
https://lib.uliege.be https://matheo.uliege.be

Graph Neural Networks for Physical Models of Collective Cell Migration

Auteur : Pirenne, Lize

Promoteur(s) : Louppe, Gilles

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2022-2023

URI/URL : https://github.com/Pangasius/graph-displacement; http://hdl.handle.net/2268.2/18186

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Graph Neural Networks for Physical Models
of Collective Cell Migration

Université de Liège - Faculté des Sciences Appliquées

Travail de fin d’études réalisé en vue de l’obtention du grade de master Ingénieur Civil
en informatique, à finalité spécialisée en “intelligent systems” par Pirenne Lize.

Avec Louppe Gilles en tant que promotteur académique.

Avec Stillman Namid en tant que directeur de thèse.

Année académique 2022-2023

1

1 Introduction

Experimentation represents the basis of all modern sciences. “Physics,
and natural science in general, is a reasonable enterprise based on valid
experimental evidence, criticism, and rational discussion” [1] explains
the Stanford encyclopedia of philosophy. The interest in the world that
surrounds us resides in the very fact that every action has a consequence
and humans want to understand the mechanics hidden underneath.

Often times, one can directly observe the consequences to verify their
hypothesis. A concrete example for this approach can be the analysis
of fatigue and stress in materials. The experimenter repeatedly flexes
and bends an object until comes the inevitable forecast event of a plastic
deformation or the complete rupture [2].

The immediate reaction of the reader to this experiment might depend
on the background but most could agree that such data collection, while
fundamental, quickly becomes expensive both in time and money. In
construction and hydraulics, the use of scaled down versions that can
model parts of the complete and intricate physics has continued staying
relevant over the years [3]. However, even small, such tangible models
take time to create and are often built and applicable for only a singular
project.

The rise of computational power following the self-fulfilling prophecy
of Moore’s Law [4] over the past fifty year has introduced the shift of
perspective from the physical to the digital. The transition eventually
led to the description of finite element methods [5]. In this framework,
the space gets subdivided into finite elements, which are localised enough
to be considered homogeneous, described by constant values. These can
be used to solve partial differential equations that describe the exact
physics behind a phenomenon.

When the underlying mechanics are not entirely defined or known
and the models must make statistical inference, they rapidly become
powerless; Indeed, working with probabilities often entails the description
of the likelihood, the joint probability p(x, y) of the observed data x as
a function of the parameters of the model y, described in eq. (1) for the
discrete case. This equation is marginalized over the unobserved variable
z.

2

L(y|x) = p(x|y) =

∑
x,z p(x, y, z)∑
z p(x, y, z)

(1)

The computational power needed to estimate the likelihood of an
observation grows intractably [6]. Some techniques can work with ad-
ditional assumptions to reduce the cost of one computation, but the
ultimate goal is to find the model whose parameters y maximize the like-
lihood; in other words, the goal is to best explain the outcomes with a
model. This creates a necessity to compute argmaxyL(y|x), the optimal
parameters, and this becomes even more intractable. One cannot simply
hope for Moore’s Law to come to the rescue on this issue; it has recently
encountered its first barriers with the size of CMOS reaching their theo-
retical minimum and the law’s continuity now depends on the ingenuity
of the physical designs more than ever [7].

One of the alternative solution that does not rely entirely on the sheer
amount of computation that can be done comes from a branch of artificial
intelligence : neural networks. The neural network architecture attempts
to mimic the inner workings of the brain, the neurons [8]. The functions
of a singular neuron consists in receiving a signal which gets integrated
and finally communicated to other neurons. Since only electrical signals
can be propagated, the composition of the messages can be interpreted
a set of real numbers, turned into another set of real numbers. The most
important feature comes from the fact that the integration part can be
non-linear, but stays simple. The aggregation of neurons generates a
powerful net capable of simulating any effectively computable function,
provided they are correctly organized [9], while keeping a modest size.

Rather than computing directly all optimal y, the training of a neural
network in a supervised setting aims to slowly converge towards a local
extrema of the likelihood function for a set of input-output pairs x, y.
Naturally, the more pairs are available, the better the approximation of
the true likelihood, thus leading to a ‘more general’ local extrema.

Using this capable modelling solution, the focus can be shifted to the
problem at the heart of this work.

Biology often require modeling interactions between different objects
where many variables are hardly observable, whether it be molecules

3

and proteins [10], cells or viruses [11], or more macro-scale projects like
population migration [12].

The smallest elements create mechanisms analogous to communica-
tion due to their proximity using the very laws of physics. The ways in
which proteins could arrange are astronomical. However, purified pro-
teins refold spontaneously in vitro after being completely unfolded. This
means that the particular disposition of the distances and angles be-
tween atoms is determined by their primary structure, and the invisible
mechanisms they interact with [13].

Further up in scale, one can study for example the interactions of
viruses with one another. They can exchange and interact using genes
directly, interact by the intermediary of the host in which they live in, or
even by immunological interactions [14]. Those types of communication,
while different in their exact nature, can be analogous to the different
processes and means by which ‘the living’ organizes. In a more abstract
description, there are many direct, indirect, implicit or explicit ways in
which one or more individuals share and influence others in their imme-
diate or distant surroundings. In term, a network of individuals, objects
and mechanisms is constructed and explains perfectly the spontaneous
emergence of collective behaviours. The field of collective dynamics fo-
cuses on studying the emerging properties that naturally arise when these
complex systems develop over time.

These networks can be understood as generic graphs, which are ag-
nostic to the particular disposition and details of the inner workings
of the group studied. Studying the evolution of different systems can
be done efficiently using those graphs in association with the power of
neural networks. Given an initial disposition of each element an their
connection to one another, one can model how the system would evolve
or what properties would emerge.

This contributed to the recent interest in Graph Neural Networks
[15], or GNNs for short. Such a framework has shown numerous times
its ability to model communication networks efficiently and accurately
[16]. Large data-sets have been compiled and methods were developed
to harvest the similarities in the behavior in order to ease the transition
to a more specific and smaller problem [17].

Most use cases of GNNs rely on the attribution of different charac-

4

teristics computed using the combined information at a graph level to
then classify the individuals or identify particular characteristics [18, 19].
Some focus on modeling the interaction of arbitrary particles [20] and
even extract their data from videos [21]. In biology, most group dynam-
ics studies try to predict events such as zebrafish turning [22] or cell
dividing and delaminating [23], see fig. 1.

Figure 1: Use of a GNN to study delimination. (A) Schematic of cell division
and delamination in the basal layer of the mouse epidermis. (B) Schematic of the cell-
contact graph and temporal edges in the basal layer.[23]

In computational biology, the simulation of cell group mechanics can
be used to understand the healing of wounds, the development of cancers
or even embryo development [24]. Indeed, being able to accurately follow
the evolution of the ratio of a cell’s perimeter to its area, the jamming
index [25], can help predicting changes in behavior; high motility leads
to the index being higher and, for example, in a cancer of epithelial cells,
the non-motile original structure can evolve into a partly motile tumor
[26]. Due to this correlation between the movement and shape amongst
other factors, it is interesting to follow and study each cell’s trajectory
in its environment.

During this thesis, some data follow the displacement of neural crest
cells. These are responsible for a wide range of tissues and structures,
including parts of the nervous system, the jaw and skull bones, and the
face tissue. In addition to their multipotentiality in the living, these cells
are highly migratory and their migratory behaviour is understood to be

5

critical in developmental pathways 1.
The individual and global study of these displacements constitute the

field of cell migration.
The methods used traditionally rely on equations modelling the most

important interactions to make the predictions close to reality. Those
predictions are then verified using summary statistics, computed using
the behavior as a group of the cells with the ultimate purpose of closely
matching experimental data. These vary from the number of cells over
time to the average pressure experienced by individual cells, such an
example can be observed in fig. 2 [29].

Figure 2: Snapshot of a simulation of growing epithelial tissue, together
with summary statistics [29]

While it is not expected for these models to describe all the underly-
ing mechanisms, they are used as a conceptual tool to explain emerging
features and plan future experiments. They are often composed of few
parameters, most falling under the tens. In fig. 3, one can understand
the importance of cell migration in the development of the living.

1Paraphrased from Stillman Namid, supported by [27], [28]

6

Figure 3: Collective cell migration in development. Abdomen of Drosophila
melanogaster a cluster of histoblasts (green arrow) [30]

The other category of models used is well over-parameterized, and
appear in the form of Deep Neural Networks. This shift in framework
often allows for predictions consistent with the data at the cost of in-
terpretability. A welcomed byproduct of this trade-off is the ability to
construct these models without prior knowledge on the subjects studied
[31, 30]

When it pertains to cell migration, successful work has been done
to decrease the amount mislocated events [32], but the simulation of
trajectories based on real data has, to my knowledge, not been studied
with GNN.

In addition to helping understand cell migration, GNNs have been
used to help produce more accurate tracking in real data [33]. The model
created for this thesis can ultimately provide an additional tool to help
follow trajectories more accurately and in turn help produce better mod-
els.

In this thesis, a graph neural network generates likely dis-
tributions of the set of points corresponding to the positions
of cells after a discrete time step from a particular initial
disposition. The predictions of this probabilistic program will
be sampled to be used over and over again to simulate the
trajectories of each cell. From this generated set of trajecto-
ries, summary statistics that reflect the expected behavior will
be compared against the same statistics computed on 2D syn-
thetic data generated from a cell migration simulator and then
real, computer annotated, data coming from roaming neural

7

crest cells in a dish. Finally, the mechanics of the model will
be analyzed in order to collect an understanding of its decision
processes, which will be compared to the known mechanics of
the simulator.

8

2 Graph Neural Networks

The relationships between independent objects and their interaction is
particularly well represented as graphs. Indeed each object can be ab-
stracted as a vertex or vertex that has a particular set of parameters.
The connections between vertices can be represented as edges, to which
are attached other parameters, such as the distance between the two
vertices.

In a more formal definition, a graph G = (V,E) contains n different
vertices V ∈ 1, ..., n linked by the edges E ∈ V × V . The ith vertex is
represented by the vector hi ∈ Rd.

The idea behind GNN is thus to share the internal state of a vertex
with its direct neighbors, using the edges to identify them. The specific
information sent is usually called a message. Messages received by a
vertex are then aggregated together with the internal state to produce
a new internal state h′i ∈ Rd′, expressed in eq. (2) [34]. The functions
combine and aggregate are what often differentiate implementations.

h′i = combine(hi, aggregate(hj|j ∈ N(i)})) (2)

For example, in a standard convolution operation of a GCN [35], the
combine operator is a learnable matrix and the aggregate is a simple
sum over the neighbors.

By strategically doing multiple rounds of messaging, one can spread
the local information inside a vertex to potentially the whole graph, pro-
vided it is fully connected.

Similarly to standard neural networks, it has been shown that GNN
with random initialization can approximate all functions on graphs [34].

This framework allows for varying input sizes and small models can
handle interactions between numerous subjects, which is crucial in sim-
ulations where the exact layout is not known in advance and can poten-
tially be extensive.

While GNN can be used to compute high level data from the whole
graph, this thesis will be focusing on using the internal vertices of com-
munications as stand ins for real material exchanges or active forces and
the output will reflect the update between the inputs and the next inputs,

9

over the span of a time step.

10

3 Architecture

For each time step, the model produces the most likely rate of change ẋ
of each variable x as well as the uncertainty associated to that prediction
expressed in the form of the scale of the normal (or Laplace) distribution.
Let the parametric functions µ(m, θ) and σ(m, θ) (resp. b(m, θ)) repre-
sent the neural network of parameters θ and input m, the distribution
p(ṅ|m, θ) of the rate ṅ is expressed by eq. (3) (resp. eq. (4)).

The particular choice of which distribution to use has been investi-
gated with the upcoming comparison of hyper-parameters. The reason
for the limited scope of this comparison falls under an additional assump-
tion on the mechanics of the systems studied.

p(ṅ|m, θ) = N(ṅ;µ(m, θ), σ(m, θ)) (3)

p(ṅ|m, θ) = Laplace(ṅ;µ(m, θ), b(m, θ)) (4)

Once the values are predicted, they are added back to the previous
time step to produce the next input. To avoid unbounded computational
power use, the longest spans of input that are covered in the prediction
is horizon. This value is arbitrary but has a large influence on the per-
formances of the model, this will be discussed in the experiment section.
The cycle is depicted on fig. 4. To start this cycle, only the initial graph
is given, the model takes charge of incrementally lengthening its input
with its previous outputs. It stops when the maximal value duration
reached.

11

Figure 4: Cycle of the data for prediction in the training phase

The measure of the inaccuracy of the predictions during training,
the loss, is estimated at a vertex level by the negative log likelihood of
the displacements given the original positions −log(ṅ|m, θ) - or other
parameters to predict - with normal or laplace uncertainty depending on
the experiment.

The performances of the models are estimated using graph-level tasks,
which will be discussed further in the experiments part.

3.1 GNN considerations

The time complexity of GNNs vary depending on their internal represen-
tation, usually it is O(n2), n being the number of vertices. If the matrix
is sparse, the complexity pivots to O(m), m being the number of edges.
In rare cases, the pooling method can generate additional costs and, for
example, when doing vertex pair-wise shortest path computation, the
total is brought to O(n3) [36].

For the purpose of this research, there already can be a pre-selection
of the GNN model given that two features emerge from the application.
Firstly, the goal is to be able to handle a great number of vertices, since
each represent a cell; the collective behavior can be better studied with

12

more subjects. Secondly, given the physical limitations of the environ-
ment in which the cells evolve, the range of direct communication is quite
limited. This leads to the number of edges being quite low. The deter-
mination of a suitable model will thus be restricted to those having a
sparse matrix representation, ensuring a time complexity of O(m).

Due to computational restrictions, in most real cases, it is untractable
to produce a fully connected graph. The way in which this problem is
overcome is that the neighborhood of a particular cell is restricted to the
ten closest, no matter the distance. This graph is known as a knn-graph,
where the k stands in for the number of neighbors. This restriction is not
prohibitive to learning because it is possible to iteratively send messages
through edges, implicitly extending the number of connections, granted
a vertex is capable of integrating and passing on the messages without
compromising its internal state.

The construction of the connections can also be synthesized using a
GNN [37]. However, since the structure can directly corresponds to phys-
ical proximity [38, 39] and that the number of neighbors rarely surpasses
the tens, it is not necessary to over complexify the model.

The reason there is usually not a lot of connections is that, in a 2D
space, the vertex coordination is exactly 6 for the dual graph of a Voronoi
construction [40, page 67], which can be used to model biological systems
[41], illustration on fig. 5 [42]. Even when considering other geometries
and layouts, such as disk packing, the average degree in a maximal planar
graph like an Apollonian network is close to 6 as well[43, page 5] [44, page
3]. Therefore, 10 seems to be a fitting upper bound.

13

Figure 5: Voronoi area of cells under compression

That upper bound leads to a time complexity of O(m) = O(10n),
justifying the earlier choice of restricting the search in the possible GNN
models to those having a sparse representation.

After reviewing the different contestants for a GNN architecture,
GATv2 [45] seemed a fitting choice.

The main advantage of using GATv2 instead of a regular graph con-
volutional network is that the model can choose how much influence the
neighbors will have on its internal update dynamically. Two extreme sce-
narios can be thought of. In the first, the cell is being governed entirely
by a group behavior, thus setting its looping connection to a low value
and the others to a high value. In the second, a cell is isolated from the
others and focuses on itself almost exclusively. It is also advertised as
having better results than GCN, GraphSage [46] and GIN [47] - when
attention is needed and the interactions are complex - in its introductory
paper, though it is explicitly mentioned that it is usually impossible to
determine in advance which would be best in a particular setting [45].

The precise complexity of the interaction is relatively low in synthetic
data, but in real cases it may be great enough to justify employing a
framework with high expressiveness.

Introducing attention in graph networks also has the benefit to im-
prove the signal to noise ratio and reduce the graph complexity. Indeed,
attention permits the avoidance of particularly noisy regions [48].

It is notable that using a graph method in general improves inter-
pretability, and adding attention to that approach increases it even more

14

[48].
The core mechanisms can be explained in the three main eqs. (5)

to (7). The message to be sent e(hi, hj) from edge i to j, having the
internal state hi and hj respectively, depends on the attributes of the
edges ei,j and the internal states by the intermediary of the attention
given the eqs. (5) and (6), [45]. In these equations, the parameters of
the model a ∈ R2d′ and W ∈ Rd′×d are the ones being learned, and [·||·]
denotes the concatenation operator. Finally the new state of cell hi is
updated to h′i in eq. (7) using every cell hj in the neighborhood of hi, Ni,
mitigated by the attention.

e(hi, hj) = aTLeakyRelu(W · [hi||hj||ei,j]) (5)

αij = softmax(e(hi, hj)) (6)

h′i = σ(
∑
j∈Ni

αij ·Whj) (7)

The previous update is done for each head of the GATv2, and, since
the authors recommended to have numerous heads, this number has been
set to be 8.

This means that out of the 10 different maximum neighbors, a cell will
choose 8 times how it divides its attention between them. The resulting 8
states will then be averaged then passed on to the next GATv2 as input
which will regroup them however it sees fit to produce again 8 states.
The final GATv2 will produce its output and average them back in a
single state.

The types of graph that will be used in the following parts are undi-
rected, homogeneous and dynamic. Undirected meaning the attributes of
an edge from a vertex A to a vertex B is not necessarily the same as the
edge in the opposite direction, which can also not exist. Homogeneous
in the sense that every vertex is of the same type, and every edge also.
Lastly dynamic indicates that the structure is able to evolve over time.

The dynamic component in particular is implemented by recomputing
the edges and their attributes in between two steps of time. This means it
is possible to connect an additional network, that would have the purpose
of describing, for example, cellular division and death. This is beyond
what was studied for this thesis, and would require additional work to
neatly fit with the fixed tensors pytorch utilizes.

15

3.2 Synthetic data model

Figure 6: Architecture of the GNN for synthesized data

The main idea behind the architecture of the model is that values at a
vertex level get encoded in a latent space of a certain size. This will
form the message that is passed on to neighboring vertices. Since the
graph is constructed with self referring edges, the content of a vertex
is updated together with all the vertices connected in one step. This
operation is repeated “messages” number of times by every vertex. Once
all the information has been shared, the information contained in the
vertex is decoded in the desired format.

For a particular position {m} I want to predict the next position {n}.
To do this I will predict the displacement between the two time steps {ṅ}
and add it to {m} to have {m + ṅ} = {n}.

The value of the speed from the simulator was not utilized because
it would be too accurate compared to real data since it comes directly
from the inner states of the simulator. Indeed, in a real scenario, the
only values accessible are the positions and, from them can be computed
the one time step speeds along each axis, denoted dx and dy.

A few more parameters such as τ an inversely proportional measure of

16

stochasticity, the adhesion forces in cell interactions ϵ, the average radius
of all cells r, the time between two steps dt, the length of the experiment
totaltime, and the stiffness between pairs k have been added to be able
to differentiate environments.

The fig. 6 summarizes the synthetic data architecture in a drawing.

3.3 Real data model

Figure 7: Architecture of the GNN for real data

The only difference between this model and the one used for the synthe-
sized data is that the attributes that can be accessed and those that are
predicted can be different.

The positions, similarly to the previous case, are used to compute the
one time step speeds. Additionally, the bayesian object tracker used to
isolate the cells in a video outputs the orientation of the cell, the length
of its minor and major axis and the area it occupies. While those are
not strictly necessary, there is no downside to adding them, and it will
provide more ways to compare the generated values against.

It is to be noted that the orientation being cyclic implies the loss has
to incorporate a cyclic function for this field in particular. For this, the

17

difference ∆θ̇ is being recomputed as in eq. (8). A linear term has been
added to disfavor unlimited growth of the actual value θ̇ predicted.

∆θ̇ ←− sin(mod(|∆θ̇|, π)) + 0.01 ∗ |∆θ̇| (8)

The environmental descriptor that gave out the particular settings of
the simulation are no longer accessible. In the case of this thesis, every
video that was used features the same type of cells left to roam freely in
a dish; there should be no need for additional parameters.

For each attribute is computed the mean and variance.
The fig. 6 summarizes the real data architecture in a drawing.

3.4 Encoding and Decoding

The first step in the processing of the inputs is to realize that providing
them directly to be passed on as messages would impair the capabilities
of the model. Indeed, some parts are possibly not relevant or redundant
for the production of the output. Others could be more efficiently utilized
by another variable representing them together.

It is then natural to encode the features of an input X with a dimen-
sion of dX such that X ∈ RdX into the latent space Z with dimension dZ
using a deterministic function f : X −→ Z. Such a function, as any other,
can be represented by a sufficiently large and deep multi-layer perceptron
(MLP).

Once the sharing of messages has been done by the GNN, the process
can be reversed with another function f ′ : Z −→ Y , represented by another
MLP.

To add the possibility of having a sequence of inputs X1, X2, ..., XH of
the length horizon H, a sequence-to-sequence model can be introduced
in place of the encoder MLP. While recurrent neural networks (RNN)
like LSTMs [49] and GRUs [50] have been used in the past, the trend has
shifted with the apparition of transformers [51]. Transformers have the
advantage of leveraging GPU power to simultaneously process a great
number of inputs. Indeed, RNN have the downside of successively iter-
ating on each part of the sequence to form an internal representation of
it, which is usually much slower. Their computational complexity also is

18

quadratic in the size of their hidden dimension, compared to linear for
transformers. Their architecture as imagined in the original paper [51]
can be seen on fig. 8.

Figure 8: The transformer architecture [51]

The main mechanism behind transformers is self-attention. It pro-
duces an output for each head given three inputs for a sequence length
n and hidden dimension d : Q,K, V ∈ Rn×d, according to the eq. (9)
[52]. This can be seen in the fig. 9. Each output is then concatenated or
aggregated.

O = softmax(QKT)V (9)

19

Figure 9: (left) Scaled Dot-Product Attention. (right) Multi-Head At-
tention consists of several attention layers running in parallel [51]

Transformer still do suffer from a feature of its main mechanism :
attention. Each part of the input sequence is used with every other
to produce attention metrics, which creates a quadratic complexity in
the length of the sequence. (Note : this is addressed by the dilated
attention introduced recently [52], having linear complexity) Thankfully,
the horizon, which corresponds to the length of the sequence, is expected
to be very limited.

Another advantage of using transformers is that they naturally lever-
age the encoded information prior to message passing and uses it in
conjunction with the updated state to produce the desired output. This
is more of a byproduct of the pytorch implementation that was used, but
is still most welcome.

Lastly, it is important to note that there needs to be a way for the
transformer to know the positions of the inputs in the sequence. For
this, a positional encoding is created using a variable named “time em-
bedding”. Simply defined as ti = pi

length , where pi is the position in the

sequence of the ith member, ranging from 1 to length.
For the purpose of this thesis, only the encoder and decoder parts of

the transformer are used. They correspond to the two main blocks of
fig. 8. The depth has been fixed to N = 6 arbitrarily, these were the
number used in the original paper [51].

The dimensionality of the inputs and outputs has been changed from
the original dmodel = 512 to d = 256 for the final results, though this

20

particular number will be appearing in the different tunings as “size
of messages”. To avoid having a multitude of hyper-parameters, the
messages exchanged and all internal dimensions share the same value,
the aforementioned “size of messages”.

The number of heads has been decreased from h = 8 to 4. This is
justified by the fact that the horizon value, which determine the length
of the sequence, is usually very low. And a small sequence should not
require as many heads.

The input and output corresponding directly to the data do not have
a size of 256 “as is”. This is the reason behind the introduction of simple
MLPs preceding the encoder and following the decoder; one up-scales
the size from the standard input to the desired number, the other down-
scales it from 256 to the number of output channels, being one for each
quantity, doubled to include the uncertainty measure.

3.5 Assumptions

A few assumptions are made in this prediction. The first being that the
system behaves as a Markov’s chain of order one, meaning an assumption
is that the displacement can be predicted with only the previous position
and the previous displacement. Or more formally, given Ai := {mi, ṅi} ,
we have the eq. (10).

P (Ai+1|Ai) = P (Ai+1|A0, A1, ..., Ai) (10)

The length of time over which we aggregate past results expands this
relation to include not one but H - the horizon - previous states, as can
be seen in eq. (11). This remains a Markov’s chain. Indeed, one can
aggregate H states Ai−H , Ai−H+1, ..., Ai in a macro state Mi =

⋃5
h=0Ai−h

and obtain a formula analogous to eq. (10) in the form of eq. (12).

P (Ai+1|Ai−H , Ai−H+1, ..., Ai) = P (Ai+1|A0, A1, ..., Ai) (11)

P (Mi+1|Mi) = P (Mi+1|M0,M1, ...,Mi) (12)

The second assumption made is that the distribution of the condi-
tional displacements in a given direction p(ṅx), where X is ensemble of

21

values the position in the axis x can take, can be represented as a normal
(or laplace) distribution using the mean (or location) and the standard
deviation (or diversity).

By construction, the variables {nx} and {ny}, and more precisely
{ṅx} and {ṅy}, are drawn independently from one another. Meaning
they can only represent p(ṅ) as a sum of independently drawn variables
of their distribution.

This leads to the vector {ṅ} following the distribution with µṅ =
µṅx

+ µṅy
and σ2

ṅ = σ2
ṅx

+ σ2
ṅy

+ 2ρσṅx
σṅy

.
The third major assumption comes from the assumed distributions

themselves. Indeed restricting the probability space to a particular dis-
tribution imposes many additional implicit assumptions.

The choice of the normal distribution came from the fact that it is
rather common in many problems, such as measurement errors [53]([54]
presents the use of a scaled mixture of skewed-normal) which can be
somewhat analogous to its use in this thesis. To go even further, the
normal distribution is also the distribution of “orthogonal velocity com-
ponents of particles moving freely in a vacuum” [55, page 5]. Granted
cells are not particles and are not moving freely, it is still a path that
needed to be investigated.

On the other hand, it felt needed to have another reference distri-
bution to compare and contrast to. For this, the Laplace distribution,
another giant in statistics, was chosen. The problem leading its cre-
ation was stated as “Déterminer le milieu que l’on doit prendre entre
trois observations données d’un même phénomene.”, which is close to
the likelihood aimed to be computed here.

Future work might be interested in looking at other distributions,
mainly multivariate and/or skewed, to better approximate the true hid-
den underlying mechanics.

3.6 Many to one

The reason for the use of a sequence only for the input in the encoder
is that, to transmit the messages, the edges in the graph have to be
computed. One could use the same graph disposition for one full horizon
prediction but the flexibility of the graph representation would then be

22

lost.
Indeed, the architecture used performs as in algorithm 1, while the

other would act as in algorithm 2. Since it is possible to generate a graph
only on X or O, there would be an offset of horizon between the actual
state of the graph and the one used in the computation.

Algorithm 1 Many to one behavior, X input, Y internal state, O output
[Xt−H , ...Xt] = Sample With Horizon(t, H)
G = Propagation Graph(Xt)
Yt = Encode([Xt−H , ...Xt])
Yt+1 = Propagate(Yt, G)
Ot+1 = Decode(Yt+1, Yt)

Algorithm 2 Many to Many behavior, X input, Y internal state, O
output

[Xt−H , ...Xt] = Sample With Horizon(t, H)
G = Propagation Graph(Xt)
[Yt−H , ...Yt] = Encode([Xt−H , ...Xt])
[Yt+1, ...Yt+H+1] = Propagate([Yt−H , ...Yt], G)
[Ot+1, ...Ot+H+1] = Decode([Yt+1, ...Yt+H+1], [Yt−H , ...Yt])

This method is also remarkably slower - especially in testing -, and
did not bring any benefit in performance, see in the Appendix fig. 35.

23

4 Experiments

For each data set available, a tuning of the hyper-parameters of the mod-
els’ architecture has been performed to provide the best results possible.
These tests and comparisons also allows for a deeper understanding of
the importance of each parameters.

Once the parameters have been found, an in-depth analysis of differ-
ent statistics summarizing the development and activity of the groups
of cells under scrutiny has been made. This will be used to compare
how accurately the simulation made by the model follows the expected
behavior.

Finally, the decision processes of the model have been studied by
exploiting the explainability of GNNs.

4.1 Data-sets

4.1.1 Synthetic data

Allium is a simulator created specifically for modelling collective cell
migration using a minimal number of bio-physically inspired parameters
by Dr. Namid Stillman and Prof. Silke Henkes. It creates trajectories of
active Brownian particles subjected to forces whilst in proximity to one
another [56].

For the tests realized in this thesis, two parameters are of particular
interest. v0 or v the propulsion force of a particle and the persistence
timescale τ . High values of v will lead to velocities being higher. Lower
τ will decrease the time between changes in direction, leading to more
randomness in their trajectory.

Four data sets have been produced using these two variables : high
tau (ht) and high velocity (hv), high tau and low velocity (ht lv), low
tau and high velocity (lt hv) and finally low tau and low velocity (lt lv).
It is expected that the more predictable trajectories ht hv, which are
governed almost entirely by their propulsion force and interactions, will
yield to better results. On the opposite hand, lt lv, highly unpredictable
and inconsistent, is expected to be the hardest to fit.

The particular equations used to update the position r are defined
in eqs. (13) and (14), where η is the friction in the system and n is the

24

normal to the particle. Also appear k, the stiffness of the interaction, r
the distance between two particles of respective sizes Ri and Rj. Finally,
there is the dimensionless parameter ϵ.

ṙi = v0n̂i +
1

η

∑
j

Fij (13)

Fij(r) =

k(r − bij) if r

Ri+Rj
< 1 + ϵ

−k(r − bij − 2ϵbij) if 1 + ϵ < r
Ri+Rj

< 1 + 2ϵ

0 otherwise

(14)

4.1.2 Real data

In this setting, neural crest cells are left to roam and evolve freely in a
dish. The videos were selected for their low rate of division and death,
and were collected in the lab of Prof. Roberto Mayor and his postdoc
Dr. Adam Shellard [57]. A gallery of images from a video automatically
annotated can be seen on fig. 10 and the corresponding tracked cells on
fig. 11.

Figure 10: Gallery of computer annotated images from a dataset video :
Data3-25.avi

Figure 11: Gallery of reconstructed cells from a dataset video : Data3-
25.avi

25

Once the positions were annotated, a bayesian tracker [58], [59] iden-
tified individuals cells and their positions over time. These tracks can be
seen on fig. 12. The codes for this and data were provided by Dr. Namid
Stillman.

Figure 12: Tracks of all cells in Data3-25

It is to be noted that such a method contains inherent uncertainty and
mistakes that are not always possible to automatically filled. The table 1
contains the different statistics of the elements that were retrieved from
each video. The filling rate corresponds to 1 − sparsity of the matrix
of size [0 : max(time), tracks, attributes] containing all tracks where the
first apparition of the track is considered as a missing value because the
speed cannot be correctly evaluated.

Video Tl Tl,g Filling
V. 3-12 19 17 0.816
V. 3-18 296 224 0.199
V. 3-25 109 81 0.485
V. 3-72 81 68 0.590

Table 1: Table of statistics for real data.
Tl : the number of tracks longer than four time steps.

Tl,g : Tl with fewer than two gaps in a row.
Filling : the filling rate of Tl,g

26

4.2 Protocol

4.2.1 Training and testing

For each cell-specific value, except for the degree of the vertex, a distribu-
tion is predicted by the neural network. Since two values are produced,
both normal and Laplace distributions can be used. They will be com-
pared in the experiments.

During the training phase, only the location µ is used. The scale σ
(or b for laplace) acts as a confidence metric to measure how much the
mean squared error is important; the more the model trains, the closer
this value becomes to the aleatoric uncertainty of the data.

To update these values, the loss of eqs. (15) and (16) are used. In the
real dataset, missing values can appear. To avoid fitting on uninitialized
data, a mask M composed of ones (present) and zeros (missing) is passed
on as well. The loss is simply updated to be Lmasked = L⊙M , where ⊙
represents the element-wise or Hadamard product.

LNormal =
(µ(m, θ)− ṅtrue)

2

2σ2(m, θ)
+ log σ(m, θ) (15)

LLaplace =
|µ(m, θ)− ṅtrue|

b(m, θ)
+ log b(m, θ) (16)

The algorithm to compute the update of the training phase is defined
in algorithm 3.

To smooth out the beginning of the training, curriculum learning is
used. It will gradually increment the horizon of prediction. The start
needs only the model to predict the immediate next step. At every
epoch, this duration will increase until arriving at the threshold, being
8 for synthetic data and 4 for real. From which point on it will stay
constant.

Since there is no need for the entire length of the data at once, a
random valid starting position is chosen and the update will only take
this part into account. In the case of the real data set, only positions
in which every detected cell is being detected for the entire length are

27

considered valid. This is the reason why the maximum predicted length
is shorter, it will lead to more valid starting points.

This first data point is then updated as being the output to iteratively
produce further time steps. The graph needs to be updated to reflect the
disposition of the newly created entry; the edges, edges attributes and
degree of each vertex are recomputed. In the case a prediction for the
speed of the cells is not produced, this reconstruction also provides the
updated immediate velocity.

At every prediction, only the maximum likelihood estimation is added
back to the attributes of the cell during training (including the regular
testings that creates the loss estimation).

Algorithm 3 Training

while e in epochs do
length = CurriculumLength(e)
while d in data do

data start random = RandomSample(d, length)
current step = FirstData(data start random)
produced = {}
while l in length do

produced ←− MaxLikelihood(Simulate(current step))
current step = current step + LastOf(produced)
ReconstructGraph(current step)

loss = ComputeLoss(produced, data start random)
UpdateModel(loss)

In the evaluation phase, when the training and regular testing are
concluded, the algorithm is slightly modified to algorithm 4. In this
version, the entire distribution is sampled from with Draw rather than
taking the maximum likelihood. This allows for the creation of a unique
plausible trajectory which is embedded with the aleatoric uncertainty.

28

Algorithm 4 Evaluation

while e in epochs do
length = CurriculumLength(e)
while d in data do

data start random = RandomSample(d, length)
current step = FirstData(data start random)
produced = {}
while l in length do

produced ←− Draw(Simulate(current step))
current step = current step + LastOf(produced)
ReconstructGraph(current step)

loss = ComputeLoss(produced, data start random)
UpdateModel(loss)

The update of the model is performed via gradient descent, which
uses automatic differentiation. The neural network is represented as a
set of weights. When it performs a guess it propagates forward the input
by multiplying and/or adding it with its internal weights. The prediction
is then given by the last values computed.

The derivative of the loss - of the error made with respect to the
data sample - is computed with respect to each parameter of the neural
network. Depending on the optimized used, a portion of these derivatives
are then subtracted to perform a gradient descent.

The particular optimizer used in this thesis is AdamP [60]. The
weight update is performed as in eq. (17) with the learning rate η. De-
pending on its value - chosen in eq. (20), either a simple momentum
update as in eq. (18) is performed, or a projection as defined in eq. (19).

cos(a, b) := |aT b|
||a|| ||b|| being the cosine similarity, δ = 0.1 a parameter, the

l2-normalized vector ŵ = w
||w||2 .

wt+1 = wt − ηqt (17)

pt = βpt−1 +∇wt
f(wt) (18)

29

Πwt
(x) := x− (ŵẋ)ŵ (19)

qt =

{
Πwt

(pt) if cos(wt,∇wf(wt)) <
δ

dim(w)

pt otherwise
(20)

This choice is motivated by the better results advertised in the intro-
ductory paper [60]. Indeed, they claim that the traditional momentum
update suffers from rapid decrease in effective step size; the step size in
the in the ”actual” space of search Sd−1. So they scale the step size from
the state of search Rd to Sd−1, preventing this early fall-off and improper
convergence.

All the experiments were performed on the Alan GPU Cluster. For
the synthetic data-set, training lasted 50 epochs of 900 samples on a
single 12GB GPU amounting to around 8h. The real data-set training
lasted 80 000 epochs of 3 samples, amounting for 15h on a single 12GB
GPU. After every one (resp. 50) epoch, the model was tested against the
50 (resp. one) sample test set to produce a test loss curve.

4.2.2 Evaluation

Before any training has occurred in supervised learning, when the amount
of data allows it, the training samples are divided in three parts. The
training, testing and validation set. On the first the model will be fitted in
training as the name suggests, the iterative improvements and selections
of free parameters are performed using the testing set and the validation
set is only at the very end to have an unbiased estimate of the true
performances. This is the manner in which the synthetic data has been
treated.

When the quantity of data gets too small, we can use the leave one
out method. One singular data sample is isolated from the other before
training and left to be the test sample. New models are successively
trained for each left out sample. The performances of the methods used
then have to be inferred from the ensemble of models created. Since

30

only four samples were available for the real data, this method was the
preferred choice.

When the training is concluded, four different summary statistics will
help in determining the performances of the model. Each of those being
commonly used for active systems like cells (Vast use of MSD in tracking
living cells [61], Velocity analysis [62, page 50]).

• Mean square displacement

The matrix of positions pos is organised as a matrix of dimensions
(T,N,A), respectively the time length T , the number of cells N
and the number of axes A.

The equation to determine the value of MSD at a time i is eq. (21).

msdi =

∑T−i
t=0

∑N
cell=0

∑
a∈axes(pos[i + t, cell, a]− pos[t, cell, a])2

N ∗ (T − i)
(21)

The measure is particularly useful to determine the nature of the
movement. In the logarithmic scale, a linear MSD indicates, in
average, a ballistic motion; the trajectory of the group or its ex-
pansion will appear as if no other force acted upon it, and it will
simply continue unperturbed.

• Mean velocity

The matrix of speeds is arranged in the same manner as for the
positions. The equation is thus given in eq. (22), and gives for a
particular point in time i the L2-norm of the speeds.

mvi =

√(∑N
cell=0

∑
a∈axes(speed[i, cell, a])2

)
N

(22)

• Scaled velocity component distribution

31

The SVCD is the L2-norm of the normalized histograms for each
axes. Defining the function in as in eq. (23) and an interval of values
[a, b] subdivided in s partitions of length l leads to the introduction
of the formula for the SVCD as eq. (25).

in(s, v) =

{
1, v ∈ [a + s ∗ l, a + (s + 1) ∗ l]
0, otherwise

(23)

mean speed =

∑T
t=0

∑N
cell=0

∑
a∈axes speed[t, cell, a]

T ∗N ∗ axes
(24)

svcd(s) =

√√√√ ∑
a∈axes

in(s,
T∑
t=0

N∑
cell=0

speed[t, cell, a]

mean speed
)2 (25)

The SVCD offers a more in depth look at the velocities in each axis.
In the case of the synthetic data, a distinct spike is expected for
the values chosen in the simulator. A symmetric SVCD indicates
the center of mass stays in place on average, while an offset will
reflect a shift over time.

• Scaled velocity magnitude distribution

The SVMD is the normalized histogram of the L2-norm of the speed
vector.

svmd(s) =

∑T
t=0

∑N
cell=0 in(s,

√∑
a∈axes speed[t,cell,a]

2

mean speed)

T ∗N
(26)

32

4.3 Result

4.3.1 Synthetic data - Tuning

Before analysing the results, all parameters need to be chosen. To avoid
random guessing, a comparison of performances for one parameter was
done, all other being equal.

All tested parameters and their values are summarized in table 2.
The best results were achieved for the parameters in bold red, while
bold green is a correction for visual quality over metric. Only one
setting -lt hv- out of the four reported on -ht hv, lt hv, lt lv, ht lv- is
used in the comparison to limit the number of graphics, which appear in
the Appendix.

The distance between each curve with the reference curve has been
summarized in tables 3 to 7.

Name Base Range
Setting lt hv lt hv

Distribution laplace laplace, normal
Horizon 5 1,2,3,4,5

Number of messages 4 1,2,3,4
Size of messages 128 32,64,128,256,512,1024

Number of channels 8 4, 8

Table 2: Tuning range and base parameters

Curve Laplace normal
MSD 14597.07 9124.14
MV 1.94 2.24

SVCD 2.97 2.87
SVMD 11.61 11.55

Table 3: Distances for each metric in the tuning of the distribution

33

Curve 1 2 3 4 5
MSD 44793.36 32309.14 19003.61 17537.93 14597.07
MV 1.39 1.42 1.41 1.64 1.94

SVCD 2.0 2.26 2.63 2.87 2.97
SVMD 10.24 10.92 11.37 11.54 11.61

Table 4: Distances for each metric in the tuning of the horizon

Curve 1 2 3 4
MSD 11128.26 14855.8 12894.06 14597.07
MV 1.56 1.46 1.49 1.94

SVCD 3.0 2.92 3.01 2.97
SVMD 11.63 11.58 11.64 11.61

Table 5: Distances for each metric in the tuning of the number of mes-
sages

Curve 32 64 128 256 512 1024
MSD 10202.08 15076.61 14597.07 22606.02 17429.5 18326.32
MV 1.72 1.79 1.94 1.75 1.6 1.84

SVCD 2.99 3.02 2.97 2.74 2.88 2.86
SVMD 11.62 11.64 11.61 11.46 11.55 11.54

Table 6: Distances for each metric in the tuning of the size of messages

Curve 4 Channels 8 Channels
MSD 1747.0 14597.07
MV 1.57 1.94

SVCD 3.23 2.97
SVMD 11.71 11.61

Table 7: Distances for each metric in the tuning of number of channels

4.3.2 Synthetic data - Performances

All models under this section were trained using the tuned hyper-parameters
for lt hv.

34

4.3.2.1 high tau, high velocity

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Velocity distribution, component (x,y) and magnitude

Figure 13: Results in the validation data set high tau high velocity, tuned
parameters

35

As expected, ht hv is the easiest setting. Even though the parameters
have been optimized for lt hv, all summary statistics seem to be repro-
duced quite well.

(a) Frame 25 (b) Frame 50

(c) Frame 75

Figure 14: Comparison of the trajectories for a sample in the validation
data set high tau high velocity

Interestingly enough, some cells seem to stay inside the circular pat-
tern in figs. 14b and 14c.

It may be the case that this behavior often appears and the synthetic
data sampled happened to not have it. It could also be that the model
uses some particles as bridge to communicate to the other side, though
this is just speculation.

36

4.3.2.2 low tau, low velocity

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Velocity distribution, component (x,y) and magnitude

Figure 15: Results in the validation data set low tau low velocity, tuned
parameters

37

The model for lt lv fails in all summary statistics. The speed distribution
in fig. 15e for the x axis is slightly skewed, but it is nowhere close the
ground truth. The mean velocity seem to be rising constantly instead of
staying constant.

(a) Frame 25 (b) Frame 50

(c) Frame 75

Figure 16: Comparison of the trajectories for a sample in the validation
data set low tau low velocity

The dispersion of the cell over time is better than the case of lt hv,
which can be seen in the Appendix on fig. 27a, but it suffers the same
issue with the speeds vectors being too big as in ht lv, also appearing in
the Appending on figs. 25c and 25d.

Tuning has been attempted directly on lt lv but there was no sub-
stantial difference from the tuning on lthv. Those can be seen in fig. 34
in the Appendix.

38

4.3.3 Real data - Tuning

Tuning also has been realized on the real data in case the optimal pa-
rameters for the simulator are different.

The setting corresponds to the number of the sample left out in the
leave one out method. All parameters tested appear in table 8, the final
choices are highlighted in bold red.

The distance between each curve with the reference curve has been
summarized in tables 9 to 12.

Name Base Range
Setting Leave 0 Leave 0

Distribution laplace laplace, normal
Horizon 1 1,2,3,4,5

Number of messages 2 1,2,3,4
Size of messages 256 32,64,128,256,512

Number of channels 8 8

Table 8: Tuning range and base parameters for the real data set

Curve Laplace normal
MSD 579455.66 135598.01
MV 138.52 135.26

SVCD 2.49 0.78
SVMD 2.36 0.75

Table 9: Distances for each metric in the tuning of the distribution

Curve 1 2 3 4 5
MSD 579455.66 3779164.11 675918.97 111205.17 167132.76
MV 138.52 672.83 194.42 63.04 115.27

SVCD 2.49 2.27 3.0 2.0 3.1
SVMD 2.36 1.67 2.65 1.86 2.61

Table 10: Distances for each metric in the tuning of the horizon

39

Curve 1 2 3 4
MSD 17027398.02 583976.91 6902861.04 1837563.3
MV 1359.04 138.39 708.75 365.44

SVCD 2.03 3.01 2.41 2.73
SVMD 1.86 2.89 2.07 2.05

Table 11: Distances for each metric in the tuning of the number of mes-
sages

Curve 32 64 128 256 512 1024
MSD 1081909.13 84307.12 13105693.17 584518.37 2322588.77 271614.37
MV 330.93 50.4 527.99 150.81 380.99 135.37

SVCD 3.39 1.49 3.7 2.47 2.73 2.18
SVMD 2.62 1.16 2.38 2.17 1.94, 2.01

Table 12: Distances for each metric in the tuning of the size of messages

4.3.4 Real Data - Performances

To diminish the amount of variance in the training that was spotted
to potentially be problematic, the training loss has been reduced from
1e − 3 to 5e − 5. The curriculum training has also been eased from
min(epoch + 2, 4) to min(epoch//32 + 2, 6).

While in lesser effect, the variability in the losses -especially in the
training loss- is still present in fig. 17f. Perhaps due to the limited data
set size, the model starts over-fitting quite early. “Leave 1” started with
a better initialization and the variability it experiences in the over-fitting
region is way less prominent.

The skewness in the velocity has a hard time being translated in the
model, which shows a preference for small velocities around 0 in the
SVCD and SVMD of figs. 17c and 17d.

In the first twenty iterations of any scenario the velocity is much
higher than it needs to, then the system settles down to a really good
approximation of the true velocity in ??. Although the velocity recovers,
the MSD never does and its shape does not match the reference shapes.

It is to be noted that, on rare occasions, the training goes haywire
and the loss reaches − inf in a few training samples. This is problematic

40

because, in term, the model produces nan only. Relaunching a new
training with a new model is a band-aid solution but the source of this
issue remains to be found.

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

41

(e) Training losses (f) Testing losses

Figure 17: Final results for the real dataset

42

4.3.5 Real data - Decision processes

There is at least two types of choices the model proposes makes that can
be explained through its attention mechanisms and its graph nature.

The first exploits the attention computed in eq. (5). Each edge has
the attribute of the distance between the two vertices it connects only.
GaTv2 computes an attention weight based upon this value and the
internal states of the connected vertices. One can thus analyse the re-
lationship of the distance to those weights an propose an explanation of
the computation of the edge attentions.

The second focuses on the state of each vertex with its neighbors and
how every attribute contributes to their final state.

4.3.5.1 Edge attention

The implementation (pytorch geometric) of the GNN allows for an easy
retrieval of the attention after the softmax of eq. (6) using the Attention-
explainer. A copy of the matrix is saved after the softmax operation.
Saving one line earlier allows for the extraction of the raw weights.

In the following figs. 18a to 18d, respectively from left to right, any
vertex can be analyzed directly from its outgoing (source) or incoming
(target) edge, or all can be viewed together. In particular, a random
vertex named “vertex 0” has been picked in each scenario.

From the shape of the MSD in the previous results, it is expected
that, as the time step evolve over time (purple to yellow), the average
distance increases. Certain cells can also form clusters and stay close,
explaining the small distances that can still appear later on.

A third order regression, in red, has been provided for reference.

43

(a) Leave n°0 out

(b) Leave n°1 out

44

(c) Leave n°2 out

(d) Leave n°3 out

Figure 18: Attention weight over distance between cells
Single cell as source (left) Single cell as target (middle) All edges con-
founded (right)
Time step represented as colors from 0 (purple) to 47 (yellow)

On multiple graphs, especially in figs. 18c and 18d, evidence of cor-
relation appear clearly in the confounded edge weights plotted against
the distance between the vertex they connect. The precise shape of this
correlation is hard to determine, though there seem to be multiple over-
lapping linear trends in fig. 18c (right).

45

The Allium simulator having defined a linear relationship for its driv-
ing force, it makes sense to retrieve the same behavior. This relationship
is much more tame in the synthetic data, see in Appendix fig. 29.

It may be the case that the significantly higher uncertainty of the real
model imposes a need to create a stronger bond as the cells distanciate to
force a grouping. In essence, the message passing averages the contents
of the vertices depending on their attention; the attention heavily being
increased tends to lob the softmax into averaging more to the distant
cells.

4.3.5.2 Attributes importance

The contribution of any attribute or edge can be measured using the
mutual information. From this, the GNN-explainer identifies the sub-
graph GS ∈ G and the features {xi|vi ∈ GS} that are important for the
prediction, using the eq. (27) [63].

max
GS

MI(Y, (Gs, XS)) = H(Y)−H(Y |G = Gs, X = Xs) (27)

The measure of these contribution for each attribute, averaged over
the time span of the simulation, is represented in fig. 19.

Figure 19: Average scores of different attributes per test sample

46

There is a clear distinction between the attributes actually used by
the model -position, speeds and area- and those who are not. It also
appears that the x axis offers a greater information about the system
than the y axis. It may indicate a bias in the original samples selected.

47

5 Discussion

5.1 Limitations

This study was limited by the amount of real data available. However,
this limitation has shown that even with an extremely small data set it
is still possible to construct a model that exhibits acceptable summary
statistics.

It is no secret that the real data present is difficult to use due to the
trajectories being cut short only to continue a few time step further in
another trajectory. This issue is inherent to the field of biology which,
despite the use of advanced techniques such as the Bayesian trackers,
remains plagued with unknowns and uncertainty. This work may prove
ultimately beneficial to cover those issues since a good simulator could
help improve automated tracking.

While studies on graph neural networks applied to migration in gen-
eral did exist, none has been found on them specifically being applied
to cell migration. The nature of the existing studies found all tried to
infer either more global behaviors or discrete decision processes, which
differ a lot in practice from the continuous individual velocities that were
studied here.

The initial focus of this study has changed over time leading to a
more restricted schedule. The synthetic data-set has also been changed
from the original that featured a bounded world, with its edge wrapping
around, to the current unbounded. Due to this, some issues had to be
solved and never made it to the final version, losing much time in the
process.

The results achieved in this thesis are only relevant to the particular
data-sets used since no other source has been incorporated or tested upon.
This limits greatly the confidence of the results due to the unknown
generalization capabilities.

5.2 Findings

From the results on the synthetic data set, we can observe that it is
possible to reproduce closely the results of a purpose made simulator

48

as long as the randomness of the motion does not overpower its driving
forces.

The model produced fits easily on an average personal computer and
allows for fast inference from a single snapshot in time of the data.

Although the distributions of the velocities is less of a good match
for the lv cases, the evolution of the cells in the models’ simulation still
visually closely resembles the original from Allium. Moreover, many
summary statistics overlapped closely with ground truth.

From the different tunings can be learned that the distribution used
for the aleatoric uncertainty as well as horizon influence greatly the cor-
rectness of the distribution of speeds. And this choice also differ between
the real and synthetic data sets.

Contrary to the expectation of “more is better”, when it comes to the
input data, adding subsequent snapshots of the environment (in the form
of the horizon leading to the event) decreases performances. However,
for the real data set, there seems to be the opposite conclusion, and a
sweet spot can be found for a window of size greater than one.

In all cases but one, the loss itself does not seem to vary by any
significant amount in the testing set, reinforcing the need to measure
actual performances using summary statistics.

The precise reason why there appears to have different optimal tuning
parameters for different data sets may indicate that either the general-
ization properties of the model could be improved, or that there exists
fundamental differences in their mechanisms.

The analysis of the importance of the attributes confirm that includ-
ing the speeds along each axis does have a significant impact on the
summary statistics and the loss. This result is all the more surprising
because, in this analysis of the real case, an horizon of 4 was used; the in-
formation is already present in the form of past snapshots but the model
seems to have an easier time taking this shortcut.

The attention analysis can uncover fundamental decision mechanisms
by highlighting correlations between variables and internal weights al-
though it may prove difficult to relate them to actual quantities. Some
additional work may be needed to isolate the traces of linear dependen-
cies that sometimes exuded and, from an empirical analysis, try to relate
its slope to concrete driving forces.

49

Due to the abstract nature of the data provided, this method can
be directly applied to the simulation of any network of homogeneous
individual.

5.3 Future Work

Areas of improvement for this thesis include the coverage of different ar-
chitectures of GNN to compare performances, though the use of the most
general model may indicate an upper bound for the size and parameters
chosen.

The assumptions, while stated, were not put in question. Some,
like the architecture itself, might have benefited from trying other main
stream models for particle movement prediction.

Many values for hyper-parameters, such as the learning rate, number
of heads and depth of the model were directly lifted from the paper recom-
mendations (AdamP, GaTv2, Attention) and did not go under scrutiny.
While it may be a good starting point to follow recommendations it would
be useful to push the investigation of the optimal parameters further in
this direction.

The particular method of optimization used in this thesis relied on
comparing all deviations to the arbitrarily defined “base” parameters.
This could be improved in further work by using constrained minimiza-
tion at the cost of much computing power and time.

Recent efforts in the field of transformers have highlighted that the
initialization of the parameters was crucial to the stability and perfor-
mances [64]. This issue was not covered and all initialization were left to
the default values of their implementation.

Some questions were asked but not answered, especially the intriguing
case of the many-to-many model giving worse results. An answer may
lie in the fact that auto-regressive inference usually yields better results
because the model can use its past inferences as ground truth.

Following the limitations in the data-sets provenance and size, future
work may focus on studying the results based on bigger and/ or more
diverse data.

It could be interesting to provide capabilities for the model to ingest
networks with heterogeneous members to expand the areas in which it

50

could be useful.

5.4 Code

Most of the code used during this thesis has been saved in this github
repository : https://github.com/Pangasius/graph-displacement.

51

https://github.com/Pangasius/graph-displacement

References

[1] Allan Franklin and Slobodan Perovic. Experiment in Physics. In
Edward N. Zalta and Uri Nodelman, editors, The Stanford Encyclo-
pedia of Philosophy. Metaphysics Research Lab, Stanford University,
Summer 2021 edition, 2021.

[2] Subra Suresh. Fatigue of materials. Cambridge university press,
1998.

[3] Valentin Heller. Scale effects in physical hydraulic engineering mod-
els. Journal of Hydraulic Research, 49(3):293–306, 2011.

[4] Robert R Schaller. Moore’s law: past, present and future. IEEE
spectrum, 34(6):52–59, 1997.

[5] Junuthula Narasimha Reddy. Introduction to the finite element
method. McGraw-Hill Education, 2019.

[6] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier
of simulation-based inference. Proceedings of the National Academy
of Sciences, 117(48):30055–30062, 2020.

[7] John Shalf. The future of computing beyond moore’s law. Philo-
sophical Transactions of the Royal Society A, 378(2166):20190061,
2020.

[8] Hans-Dieter Block. The perceptron: A model for brain functioning.
i. Reviews of Modern Physics, 34(1):123, 1962.

[9] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing
completeness of modern neural network architectures, 2019.

[10] Zi-Ang Shen, Tao Luo, Yuan-Ke Zhou, Han Yu, and Pu-Feng
Du. NPI-GNN: Predicting ncRNA–protein interactions with deep
graph neural networks. Briefings in Bioinformatics, 22(5), 04 2021.
bbab051.

[11] Jie Zhang, Yishan Du, Pengfei Zhou, Jinru Ding, Shuai Xia, Qian
Wang, Feiyang Chen, Mu Zhou, Xuemei Zhang, Weifeng Wang,

52

et al. Predicting unseen antibodies’ neutralizability via adaptive
graph neural networks. Nature Machine Intelligence, pages 1–13,
2022.

[12] Xiaogang Ren, Xue Zhang, and Chengli Zhao. Migration data-based
graph neural network for disease forecasting. In 2022 8th Interna-
tional Conference on Big Data and Information Analytics (BigDIA),
pages 278–284, 2022.

[13] Thomas E Creighton. Protein folding. Biochemical journal, 270(1):1,
1990.

[14] Telma DaPalma, Bently P Doonan, Nicole M Trager, and Laura M
Kasman. A systematic approach to virus–virus interactions. Virus
research, 149(1):1–9, 2010.

[15] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuch-
ner, and Gabriele Monfardini. The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[16] Jose Suarez-Varela, Paul Almasan, Miquel Ferriol-Galmes,
Krzysztof Rusek, Fabien Geyer, Xiangle Cheng, Xiang Shi, Shihan
Xiao, Franco Scarselli, Albert Cabellos-Aparicio, and Pere Barlet-
Ros. Graph neural networks for communication networks: Context,
use cases and opportunities. IEEE Network, pages 1–8, 2022.

[17] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy
Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training
graph neural networks, 2020.

[18] Shizhen Huang, ShaoDong Zheng, and Ruiqi Chen. Multi-source
transfer learning with graph neural network for excellent modelling
the bioactivities of ligands targeting orphan g protein-coupled recep-
tors. Mathematical Biosciences and Engineering, 20(2):2588–2608,
2023.

[19] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun.
Graph neural networks: A review of methods and applications. AI
Open, 1:57–81, 2020.

53

[20] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo
Jimenez Rezende, et al. Interaction networks for learning about
objects, relations and physics. Advances in neural information
processing systems, 29, 2016.

[21] Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia,
Razvan Pascanu, and Andrea Tacchetti. Visual interaction net-
works: Learning a physics simulator from video. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017.

[22] Francisco JH Heras, Francisco Romero-Ferrero, Robert C Hinz,
and Gonzalo G de Polavieja. Deep attention networks reveal the
rules of collective motion in zebrafish. PLoS computational biology,
15(9):e1007354, 2019.

[23] Takaki Yamamoto, Katie Cockburn, Valentina Greco, and Kyogo
Kawaguchi. Probing the rules of cell coordination in live tissues
by interpretable machine learning based on graph neural networks.
PLOS Computational Biology, 18(9):e1010477, 2022.

[24] Ricard Alert and Xavier Trepat. Physical models of collective cell
migration. Annual Review of Condensed Matter Physics, 11:77–101,
2020.

[25] Gabriel Popkin. Jammed cells expose the physics of cancer. Quan-
taMagazine, 2016.

[26] Eliane Blauth, Hans Kubitschke, Pablo Gottheil, Steffen Grosser,
and Josef A Käs. Jamming in embryogenesis and cancer progression.
Frontiers in Physics, 9:666709, 2021.

[27] Nicole M Le Douarin and Elisabeth Dupin. Multipotentiality of
the neural crest. Current Opinion in Genetics & Development,
13(5):529–536, 2003.

[28] JAMES A. WESTON. The migration and differentiation of neural
crest cells* *this paper is dedicated to sally wilens on the occasion of

54

her retirement. she acquainted me with “the chief” though i never
met him. volume 8 of Advances in Morphogenesis, pages 41–114.
Elsevier, 1970.

[29] Daniel L. Barton, Silke Henkes, Cornelis J. Weijer, and Rastko
Sknepnek. Active vertex model for cell-resolution description of ep-
ithelial tissue mechanics. PLOS Computational Biology, 13(6):1–34,
06 2017.

[30] David Flaherty et al. Simulation based inference in’tiny
data’biology. 2022.

[31] Namid R. Stillman and Roberto Mayor. Generative models of mor-
phogenesis in developmental biology. Seminars in Cell & Develop-
mental Biology, 147:83–90, 2023. Special issue: Rearrangement of
co-cultured cellular systems: biological and physical aspects.

[32] Ren-Hua Wang, Tao Luo, Han-Lin Zhang, and Pu-Feng Du. Pla-
gnn: Computational inference of protein subcellular location al-
terations under drug treatments with deep graph neural networks.
Computers in Biology and Medicine, 157:106775, 2023.

[33] Tal Ben-Haim and Tammy Riklin Raviv. Graph neural network
for cell tracking in microscopy videos. In European Conference on
Computer Vision, pages 610–626. Springer, 2022.

[34] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas
Lukasiewicz. The surprising power of graph neural networks with
random node initialization. arXiv preprint arXiv:2010.01179, 2020.

[35] Thomas N. Kipf and Max Welling. Semi-supervised classification
with graph convolutional networks, 2017.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and Philip S. Yu. A comprehensive survey on graph neural
networks. CoRR, abs/1901.00596, 2019.

[37] Muhan Zhang and Yixin Chen. Link prediction based on graph neu-
ral networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

55

N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 31. Curran Associates, Inc.,
2018.

[38] Peter Veranič, Maruša Lokar, Gerhard J. Schütz, Julian Weghuber,
Stefan Wieser, Henry Hägerstrand, Veronika Kralj-Iglič, and Aleš
Iglič. Different types of cell-to-cell connections mediated by nan-
otubular structures. Biophysical Journal, 95(9):4416–4425, 2008.

[39] Marie-Luce Vignais, Andrés Caicedo, Jean-Marc Brondello, and
Christian Jorgensen. Cell connections by tunneling nanotubes: ef-
fects of mitochondrial trafficking on target cell metabolism, home-
ostasis, and response to therapy. Stem cells international, 2017,
2017.

[40] Denis Weaire and Nicolas Rivier. Soap, cells and statistics—random
patterns in two dimensions. Contemporary Physics, 25(1):59–99,
1984.

[41] Daniel M Sussman and Matthias Merkel. No unjamming transition
in a voronoi model of biological tissue. Soft matter, 14(17):3397–
3403, 2018.

[42] P Pathmanathan, J Cooper, A Fletcher, G Mirams, P Murray, J Os-
borne, J Pitt-Francis, A Walter, and S J Chapman. A computa-
tional study of discrete mechanical tissue models. Physical Biology,
6(3):036001, apr 2009.

[43] Zhongzhi Zhang, Jihong Guan, Bailu Ding, Lichao Chen, and
Shuigeng Zhou. Contact graphs of disk packings as a model of spatial
planar networks. New Journal of Physics, 11(8):083007, 2009.

[44] Jonathan PK Doye and Claire P Massen. Self-similar disk pack-
ings as model spatial scale-free networks. Physical Review E,
71(1):016128, 2005.

[45] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph
attention networks?, 2022.

56

[46] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive rep-
resentation learning on large graphs, 2018.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks?, 2019.

[48] Alana de Santana Correia and Esther Luna Colombini. Attention,
please! A survey of neural attention models in deep learning. CoRR,
abs/2103.16775, 2021.

[49] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn)
and long short-term memory (lstm) network. Physica D: Nonlinear
Phenomena, 404:132306, 2020.

[50] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. Advances in neural information processing
systems, 30, 2017.

[52] Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan
Huang, Wenhui Wang, and Furu Wei. Longnet: Scaling transformers
to 1,000,000,000 tokens, 2023.

[53] Annamaria Guolo. Robust techniques for measurement error correc-
tion: a review. Statistical Methods in Medical Research, 17(6):555–
580, 2008. PMID: 18375458.

[54] V. H. Lachos, F. V. Labra, H. Bolfarine, and Pulak Ghosh. Mul-
tivariate measurement error models based on scale mixtures of the
skew–normal distribution. Statistics, 44(6):541–556, 2010.

[55] Jagdish K Patel and Campbell B Read. Handbook of the normal
distribution, volume 150. CRC Press, 1996.

57

[56] Namid R. Stillman, Silke Henkes, Roberto Mayor, and Gilles
Louppe. Graph-informed simulation-based inference for models of
active matter, 2023.

[57] Adam Shellard and Roberto Mayor. Rules of collective migration:
from the wildebeest to the neural crest. Philosophical Transactions
of the Royal Society B, 375(1807):20190387, 2020.

[58] Kristina Ulicna, Giulia Vallardi, Guillaume Charras, and Alan R.
Lowe. Automated deep lineage tree analysis using a bayesian single
cell tracking approach. bioRxiv, 2020.

[59] Anna Bove, Daniel Gradeci, Yasuyuki Fujita, Shiladitya Banerjee,
Guillaume Charras, and Alan R. Lowe. Local cellular neighborhood
controls proliferation in cell competition. Molecular Biology of the
Cell, 28(23):3215–3228, 2017.

[60] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han,
Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and Jung-Woo Ha.
Adamp: Slowing down the slowdown for momentum optimizers on
scale-invariant weights, 2021.

[61] Naama Gal, Diana Lechtman-Goldstein, and Daphne Weihs. Parti-
cle tracking in living cells: a review of the mean square displacement
method and beyond. Rheologica Acta, 52:425–443, 2013.

[62] Vincent Hakim and Pascal Silberzan. Collective cell migration: a
physics perspective. Reports on Progress in Physics, 80(7):076601,
apr 2017.

[63] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. Gnnexplainer: Generating explanations for graph neural
networks, 2019.

[64] Siddharth Krishna Kumar. On weight initialization in deep neural
networks, 2017.

58

A Appendix

A.1 Developments

This is the development of the eqs. (15) and (16).
In both cases, the loss comes from the need to maximize the likelihood

p(X|θ), take the minimization objective from eqs. (28) and (29) then
single out a pair (ṅi,mi) as (ṅtrue,m). Finally remove the constant term.

A.1.1 Normal

arg max
θ

pnormal(X|θ) = arg max
θ

∏
ṅi,mi∈X

pnormal(ṅi|mi, θ)

= arg max
θ

∏
ṅi,mi∈X

1√
2πσ(mi)

exp

(
−(ṅi − µ(mi))

2

2σ2(mi)

)
= arg min

θ

∑
ṅi,mi∈X

(ṅi − µ(mi))
2

2σ2(mi)
+ log(σ(mi)) + C

(28)

A.1.2 Laplace

arg max
θ

plaplace(X|θ) = arg max
θ

∏
ṅi,mi∈X

plaplace(ṅi|mi, θ)

= arg max
θ

∏
ṅi,mi∈X

1

2b(mi)
exp

(
−|ṅi − µ(mi)|

b(mi)

)
= arg min

θ

∑
ṅi,mi∈X

|ṅi − µ(mi)|
b(mi)

+ log(b(mi)) + C

(29)

59

A.2 Synthetic data - Tuning

A.2.1 Distribution

Two different options were investigated for the choice of distribution
for the representation of the aleatoric noise : the Normal and Laplace
distribution. We have to keep in mind that the losses cannot be directly
compared in terms of value because the first is more akin to a difference
squared while the other is closer to an absolute difference. Their shape
can still bring us more insight on their training and testing however.

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

60

(e) Testing loss (f) Training loss

Figure 20: Tuning of the sampling distribution

The mean square displacement (MSD) over time seems to be fitted
better with the laplace distribution, along with the scaled velocity com-
ponent distribution (SVCD).

Both distributions lead to a difference of 0.2, laplace overshoots and
has greater uncertainty while normal undershoots.

The scaled velocity magnitude distribution has no clear winner either
since laplace is sharper but offset and normal is more spread out but
centered correctly.

The losses indicate they both have similar behavior during training.

A.2.2 Horizon

As mentioned previously, we can expand the horizon of input of the
Markov’s chain representing our knowledge about the world by increasing
the length of input to our encoder.

61

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Testing loss (f) Training loss

Figure 21: Tuning of the input’s horizon

62

The most important part of the MSD to fit is after the initial system
has relaxed around 30 hours and before the uncertainty builds up too
much. This is the reason horizon 4 and 5 come out on top.

However, for the mean velocity, SVCD and SVMD, horizon 1 greatly
outperforms the rest of the models.

Their training show that the more horizon we add, the slower the
’breakthrough’ of the training occurs. Though on the testing loss, this
conclusion does not seem to apply.

A.2.3 Number of messages

The number of messages, or number of GATv2 in our model, can also be
tuned.

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

63

(e) Testing loss (f) Training loss

Figure 22: Tuning of the number of messages

The influence of this parameter seem small, there is some little offset
noticeable in the SVCD but they do not indicate better or worse results.

A.2.4 Size of messages

Most of the model relies on a single parameter to determine its width,
and this number corresponds to the size of the messages sent, which also
has to be set.

(a) Mean squared displacement (b) Mean velocity

64

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Testing loss (f) Training loss

Figure 23: Tuning of the size of messages

Once again, the SVCD varies the most but picking a single winner
seems impossible.

The ’breakthrough’ appears later in the training loss and is less deep,
though they all end up at the same loss.

A.2.5 Number of channels

We can choose to either produce only the change in movement, out channels =
4, or also produce the change in speed, out channels = 8.

65

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Testing loss (f) Training loss

Figure 24: Tuning of the number of output

66

Predicting the velocities seem to have a major importance on all
criterions including the losses, which had not happened with the other
parameters.

The mean velocity is a bit closer to the ground truth but every other
metric indicates 8 output channels to be optimal.

A.3 Synthetic data - Performances

A.3.0.1 high tau, low velocity

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

67

(e) Velocity distribution, component (x,y) and magnitude

Figure 25: Results in the validation data set high tau low velocity, tuned
parameters

The lower velocity seem to be harder to simulate. Even though the
summary statistics are satisfactory (except for SVCD in fig. 25c), the
speed distribution does not seem to be the same for the separated axis
on fig. 25e.

(a) Frame 25 (b) Frame 50

(c) Frame 75

Figure 26: Comparison of the trajectories for a sample in the validation
data set high tau low velocity

68

While there seems to be more clustering in the model’s predictions,
it is hard to rule them as incorrect or the opposite. The major difference
seems to lie in the speed vectors, especially in fig. 26a in the middle,
where is situated a huge speed vector.

A.3.0.2 low tau, high velocity

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

69

(e) Velocity distribution, component (x,y) and magnitude

Figure 27: Results in the validation data set low tau high velocity, tuned
parameters

All summary statistics seem to stay close to the ground truth in the case
of lt hv. The most different seem to be in fig. 27b where can be seen the
model overshooting the speed.

Contrary to ht lv, the shape of the speed distribution in each axis on
fig. 27e is well represented by the model.

(a) Frame 25 (b) Frame 50

70

(c) Frame 75

Figure 28: Comparison of the trajectories for a sample in the validation
data set low tau high velocity

Despite the accuracy of the summary statistics, it seems the model
for lt hv does not keep the cells bunched up together. This is especially
noticeable in fig. 28c where they go out of frame, which is bounded by
the minimum and maximum positions values of the group of cells in the
synthetic data sample.

A.4 Synthetic data - Edge decision

(a) ht hv

71

(b) ht lv

(c) lt hv

72

(d) lt lv

Figure 29: Attention weight over distance between cells
Single cell as source (left) Single cell as target (middle) All edges con-
founded (right)
Time step represented as colors from 0 (purple) to 47 (yellow)

Apart from fig. 29c, there seems to be little to no correlation between
the weights and the distances.

Compared to the real case, the evolution of a singular edge over time
is much more apparent since there is less variation. One can follow a dot
though time, which create those vertical streak patterns.

A.5 Real data - Tuning

A.5.1 Distribution

Once again, the losses are not directly comparable, though they can be
useful to assess the well being of the training process.

73

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Testing loss (f) Training loss

Figure 30: Tuning of the sampling distribution for the real data set

74

The tendency from the synthetic data seems to have reversed. On
both the SVCD and SVMD, the normal distribution seems to fit better.
The MSD also is a lot closer to the true value.

For both distributions though it seems the training is unstable and
the more the model is trained the more variance increase for both the
training and testing samples. This is a little more controlled for laplace.

A.5.2 Horizon

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

75

(e) Testing loss (f) Training loss

Figure 31: Tuning of the horizon for the real data set

Once again, the results differ a lot from the synthetic data and having
an horizon of 4 leads to systematically better results under all metrics.

A.5.3 Number of messages

(a) Mean squared displacement (b) Mean velocity

76

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

(e) Testing loss (f) Training loss

Figure 32: Tuning of the number of messages for the real data set

For the number of messages, it seems the SVCD and SVMD are better
for the value of 1, the MSD and mean velocity are closer when the value
is 2.

Strangely, the results in the testing loss are highly dependant on the
initialization of the model.

77

A.5.4 Size of messages

(a) Mean squared displacement (b) Mean velocity

(c) Scaled velocity component distribution (d) Scaled velocity magnitude distribution

78

(e) Testing loss (f) Training loss

Figure 33: Tuning of the size of messages for the real data set

The testing losses end up better for size = 32 and size = 128 although
all other metrics seem to indicate size = 64 comes on top.

A.6 Tuning on “low tau low velocity”

Since the number of channels has been found as a clear winner, together
with laplace distribution, it felt unneeded to tune it for other settings.

It seems the learning is a lot slower for lt lv in particular, increasing
training time may slightly change the outcome. However, even doubling
it lead to no noticeable improvement, the testing loss hovers −1.572 also.

(a) Tuning for horizon (b) Tuning for number of messages

79

(c) Tuning for size of messages

Figure 34: Tuning of lt lv

Given fig. 34, it may be the case that a greater number of channel
and a greater horizon could lead to better performances, though it might
be very slim.

A.7 Many to Many results

In fig. 35 appear the experiment of using the model in a sequence to
sequence, many to many fashion.

For the same number of samples, this method requires about 4 times
the training time and yields poor results in terms of summary statistics.

The testing loss is around the same value of −1.572 as for the other
methods, which is remarkable given that all cells barely move and seem
to stay in place.

Perhaps it would lead to better performances for other settings where
it would be forced to move, though a method that is even more susceptible
to the setting is less preferable for the purpose of this thesis.

80

(a) Mean square displacement

0 10 20 30 40 50

2.6

2.4

2.2

2.0

1.8

1.6

Testing recursive
log(loss mean)
loss log
loss

(b) Average over 50 testing samples of the
testing loss per epoch (∼ 900 training sam-
ples)

Figure 35: Many to many, lt lv setting, horizon = 6

81

