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Abstract

Monitoring ecosystems plays a key role in facing climate change impacts. A better understanding of
ecosystem functioning is needed to take appropriate actions toward their conservation. Ecosystems of
the outback of Australia are of major importance because of their endemism, their vital services to local
populations and their fragility caused by human pressures and climate change. Remote sensing is widely
used for large-scale ecosystem monitoring however, drylands remote sensing faces unique challenges not
typically encountered in other regions. Their high heterogeneity and high soil background reflectance
are just a few of the difficulties encountered in these lands. The innovative LiDAR technology has the
advantage of detecting the three-dimensional structure of the vegetation and could potentially overcome
the uncertainty generated by optical imaging in arid and semi-arid areas.

The general goal of this work is to study the potential use of high resolution airborne LiDAR data
to classify different ecosystems found in the outback of South Australia. In order to characterize the
ecosystems, various structural components were calculated from LiDAR point clouds. The relevance
of these metrics in the discrimination of our ecosystems was assessed through a PCA coupled with an
analysis of their descriptive statistics. Three classification models were build (a hierarchical clustering,
a decision trees and a LDA) with different numbers of input variables. Their performance was compared
with the accuracy related to the confusion matrix. The two-variable, top of canopy height and number of
trees, models offer the best compromise between parsimony and accuracy. The LDA is the best predictor
with an accuracy of 84%. However, the decision tree, whose overall accuracy is only 1% less, is easier
to interpret and to relate to ecological reality.

Then, in order to evaluate the ability of the models to be upscaled, discriminant models were tested
on larger plots, but the results were not satisfactory. This is due to the number of trees, used as input
variable, being dependent on the size of the plot. The use of GEDI data was also explored to assess
the potential of models to be extrapolated to the global scale. However, the comparison of airborne and
spaceborne LiDAR metrics revealed a significant difference between the two datasets.

The results confirm the hypothesis that metrics derived from high resolution airborne LiDAR are
capable of discriminating some Australian ecosystems. Nonetheless, this study is a first approach and
further research are required to improve the large-scale characterization of drylands ecosystems.
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Résumé

La surveillance des écosystèmes joue un rôle essentiel dans la lutte contre les effets du changement cli-
matique. Une meilleure compréhension du fonctionnement des écosystèmes est nécessaire pour prendre
les mesures appropriées en vue de leur protection. Les écosystèmes de l’outback australien revêtent une
grande importance en raison de leur endémisme, des services écosystémiques rendus aux populations
et de leur vulnérabilité aux pressions anthropiques et au changement climatique. La télédétection est
largement utilisée pour la surveillance à large échelle des écosystèmes toutefois, la télédétection dans
les terres arides se heurte à des difficultés particulières que l’on ne rencontre généralement pas dans
d’autres régions. Leur grande hétérogénéité et la réflectance élevée du sol ne sont que quelques unes des
difficultés spécifiques à ces zones. La technologie innovante LiDAR a l’avantage de détecter la struc-
ture tridimensionnelle de la végétation et pourrait potentiellement surmonter l’incertitude générée par
l’imagerie optique dans les régions arides et semi-arides.

Le but général de ce travail est d’étudier l’utilisation potentielle de données LiDAR aérien à haute
résolution pour classer différents écosystèmes de l’outback de l’Australie méridionale. Afin de carac-
tériser les écosystèmes, diverses composantes structurales ont été calculées à partir de nuages de points
LiDAR. La pertinence de ces paramètres pour la discrimination de nos écosystèmes a été évaluée à l’aide
d’une ACP couplée à une analyse de leurs statistiques descriptives. Trois modèles de classification ont
été construits (un regroupement hiérarchique, un arbre de décision et une ADL) avec differents nombres
de variables d’entrée. Leur efficacité a été comparée grace à la précision globale associée à la matrice de
confusion. Les modèles à deux variables, à savoir, la hauteur de canopée et le nombre d’arbres, offrent le
meilleur compromis entre parcimonie et précision. La ADL est le meilleur prédicteur avec une précision
de 84%. Cependant, l’arbre de décision, dont la précision globale n’est que de 1% inférieure, est plus
facile à interpréter et à relier à la réalité écologique.

Ensuite, afin d’évaluer la possibilité de transposer les modèles à plus grande échelle, les modèles
discriminants ont été testés sur de plus grandes parcelles, mais les résultats n’ont pas été satisfaisants.
Cela est dû au fait que le nombre d’arbres, utilisé comme variable d’entrée, dépend de la taille de la par-
celle. L’utilisation des données GEDI a également été étudiée pour évaluer le potentiel d’extrapolation
des modèles à l’échelle mondiale. Cependant, la comparaison des métriques LiDAR aérien et spatial a
révélé une différence significative entre les deux jeux de données.

Les résultats confirment l’hypothèse selon laquelle les métriques dérivées du LiDAR aérien à haute
résolution sont capables de différencier certains écosystèmes australiens. Néanmoins, cette étude n’est
qu’une première approche et d’autres recherches sont nécessaires pour améliorer la caractérisation à
grande échelle des écosystèmes des terres arides.
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1 Introduction

1.1 Key role of monitoring ecosystems in facing climate change impacts

Monitoring ecosystems is the first step towards their conservation. In fact, we need to better understand
the functioning of ecosystems and consequently, the impact of a changing environment on our natural
resources in order to ensure sustainable conservation and management strategies (Sparrow et al., 2020).
Monitoring allows us to better understand ecosystems and to take appropriate actions to maintain their
integrity.

One of the key goals for ecosystems monitoring is biodiversity conservation. Indeed, understand-
ing species diversity and monitoring populations are fundamental for the conservation of threatened
species. Another important aspect of ecosystems monitoring is the detection of climate change effects.
Ecosystems are sensitive to climate change and their monitoring detects climate-related changes and
impacts, such as temperature variations, precipitation, extreme weather events, and species migrations.
This information is essential for assessing the magnitude of climate change and for developing adapta-
tion strategies.

1.2 Uniqueness of Australian ecosystems and particularly drylands

Monitoring Australia’s ecosystems is especially important because of its unique biodiversity. Indeed,
Australia is home to an exceptional array of flora and fauna. Many Australian species are endemic which
means that they cannot be found anywhere else in the world. What is more, Australian ecosystems are
often characterized by extreme environmental conditions, including arid climates, drought cycles, fre-
quent fires and nutrient-poor soils. These factors make Australian ecosystems particularly sensitive to
environmental disturbances and changes. 70% of Australia is either arid or semi arid land; it is the driest
inhabited continent in the world 1.

Drylands cover about 40% of the Earth’s surface, and billions of people depend on these vital ecosys-
tem services (Adeel, 2005). Arid regions are highly climate sensitive and respond strongly to rainfall
changes. More than a third of the world’s biodiversity hotspots are located in drylands (Myers et al.,
2000). Besides, the global area of drylands is increasing rapidly. This expansion will lead to reduced
carbon sequestration and increased regional warming. Those factors coupled with the rapid human pop-
ulation growth will exacerbate the risk of land degradation and desertification in the near future (Huang
et al., 2016). Monitoring dryland ecosystems is therefore particularly relevant.

1https://www.dcceew.gov.au/environment/land/rangelands
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Ecosystems studied

For the feasibility of this project, only four vegetation types were selected among Australia’s great bio-
diversity. The ecosystems concerned in this study are characterized by endemic species and a semi-arid
climate.

i. Chenopod shrubland

Chenopod shrublands are dominated by various hardy low shrub species typically belonging to
the Chenopodiaceae family. Scattered emergent trees and shrubs are sometimes present. They
are mostly distributed in southern arid and semi-arid rangelands on extensive clay plains, undulat-
ing gibber hills and plains and aeolian sandplains. They are widely affected to livestock grazing
(“NVIS Fact sheet MVG 22 – Chenopod shrublands, samphire shrublands and forblands”, 2017).
They represent about 6% of the total land area of mainland Australia. They are restricted to dry
climates where mean annual rainfall is less than 350 mm, of which up to 50% falls in winter.
Chenopods are characterized by low transpiration rate, high water use efficiency and their resis-
tance to drought and salinity (Foulkes et al., 2014).

Figure 1: Chenopod shrubland panorama.

ii. Mallee
Mallee is one of the dominant plant communities of southern Australia. It refers to vegetation
dominated by multi-stemmed eucalypts growing as tall shrubs or short trees (2-10m). It is found
in the transitional zone between southern temperate sub-humid woodlands and northern arid flora
(Peart, 1990). It typically grows under semi-arid Mediterranean climate with cool winters and hot
dry summers. Rainfall occurs predominately in winter. Mallee eucalypts are sclerophyllous and
produce multiple stems from a rootstock known as a lignotuber which is an adaptation to wildfire.
The understory composition is various and depends on local weather conditions. Mallees have
a rich and unique biodiversity. Indeed, many species of plants, birds, reptiles and invertebrates
cannot be found in any other ecosystems (“NVIS Fact sheet MVG 32 – Mallee open woodlands
and sparse mallee shrublands”, 2017).

Figure 2: Mallee panorama.
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iii. Mulga

Mulga describes both the name of a plant (Acacia aneura F. Muell. ex Benth and its close rela-
tives), and the name of a vegetation type. Across the country, forms of mulga are highly variable,
ranging from relatively short (<3m) to relatively tall (>10m) trees, and ranging from a very open
canopy to a relatively closed canopy. This vegetation type covers about 20% of the land surface of
Australia (Eamus et al., 2016). It is most commonly found on red-earth soils. Climatic conditions
are generally hot summers with a pronounced dry season and cool to warm winters. A sparse small
shrub layer may occur and ephemeral herbs and plants may cover the ground in response to rain
(“NVIS Fact sheet MVG 16 – Acacia shrublands”, 2017).

Figure 3: Mulga panorama.

iv. Eucalypt woodland

Eucalypt woodlands are the characteristic vegetation in flat to gently hilly landscapes of the inter-
mediate rainfall zones of South Australia (Keith, 2017). They form a transitional zone between the
high rainfall forests on the margins of the continent and the hummock grasslands and shrublands
of the arid interior. They are usually composed of scattered eucalypts and bloodwoods (Corymbia)
over an understory of grasses and sparse shrubs. Trees are up to 30m high (“NVIS Fact sheet MVG
5 – Eucalypt woodlands”, 2017).

Figure 4: Eucalypt woodland panorama.
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1.3 Challenges in drylands remote sensing

Remote sensing is a key technology for large-scale vegetation monitoring (Cabello et al., 2012; Nagendra
et al., 2013). Satellite remote sensing measurements are widely accessible, they offer a cheap and ver-
ifiable means to obtain complete spatial coverage of environmental information (Pettorelli et al., 2014).
However, rapid innovations in drones, cameras and 3D photogrammetry have made drone remote sens-
ing a good alternative. Drone-based products can accurately and efficiently provide ultra-high resolution
imagery at relatively large scale (J. Zhang et al., 2021). The benefits of drone remote sensing in image
acquisition include high spatial and temporal resolution, full flexibility, low material and operational
costs. Another advantage is that Unmanned Aerial Vehicles (UAV), also known as drones, overcome the
drawback of the ground based system such as the inaccessibility to muddy or very dense regions (Bansod
et al., 2017).

Unfortunately, dryland remote sensing faces unique challenges not typically encountered in mesic or
humid regions. The major challenge is the high heterogeneity of drylands at many scales, which is linked
to the various vegetation forms, structures and functions (e.g., evergreen and deciduous shrubs) (Ganem
et al., 2022). Other difficulties faced in drylands include low vegetation signal-to-noise ratios, high soil
background reflectance and irregular growing seasons due to unpredictable seasonal rainfall and frequent
periods of drought (Smith et al., 2019).

As a result, different studies monitoring vegetation in drylands do not systematically produce the
same results. For instance, significant spatial disagreements are observed on two satellite-based global
forest maps (Hansen et al., 2003; Sexton et al., 2013). Tree cover mapping is known to produce very un-
certain results in drylands (Sexton et al., 2016). Ko et al. (2009) also agreed that quantifying tree canopy
cover in dryland ecosystems from remote sensing data is particularly difficult due to low tree cover and
density, short tree stature, and co-existence of trees and shrubs at fine spatial scales.

What is more, our knowledge of the extent of vegetation in these ecosystems is limited (Bastin et al.,
2017). There is still a lack of studies assessing dryland biomes (Durant et al., 2012; Ruusa et al., 2022)
as well as ground-based data needed for calibration and validation of remote sensing algorithms (Smith
et al., 2019).

1.4 Potential of LiDAR to monitor ecosystems

LiDAR (standing for Light Detection And Ranging) appears to be the most promising sensor for de-
scribing vegetation structure (Huylenbroeck et al., 2020). LiDAR sensor measures the time between the
emitted infrared light pulse and the returned pulse. Knowing the speed of light, this return time allows
to calculate the precise distance between the sensor and the object on which the light beam is reflected.
The processed LiDAR result is known as a point cloud. Point clouds are large collections of 3D elevation
points, which include x, y, and z, along with additional attributes.
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The use of LiDAR has the advantage of detecting the three-dimensional structure of the ecosystem.
In other words, this technology is able to provide structural information on both the vertical and the
horizontal axis (Lim et al., 2003; Michez et al., 2016). Indeed, LiDAR can measure various biophys-
ical components such as canopy height, individual tree height, vertical distribution or crown diameter
(Dubayah & Drake, 2000; Lim et al., 2003; Popescu & Wynne, 2004; Popescu et al., 2002). Moreover,
LiDAR measurements penetrate dense forest vegetation to generate accurate estimates of surface topog-
raphy and canopy height (Leitold et al., 2015).

Two main approaches exist to calculate LiDAR-derived metrics: area-based and tree-centric. The
first method is mainly used for regional or national scales. It relates estimates obtained from reference
field plots to simple metrics, often, linked to canopy height (Coomes et al., 2017). Some of the most
commonly calculated variables are the mean canopy height and the top of canopy height (Asner et al.,
2012; Meyer et al., 2013). The latter is usually preferred due to its better overall stability among the
various LiDAR sensors, whether airborne or spaceborne (Asner & Mascaro, 2014). On the one hand,
computation of those metrics is convenient. On the other hand, the associated statistics are simple even
with low-resolution data. Therefore, this approach is prevalent across literature (Coomes et al., 2017).

The tree-centric approach identifies and modelizes each tree belonging to the plot. Their related met-
rics can then be integrated into allometric equations and summed to obtain plot-level estimates (Ferraz
et al., 2016). To do so, Individual Tree Crowns (ITC) segmentation techniques detect canopy trees in the
point clouds, giving their position, their individual height and providing an insight of the stem density in
the area (Popescu et al., 2002). Satisfying a predefined algorithm, the surrounding points are classified as
belonging to the tree crown (Dalponte & Coomes, 2016; Ferraz et al., 2016; Hyyppa et al., 2001). Then,
tree crown area or even canopy cover can be retrieved from the resulting objects. Although most of the
techniques used to extract individual trees focus on the upper layers and the canopy, recent progress has
been made in developing algorithms capable of modelling every layer of the forest (Ferraz et al., 2016).

As mentioned by de Lame (2021), one of the biggest interests of these tree-centric methods lies in
their similarity with field-based approaches allowing for the development of analogous allometric meth-
ods. The common theoretical basis facilitates the identification and understanding of uncertainties and
biases. However, over- or under-segmentation of trees can lead to biases, the associated statistics are
more complicated to manipulate, and the computation of these methods can be intensive. Advances
made in individual tree crowns methods through the development of new algorithms and sensors may
give this approach a more prominent role in the future of structural components estimation (Coomes
et al., 2017).

A last important point to mention is the use of spaceborne LiDAR. In 2018, NASA launched the
Global Earth Dynamics Investigation (GEDI) large-footprint sensor on the International Space Station.
GEDI produces high resolution laser ranging observations of the 3D structure of the Earth with the
aim of providing precise measurements of forest canopy height, canopy vertical structure, and surface
elevation 2. Theoretically, GEDI could be able to extract proxies of forest structure at the plot scale
after a calibration phase from a comparison with airborne LiDAR data (Chave et al., 2019; Schneider
et al., 2020). GEDI data promise to be particularly useful given that they are worldwide and accessible
to everyone.

2https://gedi.umd.edu/mission/mission-overview/
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1.5 Research objectives

As explained above, remote sensing in drylands generates a lot of uncertainties and so far, limited re-
search has been engaged on this. Therefore, this study aims to improve the global knowledge on the
subject. The general goal of this work is to study the potential use of high resolution airborne LiDAR
data to classify different ecosystems (chenopod shrubland, mallee, mulga and eucalypt woodland) found
in the outback of South Australia.

In order to characterize the ecosystems, various structural components will be calculated from Li-
DAR point clouds. The following step is to identify which of these structural metrics are the most
relevant to discriminate the studied ecosystems. Descriptive statistics and Principal Component Analysis
will help answer that question. Afterwards, using the LiDAR-derived variables as input, three different
classification models will be developed and compared so as to select the most effective one. Finally, a
comparison between metrics calculated from drone data and from GEDI satellite data will be carried out
in order to evaluate the potential use of the selected model with large-scale data.
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2 Materials and methods

2.1 Study area

This study is based in the Australian outback, and more precisely, in the state of South Australia. The
data were collected on two different locations: the Calperum Reserve and the Wintinna Station (Figure
5). These two areas are separated by a distance of about 952km 3 as the crow flies and are described in
more detail below.

The Australian Commonwealth Bureau of Meteorology divides Australia into 28 climate classes 4

using a modified Köppen climate classification scheme based on temperature as well as the amount and
the timing of rainfall (Williams et al., 2012).

i Calperum Reserve
The Calperum Reserve is located in the Murray Darling Depression. According to the Australian
Commonwealth Bureau of Meteorology, the climate of this region is a warm (persistently dry)
grassland. Calperum is part of the winter dominant zone which means that is has a marked wet
winter and a dry summer. The mean annual temperature is 17°C 5 and the mean annual rainfall is
around 240mm 6.

ii Wintinna Station
The Wintinna Station is straddled between the Great Victoria Desert and the Stony Plains. As clas-
sified by the Australian Commonwealth Bureau of Meteorology, the climate is a hot (persistently
dry) desert. It is part of the arid zone due to low rainfall. The mean annual temperature is 21°C 7

and the mean annual rainfall is around 150mm 8.

Figure 5, reproduced from Eamus et al. (2016) [TERN], shows the distribution of major vegetation
types in Australia. The locations of Calperum Reserve and Wintinna Station were added for illustrative
purposes. Mulga and shrubland can be found in the Wintinna Station. A mix of forest, savanna, shrubland
and a little bit of mulga can be encountered in the Calperum Reserve.

3https://www.distancede.com/Distance-de-Vol-calculateur.aspx
4http://www.bom.gov.au/climate/maps/averages/climate-classification/?maptype=kpn
5http://www.bom.gov.au/climate/averages/tables/cw_024048.shtml
6http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_stn_num=

024048
7http://www.bom.gov.au/climate/averages/tables/cw_016007.shtml
8http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_stn_num=

016093
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Figure 5: Distribution of major vegetation types in Australia. Locations of Calperum Reserve and
Wintinna Station are represented by black squares. Map was generated based on Australia’s National
Vegetation Information System—Major Vegetation Groups (NVIS-MVGs). Groups were obtained by
reclassifying the original 26 NVIS-MVGs. Reproduced from Eamus et al. (2016)

A plot is a 100m square with an area of 1ha. Each ecosystem is represented by three sites. In to-
tal, 12 sites were selected in this study. Figure 7 shows the Google Earth image of each site (each row
represents an ecosystem: mulga, mallee, chenopod shrubland and eucalypt woodland respectively). In
order to increase the amount of data, each site was divided into 16 sub-sites. Each sub-site is a square
plot of 25m side (Figure 6). The Calperum data were collected in May 2022 and the Wintinna data were
collected in October 2022. The GPS coordinates of each site as well as their location and the ecosystem
they belong to can be found in Table 7 in the Appendices.
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Figure 6: Division of a plot of 100m side into sub-plots of 25m side.
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Figure 7: Google Earth images of the plots. Each row represents an ecosystem. In order: mulga,
mallee, chenopod shrubland, eucalypt woodland. (a) saagvd0005, (b) saagvd0007, (c) saagvd0008,
(d) sasmdd0001, (e) sasmdd0002, (f) sasmdd0003, (g) sasmdd0005, (h) sasmdd0011, (i)saastp0036,
(j)sasmdd0008, (k) sasmdd0012, (l) sasmdd0013.
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2.2 Data collection and pre-processing

Data were acquired by airborne LiDAR: flying a drone equipped with a LIDAR sensor. The Unmanned
Aerial System (UAS) used for this study was the DJI Matrice 300 (M300) RTK. LiDAR data were
collected using the DJI Zenmuse L1 sensor. The following settings were applied for the drone flights:

– Flight route altitude: 50m;

– Target Surface to Takeoff Point: 0 (for chenopod shrublands), 5 (for the others);

– Speed: 5m/s;

– Side overlap: 50%;

– Margin (buffer): 50m;

– Return Mode: Triple (for forests), Dual (for low-lying vegetation);

– Sampling Rate: 160kHz (for forests), 240kHz (for low-lying vegetation);

– Scanning Mode: Repetitive.

The point clouds were constructed using the DJI Terra software and the results were saved as .las
files. Figure 13, found in the Appendices, is an example of the processed 3D image. Flying at low
altitudes at relatively slow speeds produce point densities whose orders of magnitude are greater than
traditional airborne laser scanning. Moreover, by operating at low altitude, errors in horizontal position
of projected laser pulses are minimized (Kellner et al., 2019).

2.3 Data processing

2.3.1 Canopy Height Model

The first processing step was to separate the ground and non-ground (vegetation) points from the LiDAR
point cloud. This ground classification was done using the Cloth Simulation Filter (CSF) algorithm.
This method works on raw LiDAR data and can be applied to various landscapes without determining
elaborate filtering parameters (W. Zhang et al., 2016).

After height normalization and filtration of the outliers, a Canopy Height Model (CHM) was gen-
erated using the p2r algorithm. This method densifies the point cloud and the resulting canopy model
is smoother and contains fewer ’pits’ and empty pixels (LidR documentation). The high density of the
point cloud allows a high resolution (Höfle & Hollaus, 2010). The produced CHM has a 5cm resolution
as required by the Terrestrial Ecosystem Research Network (TERN) procedure.

As a 50m buffer was set around the plots to avoid edge effects, the CHM needed to be cut into 100m
square which are the initial plots. Only then are the final CHM divided into 25m sub-plots.
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2.3.2 Metrics

Various metrics were computed in order to later determine which ones were best suited to discriminate
the four ecosystems (chenopod shrubland, mallee, mulga and eucalypt woodland). Those variables are
commonly found in the literature to characterize ecological structure (to name just a few; Ferraz et al.,
2016; Lim et al., 2003; Meyer et al., 2013; Miura & Jones, 2010; Trouvé et al., 2023; Z. Zhang et al.,
2011). They can be divided into three types: vertical, horizontal and tree-centric metrics. Table 1 is a list
of all the variables and their unit.

Vertical metrics

Asner and Mascaro (2014) recommended using the top of canopy height (TCH) instead of the mean
canopy height due to the sensor-specific variability of the latter. Indeed, vertical profile metrics calcu-
lated using the whole waveforms are highly sensitive to the LiDAR sensor. The TCH corresponds to the
average value of the CHM pixels in a plot. Therefore, the four following metrics were calculated directly
from the CHM.

The top of canopy height is computed as the average height of each pixel within a plot. The maximum
height is determined as the maximum value of all the pixels inside a plot. The standard deviation height
is the standard deviation of the pixel values belonging to a plot. The vertical profile is comprised of
6 sub-metrics which each represents the pixel frequency between two height thresholds (0-2m, 2-4m,
4-6m, 6-8m, 8-10m, 10m and above [as only the eucalypt woodlands reach higher than 10m]).

Horizontal metrics

Canopy density and canopy cover are both ratios of vegetation to ground as seen from the air. The first
parameter is the fraction of the number of returns above a 1.4m threshold (defined by TERN) over the
total number of returns. The second metric is similar to the first one, except that it only applies to the first
return. It is therefore the ratio of the number of first returns above a 1.4m threshold (defined by TERN)
over the total number of first returns.

Tree-centric metrics

The locate_trees algorithm in the lidR package was used to spot local maxima in the normalised point
cloud (Roussel et al., 2020). To count the number of trees, it is assumed that each one of those maxima
corresponds to a tree. In order to avoid the most omission and commission errors, it is important that
the size of the measurement window considered by the algorithm is proportional to the area of the crown
of the tree (Popescu & Wynne, 2004). Therefore, different window sizes were tested. Knowing that the
crown area is directly proportional to the size of the tree, an algorithm using a moving measurement
window (WS) which varies with the height (H) of the LiDAR point under consideration is pertinent. de
Lame (2021) found that the equation (1) developed by Blanchard et al. (2016) was the most appropriate.

WS =

√
0.225×H1.946

π
(1)
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Unfortunately, this method turned out to largely overestimate the number of trees. A constant mea-
surement window was therefore applied. A sensitivity analysis determined that a 5m window was the
best fitted for this study. The validation was done through a supervised accuracy assessment (i.e., assess-
ing the sensitivity of the algorithm by visually comparing the number of trees detected with the number
of trees on the RGB image of the corresponding plot). The maximum heights and the geographical co-
ordinates of the detected trees were saved in order to be used for the next metrics calculation.

Individual tree crowns (ITC) segmentation techniques allow to delineate tree crowns and thus, deter-
mine their areas. ITC segmentations require two steps: identifying trees and then segmenting crowns.
The first step had already been done when computing the number of trees. For the second step, two tech-
niques were carried out. Both methods are parametric algorithms using the LiDAR point cloud and the
CHM to achieve ITC segmentation (Roussel et al., 2020). The first method was developed by Dalponte
and Coomes (2016) and is an adaptation of the technique created by Hyyppa et al. (2001). The second
method was developed by Silva et al. (2016). After a visual comparison of the final crowns segmentation
with the RGB image of the plot, the Dalponte and Coomes (2016) algorithm seemed to underestimate
the crowns area. Therefore, the Silva et al. (2016) method was kept to calculate the crowns area of each
plot.

This technique applies a variable circular crown buffer to delimit the initial tree crown area. This
parameter is user-defined and corresponds to a proportion of the tree height. A sensitivity analysis de-
termined that 80% of the tree height was best fitted for this study. Next, the initial crown areas are split
using the centroidal voronoi tessellation approach to isolate each individual tree polygon. Then, the grid
cells which values are below 30% of the maximum height in each detected tree are excluded to eliminate
the low-lying noise. Finally, the crown delineation is computed by delimiting the boundary of grid cells
belonging to each tree (Silva et al., 2016). From this segmentation, the total crown area and the mean
area of each plot were calculated.

Table 1: Computed metrics, their type and their unit.

Type Metric Unit

Vertical

Top of canopy height m
Maximum height m
Standard deviation height m

Vertical profile

Return frequency between 0 and 2m

%

Return frequency between 2 and 4m
Return frequency between 4 and 6m
Return frequency between 6 and 8m
Return frequency between 8 and 10m
Return frequency above 10m

Horizontal
Canopy cover %
Canopy density %

Tree-centric
Number of trees /
Mean crown area m²
Total crown area m²
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2.4 Principal Component Analysis

First and foremost, the correlation matrix between variables was used to remove metrics that did not
provide any additional information. Then, the eigenvalues of the Principal Component Analysis (PCA)
were used to support the choice of the number of components to retain by keeping only the axis whose
eigenvalue is greater than the mean (Palm, 2009). Finally, the correlation matrix of the variables with
the selected axis, coupled with a significance test on each correlation value, allowed to choose the most
significant variables per dimension.

In order to evaluate the usefulness of having many variables, three number of variables as input were
tested: using all variables, selecting one variable per dimension or selecting two. The three approaches
are discussed in the following sections.

2.5 Classification models

Three different classification models were developed: one clustering model and two discriminant models
with different complexity levels. Before being used in classification, data were centered and reduced in
order to standardize their weighting in the models.

The simplest model tested is a hierarchical clustering. The principle of this classification is to group
most similar individuals then newly formed clusters together. Euclidean distance is the measure of dis-
tance used to characterize the dissimilarity between two individuals in the space of variables. The Ward’s
method was used to merge groups. Ward’s criterion minimizes the total within-cluster variance.

For the two discriminant models, data were split into a training set and a testing set.

The next model built is a decision tree using the CART method. It works by recursively splitting the
observations into groups of increasing homogeneity regarding their populations’ distribution. The final
result can be seen as a dichotomous key. The initial point is made out of the unclassified dataset and is
called the root. The nodes are where the classification rule is applied. In this study, we have an univariate
decision tree which means that each decision node consider the value of only one variable to create a
split. The final groups are referred to as leaves and correspond to the four ecosystems.

The last model established is a Linear Discriminant Analysis (LDA). The assumptions of normality
and homogeneity of within group covariance matrix were verified. The objective of this model is to cre-
ate enough discriminant linear functions to delimit four regions, each representing one ecosystem. The
discriminant linear functions are linear combinations of the previously selected variables. They are opti-
mized to maximize the power of separation between groups. In this case, six discriminant linear functions
were created, they represent the equations of six hyperplanes separating out the four ecosystems.
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2.6 Upscaling

The objective of upscaling is to evaluate if the created models work on larger plots. As a reminder, the
plots used to create the models are squares of 25m side. However, TERN works on 100m squares. The
latter were divided into sub-sites of 25m side in order to increase the number of data. It is therefore
interesting to determine if the built models are robust enough to work with plots of different sizes.

Only the two discriminant models were tested with plots of 100m side and plots of 50m side. The
100m squares are the 12 initial sites. Those same plots were cropped into 48 sub-sites to create the 50m
squares. Thus, the test datasets contained 12 and 48 plots respectively. The accuracy of the confusion
matrix for each model was used as a comparative parameter to assess the classification efficiency.

2.7 GEDI

The purpose of this comparison is to determine whether GEDI data (worldwide and open source) could
be used as input to the models built in this project. To do this, two variables were extracted from GEDI
data: a vertical metric, the maximum height, and a horizontal metric, the canopy cover. The descriptive
statistics of those two metrics were then compared with the ones computed from the drone (M300) data
in order to assess their similarities or dissimilarities.

The extraction of the GEDI data was done through Google Earth Engine. Raw GEDI data is a wave-
form representing the vertical profile of a 25m square. Due to the sparsity of the point cloud at the scale
of the individual tree, GEDI data are not able to retrieve tree-centric parameter such as the number of
trees (de Lame, 2021). On the Earth Engine Data Catalog, some processed GEDI metrics can be found,
such as the maximum height and the canopy cover.

The GEDI satellite has been probing the Earth since 2018, but the entire globe is not yet covered.
In order to find GEDI plots for the four ecosystems of this study, a buffer of 500m was drawn around
each of the 12 initial sites. The assumption that the ecosystem remains the same 500m around each plot
is therefore taken. This way, one GEDI plot was found for each site. The GEDI data extracted were
collected between November 2020 and September 2022.
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3 Results

In order to improve the readability of Figures and Tables, the four ecosystems will be referred to as
chenopods (for chenopod shrubland), eucalypt (for eucalypt woodland), mallee and mulga.

3.1 Descriptive statistics on the variables

The descriptive statistics of the metrics can be observed on Figure 8. For each metric, ecosystems can be
compared based on the median, the range and the data dispersion. Across all metrics, chenopod shrub-
land is the least variable ecosystem. On the other side, the ecosystem with the most variation is eucalypt
woodland. Besides, chenopod shrubland stands out from the other ecosystems. On the one hand, for each
metric, its median is lower. On the other hand, the ranges of the three other ecosystems systematically
overlap.

Except for two parameters (number of trees and return frequency between 2 and 4m), the range of
eucalypt woodland is wider than mallee and mulga in addition to covering most of their ranges. Mallee
and mulga share quite similar characteristics. Indeed, except for the number of trees, there is a great
overlap of their ranges. Another observation can be drawn: medians value of mallee and mulga are of
the same order of magnitude except for two parameters (number of trees and total crown area).
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Figure 8: Descriptive statistics on the variables. For each metric, a comparison of the four ecosystems is
made on the basis of boxplots. Boxplots include the data median, range and dispersion as well as outliers.
The x axis represents the ecosystems: chenopods, eucalypt, mallee and mulga. The y axis represents each
variable: top of canopy height, maximum height, standard deviation height, return frequency between
0 and 2m, return frequency between 2 and 4m, return frequency between 4 and 6m, return frequency
between 6 and 8m, return frequency between 8 and 10m, return frequency above 10m, canopy density,
canopy cover, number of trees, mean crown area and total crown area.
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3.2 Principal Component Analysis

As previously stated in section 2.4, only the axis whose eigenvalue is greater than the mean were kept.
Following this rule, the first two dimensions were retained. They explain 88% of the total cumulative
variance of the plots. The most relevant metrics selected are: the top of canopy height and the density
cover for the first dimension. And, the number of trees and the return frequency between 2 and 4m for
the second dimension.

3.3 Classification models

3.3.1 Comparison of models with different numbers of variables

The developed classification models were a hierarchical clustering model, a decision tree and a LDA
with a variable number of input metrics. For each model, three situations were implemented:

– all metrics as input;

– the top of canopy height, the canopy density, the number of trees and the return frequency between
2 and 4m as input;

– only the top of canopy height and the number of trees as input.

Accuracy related to the confusion matrix is used as a criterion for comparing models. Accuracies
of models are summarized in Table 2: almost all models have an accuracy value above 75%. Based on
this criterion, the worst model is the hierarchical clustering model with all input metrics (69% accuracy)
whereas the best is the LDA with all input metrics (97% accuracy).

For hierarchical clustering, the more variables there are, the less accurate the model is. The opposite
trend seems to apply to LDA whereas there is no clear pattern for decision trees.

Regardless of the number of input variables, hierarchical clustering is the model with the lowest ac-
curacy and LDA has the highest accuracy. Moreover, the more input variables there are, the greater the
accuracy difference between these two models.

Table 2: Comparison of models with different numbers of variables. Accuracies of the confusion matrices
of the three models (hierarchical clustering, decision trees and LDA) with 14, 4 or 2 variables as input.
The best model seems to be the LDA with 14 input variables.

Hierarchical clustering Decision trees Linear Discriminant Analysis
14 variables (all) 0.69 0.88 0.97
4 variables 0.73 0.80 0.84
2 variables 0.80 0.83 0.84
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3.3.2 Two variables models

Hierarchical clustering

Figure 9 shows the representation of each sub-plot in the first factorial plane of the PCA. Each sub-plot
was classified in an ecosystem based on the hierarchical clustering model. The purple dots belong to the
eucalypt woodland and are clearly separated from the other groups. The whole group is spread out as it
occupies a large area on the plane. On the contrary, the blue dots, belonging to the chenopod shrubland,
are all in the same place. The green dots belong to the mallee ecosystem and are also spread out but
along the same line. Some overlapping can be noticed between the mallee and the mulga (in red).

Figure 9: Plots classification using hierarchical clustering represented in the first factorial plane of the
PCA. The x and y axis are the first and second dimension of the PCA respectively. Each dot represents
a sub-plot. Each color is associated with an ecosystem: chenopods is blue, mulga is red, mallee is green
and eucalypt is purple.

Table 3: Performance criteria of the hierarchical clustering. Sensitivities and specificities associated with
each ecosystem (mulga, mallee, chenopods and eucalypt) as well as the accuracy of the confusion matrix
for the hierarchical clustering classification. The overall accuracy is 80%.

Mulga Mallee chenopods Eucalypt
Sensitivity 0.69 0.94 0.98 0.58
Specificity 0.86 0.91 0.96 1.00
Accuracy 0.80
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Decision tree

Figure 10 represents the decision tree built from two variables, the top of canopy height and the number
of trees, and applied on data validation. The first metric distinguishes individuals belonging to chenopod
shrubland: any top of canopy height value below 0.3m is associated with this ecosystem. Classification
of other ecosystems requires both metrics. On the one hand, the number of trees differentiates mallee
from mulga. On the other hand, the top of canopy height is used to discriminate eucalypt woodland.

Figure 10: Decision tree classification. Dichotomous key applying thresholds on the two variables, the
top of canopy height (chm_mean) and the number of trees (ntree), to create groups. Each color represents
an ecosystem: chenopods are red, eucalypt is orange, mallee is grey and mulga is green.

Table 4: Performance criteria of the decision tree classification. Sensitivities and specificities associated
with each ecosystem (mulga, mallee, chenopods and eucalypt) as well as the accuracy of the confusion
matrix for the decision tree classification. The overall accuracy is 83%.

Mulga Mallee chenopods Eucalypt
Sensitivity 0.72 0.81 0.96 0.85
Specificity 0.92 0.96 1.00 0.91
Accuracy 0.83
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Linear Discriminant Analysis

Table 5: Performance criteria of the LDA classification. Sensitivities and specificities associated with
each ecosystem (mulga, mallee, chenopods and eucalypt) as well as the accuracy of the confusion matrix
for the LDA classification. The overall accuracy is 84%.

Mulga Mallee chenopods Eucalypt
Sensitivity 0.65 0.91 0.96 1.00
Specificity 0.97 0.96 1.00 0.88
Accuracy 0.84

Tables 3, 4 and 5 describe the performance criteria for each model: the sensitivities and the specificities
of each ecosystem as well as the global accuracy related to the confusion matrix. Sensitivity is the per-
centage of true positives whereas specificity is the percentage of true negatives. Overall, classification
model accuracies are between 80% and 84%.

The following observations can be made regarding sensitivity rates:

– the value for mulga is less than 75% for all models;

– in each case, chenopod shrubland has the highest sensitivity, with a value close to 100% (≥ 96%);

– for eucalypt woodland, hierarchical clustering leads to a low sensitivity (58%), while the discrim-
inant models results in better values (≥ 85%).

All specificity rates are above 85% which means that all three models accurately identify true neg-
ative. They are even up to 100% for eucalypt woodland and chenopod shrubland with hierarchical
clustering and discriminant models respectively.

3.4 Upscaling

Classification models were created from square plots of 25m side. Subsequently, discriminant models
based on two variables were used on larger plots (50m side and 100m side). In order to assess the clas-
sification efficiency, accuracy of the confusion matrix is used as a comparative parameter. Accuracies of
models are summarized in Table 6. There is no significant difference in accuracy between the predictions
on 50m squares or on 100m squares. The decision tree has an accuracy around 66% and the LDA, around
43%.

Table 6: Comparison of models accuracy tested with various plot sizes. Accuracies of the discriminant
models (decision tree and LDA) trained using 25m square plots and tested with 50m or 100m square
plots.

Decision tree Linear discriminant analysis
25m 0.83 0.84
50m 0.65 0.44
100m 0.67 0.42
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3.5 GEDI

Figures 11 and 12 show the comparison between metrics (maximum height and canopy cover respec-
tively) derived from drone (M300) data and from GEDI data. The same observations can be made for
both metrics.

The data show statistical differences in terms of both dispersion and position parameters. Although
there is partial overlap between the data, the following trends emerge except for chenopods: the GEDI
data are less dispersed (lower standard deviation and range) and have a lower median. Furthermore, the
GEDI data median is almost constant from one ecosystem to another (around 3.5m for maximum height
and 0.03 for canopy cover).

Figure 11: Comparison between the maximum height calculated from drone (M300) data and from GEDI
data. Boxplots include the data median, range and dispersion as well as outliers. The x axis represents
the ecosystems: chenopods, eucalypt, mallee and mulga. The y axis is the maximum elevation (m). The
red boxplots are associated with GEDI and the blue ones with the drone (M300).
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Figure 12: Comparison between the canopy cover calculated from drone (M300) data and from GEDI
data. Boxplots include the data median, range and dispersion as well as outliers. The x axis represents
the ecosystems: chenopods, eucalypt, mallee and mulga. The y axis is the canopy cover (-). The red
boxplots are associated with GEDI and the blue ones with the drone (M300).
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4 Discussion

4.1 Variables analysis

According to descriptive statistics, chenopod shrubland appears to be the most distinctive ecosystem and
thus the easiest to differentiate. In the reality of the field, chenopod shrublands are indeed very differ-
ent from the other three ecosystems since it has few to no tree. Even if a tree is found, it is usually a
small shrub. The sparsity or absence of tree explain why the median of all metrics is lower for chenopod
shrubland.

On the contrary, eucalypt woodland is the most variable ecosystem. It can therefore easily be mis-
classified. Indeed, its classification criteria in the literature (“NVIS Fact sheet MVG 5 – Eucalypt wood-
lands”, 2017) are broader. Mallee and mulga are very specific and well-defined ecosystems while euca-
lypt woodland includes enormous range in composition and structure. The large number of eucalyptus
species is already an example of its diversity.

For mallee and mulga, their descriptive characteristics are quite similar. This is therefore a possible
source of misclassification. It would be interesting to do a significant difference test (Student’s test)
between the medians of each mallee and mulga variable to determine which parameter best discriminate
the two ecosystems.

By comparing the LiDAR-derived maximum height with heights found in literature, eucalypt wood-
land, mallee and mulga are within their defined ranges, up to 30m, 10m and 10m respectively (“NVIS
Fact sheet MVG 32 – Mallee open woodlands and sparse mallee shrublands”, 2017; “NVIS Fact sheet
MVG 5 – Eucalypt woodlands”, 2017). However, some chenopod shrubland plots almost reach 5m and
there is an outlier at about 9m while the NVIS Fact sheet MVG 22 fixes the maximum height at 2m. This
might be explained by the presence of emergent trees which are sometimes found in chenopod shrubland.

From the PCA, it emerged that the variable that best characterizes the structure of ecosystems is the
top of canopy height, which is consistent with literature (Asner et al., 2012; Campbell et al., 2017; Meyer
et al., 2013).

4.2 Classification models

4.2.1 Comparison of models with different numbers of variables

The purpose of Table 2 is to evaluate the impact of the number of input metrics on models accuracy.
The first observation that can be made is that two-variable models are more (or just as) accurate as
four-variable models. This might be because the two added variables, the canopy density and the return
frequency between 2 and 4m, provided more instability than additional information.

From Table 2, it can be concluded that hierarchical clustering is less effective with all variables than
with only two metrics, whereas the opposite trend is observed for discriminant models. One hypothesis
to explain the decrease in accuracy of hierarchical clustering with the number of metrics is that the more
variables are taken into account, the more characteristics there are to differentiate one individual from
another, but also the more sources of error. The model should be tested with a larger number of plots to
verify its robustness. Of course, this applies to all models created in this study.
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The difference in accuracy between the fourteen- and two-variable decision trees is only 5%. It is true
that for decision trees, using a lot of input metrics brings instability. This is certainly why the all-variable
model is not significantly more accurate than the two-variable model. To avoid this instability, we could
switch to a random forest. Incidentally, Koma et al. (2021) demonstrated that a random forest is capable
to differentiate land cover types and habitats within wetlands at high resolution using LiDAR-derived
metrics from country-wide airborne laser scanning data. Reese et al. (2014) also successfully classified
alpine vegetation using a random forest.

The fourteen-variable LDA is the most effective model for differentiating ecosystems, with an accu-
racy of 97%. The question of overfitting arises. Indeed, the more variables there are, the more fitted for
that one dataset the discriminant equations are. Thus, a more parsimonious model can be expected to be
more robust. Besides, the two-variable LDA has an accuracy of 84%, which is very good.

In itself, all two-variable models have an accuracy above 80% which is noteworthy. This means that
simple models (with only two input parameters) can get fairly accurate classification results. It is often
preferable to use a parsimonious model rather than a complex one because the final classification can be
related to biological reality more easily (here: the link between the number of trees and their average
height on a plot and the ecosystem which it belongs to). Therefore, it was decided to only evaluate the
two-variable models to conduct the subsequent work. Their performance will be discussed in the next
section.

4.2.2 Two variables models

Figure 9 shows a clear distinction between eucalypt woodland and the three other ecosystems. It is also
seen that this group is quite spread out which points out a high within-cluster variance. This means that
it is a fairly diversified ecosystem whose structural characteristics varies over a large range. This could
already be observed through its descriptive statistics. On the contrary, the fact that chenopod shrubland is
clustered at the same location indicates a low within-cluster variance. This is also confirmed by the small
ranges of its descriptive statistics. As already said above, the sparsity or absence of trees in shrublands
explains why this group does not have a lot of diversity and differs from the others. The overlapping
between mallee and mulga noticed in Figure 9 could also be anticipated from their descriptive statistics.
It stems from the fact that the two ecosystems share many similar characteristics. A final observation is
that there is no site effect. Indeed, the plots come from two distant locations, but this distinction is not
found in Figure 9, except slightly with eucalypt woodland. However, this separation will be discussed in
the next paragraph.

From Tables 3, 4 and 5, the performance criteria of each model can be compared. On the one hand,
sensitivity rates indicate that eucalypt woodland and mulga are the most difficult ecosystems to clas-
sify. Mulga is the hardest group to differentiate while the classification of eucalypt woodland strongly
improves with discriminant models. Indeed, on the one side, its sensitivity for hierarchical clustering
warns that there is a high misclassification rate. The visible separation on the factorial plane (Figure 9) is
therefore erroneous. Many of the plots in this area are actually part of another ecosystem. Since eucalypt
woodland metrics have the largest ranges, it is understandable that a few individuals were mistakenly as-
signed to this group. On the other side, its sensitivity for LDA is 100% which means that all individuals
identified as eucalypt woodlands are indeed eucalypt woodlands. Also, its specificity informs that just a
few eucalyptus plots were misclassified in another ecosystem. On the other hand, chenopod shrubland
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is easily discriminated in all models. The decision tree (see Figure 10) corroborates this conclusion as it
only applies one classification criterion to identify it.

All three model have an accuracy above 80%, so they can all efficiently differentiate the four ecosys-
tems. Nonetheless, according to the performance criteria of each model, the LDA is the best suited model
to discriminate these four ecosystems. The discriminating power of LiDAR-derived metrics coupled with
an LDA had already been confirmed by Z. Zhang et al. (2011) who classified Australian temperate forests
with an accuracy of 91%. Unfortunately, LDA is also the most complex model to interpret as the classi-
fication rules are made out of mathematical equations. On the contrary, the decision tree classification,
which is only 1% less accurate than the LDA, is very easy to relate to the biological reality. Indeed, in
Figure 10, we can clearly see which metric is used, between the top of canopy height and the number of
trees, and which threshold is applied to identify a group.

4.2.3 Limitations

Even thought this study shows promising results, it is important to highlight its limitations.

One of the most important setback is the limited size of the dataset. Only 12 plots of 100m side were
available and they had to be divided into smaller sub-sites to increase their statistical relevance. Only
three sites represent each ecosystem which is not enough to capture their intraspecific diversity (or ab-
sence of it). It would be useful to test those models on a larger dataset in order to assess their robustness
and identify a possible overfitting. Moreover, a larger dataset, and therefore a better representation of the
ecosystems, might change the conclusions regarding which metrics best discriminate them.

I would also mention the fact that the plots used to train the models are a bit small. A square of 25m
of side, 625m² of surface, is not ideal to represent an ecosystem. Small local variations will have a large
effect on the plot characteristics. For example, if a small area does not contain a tree, it will be classified
as chenopod shrubland. This scenario is quite common in open canopy forests and it might explain some
of the misclassifications. It is therefore preferable to have large plots to prevent local variations from
impacting the classification. It would be interesting to compare the descriptive statistics of the 100m
squares to see how they differ from those of the 25m squares. But, once again, there are only 12 plots
which is not enough to fairly represent an ecosystem.

Another limitation is the lack of field measurements to evaluate the quality of the metrics calcu-
lations. Unfortunately, I had no way (except the literature) to verify the accuracy of the parameters
computed from LiDAR data. Calibration of LiDAR-derived variables with field data, such as the maxi-
mum height or the number of trees, would certainly improves the models. Indeed, remote sensing proxies
will often need to be combined with field measurements to accurately represent the desired ecosystem
(Tong et al., 2004).
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Still in order to have LiDAR metrics that best reflect the reality, the calibration of the computing of
the number of trees could be improved. As a reminder, the calculation of the number of trees requires
the detection of local maxima thanks to a measurement window. In order to avoid the most omission and
commission errors, it is important that the size of the measurement window is proportional to the area of
the tree crown (Popescu & Wynne, 2004). Knowing that the crown area is directly proportional to the
size of the tree, using a moving measurement window which varies with the height is appropriate. The
equation (1) developed by Blanchard et al. (2016) was tested but unsuccessful. This might be due to the
fact that it was created for tropical forests. Consequently, it does not perform as well on open canopy
forests in drylands. However, the approach of using a moving window size seems pertinent. A different
equation found in the literature could be used to increase the accuracy of the number of trees, which has
proved to be an essential variable for discriminating ecosystems.

Also, I think that the great variability of eucalypt woodland highly influences the accuracy of the
models. Indeed, as this ecosystem is very diversified, many plots can be found there. To compensate for
this deficiency, we could divide it into narrower and more precisely defined ecosystems.

Lastly, the only criterion to evaluate model performance was the confusion matrix, but it would be
appropriate to quantify their uncertainty with other parameters as well.

4.3 Upscaling

The upscaling was carried out to determine if the models work on larger plots, especially on 100m
squares as this is the size on which TERN works. The original 12 plots had to be cropped into multiple
sub-sites in order to increase the size of the dataset. Based on the results presented in Table 6, it can
be concluded that models are less effective on larger plots (regardless of size). The LDA lost half its
accuracy while the decision tree dropped to 66% accuracy. It appears that this model is more robust but
still not effective enough to properly differentiate the four ecosystems in this study.

In fact, it makes perfect sense that the models are inaccurate since one of the input variables, the
number of trees, depends on the size of the plot. It is obvious that a 10 000m² plot and a 625m² plot do
not contain the same number of trees. Only the top of canopy height can be transposed to larger scale
models. Thus, the models built in this study can only be applied to 25m squares. The ideal would have
been to create the models from the 100m squares but only 12 data is not enough to assess the model
quality. Perhaps using another metric, which is not dependent on the plot size, would improve the mod-
els. The return frequency between 2 and 4m, which was the second variable selected for the second
dimension of the PCA, could be a good lead.

4.4 GEDI

The comparison between the drone metrics and the GEDI metrics (Figures 11 and 12) shows that the
GEDI metrics are less variable than the drone metrics. Besides, the GEDI medians are constant across
the four ecosystems. These conclusions apply to both the vertical variable, maximum height, and to the
horizontal variable, canopy cover. This means that GEDI metrics are unfit to discriminate these ecosys-
tems with the method established in this study.
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One hypothesis to explain the observed differences is that the GEDI data come from a satellite: its
resolution and, therefore, its accuracy are much lower than those of the drone. A satellite is less able
to detect small variations and therefore the ranges of GEDI variables are smaller. Another explanation
for the contrast between the two datasets is that the GEDI data were collected under the assumption that
the ecosystem remains the same 500m around each site. Presumably it might not have been the case for
some plots, which could explain the dissimilarity between metrics. What is more, the GEDI variables
were found on the Earth Engine Data Catalog; their method of calculation may differ from the way I
computed them.

4.5 Additional prospects

The use of LiDAR for large-scale ecosystems characterization is promising. LiDAR provides detailed
information on the three-dimensional structure of vegetation. Unlike some other technologies such as
optical satellite imagery, LiDAR can penetrate through vegetation to measure the surface area of the
ground, allowing a better understanding of the underlying topography. LiDAR can distinguish different
vegetation layers and even detect individual trees. But, it also has disadvantages. LiDAR technology can
be costly to implement in terms of data collection, processing and analysis. The equipment required is
often sophisticated. Weather conditions, such as rain or fog, may affect the quality of the data. In addi-
tion, raw LiDAR data can be complex to interpret and require advanced technical skills to be properly
processed and analyzed.

This study is an example proving that LiDAR technology can be used to discriminate ecosystems but
it is not the only one. Indeed, LiDAR-derived metrics can successfully classify forest structural classes
(Campbell et al., 2017; Jones et al., 2012) or wetland-related land cover types and habitats (Koma et al.,
2021). In Australia, Z. Zhang et al. (2011) accurately classified temperate forests. Even in area with high
uncertainty such as semi-arid lands, small-footprint waveform features can characterize heterogeneous
vegetation at high spatial resolution. Pulse width appeared to be a relevant LiDAR metric as it allowed
to differentiate bare ground from low-height vegetation (Ilangakoon et al., 2018).

However, combining different remote sensing sources seems to enhance the results. Indeed, Trouvé
et al. (2023) found that combining environmental, multispectral and LiDAR data improves the classi-
fication of temperate forest in Australia. What is more, the fusion of airborne laser scanning data and
optical satellite data gave the highest classification accuracy in alpine region (Reese et al., 2014). Dashti
et al. (2019) employed spectral and structural (LiDAR) data to circumvent the challenges associated with
drylands. Incorporating the LiDAR information into the classification scheme increased the overall ac-
curacy from 60% to 89%.
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5 Conclusion

This study demonstrated the potential use of high resolution airborne LiDAR data to classify four ecosys-
tems found in the outback of South Australia. The characterization of ecosystems is done by describing
vegetation structure. Based on numerous studies on the subject (Dubayah & Drake, 2000; Huylenbroeck
et al., 2020; Lim et al., 2003; Michez et al., 2016), we hypothesized that the structural components of
vegetation could be determined using LiDAR technology.

Various LiDAR-derived metrics were computed but a PCA help select the best suited ones in order
to differentiate our ecosystems. Three classification models were created: a hierarchical clustering, a
decision trees and a LDA. A comparison between the models built with different numbers of variables
as input revealed that only two variables, the top of canopy height and the number of trees, were enough
to accurately identify the ecosystems. Indeed, all three of them have an accuracy equal or above 80%.
A more detailed analysis of the models performance indicated that eucalypt woodland and mulga are the
hardest ecosystems to classify while chenopod shrubland is the easiest. The LDA appeared to be the best
predictor but the decision tree, whose overall accuracy is only 1% less, is easier to interpret and to relate
to ecological reality.

Trying out the models with plots of larger sizes was not concluding because the number of trees, one
of the input variable, is dependent on the plot size. Therefore, the models created in this study can only
be used with 25m squares.

Another way of upscaling the scope of this study was explored through the use of GEDI data, which
are collected worldwide on 25m squares. In theory, applying GEDI data as input would allow for a
large-scale use of our models. Unfortunately, the comparison of airborne and spaceborne LiDAR met-
rics revealed a significant difference between the two datasets.

Even though this work showed promising results in using LiDAR technology to characterize ecosys-
tems, there is always room for improvement. Testing the models on a larger dataset would assess their
robustness and determine if they can be transposed to other study areas. What is more, a calibration of
the LiDAR-derived metrics with field measurements would enhance the quality of the metrics. The num-
ber of trees calculation also revealed a need for better fitted methods in drylands. In addition, combining
different sources of remote sensing proved to increase classification accuracy.

This study showed great results in using high resolution airborne LiDAR to discriminate some Aus-
tralian ecosystems. Nonetheless, the limited amount of data calls for further research in order to improve
the large-scale characterization of drylands ecosystems.
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6 Contribution of the student

In terms of field data collection, I only participated in the Wintinna campaign. The drone flights were
conducted by Nick Gellie from the TERN team. I assisted him in the preparation of the flights as well as
during the data acquisition where I monitored the drone’s safety by verifying the wind speed as well as a
possible bird attack.

I processed the data from the raw drone images to the derived-LiDAR metrics. However, I would
like to point out that an R code was provided to me by Poornima Sivanandam, from the University of
Tasmania, who works in collaboration with TERN, to create CHMs from .las files. This code also con-
tained the calculation of canopy cover and canopy density. I adapted it to the needs of this study. All
other variables, statistical analysis and classification models are purely the object of my creation. I also
did the extraction and process of the GEDI data.

In addition, the data analysis, the interpretation of the results, the writing of this document and the
communication of the results were done by myself.
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8 Appendices

Table 7: Site name, latitude and longitude of the up right corner of the plot, location and ecosystem of
each site.

Name Latitude [°] Longitude [°] Location Ecosystem
sasmdd0001 -34,001805 140,587086 Calperum Mallee
sasmdd0002 -34,010801 140,593779 Calperum Mallee
sasmdd0003 -33,993633 140,586725 Calperum Mallee
sasmdd0005 -33,973407 140,726868 Calperum Chenopods
sasmdd0008 -34,043302 140,761086 Calperum Eucalypt
sasmdd0011 -34,017995 140,710609 Calperum Chenopods
sasmdd0012 -34,058235 140,755431 Calperum Eucalypt
sasmdd0013 -34,055805 140,735956 Calperum Eucalypt
saagvd0005 -27,706331 133,673490 Wintinna Mulga
saagvd0007 -27,668755 133,725231 Wintinna Mulga
saagvd0008 -27,638147 133,767499 Wintinna Mulga
saastp0036 -27,569344 134,144672 Wintinna Chenopods

Figure 13: Point cloud of sasmdd0008 constructed using the DJI Terra software.
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