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Abstract
The control of robotic locomotion poses important challenges. In particular, we

are still very far from achieving robotic locomotion control with the same degree of
robustness and adaptability to unexpected environmental perturbations exhibited
by moving biological systems.

This master’s thesis aims to create a robust and efficient controller for regulating
a simple mechanical system. Biological neuron models are used to create artificial
central pattern generators (CPGs) that form the core of the controller. Similar to
Yu et al. [36], the inspiration of this thesis is the known electrophysiology, sensory
response, and modulation of biological CPGs [25, 3, 20].

This study explores the control of a simple resonant mechanical system (a pen-
dulum) to achieve high-amplitude periodic motion without fine-tuning the neuron
parameters and with sensory feedback and weak actuation. The design follows mul-
tiple steps. It starts with the design and tuning of the controller using a single
neuron. This uncovers that only the motor neurons exhibiting a robust type of
bursting [10, 8] are able to robustly and easily adapt their excitable behavior to
the unknown mechanical system’s properties (damping, resonant frequency, mass,
etc.). This is followed by the natural addition of another motor neuron to form a
CPG and make the controller symmetric. This increases the achievable amplitude
and improves the resilience to perturbations in the controller parameters. Then,
neuromodulation is added to allow the dynamic change of the controller properties
to control the amplitude of the oscillations. This leads to a trade-off between the
speed of convergence to the desired amplitude and the stability of the controller.
Finally, multiple controller-pendulum systems are interconnected at the controller
level to achieve the desired spatiotemporal pattern between the pendulums.

The results indicate that the neuromorphic approach is well-suited for the design
of robust controllers. The proposed controller demonstrates the ability to easily
adapt to the mechanical system properties to achieve the amplitude goal, as well
as the ability to interconnect in a network of controllers. Extensions of the model
could be used to control locomotion in robotics or other domains.
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Chapter 1

Introduction

In robotics, the control of locomotion still presents significant difficulties. On one
hand, we are currently distant from attaining the level of robustness and adaptability
to unforeseen changes in the environment that is demonstrated by living organisms.
On the other hand, the mobile nature of most robots forces them to resort to batter-
ies or other embedded energy sources to power themselves. However, an embedded
energy source often means that energy becomes a valuable resource for the robot.
This limits the power that can be allocated to onboard computing, leading to a
trade-off between power allocated to computing and autonomy and increasing the
difficulty of creating robust controllers.

To solve this energy and robustness problem, new approaches are emerging. One
of them is neuromorphic engineering, which aims to extract the useful properties of
biological neuronal systems to create highly efficient artificial neuronal controllers
or processing units.

While not directly related to robotics, a relatively classic and old but still strik-
ing example is the game of Go between Lee Sedol and AlphaGo [28, 29, 30]. This
match marked the first time a top-tier Go player was beaten by an AI. While this
appears to contradict the first sentences of this paragraph, an aspect that should
not be overlooked is the power consumed by both player. Miranda and Suñé [22]
cite that AlphaGo needed around 1MW of power to play Go, while Lee Sedol brain
only sipped around 20W, while also performing other tasks such as processing vi-
sual information. This shows that the current machine learning approach achieves
impressive performance but, even with current improvements [16], fails to even ap-
proach the power efficiency and versatility of neuronal structures. In comparison,
the human brain is an extremely energy-efficient processor. It is capable of simul-
taneously processing audio, visual, and other sensory feedback while making deci-
sions based on incomplete knowledge. Neuromorphic engineering tries to reproduce
the efficiency that was seen in the brain or other biological systems.

For motion, multiple researches [25, 3, 20] show that simple neuronal systems
called central pattern generators (CPGs) are the basis of motion in nature. Schneider
and Smarandache-Wellmann [25] shows that this system is the basis of the movement
of the crayfish while Bässler and Büschges [3] proves a similar thing for the stick

Chapter 1: Introduction 1



Neuromorphic control of embodied central pattern generators

insect. It is thought that these basic systems exhibit very important properties that
are the reason for their success.

1.1 Problem Statement
This thesis investigates the control of a simple resonant mechanical system (a pen-
dulum). Traditionally, the control of such a system is achieved through a PID using
trajectory tracking or other continuous controllers.

This thesis aims to create and analyze an artificial neuronal controller capable
of generating sustained oscillations of a simple pendulum. The generated oscillation
must be regular, and the amplitude of this motion should be dynamically controlled
using an external parameter. To achieve this goal, this thesis explores the concepts
of excitability and CPGs to create a more robust controller.

To be clearer, the controller should fulfill the following properties.

• Be an end-to-end neuromorphic controller

• Act by generating torque at the attachment point.

• Use only the angular position and velocity as observed variables

• Maintain stable symmetric oscillations

• Regulate oscillations to achieve the desired amplitude 

• Be resilient to inaccuracies in the controller parameters

• Respect the natural frequency of the system

1.2 Related literature
For this thesis, two fields of study are relevant because the thesis sits at their inter-
section. These are the fields of neuromorphic control and pendulum control.

Strangely enough, very little literature exists on the control of a simple pendu-
lum. The best match is the work of Chung and Hauser [6] which is based on Isidori
and Byrnes [14] and develops a controller for regulating the energy of a pendulum
attached to a cart. This is similar to regulating the amplitude because a given
amount of energy can be linked to a certain amplitude. 

Others are more distant from the classical pendulum. Cheng et al. [5] explore
to control of a pendulum with propellers attached on its side using an adaptive
Kalman filtering PID. While Ali et al. [2] are interested in controlling the swing of
a leg system using a H2 full state feedback with a PID controller.

Conversely, extensive literature exists on neuromorphic control. Like Santos
et al. [23] who designed a biomimetic controller for biped motion control. Or Lu
et al. [18] which proposed a new CPG structure for motion control. Many articles
could be cited, but suffice it to say that the field is gaining traction. No article was
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found that directly solved the problem of pendulum swing, but the closest subject
would probably be bipedal locomotion on which many people have done research
[32, 1, 23, 9].

From this research, it seems that the problem presented in this thesis has not
yet been considered. However, perhaps it was a sub-problem of some other research
that was not found.

1.3 Structure and remarks
This thesis is divided into multiple chapters with distinguishing themes.

Chapter 2: Neurons and CPGs This chapter serves as an introduction to the
field of neuromorphic engineering. This section explains and defines the terms
specific to this domain that are used throughout the thesis.

Chapter 3: Modeling and analysis of neuronal circuits In this chapter, the
models of neurons and synapses that are used to create the controller are
defined. It also explores the behavior of the neuron model as a function of its
parameters.

Chapter 4: A neuromorphic sensorimotor loop for pendulum swing In this
chapter, the main problem of the thesis is addressed. Two models of con-
trollers are defined and analyzed. The goal is to determine which subspace of
parameters leads to a strong connection between the controller and the me-
chanical system.

Chapter 5: Neuromodulation for adaptive amplitude control This chapter
expands the model found in the previous chapter to include a system capable
of modifying the controller parameters to achieve a desired amplitude.

Chapter 6: Simple interconnection of controller-pendulum systems The last
chapter briefly explores the idea of generating specific spatiotemporal patterns
between pendulums by interconnecting their controllers.

Note that throughout the thesis, multiple parameters are assigned units. These units
distinguish the role that the parameters play in the models. They do not represent
actual physical quantities.

Also, the thesis rely on multiple metrics to make decision or compare sets of
parameters. Appendix A contains the explanation of the metrics as well as the
algorithms used to compute them.

Chapter 1: Introduction 3



Chapter 2

Neurons and CPGs

In this thesis, concepts specific to neuromorphic engineering will be used exten-
sively. Before diving into the design and results of the proposed controllers, a clear
understanding of these and other related concepts must be achieved. Otherwise,
comprehension of the choices or design decisions will be difficult.

2.1 Excitability
The first step in understanding neuronal systems is the concept of excitability. In the
words of Sepulchre et al. [26], “Excitability is the property of a system to exhibit
all-or-none response to pulse inputs”.  In other words, the system does not react
to pulses until the pulse amplitude and/or length crosses a certain threshold after
which the system responds completely. 

In figure 2.1, an example of an excitable behavior is displayed.  As can be seen,
a very small difference in the pulse amplitude resulted in a very different neuronal
behavior.  The lower pulse resulted in the output faithfully following the input while
the output of the higher one exhibited a very different behavior with oscillation and
 peaks far above the input.  The second behavior is known as ”bursting” and will
be discussed later. Also, this example highlights that the ”none” response does not
need to be a complete silence but can be a simple linear response to the input.  This
is the behavior exhibited by the neuronal model of this thesis.

Most neuronal systems contain some excitable blocks such as neurons. Indeed, on
a conceptual level, the all-or-none response is important for transforming continuous
input into discrete events. This discretization makes a system more resilient to noise
and capable of reacting only when necessary.

This kind of response is desired in our controller because effective control of
the oscillation of a pendulum requires a very all-or-nothing control input. Indeed,
actuation should only occur at specific times. In addition, the moment of actuation
is crucial when controlling a pendulum, and actuating at a bad time can lead to very
poor results. In the words of Sepulchre et al. [26], “[Excitability] is instrumental in
converting sensory signals into motor actions”.

More theoretically, to create an excitable system, a localized positive feedback
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Figure 2.1: Example of an excitable behavior. Generated using neuron model of
chapter 3.

loop is necessary. Indeed, the switch between two different responses after crossing
a threshold requires the activation of a positive feedback near the threshold. This
feedback pushes the output of the system to generate the excitable event. The
locality of this positive feedback also prevents the output from growing to infinity.

2.2 Conductance-based neuron models
With excitability defined, neuronal models can be understood more clearly. Indeed,
neurons are a prime example of an excitable system.

In the words of De Couck [7], “Neurons are the basic building blocks of the
nervous system, which includes the brain, the spinal cord, and the peripheral nervous
system. These specialized cells are the information-processing units responsible
for receiving, processing, and transmitting information by electrical and chemical
signaling.”.

In other words, neurons are cells that can receive input from the external world,
send messages to one another, and send motor commands to muscles.  The relation-
ship between the input received and the commands or messages sent is the processing
performed by the neuron. Because neurons can be relatively large compared with
the scale of electrical or chemical signaling, it is evident that their behavior may be
different in different parts of the cell. However, a common way to observe a neuron
is to measure and model its activity in only one location. This leads to the neuron

Chapter 2: Neurons and CPGs 5
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being seen as a block with a single input and output and a certain hidden state.
As shown by Hodgkin et al. [12], the state of a neuron at its axon membrane

can be described by the flow of ionic currents. The magnitude of these currents is
determined by the potential across the interior and exterior of the cell, which opens
or closes channels at different speeds depending on the channel type. In turn, these
currents flowing into or out of the cell influence the potential across the interior and
exterior of the cell. 

This model is illustrated on figure 2.2, where ionic currents flow through channels
in the neuron membrane. Some of these channels activate and deactivate based on
the membrane potential. Other are influenced by other factors such as the activity
of other neurons or changes in biochemistry.

Figure 2.2: Simplified diagram of a biological neuron membrane. (Diagram taken
from Lodish et al. [17])

Figure 2.3: Simplified circuit of the neuron model. (Circuit taken from Vaz-
ifehkhah Ghaffari et al. [33])

This language of currents and potentials seems to designate classical circuit the-
ory as the most useful tool to model the behavior of a neuron. Hodgkin and Huxley
[13] were the first to formulate a model of neuronal behavior using a parallel net-
work of dynamic conductances. These conductances change based on the membrane
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voltage of the neuron at different rates, mimicking the opening and closing of the
channels. A good representation of this model is seen in figure 2.3. On this dia-
gram, it can be seen that some ionic current discharge the capacity that represents
the membrane while others charge it. Those charging currents effectively act as
positive feedback loops. As seen in the previous section, these are necessary for the
excitable behavior of a neuron.

Using circuit theory, this model can be written more formally using ordinary
differential equation. Equations (2.1) to (2.5) are a very general representation of
this model. In this representation the i subscripts denote the different ionic currents
that can be found in figure 2.3.

C
∂V

∂t
=Iinp − gL (V − EL)−

∑
i

Ii (2.1)

Ii (t, V ) =gi (t, V ) (V − Ei) (2.2)
gi (t, V ) =ḡimi (t, V )pi hi (t, V )qi (2.3)

∂mi (t, V )

∂t
=
mi∞ (V )−mi (t, V )

τmi (V )
(2.4)

∂hi (t, V )

∂t
=
hi∞ (V )− hi (t, V )

τhi (V )
(2.5)

The m∞, h∞, τm and τh functions are saturation functions. The saturation of
the ∞ terms show that the ionic current feedbacks are localized in a certain range
of membrane voltage.

The m∞ are increasing positive saturation functions, while the h∞ are decreasing
positive saturation functions.

In this case, what is important for feedback is the local feedback, which is char-
acterized by the differential conductance. Studying the global feedback would be
useless since a conductance is a passive element and it always acts as a global neg-
ative feedback. The range of the saturation of m∞, h∞ and the power assigned to
them will determine where the term acts as positive feedback and when it acts as a
negative feedback.

This model is very general , and when parameters are chosen properly, it can
generate a whole range of neuronal behaviors seen in biological neurons. However,
it is very hard to tune, and small changes in parameters can completely change the
behavior of the system, whereas large changes may leave the output looking identical.
This is important in a biological system to improve robustness to variations while
providing efficient switching between modes. But, in this thesis, all these advantages
are of very little use. Therefore, a simplified model will be used to make tuning
easier.

In this thesis, only spiking and bursting, the two most common behaviors, will
be used; therefore, only these behaviors will be studied. These two behaviors can be
seen in figure 2.4. A spike is a sudden, short, and steep increase in the membrane
voltage followed by a sharp decrease and return to a resting voltage.  A burst is

Chapter 2: Neurons and CPGs 7
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the apparition of a packet of spikes. A spike is a prime example of the importance
of fast local positive feedback.  Indeed, a spike is formed by the positive feedback
pushing the voltage of the neuron upward before deactivating and letting the slower
negative feedback drag down the voltage before the positive feedback reactivating
in the other way to push the voltage downward.

Classically, both behaviors can be classified as tonic or phasic. A tonic response
means that the response persists as long as the stimulus is maintained. This is
observed in figure 2.4 where the spike and burst repeat. A phasic response means
that the response is localized at the apparition of the stimulus and will fade as the
stimulus is maintained.  This is observed in figure 2.1, the burst does not continue
after the initial response. Often, for a set of parameters, as the input current
increases, a neuron will first have a phasic response before starting to become tonic.
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Figure 2.4: Example of spiking and bursting behaviors. Generated using the neuron
model of chapter 3.

2.3 Neuronal Behavior Metrics
The previous section introduced the spiking and bursting behaviors.  These behav-
iors are highly complex and therefore, to be able to compare different bursting or
spiking realizations, multiple specific metrics must be defined. Here, only the met-
rics to evaluate the tonic spiking and the tonic bursting will be discussed. It is easy
to derive similar metrics for the phasic case.

To compare different bursting realizations, it is important to consider the shape
of a burst and the link between two bursts. Figure 2.5 represents values that can
be directly inferred from the trance of a tonic bursting neuron that are enough to
characterize a specific bursting trace. These values can be defined as
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Burst length Average time of a burst event.

Rest length Average time of inactivity between two burst events.

Burst period Average time between the start of two burst events.

Spike period Inside a burst, the average time between the start of two spike events.

Number of spikes Average number of spikes inside a burst event.

Burst length

Burst period

Rest length

Spike period 1

2 3 4 5 6 7 8 9 10

Number of spikes

Figure 2.5: Illustration of the different metrics used to describe bursting. Generated
using the neuron model of chapter 3.

Aside from the number of spikes, these raw metrics are not the most telling.
Instead, the following set of metrics derived from the aforementioned values is used.

Inter-burst frequency 1
Burst period , the frequency at which burst events occur.

Intra-burst frequency 1
Spike period , frequency at which spikes occur inside a burst

event.

Duty cycle Burst length
Burst period , the portion of a period during which the neuron is inside a

burst event.

Number of spikes Average number of spikes inside a burst event.

Even though the inter-burst and intra-burst frequencies are just the inverses of
direct metrics, the realm of frequencies is often better suited for comparison between
realizations

On the other hand, spiking is simpler and does not require as many metrics.
The only direct metric is measuring the Spike period. It is sufficient to compute
the Spiking frequency , which is the most useful metric for describing spiking
behavior.  For the same reason as the bursting transformation to the frequency
realm is better for comparison.

Chapter 2: Neurons and CPGs 9
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2.4 Central Pattern Generators and Rhythms
From Straub [31], “A central pattern generator (CPG) is an assembly of neurons that
can produce a rhythmic activity pattern without [] sensory feedback information”.
This construction thus uses multiple neurons to generate a certain rhythm.

It is widely accepted that central pattern generators (CPGs) are frequently found
in biological motion systems. Marder and Bucher [21], Grillner [11] highlight that
CPGs are abundant in animals for motion control. The natural periodic oscillations
of CPGs makes them easier to pair them with systems that are already periodic.

Therefore, the concept of central pattern generators (CPGs) is very useful for
developing controllers. Indeed, CPGs being closely linked to rhythmic movements
pair well with the naturally rhythmic movement of the oscillation of a pendulum.

Here, to keep it simple, the connections between neurons inside a CPG result in
the activity of the presynaptic neuron generating currents in the postsynaptic neu-
ron. These connections can have two types, inhibitory and excitatory. Inhibitory
connection results in a negative current being injected, whereas excitatory connec-
tion results in a positive current.

As an example, one of the most simple and well-studied CPGs is the half-center
oscillator [27]. This specific circuit is composed of two neurons that inhibit each
other. The system along with a simulation can be seen in 2.6. The dents in the
activity of one neuron appearing when the other is active highlight that currents
flow from one neuron to the other only if the presynaptic neuron is activated. 
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Figure 2.6: Example of an half center oscillator. Traces were generated using neuron
model of chapter 3.

The generation of rhythmic patterns is clear when looking at the traces of the
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activation of both neurons. Indeed, the activation of neurons 1 and 2 always follow
each other.

The interesting aspect of CPGs is that the network may be able to generate a
rhythm while an individual neuron may be silent. This shows that the structure of
the CPG is instrumental and is the key factor in the qualitative rhythm produced.
Very different models of neurons will still generate the same rhythm when used in
a fixed CPG structure.

2.5 Embodied Intelligence and CPGs
From Cangelosi et al. [4] “Embodied intelligence is the computational approach
to the design and understanding of intelligent behavior in embodied and situated
agents through the consideration of the strict coupling between the agent and its
environment (situatedness), mediated by the constraints of the agent’s own body,
perceptual and motor system, and brain (embodiment).”.

This concept describes the goal of this thesis. Indeed, the model developed later
is a prime example of embodied intelligence. The controller processes the direct
sensory input to generate coherent control signals for the motor. Using neuromodu-
lation, the strength of the push is changed according to the desired amplitude. This
amounts to intelligent behavior generated by components directly interacting with
sensors and motors.

More broadly, the concept of embodied intelligence is closely related to CPGs.
Indeed, CPGs are circuits that are rhythmic without sensory feedback, but using
sensory feedback to tune the frequency of the CPG to the external is thought to
be the inner working of most biological motion controllers (citation needed). This
coupling is precisely a low-level embodied intelligence.

To simplify embodied intelligence, it can be seen as the coupling of sensing
computing and actuating. The agent in embodied learning has sensors, computing,
and actuation in the same body.

Chapter 2: Neurons and CPGs 11



Chapter 3

Modeling and analysis of neuronal
circuits.

Building upon the concepts defined previously, this chapter aims to show and study the
different possible behaviors that the neuronal model can exhibit. In more detail, a
quick explanation of the model is provided, followed by a general analysis of the
active regions of the model. Then, a more detailed analysis of specific parameter
values is conducted for some bursting and some spiking. The discussion will also
include the definition of synapses and their use to create a half-center oscillator.

3.1 ODEs of the Neuronal Model
The backbone of the model I used is based on a model developed by Pr. A. Franci.
A diagram representing this model can be seen in figure 3.1.  The diagram shows
that the  model is composed of four different internal variables. The membrane
potential V , the fast voltage vf , the slow voltage vs and the ultra-slow voltage vu.
The system also has a single input Iapp the applied current. This block diagram
can be easily translated into ODEs because it is composed only of functions and
first-order low-pass filters. Equations (3.1) to (3.8) are a more formal description of
the neuron model.

τo
∂V

∂t
= V0 + Iapp − if− − is+ − is− − iu+ − V (3.1)

if− = gf− (tanh (vf − df−)− tanh (V0 − df−)) (3.2)
is+ = gs+ (tanh (vs − ds+)− tanh (V0 − ds+)) (3.3)
is− = gs− (tanh (vs − ds−)− tanh (V0 − ds−)) (3.4)
iu+ = gu+ (tanh (vu − du+)− tanh (V0 − du+)) (3.5)

τf
∂vf
∂t

= V − vf (3.6)

τs
∂vs
∂t

= V − vs (3.7)

12 Chapter 3: Modeling and analysis of neuronal circuits.
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τu
∂vu
∂t

= V − vu (3.8)

with gf−, gs− < 0, gs+, gu+ > 0 and df−, ds+, ds−, du+ ∈ R.
Here if− is the fast positive feedback to the neuron, is+ and is− are the slow

negative and positive feedback and iu+ is the ultra-slow negative feedback. + rep-
resents negative feedback and − represents positive feedback because, in electrical
notation, the current is oriented to discharge the neuron. Therefore, an increase
in the current tends to decrease the membrane voltage, whereas a decrease in the
current tends to increase the membrane voltage.

is+ and is− could be written as a single current because they are on the same
timescale vS. However, since they play a different role in the behavior of the neuron
and to maintain the symmetry between the currents, they are written separately.

This model displays local positive feedback both with if− and is−. As seen in the

1
1+τfs

1
1+τss

1
1+τus

vf

vs

vu

fvf→if−

fvs→is+

fvs→is−

fvu→iu+

Iapp

V0

−
−
−
−
+

+

1
1+τos

V

Figure 3.1: Diagram of the Neuron Model. The output of the neuron is V and the
input is Iapp.
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previous chapter, this positive feedback is necessary for excitable behaviors. More
precisely, this model follows the findings of Franci et al. [10]. They stated that
tunable and robust neuronal behavior must include slow positive feedback. Slow in
this context means in a timescale between the fast positive feedback that creates the
spike and the ultra-slow feedback that slowly brings the neuron back to a resting
voltage. In this model, the is− currents fill this role. Designing a system with this
slow feedback should make its bursting more resilient to changes in other parameters.

This model is a simplification of a conductance-based model with four currents
on three fixed timescales and variable conductances replaced by a low-pass filter
followed by explicit voltage-to-current relationships. The model being written in
the language of currents and voltages is reminiscent of the origin of this model.

For this thesis, some parameters of the model will remain fixed at the following
values. Exploring these parameters does not lead to interesting results that are not
reachable without tuning them.

V0 −0.85V τo 0.0004 s
df− 0.0V τf 0.001 s
ds+ 0.5V τs 0.04 s
ds− −0.5V τu 0.8 s
du+ −0.5V

To ensure the stability of the models, it is always a good idea to apply some
noise to simulate real-world conditions. In the case of the neuron, the best way to
add noise easily is to add it to the input current. In this way, noise affects the entire
neuron. This is also a good way to represent real use because in an integrated chip,
most of the noise should come from the outside world. 

To better understand the inner workings of the neuron, figure 3.2 shows a rep-
resentation of the currents and voltages of the model during a simulation. 

The low-pass filter effect is very clear when looking at the different voltages. vf
is nearly indistinguishable from V due to the very high cutoff frequency of the filter.
vs, on the other hand, follows the general pattern of the bursting but has a cutoff
frequency low enough to filter the spikes inside the burst. vu filters the bursting and
follows a smooth sawtooth pattern, rising during the burst and falling down during
the inactivity between bursts.

The saturation of the current is very visible when looking at the flat regions of
some currents, especially is+, which is nearly a flat line between the bursts. This
indicates the inactivation of the slow negative feedback because changes in voltages
do not result in changes in is+. Furthermore, the ”launching” effect of the slow
positive feedback is visible. is−, is the first current to activate with a slow slope
before the burst and seems to start the burst by activating if−. Then, the increase
in voltage seems to launch if− which starts the first spike of the burst. This indicates
a if−, is+ pair that is more closely linked with the spikes inside the burst and a is−,
iu+ pair that is more associated with the burst itself.

14 Chapter 3: Modeling and analysis of neuronal circuits.
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Figure 3.2: Currents and voltages inside the neuron model. Currents share the color
of their generating voltages.

3.2 Behavior of neuron in function of its parame-
ters

Before designing a controller, the behavior of the neuron under different parameters
must be studied to determine the best parameters for the controller. For this anal-
ysis, only an exploration of the parameters gs−, gu− and Iapp is done since they are
the parameters most relevant to bursting. gf− and gs+ are fixed to gf− = −2 S and
gf− = 6S since those parameters gave good bursting behavior.

Firstly, figure 3.3 displays an overview of the different regions where the neuron
is active. More precisely, it distinguishes between different activation types. Here 3
different activation types are considered. Spiking and bursting, which were defined
in the previous chapter, and plateau, which is short for plateau bursting. Plateau
bursting is a degenerate form of bursting that sees the apparition of a plateau
voltage between the first spike and the rest of the spikes of the burst.  In extreme
cases, plateau bursting stops containing any spike other than the first spike, and the
behavior becomes analogous to periodic pulses.

For this thesis purpose, the bursting region is the most interesting because it
allows tunability by playing with intra- and inter-burst characteristics.

In this configuration, the bursting region seems to advance with an increase in
the applied current until Iapp = 0A then in recedes, seemingly pushed by the spiking
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region. The border between normal bursting and plateau behavior seems to follow
a line that does not really depend on Iapp. This border indicates that the plateau
behavior is mostly dependent on the value of gs− and nearly independent of the
value of gu+. The shape of this boundary is probably controlled by gf− and/or gs+.
The parameters at the center of the chart are capable of sustaining bursting for
various applied currents. Indeed, a neuron with gs− ≈ −4 S and gu+ ≈ 5 S seems
to be in a very stable bursting zone for the controller. It can sustain bursting from
Iapp = −1.8A to Iapp = 2A and seems far enough from plateau bursting to never
show unwanted behaviors.

Now that the good region has been highlighted, a closer look at the inter-burst
frequency will be useful to categorize bursting. Indeed, it is better to have neurons
attuned to the frequency of the pendulum to obtain good results. However, let
us keep in mind that for large swings, the frequency of the pendulum depends on
the amplitude of the swing; therefore, a perfect match for changing amplitudes will
probably not be found. In figure 3.4, it can be seen that the inter-burst frequency is
mostly determined by the value of the conductances and not the applied current.
Changing the applied current mostly only changes the zone where bursting occurs.
The applied current still has an effect on the frequency, higher currents leads to
a slightly higher frequency. However, changing the values gs− and gu+ has a far
greater effect on the inter-burst frequency. Note that the inter-burst frequency is
also computed on the plateau behavior. The continuity between both behaviors
shows that the plateau behavior is actually just degenerate bursting.

However, by performing a finer analysis on Iapp, another zone of bursting can be
discovered. In figure 3.5, this zone is highlighted. This bursting occurs in a zone
with nearly no slow positive feedback. Yet,Franci et al. [10] indicated that the slow
positive feedback is integral to a reliable bursting. The lack of robustness of this
bursting can already be inferred from the extent to which the zone of bursting shifts
when subject to a small change in the input current. In addition, the boundary
of bursting seems more diffuse and the inter-burst frequency inside the zone does
not seem to not follow a continuous pattern. All these signs point toward this zone
being an unreliable bursting behavior. Still, a more detailed analysis to show the
fragility of this bursting is necessary to eliminate it completely as a possibility.

Figure 3.6 shows a comparison of the simulations of the stable bursting found
earlier and the ”fragile” bursting discovered here with and without noise. This
reveals that ”fragile” bursting is totally destabilized by the addition of a small
noise. The regular two-spike pattern that appears without noise ceases to exist,
and the number of spikes per burst and the inter-burst frequency seem to be very
random. The spikes probably correlate with the noise inside the neuron. On the
other hand, the ”stable” burst seems unaffected by the noise. The only visual
indicator of the added noise is the shape of the voltage during the resting period,
where small oscillations caused by the noise can be observed. The number of spikes
and the inter-burst frequency of stable bursting remain unchanged by noise. This
proves that the region of ”stable” bursting is a far better burst than the region of
”fragile” bursting since the first is resistant to noise and the latter is not.

16 Chapter 3: Modeling and analysis of neuronal circuits.



Neuromorphic control of embodied central pattern generators

(a) Map of neuron activation types with gf− = −2 S and gs+ = 6S.
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(b) Traces of the three different neuron activation types. Computed using Iapp = −1A,
gu+ = 6S and gs− ∈ {−6, −4, −2}S.
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Figure 3.3: Different types of neuron activation. The plateau region corresponds to
the bursting region, where a voltage plateau exists between the first spike and the
rest of the spikes.
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Figure 3.4: Map of neuron bursting frequency with gf− = −2 S and gs+ = 6S.

This behavior is probably due to ”stable” bursts being launched by is− and the
”fragile” burst being launched by if− since is− is nearly zero. The filtering of noise
is far better for vs than for vf because of the lower cut-off frequency of vs. Thus, the
variable vf that launch the ”fragile” burst is greatly affected by the noise, leading
to the noise being able to launch a burst. On the other hand, what launches the
”stable” bursting nearly unaffected by the noise, leading to almost no change in the
behavior of the neuron.

3.3 Bursting neuron characteristics

In this section the changes in bursting behavior through the modification of certain
parameters are studied. Some analyses or graphs will only be performed with one
set of parameters for bursting. Nonetheless, the conclusions drawn will hold for
most of the normal bursting region and especially for the bursting region of interest
in this thesis. 
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Figure 3.6: Comparison of both times of bursting at Iapp = 0.2A. The stable model
used gs− = −4 S and gu+ = 5S and fragile model used gs− = −0.2 S and gu+ = 4S.
The applied noise had a spectral power density of  nIapp = 3× 10−7V2Hz−1.
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3.3.1 Spike number modulation with gs−

A simple way to change the amount of power transmitted by a burst is to change
the number of spikes in the burst. Indeed, if gf− and gs+ are fixed, the spike uptime
will remain nearly the same regardless of the values of gs− and gu+. This leads
to the number of spikes being the most important metric for characterizing the
power transmitted by the spikes. Indeed, the integral of the positive value of the
membrane voltage can be seen as very strongly correlated with the number of spikes
in the burst.

Both gs− and gu+ could be used to modulate the number of spikes. 
But, figure 3.4 shows that the value of gu+ is more important to guarantee the

existence of bursting at a specific Iapp. Indeed, the range of gs− where bursting
exists is almost constant at [−4; −2] S for all Iapp. On the other hand, the range of
where bursting exists for gu+ varies from [6; 9] S to [1; 9] S as Iapp goes from −2A
to 0A. Thus, gs− will be used as the parameter to modulate the number of spikes
because it is less likely to annihilate bursting.

The effect of this modulation can be seen in figure 3.7 where the value of gs− is
varied while counting the number of spikes. The graph shows a clear link between
the number of spikes in the burst and the value of gs− parameter. The number of
spikes decreased ”linearly” as the amplitude of the feedback decreased. Since the
number of spikes must obviously be an integer, ”linearly” means that the width of
a region with a certain number of spikes is nearly constant. Thus, the shape can
be regarded as rounding the value of a linear function. This trend holds until the
number of spikes hits one and the neuron starts spiking instead of bursting.
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Figure 3.7: Curve of the number of spikes as a function of the gs− parameter. With
Iapp = −1A, gf− = −2 S, gs+ = 6S and gu+ = 5S.

The explanation of why the number of spikes is strongly linked to the power
transmitted was slightly ad hoc. To confirm that this metric correlates well with
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the amount of power transmitted by the burst, a comparison with other metrics
is necessary. The metrics proposed for comparison with the number of spikes are
the duty cycle of the burst and the mean positive value of the bursting. The mean
positive value is a value defined as

mean positive value =
1

T

∫ t0+T

t0

max (0, V (t)) dt (3.9)

The mean positive value is interesting because, in this thesis, when the membrane
voltage is negative, the neuron is always considered inactive. Of these two metrics,
the mean positive value is obviously the most reliable; however, it is also interesting
to see how well the duty cycle correlates with this value.

Figure 3.8 displays the plot of these two metrics as a function of gs− values
like in figure 3.7. Analyzing this figure reveals that the number of spikes is indeed
correlated with the power transmitted because the mean positive value is nearly
constant with the number of spikes.
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Figure 3.8: Curve of the burst power as a function of the gs− parameter. With
Iapp = −1A, gf− = −2 S, gs+ = 6S and gu+ = 5S.

In addition, these figures show that the duty cycle is a poorer indicator of power
because it can have the same value at two very different values of gs−. Moreover, at
two gs− where the duty cycles are equal, the number of spikes and the mean positive
value are very different, indicating poor performance of the metric. In fact, the duty
cycle follows a sawtooth pattern in which it grows with gs− but then has a large
discontinuity when the number of spikes changes. It appears that increasing gs−
(thus reducing its effect) decreases the intra-burst frequency until a spike drops and
the frequency returns to a higher level. The observation of the intra-burst frequency
is linked to the fact that a lower frequency leads to a larger burst, which means a
larger duty cycle.
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To confirm this explanation, figure 3.9 plots the intra-burst frequency as a func-
tion of gs− and shows that this is indeed the case. The intra-burst frequency has a
strange relationship with gs− as increasing gs− can locally increase the intra-burst
frequency but globally decrease it.
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Figure 3.9: Curve of the intra-burst frequency as a function of the gs− parameter.
With Iapp = −1A, gf− = −2 S, gs+ = 6S and gu+ = 5S.

This entire analysis was performed because changing the power transmitted by
the burst is integral to the control of the pendulum. This power is linked to the
torque applied to the pendulum, and controlling this torque is necessary to control
the oscillation amplitude. Having a good understanding of the modulation of gs− is
thus crucial to the creation of a robust controller.

3.3.2 Inter-burst frequency modulation with gp+

To obtain a reliable control, it is necessary for the natural frequency of the neuron to
be close to that of the pendulum. Otherwise a good coupling between both systems
will not be possible.

Since gs−, will be modulated to change the power of a burst, gu+ must be used
for the modulation of the inter-burst frequency. gs− cannot be used because it will
not be fixed in the final controller, rendering any analysis worthless.

Figure 3.10 shows the influence of the parameter and the applied current on the
inter-burst frequency. Interestingly, the limit between bursting and silence seems to
follow a linear relationship between Iapp and gu+ in this model. This is probably an
artifact of the specific values of other parameters and is not a general behavior of
this neuronal model. The inter-burst frequency seems to be mostly dependent on
gu+ when far away from the bursting boundary. When approaching the boundary,
the frequency quickly decreases compared with that further inside the boundary.
Therefore, in that region, the applied current starts to have a larger impact on the
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frequency. A higher gu+ leads to a higher oscillation frequency but also to an earlier
activation of bursting. A link can be made with figure 3.3 where the higher the
value of gu+ the longer the neuron stays in the bursting region.
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Figure 3.10: Map of the inter-burst frequency as a function of the gu+ parameter.
With gf− = −2 S, gs+ = 6S and gs− = −4 S.

This analysis does not have the same goal as the previous one because no neu-
romodulation of gu+ is done in this thesis. Rather, it allows us to better understand
later why some parameter values will lead to better control of the pendulum. It was
also used to slightly guide the design of the controller by restricting the parameter
space for the bursting neurons

3.4 Tonic spiking type-I neuron characteristics
For sensory feedback, a tonic type-I spiking neuron will be useful because it will
be able to transform continuous signals into discrete events. A neuron of that type
can sustain spiking because it is tonic and has a spiking frequency that is closely
correlated with the input because it is type-I. These are the definitions of both
terms. This type of neuron is useful for sensory inputs because it is event based but
keeps a trace of the strength of the input through the spiking frequency.

The following neuron will deviate from the standard values of gf− and gs+ defined
previously. These values were chosen for bursting, and here spiking is of interest. A
detailed exploration of the parameter space was not performed either because only
a single set of parameters is needed. Indeed, modulation is not necessary for the
sensory neurons in this thesis.

Now, in figure 3.11, the firing frequency of the neuron is plotted in function of
the input current. This figure clearly shows that for low values of applied current
the spiking frequency is very strongly related with the input current. For higher
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currents the frequency saturates and even decreases before the spiking disappears.
But, this behavior happens at very high input current and the neuron frequency is
very close to a linear function of the input for Iapp ∈ [0; 1] A. In normal use the
neuron will never be subject to current high enough to make it exit the region of
linearity. Thus, the poor performances at high input current are not problematic.
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Figure 3.11: F-I curve of a type I neuron. With gf− = −2 S, gs+ = 4S, gs− = −1 S
and gu+ = 1S. The curve starts and ends at the beginning and end of spiking.

The correlation of the applied current with the spiking frequency is necessary to
obtain a good representation of the input at the output of the neuron.  Indeed, the
neuron is supposed to convert the amplitude of the input into a frequency.

3.5 ODEs of the synaptic connections
After studying a single neuron, networks of neurons must be considered to generate
more complex spatiotemporal patterns. Biologically, a classical way in which two
neurons are connected is through a synapse. A synapse is a connection between two
neurons that allows the membrane voltage of the presynaptic neuron to generate a
current in the postsynaptic neuron. Figure 3.12 show the diagram of the synapse
model that will be used in this thesis. 
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Similar to the neuron model, the synapse model comprises a low-pass filter fol-
lowed by a nonlinear voltage-to-current function. The synapse takes the voltage of a
neuron as input and produces a current that can be fed as input to another neuron.
It is similar to the feedback system inside the neuron model with the difference that
the current generated is not drained from the membrane potential of the presynaptic
neuron but fed to the postsynaptic neuron. The difference thus lies in the receiver
and the sign of the current.

V
1

1+τsyns
vsyn fvsyn→isyn isyn

Figure 3.12: Diagram of the synapses model. The output of the synapse is Iout and
the input is Vin.

More formally, this model can be written as a simple ODE.

τsyn
∂vsyn

∂t
= V − vsyn (3.10)

iout = gsynσ (4 (vsyn − dsyn)) (3.11)

with gsyn , dsyn ∈ R and σ () the sigmoid function.
The factor 4 inside the sigmoid increases its slope to obtain a faster transition

and makes the slope at dsyn equal to 1, similar to the tanh function inside the neuron.
When the input neuron is inactive, its voltage is negative; thus, the sigmoid

function is nearly zero and no current is sent to the post-synaptic neuron. When
the neuron is active, the sigmoid is non-zero and may even saturate to 1 and a
current is sent to the post-synaptic neuron. The sign of gsyn will  decide if the
synapse is excitatory or inhibitory. A negative conductance creates an inhibitory
connection that drains current, and a positive conductance creates an excitatory
connection that injects current.

For this thesis, some parameters of the synapses will be fixed because changing
them is not necessary to achieve the various objectives.

dsyn 0.0V τsyn 0.04 s

3.6 Half center oscillator analysis
Formed by the interconnection of two neurons linked by two inhibitory synapses,
the half-center oscillator (HCO) is a central component of the controller. A rep-
resentation of an HCO was already presented in chapter 2 by figure 2.6. A more
detailed representation using specific parameters can be seen in figure 3.13.

Being the assembly of two bursting neurons, the most interesting thing to study
and control in the HCO is its frequency. This frequency can be evaluated by the
inter-burst frequency of one of its neurons because this frequency is the frequency
of one cycle, and an HCO is defined as the alternating activation of two neurons.

Chapter 3: Modeling and analysis of neuronal circuits. 25



Neuromorphic control of embodied central pattern generators

0 2 4 6 8 10 12 14 16 18 20 22 24

−4

−2

0

2

4
N

eu
ro

n
O

ut
pu

t
[V

] Neuron 1
Neuron 2

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

−4

−2

0

2

4

Time [s]

N
eu

ro
n

O
ut

pu
t
[V

] Neuron 1
Neuron 2

Figure 3.13: Plot of the neuronal output of a CPG. With gf− = −2 S, gs+ = 6S
,gs− = −4 S, gu+ = 3.7 S, Iapp = −1A, gsyn = −1 S.

Figure 3.14 depicts this frequency as a function of Iapp and gu+ for a selection of
gsyn. These maps are similar to figure 3.10 where the inter-burst frequency was
studied for a single neuron over the same parameters. Low values of gsyn lead to
behaviors very similar to those of uncoupled neurons, whereas higher values lead
to lower frequencies. Similarity is expected since gsyn = 0 results in two uncoupled
neurons. The strength of the connection has a large impact on the behavior of the
system. The frequency is probably lowered by the larger values because a higher
current lowers the membrane voltage of the neuron and the neurons take more time
to correct this lower voltage.

A nice thing to note is that by comparing the HCO with the uncoupled case, it
appears that the zone of bursting becomes larger as the strength of the connection
increases. This leads to the apparition of zones where bursting emerges from the
network of neurons as the neurons alone are silent. To further demonstrate this,
figure 3.15 represents only the zones where bursting is caused by the network and
not the intrinsic properties of the neurons. The higher the connection between the
neurons is the larger the zone of bursting is.
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Figure 3.14: Activation of the cpg network as a function of ultraslow negative feed-
back and applied current. With gf− = −2 S, gs+ = 6S, gs− = −4 S.
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Chapter 4

A neuromorphic sensorimotor loop
for pendulum swing

The previous chapter explored the different behaviors exhibited by the neuron model.
This chapter focuses on the control of a cylindrical pendulum with a neuromorphic
controller built using artificial neurons. The primary goal is to find and extract a
control scheme that is intrinsically linked to the mechanical system. To reach this
goal, the different useful behaviors of the neuron model will be paired with multiple
feedback models. The models will be evaluated on the basis of their performance
and robustness.

4.1 The mechanical system
Before diving into controller design, understanding the mechanical system is im-
portant. Figure 4.1 shows a graphical representation of the system. This diagram
shows that there is only a single control input to this system, the applied torque τ .
The system also provides two meaningful state outputs, the angle θ with the vertical
line and the angular velocity θ̇. Finally, the dynamics of the pendulum are influ-
enced by five parameters: radius r of the cylinder, height h of the cylinder, density
ρ of the cylinder, damping coefficient Bf , which generates the friction torque τf at
the rotation point, and gravity g. 

In the figure, the gray arrow shows and defines the down direction, which is the
reference of the angle θ. It can be used to separate the rotation plane into two
halves. The half with negative sin (θ) and the half with positive sin (θ).

For simplicity, the parameters of the pendulum are kept constant. The values
used for all simulations are as follows.

r 0.05m Bf 0.01Nm s ◦−1 = 0.57Nm s rad−1

h 0.5m g 9.81m s−2

ρ 1000 kgm−3

The value of friction τf can be computed from the following equation.

τf = θ̇Bf (4.1)
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r

h

ρ

θ
θ̇

g

τ

τf

Figure 4.1: Diagram of the pendulum system. The parameters of the pendulum are
shown in blue, the outputs that are fed to the controller are shown in red, and the
actuation of the controller is shown in green.

It is thus dependent on the angular velocity of the pendulum θ̇.

4.2 Sensory feedback types
The feedback sent to the bursting neuron is the heart of the stability of the neuronal
system. Bad feedback can only lead to bad performances. Thus, three different
feedback mechanisms are proposed. This ranges from the most simplistic feedback
that relies only on the angle of the pendulum to complex spiking neuron-based
feedback. The goal of proposing multiple feedback is to find a middle ground between
feedback complexity and performance.

4.2.1 Angle based feedback
The first feedback described in figure 4.2 is the most simplistic. The direct angle
feedback sends to the bursting neuron the sinus of the angle.  When in the lower half
of the rotational range, this value becomes increasingly negative as the pendulum
angle θ decreases and vice versa when increasing.

θ sin Ifeed

Figure 4.2: Diagram of the direct angle feedback.

Ifeed = Kfeedαdir sin (θ) (4.2)
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with αdir ∈ {−1, 1} and Kfeed > 0.
αdir is a parameter relative to the part of the half plane where the feedback

should be active, 1 signifies an activation in the half where sin (θ) > 0 and −1 the
other half. Kfeed is the output gain of the feedback.

4.2.2 Angle and angular velocity based feedback
This more complicated feedback described in figure 4.3 aims to send a positive value
to the controller only when it is close to the optimal control timing, i.e., when the
angular velocity θ̇ is close to 0. In addition, the feedback should only send a pulse
when the pendulum is in the correct half of the rotation plane.

θ

θ̇

sin

+
+ Ifeed

Figure 4.3: Diagram of the mixed angle and speed feedback.

Iθ =
αdir tanh (gθ (sin (θ)− doff)) + 1

2
− 1 (4.3)

Iθ̇ =
tanh

(
gθ̇

(
θ̇ + dbump

))
− tanh

(
gθ̇

(
θ̇ − dbump

))
2

(4.4)

Ifeed = Kfeedmin (max (0, Iθ + Iθ̇) , 1) (4.5)

with αdir ∈ {−1, 1}, gθ, gθ̇, dbump, Kfeed > 0 and doff ∈ r.
αdir is a parameter relative to the part of the half plane where the feedback

should be active, 1 signifies an activation in the half where sin (θ) > 0 and −1 the
other half. gθ and gθ̇ are parameter that define the sharpness of the transition of
their respective tanh. doff is a term that offsets Iθ to create an activation when
θ = 0. Since θ = 0 is the resting state of the system, adding the offset avoids the
system being blocked in that position. dbump defines the width of the bump around
θ̇ = 0. Kfeed is the output gain of the feedback.

For all simulations, the feedback will use the following parameter values.
gθ 15A rad−1 gθ̇ 5A s rad−1

doff 0.05 rad dbump 0.5 rad s−1
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4.2.3 Spike based feedback
The last feedback defined in figure 4.4 reuses principles from the previous feedback
but seeks complete neuronal control using a spiking neuron coupled with a synapse
to activate the controller. This approach has the advantage that the width of the
pulse sent to the controller remains nearly constant and not largely influenced by
the maximum rotational speed. It also guarantees the event-based nature of the
feedback.

θ

θ̇

sin

+
+ Synapse Ifeed

Figure 4.4: Diagram of the spike feedback.

Iθ =
αdir tanh (gθ (sin (θ)− doff)) + 1

2
− 1 (4.6)

Iθ̇ =
tanh

(
gθ̇

(
θ̇ + dbump

))
− tanh

(
gθ̇

(
θ̇ − dbump

))
2

− 1 (4.7)

Vneur = spiking_neuron (Iθ + Iθ̇) (4.8)
Ifeed = synapse (Vneur) (4.9)

with αdir ∈ {−1, 1}, gθ, gθ̇, dbump, Kfeed > 0, doff ∈ r, spiking_neuron is an instance
of the neuron defined in figure 3.1 and synapse is an instance of the synapse defined
in figure 3.12.

αdir is a parameter relative to the part of the half plane where the feedback
should be active, 1 signifies an activation in the half where sin (θ) > 0 and −1 the
other half.  gθ and gθ̇ are parameter that define the sharpness of the transition of
their respective tanh. doff is a term that offsets Iθ to create an activation when
θ = 0. Since θ = 0 is the resting state of the system, adding the offset avoids the
system being blocked in that position. dbump defines the width of the bump around
θ̇ = 0. The parameter gsyn will be used as the output gain of the feedback instead
of a Kfeed parameter.

For all simulations, the feedback will use the following parameter values.
gθ 15A rad−1 gθ̇ 5A s rad−1 doff 0.05 rad
dbump 0.5 rad s−1 gf− −2 S gu+ 1 S
gs+ 4 S Iapp 0.1A gs− −1 S
dsyn −0.5V
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While this controller should generate output similar to the simple mixed feed-
back, the advantage of using a neuron spike is the stability of the pulse width.
Indeed, the width of the mixed feedback is determined in part by the acceleration of
the pendulum, which is linked to the angle at which the speed crosses 0. The spike
of a neuron does not suffer from this problem. In addition, a spiking neuron has
a refractory period that prevents it from recreating a pulse too quickly. However,
because of the inertia of the pendulum, this problem should not be encountered by
the mixed feedback most of the time.

4.3 Controller with single motor neuron
The first use of the various feedback defined previously is to simply connect the
feedback to a bursting neuron that will only be able to apply torque in a single
direction. Figure 4.5 represents the proposed controller architecture. The output of
the bursting neuron is passed through a saturation function that limits the output
of the neuron between 0 and 1. This leads the neuron to generate torque only
during bursting. The gain at the saturation output defines the strength of the
actuation. This controller architecture is naturally imbalanced since the actuation
is not symmetric and thus the damping inside the pendulum will always lead to a
lower amplitude on the side of actuation.

Feedback

τ

θ
θ̇

Figure 4.5: Diagram of the sensorimotor loop for the single-neuron controller. The
saturation block limits are 0V to 1V. The saturation block also contains an internal
output gain τmax.

Figure 4.5 displays a realization of this controller. This clearly shows the im-
balanced nature of the controller when the angle oscillates from −0.5 rad to 1 rad.
It is interesting to observe the regularity of the oscillation, which indicates that the
controller is well attuned to the mechanical system.

4.3.1 Performance of the sensorimotor loop
The performance of a controller can be accessed by its ability to generate stable
oscillations of large amplitude. To study the oscillation resulting from the proposed
controller, an analysis of the parameters of the bursting neuron gs−, gu+ and Iapp
and the parameters of the strength of the feedback Kfeed or gsyn on the oscillation
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Figure 4.6: Simulation of a well parameterized single-neuron controller-pendulum
system. Using mixed feedback with τmax = 10NmV−1 and Kfeed = 1.

was performed. In addition, two different output gain τmax = 1NmV−1 and τmax =
10NmV−1 were used to determine the appropriate force to effectively control the
system. 

Figures 4.7 and 4.8 show the responses with a low output gain on the torque
while figures 4.9 and 4.10 show a high output gain. The first thing that is clear
when looking at these figures is that τmax = 1NmV−1 is not high enough for this
system to sustain large oscillation and, by extension, exercise good control over the
oscillation. Indeed, the maximum range of oscillation is lower than 0.3 rad while
for τmax = 10NmV−1 the oscillations reach nearly 3.14 rad. Thus, maps using
τmax = 10NmV−1 are more useful because they display what will be used later.
However, the other maps can still be useful for identifying behaviors in specific
situations.

Figures 4.7a, 4.8a, 4.9a and 4.10a shows that mixed and spiking feedback can
generate oscillations with lower Iapp compared to the sinusoidal feedback. Now
looking at Figures 4.9b and 4.10b shows that the mixed and spiking feedback can
reach the oscillations with the greatest amplitudes.

Now looking at Iapp = −1A and especially Iapp = 0A, the maps of the controller
with feedback become closer to the map of the controller without feedback. This
indicates that those higher Iapp are not as relevant because they lead to behavior
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close to no feedback, which can only lead to poor control. The range of oscillation
maps confirms this because they show that higher Iapp lead to far lower oscillation
amplitudes. This shows the poorness of the control because efficient control should
be able to generate high-amplitude oscillations.

In figure 4.10b the  map of the mixed or spiking feedback when Iapp = −2A
seems to validate figures 3.7 and 3.8 as lowering gs− is well correlated with the
amplitude of the oscillations. This shows the link between the value of gs− and the
power contained in a burst.

Now, comparing the different feedback, it seems that the sinusoidal feedback has
a behavior different from the mixed and spiked feedback.  Meanwhile, the mixed and
spiked feedbacks have very similar behaviors. This can be explained by the mixed
feedback having a spike-like behavior near θ̇ = 0 and the spike feedback neuron is
excited when near to θ̇ = 0. Thus, both types of feedback generate a spike when
the angular velocity is low. However, note that in figure 4.8 the spiking feedback
generates relatively more oscillation than the mixed feedback model.

The analysis of the maps seems to point toward low Iapp, high τmax, high strength
of feedback, and mixed or spiking feedback as the best controller.

However, the analysis highlighted some zones of interest. Figure 4.11 shows the
oscillation generated in three zones of interest.

The first four rows of traces show the behavior of all feedback types at the specific
point seen in figure 4.10 where the uncoupled bursting neuron can generate large
oscillations. The idea is to investigate why a system receiving no information about
the state of the pendulum can generate ”good” oscillation and what adding feedback
can do in the same situation. Looking at the traces of the angle θ for the case without
feedback, it appears that the frequency of bursting coincides with the frequency
of the pendulum. The match is not perfect because the amplitude of oscillation
varies slightly but it still remains within a small range. Considering the effect of
the feedback when using the same parameter for bursting and choosing the highest
sensory feedback strength, the oscillation pattern does not change. Some phase is
introduced between feedback types because the bursting patterns are not in sync, but
the shape of a burst and the inter-burst frequency are nearly the same in all cases.
This highlights a critical behavior, if the neuron has a high base excitatory current,
which is the case here since figure 3.3 indicates that bursting with these parameters
starts slightly above Iapp = −2A, then the feedback becomes less effective and thus
the connection between the neuron and the mechanical system is diminished. This
is the opposite of the desired behavior.

Next, the fifth and sixth rows in figure 4.11 show a more desirable behavior. 
Here, the mixed and neuron feedback are shown with a better set of parameters

as seen in figure 4.10. Here, the lower base current allows the feedback to dominate
the activation of the neuron. This results in a strong connection between the neuron
and the mechanical system. The oscillation traces confirm this because they have
a greater amplitude than the parameter discussed before and are extremely regu-
lar. The regularity of these oscillations completely demonstrates the link between
the neuron and the pendulum because a perfect match between the inter-burst fre-
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.7: Single-neuron controller-pendulum system behavior with τmax =
1NmV−1 and Kfeed = 1 or gsyn = 1S.
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.8: Single-neuron controller-pendulum system behavior with τmax =
1NmV−1 and Kfeed = 5 or gsyn = 3S.
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.9: Single-neuron controller-pendulum system behavior with τmax =
10NmV−1 and Kfeed = 1 or gsyn = 1S.
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.10: Single-neuron controller-pendulum system behavior with τmax =
10NmV−1 and Kfeed = 5 or gsyn = 3S.
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quency and the oscillation frequency is only possible if the bursting is modulated by
feedback.

Finally, for most of the analysis, the mixed and neuronal feedbacks were grouped
together and showed identical performances. However, they are not the same, and
in specific cases, they display different behaviors. The seventh and eighth rows in
figure 4.11 display this difference. The parameters were taken from figure 4.7 where
the low current behavior seemed quite different. Indeed, the traces confirm that
they are. The mixed feedback seems to be stuck in a behavior similar to that of the
first row but with far smaller oscillation due to the lower gain on the torque. This
appears clearly with the variation in the amplitude of each oscillation and the seem-
ingly constant bursting of the neuron. Conversely, neuron feedback can generate far
larger and more regular oscillations despite being subjected to the same parame-
ters. This difference can be explained easily when considering the equalization that
forms the feedback. This boils down to the fact that mixed feedback is continuous,
whereas neuron feedback is event-based. This may seem a  bit strange because the
mixed feedback, when declared in section 4.2.2 was described as generating pulses.
However, looking back at the equations governing the feedback reveals that it only
holds true if the angular velocity is high and then equation (4.4) is zero, except at
the peak of the oscillation where the speed is close to zero. In the case where the
torque is low, the system may become stuck in a pattern of tiny oscillations that,
due to the limited torque and range, do not have the velocity to get out of the
bump. Thus, mixed feedback can be abstracted as equation (4.4) plus one, which
is feedback based only on position. In the neuronal case, the behavior is different.
Even if the input to the spiking neuron is similar to the mixed feedback, passing
this input into a spiking neuron transforms this continuous feedback into events. If
the neuronal feedback is placed in the same position as the mixed feedback, it spikes
at a relatively low frequency, leading to a more stable activation, allowing it to exit
the position and generate larger oscillations.

4.3.2 Robustness of the sensorimotor loop
In a real controller, it is nearly impossible to achieve the exact theoretical parame-
ters. Therefore, it is important to analyze the behavior of the controller when the
parameters deviate from the ideal values. In the previous section, good parameters
were found to be around Iapp = −2A, gs− = −4 S and gu+ = 5S. 

The classical way of performing such an analysis is simply to use Monte Carlo by
sampling the parameters from a certain distribution centered around the ideal values
and plotting the distributions of the relevant output value to visualize the influence
of these changing parameters on the control. Before doing this, the robustness can
already be assessed in figures 4.7 to 4.10 by looking at the change in values around
the chosen parameters. Since τmax = 10NmV−1 and Kfeed = 5 or gsyn = 3S gave
the best controller results, those parameters will be used and thus only figure 4.10
is relevant. The maps of frequency and oscillation in that figure show that there is
relative stability around the good parameters, at least in the gs− and gu+ dimensions.
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Iapp = −2A, τmax = 10Nm
gs− = −4 S, gu+ = 5S

Neuron, gsyn = 3S
Iapp = −2A, τmax = 10Nm
gs− = −4 S, gu+ = 5S

Mixed, Kfeed = 1
Iapp = −2A, τmax = 1Nm
gs− = −5 S, gu+ = 5S

Neuron, gsyn = 1S
Iapp = −2A, τmax = 1Nm
gs− = −5 S, gu+ = 5S

Figure 4.11: Temporal behavior of a single-neuron controller-pendulum system un-
der different parameters and with different feedback.
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Here, relative stability means that the gradients of the frequency and amplitude
maps are relatively low in amplitude and that there are no large discontinuities.

To have a point of comparison and further prove the point of the previous chap-
ter, the fragile bursting displayed in figures 3.5 and 3.6 is chosen to compare the
good parameters with a set of poor parameters. To represent this behavior the frag-
ile bursting has the parameters Iapp = 0A, gs− = −0.1 S and gu+ = 4S. Iapp = 0A
was chosen to place the fragile neuron in a similar situation to the robust neuron,
i.e., before natural bursting.

With all that, figure 4.12 displays the histograms resulting from the Monte Carlo
simulations on the robust and fragile neuron coupled with all feedback previously
defined. 

The first observation that can be made by looking at the distribution of in
figure 4.12a is that the robust neuron is very precise and can maintain oscillation
at the same frequency, except for the mixed feedback, which displays two very
close frequencies. On the other hand, the fragile neuron is much worse because the
dominant frequency is spread over a large range of frequencies. Especially in cases
with no feedback and sinusoidal feedback. However, the mixed feedback is again
different from the others, with a behavior very similar to that of the robust neuron,
except at a slightly higher frequency.

Looking at the amplitude of oscillation in figure 4.12b gives a clearer picture
of what is happening. The amplitudes of oscillations of the robust neuron are far
larger than those of the fragile neuron. In fact, apart from the mixed feedback, the
range of oscillation of the fragile neuron is nearly zero, proving that it is ineffective
at generating oscillation. It is also interesting to note that the range of the robust
neuron with no feedback is perfectly zero, which is normal because the bursting
neuron is inactivated. However, this is not the case for the fragile neuron, which
again shows that, as presented in figure 3.6, the fragile neuron is very sensible to
noise.

Figure 4.13 is a zoom in on the behavior of the robust neuron. This figure
highlights what was previously observed. The principal oscillation frequencies are
shown to be very stable. Sinusoidal and spiking neuron feedbacks lead to a single
frequency, whereas mixed feedback leads to two separate frequencies, with no dis-
tribution in the frequency range. Now looking at the range of oscillation, while all
feedback span a similar range of around 0.1 rad the sinusoidal feedback seems to
spread more than the other two feedback. The other feedbacks have a large narrow
peak and then a small wider peak with a range without oscillation between. This
shows a more precise control of the mixed and spiking feedback. Yet, this second
smaller is strange given the single frequency found. This behavior could have been
explained in the case of mixed feedback because it exhibits two separate frequen-
cies; however, the number of simulations in the second peak of higher amplitude
is higher than the number of simulations in the smallest frequency; therefore, this
cannot explain the entire peak. This behavior arises from the fact that the dominant
frequency is the frequency with the highest power; thus, it can be quite stable even
if the oscillation changes slightly.

42 Chapter 4: A neuromorphic sensorimotor loop for pendulum swing



Neuromorphic control of embodied central pattern generators

(a) Histograms of the distribution of the dominant oscillation frequency.
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(b) Histogram of the distribution of the oscillation amplitude.
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Figure 4.12: Comparison of the robustness of all feedback on the single-neuron
controller-pendulum system using Monte Carlo analysis. The parameters of robust
bursting were sampled from Iapp ∼ N (−2, 0.052)A, gs− ∼ N (−4, 0.032) S and
gu+ ∼ N (5, 0.052) S. The parameters of fragile bursting were sampled from Iapp ∼
N (0, 0.052)A, gs− ∼ N (−0.1, 0.032) S and gu+ ∼ N (4, 0.052) S. Both neurons
used gf− = −2 S, gs+ = 6S, τmax = 10NmV−1 and Kfeed = 5 or gsyn = 3S.
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(a) Histograms of the distribution of the dominant oscillation frequency.
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(b) Histogram of the distribution of the oscillation amplitude.
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Figure 4.13: Comparison of the robustness of all feedback on the single-neuron
controller–pendulum system using Monte Carlo analysis. The bursting parame-
ters were sampled from Iapp ∼ N (−2, 0.052)A, gs− ∼ N (−4, 0.032) S and gu+ ∼
N (5, 0.052) S. The bursting also used gf− = −2 S, gs+ = 6S, τmax = 10NmV−1

and Kfeed = 5 or gsyn = 3S.
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4.4 Two neuron ”push-pull” controller
The next step in the controller design is to make it symmetrical by adding a new
bursting neuron and its associated feedback block. In addition, to enforce the al-
ternating activation of bursting neurons, inhibitory synapses connect both neurons.
This turns the two neurons into a half-center oscillator. This is done to avoid simul-
taneous activation of the neurons because it would be suboptimal to push in both
rotational directions at the same time.

The feedback to the new bursting neuron will be tailored to mirror the feedback
to the first neuron so that the new neuron activates during the other half of the
rotation plane.

−
+

Feedback
Forward

Feedback
Backward

τ

θ
θ̇

Figure 4.14: Diagram of the sensorimotor loop for the two-neuron push-pull con-
troller. The saturation block limits are 0V to 1V. The adding block also contains
an internal output gain τmax. Inhibitory synapses link both bursting neurons.

Synapses have the same conductance because the system should be symmetrical.
The common conductance is gsyn = −1 S.

Figure 4.15 displays a realization of this controller. This shows that the addition
of a neuron balances the oscillations. In addition, the neurons burst in perfect
opposition, demonstrating HCO behavior. The large and regular oscillations indicate
that the controller is well attuned to the mechanical system.

4.4.1 Performance of the sensorimotor loop
Similar to the tests for the single-neuron controller, the performance of this new
controller can be accessed by its ability to generate a stable oscillation of large am-
plitude. Similarly, to study the proposed controller, the parameters of the bursting
neuron gs−, gu+ and Iapp and the parameters of the strength of the feedback Kfeed
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Figure 4.15: Simulation of a well-parameterized two-neurons push-pull con-
troller–pendulum system. Using mixed feedback with τmax = 10NmV−1 and
Kfeed = 1.

or gsyn are varied. In addition, two different output gain τmax = 1 and τmax = 10 are
studied to determine the appropriate force to effectively control the system.

Figures 4.16 to 4.19 display the behavior of the double neuron system in the
same manner as figures 4.7 to 4.10 that were used for the single neuron controller.

The first thing that is flagrant in this situation is that sinusoidal feedback always
leads to a far lower amplitude of oscillation compared with mixed or spiking neuron
feedback. Except for τmax = 1 and Kfeed = 5 where figure 4.17 shows that the mixed
feedback seems to fail. These lower oscillations are  mostly due to the feedback
being directly linked to the angle, leading to an activation that is too early and is
not able to reach large amplitudes. Indeed in figures 4.16 and 4.17 while the lower
amplitude is still visible, the amplitude displayed is far better because the lower
maximum torque restricts the possible oscillation range.

Now, analyzing the amplitude part of the results clearly shows that the gain
of adding another control neuron allows far greater amplitude to be reached.  Fig-
ure 4.10 showed a maximum amplitude around π while figure 4.17 reaches 2π which
is a full circle, which is impressive.

Interestingly, the CPG connection allows the system without feedback to gen-
erate sizable oscillations. This is linked to the natural oscillatory nature of the con-
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nection (see figure 3.13). The controller lacking sensory feedback, these oscillations
are naturally not attuned to the frequency of the pendulum and should generate
very chaotic movement. Yet, this displays quite well the usefulness of the CPG, it
intrinsically captures the necessary order of the actuation of this system.

As observed in the single-neuron controller, it seems that in figure 4.19 the maps
of the range of oscillation validate the correlation between the value of gs− that
was seen in figures 3.7 and 3.8. However, it is less pronounced than in the case of a
single-neuron controller, and the parameter gu+ seems to now play a role. Figure 3.14
shows that increasing gu+ increase the natural bursting frequency of the CPG ,
and ideally, this frequency should be close to or lower than the natural oscillation
frequency of the pendulum. This poses a problem because oscillations of higher
amplitude require a lower frequency.

Similar to the single-neuron controller, the analysis of the maps points toward a
controller using mixed or spiking neuron feedback with low Iapp, high τmax and Kfeed
or gsyn as the best controller.  It is the best in the sense that it can generate control
of the oscillation in a reliable manner, and changing gs− and gu+ allows to choose a
desired amplitude of oscillation.

The analysis of the map has also led to the discovery of some interesting regions
or phenomena. Figure 4.20 represent the temporal behavior of the controller in some
of the most relevant regions.

The first of these regions is the region in figure 4.19b at Iapp = 0A where the
controller without feedback is able to generate large oscillations and the controller
using different feedbacks seems to exhibit a similar behavior, except for the controller
using sinusoidal feedback. This is a region similar to another that was studied for
the single-neuron controller in figure 4.11. 

This region is explored in the first four rows. The first row displays the behavior
of the controller without feedback. The neuron output clearly shows the CPG nature
of the connection between the bursting neurons by the clear sequence of activation
of the neurons. In addition, this trace explains how this controller can generate
large oscillations without feedback. The bursting displays a plateau behavior that
causes large oscillations because this behavior gives a large amount of momentum
to the pendulum to move in one direction because the torque is applied constantly.
This gives a large oscillation, but the plot of the angle shows that it does not sync
well with the frequency of the pendulum and leads to some variance in the ampli-
tude of the oscillation. The third and fourth rows show that the mixed and spiking
neuron feedback have very similar behavior to the controller with no feedback. This
was already seen in the case of the single-neuron controller, where increasing Iapp
reduces the feedback influence. However, the second row displaying the controller
with sinusoidal feedback challenges this conclusion. This shows that with the same
parameters the sinusoidal feedback generates smaller amplitudes and faster oscilla-
tions. This is due to the continuous nature of the feedback, which constantly pushes
the neuron to act when the amplitude is sufficiently large. This implies two things.
First, this changes the previously made conclusion, it seems that high Iapp only re-
duce the effect of event-based feedback. Then, this shows that sinusoidal feedback
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.16: Double-neuron controller–pendulum system behavior with τmax =
1NmV−1 and Kfeed = 1 or gsyn = 1S.
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.17: Double-neuron controller–pendulum system behavior with τmax =
1NmV−1 and Kfeed = 5 or gsyn = 3S.
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(a) Maps of the frequency of the pendulum oscillation.
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(b) Maps of the range of the pendulum oscillation.
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Figure 4.18: Double-neuron controller–pendulum system behavior with τmax =
10NmV−1 and Kfeed = 1 or gsyn = 1S.
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(a) Maps of the frequency of the pendulum oscillation.

4.5

5.5g u
+
[S
]

No feedback Sinusoidal Mixed Spiking neuron

0.0

0.5

1.0

1.5

2.0

2.5

[Hz]

4.5

5.5g u
+
[S
]

−4.5 −3.5

4.5

5.5

gs− [S]

g u
+
[S
]

−4.5 −3.5

gs− [S]

−4.5 −3.5

gs− [S]

−4.5 −3.5

gs− [S]

I a
pp

=
−
2
A

I a
pp

=
−
1
A

I a
pp

=
0
A

(b) Maps of the range of the pendulum oscillation.
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Figure 4.19: Double-neuron controller–pendulum system behavior with τmax =
10NmV−1 and Kfeed = 5 or gsyn = 3S.
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leads to a decision on a soft desired amplitude depending on the parameter Kfeed
chosen. Oscillations too large are not possible because they would excite the neuron
so much that it would depolarize completely, and oscillation too low will not trigger
the feedback and leads to either no oscillation if the CPG needs the feedback to
burst or bad oscillation if it does not.

The fifth and sixth rows show the behavior of the mixed and spiking neuron con-
troller with parameters taken from figure 4.19 where both feedbacks showed good
performance. The spiking pattern and oscillation behaviors of both feedbacks are
nearly identical, and there is only a slight temporal shift between them. The oscil-
lations generated by both are very regular and show no variance in their amplitude.
This again shows that event-based feedback coupled with low Iapp create a very
efficient controller.

The seventh and eighth rows resolve the strange behavior of the mixed feedback
controller seen in figure 4.17 were the behavior of the mixed and spiking neuron
controller differs despite being very similar in figures 4.16, 4.18 and 4.19. With
the same parameter, the spiking neuron controller generates acceptable oscillations
using bursting, even though they suffer from some variance in amplitude. However,
the mixed controller generates far lower amplitude oscillation and is not bursting
anymore, it just displays plateau potentials. This behavior was already observed in
the single-neuron controller and has the same cause. To summarize the explanation
seen in section 4.3.1 on page 40, the mixed feedback defined in section 4.2.2 loses
its event-based nature when generating small oscillations and becomes continuous,
thus losing performance. In comparison, the spiking neuron feedback, despite using
a similar function, circumvents this issue by feeding it to a spiking neuron, which
guarantees the event-based nature of the sensory feedback to the bursting neuron.

4.4.2 Robustness of the sensorimotor loop
Again, it is impossible to create a physical controller with the same parameters
as the theoretical controller. Thus, evaluating the performance of the controller
under small changes in the theoretical parameters allows the assessment of real-
world performance. Similar to the single-neuron controller, the ideal parameters of
the controller are around Iapp = −2A, gs− = −4 S and gu+ = 5S. 

The robustness of the controller can already be assessed partially by figure 4.19
by observing that small variations of gs− and gu+ around their ideal values only lead
to small changes in the dominant frequency and amplitude.

To complete and confirm this analysis, the Monte Carlo method was applied to
generate the distribution of the dominant frequency and the amplitude of oscillation
when Iapp, gs− and gu+ are drawn from random distributions around the ideal values.

In addition, mirroring the analysis used for the single-neuron controller, another
set of parameters for the bursting neuron was chosen for comparison with the burst-
ing defined above. To further prove the point made in the previous chapter, the
fragile bursting displayed in figures 3.5 and 3.6 will be the point of comparison.
This neuron has the ideal parameters Iapp = 0A, gs− = −0.1 S and gu+ = 4S.
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Figure 4.20: Temporal behavior of the double-neuron controller–pendulum system
under different parameters and with different feedback. In the neuron output graphs,
the blue and green traces represent the output of each neuron.
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Figure 4.21 displays the results of the Monte Carlo simulation analysis. The first
thing that is apparent, especially in figure 4.21b, is that the fragile bursting is unable
to control the pendulum. The range of oscillation is always 0. No feedback can make
it control the system even slightly. This is different from the behavior in the case
of the single-neuron controller where figure 4.12b showed that at least the mixed
feedback was able to allow the fragile bursting to somewhat control the pendulum.
Note that in the case of the spiking neuron, some oscillations were generated since
figure 4.21a shows a distribution of frequencies. However, the range of oscillations
all being grouped to zero shows that these oscillations are too poor to be useful.
This clearly demonstrates the fragile nature of this bursting, as the connection in a
simple HCO pattern completely destroys the control capabilities of the neuron.

Now, looking at the distribution of the frequencies of the robust bursting in fig-
ure 4.21a it seems that for all feedback types, the dominant frequency of oscillation is
very precise. However, the distribution of the amplitude of oscillation in figure 4.21b
shows that the sinusoidal feedback has nearly no variation in amplitude, whereas
mixed and spiking neuron feedback do. However, the oscillations of the  mixed and
spiking neuron controllers are also far larger than those of the sinusoidal controller.
This shows that there is a certain trade-off between the size and variability of the
oscillation amplitude.

To investigate more closely the distributions of robust bursting, figure 4.22 dis-
plays a  zoom on the different distributions. This figure reveals multiple interesting
behaviors that were not previously visible.

Figure 4.22a shows that the distribution of the dominant frequency of the spiking
neuron controller has two peaks, whereas the other controllers only have one. This
was not visible in figure 4.21 where they were both merged. This is interesting
because the single neuron controller figure 4.13 displayed the same distribution but
for the mixed controller. This reinforces the fact that these two types of feedback
are quite similar and, in most cases, lead to similar performances.

Now looking at figure 4.22b shows that the distributions of the oscillation ampli-
tude are more in line with the behavior of the single neuron controller displayed in
figure 4.13. Both figures show that the sinusoidal controller has a distribution cen-
tered around a single peak, whereas the mixed and spiking neuron controllers show
a distribution with two peaks separated by a space with no simulation displaying
that amplitude.
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(a) Histograms of the distribution of the dominant oscillation frequency.
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(b) Histogram of the distribution of the oscillation amplitude.

No Feedback Sinusoidal Mixed

0

500

1,000

1,500

2,000

#
Si

m
ul

at
io

ns

Spiking Neuron

0 1 2 3 4

Range [rad]

0 1 2 3 4

Range [rad]

0 1 2 3 4

Range [rad]

0 1 2 3 4
0

500

1,000

1,500

2,000

Range [rad]

#
Si

m
ul

at
io

ns

R
ob

us
t

B
ur

st
in

g
Fr

ag
ile

B
ur

st
in

g

Figure 4.21: Comparison of the robustness of all feedback on the double-neuron
controller–pendulum system using Monte Carlo analysis. The parameters of ro-
bust bursting were sampled from Iapp ∼ N (−2, 0.052)A, gs− ∼ N (−4, 0.032) S
and gu+ ∼ N (5, 0.052) S. The parameters of fragile bursting were sampled from
Iapp ∼ N (0, 0.052)A, gs− ∼ N (−0.1, 0.032) S and gu+ ∼ N (4, 0.052) S. Both neu-
rons used gf− = −2 S, gs+ = 6S, τmax = 10NmV−1 and Kfeed = 5 or gsyn = 3S.
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(a) Histograms of the distribution of the dominant oscillation frequency.
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(b) Histogram of the distribution of the oscillation amplitude.
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Figure 4.22: Comparison of the robustness of all feedback on the double-neuron
controller–pendulum system using Monte Carlo analysis. The bursting parame-
ters were sampled from Iapp ∼ N (−2, 0.052)A, gs− ∼ N (−4, 0.032) S and gu+ ∼
N (5, 0.052) S. The bursting also used gf− = −2 S, gs+ = 6S, τmax = 10NmV−1

and Kfeed = 5 or gsyn = 3S.
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Chapter 5

Neuromodulation for adaptive
amplitude control

The previous chapter explored the design of the controller to create a strongly con-
nected sensorimotor system. However, the chapter never addressed or proposed any
control strategy to allow the oscillation to reach a desired amplitude. This chap-
ter introduces neuromodulation into the controller to automatically modify neuron
parameters to reach a target amplitude.

5.1 Design of the controller

The goal is to generate a symmetric motion of the pendulum. Since section 4.4 de-
fines a symmetric controller, it is natural to add neuromodulation to it. Chapter 4
established that τmax = 10NmV−1 was capable of reaching any amplitude. To con-
trol the bursting neurons the mixed feedback was chosen because it offered excellent
performance in most situations and was less complex and computationally intensive
than spiking neuron feedback. Because it proved to have better performance, the
output gain Kfeed = 5 is also used.

To control the amplitude of oscillation, the parameter gs− was chosen since
section 3.3.1 established that this parameter is linked to the power transmitted by a
burst and figure 4.19 confirms that it correlates well with the oscillation frequency
using mixed feedback.

Figure 5.1 displays the diagram of the model. This diagram shows the addition
of two spiking neurons to figure 4.14. Their outputs are passed through saturation
to produce a non-zero output only when spiking. The outputs of these neurons are
then merged and fed through an integrator which is followed by a low-pass filter.
Finally, the output of this filter provides the parameter gs−.

The low-pass filter has a time constant of τm = 0.1 s and the spiking neuron uses
the following parameters.
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Figure 5.1: Diagram of the control loop of the controller with neuromodulation. The
adder blocks also contain internal output gains θmax and dgs−. Inhibitory synapses
link the bursting neurons. Blue lines represent parameters and not input/output
values.
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gf− −2 S gu+ 1 S
gs+ 4 S Iapp −0.5A
gs− −1 S

The idea of this architecture is to have the spiking increase or decrease the value
of gs− by steps through the integrator, and the low-pass filter is only there to smooth
the value of the parameter and avoid weird neuronal behaviors due to steps in the
parameters.

The feedback fed to the spiking neurons differs from the feedback fed to the
bursting neurons. Figure 5.2 displays this new feedback architecture. This can be
understood as a check of the amplitude at the peak of the oscillation. The goal is
that one neuron will spike if the amplitude is too low and the other will spike if it
is too high, leading to a change in the value of gs− according to the expected result
of this change looking at figures 3.7 and 3.8.

θ

θ̇

| . | −+

θref

+
+ Ifeed

Figure 5.2: Diagram of the neuromodulation feedback.

Iθ = tanh (gθ (αside (|θ| − θref)− dbuff)) (5.1)

Iθ̇ =
tanh

(
gθ̇

(
θ̇ + dbump

))
− tanh

(
gθ̇

(
θ̇ − dbump

))
2

− 1 (5.2)

Ifeed = Kfeedmin (max (0, Iθ + Iθ̇) , 1) (5.3)

with αside ∈ {−1, 1}, θ ∈ [−π; π], θref ∈ [0; π], gθ and dbuff ∈ R and gθ̇ and
dbump > 0.

αside is a parameter relative to where the spiking neuron should be active. 1
signifies activation when the oscillation is above the desired angle and −1 indicates
activation when it is below the desired angle. gθ and gθ̇ are parameter that define
the sharpness of the transition of their respective tanh. dbuff is a term that offsets
Iθ to create a buffer zone around the desired angle in which the neuron does not
spike. dbump defines the width of the bump around θ̇ = 0. Kfeed is the output gain
of the feedback.

The exact value of those parameters as they are used is given below.
gθ 40A rad−1 gθ̇ 20A s rad−1

Kfeed 2 dbump 0.1 rad s−1
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This feedback is similar to the mixed feedback defined in section 4.2.2 except
that the sinus is replaced by the absolute value and the term θref is added. This
feedback creates a spike-like event when θ̇ is small and θ < θref or θ > θref depending
on αside.

To better understand the behavior of the system figures 5.3 and 5.4 represent the
behavior of the system when the target requires a gs− above or below the starting
gs−. The CPG with the sensory feedback controls the oscillation to keep it going at
a rather set amplitude, and the value of gs− is slowly tuned to reduce or increase
the energy contained in a burst and shape the oscillation to the desired amplitude.
These graphs also perfectly illustrate the behavior exhibited in section 3.3.1. The
amplitude of the oscillation decreases in a step-like manner. These steps are caused
by the disappearance of a spike in the burst, leading to less power being transmitted
from the motor neuron.

5.2 Controller performance

This controller is designed to change the gs− parameter in order to reach a certain
desired amplitude θref. A perfect controller would be able to make the oscillation
amplitude reach a value very close to the target quickly and without oscillation
around the target This naturally leads to two very different criteria when measuring
the performance of a specific set of parameters.

The first criterion, which can be called the static criterion, is the error between
the desired amplitude and the amplitude reached at the steady state.  If the steady
state consists of an oscillation of multiple amplitudes, the mean at that steady state
would be the ideal measure.

The second criterion, which can be called the dynamic criterion, concerns itself
with the speed at which the controller can reach the desired amplitude. It can be
measured in two ways. An easy way is to measure the time at which the amplitude
crosses the desired amplitude. However, because the controller can undershoot the
target, as seen in figure 5.3, another way to define it is as the time of the last change
in the value of gs−. As a good compromise, the relevant value will be the minimum
between these two times.

To realize all analyses consistently, all tests include a stabilization period of 30 s
where the target angle was θref =

π
4
rad.

Figures 5.5 to 5.7 contain the data that will be useful for understanding the
behavior of the neuromodulated controller. Figure 5.5 displays the evolution of
metrics as a function of the desired angle θref. Figure 5.6 displays the evolution of
these metrics as a function of the neuromodulation gain dgs−. Figure 5.7 contains
the evolution of the amplitude mean and standard deviation as functions of the
buffer zone dbuff.
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Figure 5.3: Oscillation of the neuromodulated controller–pendulum system when
the initial steady-state oscillation amplitude is smaller than desired.
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Figure 5.4: Oscillation of the neuromodulated controller–pendulum system when
the initial steady-state oscillation amplitude is higher than desired.
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Figure 5.7: Evolution of performance metrics of the neuromodulated controller–pen-
dulum system as a function of dbuff at multiple neuromorphic gains dgs− and desired
amplitude θref. The rise time is not included.

Chapter 5: Neuromodulation for adaptive amplitude control 65



Neuromorphic control of embodied central pattern generators

5.2.1 Static
As defined above, the static performance of the controller is linked to its ability to
get close to the desired amplitude.

Figure 5.5 contains the evolution of two useful metrics as a function of the desired
angle θref. The mean amplitude and standard deviation of the amplitude.

The first graph of this figure is the most important. For most of the graph, the
effective amplitude as a function of the desired amplitude follows a step-like pattern.
This is due to the effect seen in figures 3.7 and 3.8 which creates steps in the amount
of energy a single burst can transmit.

However, this graph raises the question of how slopes can exist between these
steps and at the end of the graph where the system is able to follow the target very
well. The second graph, which displays the standard deviation of the amplitude
of the oscillations after reaching steady states, answers this question. This shows
that these behaviors only occur when there is a variation in the amplitude. Thus,
they are created by fluctuations in the oscillation amplitude around the desired
amplitude θref. The behavior when high θref particularly is quite impressive. A
simple modulation control that was designed to reach a steady state when denied
this possible state can precisely follow the target amplitude in the mean. This shows
the adaptability of such a control scheme to operate in non-ideal circumstances.

Figure 5.7 gives another view of the reach of the desired amplitude. This shows
that the value that determines whether the system stabilizes or not is the value of
dbuff. This is logical because the value defines the buffer zone around the desired
amplitude. The graphs of the amplitude standard deviation clearly show that for
low dbuff the system never reaches equilibrium, but the graph of the amplitude
means shows that it manages to follow the desired amplitude in the mean. An
interesting behavior is observed when looking at the trace of θref =

π
2
rad for dgs− =

0.2 SV−1. For this trace, the amplitude first stabilizes at some values; however, as
dbuff increases, it jumps to a new value. The new value is worse than the first value
because it is farther away from the desired amplitude. The explanation for this
behavior is simple. When dbuff is large enough, multiple levels of amplitude do not
trigger neuromodulation. Thus, the system will stabilize at the amplitude closest to
its starting position. Since the simulation was made starting from an amplitude of
θ = π

4
rad the lowest level admissible for θref =

π
2
rad is reached and not the higher

one that exhibits better performance. This is because being below π
2
rad is closer

to π
4
rad.

Figure 5.6 also gives us other useful information. In particular, the graph of the
mean amplitude displays an interesting behavior. As the neuromodulation gain dgs−
increases the mean amplitude becomes less stable. This is particularly visible for
θref =

π
2
rad where at higher θref the amplitude oscillates around the reference. The

graph of the standard deviation of the amplitude shows that the deviation increases
with dgs−. This means that as dgs− increases the range of fluctuations in amplitude
increases. This leads to oscillation in the mean, possibly because the simulation
time is limited to 120 second and a greater range of fluctuation means a longer cycle
of amplitudes.
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5.2.2 Dynamic
As defined previously, the dynamic performance of the controller is defined by the
speed at which the controller approaches the desired amplitude.

Figure 5.6 first graph is very interesting for discussing dynamic performances.
It displays the evolution of the rise time as a function of the neuromodulation gain
dgs−. Since dgs− controls the amount to which a spike changes the value of gs−, it
is natural that it will be linked to the rise time. The graph clearly shows that higher
dgs− lead to lower rise times. However, the gains diminish because they follow a
decreasing exponential law. Indeed, theoretically doubling dgs− should result in
halving the rise time because the speed at which gs− is moved doubles; thus, the
ideal gs− should be reached twice as fast. This is verified nicely on the graph for
θref =

π
2
radian since at the start when dgs− = 0.2 SV−1 the rise time is around 80 s

and doubling dgs− to 0.4 SV−1 decreases the rise time to around 40 s. This is also
observed for dgs− set to 0.8 SV−1 with a rise time of around 20 s and 1.6 SV−1 with
a rise time of around 10 s. However, this law has a limit, as shown in the graphs for
θref =

π
3
radian and θref =

π
6
radian since they both converge to a similar value. This

implies a certain minimum rise time.
Figure 5.5 graph of the rise time as a function of θref is quite interesting. Similar

to what was observed in the static performance analysis, the rise time seems to
progress in steps that progress at the same rate as the steps of the mean amplitude.
This is logical because the rise time can be understood as the time taken to find
a gs− that generates acceptable oscillations. However, because the change in the
power of a burst as a function of gs− moves in a stepwise manner. The desired gs−
also moves in steps. This means that two θref that need a similar gs− will have the
same rise time because they require the same underlying gs−.

Finally, although not explicitly shown, computing figure 5.6 proved that the
value  dbuff has little effect on the rise time. Only when very high can it allow
the system to stabilize at an amplitude closer to the starting amplitude, leading to
a lower rise time. However, it is not reliable nor a desirable way of accelerating
convergence.

5.2.3 Static-Dynamic performance Trade-off
The analysis of the static and dynamic performance revealed a large trade-off be-
tween the two.

This can be seen in figures 5.5 and 5.6 where higher rise times lead to better
static performances, whereas lower rise times lead to poor static performances.  This
is visible especially in figure 5.6 where the decrease in rise time in the first graph
leads to fluctuations in the mean value in the second graph and a higher standard
deviation.

This trade-off is primarily embodied by the value of dgs−. As stated before,
increasing this value leads to better dynamic performance because a single spike will
change the value of gs− more. However, it comes at the cost of static performance
because increasing the number of steps a spike makes in gs− can lead to fluctuation
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around the desired state, which skips over the good value of gs−. It also takes some
time for the system to settle to the new steady state when gs− changes.

On the other hand, a smaller dgs− leads to a much slower change of gs− thus
avoiding skipping the good value, but it increases the time it takes to reach this
good value.

From figure 5.6, a good range of values is dgs− ∈ [0.5; 1] SV−1. Below this range,
the slower movement is not justified by any static performance gain, whereas higher
than that is subject to fluctuations and does not have large gains in rise time.

Also, figure 5.7 shows that the value of dbuff create another trade-off. A large
value facilitates system convergence because it allows more leeway in the error be-
tween the current and desired amplitudes. However, a value that is too large will
result in the system not stabilizing at the amplitude level closest to the desired
amplitude. This means that the performance of the controller is negatively affected
by a large dbuff. Conversely, lower values of dbuff make it impossible for the system
to stabilize because no amplitude level is close enough to not activate the sensory
neurons. Figure 5.7 indicates that dbuff ∈ [50, 70]mrad is a good range to ensure
convergence and not stabilize too far from the desired amplitude. Therefore, the
value π

60
rad = 52.36mrad that was used until now is a good trade-off. 

Figure 5.8 displays a system using the dgs− = 0.5 SV−1 as a good compromise.
This shows that it can mostly follow the desired shape of oscillation with a cer-
tain time shift. Another nice thing is that the desired oscillation goes from π

6
rad

to  2π
3
rad. This proves that neuromodulation is very effective in controlling the

amplitude of the oscillation of the pendulum because it can span a large range of
amplitudes.

5.3 Robustness analysis
Having shown the capabilities of the controller, the next step is to determine how
sensitive it is to changes in the parameters. Figure 5.9 presents the distribution
of the different metrics when the parameters of the motor and sensory neurons are
drawn from Gaussian distributions.

The most important value is the tracking of the mean oscillation amplitude
because controlling this value is the goal of neuromodulation. Fortunately, the
figure shows that the average amplitude always stays close to the desired amplitude.
In addition, the spread of amplitude does not seem to correlate with either the
neuromorphic gains dgs− nor the desired amplitude θref. Furthermore looking at
the standard deviation of the amplitude shows that the amplitude of oscillation
converges for at least 75% of the simulations. This shows that the value of amplitude
are not means that do not represent the behavior fully but sustained amplitudes.

On another note, looking at the rise time again shows the very clear relationship
it has with dgs−.  This is seen very well with θref =

π
2
rad where doubling dgs− divides

the convergence time by two.
Overall, this analysis shows that the controller design described in this chapter

is quite resilient to variations. This proves that its structure is sound and that the
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Figure 5.8: Behavior of the neuromodulated controller–pendulum system with
dgs− = 0.5 SV−1 and dbuff = pi
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rad when subject to a varying desired amplitude
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performances discussed earlier are not flukes.
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Figure 5.9: Monte Carlo analysis of the robustness of the neuromodulated con-
troller–pendulum system to changes in the parameters of neurons. The parameters
of the motor and sensing neurons as well as the parameters of the neuromodulated
feedback were drawn from N (µ, 0.032)A with µ the normal value of the parame-
ter. All simulations started from a stable equilibrium around θ = π

4
rad and used

dbuff = π
60
rad.
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Chapter 6

Simple interconnection of
controller-pendulum systems

The previous chapters discussed the design of a controller for a single pendulum
system. However, control systems are rarely used in isolation but often need to be
synchronized. Thus, a point of interest is to determine whether it is possible to in-
terconnect multiple controller-pendulum systems to generate specific spatiotemporal
patterns. The neuromorphic approach of the controller should facilitate this goal
because interconnecting controllers only involves creating synapses between certain
neurons. This chapter will serve as a proof of feasibility and will only explore a
single interconnection scheme of two pendulums. 

6.1 Nature of the interconnection
The goal of this chapter is to manage the interconnection of multiple controllers.
To prove the feasibility of this concept, the simplest interconnection is chosen. The
system will be composed of two interconnected controllers, and the goal is to achieve
phase opposition between the pendulums. This is similar to an HCO in a purely
neuronal network.

The only way to interconnect neurons defined to this point is through synapses.
This type of connection is sufficient to interconnect multiple controllers and achieve
the desired spatiotemporal pattern. To generate this pattern, the easiest approach
is to use the HCO structure between the corresponding motor neurons in both
controllers. This pushes the neurons to work in opposition, thus achieving the
desired pattern. Figure 6.1 represents the use of synapses proposed to reach the
phase opposition between pendulums. It clearly shows the interconnection between
the corresponding motor neurons in the controllers. In addition, the control of a
pendulum remains mostly local, and the state of one pendulum does not directly
affect the motor neurons of the other controller. The link between the pendulums
is realized only at the neuronal level.

The realization of the opposition will be harder than in an HCO because each
controller is strongly linked with its pendulum, which has inertia. This means that
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Figure 6.1: Diagram of the interconnection of the controllers. For simplicity and
generality, only the motor neurons and mechanical system are represented for each
controller-pendulum system.

the system may settle near perfect opposition but never achieve it because the control
of the oscillation will become far more prevalent than the effect of the synapses.

The addition of new synapses leads to a change in the conductance defined in
chapter 4. For intra-controller synapses gsyn becomes equal to −0.8 S and for inter-
controller synapses gsyn = −0.2 S. This results in similar behavior if the pendulums
are in phase opposition.

6.2 Non-neuromodulated system

The first step in testing the interconnection model is to find if it works when the
controllers have static dynamics. Thus, the model defined at the end of chapter 4
is reused. The goal is to simulate two copies of the controller-pendulum system in
the configuration of figure 6.1 to generate the desired spatiotemporal pattern with
the pendulums.

Simulations of this test can be found in figure 6.2. The figure shows that the
interconnection successfully generates the pattern. The zoom indicates that the
difference with  a perfect opposition of phase is very small because the plot of the
angles cross very close to 0. The pattern seems to have taken 15 s to 20 s to establish
itself. At first, the oscillations of both pendulums were in phase because both
started with the same initial conditions. The separation of the oscillation occurred
gradually. This is a good result because it indicates that the local control of the
pendulum primed the realization of the pattern.  Interestingly enough around 15 s
the interaction between the controllers seemed to generate the highest perturbations
, and then abruptly, the quasi-steady state is established.
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(a) Entire simulation.
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Figure 6.2: Simulation of interconnection using a controller without neuromodula-
tion.

74 Chapter 6: Simple interconnection of controller-pendulum systems



Neuromorphic control of embodied central pattern generators

6.3 Independently neuromodulated system
The previous section shows that interconnecting controllers is possible for controllers
with static parameters. The next step is to reintroduce neuromodulation to allow
amplitude control. Because the oscillation frequency depends on the amplitude, the
target amplitude should be the same for both controllers. Otherwise, opposing two
signals with different frequencies is impossible to achieve well. The challenge lies
in the mismatch between the values of gs− for both controllers. To avoid conflict
between disturbances linked to the realization of the opposition of phase and neuro-
modulation, the value of the neuromorphic gain dgs− is lowered to dgs− = 0.1 SV−1.
This limits the speed of neuromodulation and allows time for the network to stabi-
lize.

Figure 6.3 contains the simulation of the interconnected neuromodulated con-
troller. It is clear that the system manages to find a steady state in which the values
of gs− for both controllers remain very close. Looking at the zoom at the end of the
simulation, the phase opposition of the pendulum is clearly realized but seems less
perfect than in the not neuromodulated case. However, the smaller value of gs−  in
this cases likely plays a role in the difference in behavior. A smaller burst length
may render opposition more difficult. Finally, independent neuromodulation setting
gs− to different values for each controller may also prevent perfect opposition due
to a break in symmetry.

Looking at the entire simulation, it is interesting to see that phase opposition
is present during neuromodulation. This shows that the desired spatiotemporal
relationship is compatible with the amplitude control.

6.4 Globally neuromodulated system
The previous section showed that coupling controllers with neuromodulation was
somewhat more difficult. This may be due to neuromodulation breaking the sym-
metry between the controllers. Indeed, the motor neurons of both controllers end
up with different gs− values leading to a potentially more difficult control.

It then becomes quite interesting to observe the effect of restoring this symmetry
by forcing a global gs− value. To achieve this, the outputs of the four sensory
neurons are fed to the same integrator, and the resulting gs− is applied to the four
motor neurons. This amounts to the same neuromodulation loop but on a global
scale. Obviously, keeping the independent gs− would be better because pooling
them destroys the capacity of local control. Nevertheless, possible improvements in
performance from this change must be studied.

Figure 6.4 displays the simulation of the system with global neuromodulation.
Compared with local neuromodulation, the first difference is the rise time of gs−
which  is faster because the integrator combines the changes of two sets of sensory
neurons. Looking at the zoom at the end of the simulation, it appears that pooling
the gs− did not improve the opposition. This indicates that this imperfection lies
deeper in the model rather than being caused by a slight break in symmetry. There
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is a lone jump in gs− near the end, but it is probably due to a random fluctuation.
The simulation points toward the pooling of gs− being unnecessary. This is

nice because it means that forfeiting the local control does not yield significant
performance improvements. This agrees with neuromorphic principles.

(a) Entire simulation.
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Figure 6.3: Simulation of interconnection using a controller with local neuromodu-
lation.
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(b) Zoom on the last part of the simulation.
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Figure 6.3: Simulation of the interconnection using a controller with local neuro-
modulation. (cont.)
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(a) Entire simulation.
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Figure 6.4: Simulation of the interconnection using a controller with global neuro-
modulation.
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(b) Zoom on the last part of the simulation.
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Figure 6.4: Simulation of interconnection using a controller with global neuromod-
ulation. (cont.)
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Chapter 7

Conclusion

Coming from biology, this thesis proposes a controller that can control a pendulum
to generate oscillations at a given amplitude. This work began with the definition
of a neuronal model capable of performing the most common neuronal behaviors,
i.e., spiking and bursting. The analysis of this model highlighted the distinct ef-
fect of certain parameters on certain metrics. Building on this understanding of
neuronal behavior, a single-neuron controller was built and tested using multiple
sensory feedback and showed great performance. The model was modified to a sec-
ond motor neuron, and both neurons were connected to form a half-center oscillator
capable of symmetrical oscillation. Finally, the model was extended once again to
add neuromodulation of the parameters of the neuron to control the oscillation am-
plitude. This led to an analysis to find a good compromise between the speed of the
control and its precision.

The final controller was tested and showed that it could follow a dynamic target
amplitude relatively quickly. Yet, the controller shines in its way of changing the
amplitude, it never requires forcing the pendulum to swing lower by activating
earlier. Rather, it organically changes the amplitude by modulating the energy
transmitted while keeping the actuation near the optimal timing. In addition to
this, a proof of the possibility of interconnection was made in the design of a simple
network of pendulums to achieve a given spatiotemporal pattern.

This controller is an interesting addition to the field of control. Its reliance on
excitable systems distinguishes it from classical controllers. This design approach
has already shown that it can be easily scaled or synchronized. More than its
performances,  what is impressing is that the controller achieved those performances
without excessive tuning.  This shows the stability of the controller with respect to
the perturbation of the different parameters.

The use of CPG in control is an emerging field, and much research is being con-
ducted around the world. Works of Suzuki et al. [32], Saputra et al. [24], Dzeladini
et al. [9], Akkawutvanich et al. [1] have investigated the use of CPGs to create con-
trollers for biped locomotion. Luo et al. [19] showed that using a CPG controller,
they managed to improve the ability of a quadruped robot to withstand impact
from the side. Others have designed animal-like robots that use CPG for motor
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control. Wu and Ma [34] have managed to design a robotic snake while Xie et al.
[35], Jiayong Chen [15] have both focused on designing fishes that are able to swim.

However, the work done here has only opened the door to neuromorphic control,
and many questions are waiting to be answered.

The performance of the controller was discussed only compared with itself and
some natural control criteria. It would be natural to compare this controller with
more classical approaches such as a PID. This would help set both control schemes
apart and identify their weaknesses and strengths. In essence, this analysis would
show the usefulness of this controller over existing controllers.

Another interesting addition to this work would be to extend the interconnection
of multiple pendulum controllers to generate other more complicated gait or spa-
tiotemporal patterns. Another step would be to try to switch dynamically between
them smoothly to avoid unnatural and abrupt transitions. This would show that
the model can be used in the real world in situations that require multiple modes
of control.

In addition, the controller proposed here relies heavily on strong sensory feed-
back. An interesting challenge would be to use weak feedback but try to use neu-
romodulation to adapt the natural frequency of the half-center oscillator to match
the frequency of the pendulum. Keeping the already existing neuromodulation for
amplitude control in this system would make this feat more challenging.

Effective and energy-efficient control schemes are in demand to reduce consump-
tion without compromising quality. The field of neuromorphic engineering aims to
provide these benefits by taking inspiration from the most efficient data processing
devices known, biological systems. This study takes a step toward fully neuro-
morphic design by using a completely analog controller that receives direct sensory
feedback and can generate direct motor actions.
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Appendix A

Signal Analysis Algorithms

This appendix contains pseudocodes of the algorithms used to compute the different
metrics used throughout this thesis. All of them are custom algorithms designed
specifically for the thesis and implemented in Matlab.

The algorithms described directly show the analysis of the signal.  However, for
all of them, the beginning of the vectors is cut from a certain time value to avoid
analyzing transient effects. This was not included in the algorithms because it is a
preprocessing step and not part of the logic. The index of the vectors starts at 1.

A.1 Neuronal signal analysis
Algorithm 1 is used to extract information from a neuronal trace. It can handle and
classify all major neuronal behaviors (silence, spiking and bursting) and even make
some inner distinctions (hyperpolarized or depolarized silence and normal or plateau
bursting). The algorithm works by first classifying the behavior and then extracting
the desired information by leveraging some assumptions about the behavior. The
main idea is to segment the signal into positive and negative components. By
counting the total number of pieces, the algorithm can distinguish whether the
neuron is silent or not. If it is not silent, it analyzes the distribution of the length of
the negative pieces to determine whether the neuron is bursting or spiking. Finally,
if it is bursting, it analyzes the positive pieces to determine whether the bursting is
normal or has a plateau. Not all paths of execution define all possible return values.
To avoid any problem, it is assumed that the return values are initialized to NaN
before execution.

A.2 Oscillation analysis
Algorithm 2 is used to analyze the oscillation of the pendulum. It extracts the
dominant frequency to characterize the oscillation frequency and the amplitude of
the oscillation to quantify its quality. This is the simplest algorithm of the list.
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Algorithm 1 Neuronal Signal Analysis
Require: Vectors t and V of length L

1: Compute all times when V goes from negative to positive and store in cup
2: Compute all times when V goes from positive to negative and store in cdown
3: if length of cup or cdown < 3 then . Silent Neuron
4: if mean of V < 0 then
5: Type ← ”hyperpolarized”
6: else
7: Type ← ”depolarized”
8: end if
9: else

10: Compute lengths of positive periods from cup and cdown and store in λ+

11: Compute lengths of negative periods from cup and cdown and store in λ−
12: Cluster λ+ in two groups and compute their mean value in µ+↓ and µ+↑
13: Cluster λ− in two groups and compute their mean value in µ−↓ and µ−↑
14: if µ−↑ > 4µ−↓ then . Bursting
15: Compute indexes of the elements of λ− in the ↑ cluster and store in bgap
16: Remove partial burst from start and end of V
17: if µ+↑ > 4µ+↓ then . Plateau Bursting
18: Type ← ”plateau”
19: plen ← µ+↑
20: else
21: Type ← ”bursting”
22: end if
23: Remove first element of λ+ if length of λ+ is higher than length of λ−
24: i0 ← bgap [1] + 1 . Get index of the start of the first full burst
25: imax ← min (len (λ−) , (λ+))
26: Create vectors bcycle, bsize, bduty, spikes and scycle
27: n← 0
28: ct ← 0
29: tmp← λ+ [i0 − 1]
30: for all i ∈ {i0, ..., imax} do
31: n← n+ 1
32: if i ∈ bgap then
33: bcycle ← bcycle ++ [ct + tmp + λ− [i]] $
34: bsize ← bsize ++ [ct + tmp]
35: bduty ← bduty ++ [(ct + tmp) / (ct + tmp + λ− [i])]
36: spikes← spikes ++ [n]
37: scycle ← scycle ++ [ct/ (n− 1)]
38: n← 0
39: ct ← 0
40: tmp← λ+ [i]
41: else
42: ct ← λ− [i] + λ+ [i]
43: end if
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Algorithm 1 Neuronal Signal Analysis (cont.)
44: end for
45: finter ← inverse of mean of bcycle
46: blen ← mean of bsize
47: D ← mean of bduty
48: nspikes ← mean of spikes
49: fintra ← inverse of mean of scycle
50: else . Spiking
51: Type ← ”spiking”
52: Remove first element of λ− if length of λ− is higher than length of λ+

53: Remove partial spike from start and end of V
54: imax ← min (len (λ−) , (λ+))
55: λtot ← λ− [1 : imax] + λ+ [1 : imax]
56: fintra ← inverse of mean of λtot
57: D ← mean of λ+/λtot
58: end if
59: end if
60: V ← min (V, 0)
61: P ← mean of V
62: return Type, P , nspikes, D, fintra, finter, blen, plen

Algorithm 2 Oscillation Analysis
Require: Vectors t and θ of length L

1: Compute FFT of θ and store in fvec
2: Find the frequency of the maximum value of fvec and store in f
3: R← max (θ)−min (θ) . Range of oscillation
4: return f , R

A.3 Modulation analysis
For this part the algorithm should start after a period of stabilization with a different
θref to guarantee good results. Algorithm 3 is used to analyze the modulation of
gs−. It computes three values, the time when the modulation stabilizes or the rise
time, and the mean and standard deviation of the amplitude of the oscillations
after stabilization. The three values indicate that there are two possibilities for
stabilization. Either the modulation stops and the system falls into a constant
amplitude or the modulation never stops and the system oscillates constantly around
the desired amplitude. The algorithm handles both cases. Finally, there exists
another less important possibility, the final time of the simulation is too small and
the system has not yet reached the steady state. This should be seen as a degenerate
case, and its treatment is not important.
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Algorithm 3 Modulation Analysis
Require: Vectors t, θ, θ̇, vd and vu of length L

1: Compute when vd last changes sign and store it in td
2: Compute when vu last changes sign and store it in tu
3: tn ← max (td, tu) . Contains the time of the last change in the gs− parameter
4: for all i ∈ {2, ..., L} do . Compute value and time of the peaks in amplitude
5: if sign(θ̇ [i− 1]) 6= sign(θ̇ [i]) then
6: Compute tint, the linear approximation of the time where θ̇ = 0
7: Compute θint, the linear approximation of the value of θ at tint
8: Append tint to tvec
9: Append |θint| to θvec

10: end if
11: end for
12: Compute when θint first crosses the desired amplitude and store it in tamp
13: if tamp < tn then . Amplitude is oscillating
14: trise ← tamp
15: µA ← mean of θvec where tvec ≥ tamp
16: σA ← SD of θvec where tvec ≥ tamp
17: else . Amplitude is stable
18: trise ← tn
19: µA ← mean of θvec where tvec ≥ tn
20: σA ← 0
21: end if
22: return trise, µA, σA
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