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Abstract

This research aims to explore novel methods for parameterizing the contributions of subgrid-
scale processes, which refer to physical phenomena occurring at scales finer than the sim-
ulation resolution. More precisely, this work is built upon the research of Ross et al., 2023,
who, after many years of parameterization development, have created a framework to
properly conduct the assessment of the quality of a parameterization.

In addition to replicating their findings, this study extends its scope by attempting to
enhance their results through a series of experiments involving more complex datasets.
Furthermore, and perhaps most significantly, it delves into the use of Fourier Neural Op-
erators for modeling subgrid-scale process contributions. These neural networks were
recently introduced by Li et al., 2020, and have already exhibited impressive results in
many areas of computational fluid dynamics. Hence, while building upon the foundation
laid by Ross et al., 2023, this study also pioneers the use of Fourier Neural Operators in
this context, subjecting them to comprehensive evaluation within the established bench-
marking framework.

In conclusion, this research not only facilitates a comprehensive grasp of the underlying
physics in ocean-climate simulations but also delves into unexplored realms by leverag-
ing state-of-the-art deep learning techniques for modeling subgrid-scale processes contri-
butions. The conclusive results show promise and underscore the notion that the most
captivating discoveries frequently emerge at the crossroads of two captivating scientific
domains.
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Chapter One

A call for climate simulation

"What is the use of a house if you haven’t got a tolerable planet to put it on ?"

- Henry David Thoreau

1.1 INTRODUCTION

In today’s world, the global climate crisis has transcended its status as a mere environmen-
tal issue to emerge as a shared concern for humanity’s future. The fate of our species is at
stake, urging us to face the dire consequences of our actions. Over the past two decades,
the Earth has witnessed some of its most devastating climate disasters, including hurri-
canes (Katrina 2005, Harvey 2017), cyclones (Nargis 2008, Idai 2019), floods (Pakistan 2010,
Belgium 2021), heatwaves (Russia 2010, Arctic 2020), bushfires (Australia 2019–2020), and
many more. Moreover, as seen in Fig. 1, the alarming trend of identified climate disasters
has increased fourfold since 1970.

Even worse, oxygen concentrations in both the open ocean and coastal waters have been
declining since at least the middle of the 20th century (Karstensen, Stramma, and Visbeck,
2008; Stanev et al., 2013; Capet et al., 2016; Breitburg et al., 2018). This loss of oxygen,
known as deoxygenation, is a significant phenomenon occurring in oceans increasingly
damaged by human activities. These activities have led to elevated temperatures, ex-
tremely high CO2 levels and nutrient inputs, which, in turn, have affected the population
and distribution of marine species.

With just a handful of examples, one can grasp the significance and necessity of climate
modeling as it will enable the simulation, understanding, and prediction of the Earth’s
climate system. It will help to reconstruct past climates, to project future climate scenarios
based on various factors like emissions and policies, and to assess the impact of climate
change on numerous sectors.

Nevertheless, it is unrealistic to expect an earth-scale numerical simulation that flawlessly
captures all the intricacies of global wind circulation and ocean currents. Undoubtedly,
the computational cost would be untractable, and by the time the simulation concludes,
significant environmental damage could have occurred. Therefore, an effective approach
is to conduct simulations at a large spatial scale but with reduced resolution. This balances
computational time while sacrificing some details. The challenge lies in efficiently incor-
porating neglected physical processes, a topic of considerable interest within the scientific
community and the focus of this master’s thesis.
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Figure 1: Global reported natural disasters by type from 1970 to 2022. The annual reported
number of natural disasters are categorised by type and this includes both weather and
non-weather related disasters.

1.2 STATE OF THE ART

In the context of oceans, whether one is studying global wind circulation or ocean cur-
rents, simulations frequently involve turbulent flows. They exhibit chaotic, irregular, and
random motion of fluid particles, arising from complex interactions between different
scales of motion in the fluid. In contrast to laminar flow, where fluid particles move
smoothly in parallel layers, ocean flows are distinguished by the presence of vortices,
eddies, and fluctuations in velocity and pressure.

Hence, simulations necessitate a considerable scale and high resolution to adequately
capture small-scale turbulent structures. However, the associated computational time be-
comes prohibitive, necessitating a reduction in resolution. Nonetheless, in lower-resolution
simulations, smaller turbulent eddies and fluctuations remain unresolved due to grid lim-
itations, resulting in an incomplete portrayal of turbulent processes and subsequently im-
pacting the simulation accuracy.

Nowadays, simulations are commonly conducted at the mesoscale resolution, typically
ranging from 10 to 100 kilometers. However, these overlooked physical processes occur
at the submesoscale level (less than 10 kilometers). A first question that arises is whether
these disregarded processes can be safely overlooked or if their contribution holds signif-
icant importance.
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In 1941, Andrey Kolmogorov introduced the concept of the Kolmogorov cascade, which
elucidates the energy transfer across various scales in turbulent flows until reaching scales
where energy dissipates due to viscous effects (Kolmogorov, 1941). Consequently, it is ev-
ident that disregarding small-scale physical processes in simulations should impact the
energy budget.

This observation has been consistently emphasized in numerous research studies. For
instance, Lévy, Resplandy, et al., 2012 demonstrated the significant sensitivity of ocean
dynamical solutions to grid resolution. In fact, increasing the simulation resolution to
O(1) km resulted in an enhanced energy spectrum for all eddy scales, leading to a com-
plete alteration of flow dynamics, as depicted in Fig.2.

Nevertheless, in certain regions of the globe, mesoscale dynamics have been proven to be
the primary driver of biological production by modulating nutrient supplies throughout
the year (Resplandy, Lévy, Madec, et al., 2011; Lévy, Ferrari, et al., 2012). However, to
accurately predict mesoscale behavior, a correct energy spectrum is necessary, which can
only be achieved by resolving submesoscale processes.

In conclusion, the answer to this first question leans towards "no, since these small-scale
processes cannot be overlooked" but this topic still remains a subject of intense investi-
gation within the scientific community (Resplandy, Lévy, d’Ovidio, et al., 2009; Lévy and
Martin, 2013; Ramachandran, Tandon, and Mahadevan, 2014; Djath et al., 2014; Martin
et al., 2015; Su et al., 2018).

Subsequently, the following question arises: How can one account for the missing con-
tributions of these submesoscale processes while achieving faster simulations than high-
resolution approaches and accurately representing flow dynamics ? In other words, how
can one derive a parameterization for this absent physics ?

Figure 2: Snapshots of surface relative vorticity and sea-surface temperature (SST) simu-
lated with increasing grid resolution, from 1� (= 111 km) to 1/54� (⇡ 2 km) generated by
the model of Lévy, Resplandy, et al., 2012
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Over the years, many scientists have attempted to address this question. The develope-
ment of turbulence closure modelling, i.e. finding a parameterization for the missing
contributions, using analytical formulations can be traced back to the mid-20th century.

In 1925, Prandtl published a paper that profoundly influenced the understanding and
modeling of turbulence in fluid dynamics (Prandtl, 1925). Through meticulous analysis
of experimental data, Prandtl provided essential insights into the nature of turbulence,
making it easier to comprehend and predict turbulent flows in practical engineering ap-
plications.

Building upon Prandtl’s work, many researchers have made significant advancements in
fluid mechanics and a perfect example there is Smagorinsky’s turbulence model (Smagorin-
sky, 1963). This model represents an important milestone in turbulence modeling since it
is the first to incorporate subgrid-scale modeling in numerical simulations. Its application
in various atmospheric and oceanic models, such as weather prediction and climate mod-
els, has enabled reasonably efficient simulations of turbulent flows.

Following this, the development of two major turbulence models, the k � # (Singhal and
Spalding, 1981) and k � w (Menter, 1992) models, has been instrumental in simulating
turbulent flows and continues to be widely utilized in current research and engineering
practices.

Another significant contribution to turbulence modeling is the Backscattering model (Jansen
and Held, 2014; Jansen, Held, et al., 2015). Indeed, this model addresses the backscatter
mechanism, where energy is transferred from unresolved subgrid scales back to the re-
solved scales due to interactions between resolved-scale and subgrid-scale motions. Im-
plementing backscatter energy in a physically consistent manner enhances the accuracy
of turbulence models, particularly in regions with complex turbulence behavior.

However, all of these analytical parameterizations encounter a common challenge known
as the closure problem. Introducing additional equations often involves higher-order sta-
tistical moments, leading to an excess of unknowns compared to equations. Furthermore,
universality becomes an issue as turbulence behaves differently in various flow regimes,
limiting the applicability of the model. Moreover, the validity range of these models is
restricted, and they may struggle to accurately predict turbulence behavior outside this
range. Additionally, turbulence closure models are sensitive to initial and boundary con-
ditions, and they may lack accuracy in complex flows.

Finally, in the context of climate modeling, the most significant issue arises from the in-
troduction of artificial viscosity in many of these models. In order to maintain numerical
stability, the viscosity is often increased, even in flows where convection should dominate.
Consequently, the flow becomes numerically dominated by diffusion, leading to an unde-
sired smoothing effect (see Eq. 5). This is problematic because flows in climate modeling,
such as global wind circulation and ocean currents, are predominantly turbulent and com-
posed of eddies, resulting in a chaotic nature. However, diffusion aims to smooth out the
flow, reducing the turbulent eddy-generating behavior. This discrepancy highlights the
necessity to explore alternative forms of parameterizations.
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Naturally, with the rapid expansion of machine learning and its remarkable accomplish-
ments, researchers have increasingly explored its potential for turbulence parameteriza-
tion. As a consequence, since 2010, numerous papers have emerged at the intersection of
machine learning and fluid dynamics, seeking to leverage these tools.

In 1877, Boussinesq presented his effective turbulent viscosity hypothesis in his work
Théorie analytique de la chaleur. He proposed that turbulent flows involve momentum ex-
change between larger, resolved scales, and smaller, unresolved turbulent eddies, which
can be represented using an effective viscosity. This relationship links the Reynolds stress
to velocity gradients in fluid flow equations (see Eq.14).

Nearly a century later, Pope extended this concept by introducing a more generalized
form of the effective-viscosity relationship (Pope, 1975). Instead of assuming a linear rela-
tionship, he proposed a power-law relationship. This generalized form allows to capture
a broader range of turbulence behaviors and is expected to capture more accurately the
dynamics of turbulent flows across various flow regimes.

In 2016, his work resurfaced, emphasizing the invariance property he imposed on the tur-
bulence parameterization he developed. Indeed, in the publication of Ling, Kurzawski,
and Templeton, 2016 , they introduced a data-driven, physics-informed parameterization
of turbulence, integrating the invariance properties into the neural network architecture.
In the context of fluid dynamics, this ensures that the governing equations (see Eq.13, 14
and 15) remain unchanged under specific coordinate transformations and by incorporat-
ing them into the DNN design, the model achieves enhanced physical consistency and
better captures the physics involved in the turbulent flows. Furthermore, this architecture
has served as an inspiration for many others, for an excellent and comprehensive review
of them, one should refer to Sharma et al., 2023.

Another great work is the one by Bolton and Zanna, 2019, in their study they use convo-
lutional neural networks to predict unresolved turbulent processes and subsurface flow
fields. They demonstrate that these neural networks successfully replicate spatiotemporal
variability of subgrid eddy momentum forcing (see Eq.20) and can generalize to various
dynamical behaviors while respecting global momentum conservation. This study pro-
vides valuable insights for designing ocean eddy parameterizations in coarse-resolution
climate models.

As an example of their work (see Fig.3), they investigate the spatiotemporal variability of
the true subgrid-forcing term Sx x-components and its predicted value S̃x in a 512 ⇥ 512
domain. All the neural networks, denoted by fx (ȳ, wi) with i = 1, 2, 3, trained on differ-
ent regions successfully reproduce the spatial patterns of the true Sx but exhibit varying
magnitudes. The network trained on data from the western boundary accurately repro-
duces the correct amplitude and variability. However, the network trained on data from
the eastern boundary underestimates the magnitude by approximately 50%, whereas the
network trained on data from the southern gyre underestimates Sx by an order of mag-
nitude. To assess their accuracy even more, the Pearson correlation is calculated between
Sx and S̃x. As it can be seen, the networks show high correlation within the jet region but
tend toward zero or negative correlation near the eastern boundary.
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Figure 3: Examining the nonlocal prediction ability. Comparisons of the true zonal com-
ponent of the subfilter momentum forcing Sx, with the neural networks trained using
data from three different regions. The first three rows compare (a-d) snapshots, (e-h) time
means, and (i-1) the standard deviation, respectively, while the bottom row (m-o) shows
the correlation between the true Sx and the predictions S̃x. The first column contains
the diagnostics using the true zonal subfilter momentum forcing Sx, while columns two,
three, and four use predictions S̃x from the neural networks fx (ȳ, w1) , fx (ȳ, w2), and
fx (ȳ, w3), respectively. All diagnostics were produced using the validation data, the fig-
ure and legend come from the work Bolton and Zanna, 2019.
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Recently, the field of deep learning has witnessed the emergence of an exciting and inno-
vative branch that explores the integration of neural networks within the realm of Fourier
space. In fact, this novel architecture, known as the Fourier Neural Operator (Li et al.,
2020), represents a significant step forward at the intersection of neural networks and
Fourier analysis.

The Fourier Neural Operator (FNO) is innovative because it seamlessly blends the ex-
pressive power of neural networks with the unique representation capabilities of Fourier
analysis. Neural networks have demonstrated remarkable success in handling complex
patterns and capturing intricate relationships within data, while Fourier analysis provides
a mathematical framework to decompose signals into frequency components, highlight-
ing long-range interactions and global patterns.

Since then, many new papers building upon it have emerged, including the Factorized
Fourier Neural Operator (FFNO), which enhances the architecture by using separable
spectral layers, improved residual connections, better training strategies like the Markov
assumption, etc (Tran et al., 2021). These advancements allow FFNO to scale to deeper
networks and outperform the original Fourier Neural Operator on challenging problems,
such as the Navier-Stokes equation. An illustration of its capabilities is shown in Fig.5.

To finish, the Spherical Fourier Neural Operators, recently published, represents a ground-
breaking extension of Fourier Neural Operators by leveraging the generalized Fourier
transform to efficiently learn operators on spherical geometries (Bonev et al., 2023). In-
deed, it provides stable and accurate long-range forecasts for atmospheric dynamics, cru-
cial for climate prediction. An illustration of it is shown in Fig.4. With impressive com-
putational efficiency, SFNOs achieve forecasts for an entire year within 13 minutes on a
single GPU. This promising advancement holds significant potential for sub-seasonal-to-
seasonal forecasting and machine learning-based climate prediction.

Figure 4: Solutions to the Shallow Water Equations on the rotating Sphere predicted by
SFNO and FNO architectures in comparison to the ground truth solution computed using
a classical spectral solver. The plots depict the geopotential height at 5 and 10 hours, the
figure and legend comes from the work Bonev et al., 2023.
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In conclusion, the emergence of these Fourier Neural Operators marks an exciting new
frontier in the deep learning field, bringing together the power of neural networks and
the insights from Fourier analysis to tackle complex partial differential equation problems
with unparalleled efficiency and accuracy. These architectures, the FNO and the FFNO
specifficaly, will be explored more deeply in what comes afterwards since they are the
object of this thesis.

Figure 5: Visualization of the correlation variation between the ground truths and differ-
ent models. The heatmaps represent the surface of a torus mapped onto a 2D grid, with
color representing the vorticity (the spinning motion) of the fluid. One observes that the
vorticity fields predicted by the F-FNO trained on 128x128 grids (middle row) correlates
with the ground truths (top row) for longer than if the DNS is run using the same spa-
tial resolution (bottom row). This is especially evident after 6 seconds of simulation time
(compare the green boxes). In other words, for the same desired accuracy, the F-FNO re-
quires a smaller grid input than a numerical solver, the figure and legend come from the
work Tran et al., 2021.
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The black-box nature of neural networks, while powerful for approximating complex
functions, poses a challenge when it comes to gaining insights into the underlying physi-
cal processes. In addition to that, for many complex systems, one only has access to poor
models because certain interaction terms are unknown.

A solution to these problems is to use a new method such as the Symbolic Regression (SR)
fits, it is a machine learning technique that discovers compact, human-readable mathe-
matical expressions reflecting underlying data relationships, especially useful for com-
plex or unknown variable relationships. SR assumes a sparse and algebraic input-output
relationship for the data-generating mechanism. By combining symbolic regression with
deep learning, researchers can build hybrid models that retain the flexibility of neural net-
works while also capturing the interpretability of symbolic equations.

This idea was developped further by Cranmer et al., 2020, they present a novel approach
to distill symbolic representations of a deep learning model, focusing on Graph Neural
Networks (GNNs). Their technique encourages sparse latent representations during su-
pervised training of GNNs, followed by symbolic regression to extract explicit physical
relations from components of the learned model. Moreover, the symbolic expressions
extracted using their method generalize better to out-of-distribution data compared to
the GNN itself. Applied to a cosmology example, they discover a new analytic formula
predicting dark matter concentration from nearby cosmic structures’ mass distribution.
Hence, applying this method in the context of turbulence closure modeling holds signifi-
cant promise, as demonstrated by Quattromini et al., 2023, who have successfully utilized
Graph Neural Networks for this purpose.

An alternative solution to the initial problem involves using a Relevance Vector Machine
(RVM), which differs from symbolic regression methods. The RVM primary objective is to
identify the most significant features or variables in the input data that contribute to the
prediction task. By estimating the relevance of each feature and automatically selecting
the most relevant ones, the RVM creates a sparse model. Zanna and Bolton, 2020 explored
this approach and successfully found several parameterizations for the turbulence closure
term. Although the results were inferior to those produced by their Convolutional Neural
Network (CNN) in Bolton and Zanna, 2019, the RVM provided an interpretable parame-
terization.

To conclude, regardless of the approach used, whether it involves neural networks, sym-
bolic regression, or other methods, it is essential to assess the quality of the results ob-
tained. A consistent way to achieve this is through the framework presented by Ross
et al., 2023. Indeed, this framework enables the evaluation of the offline ability of the
parameterization learned, i.e. it uses various metrics to assess the quality of the local pre-
dictions made for the closure term. Additionally, the framework facilitates the assessment
of the online ability of the network. It provides various tools to observe the quality of
simulations conducted at low resolution and corrected at each time step by the network.
Key aspects such as the energy spectrum, decorrelation time, probability distribution sim-
ilarities, and other relevant indicators are also considered. This comprehensive approach
ensures a rigorous evaluation of the performance and effectiveness of the parameteriza-
tions found.

9



1.3 RESEARCH OBJECTIVES AND AIMS

The objective of this thesis is to investigate the intersection of deep learning and physics in
the domain of ocean dynamics. Specifically, we aim to explore and assess the performance
of state-of-the-art deep learning methods in enhancing the quality of low-resolution ocean
simulations. The ultimate goal is to discover a new parameterization for the neglected
physical processes, i.e. Reynolds stresses (see Eq.20), that could significantly improve the
quality of the results, comparable to computationally intensive high-resolution simula-
tions.

To achieve this, the key objectives of this study are as follows:

1. Use my background in physics to comprehend the fluid mechanics involved in the
case of ocean modelling. This involves explaining and ensuring that everyone pos-
sesses sufficient knowledge of the underlying physics to interpret the subsequent
results effectively.

2. Reproduce the results obtained in previous studies, namely Bolton and Zanna, 2019;
Zanna and Bolton, 2020; Ross et al., 2023, using both their Fully-Convolutional-
Neural-Network (FCNN) and their learned parameterization through Relevance Vec-
tor Machine (RVM).

3. Extend the investigation conducted in Ross et al., 2023 by employing more complex
and larger datasets, with the hope of enhancing the obtained results.

4. Use the Fourier Neural Operators, specifically the FNO (Li et al., 2020) and FFNO
(Tran et al., 2021), which is a novel approach in the context subgrid scale processes
parameterization, aiming to improve upon the original results and the new results
obtained with the expanded datasets.

5. Conduct a rigorous assessment of the newly learned parameterizations, using the
benchmark framework established in Ross et al., 2023. This will ensure a compre-
hensive evaluation of the models performance, accuracy and physical meaning of
the resulting simulations.

10



Chapter Two

An introduction to fluid dynamics

The objective of this chapter is to introduce the concept of conservation laws in fluid dynamics,
derive the Navier-Stokes equations and physically interpret them, introduce the Quasigeostrophy
theory, and explore subgrid scale physics parameterizations.

2.1 CONSERVATION LAW

The foundation of fluid dynamics is laid upon conservations laws. The meaning of these
laws does not result from mathematics but from physics and observations of the surround-
ing world. For example, the conservation law for a quantity U can be stated as:

Definition of a conservation law

The variation of the total amount of a quantity U inside a given domain is equal to
the balance between the amount of that quantity entering and leaving the consid-
ered domain, plus the contributions from eventual sources generating that quantity.

Of course, not all flow quantities obey to conservation laws. Indeed, only the mass, mo-
mentum and energy do whereas pressure, temperature and entropy do not sastify a con-
servation law. Now, from a mathematical point of view, the general form of the conserva-
tion law can be derived rather easily.

W

S = ∂W

F

dS QS

QV

Figure 6: Arbitrary control volume W of fluid
and representation of basic mathematical no-
tions used in fluid dynamics.

Indeed, in order to understand how U

evolves through time, it is first important
to define and understand basic notions
such as the one depicted in Fig.6 where:

• W is the control volume;

• F is a flux entering the volume;

• S = dW is the boundary of this con-
trol volume;

• dS is the surface element vector
pointing along the outward normal;

• QV and QS are respectively volume
and surface sources with respect to
the control volume W.
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Thus, by translating the conservation law into mathematical terms and using the different
notions defined in Fig.6, one obtains:

∂

∂t

Z

W
U dW

| {z }
Change of total

amount of U in W

= �
Z

S
F · dS

| {z }
Amount of U

entering � leaving W

+
Z

W
QV dW +

Z

S
QS · dS

| {z }
Amount of U generated

which corresponds mathematically to the global form of the conservation law and it
holds true for any abritrary volume W. In addition to that, it is important to notice that
due to the integrals, it is implied that this law should be verified all over the volume.
However, it is also interesting to extract the local form of this equation, i.e. the equation
that should be satisfied locally over each point contained in the volume. In order to do so,
one must use Gauss theorem which is stated as follows:

Gauss theorem

Let W be a volume in R3 and S be the closed surface that encloses W. If F is a flux
that is continuously differentiable within W and over S, one has:

Z

S
F · dS =

Z

W
r · F dW (1)

where r · F corresponds to the divergence of the vector field. That is, if F is a close
loop, the divergence would be zero, whereas if the vector field tends to move away
from a point, then r · F would be greater than zero.

In other words, Gauss theorem asserts that the total amount of a given quantity U only
depending on a flux F in an arbitrary volume W can be computed with a volume integral of
all sources and sinks or equivalently, using the overall flow passing through the boundary
of the volume. An illustration of these integrals is represented in Fig.7.

F

dS

F

dW

W W

S = ∂W S = ∂W

Figure 7: The arbitrary volume W contains a quantity U that depends solely on the flux F.
In the left figure, the total amount of U is computed using the boundary S and the surface
element vector dS. In the right figure, the total amount of U is computed by considering
the control volume W, the infinitesimal volume dW, and the divergence of F.
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Therefore, with the use of Gauss theorem, one obtains:

∂

∂t

Z

W
U dW = �

Z

S
F · dS +

Z

W
QV dW +

Z

S
QS · dS

= �
Z

W
r · F dW +

Z

W
QV dW +

Z

W
r · QS dW

Since the control volume is fixed, i.e. it does not evolve through time, the time derivative
can be moved under the integral sign. In addition to that, this equation holds true for
any arbitrary volume W hence, both sides are equal with respect to the integrand of the
integrals which leads finally to the local form of the conservation law:

∂U

∂t
= �r · F + QV +r · QS

t = 0 [s]

W

Dye

Figure 8: Fluid at rest (straight grey lines) in
a pipe (black lines) with some dye (black dot)
at time t = 0 [s]. The control volume W de-
fines the zone of interest to observe the evo-
lution of the dye concentration through time.

In computational fluid dynamics, this
equation is extremely important since most
of the numerical schemes are based on it
and also, it allows to gain insights into the
intricate details of fluid behavior at differ-
ent scales.

Finally, it is important to understand the
physical meaning of the flux F since it
plays a major role regarding the behaviour
of the flow. In order to do so, one can imag-
ine a fluid flowing through a pipe with
a drop of dye placed intially at random
as shown in Fig.8. The question is what
influences the evolution of dye concentration
through time in the control volume W ?

In a first case scenario, the fluid starts to move forward as shown in Fig.9a and as a conse-
quence, the dye is carried away by the flow. Therefore, the time variation of the dye inside
the control volume W is induced by a convective flux, i.e. a transport of the dye owing to
the fluid flow with a velocity v. The general mahematical expression of this convective
flux FC, where U is a given flow quantity and v the fluid velocity field, is:

FC = Uv (2)

In the second case scenario represented in Fig.9b, the fluid remains at rest which prevents
the transport of dye by the flow. Initially, at the microscopic level, the high concentration
of localized dye results in frequent collisions between closely packed molecules due to
random thermal molecular movements. These collisions transfer energy, leading to in-
creased movements of neighboring molecules. Consequently, the dye gradually diffuses
throughout the system as collisions continue to increase and eventually, the dye diffuses
in the control volume W. As a result, the time variation of the dye concentration is due to
a diffusive flux, i.e. a macroscopic transport driven by microscopic molecular agitation.

13



t = 5 [s]

W

Dye

(a)

t = 5 [s]

W

Dye

(b)

Figure 9: Fluid (grey lines) in a pipe (black line) after some time starting from intial state
described by Fig.8. (a) The fluid is moving forward (left to right) and brings along the dye
thus leading to a convective flux FC in the control volume W. (b) The fluid is at rest and
the dye diffuses everywhere which leads to a diffusive flux inside the control volume W.
From a mathematical point of view, the diffusive flux FD is expressed as:

FD = �krU (3)

where k is the diffusivity constant and U a given flow quantity. In conclusion, the key
points regarding conservation laws can be summarized as follows:

Global and local conservation law

In a fixed control volume W, the global conservation law is given by:

∂

∂t

Z

W
U dW = �

Z

S
F · dS +

Z

W
QV dW +

Z

S
QS · dS (4)

Using Gauss theorem (Eq.1), the local form of the conservation law is:

∂U

∂t
+r · (Uv) = r · (krU) + QV +r · QS (5)

with the flux F decomposed as the sum of FC (Eq.2) and FD (Eq.3).

Finally, it is important to emphasize that:

• In a moving fluid, both convection and diffusion processes occur simultaneously,
whereas if it is at rest, only diffusion takes place;

• Convection is a non-linear first-order process that enhances momentum in the di-
rection of flow, whereas diffusion is a second-order linear process that disperses
momentum in all directions.

• When a fluid is in motion, it can exhibit two distinct patterns: laminar flow, char-
acterized by smooth and orderly layers, and turbulent flow, featuring chaotic and
irregular motion with eddies and swirls. High-speed flows are predominantly influ-
enced by convection, which ultimately leads to a turbulent behavior of the fluid.
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2.2 NAVIER-STOKES EQUATIONS

The Navier-Stokes equations constitue a set of partial differential equations used to de-
scribe the motion of a fluid, they can be derived from the local conservation law (Eq.5).

2.2.1 MASS CONSERVATION

The law of mass conservation is a general statement that is independant of the nature of
the fluid as well as the forces acting on it. As a matter of fact, it expresses that in any
fluid system mass cannot disappear from the system, nor be created. Therefore, the flow
quantity of interest is simply U = r, i.e. the density of the fluid. In addition to that, it is
important to notice that mass can only be transported by convection and that no diffusive
flux exists thus FC = rv and FD = 0. Finally, in the absence of external sources (QV and
QS equal to 0), one obtains the mass conservation law:

∂r

∂t
+r · (rv) = 0

which in fluid mechanics litterature is often also named the continuity equation. It is
important to note that, for the sake of simplicity in notations, the spatial (x) and temporal
(t) dependencies of all flow quantities have been omitted. In the case where the fluid is
incompressible meaning that r(x, t) = r, the density becomes a constant and the mass
conservation law can be simplified into:

r · v = 0 (6)

This assumption is frequently used in fluid mechanics and is applicable to water at nor-
mal speeds, as well as air and liquid gases at low speeds. However, in situations involv-
ing high-speed flows, such as those encountered in aeronautics over plane wings, this
assumption may no longer hold true.

2.2.2 MOMENTUM CONSERVATION

In physics, momentum is a fundamental concept representing an object resistance to changes
in its motion. It is determined by the object mass and velocity, meaning heavier and faster
objects possess more momentum, making them more difficult to stop or to alter their path.
From a mathematical point of view, momentum is a vector expressed as the product of the
mass of an object and its velocity.

For this reason, the quantity of interest is U = rv, i.e. the fluid momentum per unit mass
in the 3 space directions. Furthermore, momentum can only be created through convec-
tion thus FC = rv ⌦ v and FD = 0. One must notice that momentum has 3 components,
thus in this situation FC is a second order tensor but the notations do not change for sim-
plicity. Moreover, according to Newton’s law, the variation of momentum is directly propor-
tional to the total force applied to an object. Actually, this total force can be decomposed as the
sum of external and internal forces applied to the fluid. In other words, the source term
QV represents the external volumes forces per unit volume rfE whereas QS corresponds
to the sum of internal forces denoted fi.
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In fluid mechanics, external volumic forces encompass a diverse range of effects, including
magnetic forces, Coriolis forces, and others. However, among these forces, gravity stands
out as the most familiar. Therefore, as an example, if gravity is the predominant external
volumic force, one would obtain the following one-dimensional tensor:

QV = rfE = rg (7)

To understand internal forces, one can consider a fluid at rest and zoom in on an infinites-
imal volume of fluid denoted dW as shown in Fig.10. In order to remain in equilibrium
the internal stresses experienced by the volume of fluid must be balanced by the external
stresses exerted by its surroundings, in accordance with the principle of Newton’s action-
reaction law.

sxx

syx

szx

e z

e xe y

sxz

syz

szz

dW

sxysyy

szy

Figure 10: Balance of forces for an infinitesi-
mal volume of fluid dW at equilibrium with
its surrounding in a resting fluid.

Thus, there exists an equilibrium of forces
in all three-space directions, with each
force being the result of contributions from
the three directions. As an example, the
total force per unit area (= stress) felt by
the x-face denoted fx, can be decomposed
as the sum of a stress applied normally
to the surface named pressure as well as
two other tangential stresses to the surface
called shear stresses. From a mathematical
point of view, this can be writen as:

fx = sx, x ex + sy, x ey + sz, x ez

= si, x ei (Einstein notation)

where sx,x corresponds to the pressure applied on the x-face, sy,x the shear stress on the
x-face in the y-direction, sz,x the shear stress on the x-face in the z-direction and finally ei
is a unit vector forming the cartesian axis basis with i = x, y, z. Furthermore, the total
forces per unit area experienced by the y- and z-faces of the fluid can be derived using a
similar reasoning. There are nine stresses in total, typically represented using the internal
(or Cauchy) stress second-order tensor where component-wise:

� =

(
s i, i = p i, i = Pressure applied on the i-th surface.
s i, j = t i, j = Shear stress on the j-th surface in the i-th direction.

(8)

In conclusion, by combining all the stresses into this second-order tensor, a comprehensive
representation of the internal forces is obtained for QS as:

QS = � = fx ex + fy ey + fy ez (9)
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An assumption that is often made in fluid mechanics is that the fluids is Newtonian, i.e.
the relationship between the viscosity of the fluid and the shear rate (dt/dt) is linear !
For example, water, air, alcohol are fluids falling into this category. From a mathematical
point of view, one can now express the shear stress as:

⌧ = µ

✓⇣
rv +rvT

⌘
� 2

3
(r · v)I

◆
(10)

with µ the dynamic viscosity and I the identity tensor. Furthermore, under this assump-
tion, the Cauchy stress tensors can be further developped:

� = �pI + ⌧ = �pI + µ

✓⇣
rv +rvT

⌘
� 2

3
(r · v)I

◆
(11)

Finally, by injecting these former results into the local form of the equation, one will obtain
the momentum conservation law for Newtonian fluids:

r
∂v
∂t

+ r(v ·r)v = �rp + µ

✓
Dv +

1
3
r(r · v)

◆
+ rfe

2.2.3 ENERGY CONSERVATION

In thermodynamic, the energy content of a system can be expressed in terms of its internal
energy per unit mass e. Indeed, this internal energy is a state variable hence, its variation
during a thermodynamic transformation depends only on the final and initial states. For
a fluid, the conserved quantity is the total energy E, which is the sum of its internal energy
and kinetic energy per unit mass:

E = e +
||v||

2

2
(12)

In addition to that, it is known that the first law of thermodynamics reveals that the vari-
ation in total energy is driven by the work done by the forces acting on the fluid and the
heat transferred to it.

Therefore, the quantity of interest is U = rE, the convective and diffusive fluxes of energy
are respectively given by FC = rEv and FD = �kgrre since there is no diffusive flux
linked to motion with g = cp/cv, representing the ratio of specific heat coefficients under
constant pressure and constant volume. Additionally, the external volume source QV
corresponds to the sum of the work done by the volume forces fe and the heat sources qH,
such as radiation, heat released by chemical reactions, etc. Finally, the internal source QS
corresponds to the work done by the internal shear stresses acting at the surface of the
fluid mathematically expressed as � · v. As a result, the energy conservation law is:

∂rE
∂t

+r · (rvE) = r · (krT) +r · [(�pI + t) · v] + rfe · v + qH
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In conclusion, the Navier-Stokes equations can be summarized as follows:

Navier-Stokes equations

For a Newtonian fluid (Eq.10), the mass conservation law reads as:

∂r

∂t
+r · (rv) = 0 (13)

In addition to that, the momentum conservation law is expressed as:

r
∂v
∂t

+ r(v ·r)v = �rp + µ

✓
Dv +

1
3
r(r · v)

◆
+ rfe (14)

Finally, the energy conservation law is given by:

∂rE
∂t

+r · (rvE) = r · (kgrre) +r · (� · v) + rfe · v + qH (15)

2.3 QUASIGEOSTROPHY

The Navier-Stokes equations are non-linear partial differential equations that aim, once
solved, to completely describe the motion of a fluid. However, solving these equations di-
rectly without any simplification is extremely computationally expensive. Therefore, it is
essential to understand the physics involved and needed for simulating the oceans to sim-
plify the equations using certain assumptions. Consequently, one must first understand
the main causes of wind at the ocean and atmospheric scale.

2.3.1 PRESSURE GRADIENT

The air applies pressure over Earth’s surface
due to its weight. The air densitiy varies in-
versely with the temperature; its density de-
creases when the temperature increases be-
cause molecules have more energy and are
able to move further away from each other.
In addition to that, due to the slight incli-
nation of its axis of rotation, Earth is not
uniformly heated by the Sun, which creates
a temperature gradient all over its surface.
Therefore, high and low-pressure regions
are created, leading to the creation of wind,
i.e. air is pushed from high to low-pressure
regions. An illustration of these pressure
zones as well as the idealized wind move-
ment (without taking Coriolis force into ac-
count) are represented in Fig.11(a).

2.3.2 CORIOLIS FORCE

The Coriolis force is an apparent force re-
sulting from Earth’s rotation, leading to the
deflection of moving objects within a rotat-
ing reference frame. In the Northern Hemi-
sphere, objects veer to the right, while in
the Southern Hemisphere, they veer to the
left. The strength of this force is influenced
by an object’s speed, direction of motion,
and latitude. Moving closer to the poles
brings one nearer to the axis of rotation,
resulting in an increased rotational speed.
Consequently, the Coriolis force becomes
more pronounced in these regions due to
the higher rotational speed. An illustra-
tion of the global wind circulation on Earth
which takes into account pressure gradi-
ents as well as Coriolis force is shown in
Fig.11(b).
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(a) (b)

Figure 11: Illustration of Earth’s wind circulation. (a) In this situation, only pressure gra-
dients created by the high and low-pressure regions are taken into consideration, leading
to straight wind directions. (b) In this second situation, Earth’s rotation is also considered
through the Coriolis force, which curves wind trajectories.

In situations where the dominant physical causes influencing the flow are the pressure
gradient and the Coriolis force, and they precisely balance out, a Geostrophic flow emerges.
A jet stream is a good example of a geostrophic flow, it is characterized by high veloc-
ity and narrow air currents. Typically, these flow patterns are commonly observed from
the upper part of the mid-latitude (⇠ 45�) to the pole, where the Coriolis force is at its
strongest. However, in regions where the Coriolis force weakens, such as in the subtropic
regions (around ⇠ 30� latitude), convection becomes more influential. As a result, the ini-
tial jet-like structure slowly evolves into a more chaotic flow. In other words, the straight
and narrow path taken by the flow widens, and eddies begin to form. The flow described
here is known as a Quasi-geostrophic flow.

The quasigeostrophy theory proves to be useful in atmospheric and oceanic fluid dynam-
ics since it simplifies the Navier-Stokes by neglecting certain terms. This simplification
makes the models computationally efficient while effectively capturing the essential fea-
tures of geophysical phenomena, including jet streams, ocean currents, mesoscale eddies,
and weather systems.

As it happens, mesoscale eddies (around 10 to 100 kilometers) play essential roles in vari-
ous geophysical phenomena. In the atmosphere, they contribute to the development and
evolution of weather systems, such as cyclones and anticyclones. Similarly, in the ocean,
they transport heat, nutrients, and momentum, influencing the distribution of tempera-
ture, salinity, and currents. Additionally, the interactions of eddies with larger-scale flows
lead to the transfer of energy and the redistribution of properties within the fluid. Con-
sequently, the importance of the Quasigeostrophy becomes evident, as it allows for mod-
eling these eddies, and understanding their dynamics is crucial for improving weather
forecasts, climate models, primary production cycles and our overall comprehension of
Earth’s atmospheric and oceanic systems.
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2.3.3 PYTHON QUASIGEOSTROPHIC MODEL (PYQG)

The numerical simulations are done with PyQG, it is a python library that models quasi-
geostrophic systems using pseudo-spectral methods. The derivation of the complete set
of quasigeostrophic equations is left to the reader, Griffies, 2018 is a great book to help do-
ing it. Therefore, one will only be introduced to the prognostic variable, i.e. the physical
quantity that allows to determine the state of the system.

Figure 12: Illustration of the two-layer quasi-
geostrophic flow model solved using PyQG to gen-
erate data. This is a side view showing the differ-
ent layers but the model is 2-dimensional, i.e. the
results obtained are in the XY-plane.

Figure 13: Evolution of the relative vorticity z of a
moving fluid parcel observed at constant lattitude
( f = Cst) for 3 regions of different heights Dz.

First of all, the model used is a two-
layer quasigeostrophic flow which
simplifies the governing equations
of fluid dynamics (Eq.13, 14 and
15) while preserving important geo-
physical flow features. Indeed, it
reduces computational complexity
and approximates vertical structure
by dividing the fluid into two lay-
ers with varying densities. This
allows to capture essential dynam-
ics like baroclinic instability and
vertical motion. A representa-
tion of the model is shown in
Fig.12.

The model prognostic variable is the
potential vorticity q, it is a con-
served quantity in an inviscid, adi-
abatic, frictionless fluid and is cru-
cial to understand large-scale atmo-
spheric and oceanic flows. As an
example, illustrated in Fig.13, one
imagine observing a moving air col-
umn at a fixed latitude (Coriolis
force is constant). It’s mathematical
expression is given by:

q =
z + f

Dz
= Cst (16)

with z the relative vorticity, f the
planetary vorticity and Dz the height
of the air column. Initially z1 = 0,
therefore by conservation, one must have z2 < 0 in the second region which implies that
the air column turns clockwise (if in the Nothern hemisphere) and it is unstable. Finally, in
the third region, one obtains z3 > 0 leading to a counter-clockwise movement and a more
stable flow. Hence, one understands easily the usefullness of q to determine the dynamics
of a flow, since it is a conserved quantity, it takes into account the vertical motion and it is
a scalar thus, it does not depend on the coordinates system used.
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The potential vorticity of a two-layer quasigeostrophic flow is:

qm = r2ym + (�1)m f 2
0

g0Hm
Dy with m 2 {1, 2} (17)

where ym denotes the streamfunction at depth Hm and the difference between the two
layers is given by Dy = y1 � y2. The operator r represents the horizontal gradient,
and g0 stands for the reduced gravity. Additionally, the planetary vorticity f is calculated
using a beta plane approximation, which assumes linearity with respect to latitude. Thus,
f = f0 + by, where f0 represents the Coriolis parameter and b corresponds to the slope.
In addition to that, the velocity vector for the m-layer is expressed as vm =< um, vm >,
where um and vm correspond to the longitudinal and latitudinal velocities respectively.
The prognostic equation in layer m, solved using a pseudo-spectral, is given by:

∂qm
∂t

+ (vm ·r)qm = �bm
∂ym
∂x

� Um
∂qm
∂x

� dm,2 rekr2y2 + ssd (18)

where bm = b + (�1)m+1 f 2
0 /(g0Hm) represents the mean potential vorticity gradient,

DU = U1 � U2 is a constant mean zonal velocity shear between the two-fluid layers and
ssd stands for small scale dissipation. Additionally, the Dirac delta function dm,2 indicates
that the bottom drag with coefficient rek is only applied to the second layer due to inter-
action with the ocean floor. Finally, in the spectral space denoted by the symbol b(), the
streamfunctions can be obtained from the PV as follows:

⇣
M � k2I

⌘
·


ŷ1
ŷ2

�
=


q̂1
q̂2

�
, where M =

2

4 � f 2
0

g0H1

f 2
0

g0H1
f 2
0

g0H2
� f 2

0
g0H2

3

5 (19)

Here, k =
p

k2 + l2 represents the radial wavenumber, where k and l are the zonal and
meridional wavenumbers, respectively. Finally, the complete dynamic of the fluid can
be determined, as the velocity fields can be obtained from the streamfunctions using the
relationships um = �∂yfm and vm = ∂xfm.

2.4 SUBGRID PHYSICS AND PARAMETERIZATIONS

To solve the Eq.18, it is necessary to discretize both the equation and the spatial domain. If
solved anatically, the solution describes the behaviour of the potential vorticity at any spa-
tial scale. However, due to the discretization of the domain, only the physical phenomena
occuring at a size greater than the numerical resolution are captured while smaller scale
physics is unsolved. For that reason, a cell value can be seen as the average value of all
the contributions coming from physical phenomena occuring at a smaller scale inside of it.

Hence, with increasing simulation resolution, the level of detail in the physics improves,
and errors due to neglected physical processes decrease. However, higher resolution sim-
ulations come with a significant computational cost, especially in the case of earth climate
simulations. To address this challenge, one solution is to conduct low-resolution simu-
lations and use a parametrization to account for the missing contributions. To this day,
the development of these parametrizations is an active and crucial area of research at the
intersection of turbulent fluid mechanics and machine learning.
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In order to understand what needs to be parameterized, one must first assume that the
exact value of a given flow quantity U can be decomposed as:

Ũ|{z}
Total

= Ū|{z}
Mean

+ U0
|{z}

Fluctuation

Numerically speaking, the cell value corresponds to the average solution Ū and the miss-
ing contribution of the negelected physical processes is represented by U0. Therefore,
what is truly solved numerically is the average prognostic equation. As an example, one
can imagine solving the momentum conservation law given by Eq.14 but for simplicity
the linear terms are grouped into F (forcing terms) and D (dissipation terms). Hence,
averaging the equation is done as follows:

∂v
∂t

+ (v ·r)v = F + D () ∂v
∂t

+ (v ·r)v = F + D

As it can be seen, the non-linear advection term needs more work to be developped prop-
erly. For this reason, assuming that the mean value of the fluctuation is equal to zero and
using Einstein notation, one obtains:

(v ·r)v = ṽj
∂ṽi
∂xj

=
⇣

v̄j + v0j
⌘ ∂

∂xj

�
v̄i + v0i

�

= v̄j
∂v̄i
∂xj

+ v̄j
∂v0i
∂xj

+ v0j
∂v̄i
∂xj

+ v0j
∂v0i
∂xj

where v̄j
∂v0i
∂xj

= v0j
∂v̄i
∂xj

= 0

= v̄j
∂v̄i
∂xj

+
∂

∂xj
v0iv

0
j

= (v ·r)v +
∂

∂xj
v0iv

0
j

In conclusion, the average momentum equation solved numerically is expressed as:

∂v
∂t

+ (v ·r)v = F + D + S (20)

where S incorporates contributions arising from physics occurring at a smaller scale than
the resolution. In fluid mechanics literature, this term is referred to as the subfiltered
momentum. It mathematically corresponds to the divergence of the mean fluctuations
product, but from a physical standpoint, it lacks a clear interpretation. Consequently, de-
riving an intuitive analytical expression for this term has been a longstanding challenge
within the scientific community.

It is also important to note that the mean fluctuations product, i.e. v0iv
0
j, is known as the

Reynolds stresses in the literature. Additionally, Eq.22 is not the only representation
of the subgrid term. In fact, there are two other possibilities. The first one is obtained
by formulating the problem such that the numerical model requires a parameterization
of the Reynolds stresses. Another option involves defining subgrid terms based on the
difference between the prognostic equations solved at high and low resolution.
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In this example, the expression for the subfilter momentum has been found. With a sim-
ilar and more complex reasoning, one can extract the same expressions for the potential
vorticity, which will be used throughout this work.

Subgrid tendency formulations for potential vorticity

First, denoting ∂H
t and ∂L

t as the tendency equations (see Eq.18) from the high- and
low-resolution models respectively, the total subgrid forcing is given by:

Sqtot = ∂H
t q � ∂L

t q (21)

Alternatively, one can consider the subgrid forcing of potential vorticity resulting
from unresolved non-linear advection:

Sq = (v ·r)q � (v ·r)q (22)

Lastly, the subgrid flux, i.e., Reynolds stresses, can be considered. By finding a pa-
rameterization of it and applying a numerical divergence operation, it ensures that
the added quantity results from the divergence of some quantity, thus respecting the
conservation law from a mathematical standpoint. The mathematical expression of
the subgrid flux is:

Fq = uq � u q (23)

Under the assumption of an incompressible flow (see Eq.6) and that differentiation
commutes with filtering and coarsening, one finds that r ·fq ⇡ Sq (Ross et al., 2023).
In practice, these three formulations are highly correlated and nearly identical.

As a conclusion to this chapter, Fig.14 is a final illustration of the impact of the model
resolution on the dynamic of the solution obtained.

Ground truthHigh � Resolution Low � Resolution

Figure 14: Impact of numerical resolution on the dynamic of the solution. In the high-
resolution simulation, small-scale eddies have dimensions higher than the numerical res-
olution, while in the low-resolution simulation, small eddies remain unresolved.
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Chapter Three

Neural Networks and Neural Operators

This chapter aims to introduce the neural networks used throughout this study. These networks
fall into two main groups: those performing computations in the spatiotemporal domain and those
operating in the frequency domain. Networks from the first group will be briefly introduced, while
those from the second group will receive more detailed explanation due to their innovative nature.

3.1 FULLY CONVOLUTIONAL NEURAL NETWORK

First of all, the initial neural network used is a fully-convolutional neural network (FCNN),
designed for image analysis tasks. Indeed, FCNNs are built using convolutional layers
that excel at recognizing patterns in visual data like images. Unlike typical convolutional
neural networks that end with fully connected layers for classification, they maintain the
convolutional structure throughout the network.

Convolutional layers in FCNNs retain image details, making them valuable for tasks de-
manding accurate pixel-level outcomes. As a matter of fact, they are beneficial for tasks
like identifying object edges and in domains such as ocean dynamics simulations. In these
simulations, FCNNs can predict subgrid process contributions at the pixel level using in-
put snapshots of flow quantities (Bolton and Zanna, 2019). The architecture of the FCNN,
capabilities, and constraints have been examined deeply in Ross et al., 2023. However,
opportunities for enhancement remain, as they have not explored the impact of more
complex training datasets, which was a matter left for future investigation. Therefore, the
first objective consist to improve upon the results presented in their research.

3.2 U-NET

The U-Net, initially introduced by Ronneberger, Fischer, and Brox, 2015, is a notable neu-
ral network architecture widely used for image segmentation tasks. Indeed, its distinctive
U-shaped design is effective in capturing complex spatial patterns in images. More pre-
cisely, the architecture includes a contracting path to understand contextual information,
followed by an expanding path for accurate object or region localization. The U-Net has
gained a reputation as a leading deep learning architecture (Çiçek et al., 2016). Thus, the
second objective is to assess the U-Net capabilities compared to the FCNN. This com-
pletes our set of two neural networks known for excellence across various applications,
while operating in the spatial and temporal domains.

Both neural networks are illustrated in Fig.15 to easily observe and compare their archi-
tectures. In addition to that, their configuration used are given in the Tab.
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LEGEND

Convolution (2D) Transposed Convolution (2D)

Max pooling (2D) Batch normalization (2D) ReLU

INPUT

CONV. BLOCK

OUTPUT
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U-NET

CAT

U-NET BLOCK
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Figure 15: Vizualisation of the fully-convolutional neural network (FCNN) and U-NET
architectures. In the figure, CAT means the concatenation of the inputs along the batch
dimension.
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3.3 FOURIER NEURAL OPERATORS

The Fourier Neural Operators (FNO) provide an innovative approach to solving com-
plex partial differential equations, perfect examples of equations are Eq.13, 14 and 15, by
combining the capabilities of neural networks with Fourier analysis Li et al., 2020. These
operators address the limitations of conventional solvers and introduce a way to model
mappings between infinite-dimensional function spaces.

t [s]

w [Hz]

Amplitude

SPACETIME DOMAIN FREQUENCY DOMAIN

Figure 16: Illustration of the link between
spacetime and frequency domains. On the
right, the input signal, with varying ampli-
tude over time, can be broken down into the
sum of two basic signals (middle). In the fre-
quency domain, its representation consists of
two peaks whose amplitude corresponds to
the amplitude of the basic signals. These peaks
are observed at a specific oscillation frequency
w.

First of all, Fourier analysis is a math-
ematical technique used to understand
and break down complex patterns or
signals into simpler components. It
reveals the underlying structure of a
signal by showing how much differ-
ent frequencies contribute to it. As
a puzzle that can be assembled from
smaller pieces, any complex signal can
be thought of as being made up of
different piece with various frequen-
cies.

Hence, Fourier analysis allows to iden-
tify these pieces and their strengths,
helping make sense of the original pat-
tern. This technique has applications
in various fields, from understanding
sound and images to solving scientific
and engineering problems that involve
waves and oscillations. An illustra-
tion of the application of Fourier anal-
ysis to a complex signal is depicted in
Fig.16.

As mentioned earlier, the main idea behind the Fourier neural Operator is to establish a
mapping between infinite-dimensional function spaces. To illustrate this somewhat com-
plex notion, one can imagine addressing a challenge like predicting temperature distribu-
tion on a wall surface based on position coordinates (x, y). One solution could be to use
a conventional neural network to learn this relationship, connecting input coordinates to
output temperatures. Nevertheless, this approach proves to be effective only for specific
instances of the problem, i.e. if the data was generated using constant conditions like uni-
form thermal conductivity or a purely vertical temperature gradient.

The Fourier neural operator introduces a more profound perspective. Instead of focusing
solely on predicting outputs from inputs, it considers the broader context. As a matter
of fact, it acknowledges that there exists a function to describe the initial state of the sys-
tem and another function to represent how the system evolves over time. Both of these
functions are defined over infinite-dimensional spaces meaning that, there exist an infinite
number of ways of formulating this function that would give the same mapping.
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As a matter of fact, the FNO aims to learn the very equation that governs the system be-
havior. This marks a departure from traditional neural networks, which often specialize
in particular scenarios. With the Fourier neural operator, the underlying physics or equa-
tions become the target of learning. In other words, this means that even if the conditions
change, such as altering thermal conductivity or other physical parameters, the neural
network has the potential to adapt because it is effectively learning the fundamental re-
lationships.For fluid dynamics, it will focus on learning the governing simplified Navier-
Stokes equation regardless of the parameters used to impose the physics of the flow.

3.3.1 THE ARCHITECTURE

The flow of input through the Fourier Neural Operators can be described as follows:

• Domain transformation: Instead of discrete indices (i, j), the FNO uses real coordi-
nates (x, y) for continuous domain representation. Real coordinates align naturally
with real-world situations and provide intuitive interpretations for variables like po-
sitions, temperatures, etc. . Unlike indices tied to specific grid sizes, real coordinates
offer flexibility for various resolutions, crucial for accuracy and efficiency. They also
encourage generalization across scenarios, enabling architecture and weight reuse.
This adaptability enhances the neural operator efficiency and effectiveness.

• Projection : In the second step, the input, now represented as the continuous func-
tion a(x, y) in RX⇥Y⇥1, undergoes projection into a higher-dimensional space. Here,
x and y exist in R, with X as the number of grid points along the x-direction, and Y
for the y-direction. Indeed, this projection takes the input from the two-dimensional
plane to a space with more dimensions which enriches the original input, capturing
more intricate relationships.

In particular, this increased complexity in the higher-dimensional space enhances
the neural operators understanding of the input patterns and features. In simpler
terms, the projection extends the input information by examining it from various
perspectives in this expanded space which allows the neural operators to extract
more detailed information. From now on, the input is mathematically written as
v(x, y) 2 RX⇥Y⇥H with H the size of this latent space on which the initial input is
projected.

It is important highlighting that the projection is performed pixel-wise using a sim-
ple single-layer feedforward network. This approach treats each input point inde-
pendently, making the projection unaffected by the grid size which ensures the neu-
ral operators effectiveness across various input resolutions. Furthermore, by han-
dling pixels individually, the neural network can learn versatile patterns not tied to
a single problem. This enables the network to extract useful features applicable to a
range of problems, enhancing its adaptability to new tasks.
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• Fourier layer : The computations performed can be separated in two different com-
putational path:

1. Frequency Domain: In this first step, the input signal v(x, y) undergoes a 2D
Fourier transform, this process breaks down and extracts the frequency com-
ponents of the original input. These components, often referred to as modes,
make up the decomposed signal. Each of these modes has contributions in
both the x and y directions and the total number of modes, in a specific di-
rection, equals the resolution of the image in the corresponding direction. As
explained previously, the signal is represented as a sum of terms but it is im-
portant to noticte that the initial term in the series holds the strongest influence
over the signal. Indeed, as one moves deeper into the terms, their impact di-
minishes. In other words, the first Fourier modes represent signals with larger
amplitudes and lower frequencies. In the context of fluid simulations, this low-
frequency content in spacetime corresponds to the contribution of large eddies
in turbulent flows to the overall dynamics. Whereas, higher mode values are
linked to high-frequency content, representing smaller eddies with rapid mo-
tion and evolution.

After applying the 2D Fourier transform, a low-pass filter is used on the fre-
quency content, selecting only certain modes from the lowest range. The pri-
mary goal is to train the neural network to capture information from the global
input pattern. As an example, the neural operator can learn from 64x64 res-
olution fluid flow snapshots to predict energy corrections while focusing on
the initial 8 modes out of the available 64. This approach ensures versatility:
when correcting a 32x32 simulation, the neural operator can generalize because
the first 8 modes are available to both resolutions. Another example, if time
limits allow creating only a vast 64x64 dataset for training, the neural opera-
tor remains afterwards useful for refining higher-resolution simulations, like
128x128. Once again, this is possible due to its training in making corrections
while considering the broader flow pattern.

Now, one can finally witness core concept of the Fourier neural operator, the
retained modes of the original input are convolved to derive the output fre-
quency content. The clear advantage lies in conducting this convolution in the
frequency domain. Indeed, from a mathematical point of view, performing con-
volution between an input and a given kernel is computationally intensive in
the space-time domain, while in the frequency domain, it simplifies to a prod-
uct between the two. The kernel, represented as a matrix of weights denoted as
R 2 CH⇥H⇥M with M the number of modes kept, responsible for multiplying
the residual frequency spectrum of the original input, is learned by the neural
operator during training. Each Fourier layer possesses its individual weight
set and from it the output spectrum is derived, an inverse Fourier transform is
used to obtain the output space-time representation.

2. Space time domain : In this second step, the input signal v(x, y) undergoes a
simple linear transformation using a pixel-wise 2D convolution.
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Lastly, the transformed inputs are combined, and if the Fourier layer is not the final
one, the result is subjected to a GeLU activation function.

• Back projection: At the last Fourier layer, each pixel is individually transformed to
the intended output dimension through two separate single-layer feedforward net-
works. The first network is used to facilitate the transition between the latent space
and an intermediate space of fixed size 128, followed by the second network that
creates the transition from this space to the final target dimension. Ultimately, the
final output is mathematically represented as u(x, y) 2 RX⇥Y⇥O, where O denotes
the target output dimension.

3.4 FACTORIZED FOURIER NEURAL OPERATORS

The Factorized Fourier Neural Operator (FFNO), as introduced by Tran et al., 2021, presents
an enhanced architecture derived from the original Fourier Neural Operator. Notably, the
key improvements comes from modifications within the Fourier Layer:

• The 2D Fourier transform is applied to extract individually the modes along the
x-direction and y-direction. Subsequently, each set of modes is convolved with its
dedicated weight matrix (Rx and Ry), both of which the Neural Operator has to
learn.

• Eventually, the outputs, corresponding respectively to distinct part of the truncated
frequency spectrum (as in FNO), are transformed back to the spacetime domain and
then added to one another.

• The result then flows through a feedforward network composed of a single-layer
feedforward network followed by a dropout, ReLU activation (unless it’s the final
Fourier layer) and a layer normalisation.

• The original input is added to the feedforward network output to act as a skip con-
nection, this combined result exits the Fourier Layer.

Alongside this updated Fourier layer design, the inclusion of shared weight matrices Rx
and Ry was introduced. This choice slightly impacts model accuracy while significantly
reducing the overall number of trainable parameters in the final Neural Operator. Also,
the original FNO faced a scaling problem: using more than 4 Fourier layers led to poor
training and results. The adjustment made regarding the residual connections enabled the
Neural Network to scale effectively, accommodating up to 24 Fourier layers. The Fourier
Neural Operator and the Factorized Fourier Neural Operator, like the initial two neural
networks, are depicted in Figure X.

Note: The FFNO architecture will be studied in more depth compared to the others, which
requires memory-intensive training. As a result, training the neural network needed mul-
tiple GPUs. However, the architecture code was incompatible with parallel execution due
to its use of (torch) nn.ParameterList. Hence, I reworked the code to make parallel train-
ing possible and also developed my own FourierFlow library that includes both FNO and
FFNO architectures. If you’re interested in trying them out, feel free to check:

https://github.com/VikVador/FourierFlow

29

https://github.com/VikVador/FourierFlow


FOURIER NEURAL OPERATOR

FACTORIZED FOURIER NEURAL OPERATOR

ADD

FOURIER LAYER

INPUT FREQUENCY SPECTRUM OUTPUT FREQUENCY SPECTRUM

FOURIER LAYER

ADD

INPUT FREQUENCY SPECTRUMS OUTPUT FREQUENCY SPECTRUMS

ADD
X

Y

X X

Y Y

LEGEND

Input / Output Domain transformation Feed-Forward layer

Convolution (2D) Fourier transform Inverse Fourier transform

Weight matrix Dropout GeLU ReLULayer normalization

Figure 17: Vizualisation of the Fourier Neural Operator (FNO) and Factorized Fourier
Neural Operator (FFNO) architectures. In the figure, ADD means the addition of the
inputs along the batch dimension.
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Chapter Four

Datasets

The aim of this chapter is to clarify the type of flow under investigation, outline the general dataset
generation procedure, describe the processes of coarsening and filtering, define the simulation pa-
rameters and their values, and detail the datasets generated for this study.

4.1 INTRODUCTION

In the world of machine learning, as for any scientific fields involving numerical simula-
tions, the adage "garbage in, garbage out" stands strong. Indeed, a model, even if its the
latest state of the art available right now, can only be as proficient as the quality of data it
learns from. Therefore, the importance of data quality cannot be overstated, as it creates
the fundation upon which models are built.

This work uses the quasigeostrophic flow Python numerical solver, known as PyQg, to
generate datasets. Especially, this approach becomes imperative due to the limitations
encountered when attempting to use real data, such as satellite imagery of the oceans.
As a matter of fact, the complexities of space and time sampling introduce formidable
challenges that makes the use of such data impractical and insufficient for effective model
training. Indeed, space and time sampling challenges are the result of the nature of the
ocean which can be simply described as huge, dynamic and full of physical phenomenons
occuring at different space and time scales. Satellite imagery, while a powerful tool, in-
troduces biases arising from limited spatial coverage and temporal resolution. Therefore,
the PyQG numerical solver seems to be the most simple and efficient solution.

In the mid-latitude region, the primary focus area, two distinct flow types govern the
range of possible flows found there. The first one is a jet-driven flow, where geostrophic
equilibrium predominates, resulting in structured, linear flow. Conversely, the second
scenario involves eddy-driven flows, where the strength of inertial forces disrupts the
geostrophic equilibrium, emphasizing flow speed. In this context, the previously straight-
forward flow path transforms into a more turbulent dynamic, giving rise to the generation
and dispersion of eddies across the region.

In their studies (Bolton and Zanna, 2019; Ross et al., 2023; Zanna and Bolton, 2020), the
adopted approach centers on concentrating on a single flow type, deriving a parameter-
ization, and then assessing its applicability to other flows. They are several reasons that
could justify this choice. Indeed, the decision to focus training on a single flow type is
grounded in practical considerations driven by real-world limitations and the complexity
of data acquisition.
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In practical situations, the acquisition of comprehensive real data remains challenging.
Focusing on a specific flow type aligns with this scarcity of data, adding practicality to
the study. Successfully deriving a parameterization for this selected flow type holds sub-
stantial potential, showcasing the ability to create effective representations using a con-
strained dataset. Additionally, the generation of data involves inherent costs. Within our
framework, the use of an idealized model simplifies Navier-Stokes equations and consid-
ers solely two fluid layers. This simplification enables more manageable solutions and
supports academic exploration and concept development. Therefore, transferring this
approach to a more realistic context introduces the challenge of limited data due to the
complexities of data collection. As a result, the need to train with a modest dataset arises
from these practical constraints.

Nevertheless, owing to the simplicity of our model and their work leaving the explo-
ration of the impact of more complex datasets for future research, our attention will be
aimed at investigating the effects of dataset size and complexity while also conducting
tests involving the new Fourier Neural Operator architectures for the parameterization of
subgrid scale processes. Our study will contain datasets that range from single-simulation
datasets to those that consist of multiple simulations of a single flow type, and will extend
even further to datasets incorporating samples from both types.

4.2 GENERATING A DATASET

The dataset generation, which includes flow field quantities like velocity fields and po-
tential vorticity, along with the corresponding missing subgrid process contributions as
defined in Eq.21, 22 and 23, is achieved as follows:

1. High-resolution simulation: A simulation is run for a duration of 10 years with a
one-hour time step, using a specified set of initial and boundary conditions denoted
as B. There are 2 main reasons explaining the need of doing such a long-time simu-
lation:

• From a physics point of view, the solution to the quasigeostrophic problem
eventually settles into a quasi-steady state. This means that once this equilib-
rium state is reached, the physical variables that describe the flow will fluctu-
ate around a certain value. To tackle such challenges, like many computational
fluid dynamics solvers, PyQG uses an iterative approach. It begins with ini-
tial conditions, then refines the solution at each step until the system reaches a
quasi-steady state.

Between the early stages of the simulation and the moment where the quasi-
steady state is achieved, the solution is referred to as the "transient solution".
This phase captures the transformation of the solution from its initial state to
the final one that accurately depicts the intended flow. This transient solution
can persist for a considerable number of time steps, highlighting the need to
allow the simulation to run for an adequate duration to reach the quasi-steady
state. Otherwise, if the simulation is sampled prematurely, the obtained results
might lack genuine physical meaning.
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• In atmospheric flows, even the faster scales like those of small eddies evolve
over relatively long time spans, typically a few days. Consequently, to effi-
ciently sample the simulation, a significant amount of time needs to pass be-
tween two consecutive samplings. To gather just a few thousand samples, it
is necessary to run the simulation for around 10 years. This extended runtime
ensures the generation of a diverse range of samples that accurately describe
the flow dynamics.

2. Low resolution simulation: Under the same initial and boundary conditions B, a
simulation is conducted for 10 years, using a one-hour time step.

3. Sampling: Starting after 4 years (for an eddy-driven flow) and 6 years (for a jet-
driven flow) of simulation, potential vorticity is sampled every 1000 hours until the
simulation concludes. Indeed, as explained in chapter two, this variable serves as
the prognostic factor from which all other physical flow quantities can be derived.

4. Extracting subgrid processes contributions: First of all, one needs to assume that
the period of time chosen for simulation is long enough to sample efficiently but
short enough for both high- and low-resolution simulations to remain correlated.
As a reminder, the main issue that one wants to correct is the energy defficiency of
the low-resolution simulation. It is the energy that defines the dynamic of a simu-
lation, therefore if the simulation is run for too long, the energy defficiency will at
some point affect the dynamic of the simulation and make it diverge from one an-
other regarding the physics of the flow they aim to describe.

Assuming this assumption holds, the next steps involve coarsening and filtering the
high-resolution simulation. For each sample, it is necessary to reduce the resolution
and smooth out the solution obtained from PyQG for the potential vorticity. The
resulting solution serves as a condensed representation of the high-resolution sim-
ulation. While not as visually precise, it accurately maintains the energy budget—a
contrast to the deficient energy dissipation in the low-resolution counterpart due to
neglected small-scale processes.

Finally, the difference, for a given flow quantity, between the coarsened and filtered
low-resolution simulation and the original low-resolution simulation reveals the ne-
glected contribution of to subgrid-scale processes.

4.2.1 COARSENING AND FILTERING

Coarse-graining involves reducing the resolution of a simulation or dataset while retain-
ing essential details. This technique includes averaging values over larger regions to ef-
fectively downscale the resolution and capture the behavior of larger-scale processes. The
procedure is straightforward: begin with a high-resolution simulation and divide the grid
into larger blocks matching the lower resolution grid size. Fininally, within each block,
average (or aggregate) the values.
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Filtering modifies the frequency content of a signal or dataset by eliminating unwanted
noise, high-frequency variations, or fine-scale details while maintaining significant fea-
tures.

Though coarsening alone offers a way to achieve lower resolution data, it might not tackle
noise or unwanted high-frequency variations effectively. On the contrary, filtering could
result in a smoother data representation but might miss out on large-scale features cap-
tured by coarser resolution. Combining both filtering and coarsening in certain cases can
yield more informative outcomes, producing a cleaner, smoother depiction of large-scale
behavior while retaining essential features.

Various methods can be used to perform coarsening and filtering operations on datasets.
However, it is crucial to be cautious, as the approach to extracting subgrid processes con-
tributions can impact both the training quality and predictive ability of the neural net-
work. This aspect, namely evaluating parameterization quality based solely on coarsening
and filtering choices, has already been explored by (Ross et al., 2023), and we will adopt
their recommended approach for our study. To achieve coarsening, we will use a method
called spectral truncation. This involves removing modes from the high-resolution sim-
ulation to match the available modes in the low-resolution simulation. Once truncated,
the grid values are then averaged over larger regions corresponding to the low-resolution
grid. In the case of filtering, a sharp filter is applied afterwards. This filter preserves low
frequencies while reducing higher frequencies above a specified threshold. Both of these
operations are already integrated into PyQG, and further details on their functioning can
be found in the PyQG documentation on its github.io page.

4.3 SIMULATIONS

In order to run a simulation, several parameters must be chosen:

4.3.1 SOLVER

The high-resolution simulation employs a grid size of 256 ⇥ 256 pixels, while the low-
resolution simulation uses a grid of 64 ⇥ 64 pixels. Both simulations run for a duration
of T = 10 [years], with a time step of one hour. Sampling begins after the system has
achieved a quasi-steady state solution, which takes 4 years for eddy-driven flows and 6
years for jet-driven flows.

4.3.2 MODEL

Each model consists of a doubly-periodic square domain with dimensions L = 106 [m],
flat topography, and a combined depth of H = H1 + H2 = 2500 [m]. A constant zonal
velocity shear, DU = U1 � U2 = 0.025 [m/s] is imposed between the upper and lower
layers (U1 = 0.025 [m/s], U2 = 0). The deformation radius rd, a key measure for baro-
clinic instability and mesoscale turbulence, is set at 15000 [m], with the requirement that
rd/Dx > 2 for effective mesoscale eddy resolution. For instance, a 256 ⇥ 256 grid with
Dxhires = L/256 = 3906.25 [m] leads to rd/Dxhires = 3.84, effectively resolving mesoscale
turbulence. Conversely, a Dxlores = L/64 = 15625 [m] grid results in rd/Dxlores = 0.96,
rendering the simulation unrealistic. Lastly, the heights of the fluid layers are determined,
with H1/H2 = 0.25 for an eddy-driven flow and H1/H2 = 0.1 for a jet-driven flow.
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All the previously mentioned parameters will remain constant throughout this study.
Consequently, only two parameters can be adjusted to tweak the flow dynamics. The
first parameter is the bottom drag coefficient rek, which determines the influence of fric-
tional forces in the bottom layer. Additionally, there is the slope of the Coriolis parameter
b, altering the intensity of the Coriolis force with altitude. Increasing its value amplifies
inertial forces, leading to an eddy-driven flow. In the work of Ross et al., 2023, they chose
to use rek = 5.789 ⇥ 10�7 [s�1] and b = 1.5 ⇥ 10�11 for the eddy-driven flow, while for
the jet-driven flow, rek = 7 ⇥ 10�8 [s�1] and b = 1 ⇥ 10�11 were used. The resulting flows
are depicted in the Fig.18 and correspond to the expected behavior of eddy-driven and
jet-driven flow types.

4.4 GENERATED DATASETS

Throughout this study, various dataset configurations were explored to enhance the per-
formance of the well-established FCNN model and to assess, for the first time, the capabil-
ities of the Fourier Neural Operators in the context of subgrid processes parameterization.
Just like the reference papers we built upon, we generated datasets comprising samples
from a single flow type. Additionally, we explored the approach of using a dataset that
contains samples from multiple simulations of the same flow type. The idea is that both
flow types exhibit distinct dynamics, leading to orders of magnitude differences in char-
acteristic flow variables such as potential vorticity. Thus, by training the neural network
on samples that maintain the same flow dynamic while varying its intensity, like changing
flow speed, makes it learn the dynamics of the flow while experiencing a broader input
value spectrum that shares some values closer to the one of the other flow.

Figure 18: Snapshots of upper (A,E) and lower (B,F) potential vorticity (PV), barotropic
kinetic energy (C,G), and barotropic enstrophy (D,H) for simulations run in eddy (A-D)
and jet (E-H) configurations over a square, doubly-periodic domain of length 106 m. Eddy
configuration results in an approximately isotropic distribution of vortices, while jet con-
figuration results in the formation of stable, long-lived jets with more coherent latitudinal
structure. This figure and caption comes from Ross et al., 2023.
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To achieve this, simulations were conducted using bottom drag coefficient and coriolis pa-
rameter slope values drawn from uniformly distributed distributions within +-5% of the
values used by Ross et al., 2023. This value was found empirically and could potentially
be increased, but around 20% (- for eddies and + for jets), the dynamic differences of both
flow began to diminish. Lastly, the ultimate datasets consist of multiple simulations of
both flow types. Here, our interest lies in determining whether the neural network can
effectively derive a parameterization that applies to both types of flows using the com-
bined data. We want to explore whether the network, even without full training on one
flow type, can still enhance its performance for that type by incorporating features learned
from the other.

Our study will be organized into 6 phases. At times, the focus will be on observing the
impact of changing the dataset type on the results. In other instances, the emphasis will
be on maintaining the dataset type while exploring the effects of increasing the number of
samples. The datasets used in each phase are summarized in Tab.1.

Phase Name Type Flow(s) Nb. Samp. Nb. Sim. Samp. per Sim.

1 UE5000 UNIQUE E 5000 1 5000

- UJ5000 UNIQUE J 5000 1 5000

2 ME5000 MIXED E 5000 10 500

- MJ5000 MIXED J 5000 10 500

3 ME10000 MIXED E 10000 20 500

- ME20000 MIXED E 20000 40 500

- MJ10000 MIXED J 10000 20 500

- MJ20000 MIXED J 20000 40 500

4 F5000 FULL E & J 5000 10 500

- F10000 FULL E & J 10000 20 500

- F20000 FULL E & J 20000 40 500

- F40000 FULL E & J 40000 80 500

5 F5000 FULL E & J 5000 10 500

6 F5000 FULL E & J 5000 10 500

Table 1: Table summarizing the names and characteristics of all the datasets. In the case
of the full datasets, the proportions are 50% eddies (E) and 50% jets (J). For the unique
datasets, the rek and b values chosen are the one of Ross et al., 2023. In the case of the
UE5000 and UJ5000 datasets, rek and b are the one used in Ross et al., 2023
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Chapter Five

The story of the results

This chapter provides a comprehensive overview of the research methodology, covering the setup
details and metrics used for model evaluation. The results will be presented in six distinct phases
to enhance clarity and emphasize key findings.

5.1 METHODOLOGY AND SETUP

5.1.1 BASELINES

To evaluate the performance of a newly learned parameterization, a comparison against
baseline models is essential. Thus, the three different configurations of the fully convo-
lutional neural network introduced in the work of Ross et al., 2023 will serve as base-
lines, as they represent their best results achieved. Each of these models was trained on a
dataset containing 5000 samples from a single eddy-driven simulation (UE5000, as shown
in Tab.18), during 50 epochs. The input for all networks is the potential vorticity q, and
each network outputs one of the formulations of the subgrid term (as described by Eq.21,
22, 23). These neural networks will be used for both offline and online testing. Addition-
ally, beyond aiming to improve upon their results, it is important to verify whether using
their architecture and the same dataset while sampling differently produces consistent re-
sults, providing reassurance regarding our setup.

In addition to these neural network models, several well-known analytical parameteri-
zations from the world of turbulence closure modeling, including the one proposed by
Zanna and Bolton, 2020, have also been included in the comparison. However, they will
solely serve as baselines for the online testing phase. This decision is based on practical
reasons: introducing these parameterizations would significantly increase the number of
experiments and extend the already substantial computation time required for the exten-
sive set of experiments already prepared. Furthermore, while integrating these parameter-
izations into their benchmark framework (Ross et al., 2023) was relatively straightforward
for online testing, the same ease did not apply to the offline testing phase.

The first parameterization under consideration is the one of Smagorinsky (Smagorinsky,
1963), a widely used turbulence closure model in numerical weather modeling. This ap-
proach estimates unresolved turbulent stresses by introducing an eddy viscosity term de-
termined by the resolved flow variables, specifically the derivatives of the velocity fields.
The model incorporates a constant parameter known as the Smagorinsky coefficient CS,
which plays a crucial role in establishing the eddy viscosity.
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Although computationally efficient, the model accuracy can be influenced by the chosen
Smagorinsky coefficient and might not comprehensively capture intricate turbulent flows.
By taking into account the approach used by Ross et al., 2023, the CS value is set at 0.15
for this study.

Before introducing the second parameterization, it is crucial to understand an important
concept related to geostrophic turbulence. Indeed, this turbulence drives the transfer of
enstrophy (measure of the magnitude of vorticity squared) to smaller scales, as outlined
by Charney, 1971.

As an example, when one talks about geostrophic turbulence transferring enstrophy to
smaller scales, it means that as the turbulence occurs, this swirling motion gets distributed
to smaller and smaller regions within the fluid. Another way to think about this, one can
imagine stirring a cup of coffee with a spoon. The swirling motion created initially is like
the enstrophy, and if one keeps stirring, that swirling motion gets spread out throughout
the coffee, especially in smaller whirlpools. Similarly, in geostrophic turbulence, the spin-
ning or swirling energy gets spread to smaller areas within the fluid.

Therefore, in a numerical simulation, managing enstrophy dissipation near the grid-scale
is essential to prevent its accumulation. To address this, a common strategy involves using
a horizontal hyper-viscosity, frequently biharmonic, i.e. an additional term of fourth order
is added to the partial differential equations describing the flow. This viscosity selectively
dissipates enstrophy near the grid-scale, much like the Smagorinsky approach. However,
a complication arises at resolutions close to the scale where smaller eddies emerge. In
such cases, these closures not only dissipate enstrophy but also a notable portion of the
total energy. This is problematic since geostrophic turbulence channels energy to larger
scales while transferring enstrophy to smaller scales. Hence, an ideal parameterization
should prioritize enstrophy dissipation without dissipating energy at small scales.

To tackle this issue, Jansen and Held, 2014; Jansen, Held, et al., 2015 proposed a novel
approach introducing a class of subgrid parameterizations that dissipate enstrophy while
preserving most of the energy. The method involves combining a standard hypervis-
cous closure (ensuring enstrophy dissipation) with a mechanism to return the dissipated
energy back to the resolved flow at larger scales which they called backscaterring. By
redirecting the energy to larger scales, this parameterization maintains a more realistic
energy cascade, resulting in more energetic eddy fields. Their parameterization, that will
be named Backscatter and Biharmonic Dissipation, has two hyper-parameters, CB (frac-
tion of Smagorinsky-dissipated energy scattered back to larger scales) and C2

S (dissipation
constant), which are respectively set to 1.2 and 0.007. Once again, this choice is based on
the results obtained in Ross et al., 2023.

Lastly, the final parameterization used as a baseline is the one obtained from data using
relevance vector machine with an idealized primitive equation model presented in Zanna
and Bolton, 2020. The set of weights used is the one derived from their human-in-the-loop
technique during the regression process. If the reader is seeking more detailed explana-
tions about these three analytical expressions, they can be found in the appendix a, b and
c of the work by Ross et al., 2023.
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5.1.2 INVESTIGATED ARCHITECTURES

In total, four neural networks were tested extensively throughout this work. Indeed, the
first one is the fully convoslutional neural network, the purpose is to improve upon
the best results obtained in Ross et al., 2023. Additionally, a U-NET, a state-of-the-art
model for convolution operations on spatiotemporal data, is included. Furthermore, the
first Fourier Neural Operator (FNO) and its improved architecture called the Factorized
Fourier Neural Operator (FFNO) are also tested. The latter two networks operate primar-
ily in the spectral domain, making it interesting to compare their results with the first two
networks operating in the original space-time data representation.

A detailed visualization of all these networks is provided in Fig. ?? and ??. Additionally,
comprehensive documentation detailing the network architecture parameters settings is
available in the code library associated with this thesis, which will be accessible at the end
page of this work. Specifically, within the file neural_networks.py, one can find the config-
urations for all these networks along with the corresponding values used.

It is important to note that, to ensure a fair comparison, each of these neural networks
has a similar number of trainable parameters, roughly around 300,000. These parameter
configurations will remain consistent from phase one to five of this study. However, a
thorough analysis of the FFNO architecture will be conducted in phase six, with each
tested combination documented comprehensively to provide clarity on the choices made.

5.1.3 INPUTS

The input, in the case where only one flow field variable is used, is represented by a 2-
dimensional matrix with dimensions N ⇥ N, where N = L/Dx, and L denotes the domain
size while Dx refers to the spatial resolution. The possible flow field variables that can
serve as inputs include the horizontal velocity u, vertical velocity v, and potential vorticity
q. Additionally, any combination of these variables can be provided as input. However,
for the sake of consistency and to manage the number of configurations efficiently, the
possible test cases were limited to the following combinations:

q, (q, u), (q, v), (q, u, v) (24)

5.1.4 OUTPUTS

The output of the parameterization can be one of three possible formulations: the total
subgrid forcing Sqtot (see Eq. 21), the subgrid forcing of potential vorticity Sq (see Eq.
22), and the subgrid flux Fq (see Eq. 23). Although these formulations are highly corre-
lated, only the last one of them ensures that the conservation law is respected. Indeed,
when the neural network is trained to predict the subgrid flux, the divergence operation
is numerically and internally computed by PyQG afterwards.

Ensuring the conservation law is respected is of great importance. In the first two config-
urations, there is no guarantee that the neural network will predict a quantity resulting
from the divergence of another.
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Nevertheless, the divergence operator serves a crucial role in diffusing physical quanti-
ties, smoothing out information and preventing localized accumulation. Simulations that
do not adhere to conservation laws can exhibit unpredictable behavior, potentially lead-
ing to energy peaks, simulation instability, and divergence due to energy explosions.

For the first two subgrid term formulations, Ross et al., 2023 discovered that ensuring the
output of the last layer has a zero mean significantly improved offline results and stabi-
lized online simulations. Consequently, this operation will be applied to the output when
the neural network uses either of the first two formulations. However, this feature will be
turned off for the conservative formulation.

Lastly, it is important to note that when the chosen formulation is the subgrid flux Fq, the
neural network outputs not one but two values. Specifically, it calculates the subgrid flux
values in both the x- and y-directions. Therefore, during offline tests, the mean squared
error (MSE) is calculated individually for both of these quantities. However, for simplicity,
as in Ross et al., 2023, the resulting MSE error discussed throughout this work concerning
the subgrid flux is the average of the MSE errors computed for both quantities separately.

5.1.5 DATASETS

The datasets used for training the neural networks in each phase, along with their respec-
tive short names, are summarized in Tab.1. The summarizing table of offline results for
each phase also includes the short name of the corresponding dataset used. In addition to
the training datasets, six additional datasets to evaluate the quality of our parameteriza-
tions were created.

For offline testing, three datasets are used each composed of samples of: eddy-driven
flows (eddies offline), jet-driven flows (jets offline), and another dataset containing sam-
ples from both flow types (full offline). Each of these datasets consists of 5000 samples
collected from 10 different simulations (with 5 from each type in the full offline dataset).
Additionally, three datasets for online testing were also created: eddy-driven (eddies on-
line), jet-driven (jets online), and samples from both flow types (full online). However,
by contrast to the offline datasets, they not only include subgrid scale processes values but
also contains the energy spectrum of the flow, values at each timestep of all flow quanti-
ties, and more.

5.1.6 TRAINING

The training conditions used remain consistent with those described in Ross et al., 2023.
Specifically, the batch size is set at 64 samples, the learning rate (g) is equal to 0.001, the op-
timizer is ADAM, and the scheduler is multi-step with milestones set at (4/8), (6/8), and
(7/8) of the training. The number of epochs is 50, and the loss function used is the mean
squared error between the predicted subgrid scale process contribution and its true value.
In phase 5, we will dive deeper into exploring the FFNO prediction capabilities by testing
various combinations of training setups. These combinations and their descriptions will
be presented accordingly in phase 5.
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5.2 METRICS

To assess the quality of the newly learned parameterization, a benchmarking framework
was developed by Ross et al., 2023. This framework enables us to evaluate the parameter-
ization performance through various testing methods.

5.2.1 OFFLINE

Offline metrics serve the purpose of assessing how well the parameterization predicts its
target. For each fluid layer, like the upper and lower layers shown in Fig.12, two metrics
are used. The first metric is the coefficient of determination R2, expressed as:

R2 = 1 �
E
⇥
(S � Ŝ)2⇤

E [(S � E[S])2]
(25)

Here, S represents the exact subgrid scale contribution, Ŝ is the prediction made by the
parameterization, and E stands for statistical expectation. This metric interpretation is
simple: it yields a value of 1 for perfect predictions, 0 when predictions are no better than
always guessing the mean, and negative values when predictions are worse than guessing
the mean. The second metric is the Pearson correlation (r), given by:

r =
Cov(S, Ŝ)

sSsŜ
(26)

Here, s represents the empirical standard deviation of a quantity across the dataset. Pear-
son correlation varies between -1 and 1 and can remain high even if R2 is negative. For
example, if predictions consistently have a wrong but proportional scaling factor. To com-
pute these metrics, the procedure is straightforward: at each time step, the metric value is
calculated for each pixel and then averaged. The final results are obtained by averaging
these values across all time steps.

5.2.2 ONLINE

The online metric serves the purpose of evaluating the parameterization performance in
real-time simulations. The approach involves conducting low-resolution simulations and
applying the parameterization at each time step to correct the simulation. Then, various
metrics can be calculated on these simulations to determine if they exhibit meaningful
physical behavior and whether they align with the results of high-resolution simulations
that share the same initial and boundary conditions.

It is crucial to note that achieving good results in the offline phase does not necessarily
guarantee success in practical scenarios. The benchmarking framework possess various
metrics to assess the quality of the newly developed parameterization. However, using all
of these metrics would generate a vast amount of data that could be too time consuming
(alone) to analyze.
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Therefore, the selected metrics for evaluation are:

• Spectrum analysis: For energy-related flow quantities, it is possible to extract and
examine their power spectrum in spectral space. This allows us to see the contri-
butions from different scales in the spectrum. The goal is to determine whether the
spectrum of a low-resolution simulation, corrected with a parameterization, matches
that of the high-resolution simulation. The specific quantities of interest are:

1. KEflux (Kinetic Energy Flux): This reveals how kinetic energy is being trans-
ferred across different lengthscales.

2. KEfrictionspec (Friction Energy Spectrum): Indicates the amount of energy lost
due to bottom drag, occurring between fluid layers or at the ocean floor, for
each lengthscale.

3. APEflux (Available Potential Energy Flux): Measures the potential energy avail-
able for transfer between different lengthscales.

4. APEgenspec (New Available Potential Energy Spectrum): Represents the newly
generated potential energy at each lengthscale.

While these metrics might seem complex, the main focus should be on one key idea:
these metrics capture different aspects of how energy moves within a fluid, which
is essential for defining flow dynamics. If one observes matching spectra between
simulations, it confirms that the parameterization is effectively redistributing and
addressing energy deficiencies in the simulation. These four metrics can be com-
puted for both layers of the simulation, but for clarity, only the spectrum for the first
layer will be presented (this is an arbitrary choice for the sake of conciseness).

• Differences between time-averaged power spectra and fluxes: While spectrum
analysis provides a useful visual tool, it is also valuable to quantitatively measure
the differences between power spectra. This can be accomplished by calculating the
differences between time-averaged power spectra and fluxes. To compute this dif-
ference, let f represent the power spectrum curve of a specific quantity. The spectral
difference can be calculated as follows:

spectral _ diff(sim 1, sim 2; f ) ⌘
s

1
|K| Â

k2K
( fsim 1(k)� fsim 2(k))

2 (27)

Here, K represents a set of isotropic wavenumbers common to both simulations. In
our case, K is evenly distributed in logarithmic space and covers up to 2/3 of the
Nyquist frequency of the low-resolution simulation, as described in Ross et al., 2023.

• Differences between spatially flattened probability distributions: Even if the en-
ergy spectrum appears satisfactory, it does not necessarily mean that the dynamics
represented by the corrected low-resolution simulation will match those of the high
resolution. Hence, it is valuable to compute the empirical distributions of various
flow quantities at the end of the simulation.
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This can be done using the earth mover’s distance (or, in other words, the Wasser-
stein distance with a p value set to 1):

distrib _ diff(sim 1, sim 2; f ) ⌘
Z •

�•
|Psim 1( f  x)� Psim 2( f  x)| dx (28)

Here, Psim( f  x) represents the cumulative distribution function of quantity f in
a given simulation. Imagining the two probability density functions as mounds of
earth, this metric corresponds to the minimum amount of work required to move all
the mass from one mound to the other. For 1-dimensional distributions, it reduces
to the integral of the difference in each cumulative distribution function (which we
empirically approximate). These differences are calculated for the quasi-steady-state
distributions (marginalized over space and at the final timestep) of u, v, q, kinetic
energy density, and enstrophy int the first layer (once again, this a choice for con-
ciseness).

It is important to notice that when comparing low-resolution to high-resolution met-
rics, we are comparing the distributions of quantities like u (solution of the high-
resolution) and ū (solution of the low-resolution), so histograms are properly nor-
malized, as outlined in Ross et al., 2023.

• From difference to similarity: Defining various distance metrics can lead to chal-
lenges when comparing them, especially due to differences in units. However, the
actual value of a metric is not the main concern. What matters is whether the re-
sult for parameterized simulations line up to the one of high-resolution simulations
more than a simple low-resolution simulation. To address this, the distance metrics
are transformed into similarity scores, indicating how close parameterized models
are to both type of simulations:

Similarity ( param, high-res; diff ) ⌘ 1 � diff( param, high-res )
diff( low-res, high-res )

(29)

This similarity score is approximately 1 if the parameterized model distance to a
high-resolution is much smaller than that of the low-resolution model (and exactly 1
for the high-resolution model), approximately 0 if this distance is about the same as
the low-resolution model (and exactly 0 for the low-resolution model), and less than
0 if the distance is larger.

• A simple but meaningful visualization: While numerical metrics provide insight,
observing potential vorticity distribution offers another way to assess the parame-
terization quality. For the final time step of the simulation, we will present potential
vorticity plots for high-resolution, low-resolution, neural networks, analytical base-
lines, and our parameterizations. This practical assessment complements the other
rigorous metrics. After all, a good graphic can often speak volumes, don’t you think?
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PHASE 1

In this first phase, the neural networks are trained using a single flow simulation con-
sisting of 5000 samples (UE5000 and UJ5000). The idea is to train them under the same
conditions as those in Ross et al., 2023 to detect any potential differences in results.

Offline

First and foremost, it is clear that our baseline neural networks, using identical archi-
tectures, training conditions, and simulations but with varied sampling, already show a
difference. Specifically, the offline results of the FCNN trained on UE5000 exhibit a reduc-
tion of 3% to 6% in r and R2 measurements for both layers.

A recurring observation is that for all architectures trained on UE5000, the offline results
excel on the eddies offline dataset (not shown) but perform poorly on the jets online
datasets, leading to negative R2 scores. However, when trained on UJ500, neural net-
works tend to perform slightly worse on the eddies offline dataset but slightly better on
the jets offline. In other words, the results are polar opposites in the first scenario, while
in the second scenario, both results are unsatisfactory.

Whatever the situation, it is evident that predicting the subgrid flux Fq consistently yields
the best results, and this is also true when neural network inputs combine potential vor-
ticity and velocity fields. The Tab.2 provides the best results for each architecture type.

The most intriguing observation is that the FFNO, whether trained on eddies or jets,
achieves a positive R2 in the lower layer when tested on jet-type flows. This contrasts
with the baseline parameterizations, in their study (Ross et al., 2023), they struggled to
find a neural network parameterization that achieved positive results in this specific layer.

Online

The energy spectrum, visible in Fig.19 and 20, shows differences between FCNN and
UNET. Indeed, the FCNN fails to capture the kinetic energy flux spectrum, while the
U-NET aligns better with the high-resolution simulation spectrum shape.

However, this result pales in comparison to the FFNO, which already demonstrates strong
performance in predicting both spectra for both eddy and jet-driven online testing datasets.
Nevertheless, FNO faces challenges, with only the one trained on UE5000 managing to
produce a stable eddy-driven online simulation; in the other three cases, simulation sta-
bility criterion (CFL number) was violated.
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Moving to the distribution similarities shown in Fig.21 and 22, one can observe that in
the space-time domain, the baseline neural networks and U-NET are more capable of
maintaining simulations with dynamics less divergent from the original. However, nei-
ther FNO nor FFNO achieves a correct spatial distribution of flow quantities. Lastly, even
though FFNO demonstrates strong offline performance, a quick look at Fig.24 reveals that
its simulation flow dynamics significantly deviate from the high-resolution.

Conclusion

In summary, varying the sample approach while maintaining consistent neural network
architectures and training conditions has a noticeable impact. The baseline FCNN trained
on UE5000 displays a reduction of 3-6% in r and R2 for both layers. Furthermore, architec-
tures trained on UE5000 perform well in eddies offline but poorly in jets online, resulting
in negative R2 scores.

However, when trained on UJ500, neural networks produce slightly worse in eddies and
slightly better in jets offline testing. Predicting subgrid flux Fq consistently yields optimal
results. Particularly, FFNO stands out by achieving positive R2 for jet-type flows in the
lower layer, unlike the baseline parameterizations.

Transitioning to the online phase, FFNO excels in predicting energy spectra for both eddy
and jet-driven testing datasets, while FCNN faces challenges. Distribution similarities
uncover that baseline neural networks and U-NET better preserve a bit more the original
dynamic, while FNO and FFNO struggle with spatial flow quantity distributions. Indeed,
despite robust offline performance, FFNO simulation dynamics substantially differ from
high-resolution counterparts.

45



Dataset Input Output Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FCNN UE5000 (q, u, v) fq 0.05 0.99 0.97 0.97 0.95

- - - - - 0.94 0.76 -0.21 -10.63

- UJ5000 (q, u, v) fq 0.22 0.97 0.83 0.72 0.29

- - - - - 0.95 0.85 0.88 0.72

UNET UE5000 (q, u, v) fq 0.35 0.91 0.81 0.82 0.64

- - - - - 0.83 0.52 -0.69 -16.34

- UJ5000 (q, u, v) fq 0.77 0.80 0.61 0.54 0.19

- - - - - 0.83 0.56 0.65 0.19

FNO UE5000 (q, u, v) fq 0.80 0.64 0.55 0.36 0.19

- - - - - 0.58 0.18 0.18 -0.92

- UJ5000 (q, u, v) fq 2.84 0.19 0.14 -1.33 -0.93

- - - - - 0.45 0.15 -0.28 -1.80

FFNO UE5000 (q, u, v) fq 0.22 0.91 0.88 0.83 0.78

- - - - - 0.88 0.55 0.76 0.12

- UJ5000 (q, u, v) fq 0.65 0.84 0.47 0.70 0.21

- - - - - 0.89 0.57 0.79 0.30

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 2: |Offline - Phase 1| Summarizing table of offline results. The white lines represent
results for the eddies offline dataset, while the colored lines correspond to the jets offline
dataset. Along with the training conditions, the validation loss (calculated on an unseen
dataset of 5000 samples; for eddy training, the corresponding dataset is named eddies
validation, and likewise for jets and the full dataset) is shown. The metric values for R2

(see Eq.25) and r (see Eq.26) are given for both the upper layer (i = 1) and lower layer (i =
2).
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PHASE 2

In the second phase, neural networks are trained on a dataset containing samples from 10
distinct simulations of a single flow type ME5000 and MJ5000). The idea is to maintain
the characteristic flow dynamics while expanding the input value range, which could en-
hance the parameterization ability to generalize to the other type of flow.

Offline

As shown in Tab.3, there is improvement in every metric score. Notably, the FFNO per-
formance stands out: when trained on the mixed eddie-driven flow dataset (ME5000), its
overall results on the eddies offline dataset are even worse than the baselines. However,
although the results in the upper layer are still lower than the baselines on the jet offline
dataset, the results of the lower layer clearly surpass the baselines. In addition to being
positive, it reaches the best value obtained so far of 0.61. The FNO still lags behind the
FFNO but performs better in the lower region on the jet offline datasets compared to the
baselines. Interestingly, the FCNN trained on ME5000 and evaluated on the jets offline
dataset produces significantly worse results than the baseline. This suggests that the net-
work might have over-learned the patterns of the eddy-driven flow. As for the U-NET, its
results fall short of those of the FCNN.

Online

As depicted in Fig.25 and 26, the FCNN still struggles to capture the energy spectrum,
whereas the U-NET and FFNO perform well. A nice observation is the U-NET remark-
able ability to reproduce spatial distributions, visible in Fig.27 and Fig.28. However, the
FFNO similarity scores remains low and rarely reach the positive range. By contrast to
phase 1, from a visual perspective, the simulation dynamics of the FFNO appear to align
more closely with the high-resolution simulation in phase 2, as illustrated in Fig.29 and 30.

Conclusion

To sum up, Tab.3 highlights overall improvement in metric scores. In particular, the FFNO
performance stands out, giving positive values in the lower layer for jet-driven flows.
Furthermore, Fig.25 and 26 reveal that the FCNN still struggles with the energy spectrum,
whereas U-NET and FFNO excel. In addition to that, the U-NET effectively reproduces
spatial distributions (Fig.27), while FFNO lags in similarity scores. In comparison to phase
1, phase 2 simulations for the FFNO demonstrate better alignment with high-resolution
simulations (Fig.29 and 30).
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Dataset Input Output Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FCNN ME5000 (q, u, v) fq 0.03 0.99 0.98 0.97 0.96

- - - - - 0.94 0.76 -0.23 -11.8

- MJ5000 (q, u, v) fq 0.10 0.98 0.88 0.79 0.32

- - - - - 0.95 0.91 0.84 0.80

UNET ME5000 (q, u, v) fq 0.23 0.94 0.87 0.88 0.76

- - - - - 0.88 0.58 -0.40 -12.34

- MJ5000 (q, u, v) fq 0.50 0.81 0.66 0.59 0.21

- - - - - 0.89 0.69 0.74 0.42

FNO ME5000 (q, u, v) fq 0.50 0.72 0.71 0.52 0.50

- - - - - 0.66 0.27 0.42 -0.23

- MJ5000 (q, u, v) fq 0.88 0.48 0.36 0.13 -0.17

- - - - - 0.72 0.42 0.51 0.13

FFNO ME5000 (q, u, v) fq 0.19 0.91 0.90 0.83 0.80

- - - - - 0.89 0.59 0.78 0.24

- MJ5000 (q, u, v) fq 0.38 0.89 0.73 0.79 0.53

- - - - - 0.91 0.78 0.84 0.61

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 3: |Offline - Phase 2| Summarizing table of offline results. The white lines represent
results for the eddies offline dataset, while the colored lines correspond to the jets offline
dataset. Along with the training conditions, the validation loss (calculated on an unseen
dataset of 5000 samples; for eddy training, the corresponding dataset is named eddies
validation, and likewise for jets and the full dataset) is shown. The metric values for R2

(see Eq.25) and r (see Eq.26) are given for both the upper layer (i = 1) and lower layer (i =
2).
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PHASE 3

In this third phase, neural networks are trained on datasets with more samples from dif-
ferent simulations of the same flow type (ME10000, ME20000, MJ10000 and MJ20000). The
idea is to determine if a substantial increase in data volume improves the learned param-
eterizations quality.

Offline

From Tab.4, it is evident that increasing the total number of samples in each training
dataset leads to improvement in almost every metric. It is worth noting that neural net-
works operating in the spatio-temporal domain, like FCNN and UNET, obtained worse
results when trained on ME20000 and evaluated on jets offline. This might be because
these networks overly focus on eddy patterns, making them struggle to generalize to jet
flows. However, the reverse is not true. The fact that, by contrast to the neural networks
operating in the space-time domain, both Fourier Neural Operators show improvement
emphasizes the power of performing computations in the spectral domain.

Online

The power spectrum, as depicted in Fig.31 and 32, is still well reproduced by the U-NET
and FFNO, but not by the FCNN and FNO. For the first time, almost every similarity met-
ric of the FFNO exceeds the threshold of 0.5 set to filter out poor results from the plots.
This indicates an improvement, even though it still struggles to replicate the distribution
of the high-resolution simulation.

From a visual point of view, both Fourier Neural Operators produce more aesthetically
pleasing results that seems to be in line with the high resolution simulation compared to
the baseline parameterizations, as seen in Fig.35 and 36.

Conclusion

Increasing sample numbers improves metrics (Tab.4). However, FCNN and UNET strug-
gle when trained on ME20000 and tested on jets, possibly due to over-learning eddy pat-
terns. Nevertheless, Fourier Neural Operators improve with an increase in spectral do-
main representation efficiency. In the online tests, the U-NET and FFNO keep exceling in
power spectrum reproduction (Fig.31 and 32). The FFNO metrics have improved by ex-
ceeding our aribtrary 0.5 threshold, though distribution replication remains a challenge.
Both Fourier Neural Operators yield visually appealing results, surpassing baseline pa-
rameterizations (Fig.35 and 36).
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Dataset Input Output Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FCNN ME20000 (q, u, v) fq 0.02 0.99 0.99 0.98 0.97

- - - - - 0.94 0.73 -0.34 -15.23

- MJ20000 (q, u, v) fq 0.07 0.98 0.81 0.75 0.26

- - - - - 0.95 0.93 0.88 0.85

UNET ME20000 (q, u, v) fq 0.19 0.95 0.89 0.9 0.8

- - - - - 0.89 0.65 -0.43 -14.45

- MJ20000 (q, u, v) fq 0.40 0.87 0.69 0.62 0.21

- - - - - 0.90 0.74 0.80 0.54

FNO ME20000 (q, u, v) fq 0.41 0.78 0.77 0.6 0.59

- - - - - 0.68 0.28 0.41 -0.34

- MJ20000 (q, u, v) fq 0.71 0.57 0.39 0.28 -0.14

- - - - - 0.79 0.54 0.62 0.28

FFNO ME20000 (q, u, v) fq 0.15 0.93 0.92 0.87 0.85

- - - - - 0.93 0.66 0.86 0.37

- MJ20000 (q, u, v) fq 0.30 0.93 0.79 0.86 0.62

- - - - - 0.94 0.83 0.88 0.7

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 4: |Offline - Phase 3| Summarizing table of offline results. The white lines represent
results for the eddies offline dataset, while the colored lines correspond to the jets offline
dataset. Along with the training conditions, the validation loss (calculated on an unseen
dataset of 5000 samples; for eddy training, the corresponding dataset is named eddies
validation, and likewise for jets and the full dataset) is shown. The metric values for R2

(see Eq.25) and r (see Eq.26) are given for both the upper layer (i = 1) and lower layer (i =
2).
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PHASE 4

In this fourth phase, neural networks are trained on datasets containing samples from
both flow types. Besides studying the impact of shifting to a full dataset of 5000 samples
(F5000), we also assess the effects of training on a much larger dataset of 40000 samples
(F40000) at the same time.

Offline

From the Tab.5, it is evident that this phase marks the most significant shift in results. The
Fourier Neural Operators have both improved their metric scores when compared to the
former phases. However, for the FCNN and UNET, their negative scores in the lower layer
of the jets online simulation still persist. Notably, the FFNO results trained on F40000 are
impressive. Although the metrics for the eddies online simulation are slightly lower than
the baselines, the results for the jets simulation greatly outperform the baselines in terms
of R2 but are still a behind for r.

Online

The same shift in results is observable in Fig.37 concerning the power spectra. As previ-
ously discussed, strong offline performance does not guarantee smooth online simulation.
Despite successfully completing both eddy and jet online simulations without violating
the CFL number, the FFNO energy spectrum spikes in both cases. In additiont to that
the FCNN still gives poor results, the U-NET worsens, but surprisingly, the FNO yields
acceptable results. Additionally, all similarity scores (see Fig.38) for all parameterizations
have significantly dropped. Nonetheless, visualizations suggest that parameterizations
can produce physics-like results, except for the U-NET, which notably fails to distribute
energy correctly in its simulation, as shown in Fig.39.

Conclusion

Despite notable offline improvements for the FFNO due to the use of full datasets, the
online results remained poor. In order to overcome this problem, we will investiguate fur-
ther the FFNO architecture. Indeed, the solution might be found by optimizing the train-
ing conditions as well as the architecture used. Thus, the focus of the folllowing phases
will on be toward the FFNO, keeping potential vorticity and velocity field as inputs, along
with the conservative subgrid scale processes formulation for output, i.e. Fq.
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Dataset Input Output Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FCNN F5000 (q, u, v) fq 0.04 0.98 0.97 0.95 0.94

- - - - - 0.94 0.85 0.40 -5.75

- F40000 (q, u, v) fq 0.02 0.99 0.98 0.97 0.93

- - - - - 0.95 0.85 0.41 -4.67

UNET F5000 (q, u, v) fq 0.25 0.93 0.84 0.84 0.68

- - - - - 0.89 0.63 0.32 -4.91

- F40000 (q, u, v) fq 0.20 0.94 0.88 0.87 0.75

- - - - - 0.90 0.69 0.41 -6.11

FNO F5000 (q, u, v) fq 0.54 0.71 0.69 0.5 0.47

- - - - - 0.70 0.37 0.49 0.13

- F40000 (q, u, v) fq 0.41 0.8 0.77 0.64 0.60

- - - - - 0.8 0.47 0.63 0.22

FFNO F5000 (q, u, v) fq 0.21 0.91 0.89 0.84 0.79

- - - - - 0.91 0.70 0.83 0.49

- F40000 (q, u, v) fq 0.15 0.94 0.93 0.88 0.86

- - - - - 0.94 0.79 0.89 0.62

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 5: |Offline - Phase 4| Summarizing table of offline results. The white lines represent
results for the eddies offline dataset, while the colored lines correspond to the jets offline
dataset. Along with the training conditions, the validation loss (calculated on an unseen
dataset of 5000 samples; for eddy training, the corresponding dataset is named eddies
validation, and likewise for jets and the full dataset) is shown. The metric values for R2

(see Eq.25) and r (see Eq.26) are given for both the upper layer (i = 1) and lower layer (i =
2).
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PHASE 5

In this fifth phase, we focus on investigating the training conditions of the Factorized
Fourier Neural Operators (FFNO). Originally, the training condition were the one of Ross
et al., 2023. However, the objective now is to determine whether the FFNO can perform
better, especially in online testing, with different combinations of optimizer (ADAM or
SGD), scheduler (constant, cosine warmup, cosine, cyclic, exponential, and multi-step),
and learning rate (g = 0.1, 0.01, 0.001). Finally, the training was done using the F5000
dataset.

Offline

All the results are depicted in Fig.40 and summarized in Tab.6. The first row in the table
corresponds to the training conditions used in Ross et al., 2023, the second row shows the
conditions recommended in the original FFNO paper by Tran et al., 2021, and the last rows
display two of our results. As it can be seen, training with a cosine scheduler enhances
the results, but a constant learning rate of 0.01 yields even better results. The most favor-
ables are achieved with a learning rate of 0.01. Nevertheless, it is worth noting that when
g = 0.001, the best results also arises from using a constant scheduler. Finally, a small
improvement in metric values is easily observed between the original training conditions
and the best ones obtained.

Online

The online testing results underscore the significance of benchmarking the parameteriza-
tion in a real-case simulation. As depicted in Fig.41, the FFNO, which exhibited superior
offline results using a constant learning rate of 0.01, now demonstrates an energy spec-
trum that explodes during online testing. As a consequence, the second-best results take
precedence as the new best results. This implies that the FFNO will be trained using a
constant scheduler rather than a multi-step or even cosine scheduler.

Conclusion

The Factorized Fourier Neural Operator will now be trained using the ADAM optimizer
and a constant learning rate of 0.001 since it has improved all its metric scores. Conse-
quently, the final step of this study involves exploring the architecture of the FFNO while
using these newly identified training conditions to obtain the final parameterization of
this study.
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Opti. Sched. Learn. Rate Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FFNO ADAM Multi-Step 0.001 0.22 0.91 0.89 0.84 0.79

- - - - - 0.91 0.69 0.83 0.47

FFNO ADAM Cosine 0.001 0.20 0.92 0.90 0.84 0.80

- - - - - 0.92 0.71 0.84 0.5

FFNO ADAM Constant 0.01 0.17 0.93 0.91 0.87 0.83

- - - - - 0.93 0.76 0.87 0.58

FFNO ADAM Constant 0.001 0.19 0.92 0.90 0.85 0.81

- - - - - 0.92 0.73 0.85 0.53

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 6: |Offline - Phase 5| Summarizing table of offline results. The white lines repre-
sent results for the eddies offline dataset, while the colored lines correspond to the jets
offline dataset. The inputs of the tested parameteriations are (q, u, v) and the output is the
subgrid flux Fq. Along with the different training conditions explored, the validation loss
(calculated on an unseen dataset of 5000 samples; for eddy training, the corresponding
dataset is named eddies validation, and likewise for jets and the full dataset) is shown.
The metric values for R2 (see Eq.25) and r (see Eq.26) are given for both the upper layer (i
= 1) and lower layer (i = 2).
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PHASE 6

In this sixth phase, the focus is on diving deeper into the architecture of the FFNO. One
of the main advantages of this architecture, compared to the FNO, lies in its ability to
scale to more than the 4 Fourier layers allowed originally by the FNO. Additionally, it is
interesting to investigate the role of the spectral modes for prediction. To conduct a more
comprehensive analysis, modifications have been made to the FFNO library, enabling the
use of a pass-band filter instead of a simple low-pass. This means specific modes within
a range can now be chosen for prediction, as opposed to relying solely on the maximum
mode and all modes up to it. Moreover, examining the influence of the latent space rep-
resentation size, used for enhancing the original input, is important. In conclusion, this
study will explore the impacts of number of layers, latent space size (= width of Fourier
layer), the modes selected and the training was done using F5000 and batch size of 32.

Offline

All results are depicted in Fig.44 and 45, with a summary presented in Tab.7. The opti-
mal configuration emerges with a width of 128. Indeed, an important difference in met-
ric values is observed between modes (0, 8) and configurations using more modes, while
distinctions between (16, 24) and (24, 32) modes are less pronounced. Interestingly, the
performance gap between a width of 128 using the initial 32 modes with 24 layers dimin-
ishes when compared to the setup employing 4 layers. Introduction of a pass band filter
underscores the significance of the first 8 modes, yielding superior results for the param-
eterization by contrast to using any other 8 modes. It is important to highlight that, the
FFNO demonstrates exceptional performance with a width of 128, 24 layers, and the first
32 modes, significantly outperforming the baselines even in the case using only 4 layers.

Online

Each configuration exhibits stable energy spectra that aligns with either the low-resolution
or high-resolution spectra (see Fig.46). Notably, the FFNO, in its optimal configuration,
presents improved similarity scores in the spectral domain (see Fig.47). However, this im-
provement is not yet mirrored in the spatial distribution of the flow quantities of interest.

Conclusion

In conclusion, the best FFNO configuration uses a width of 128, 24 layers, and the first 32
modes consistently outperforms baselines across various metrics. It exhibits stable energy
spectra and improved similarity scores in the spectral domain. However, there is still
room for improvements regarding the spatial distribution of flow quantities.
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Width Modes Num. Layers Loss (Val.) ⇢1 ⇢2 R2
1 R2

2

FFNO 128 (0, 8) 24 0.41 0.72 0.77 0.51 0.59

- - - - - 0.75 0.47 0.55 0.21

FFNO 128 (0, 16) 24 0.09 0.96 0.96 0.93 0.92

- - - - - 0.97 0.85 0.94 0.72

FFNO 128 (0, 24) 24 0.05 0.99 0.98 0.97 0.96

- - - - - 0.99 0.93 0.98 0.85

FFNO 128 (0, 32) 24 0.01 0.99 0.99 0.98 0.98

- - - - - 0.99 0.96 0.99 0.93

FFNO 128 (8, 16) 24 0.42 0.72 0.77 0.52 0.6

- - - - - 0.67 0.33 0.45 0.10

FFNO 128 (16, 24) 24 0.70 0.54 0.57 0.28 0.30

- - - - - 0.47 0.22 0.23 0.05

FFNO 128 (24, 32) 24 0.96 0.19 0.22 0.03 0.03

- - - - - 0.24 0.19 0.10 0.02

FFNO 128 (0, 32) 4 0.04 0.99 0.98 0.97 0.96

- - - - - 0.99 0.93 0.98 0.86

FCNN UE5000 q Sqtotal 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q Sq 0.09 0.91 0.95 0.82 0.90

- - - - - 0.86 0.82 -0.52 -4.63

FCNN UE5000 q fq 0.05 0.98 0.97 0.97 0.94

- - - - - 0.95 0.76 -0.22 -8.07

Table 7: |Offline - Phase 6| Summarizing table of offline results. The white lines represent
results for the eddies offline dataset, while the colored lines correspond to the jets offline
dataset. The inputs of the tested parameteriations are (q, u, v) and the output is the subgrid
flux Fq. Along with the different configurations explored, the validation loss (calculated
on an unseen dataset of 5000 samples; for eddy training, the corresponding dataset is
named eddies validation, and likewise for jets and the full dataset) is shown. The metric
values for R2 (see Eq.25) and r (see Eq.26) are given for both the upper layer (i = 1) and
lower layer (i = 2).

56



Chapter Six

The end of an adventure

In this final chapter, a summary of the entire work will be provided, followed by a discussion where
notable observations and potential improvements will be highlighted. This will containt insights
gathered during the journey, including ideas for further exploration left for the reader to consider.

6.1 CONCLUSION

The journey undertaken throughout this work, as complex and fascinating as it is, can be
summarized as follows: Over the past decades, global climate change has continuously
led to increased natural disasters, humanitarian crises, and ocean oxygen deoxygenation.
To address these challenges, it is important, as engineers, to find a model that enables the
simulation, understanding, and prediction of the Earth climate system. However, work-
ing at the Earth scale is time-consuming, and the most viable solution is to lower the
simulation resolution. Yet, this approach results in missing some physics described by the
equations, leading to less accurate representation of the intended dynamics.

A simple solution to address this problem is obtained by considering these missing pro-
cesses, often termed subgrid scale processes, through parameterization. Analytically, this
issue, also known as turbulence closure modeling, has been present for a century. De-
spite some promising ideas, they all share a common limitation: they have to increase
artificially some physical properties of the fluid whose motion we aim to describe. As a
result, the dynamics depicted in the simulation do not truly match the actual behavior. In
response to the rapidly growing field of machine learning, scientists have spent the past
decade exploring its intersection with fluid mechanics. This idea involves using a neural
network to serve as the parameterization for the missing contributions from subgrid scale
processes.

This master thesis is centered around the study by Ross et al., 2023. Over the years, they
developed varying parameterizations, each with its advantages and disadvantages. To
more effectively and rigorously evaluate their quality, they established a benchmarking
framework, thoroughly described in their paper. Thus, the goal of our study was rather
simple, even if the physical context is not: Is it possible to find a new parameterization for
the subgrid scale processes that works better (this being assessed with their framework)
than the one they presented? To answer this problem, the chosen path was found as
follows: in their future work section, they explained that, even if they have investigated
a lot of different ideas, one thing they did not do is study the impact of more complex
datasets.
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Therefore, this will be our chosen path to drive this study. Furthermore, instead of merely
using the fully-convolutional neural network they used multiple times and attempting to
enhance it, we have also decided to incorporate a U-NET, a state of the art model in image
recognition. But most importantly of all, we have also ventured into exploring the use of
the Fourier Neural Operators for subgrid scale processes parameterization, a path that, as
for today, has not been taken until now. After carefully explaining the physics to under-
stand computational fluid dynamics, ocean modeling, and the mathematical formulation
of the missing contributions we aim to compute, we proceeded with an in-depth descrip-
tion of how these new Fourier Neural Operators operate. Subsequently, we covered the
datasets used, the training setup, and the metrics. Throughout our analysis, we were able
to highlight several key factors:

• FCNN: The architecture displayed some improvement in its predictive capabilities
when using our more complex datasets. Nevertheless, using this neural network for
simulation still appears unfavorable due to inadequate energy spectra representa-
tion. This final results suggest that the architecture should be simply revisited if one
hopes to finally obtain a more coherent online simulation.

• U-NET: This state of the art architecture did not outmatch the FCNN in any test re-
garding the predicting capabilities. However, the key observation that can be made
is its ability to correctly redistribute spatially flow quantities. In other words, it
seems like this architecture correlates the longest with the dynamic of the high reso-
lution simulation. Thus, an idea would be to create an architecture that uses the best
of both.

• FNO and FFNO: This study showed the power of Fourier Neural Operators, which,
in contrast to everything done so far in this situation, perform a major part of their
computation in the spectral domain. At the end of this study, we obtained a fi-
nal parameterization for the subgrid scale processes that outperform the prediction
capabilities of the networks presented in their papers Ross et al., 2023. Moreover,
when using metrics of their framework, we also observe that the energy deficiency
of the simulation was more accurately corrected. However, as for many engineering
problems, nothing comes without a tradeoff. While the recently acquired param-
eterization shows highly promising prediction results, its drawback emerges from
the inability to precisely align the spatial corrections with the high-resolution sim-
ulation dynamics. As a result, the simulation’s behavior deviates from that of the
high-resolution.
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6.2 DISCUSSION AND FUTURE WORK

Even though this work was complex due to the fascinating but complicated intersection of
physics and deep learning, I do think that we managed to extract some valuable informa-
tion regarding this problem of subgrid scale processes parameterization. Throughout this
work and also after completing it, I realized that some choices made could have been bet-
ter, and also, I had ideas about what could be explored to try to go further. This reflection
path can be broken down as follows:

DATASETS

• While generating datasets, I noticed that from time to time, the bottom layer of a jet-
driven flow looked a lot like what can be found in an eddy-driven flow. This could
be the reason why a neural network on an eddy-driven flow performs worse on the
offline test made on jets than the other way around. Therefore, it might have been
interesting to change the proportions of samples from the upper and lower layers of
a jet-driven dataset to something like 75-25 instead of a mere 50-50.

• In the case of a jet-driven flow, the sampling can only start after 6 years; otherwise,
the quasi-steady state solution is not reached. Therefore, since the simulation is still
performed on a 10-year interval and the same number of samples is asked, it might
be possible that the sampling of the simulation is poorly performed, leading to sam-
ples that are temporarily speaking too close to one another and thus the dynamics
of the flow are not explored well enough. Thus, a solution could be to run the simu-
lation for a bit longer to put more space between sampling moments.

NEURAL NETWORKS

• In the Factorized Fourier Neural Operator architecture, I wonder what would hap-
pen if the modulation of the frequency spectrum between the input and the target
output was performed with something more advanced than a simple weight matrix.
Indeed, what would happen if the modulation was achieved using something capa-
ble of creating non-linear relationships, such as a fully connected neural network?

• As we have observed, the best results obtained were using the first 32 modes of the
frequency spectrum. Instead of using a single weight matrix for all modes simulta-
neously, it could be interesting to have Fourier layers that specialize in modulating
different parts of the spectrum, and then recombine their results. This approach
could be very intriguing. Imagine successfully creating a parameterization using
deep learning models based on Fourier analysis. Each of these Fourier blocks would
focus on learning how to modulate a part of the spectrum, and at the end of the net-
work, a final layer would mix the results. Using a technique like the one described in
Cranmer et al., 2020, we could attempt to extract the learned relationships and find
parameterizations for the missing subgrid scale contributions occurring at different
scales of our problem. Finally, we would learn how to combine these equations to
create a complete one. This could provide an interpretable parameterization that
would offer further insights into how to address this long-standing problem.
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• The main issue with the Fourier Neural Operators is their inability to reproduce spa-
tial distributions of flow quantities the same way a high-resolution simulation does,
i.e. the corrected low-resolution simulation diverges too quickly from the dynamics
of the high-resolution. Another idea that I tried to investigate, unfortunately without
success, is to create a new architecture that would combine the benefits of computing
operations in the spectral domain (better energy correction) and performing opera-
tions in the spatiotemporal domain (similar to the U-NET and FCNN), allowing for
a more accurate spatial representation of the flow variables. This to me, is one of the
key ideas that have emerged from this work.

• Even if the results of the FFNO are impressive, it could have been interesting to eval-
uate its performance using an early stopped version of the network during training.
Indeed, it seems rather obvious that the network might have overfitted the data a
bit during training for 50 epochs. Fortunately, all the neural network states from
every epoch are saved, but time is the only thing missing to investigate what would
effectively happen.

• A metric that I did not use but which is really important is the decorrelation time.
It is a measure of the time it takes for the low-resolution simulation to diverge from
the high resolution. In their framework, the way online metrics are computed, if not
averaged over time, is at the end of the simulation using the last time step. There-
fore, by checking the decorrelation time of the simulation, it could be interesting to
recompute these metrics at a moment (if it exists) where the simulations still match
one another (even if that might not be the case in this context).

• Even if the FFNO gave promising results, I am a bit disappointed with the time it
takes to run a simulation. Indeed, another issue with this architecture is the fact
that the Fourier transform and its inverse must be computed at each Fourier Layer,
which is a pretty time-consuming operation. In addition to that, both the original
input and the one being transformed in the spectral domain must be stored on the
GPU, which leads to a huge memory need during training. During Phase 6, it was
not possible to train the 24-layer FFNO without using 4 GPUs.

OTHERS
Although this benchmarking framework is a significant leap forward in the field of sub-
grid processes parameterizations as it allows a rigorous assessment of their quality, I still
think that it lacks a bit of simplicity. Due to the already substantial complexity of the prob-
lem studied, it is not possible to use any functions without wondering what is given as
input and what is the physical meaning of the output. In addition to that, making sense
of the results is still a challenging task due to the complexity of these metrics and the
fact that their interpretability makes sense only if the reader has a minimum background
knowledge in both fluid mechanics and statistics. Therefore, a large portion of my time
was dedicated to making the framework more user-friendly by creating a notebook that
would allow me to use these tools more simply. For anyone curious about how to use
PyQG or how to use their framework, I highly encourage you to try my master thesis
notebook available on my GitHub page. I tried to document as much as possible what is
possible to do, how to generate data, train a parameterization, evaluate it both offline and
online as simply as possible.

60



References

Ross, Andrew et al. (2023). “Benchmarking of machine learning ocean subgrid parameter-
izations in an idealized model”. In: Journal of Advances in Modeling Earth Systems 15.1,
e2022MS003258.

Li, Zongyi et al. (2020). “Fourier neural operator for parametric partial differential equa-
tions”. In: arXiv preprint arXiv:2010.08895.

Breitburg, Denise et al. (2018). “Declining oxygen in the global ocean and coastal waters”.
In: Science 359.6371, eaam7240.

Karstensen, Johannes, Lothar Stramma, and Martin Visbeck (2008). “Oxygen minimum
zones in the eastern tropical Atlantic and Pacific oceans”. In: Progress in Oceanography
77.4, pp. 331–350.

Capet, Arthur et al. (2016). “Decline of the Black Sea oxygen inventory”. In: Biogeosciences
13.4, pp. 1287–1297.

Stanev, EV et al. (2013). “Oxygen dynamics in the Black Sea as seen by Argo profiling
floats”. In: Geophysical Research Letters 40.12, pp. 3085–3090.

Kolmogorov, Andrei Nikolaevich (1941). “The local structure of turbulence in incompress-
ible viscous fluid for very large Reynolds numbers”. In: Proceedings of the Royal Society
of London. Series A: Mathematical and Physical Sciences 434.1890, pp. 9–13.

Lévy, Marina, Laure Resplandy, et al. (2012). “Grid degradation of submesoscale resolving
ocean models: Benefits for offline passive tracer transport”. In: Ocean Modelling 48,
pp. 1–9.

Resplandy, Laure, Marina Lévy, Gurvan Madec, et al. (2011). “Contribution of mesoscale
processes to nutrient budgets in the Arabian Sea”. In: Journal of Geophysical Research:
Oceans 116.C11.

Lévy, Marina, Raffaele Ferrari, et al. (2012). “Bringing physics to life at the submesoscale”.
In: Geophysical Research Letters 39.14.

Martin, Adrian P et al. (2015). “An observational assessment of the influence of mesoscale
and submesoscale heterogeneity on ocean biogeochemical reactions”. In: Global Biogeo-
chemical Cycles 29.9, pp. 1421–1438.

Ramachandran, Sanjiv, Amit Tandon, and Amala Mahadevan (2014). “Enhancement in
vertical fluxes at a front by mesoscale-submesoscale coupling”. In: Journal of Geophysi-
cal Research: Oceans 119.12, pp. 8495–8511.

Resplandy, Laure, Marina Lévy, Francesco d’Ovidio, et al. (2009). “Impact of submesoscale
variability in estimating the air-sea CO2 exchange: Results from a model study of the
POMME experiment”. In: Global Biogeochemical Cycles 23.1.

61



Djath, Bughsin’ et al. (2014). “Multiscale dynamical analysis of a high-resolution numeri-
cal model simulation of the Solomon Sea circulation”. In: Journal of Geophysical Research:
Oceans 119.9, pp. 6286–6304.

Su, Zhan et al. (2018). “Ocean submesoscales as a key component of the global heat bud-
get”. In: Nature communications 9.1, p. 775.

Lévy, Marina and Adrian P Martin (2013). “The influence of mesoscale and submesoscale
heterogeneity on ocean biogeochemical reactions”. In: Global Biogeochemical Cycles 27.4,
pp. 1139–1150.

Prandtl, Ludwig (1925). “7. Bericht über Untersuchungen zur ausgebildeten Turbulenz”.
In: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Math-
ematik und Mechanik 5.2, pp. 136–139.

Smagorinsky, Joseph (1963). “General circulation experiments with the primitive equa-
tions: I. The basic experiment”. In: Monthly weather review 91.3, pp. 99–164.

Singhal, AK and DB Spalding (1981). “Predictions of two-dimensional boundary layers
with the aid of the k-epsilon model of turbulence”. In: Computer Methods in Applied
Mechanics and Engineering 25.3, pp. 365–383.

Menter, Florian R (1992). Improved two-equation k-omega turbulence models for aerodynamic
flows. Tech. rep.

Jansen, Malte F and Isaac M Held (2014). “Parameterizing subgrid-scale eddy effects using
energetically consistent backscatter”. In: Ocean Modelling 80, pp. 36–48.

Jansen, Malte F, Isaac M Held, et al. (2015). “Energy budget-based backscatter in an eddy
permitting primitive equation model”. In: Ocean Modelling 94, pp. 15–26.

Pope, Stephen B (1975). “A more general effective-viscosity hypothesis”. In: Journal of Fluid
Mechanics 72.2, pp. 331–340.

Ling, Julia, Andrew Kurzawski, and Jeremy Templeton (2016). “Reynolds averaged turbu-
lence modelling using deep neural networks with embedded invariance”. In: Journal
of Fluid Mechanics 807, pp. 155–166.

Sharma, Pushan et al. (2023). “A Review of Physics-Informed Machine Learning in Fluid
Mechanics”. In: Energies 16.5, p. 2343.

Bolton, Thomas and Laure Zanna (2019). “Applications of deep learning to ocean data
inference and subgrid parameterization”. In: Journal of Advances in Modeling Earth Sys-
tems 11.1, pp. 376–399.

Tran, Alasdair et al. (2021). “Factorized fourier neural operators”. In: arXiv preprint arXiv:2111.13802.

Bonev, Boris et al. (2023). “Spherical Fourier Neural Operators: Learning Stable Dynamics
on the Sphere”. In: arXiv preprint arXiv:2306.03838.

62



Cranmer, Miles et al. (2020). “Discovering symbolic models from deep learning with in-
ductive biases”. In: Advances in Neural Information Processing Systems 33, pp. 17429–
17442.

Quattromini, Michele et al. (2023). “Operator learning of RANS equations: a Graph Neural
Network closure model”. In: arXiv preprint arXiv:2303.03806.

Zanna, Laure and Thomas Bolton (2020). “Data-driven equation discovery of ocean mesoscale
closures”. In: Geophysical Research Letters 47.17, e2020GL088376.

Griffies, Stephen (2018). Fundamentals of ocean climate models. Princeton university press.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolutional net-
works for biomedical image segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Oc-
tober 5-9, 2015, Proceedings, Part III 18. Springer, pp. 234–241.

Çiçek, Özgün et al. (2016). “3D U-Net: learning dense volumetric segmentation from sparse
annotation”. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI
2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part
II 19. Springer, pp. 424–432.

Charney, Jule G (1971). “Geostrophic turbulence”. In: Journal of the Atmospheric Sciences
28.6, pp. 1087–1095.

Berrone, S and D Oberto (2022). “An invariances-preserving vector basis neural network
for the closure of Reynolds-averaged Navier–Stokes equations by the divergence of the
Reynolds stress tensor”. In: Physics of Fluids 34.9.

Terrapon, Vincent (2023). “Introduction to computational fluid dynamics”. In: First lec-
ture.

Kraichnan, Robert H (1976). “Eddy viscosity in two and three dimensions”. In: Journal of
Atmospheric Sciences 33.8, pp. 1521–1536.

63



Appendix

Even more results

Torture the data, and it will confess to anything."

- Ronald Coase

1.1 INTRODUCTION

In this appendix, you will find the offline results of phases 5 and 6, as well as all the
online results involving parameterizations trained on jet-driven flows or evaluated on on-
line simulations of jet flows. Due to the substantial number of results generated, it should
be noted that all the missing offline results and online results that involve eddy-trained
parameterizations or testing with eddy datasets are available in my GitHub repository.
Indeed, less than a third of the results are shown in this master thesis.

Throughout this work, ensuring the reproducibility of my results was my top priority.
Therefore, all the codes and notebooks created for this work or based on the benchmarking
framework of Ross et al., 2023 have been thoroughly documented. This documentation
not only makes it easier for those interested to understand how to use the benchmarking
framework, but also allows for a comprehensive overview of all the work done. One of my
proudest achievements in terms of code is the master thesis notebook, which is concise,
well documented, and enables easy dataset generation, training of new parameterizations,
and both offline and online testing.

https://github.com/VikVador/Ocean-subgrid-parameterizations-in-an-idealized-
model-using-machine-learning
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PHASE I



Figure 19: |Online - Phase 1 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.2, these were trained on UJ5000 and tested on eddies online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 20: |Online - Phase 1 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.2, these were trained on UJ5000 and tested on jets online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 21: |Online - Phase 1 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.2, they are
trained on UJ5000 and tested on eddies online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 22: |Online - Phase 1 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.2, they are
trained on UJ5000 and tested on jets online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 23: |Online - Phase 1 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.2, they were trained using UJ5000 and
tested on eddies online.
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Figure 24: |Online - Phase 1 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.2, they were trained using UJ5000 and
tested on jets online.
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PHASE II



Figure 25: |Online - Phase 2 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.3, these were trained on MJ5000 and tested on eddies online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 26: |Online - Phase 2 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.3, these were trained on MJ5000 and tested on jets online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 27: |Online - Phase 2 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.3, they are
trained on MJ5000 and tested on eddies online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 28: |Online - Phase 2 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.3, they are
trained on MJ5000 and tested on jets online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 29: |Online - Phase 2 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.3, they were trained using MJ5000 and
tested on eddies online.
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Figure 30: |Online - Phase 2 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.3, they were trained using MJ5000 and
tested on jets online.
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PHASE III



Figure 31: |Online - Phase 3 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.2, these were trained on MJ20000 and tested on eddies online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 32: |Online - Phase 3 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.2, these were trained on MJ20000 and tested on jets online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 33: |Online - Phase 3 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.2, they are
trained on MJ20000 and tested on eddies online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).

82



Figure 34: |Online - Phase 3 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.2, they are
trained on MJ20000 and tested on jets online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 35: |Online - Phase 3 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.2, they were trained using MJ20000 and
tested on eddies online.
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Figure 36: |Online - Phase 3 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.2, they were trained using MJ20000 and
tested on jets online.
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PHASE IV



Figure 37: |Online - Phase 4 - Energy budget|This table displays energy spectra for
KEflux, KEfrictionspec, APEflux, and APEgenspec using parameterizations grouped in
Tab.5, these were trained on F40000 and tested on jets online. Each parameterization
spectrum is compared against high-resolution and various low-resolution simulations,
including neural networks from Ross et al., 2023 and analytical parameterizations from
Smagorinsky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 38: |Online - Phase 4 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations are grouped in Tab.5, they are
trained on F40000 and tested on jets online. For comparison, the results of neural net-
works (Ross et al., 2023) and analytical parameterizations are also presented (Smagorin-
sky, 1963; Jansen and Held, 2014; Zanna and Bolton, 2020).

88



Figure 39: |Online - Phase 4 - Potential vorticity|Visualization of potential vorticity q for
both upper (first three rows) and lower (last three rows) layers across different simulation
types, indicated at the top of each image. Each image represents the q value spanning the
entire computational domain after 10 years of simulations. The objective is to emphasize
and visualize simulations that lose their physical relevance, becoming mere pixel grids,
and to illustrate the divergence from the high-resolution simulation. Furthermore, the
evaluated parameterizations are detailed in Tab.5, they were trained using F40000 and
tested on jets online.
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PHASE V



Figure 40: |Offline - Phase 5|This table summarize offline results, including correla-
tions (columns 1 and 2) and mean-squared errors (columns 3 and 4), for parameterizations
trained on full dataset 5000, evaluated on dataset jets offline and predicting subgrid flux
Fq (see Eq. 23). On the right, details regarding the optimizer and scheduler employed for
training are provided, along with the corresponding learning rates displayed in the leg-
end. The bottom row presents results obtained using the three FCNN parameterizations
introduced in Ross et al., 2023.
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Figure 41: |Online - Phase 5 - Energy budget|This table displays energy spectra for KE-
flux, KEfrictionspec, APEflux, and APEgenspec using parameterizations of Tab.6, these
were trained on F5000 and tested on jets online. Each parameterization spectrum is com-
pared against high-resolution and various low-resolution simulations, including neural
networks from Ross et al., 2023 and analytical parameterizations from Smagorinsky, 1963;
Jansen and Held, 2014; Zanna and Bolton, 2020.

92



Figure 42: |Online - Phase 5 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations comes from Tab.6, they are trained
on F5000 and tested on jets online. For comparison, the results of neural networks (Ross et
al., 2023) and analytical parameterizations are also presented (Smagorinsky, 1963; Jansen
and Held, 2014; Zanna and Bolton, 2020).
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Figure 43: |Online - Phase 5 - Potential vorticity|Visualization of potential vorticity is
presented for both upper (first three rows) and lower (last three rows) layers across dif-
ferent simulation types, indicated at the top of each image. Each image represents the q
value spanning the entire computational domain after 10 years of simulations. The objec-
tive is to emphasize and visualize simulations that lose their physical relevance, becoming
mere pixel grids, and to illustrate the divergence from the high-resolution simulation. Fur-
thermore, the evaluated parameterizations are detailed in Tab.6, they were trained using
F5000 and assessed against jets online.
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PHASE VI



Figure 44: |Offline - Phase 6 - Part 1|This table summarize offline results, including
correlations (columns 1 and 2) and mean-squared errors (columns 3 and 4), for parame-
terizations trained on F5000, evaluated on dataset jets offline and predicting subgrid flux
Fq (see Eq. 23). On the right-hand side, the width value, retained Fourier modes, and
total number of layers for the FFNO are provided in the legend. The bottom row presents
results obtained using the three FCNN parameterizations introduced in Ross et al., 2023.
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Figure 45: |Offline - Phase 6 - Part 2|This table summarize offline results, including
correlations (columns 1 and 2) and mean-squared errors (columns 3 and 4), for parame-
terizations trained on F5000, evaluated on dataset jets offline and predicting subgrid flux
Fq (see Eq. 23). On the right-hand side, the width value, retained Fourier modes, and
total number of layers for the FFNO are provided in the legend. The bottom row presents
results obtained using the three FCNN parameterizations introduced in Ross et al., 2023.
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Figure 46: |Online - Phase 6 - Energy budget|This table displays energy spectra for KE-
flux, KEfrictionspec, APEflux, and APEgenspec using parameterizations of Tab.7, these
were trained on full 5000 and tested on jets online. Each parameterization spectrum is
compared against high-resolution and various low-resolution simulations, including neu-
ral networks from Ross et al., 2023 and analytical parameterizations from Smagorinsky,
1963; Jansen and Held, 2014; Zanna and Bolton, 2020.
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Figure 47: |Online - Phase 6 - Similarities|This table provides a summary of the Earth
mover’s distance, reformulated as a similarity metric for various flow quantities repre-
sented in either spectral or spatiotemporal domains. A value approaching 1 indicates
strong agreement between the distribution obtained from high-resolution simulations and
the current observations. Negative values are considered unfavorable, and values lower
than -0.5 are disregarded. The tested parameterizations comes from Tab.7, they are trained
on full 5000 and tested on jets online. For comparison, the results of neural networks
(Ross et al., 2023) and analytical parameterizations are also presented (Smagorinsky, 1963;
Jansen and Held, 2014; Zanna and Bolton, 2020).
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Figure 48: |Online - Phase 6 - Potential vorticity|Visualization of potential vorticity is
presented for both upper (first three rows) and lower (last three rows) layers across differ-
ent simulation types, indicated at the top of each image. Each image represents the q value
spanning the entire computational domain after 10 years of simulations. The objective is
to emphasize and visualize simulations that lose their physical relevance, becoming mere
pixel grids, and to illustrate the divergence from the high-resolution simulation. Further-
more, the evaluated parameterizations are detailed in Tab.7, they were trained using full
5000 and assessed against jets online.
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