. σy = 230 MPa. σy = 210 MPa. σy = 190 MPa.

σy = 170 MPa. σy = 150 MPa. σy = 130 MPa. σy = 110 MPa.

Figure 6.12: Predicted micrographies using the GPR algorithm.

mathematical operations with them, sending to the next neuron or neurons the outputted
result.

Neural networks are a very polyvalent tool that can be used for a wide variety of problem
types, being one of them the regression problems.

Advantages

• Very flexible method that can handle strong non-linear problems.

• Can handle large data sets when enough computational resources are provided.

• Easily re-trainable. Models trained under large data sets can continue their training
with smaller or more specific data sets to improve accuracy in different fields or features.
This characteristic may be of great interest for this project, as new micrographies can
be added to the data set to be able to predict different structures.

Disadvantages

• Does not perform good with small data sets, needing large training data volumes to
provide good results.

• Very sensitive to the structure of the network itself, providing slightly different results
when the number of layers or their size is changed.

• Difficult to interpret, as it is not possible to represent what happens inside, working
similar to a black box.

• Computationally expensive.

Implementation and results

There are plenty of structure configurations that can solve the prediction problem. As the
problem is simple it is not necessary to construct a very large network, thus the layers in-
troduced are relatively small. A configuration of 5 convolutional layers and 2 dense layers is
chosen as it is shown in Fig. 6.13. The model is constructed using the Tensorflow library as
it is done also in Chapter 5.
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Figure 6.13: Code snippet of the ANN building.

The choice of number of epochs for the training is a fundamental parameter, as very low
epochs do not achieve good results, while large number of them may be unnecessary and even
overfit the algorithm. After several trials a good compromise of accuracy and training time is
found for epochs = 50. The results for this training are shown in Fig. 6.14, taking a training
time of t = 43.96 seconds.

σy = 250 MPa. σy = 230 MPa. σy = 210 MPa. σy = 190 MPa.

σy = 170 MPa. σy = 150 MPa. σy = 130 MPa. σy = 110 MPa.

Figure 6.14: Predicted micrographies using an ANN.

6.2.6 Training times comparison

The training times of each regression algorithm tested are provided in Table 6.1 for the three
cases of 8, 16 and 32 elements sized latent vectors.
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Latent vector size Random forest SVM KNN GPR ANN
8 elements 5.67 0.66 0.03 87.13 55.18
16 elements 8.51 0.84 0.04 122.33 51.2
32 elements 19.64 1.78 0.07 248.27 43.96

Table 6.1: Training times in seconds of the prediction algorithms evaluated for different latent
vector sizes.

6.3 Results and conclusions

Taking into account the performance of all the prediction algorithms the best method is
apparently to use artificial neural networks, as they provide a robust prediction and due
to their structural flexibility they have a large margin of improvement. Other methods like
Random Forest and KNN are also very good choices, as they achieve very good reconstruction
results too and require less training time.

To test the effectiveness of the prediction a phase-field simulation is carried out, post-
processing the micrographies to obtain the yield stress value and introducing this same σy
into the prediction algorithm. The predicted images are compared in Fig. 6.15 with the
original phase-field micrographies to see if the reconstruction through providing the yield
stress value can reproduce similar results than the phase-field software.

The images are ordered from largest to smallest value of the yield stress. However, talking
about the original micrographies, the order that they were obtained from the simulation is
not the same as they are ordered in the figure, being (a) the first one, followed by (e) and later
continuing by (b) all the way down to the last one, (j). This sudden drop of the calculated value
of the yield stress in the second micrography is due to bad performance of the post-process in
the images of early stages of the simulation (image (e)), providing a much lower value than
the one it should give following the tendency and the evolution of the microstructure.

On the other hand, the predicted micrographies follow a steady evolution with the coarsen-
ing of the precipitates and the disappearance of the eutectic wall as the yield stress diminishes.
This means that the prediction algorithm not only has a great performance in microstructure
prediction, but also is able to overcome the errors made by the post-process and provide a
better fitting microstructure for the given yield stress value.

The ideal way to validate the performance of the ANN would be to apply the post-
processing software of Chapter 4 to the predicted micrographies and compare its yield stress
value to the original one. For the images used this is not possible to do, as by reducing the
resolution of the images to use them in the VAE the features of the predicted microstructure
are not easy to obtain (mean radius of the precipitates, phase differentiation...). For better
resolutions of the predicted images this validation is very recommended to do, but it may
require large computational resources because of the training of the VAE, that would have to
handle training arrays of 500000 elements (735x735 pixels resolution) instead of the current
ones of 16000 (128x128 pixels resolution).
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(a) σy = 262.28 MPa. (b) σy = 213.08 MPa.

(c) σy = 191.86 MPa. (d) σy = 179.92 MPa.

(e) σy = 175.64 MPa. (f) σy = 164.66 MPa.

(g) σy = 157.23 MPa. (h) σy = 141.36 MPa.

(i) σy = 133.53 MPa. (j) σy = 132.34 MPa.

Figure 6.15: Original (left) and predicted (right) micrographies for several values of σy placed
in pairs.
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Results

The results of each part of the project are already shown in the previous chapters, evaluating
the performance of the post-processing software, the VAE and the prediction algorithm. As
a way to merge all the results together and give a general overview of the whole project, this
chapter is a summary that covers the overall performance and has the purpose to help the
reader understand the path followed.

As a reminder, the initial goals were to, by providing a value of the yield stress, be
capable to predict a corresponding microstructure of AlSi10Mg. Fig. 1.3 shows the scheme of
the four main parts of the project, the phase-field micrographies generation, the yield stress
computation, the encoding of the images using the VAE and the prediction algorithm to
achieve the expected goals.

Data base
A series of phase-field simulations are launched to create a data base to train both the

VAE and the prediction algorithm. The simulations consist on, starting from three different
AlSi10Mg microstructures, apply different annealing thermal treatments and save the evolu-
tion of the microstructure. With this procedure 1620 micrographies are obtained, a small but
sufficiently large data base for the training. As the objectives for the prediction are mod-
est, staying in concrete shapes of the microstructure and thermal treatments, the data base
is not required to be very large. Nevertheless, for future development of this research it is
recommended to widen the possibilities of the microstructure morphology. Examples of the
images obtained are shown in Fig. 7.1, where different microstructure morphologies can be
appreciated.

Post-processing and σy prediction
The micrographies are introduced in the post-processing software to obtain their features

and calculate the corresponding yield stress values. The features extracted are:

• Weight fraction of silicon, XwSi.

• Volume fraction of cell phase, fcell.

• Volume fraction of eutectic phase, feu.

• Volume fraction of the precipitates, Xd
v .

• Mean radius of the precipitates, r̄d.

• Mean distance between precipitates, l.
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(a) Initial state. Time = 0 s. (b) Time = 680 s.

(c) Time = 1362 s. (d) Time = 2044 s.

Figure 7.1: Evolution of the first microstructure with an annealing treatment and constant
temperature increase of Ṫ = 20.

With these features and the properties of the Al and Si the value of σy is obtained for
every micrography. The value of the yield stress is compared with the one experimentally
measured in similar microstructures shown in Fig. 7.2, taken from Zhao et al. (2019). From
the figure is possible to distinguish a cellular + eutectic microstructure in Fig. 7.2a and
Fig. 7.2b, resembling to the early stages in the phase-field simulation, while Fig. 7.2c and
Fig. 7.2d present an Al matrix + Si precipitates microstructure more typical of the final
stages of the simulation, when the heat treatment and the diffusion had led to the destruction
of the eutectic wall.

The real microstructures follow a similar evolution as the virtual ones, as with higher tem-
peratures the diffusion increases destroying the eutectic wall and leaving instead an Al matrix
with Si precipitates that do not follow an specific distribution. The yield stress values mea-
sured in the images of Fig. 7.1 and the experimental values extracted from the microstructures
in Fig. 7.2 are compared in Table 7.1 to contrast the order of magnitude of similar microstruc-
tures. It is remarked that this comparison is only to verify the order of magnitude of the yield
stress calculated, as the real and virtual micrographies do not have further relationship than
the similar aspect and phases distribution, but they work as an approximate comparison.

Image (a) Image (b) Image (c) Image (d)
Real microstructure 287 249 212 189

Virtual microstructure 262.28 214.41 154.83 139.3
Error [%] 8.61 13.89 26.97 26.30

Table 7.1: Values of the yield stress of real microstructures (experimental) and virtual mi-
crostructures (calculated) in MPa. The absolute error with respect to the experimental values
is also shown.
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Looking at the values it is evident that there is an important difference between the
experimental and computational results. This is something expected, as images are only
related because of having similar microstructures. The virtual micrographies are also in a
different scale where only a small part of the eutectic wall is observed, losing information
about the whole microstructure. Besides that, the order of magnitude of the yield stress is
similar, as well as its decrease tendency with higher temperatures of the thermal treatment
too.

Despite the yield stress values are not as precise as they would be required to be for
a proper mechanical properties analysis, they are still good enough for the purpose of this
project, as they are required just to associate the micrographies to a yield stress value to
develop the prediction algorithms, that are the main goal to achieve.

(a) Undamaged eutectic wall. (b) Damaged eutectic wall.

(c) Small precipitates. (d) Large precipitates.

Figure 7.2: Real AlSi10Mg microstructures taken from Zhao et al. (2019) for SLM manufac-
turing process and later thermal treatments. Image (a) represents the as built microstructure,
(b) and (c) were given a 250ºC and 300ºC annealing for two hours, and (d) went under a
Friction Stir Process (FSP) of one pass.

Variational Autoencoder
On the other side of Fig. 1.3, the VAE, explained in Chapter 5, enables the reduction of

the training data set size for the prediction algorithm. Paying a small cost in image quality,
the VAE is able to encode images of 735x735 pixels into a 32 element sized latent vector,
reducing the size of the data set size in a 99.95%. Nevertheless, the reconstruction
of the images is done in a 128x128 pixels resolution, a lower quality than the original image.
To give an idea of how this resolution reduction affects the image quality examples of both
resolutions are shown in Fig. 7.3.

By considering the resolution of the reconstructed images instead of the original one,
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(a) 735x735 pixels. (b) 128x128 pixels.

(c) 735x735 pixels. (d) 128x128 pixels.

Figure 7.3: Comparison of virtual micrographies with original, (a) and (c), and reduced
resolutions, (b) and (d).

when encoding the training images in the VAE the size reduction of the training data
set is of 98.4%, a still very high reduction considering the very good results of the image
reconstruction.

(a) Initial microstructue. t = 0 s. (b) t = 512 s.

(c) t = 1024 s. (d) t = 1534 s.

Figure 7.4: Comparison of original, (left) and reconstructed (right) micrographies for different
phases of the thermal treatment.
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The image reconstruction capabilities of the VAE are also shown in Fig. 7.4, where images
directly obtained from the phase-field simulations are encoded and decoded back, obtaining
almost the same image. Such successful reconstruction proves that the VAE, when properly
trained, is a very powerful tool that enables a great reduction of the training data sets sizes
for prediction algorithms.

Prediction algorithm
For the prediction of the images by providing a yield stress value the artificial neural

network is built and trained, using the same data base than for the VAE but reduced to latent
vectors. Each latent vector (output) has a yield stress value associated (input). The time
required for training the ANN can be shorter or larger depending on the epochs indicated.
The predictions are already very good with a training of 50 epochs, taking 43.9 seconds,
a relatively low time due to the small training data set size and the number of trainable
parameters in the network.

In Fig. 6.15 are compared a series of phase-field obtained images, where a value of the yield
stress is calculated through post-processing, together with the migrography predicted when
that same yield stress value is provided to the ANN. The results obtained are good, being
the predicted images capable of accurately reproducing similar microstructures as the original
ones, even fixing errors of the post-processing analysis like the bad yield stress computation
for micrographies from the early stages of the phase-field simulation.

Another way to validate the results from the prediction is to provide the algorithm with
several values of the yield stress, produce the corresponding micrographies and compare them
to other micrographies in the data base that have similar values of the yield stress. This is
done in Fig. 7.5, providing the ANN a series of σy values uniformly distributed between the
260 and 120 MPa.

It is observed that the micrographies compared are very similar between each other. The
original phase-field images are taken each from one of the three initial microstructures Fig. 3.3
to have a more diverse morphology to compare with. Depending on the predicted micrography
it has more or less similarities in the shape with one of the original micrographies or another.
This is because the ANN was trained with this same phase-field micrographies. If the ANN
was trained with more different micrographies it would take features from many more sources,
making predictions that are not that biased by the training data set. This results are very
successful for a first version of the prediction algorithm but there is a lot of improvement
margin if the structure is refined and the training data set is increased.
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(a) σy = 260 MPa.

(b) σy = 225 MPa.

(c) σy = 190 MPa.

(d) σy = 155 MPa.

(e) σy = 120 MPa.

Figure 7.5: Predicted micrographies (first column) compared with phase-field extracted mi-
crographies (second, third and fourth columns) for similar values of σy.
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Conclusions and perspectives

8.1 Conclusions

This project had as objective to develop a prediction algorithm that, by providing the mechan-
ical properties of the desired microstructure, enabled to generate a corresponding micrography.
The task was accomplished by using a wide variety of tools like the image analysis software
and machine learning structures such as a Variational Autoencoder and Artificial Neural Net-
works. Finally, a successful performance of the overall parts of the project made possible
reaching the following conclusions:

1. Confirming the results obtained in Zhao et al. (2019), it is possible to generate virtual
microstructures from the desired mechanical properties by using artificial intelligence
techniques. As this method has not gone much into the specific case of the AlSi10Mg
alloys and the LPBF manufacturing process, it is expected that the same results can be
reproduced for other materials always when an accurate model to predict the mechanical
properties of the material and an image analysis software to obtain its physical features
are available.

2. The microstructure analysis through the use of computer vision enables to retrieve most
of the necessary features of the microstructure to predict its mechanical properties.
Problems can be faced with the detection of characteristics like the distribution of
the different phases or the size of elements such as precipitates or cells. The analyses
were carried out in virtual micrographies reaching results close to the real properties of
the AlSi10Mg alloys, but for better performance as well as for the application in real
microstructures it is recommended to use state of the art softwares for image analysis
such as ImageJ.

3. It was proved that the use of VAE as a support for prediction algorithms applied to
images greatly decreases the computational resources required for training, enabling
larger training data sets and therefore a better performance. The main drawback of
this tool is a small loss in the quality of the image after reconstruction but looking at
the results obtained and considering the benefits it is considered negligible.

4. Not only one but many prediction algorithms are able to predict, with more or less accu-
racy, the micrographies associated to a given mechanical property. The use of ANN for
this task has been proven particularly successful, reaching very accurate reconstructions
of the virtual microstructures with a relatively affordable training time and expense of
computational resources.
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8.2 Perspectives

The current master thesis is considered as a first stage of a more ambitious project, enabling
us to test the viability of using artificial intelligence for material science purposes and to
evaluate the different tools that contribute to the best possible performance. Having that in
mind, it is necessary to enumerate the aspects to improve and the future work to be done in
order to improve the results obtained here.

1. The artificial vision module was found to struggle with the quantification of some phys-
ical features of the microstructure like the size of the precipitates or the differentiation
of the cellular and eutectic phases in the AlSi10Mg alloys. For this reason it is highly
recommended to try using more advanced image processing softwares in order to ensure
the quality of the results.

2. Further research is required in order to find a model that computes the yield stress for
all the possible microstructure morphologies of the AlSi10Mg alloys. Models to predict
the yield stress when the microstructure has the eutectic wall unbroken and the cellular
region well defined have been proven very accurate. Nevertheless, when applying heat
treatments that destroy the eutectic wall and trigger the precipitation of Si the models
that predict the yield stress may not be valid anymore (Table 7.1). For this issue to
be solved it is necessary to find a model that predicts the yield stress value when the
microstructure is simply an α-Al matrix with Si precipitates, splicing it with the first
one to be capable to accurately predict σy for all the possible AlSi10Mg microstructures.

3. Regarding the VAE, for building an algorithm capable of handling more diverse mor-
phologies of the microstructure it is necessary to enlarge the size of the training data set.
It is recommended to create new initial microstructures (Section 3.3) for considering all
the possible evolutions that the AlSi10Mg alloys can have under thermal treatments.
As the training data set will be increased it is also suggested to find a more optimal
structure of the VAE, including the size of the latent vector, in order to find the best
compromise between computational resources and encoding-decoding performance.

4. For the ANN used for the prediction of the latent vectors, a study of the hyperparameters
and the structure of the network would enable a possibly better performance and a
shorter training stage. It is also recommended to carry out a small hyperparameter
study for the other prediction algorithms as well as for new ones, as they can possibly
outperform the ANN using different configurations than the ones tested in this project.

5. Finally, it is highly suggested to contrast the results obtained with experimental data in
order to give more validity to this research. The sections of feature extraction and yield
stress computation need to be tested also for real microstructures. For using this same
procedure of training in a prediction algorithm with real microstructures it is necessary
to, firstly, improve the feature extraction and reproduce its results for real materials,
and secondly, generate a large amount of micrographies for training the VAE and ANN,
which may require large volumes of time and resources.
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Strain-stress curve prediction

List of parameters

Symbol Designation Units
b magnitude of Burgers vector of α-Al phase [nm]
fi volume fraction for phase i [vol.%]
G shear modulus of α-Al phase [GPa]
krecov dynamic recovery term [−]
kstord dislocation storage term due to trapping of dislocations by other

dislocations
[−]

kstorp storage term of geometrically necessary dislocations due to non
shearable particles

[m−1]

M Taylor’s factor [−]
αd constant related to the dislocation strengthening [−]
εT overall strain of the material [−]
dεT increment of strain of the overall material [−]
εi strain of phase i [−]
dεi increment of strain in phase i [−]
ρd dislocation density [m−2]
ρd0 initial value of the dislocation density [m−2]
σT overall stress beared by the material [MPa]
σi stress beared by the phase i [MPa]
σ0 intrinsic yield stress of aluminium [MPa]
σss solid solution strengthening component [MPa]
σp precipitation strengthening component [MPa]
σd dislocation strengthening component [MPa]

A.1 Introduction

The prediction of the yield stress, if done accurately, enables metallurgists to directly obtain
certain properties of the material from the characteristics of the structure, reducing costs and
time spent in tests for measuring hardness or deformation.

Once the yield stress prediction is achieved in Chapter 2 further calculations are done
to reproduce the strain-stress curve of the material, comparing it to experimental results
afterwards. The prediction of the strain-stress curve, in one way, keeps testing the validity of
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the yield stress model used. It also enables cheaper and faster ways of predicting the material
behavior than experimental tensile tests.

This appendix covers the procedure used for predicting the strain-stress curve in AlSi10Mg
alloys, starting with the development of the equations in Section A.2. The parameters used
for the calculation are given in Section A.3 and finally the results and comparisons with real
experimental results are shown in Section A.4.

A.2 Equations and model development

Both the theoretical model and the parameters used for the strain-stress curve prediction are
taken from Delahaye (2022). The model consists of an iterative process that solves Eq. (A.6),
giving the evolution of the strain and stress when traction forces are applied.

The model starts with the value of the yield stress at 0.2% of plastic deformation, calcu-
lated in Chapter 2. The only contribution to the hardening of the material that changes when
plastic deformation is applied is the dislocations hardening component, σd. The approach
taken for the evolution of the dislocation contribution is the one proposed by Bouaziz and
Buessler (2002), where, for multiphase materials, the mechanical work increment is equal in
both phases (Eq. (A.1)).

σcelldεcell = σeudεeu (A.1)

σcell and σeu represent the stress at each phase while dεcell and dεeu represent the strain
increment. At the same time, a linear law of mixtures is considered for obtaining both the
overall stress

σT = fcellσcell + feuσeu (A.2)

and strain

εT = fcellεcell + feuεeu (A.3)

of the material, being fcell and feu the volume fractions of the two phases.

As it is studied in Chen et al. (2017), strain and stress are different for the two phases.
This means that they should be calculated separately, to later obtain the overall value through
an homogenization process, as it is done in Chapter 2. Introducing Eq. (A.1) in Eq. (A.2) and
Eq. (A.3) the strains of the cellular and eutectic phases can be defined by the overall strain,
dεT .

dεcell =
dεT

fcell +
σcell
σeu

feu
(A.4)

dεeu =
dεT

feu + σeu
σcell

fcell
(A.5)

After differentiating the behavior of both phases, the evolution of the dislocation density
and the precipitation contribution to the hardening are calculated separately. For doing so
the Kocks-Mecking-Estrin model (Krausz and Krausz (1996)) is used, defining the increase of
the dislocation density through Eq. (A.6).
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ρd = ρd0 +M

(
kstord
b

√
ρd − krecovρd +

kstorp
b

)
ε (A.6)

being ρd, ρd0 and ε independent for each phase.

Solving the equation that defines the dislocation density requires an iterative process.
Many methods can be chosen but, as a good compromise between accuracy and speed, the
Dormand-Prince scheme is used. This method consists of two Runge-Kutta schemes, one of
4th order and one of 5th order, that, when computed at the same time and compared, enable
a much higher reduction of the error than with a simple RK. The implementation used is the
one in the Scipy library from Python.

Once the evolution of the dislocation density is predicted it is used to calculate the σd
hardening contribution, as it is shown in Eq. (A.7).

σd = αdMGb
√
ρd (A.7)

obtaining a different contribution for each phase ((σd)cell and (σd)eu).

Finally, the stress is calculated by the addition of all the hardening contributions

σcell = (σ0)cell + (σss)cell + (σp)cell + (σd)cell (A.8)

σeu = (σ0)eu + (σss)eu + (σp)eu + (σd)eu (A.9)

and the homogenization process is carried out to obtain the overall stress

σT = fcellσcell + feuσeu (A.10)

A.3 Input parameters

Once the model used to reproduce the strain-stress curve is defined its accuracy needs to be
tested. The example taken to ensure the robustness of the model is the one used in Delahaye
(2022), where the same model has been reproduced and compared with experimental values
of a tensile test. Thus, the parameters used for the test are taken from the mentioned thesis
as well as from its references, all given in Table A.1.

A.4 Results

After introducing the parameters from the previous section and solving the differential equa-
tion the evolution of the dislocation density in the material is obtained. This dislocation
density is the parameter that guides the increase of σd and therefore the increase of the stress
that the material is bearing. The dislocation density, as it is mentioned in Section A.2, is
different for both the cellular and eutectic phases, and their evolutions with the plastic strain
are shown in Fig. A.1.
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Parameters Units Value Reference
Cell Eutectic

fi [vol.%] 0.8 0.2 Delahaye (2022)
ρd0 [m−2] 1013 Nicholson (1962)

kstord [−] 2.28 · 10−1 1.55 · 10−3

Delahaye (2022)krecov [−] 1.72 · 101 9.15
kstorp [m−1] 0 1.03 · 107
αd [−] 0.3 Chen et al. (2017)
M [−] 3.06

Cheng et al. (2003)G [GPa] 25.4
b [nm] 0.283
σ0 [MPa] 10 10 Table 2.2
σss [MPa] 138.65 0 Table 2.2
σp [MPa] 0 444.58 Table 2.2

Table A.1: Example parameters for the strain-stress curve prediction from Delahaye (2022).

Figure A.1: Dislocation density evolution with plastic strain for cellular and eutectic phases.

In this graph is appreciated the much larger hardening (dislocation increase) of the eutec-
tic phase than the cellular one, as Si precipitates impede the dislocation movement making
them to accumulate. Once the dislocation density is obtained the strain-stress curve can be
computed. In Fig. A.2 is shown the evolution of the stress for the cellular phase (green), the
eutectic phase (blue) and the overall material (red), together with the experimental value of
a tensile test in an AlSi10Mg alloy.

As it can be easily seen in both graphics, the initial value of the plastic strain is not null.
This is due to the addition of an initial value of ε = 0.65 to fit the experimental curve, so
that both curves start at the same point, which is the yield stress point.
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Figure A.2: Predicted and experimental strain-stress curve for tensile test in an AlSi10Mg
alloy.
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