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Introduction

The resolution of a sequence of linear problems with different right-hand sides arises in
various physics applications. While the resolution of such a sequence is easily handled by direct
solvers through the reuse of factorization, the same cannot be said for iterative methods. In
domain decomposition methods, solving an interface problem is crucial to attain a global
solution. The resolution of this problem can leverage matrix-free approaches, including certain
iterative methods, to enhance the overall efficiency of the method. Therefore, when addressing
challenges like full waveform inversion using domain decomposition, the necessity emerges for
an efficient resolution through iterative methods of a sequence of problems with varying right-
hand sides. This would then significantly reduce computational load of the inversion. In [1],
potential is shown in using information from diverse problem resolutions with the Orthodir
iterative method. Thus, this work focuses on reusing information during the resolution of
linear problems with varying right-hand sides, using different Krylov iterative solvers.

From this perspective, Chapter 1 introduces the integration of the full waveform inversion
framework into the domain of subsurface tomography. This methodology necessitates address-
ing wave propagation, and the mathematical foundation to tackle such a challenge is presented.
The necessity to resolve a series of problems for conducting an inversion is unveiled, along with
the associated formulation of these problems. Subsequently, details concerning the numeri-
cal resolution of such problems are provided, leading to the transformation of this sequence
into linear problems with distinct right-hand sides. Following this, the domain decomposi-
tion method is introduced, accompanied by an exploration of the motivations underlying the
adoption of iterative methods.

Then, in Chapter 2, a comprehensive presentation of Krylov subspace iteration methods
is provided, with a specific focus on minimization solvers. This encompasses three types of
solvers: the GCR, GMRES, and SGMRES methods. Additionally, the concept of residual
based algorithms is introduced, leading to variations in certain algorithms. Furthermore, the
key characteristics of these solvers are presented and compared. This will offer guidance on the
preferable methods for addressing a specific linear problem, while also providing the essential
knowledge for the upcoming chapter.

In Chapter 3, the extension of the Krylov iteration method is presented to enable the
efficient resolution of sequences of linear problems with different right-hand sides. The presen-
tation of augmentation methods will then be introduced to incorporate additional information
for improving the convergence of iterative methods. Subsequently, the application of these
augmentation methods to the reuse of information from preceding resolutions, referred to as
subspace recycling techniques, will be discussed. The comparison of the different iterative
methods under consideration will once more be carried out. Additionally, a method for select-
ing only a portion of the reused information will be introduced, with the goal of reducing the
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Tim Gabriel INTRODUCTION

storage requirements of the methods.

In Chapter 4, the practical application of subspace recycling iterative solvers is explored
within the context of two-dimensional wave scattering problems using domain decomposition.
The impact of the subspace recycling method will be presented, along with an examination
of how different simulation parameters affect the results. Additionally, experiments involving
partial subspace recycling will be conducted, employing various selection strategies. Lastly, the
implications of choosing different iterative methods will be discussed in relation to the domain
decomposition framework.
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Chapter 1

Full waveform inversion context

Scattering of waves is an omnipresent phenomenon that occurs when waves encounter
heterogeneities in physical systems. These heterogeneities can take many forms, such as ob-
stacles, boundaries or fluctuations in the medium’s properties. When waves encounter these
variations, they interact with them, leading to possible changes in the wavefield direction,
amplitude, phase and polarization. These changes can result in complex wavefields that con-
tain valuable information about the properties of the medium and the heterogeneities within
it. Scattering waves take place with mechanical waves, electromagnetic waves and wavelike
particles. Therefore, their applications are diverse and span multiple fields of science and
engineering, such as astronomy, material characterization, medical imaging, microscopy, etc.

In geophysics, scattering waves are of particular interest due to their essential role in the
imaging of subsurface geological features. Using excitation sources and receivers at the sur-
face, the information in the resulting waveform can be extracted and analyzed to obtain a high
resolution representation of the subsurface structures. More generally, waveform tomography
corresponds to the inversion of a wave scattering problem to image an object or a region of
interest in a non-intrusive manner. The inversion is achieved by minimizing the mismatch
between the measured data and the outcomes from an approximate modelization of the un-
derground. This optimization requires a significant amount of wave propagation simulations
referred as the forward problem. The development of full waveform inversion (FWI) and the
increased computational capabilities have allowed waveform tomography with unprecedented
resolution and accuracy, making FWI a popular tool in many areas including geophysics.

However, the high computational cost and lengthy processing times required for FWI
remain a challenge and ongoing efforts are focused on developing more efficient algorithms
and techniques to speed up the inversion process and improve the imaging quality. In order
to achieve high-performance inversion, it is vital to effectively manage the forward problems
that arise during the inversion process. These forward problems involve diverse source terms,
and here the focus will be on finding the time harmonic solutions to these wave scattering.
The resolution of these problems will typically be achieved using a combination of the finite
element method and the domain decomposition method. In addition, some information could
be reused from one resolution to another, which is the subject of the current work.
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Tim Gabriel CHAPTER 1. FULL WAVEFORM INVERSION CONTEXT

1.1 Full waveform inversion

In the doctoral dissertation by X. Adriaens [2], an extensive examination of full waveform
inversion is presented across three distinct fields: acoustic, electromagnetic, and elastodynamic.
This current study builds upon this work, with a specific focus on the acoustic aspect in the
context of marine seismology surveys, i.e. the imaging of geological structures under the seabed
(Figure 1.1). However, the extension to other fields and applications would be natural.

• emitter
• receivers

Figure 1.1: Representation of a marine
seismology survey.

The initial and crucial phase of the full wave-
form inversion is to gather data from wave scatter-
ing at the surface of the targeted domain. Sound
waves are produced through excitation sources
and recorded by hydrophones. Both the emission
and reception equipment are positioned in the wa-
ter above the seafloor, necessitating precise place-
ment and calibration to effectively capture exten-
sive information about the medium’s response to
the excitations. The effectiveness and precision of
the FWI procedure are significantly impacted by
the quality of the acquired data. Therefore, this
first stage requires special considerations.

The next stage is to find an initial approximate model of the subsurface structures by the
means of their physical properties. This model corresponds to a discretization of the studied
domain with the associated physical properties, such as the velocity of acoustic waves. It is
typically achieved by using existing knowledge of the geology and geophysics of the area, as
well as relying on previous exploration reports with other imaging methods, e.g. traveltime
tomography [3]. This approximate model is then used to generate synthetic waveforms by
solving the wave scattering problem. The synthetic and observed waveforms are then compared
and their mismatch is quantified using an objective function, e.g. the squared differences of the
wave fields at the receivers. This function is then minimized through an iterative optimization
process over the model parameters. At each iteration, the model is refined and the fit between
the synthetic and observed waveforms is improved. Hopefully, after enough iterations, the
model gives an accurate representation of the physical properties.

The difficulties remains in the optimization process since the misfit function must be appro-
priate for wave scattering fields, the solution might not be unique and nothing can guarantee
that it corresponds to the actual field. For more information about this optimization, see
[2]. To facilitate the optimization process, local optimization techniques will be used. These
methods require both the present value of the objective function and the related gradients
with respect to the parameters of the model. This approach aims then to enhance the misfit
function, denoted as J (m), in relation to these model parameters m. The optimization process
can then be formulated as the search for optimal parameters m∗ such that

m∗ = argmin
m

J (m), (1.1)

at least locally. Therefore, it is essential to have the capability to compute not only the
misfit function but also the sensitivity of this function in response to variations in the model
parameters. Fortunately using the adjoint state method (see Section 1.2.3), the sensitivity can
be easily computed by solving adjoint problems which are similar to the direct wave scattering
but with different source terms. Altogether, one forward problem involves computing the value
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and the sensitivity of the misfit function by resolving one direct and one adjoint problem per
emitter and per frequency. Therefore, the most computationally expensive part of the full
waveform inversion process is solving wave scattering problems with different source terms,
and this explains the need for efficient resolution techniques.

1.2 Forward problem

The aim of a forward problem is to compute the value and the sensitivity of the misfit
function by solving wave propagation problems. These can be carried out in the time domain,
however research in [4] suggests that the frequency domain is better suited for tomographic
inversion. One of the key advantages of time-harmonic representation is that wave propagation
can be modeled efficiently for multiple sources problems. Another advantage of inversion in the
frequency domain, is the possibility to limit the number of forward models to a reduced number
of frequency components without affecting significantly the accuracy of the image. On top of
a time-harmonic representation of wave scattering, appropriate boundary conditions must be
imposed. Indeed, numerical simulations are typically conducted in a finite space and therefore
the studied domain is restricted. The boundary conditions are important because they ensure
that the simulated system behaves in a physically realistic manner. Once the direct scattering
problem is defined, the adjoint state method can be used to derive the adjoint problem and
then compute efficiently the sensitivity with respect to the parameter variations.

1.2.1 Time-harmonic wave propagation

The wave equation provides a mathematical description of how waves propagate through
different media. It captures the complexity of wave scattering, including the effects of reflection,
refraction, diffraction and interference. Solving the wave equation enables the determination
of how the wave evolves in both space and time. It is therefore a powerful tool for analyzing
and understanding wave phenomena.

In the case of acoustic wave propagation, this equation takes the form of a partial dif-
ferential equation that describes the behavior of a complex acoustic field U(x, t) representing
the acoustic pressure (or shear) and phase of the wave. It can be derived for liquid and solids
from the Newton’s second law, providing elastic behavior, etc [5]. The wave equation relates
then the second-order time and space derivatives of the acoustic field U with source terms
represented by a function F and in the constant density approximation it writes as

∂2U(x, t)

∂t2
− c2(x)∆U(x, t) = F (x, t), (1.2)

where ∆ is the Laplace operator and c(x) is the speed of the wave propagation which is a
property of the medium. All sources can be decomposed as a sum of harmonic contributions
and using the Fourier transform this wave equation can be expressed in the frequency domain
as

∆u(x, ω) + ω2s2(x)u(x, ω) = −s2(x)f(x, ω). (1.3)

This last equation is the Helmholtz equation and it gives the spatial representation of the wave
through the complex field u(x, ω) with the angular frequency ω. The slowness of the medium
is defined as s(x) = 1/c(x), while the associated wave number is given by k(x) = ωs(x).
The sources of excitation are represented as sources terms f(x, ω) for each angular frequency
ω. Once the Helmholtz equation (1.3) has been solved, the time-dependent solution of wave

5



Tim Gabriel CHAPTER 1. FULL WAVEFORM INVERSION CONTEXT

propagation can be obtained by combining the spatial and temporal components of the wave
for all angular frequencies:

U(x, t) =

∫
ω
u(x, ω)e−iωtdω. (1.4)

Here, the symbol i denotes the imaginary unit (i =
√
−1). Therefore, in the context of acoustic

waves, the pressure field will be given by the real part of this field U(x, t).

1.2.2 Boundary conditions

The choice of boundary conditions (BC) is a critical aspect when solving wave propagation
problems. In many cases, the boundaries of the computational domain do not correspond to
physical boundaries of the system, but rather delimit the region of interest for the simulation.
Therefore, the choice of BC must be appropriate to accurately represent the physical behavior
of the waves at the domain boundaries. In wave propagation, the presence of a boundary can
introduce reflections of incident waves. The resulting solution may no longer correspond to
the physical problem being studied. Therefore, it is important to prevent too much reflections
of waves from the fictitious boundaries. To address this issue, various types of absorbing
boundary conditions (ABC) have been developed to minimize or eliminate reflections from the
boundaries.

One commonly used ABC for wave propagation problems is the Sommerfeld radiation
condition [6], which models the behavior of waves in unbounded space by requiring that the
wave field satisfy a certain decay rate at infinity. This condition effectively “absorbs” the out-
going waves at the boundaries and prevents them from reflecting back into the computational
domain. For two dimensions, it is expressed as

lim
r→∞

√
r
(
∇ru− iωsu

)
= 0. (1.5)

where r represent the distance from the origin and ∇r is the directional derivative with respect
to r. To use this boundary condition on a finite size domain, one can approximate it by
applying the condition on the boundary instead, thus defining a Sommerfelt-like absorbing
boundary condition:

∂nu− iωsu = 0 on the boundary, (1.6)

where ∂n = n · ∇, n is the outward normal vector to the domain and ∇ is the gradient op-
erator. This Sommerfeld-like ABC is an efficient and easy to implement absorbing boundary
condition. Higher order approximation of (1.5) on the boundary exist [7, 8] and other solu-
tions such as perfectly match layers [9, 10] have been developed to replicate this absorbing
boundary condition. These can be used to reduce even more the unwanted reflections if they
lead to nonphysical results. The simple Sommerfeld-like absorbing boundary condition will be
considered here.

1.2.3 Adjoint state method

The adjoint state method is commonly used in optimization and inversion problems to
efficiently compute the sensitivities of the objective functions with respect to the parameter
variations. For each objective function, adjoint variables are found by solving an adjoint
problem. Then, using the state and the adjoint variables together, it is possible to easily
compute the sensitivity of the corresponding objective function with respect to any possible
parameters variations. A general derivation of the adjoint state methods has been conducted
for different time-harmonic scattering problems in [11] and similar notations will be used.

6
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In the context of waveform tomography, the model parameters m correspond to the slow-
ness squared s2(x) of the wave, but the general notation m is kept. Also, the misfit function
for a given emitter e is defined by the difference between the simulated field ue and the data
collected by the receivers de,r at the positions of the receivers xr. For an angular frequency ω,
a typical objective function J for the inversion is given as

J (m) =
1

2

∑
e

∑
r

|ue(xr)− de,r|2 =
∑
e

He(m). (1.7)

where the dependance on the model parametersm is due to the state fields ue. The optimization
procedure remains the same for all emitters since each one corresponds to a state field ue and
an objective function He. Therefore, the optimization for only one emitter will be considered
in the following.

For one emitter, the state field u is found by solving the Helmholtz equation (1.3), on the
considered domain Ω with appropriate boundary conditions (1.6) on the domain boundary ∂Ω.
If the excitation source is situated at the position of the emitter xe and is of amplitude c2(xe),
the direct problem writes as{

Fe(ue,m) = ∆ue + ω2s2ue = −δ(x− xe) in Ω,

Be(ue,m) = ∂nue − iωsue = 0 on ∂Ω,
(1.8)

where Fe and Be are compact notations for bulk and boundary operators and δ is the delta
Dirac function defined on the domain. Then, the sensitivity of the objective function He can
be expressed as the directional derivative or Gâteaux derivative:

{DmHe(m)}(δm) = lim
ϵ→0

He(m+ ϵδm)−He(m)

ϵ
∀δm, (1.9)

where Dm is the derivation operator w.r.t. the parameters and δm is a given perturbation
of the parameters. A more compact representation is possible using a Fréchet-Wirtinger’s
gradient kernel, or simply gradient kernel, denoted j′ and defined as

{DmHe(m)}(δm) = Re⟨j′e, δm⟩ ∀δm, (1.10)

where Re⟨., .⟩ is the real part of the inner product in the parameter space. Indeed, a gradient
kernel is an element of the parameter space where each value is the variation of He for an
arbitrary small variation of the corresponding parameter. The aim will therefore be to find
such gradient kernels.

Direct approach

The direct approach consist in using the definition of the objective function (1.7) to find
its directional derivative with respect to m. Since the misfit function is a function of the
parameters only through the state field ue, the sensitivity is{
DmHe [ue(m)]

}
(δm) = {DuHe}(δue) =

1

2

∑
r

[(
ue(xr)− dr

)
δue(xr) +

(
ue(xr)− dr

)
δue(xr)

]
= Re

∑
r

(
ue(xr)− dr

)
δue(xr), (1.11)

where (.) represent the complex conjugate. The variation δue(xr) can be decomposed using
the identity δue(xr) =

∫
Ω δueδ(x − xr)dx, where the second δ is a delta Dirac function. The

7
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sensitivity becomes

{DmHe}(δm) = Re

∫
Ω

∑
r

(
ue(xr)− dr

)
δ(x− xr)δuedx (1.12)

Similarly to the definition of a gradient kernel in (1.10), the gradient kernel h′e can be defined
but relative to the variation of the state field δue:

{DmHe}(δm) = Re⟨h′e, δue⟩ with h′e =
∑
r

(
ue(xr)− dr

)
δ(x− xr). (1.13)

Unfortunately, in order to recover the sensitivity relative to the parameter variation δm,
the corresponding variation of the state field δue must be computed. This is done by solving,
for δue, the system resulting from the total variation of the direct problem (1.8) in the direction
δm: {

{∂ueFe(ue,m)}(δue) = −{∂mFe(ue,m)}(δm),

{∂ueBe(ue,m)}(δue) = −{∂mBe(ue,m)}(δm).
(1.14)

Then, for each emitter, there are as much systems to solve as there are parameters. This is a
huge amount of computation since the parameters are here the slowness squared of the wave
s2(x) defined on each element of the discretization of the domain.

Adjoint approach

On the other hand, the adjoint method is based on the definition of an adjoint field u† and
the associated adjoint operator ∂†

uF(u,m) such that the following relationship is respected:

Re
〈
u†, {∂uF(u,m)}(δu)

〉
= Re

〈
{∂†

uF(u,m)}(u†), δu
〉
+
[
u†, δu

]
∂uF

, (1.15)

where
[
u†, δu

]
∂uF is a boundary term which vanishes since the objective function does not

depend on the boundary, see [11]. The adjoint operator is then ∂†
uF = ∂uF and similarly on

the boundary operator ∂†
uB = ∂uB. Also, the adjoint field u† is defined as the solution to{

{∂†
uF(u,m)}(u†) = h′ in Ω,

{∂†
uB(u,m)}(u†) = 0 on ∂Ω.

(1.16)

Using the definition of the adjoint state field in combination to the adjoint operator, the
sensitivity given in (1.12) becomes

{DmH}(δm) = Re⟨h′, δu⟩ = Re⟨{∂†
uF}(u†), δu⟩

= Re
〈
u†, {∂uF}(δu)

〉
= −Re

〈
u†, {∂mF}(δm)

〉
.

(1.17)

The partial derivative of the bulk operator ∂mF with respect to the parameter m is straight-
forward by making use of the operator definition in (1.8). Eventually, the sensitivity can be
expressed by a gradient kernel j′ as

{DmH}(δm) = −Re
〈
u†, ω2uδm

〉
= Re

〈
j′, δm

〉
with j′ = −ω2uu†. (1.18)

If all emitters are considered again, it is then possible to efficiently compute the sensitivity
of the objective function J for any parameter variation δm = δs2(x). Firstly, the state field
ue for each emitter must be found by solving the direct problems (1.8) represented as{

∆ue + ω2s2ue = −δ(x− xe) in Ω,

∂nue − iωsue = 0 on ∂Ω.
(1.19)

8
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Secondly, the complex conjugate of the adjoint state field u†e must be found by solving the
adjoint problems (1.16) represented as{

∆u†e + ω2s2u†e =
∑

r

(
ue(xr)− dr

)
δ(x− xr) in Ω,

∂nu
†
e − iωsu†e = 0 on ∂Ω.

(1.20)

Thirdly, the complex conjugate of the gradient kernel j
′
tot is computed and finally the sensitivity

to any parameter variation δs2 can be found using

j
′
tot = −ω2

∑
e

ueu
†
e and {Ds2J }(δs2) = Re

〈
j′tot, δs

2
〉
. (1.21)

In the end, by applying the adjoint state method, the waveform inversion only requires the
resolution of one direct problem and one adjoint problem per emitter, for each frequency
considered. This makes the adjoint state method a powerful tool for inversion. Also, both the
direct and adjoint problems are wave propagation problems and the only difference between
them lies in the sources terms. Therefore, efficient methods can be used to take advantage of
solving multiple scattering wave problems with different sources.

1.3 Numerical simulation

The essence of full waveform inversion is centered around effectively resolution of wave
scattering problems. For these resolutions, numerical simulations will be employed given their
capability to handle nonlinear behavior and accommodate complex geometries. The finite ele-
ment method is commonly employed approach to solve boundary value problems. By applying
an appropriate meshing technique to the computational domain, the finite element method
transforms the original problem into a square system of linear equations. This system is repre-
sented by a linear sparse matrix problem and must be solved by a direct or iterative method.

The exploration of variances between direct and iterative solvers is undertaken in Chap-
ter 2. However, the primary characteristics can be outlined as follows. Direct methods en-
counters the difficulty of fill-in when dealing with sparse matrices, which leads to significant
memory usage to handle large systems. However, they offer the benefit of quickly solving small
systems and are also well-suited for efficiently handling problems with multiple right-hand
sides. Conversely, iterative methods might require less memory storage at the cost of a po-
tentially slower resolution due to the possible large number of iterations required to converge.
Additionally, iterative methods are generally not effective when dealing with systems involving
multiple right-hand sides, particularly when these right-hand sides are not all available simulta-
neously. Indeed, the entire iteration process must be carried out for each individual right-hand
side problem if no information is shared between the resolutions. In Chapter ??, methods for
enhancing the convergence of the iterative approach applied to a sequence of right-hand sides
will be explored. This approach enables local resolutions of the problem through a rapid direct
method while addressing a larger global problem using an iterative solver. Another impor-
tant advantage of the domain decomposition method is its ability to capitalize on distributed
computing.

1.3.1 Finite element method

The finite element method (FEM) is a powerful numerical technique to solve boundary
value problems, i.e. partial differential equations associated with boundary conditions. A
detailed description of this method is provided in [12]. In accordance with Section 1.2, for
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a given angular frequency ω, the task at hand is to solve the Helmholtz equation (1.3) on a
domain Ω. The different source terms are represented by f(x, ω) and the absorbing boundary
condition (1.6) is applied on the domain boundary ∂Ω. Using test functions u′(x) defined in
Sobolev space H1(Ω) = {u′ ∈ L2(Ω) such that ∇u′ ∈ (L2(Ω))3}, the problem can be rewritten
in its weak formulation: Find u ∈ H1(Ω) such that for all u′ ∈ H1(Ω):

−
∫
Ω
∇u′ · ∇u dΩ+

∫
Ω
u′ω2s2u dΩ+

∫
∂Ω

u′iωsu d∂Ω = −
∫
Ω
u′s2f dΩ.

(1.22)

Next, the domain is discretized into finite elements and shape functions are chosen with
compact support. In addressing high-frequency problems characterized by oscillating solu-
tions, the utilization of high-order basis functions becomes imperative. Among the potential
approaches, hierarchical basis functions stand out as a viable choice [13]. This discretization
process enables the approximation of the solution u(x) through a linear combination of shape
functions Ni(x) as u(x) =

∑
i qiNi(x) where qi are the corresponding coefficients. Also, the

shape functions can be used as test functions u′(x), thus leading to the Galerkin method.
This allows the weak form (1.22) to be expressed as a square system of linear equations where
the unknowns are the coefficients qi. Providing an appropriate definition of the system ma-
trix K and the right hand side vector g, see [12], the problem reduces to finding the vector
q = [q1 q2 · · · ]T satisfying the square linear system Kq = g. Since the shape functions have
compact support, the resulting matrix K is sparse. This linear system is then solved using
direct or iterative methods, depending on the size of the matrix.

However, applying the finite element method directly on large problems, such as high
frequency wave scattering, can result in solving huge sparse systems. Therefore, direct solvers
can not be used as they don’t scale well. On the other hand, iterative solvers are not a satisfying
solution neither since they may converge too slowly or even diverge [14]. In this context, domain
decomposition methods offer an alternative approach to handle large boundary value problems.

1.3.2 Domain decomposition method

The domain decomposition method (DDM) is a numerical technique to solve large-scale
boundary value problems. The method is based on the idea of dividing the computational
domain into a set of subdomains, each of which is solved independently. The solutions obtained
from the subdomains are then coordinated in order to have matching solutions between adjacent
subdomains. Hereafter, the solutions are combined to obtain the solution for the entire domain.
This method enables to leverage the efficiency of direct solvers on small subproblems. Moreover,
the framework of the domain decomposition method allows to easily exploit the power of
distributed computing by solving the subproblems on multiple processors simultaneously. The
problem of matching the subdomains solutions can also be cast into a square linear problem,
however only the matrix-vector product is easily available and therefore iterative methods
handling matrix-free resolutions are required. In this context, the substructured optimized
Schwarz method will be employed, as it has demonstrated its efficacy in addressing time-
harmonic high-frequency wave scattering problems [15]. A comprehensive review of optimized
Schwarz method for time-harmonic wave problems with different transmission conditions is
done in [16] and similar notations will used.

One possibility for the choice of subdomains is to have non-overlaping subdomains such
that adjacent domains only share their interface. The domain Ω is then decomposed in ndom

subdomains Ωi and the boundaries of the subdomains are noted ∂Ωi with i ∈ {0, . . . , ndom−1}.

10
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The domain boundaries are given by Σ∞
i = ∂Ωi∩∂Ω and the transmission boundaries between

subdomains are represented as Σij = ∂Ωi ∩ ∂Ωj for all j ∈ {0, . . . , ndom − 1}. On these
transmission boundaries, the continuity between subdomains is ensured by

∂niui + Sui = ∂niuj + Suj on Σij , (1.23)

where S is a general notation for all possible transmission conditions. This continuity results
in fields gij on the interfaces Σij . If g correspond to all interface unknowns (gij)∀i,∀j , the
volume problem corresponds to a boundary value problem in the subdomain Ωi and is referred
as ui = Vi(f, g): 

∆ui + ω2s2ui = −s2f in Ωi,

∂niui − iωsui = 0 on Σ∞
i ,

∂niui + Sui = gij on Σij , ∀j.
(1.24)

The interface problem match the interface fields such as in (1.23) and it is referred as gji =
Jji(gij , ui):

gji = −∂niui + Sui = −gij + 2Sui on Σij . (1.25)

In the volume problems (1.24), the sources f are referred as physical sources since they directly
come from the definition of the problem. By opposition, the interface fields gij are artificial
sources introduced by the DDM construction.

In order to find a solution to (1.24), both the physical and artificial sources are needed,
however by linearity of the volume problem the solution can be decomposed in ui = vi + ũi
with vi = Vi(f, 0) and ũi = Vi(0, g) in each Ωi. The quantity vi can be computed without the
knowledge of the interface fields. This is not the case of ũi which must be evaluated together
with the interface fields g. It can result in an iterative process which updates these fields at
the nth iteration by

1. Solving the volume problems for ũni with previous interface fields: uni = Vi(0, g
n) ∀i.

2. Finding the interface fields gn+1
ji from the volume solutions and previous interface fields:

gn+1
ji = Jji(g

n
ij , ũ

n
i ) + 2Svi ∀i and ∀j.

If the vector b = (bji)∀i,∀j is defined as the vector of all terms bji = 2Svi on Σij , and A is
the transformation gn → Agn such that (Agn)ij = Jji(g

n
ij , ũ

n
i ) where ũni = Vi(0, g

n), then the
iterative process reduces to

gn+1 = Agn + b. (1.26)

This correspond to one iteration of the Jacobi method applied to the system(
I − A

)
g = b, (1.27)

where I is the identity operator and the dependance on ũi is hidden in operator A. As
suggested in [16] and [15], (1.27) can be solved by any iterative solver. More precisely, the
iterative solver should only use matrix-vector multiplication (matrix-free resolution) because
the explicit construction of the operator I−A would require as much resolutions of ũi = Vi(0, g)
as there are degrees of freedom in g while one matrix-vector product (I −A)g only require one
resolution for ũi. Once the solution for the interface quantities g are found, it is then possible
to obtain the solution for the whole domain u by solving one last time the volume problems:
ui = Vi(f, g).

In [16], a wide variety of transmission conditions is given, but here the simple zero-order
impedance boundary condition will be used: S = −iωs. This condition has the same structure
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as the absorbing boundary condition applied on ∂Ω, hence the notations will be simplified.
To solve the volume and interface problems, the finite element method as described in Section
1.3.1 will be use and thus weak formulations of the problems must be developed. Volume test
functions u′i ∈ H1(Ωi) and surface test functions g′ji ∈ H1(Σij) are accordingly defined for all
i and j. The domain decomposition method can be summarized as

1. Construct the right-hand side b for all bij = 2iωsvi on Σij by solving for the physical
contributions vi = Vi(f, 0) with the volume weak formulation

Find vi ∈ H1(Ωi) such that, for every u′ ∈ H1(Ωi):

−
∫
Ωi

∇u′ · ∇vi dΩi +

∫
Ωi

u′ω2s2vi dΩi

+

∫
∂Ωi

u′iωsvi d∂Ωi = −
∫
Ωi

u′s2f dΩi.

(1.28)

2. Solve iteratively (I − A)g = b by using the matrix-vector product (I − A)gn at the
iteration n. This product is constructed by first solving for ũn+1

i = Vi(0, g
n)

Find ũni ∈ H1(Ωi) such that, for every u′ ∈ H1(Ωi):

−
∫
Ωi

∇u′ · ∇ũni dΩi +

∫
Ωi

u′ω2s2ũni dΩi

+

∫
∂Ωi

u′iωsũni d∂Ωi =
∑
j

∫
Σij

u′gnij dΣij .

(1.29)

and then Agn can be computed using the surface weak formulation Find (Agn)ji ∈ H1(Σij) such that, for every g′ji ∈ H1(Σij) and for all i and j:∫
Σij

g′ji(Agn)ji dΣij = −
∫
Σij

g′jig
n
ij dΣij + 2

∫
Σij

g′jiiωsũ
n+1
i dΣij .

(1.30)

3. The interface fields g are given by the vector x and the final solution, ui = Vi(f, g) for
all i, corresponds to

Find ui ∈ H1(Ωi) such that, for every u′ ∈ H1(Ωi):

−
∫
Ωi

∇u′ · ∇ui dΩi +

∫
Ωi

u′ω2s2ui dΩi +

∫
∂Ωi

u′iωsui d∂Ωi

= −
∫
Ωi

u′s2f dΩi −
∑
j

∫
∂Ωi

u′gij d∂Ωi.

(1.31)

The volume (1.28) (1.29) (1.31) and surface (1.30) weak formulations are solved with direct
solvers and their factorization can be reused.

Using the shape functions as in Section 1.3.1, the interface problem (1.27) can be repre-
sented as a square linear system Ax = b where x correspond to the interface unknowns g, b
to the vector b and A to the operator (I −A). Furthermore, the matrix A will be sparse since
the computation of (gji)∀ j depends on gji, gij and ũi on Σij for all i and j.
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Chapter 2

Krylov iterative solvers

The resolution of square linear system, presented in the matrix formulationAx = b, has led
to the derivation of a wide variety of algorithms. A comprehensive review of various numerical
solvers and preconditioning techniques to address the Helmholtz equation can be found in
reference [17]. This work identifies two distinct categories of solvers: direct and iterative. Each
of these solver categories exhibits distinct advantages and drawbacks. In order to enhance
the capabilities of iterative solvers, this review present multiple preconditioning techniques
adequate for the Helmholtz equation. This enable to cast the considered problem into a form
that is more suitable for numerical resolution. In general, the term “preconditioner” refers
to the application of a transformation to the linear problem. This transformation is typically
represented as the multiplication by a specific matrix, aptly referred to as the preconditioning
matrix. The aim of this multiplication is then to formulate a problem with better convergence
properties when solved with iterative methods. The preconditioning techniques can also refer
to any resolution strategy improving the convergence such as domain decomposition methods,
multigrid methods, etc. The choice of an appropriate preconditioner is itself a challenge and
many solutions have been developed for the resolution of the Helmholtz equation [17], [14],
[18], [19], [20]. As described in Section 1.3.2, the domain decomposition method is used in the
current work. It allows to resolve many smaller subproblems and one interface problem instead
of one large scale wave scattering problem. Thus, the interface problem can be viewed as a
preconditioned form of the whole problem where a direct solver is used in the preconditioning
and an iterative method is used for the resolution.

Direct solvers, or factorization solvers, are based on the factorization of the problem matrix
into a simpler structure in order to easily solve the system. Typically, this structure is a LU
factorization and efficient software packages implementing such methods have already being
developed, for instance the library MUMPS [21] will be used in the experimentations. Direct
solvers have the advantage of being fast and efficient on small problems. Also they provide
the most accurate solution within the limitation of finite precision arithmetic. However, direct
solvers suffer from several disadvantages as they scale badly both in time and storage require-
ments, they can introduce fill-in when applied to sparse matrices, and most importantly here
they need the explicit construction of the problem matrix to proceed. Therefore, direct solvers
will not be used to solve the interface problem but rather the subproblems related to each
subdomain. Another advantage of direct solver is that once the factorization of the matrix is
done, it can be used to solve any problem with a different right hand side. The most expensive
part of the resolution being the factorization then the successive resolutions of problems with
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different right hand sides can be done at a limited cost.

Conversely, indirect or iterative solvers approach linear problems by repeatedly improving
an initial estimation of the solution. As a result, the obtained solution will only be accurate
within a specified tolerance, and it may require a significant number of iterations to reach it.
However, some iterative solvers are able to solve systems in a matrix-free manner which is
crucial for the domain decomposition method as stated in Section 1.3.2. These methods also
have the advantage of requiring only a limited amount of storage. For the resolution of multiple
right hand sides, some information could be reused from one resolution to another, and this
will be the objective of the current work. Specified libraries for iterative resolution already
exist and here the PETSc library [22] will be used since it provides not only the implementation
but also the tools to implement these methods. An in-depth exploration of iterative methods
is conducted in [23] and it will be the basis of all the development in the following. Stationary
methods such as Jacobi, Gauss-Seidel or successive over-relaxation, constitute the simplest
kind of iterative solvers. At each iteration, these involve applying a fixed update rule on the
curent approximate solution. Among these solvers, only the Jacobi method can solve systems
in a matrix-free manner. However, a more general framework for iterative solvers is the Krylov
subspace method which enables the development of more advanced iterative methods.

The conjugate gradient (CG) is a well known Krylov method, first described in [24], that
enables the resolution of linear problems with an hermitian positive definite matrix. It consists
in a short recurrence update algorithm, i.e. it only requires the information of the last iteration
to proceed. Indeed, in each iteration, this algorithm involves computing a new search direction
using the current residual vector and the previous search direction, except for the first one.
This search direction is then used to improve the approximate solution. In order to compute
the right correction to the approximate solution, one matrix vector product must be computed
at each iteration. From CG, many generalizations were proposed to find similar algorithms
for general square matrices. Some were proposed with a long recurrence update leading for
instance to the generalized conjugate residual method (GCR) [25], the generalized minimal
residual method (GMRES) [26], etc. These methods improve the solution by first computing
new search directions, but these depend on all preceding directions instead of only the last
one. Then, the approximate solution is improved by using all these directions to minimize
the residual norm. Here again, only one matrix vector product is needed at each iteration.
The memory requirement however is larger since the search directions and the associated
information corresponding to all the iterations must be saved. Also, to compute a new search
direction, all precedent directions must be used and therefore additional operations will come
with each additional direction. This can lead to a bad scaling of the methods as the number
of search direction increases. Hopefully, the memory and computation requirement can be
limited by simply restarting the algorithms. The restarting strategy can in some cases lead
to a decrease in convergence or even to the stagnation of the method, and therefore more
advanced restarting strategies where developed such as adaptive restarting [27], [28] or other
improved restarting methods as discussed in Section 2.6. Some of these methods illustrate the
possibility to reuse some information about the search directions between restarts to improve
convergence. This information recycling is also possible between the resolutions of systems
with multiple right hand sides. Therefore this will then greatly accelerate the inversion process
and it will be discussed in Chapter 3.

Another kind of generalization of CG which conserves the short recurrence property was
also proposed, such as the biconjugate gradient method [29]. This one replace the orthog-
onal sequence of residuals by two mutually orthogonal sequences, but it no longer provides
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a minimization of the residual. Therefore, the biconjugate gradient is not a monotonically
decreasing method. The biconjugate gradient stabilized method (BICGSTAB) was develop
to improve the convergence of the method [30]. These methods enable the resolution of the
system at low memory and computation requirement since only the last iterate information
is needed. The drawback however is that at each iterations two matrix vector multiplications
are computed, one for each sequence. Therefore, even if the BiCGSTAB might converge in
fewer iterations than GMRES for example, it can take more time since more matrix vector
product are needed overall. Due to the larger number of matrix vector products during the
resolution, the biconjugate gradient stabilized method will not be considered here since the
matrix vector products will be expensive in comparison to the other operations. Recycling
strategy for the biconjugate gradient method and its variations was proposed in [31], but the
memory requirement for each iteration will correspond to store the information about the two
sequences of directions. Therefore, the recycling biconjugate gradient stabilized will not be
more interesting than GCR, GMRES, etc.

2.1 General procedure

The linear problem considered here is assumed to be of size n and therefore is noted as
Ax = b where A is a n by n matrix and b is a vector of size n. Iterative solvers will then use an
initial vector x0 of size n as a first approximation to generate a sequence of improving solutions
{x0,x1, . . . } for this linear problem. The approximate solution at the mth iteration is given
by xm = x0 + δm where δm is the correction to the initial approximation. The corresponding
error vector is defined as em = x − xm, however it is not available since the exact solution x
is the unknown. On the other hand, the residual vector, represented as rm = b−Axm, serves
as an alternative metric for assessing solution precision, and its calculation is feasible. For
Krylov subspace solvers, the correction δm is chosen in the mth Krylov subspace generated by
the problem matrix A and the initial residual r0:

δm ∈ Km = Km(A, r0) = span{r0,Ar0, . . . ,A
m−1r0}.

The correction vector δm must be found in am dimensional subspace and to do som constraints
must be imposed. The typical way of describing these constraints is to impose the orthogonality
of the residual rm to another subspace Lm of m dimensions. By choosing Lm equal to Km, it is
possible to derive methods such as the full orthogonalization method, the conjugate gradient
method (if A is symmetric), etc. However, other methods with slightly better convergence
properties for indefinite matrices A can be derived if the subspace Lm is chosen as AKm. This
choice of orthogonal subspace lead to the minimization the norm of the residual, and therefore
these methods are called minimization methods. Indeed, the correction δm must ensure the
orthogonality of the residual to every vector in the subspace AKm which is equivalent to
minimizing the 2-norm of the residual for δm ∈ Km:

(b−Axm,Aw) = 0 ∀ w ∈ Km ⇔ xm = argmin
x̃m∈x0+Km

∥b−Ax̃m∥, (2.1)

where the operator (., .) represents the inner product between two vectors. In general, the
subspace Lm must not be necessarily defined from Km as it is the case for the biconjugate
gradient methods, for more details see [23]. However, only the minimization methods will be
considered in the present work.

In the case of minimization methods, the approximate solution at themth iteration must be
found such that the correction vector δm is defined in the Krylov subspace Km and the residual
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vector rm is orthogonal to Lm = AKm. Therefore, in order to represent these constraints, one
basis is formed for the subspace Km and it is typically noted as {vi ∀ i = 1, . . . ,m}. In
matrix notation, this basis can be represented as a matrix where each column is a basis vector:
Vm = [v1 · · ·vm]. Since these vectors will be used to improve the approximate solution, they
can then be described as search directions. This allows to write the approximate solution and
the orthogonalization property as

xm = x0 +Vmym and (AVm)∗rm = 0, (2.2)

where ym is an unknown vector of size m representing the correction δm in the basis Vm. Also
the notation (.)∗ corresponds to the conjugate transpose operation and 0 is the null vector.
Another interpretation of the orthogonality property is that the dot product between the
residual vector rm and every search direction multiplied by the matrix {Avi ∀ i = 1, . . . ,m}
must be equal to zero, e.g. (rm,Avi) = v∗

iA
∗rm = 0 for all i from 1 to m. The first relation

of (2.2) implies that the residual can be expressed with respect to the vector ym as

rm = r0 −AVmym. (2.3)

With this representation of the residual, the coefficient vector ym can be computed by exploit-
ing the orthogonalization constraint in (2.2). As it is described in (2.1), the orthogonalization
property can equivalently expressed as a minimization problem. Therefore, the vector coeffi-
cients ym can be found by either solving a square linear problem or by minimizing the norm
of the residual vector:

(AVm)∗AVmym = (AVm)∗r0. ⇔ ym = argmin
ỹm

∥r0 −AVmỹm∥. (2.4)

The definitions and properties of the basis Vm will be important as they will define the subse-
quent methods. In the following, three minimization solvers will be describe using this method-
ology: the generalized conjugate residual method (GCR), the generalized minimal residual
method (GMRES) and the simpler generalized minimal residual method (SGMRES). These
algorithms differ in their implementation, but they exploit the same Krylov subspaces and
all minimize the residual. Therefore, these methods are mathematically equivalent and would
provide the exact same sequence of approximate solutions xn if they were implemented in
infinite precision arithmetic. The main differences between the considered methods are then
linked to their implementation.

2.2 The generalized conjugate residual method

2.2.1 Derivation of GCR and Orthodir

The generalized conjugate residual is a minimization Krylov iteration solver described in
[25] and it is also called Orthomin in some circumstances. A closely related method called
Orthodir, that is sometimes used in the literature as in [1], can be derived with relative ease
from the GCR algorithm and will also be described in the following. In these methods, the
search directions vm are defined A∗A-orthogonal, i.e. such that all the vectors Avm are
orthogonal to each other. Therefore, when considering the square linear problem in (2.4),
the matrix in the left hand side V∗

mA∗AVm will be diagonal. This induces that all the
components of ym are independent from each other and can be computed at each iteration.
The approximate solution (2.2) and the residual vector (2.3) can be simply computed at each
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step using update equations:

xm = x0 +
m−1∑
i=1

yivi︸ ︷︷ ︸
xm−1

+ynvm and rm = r0 −
m−1∑
i=1

yiAvi︸ ︷︷ ︸
rm−1

−ymAvm. (2.5)

To express the value of the coefficient ym, the orthogonality property in (2.2) is used to-
gether with the update rule for the residual vector (2.5). Since the vectors Avm are orthogonal,
the coefficient ym can directly be computed as the ratio of two vector dot products. Also, this
coefficient can be determined either from the initial residual r0 or the last residual rm−1:

ym =
(r0,Avm)

(Avm,Avm)
=

(rm−1,Avm)

(Avm,Avm)
. (2.6)

The second possibility is often preferred in practice because it simplifies the implementation.
Indeed, the initial residual vector r0 will not be need to be stored during the whole resolution.
On top of that, this will lead to a more stable scheme since the coefficient will be computed
with respect to the current residual.

Since the first search vector is defined from the Krylov subspace, it must necessarily corre-
spond to the initial residual up to a scaling factor, for instance v1 = r0. In order to construct
the subsequent dimensions of the Krylov subspace, the next search direction vm+1 can be de-
fined from the last one multiplied by the problem matrix, Avm. This will lead to the derivation
of the Orthodir method. Another possibility is however available. Indeed, the residual vector
rm is a linear combination of vectors from the last Krylov subspace Km and the last search
direction multiplied by the matrix, Avm, as it is represented in (2.5). Therefore, the last
residual vector rm can equivalently be used to define the next search direction vm+1. This sec-
ond method corresponds to the generalized conjugate residual method. Once the next search
direction is defined, it must still be A∗A-orthogonalized with respect to all the search vectors
{vi ∀ i = 1, . . . ,m}. The GCR and Orthodir method are then tightly linked since the resulting
search direction vm+1 will be the same in exact arithmetic. However, the GCR method proved
to be more stable than Orthodir in finite precision arithmetic as it was highlighted in [32]. The
GCR and Orthodir methods can be described by almost the same algorithm as it is done in
Algorithm 1.

Algorithm 1 The GCR (or Orthodir) method.

1: Compute r0 = b−Ax0 then set v1 = r0.
2: for m = 1, . . . until convergence do

3: ym = (rm−1,Avm) / (Avm,Avm) ▷ Update the solution and the residual.
4: xm = xm−1 + ymvm

5: rm = rm−1 − ymAvm

6: vm+1 = rm (or vm+1 = Avm for Orthodir) ▷ Next search direction.
7: Compute βi,m = (Avm+1,Avi) / (Avi,Avi) for i = 1, . . . ,m. ▷ Orthogonalization.
8: vm+1 = vm+1 −

∑m
i=1 βi,mvi

2.2.2 Practical implementation of GCR and Orthodir

The GCR and Orthodir algorithms are often described in a similar manner as in the
Algorithm 1. Nevertheless, the practical implementations of these methods may exhibit sub-
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stantial differences. Indeed, it is possible to adapt these methods to better accommodate the
specifics of the considered system. For instance, the precision of the orthogonalization can
be improved, the number of matrix vector products and vector operations can be reduced as
much as possible, and also the overall storage and computational requirements can be limited.

The main source of numeric errors in Algorithm 1 relies in the orthogonalization of the
search directions on lines 7-8. In fact, it is done using the classical Gram–Schmidt orthogonal-
ization. This process computes the orthogonalization coefficients βi,m from the non-orthogonal
new search direction directly. This allows to compute all these coefficients in parallel, how-
ever it can lead to the accumulation errors and eventually to a loss of orthogonality. A slight
variation of this orthogonalization can be derived to improve the stability of the process. The
idea is to compute the orthogonalization coefficients βi,m from the new search direction al-
ready orthogonalized by the precedent vectors {v1, . . . ,vi−1}. This is known as the modified
Gram–Schmidt orthogonalization. The coefficients βi,m can no longer be computed in parallel,
but the resulting process achieve a greater stability. Some alternatives were also proposed
in order to reduce even more the accumulation of errors, such as reorthogonalization of the
basis or the use of Householder reflections as the orthogonalization process. These approach
ensures the orthogonalization of the vector basis, however they require more operations as it is
described in [23]. Therefore, in practice the modified Gram–Schmidt process is very popular
for its trade-off between computational requirement and numerical stability. The modified
Gram–Schmidt orthogonalization in then used in Algorithm 2.

In most of applications, the most expensive operation of these methods will be the matrix
vector products. This is especially the case in the context of the resolution of the Helmholtz
equation using the domain decomposition method as explained in Section 1.3.2. Indeed, one
matrix vector product requires the direct resolution of the subdomain problems. Even if the
factorization of these problems must be computed only once, the resolution still correspond to
an expensive operation due to the large number of degrees of freedom. For that reason, the
matrix vector products should be limited as much as possible. In order to limit the number of
matrix vector product, the vector Avm will be computed only once and stored in a separated
vector noted (Av)m. Then, this vector must also be affected by the orthogonalization on
lines 7-8. It is achieved by using the following relations respectively for GCR and Orthodir:

Avm+1 = Arm −
m∑
i=1

βi,mAvi and Avm+1 = A2vm −
m∑
i=1

βi,mAvi. (2.7)

The resulting algorithm, Algorithm 2, then only requires one matrix-vector product per itera-
tion. An even simpler implementation can be achieved by normalizing the vectors (Av)m and
scaling accordingly the vectors vm. This will simplify the computation of the coefficients ym
and βi,m, but it will also lead to a more stable and robust implementation. Indeed, this will
prevent the search directions to become too large or too small, and thus limiting the rounding
errors. Moreover, the solver will be less sensitive to the problem scales.

The principal disadvantage of this class of algorithms is the need to store, orthogonalize
and scale both the search directions vm and their multiplication by the matrix (Av)m. This
can lead to prohibitive storage and computational requirement as the number of iterations
m becomes large. As explained, a simple way to limit the consumption of these methods
is to restart them after a number of iterations k at the cost of a possible decrease of the
convergence. The restarted version of GCR is also known as the Orthomin method because
it was first derived in [33] as a variation of the (restarted) Orthodir method [34]. In practice,
these methods are often implemented with restarting to limit the possibility of requiring more
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memory than available. The implementation given by the Algorithm 2 then represents one
cycle of the restarted methods. There are two possibilities for this cycle to end. The first
one is that the maximum number of iterations in one cycle is reached, and this will lead to
a another cycle with the improved approximate solution xk. The other situation is that a
convergence criterion is reached such that the method ends. Here, the convergence criterion
will be defined such that the relative residual norm with respect to the initial residual norm is
smaller than a specified tolerance noted as tol.

Another possibility to limit the memory consumption of the GCR and Orthodir methods
is also presented in [23]. Since the precedent search directions are only used in the orthogonal-
ization step, it is possible to keep only the k last directions in these algorithms. This will also
correspond to a limitation on the storage and computational requirement and the convergence
can be similarly affected. The resulting methods are known as the truncated GCR and Or-
thodir, but they will not be studied in the current work since a truncated version of the other
minimization methods can not be readily developed.

Algorithm 2 One cycle of the restarted GCR or Orthodir methods.

1: Compute r0 = b−Ax0.
2: for m = 1, . . . , k do

3: if ∥rm−1∥/∥rinit0 ∥ < tol then ▷ Check for convergence.
4: Exit.

5: if Orthodir and m > 1 then ▷ New search direction.
6: vm = (Av)m−1

7: else
8: vm = rm−1

9: (Av)m = Avm

10: for i = 1, . . . ,m− 1 do ▷ Modified Gram-Schmidt orthogonalization.
11: βi,m = ((Av)m, (Av)i)
12: vm = vm − βi,mvi

13: (Av)m = (Av)m − βi,m(Av)i

14: βm,m = ∥(Av)m∥
15: vm = vm/βm,m

16: (Av)m = (Av)m/βm,m

17: ym = (rm−1, (Av)m) ▷ Update the solution and the residual.
18: xm = xm−1 + ymvm

19: rm = rm−1 − ym(Av)m

With this specific implementation, the storage and computational requirements of the GCR
or Orthodir methods can be estimated for a single cycle of k iterations. In practice, the size of
the problem, denoted as n, is anticipated to be notably large in comparison to the number of
iterations k. Otherwise, resolving the problem with a direct solver would result in comparable
memory usage and computational operations. Consequently, a direct solver would have been
more suitable than iterative methods. In this context, only the memory and operations related
to the vectors will be significant because one vector corresponds to n scalars.

In terms of storage requirements, the memory consumption related to the matrix A, the
right hand side b and the initial guess x0 will not be taken into account, as these elements
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are consistently necessary regardless of the solver considered. Additionally, the final solution
xk will be stored in the same memory space as the initial guess x0, hence it will also not
be considered. The memory consumption will then correspond to the storage of the residual
vector rm, the search directions vm and their multiplications with the problem matrix (Av)m.
All together, at least (2k + 1)n scalars must be stored during one cycle of k iterations.

In the context of computational needs, the main requirements will correspond to the matrix
vector products as previously mentioned. In general, the matrix vector product can correspond
to different processes depending of the problem considered. Therefore, all the operations due
to the matrix vector product will be accounted separately from the other computational cost
of the methods. One matrix vector product is needed to compute the initial residual at the
beginning of the methods, except in cases where the initial guess is the null vector. Additionally,
another matrix vector product is needed at each iteration. In total, the number of matrix vector
products will be of k + 1 for one cycle.

The other computational needs correspond to the multiplications and additions related to
vector operations. At the mth iteration, the computation of the residual norm correspond to n
products and sums. Then, the orthogonalization and normalization of the vectors correspond
to 3mn multiplications and (3m− 2)n additions. And finally, to update the solution and the
residual, 3nmore products and sums are needed. For one cycle of k iterations, the total number
of products and additions are respectively of the order of (3/2k2+9/2k)n and (3/2k2+5/2k)n.
Even if the number of operation can be substantial for problem with a large size n, most of
the work can be done in parallel thus reducing the computation time.

2.3 The generalized minimal residual method

2.3.1 Derivation of GMRES

The generalized minimal residual method is a minimization Krylov iterative solver which
was first described in [26]. For this algorithm, the search directions are defined as orthonormal
and the Arnoldi method [35] is used to build this orthonormal basis for the Krylov subspace.
It consists in choosing the next search direction vm+1 from the current basis vector multiplied
by the problem matrix Avm. Then, this vector is orthogonalized with respect to all precedent
search directions and the orthogonalization coefficients are stored. One iteration of this method
is described in Algorithm 3.

Algorithm 3 One iteration of the Arnoldi method.

1: vm+1 = Avm

2: Compute hi,m = (vm+1,vi) for i = 1, . . . ,m.
3: vm+1 = vm+1 −

∑m
i=1 hi,mvi

4: hm+1,m = ∥vm+1∥
5: vm+1 = vm+1/hm+1,m

All the coefficients are stored in a m + 1 by m matrix denoted H̄m. Since the orthonor-
malized only depends on precedent search directions, this matrix has the structure of an upper
Hessenberg matrix, i.e. the structure of an upper triangular matrix with a non-zero subdiago-
nal. Also, these coefficients correspond to the decomposition of the vector Avm in the Krylov
subspace. The Arnoldi method allows then to express every search direction multiplied by the
matrix Avm as a linear combination of the the Krylov basis Vm+1. These properties can be
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summarized as

AVm = Vm+1H̄m with H̄m =


h1,1 h1,2 · · · h1,m
h2,1 h2,2 · · · h2,m

h3,2
. . .

...
. . . hm,m

hm+1,m

 . (2.8)

The Arnoldi iteration allows for the simultaneous computation of both the basis vectors vm+1

and the coefficient matrix H̄m. This relation (2.8) can then be introduced in (2.3) to express
the residual vector. Moreover, the first search direction is defined as the normalized initial
residual: v1 = r0/∥r0∥. Therefore, the initial residual can be expressed from the Krylov basis
and the initial residual norm which is typically noted β: r0 = Vm+1βe1 where e1 is a vector
of size m + 1 with the only non-zero value is the first component and which is equal to one.
This allows to express the residual vector as

rm = r0 −AVmym = r0 −Vm+1H̄mym = Vm+1

(
βe1 − H̄mym

)
. (2.9)

To find the correction to the solution, the coefficient vector ym must be determined such
that the residual norm is minimized as stated in (2.4). The representation of the residual
vector given in (2.9) can be introduced in this minimization and since orthonormal matrices,
such as the basis Vm+1, preserve the norm, it results in

ym = argmin
ỹm

∥r0 −AVmỹm∥ = argmin
ỹm

∥∥βe1 − H̄mỹm

∥∥ . (2.10)

To facilitate the resolution of this minimization problem, a possible approach is to transform
the matrix H̄m into an upper triangular form. Indeed, a Hessenberg matrix is only a few
plane rotations away from being transformed into an upper triangular matrix. These rotations
are intended to zero out the values on the subdiagonal and as a result, they are referred to
as Givens rotations. Then, by using m Givens rotation {Ωi ∀i = 1, . . . ,m}, the Hessenberg
matrix H̄m can be transformed in a m + 1 by m upper triangular matrix noted R̄m. The
Givens rotation matrices are square matrices of size m+ 1 that are defined as

Ωi =


Ii−1

ci si
−si ci

Im−i

 such that Ωm . . .Ω1H̄m = R̄m, (2.11)

where Ii represent the identity matrix of size i. The coefficients ci and si must be computed
such that the application of the ith Given rotation will zero out the last component of the
ith column of H̄m. Once these are computed, they can be introduced in the minimization
problem (2.10):

ym = argmin
ỹm

∥∥ḡm − R̄mỹm

∥∥ where ḡm = Ωm . . .Ω1∥r0∥e1. (2.12)

This minimization is achieved by simply solving the triangular problem Rmym = gm where
the last row of R̄m and ḡm are removed since all the values rm+1,i are equal to zero for all i
from 1 to m.
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On top of simplifying the minimization problem, the Givens rotations allow to express and
compute the residual norm without explicitly solving for ym. Indeed, the Givens rotations are
unitary transformations such that the residual norm can be compute by

∥rm∥ =
∥∥βe1 − H̄mym

∥∥ =
∥∥ḡm − R̄mym

∥∥ . (2.13)

As the coefficients ym will be determined such that Rmym = gm, it becomes evident that
the absolute value of the last component of the vector ḡm is equal to the residual norm:
|gm+1| = ∥rm∥. This is essential since this norm will be used at each iteration in the convergence
criterion. This enables the construction of the solution to be carried out just once at the end
of the resolution. Every step of the GMRES method is summarized in Algorithm 4.

Algorithm 4 The GMRES method.

1: Compute r0 = b−Ax0, β = ∥r0∥ and set v1 = r0/β.
2: for m = 1, . . . until convergence do

3: vm+1 = Avm ▷ Next search direction.
4: Compute hi,m = (vm+1,vi) for i = 1, . . . ,m. ▷ Arnoldi iteration.
5: vm+1 = vm+1 −

∑m
i=1 hi,mvi

6: hm+1,m = ∥vm+1∥
7: vm+1 = vm+1/hm+1,m

8: Find Ωi for i = 1,m such that Ωi . . .ΩiH̄m = R̄m. ▷ Apply Givens rotations.
9: Compute ḡ = Ωi . . .Ωiβe1.

10: Solve the triangular problem Rmym = gm. ▷ Find the solution.
11: xm = x0 +

∑m
i=1 yivi.

The GMRES method requires less storage and orthogonalization operations than the GCR
method since the vectors Avm must not be stored or orthogonalized. Indeed, these vectors
are instead represented as a linear combination of the basis vectors as represented in (2.8).
Another difference with the GCR methods is that the solution is only given at the end of the
GMRES method by solving a triangular system of size m. It is also important to note that for
the GMRES method, the next seach direction must necessarily be defined from the last one
multiplied by the problem matrix since it employs the Arnoldi method. Therefore, a variation
of this method based on the residual vector is not possible.

2.3.2 Practical implementation of GMRES

Some precision on the Algorithm 4 must still be provided in order to obtain a practi-
cal implementation of the method corresponding to the problem considered. Similarly as for
the GCR/Orthodir method, the orthogonalization of the search vector will be done with the
modified Gram-Schmidt process instead of the classical one in order to enhance the numerical
stability of the method. Again, the orthogonalization could also be computed using reorthog-
onalization or the Householder reflections to improve the numerical stability. Also, the overall
memory consumption of the method can be limited by restarting the algorithm. Therefore, in
Alorithm 5, one cyle of k iterations of the method is described.

The coefficients within the matrices H̄m and R̄m are never used simultaneously, therefore
they can be store in the same memory space. This principle also applies to the vectors ym and
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gm. At the beginning of the mth iteration, the first m − 1 columns of R̄m have already been
computed. Then, the last column of the Hessenberg matrix must be computed by the mean
of the Arnoldi method and all the m − 1 precedent Givens rotations must be applied to this
column. The last step corresponds to compute the mth Givens rotation matrix Ωm such that

Ωm


r1,1 · · · r1,m−1 r1,m

. . .
...

...
rm−1,m−1 rm−1,m

hom,m

hm+1,m

 =


r1,1 · · · r1,m−1 r1,m

. . .
...

...
rm−1,m−1 rm−1,m

rm,m

 , (2.14)

where hom,m refer to the corresponding coefficient of the matrix H̄m after the application of
the m− 1 first Givens rotations. Different ways of computing the complex rotations factor cm
and sm exist. Following the convention described in [36], these factors are computed as

cm =
|hom,m|√

|hom,m|2 + |hm+1,m|2
and sm =

hom,m

|hom,m|
hm+1,m√

|hom,m|2 + |hm+1,m|2
. (2.15)

The computation of the resulting coefficient rm,m is also provideed as

rm,m = hm,m

√
|hm,m|2 + |hm+1,m|2

|hm,m|2
. (2.16)

Furthermore, the component hm+1,m is a real value since it represent the norm of a vector.
Some simplification can occur in these computations as it is illustrated in Algorithm 5.

In the GMRES method, only one set of vectors, the basis vectors Vm+1, must be stored.
The coefficient gm, the Givens rotation coefficients and the matrix Rm must also be stored
but these will be negligible since the size of the problem n is expected to be much larger than
the number of iterations k in one cycle. The memory requirement is then of the order of
(k + 1)n scalars. Here again, k + 1 matrix vector products are required in total. In term of
the number of operation, for the mth iteration the Arnoldi iteration requires approximately
(2m + 2)n products and (2m + 1)n sums. To compute and apply the Givens rotations, a
negligible amount of operation is required. For a full cycle of k iterations, the number of
products and sums in the main loop corresponds to (k2 + 3k)n and (k2 + 2k)n respectively.
Then, the resolution of the triangular system of size m can also be neglected. In addition, kn
more products and sums are needed to update the solution. Eventually, the total number of
product for the vector operations is roughly (k2 + 4k)n while the total number of addition is
of the order of (k2 + 3k)n. The GMRES method is then more advantageous both in term of
storage and computational operation than GCR as expected.

2.4 The simpler GMRES method

2.4.1 Derivation of SGMRES and RB-SGMRES

The simpler GMRES method is, as its name suggests, is a method that shares some
similarities with GMRES while leading to a simpler implementation. It was initially introduced
in [37]. For the usual GMRES method, the Arnoldi iteration is applied to the vectors of
the Krylov basis {r0,Ar0, . . . ,A

mr0} thus leading to the search basis Vm+1. In the case of
the simpler GMRES method, the Arnoldi method is employed on a shifted Krylov subspace
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Algorithm 5 One cycle of the restarted GMRES method.

1: Compute r0 = b−Ax0, y1 = ∥r0∥ and set v1 = r0/y1.
2: for m = 1, . . . , k do

3: if |ym|/y1 < tol then ▷ Check for convergence.
4: Exit.

5: vm+1 = Avm ▷ Next search direction.
6: for i = 1, . . . ,m do ▷ Arnoldi iteration with modified Gram-Schmidt.
7: hi,m = (vm+1,vi)
8: vm+1 = vm+1 − hi,mvi

9: hm+1,m = ∥vm+1∥
10: vm+1 = vm+1/hm+1,m

11: for i = 1, . . . ,m− 1 do ▷ Apply precedent Givens rotations.
12: hi,m = cihi,m + sihi+1,m and hi+1,m = −sihi,m + cihi+1,m

13: cm = |hm,m|
/√

|hm,m|2 + h2m+1,m . ▷ Compute and apply the new Givens rotation.

14: sm = (hm,m/|hm,m|)
(
hm+1,m

/√
|hm,m|2 + h2m+1,m

)
15: hm,m = hm,m

(√
|hm,m|2 + h2m+1,m

/
|hm,m|2

)
16: ym+1 = −smym and ym = cmym

17: for m = k, . . . , 1 do ▷ Find the solution.

18: ym =
(
ym −

∑k
i=m+1 hm,i yi

)/
hm,m

19: for m = 1, . . . , k do
20: xm = xm−1 + ymvm
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starting from Ar0 instead of r0: {Ar0,A
2r0, . . . ,A

mr0}. The resulting set of vectors from this
process will be denoted as Cm and will constitutes an orthonormal basis of the subspace AKm.
Consequentially, the representation of the vectos AVm will also deviate from the classical
GMRES expression (2.8) and will take the form of

AVm = CmTm with Tm =


t1,1 t1,2 · · · t1,m

t2,2 · · · t2,m
. . .

...
tm,m

 . (2.17)

This time the matrix of coefficient Tm is already a square upper triangular matrix of dimension
m. This is becomes evident when considering that the product of the search direction and the
problem matrix, Avm, can be represented as a linear combination of the basis of Cm. The
Arnoldi iteration enables to then jointly compute the basis vectors cm and the coefficient matrix
Tm. Similarly to the GMRES method, the relation (2.17) is introduce in (2.3) to express the
residual vector:

rm = r0 −AVmym = r0 −CmTmym. (2.18)

In addition, a vector qm of size m can be defined such that it correspond to the components
in the basis Cm of the orthogonal projection of the initial residual r0 in the subspace AKm:
qm = C∗

mr0. Following that and since the basis Cm is orthonormal, the miminization (2.4) is
expressed for the simpler GMRES method as

ym = argmin
ỹm

∥r0 −CmTmỹm∥ = argmin
ỹm

∥qm −Tmỹm∥. (2.19)

Since the coefficent matrix Tm is already upper triangular, there will be no need to compute
and used Givens rotations, and the minimization can be ensured by resolving the system
Tmym = qm.

The residual norm is not readily available as it is the case in the classical GMRES method.
Therefore, the residual vector must be computed and normalized at each step for the conver-
gence crierion. However, in order to limit the number of matrix vector product, it will not be
evaluated from its definition but rather from the relation (2.18). By taking advantage the fact
that ym will be determined such that Tmym = qm, an update rule for the residual can be
developed:

rm = r0 −CmTmym = r0 −CmC∗
mr0 = rm−1 − cmc∗mr0. (2.20)

This update rule actually corresponds to the projection of r0 on the complement space of AKm.
Given that the complete residual vector rm will be available at every iteration of the method,
there exists an opportunity for a simplification the computation of the vector qm:

qm = c∗mr0 = c∗m
(
rm−1 +Cm−1C

∗
m−1r0

)
= c∗mrm−1, (2.21)

This will allow to not store the initial residual vector during resolution.

The final aspect to establish is the method for constructing the basis Vm of the Krylov
subspace Km. This basis is not subject to any orthogonality constraints, and thus, to minimize
the quantity of stored vectors, the basis Vm was initially formulated as follows:

vm =

{
r0 if m = 1,

cm−1 otherwise.
(2.22)
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Nevertheless, in practice this implementation of simpler GMRES is rarely used primarily be-
cause of stability concerns in comparison to the GMRES method. This is illustrated in [32] and
a variation of the method is proposed to improve the numerical stability of the algorithm. It
consist in defining the vector vm from the residual vectors rm instead. The resulting basis will
still correspond the Krylov subspace as it was shown in Section 2.2.1 for the GCR method. This
variation of the method is called the residual based simpler GMRES method (RB-SGMRES).
Its main drawback is that the basis vector vm must be stored on top of the vectors cm since
they do not share vectors anymore. Thus, it leads to a larger memory consumption for the
RB-SGMRES method. The Algorithm 6 includes all the stages of both the SGMRES and
RB-SGMRES methods.

Algorithm 6 The SGMRES (or RB-SGMRES) method.

1: Compute r0 = b−Ax0, set v1 = r0 and c1 = Av1.
2: for m = 1, . . . until convergence do

3: qm = c∗mr0 ▷ Update the residual.
4: rm = rm−1 − qmcm

5: vm+1 = cm (or vm+1 = rm for RB-SGMRES) ▷ Next search direction.
6: cm+1 = Avm+1

7: Compute ti,m+1 = (cm+1, ci) for i = 1, . . . ,m. ▷ Arnoldi-like iteration
8: cm+1 = cm+1 −

∑m
i=1 ti,m+1ci

9: tm+1,m+1 = ∥cm+1∥
10: cm+1 = cm+1/tm+1,m+1

11: Solve the triangular problem Tmym = qm. ▷ Find the solution.
12: xm = x0 +

∑m
i=1 yivi.

2.4.2 Practical implementation of SGMRES and RB-SGMRES

The Algorithm 6 is already close to the implementation of these methods used in practice.
Once more, the orthogonalization will be executed using the modified Gram-Schmidt proce-
dure to ensure numerical stability. In Algorithm 7 a restarting procedure will also be introduce
to mitigate resource consumption of these methods. Furthermore, in this algorithm, the com-
putation of the next basis vector is skipped when the algorithm has achieved convergence or
is restarted. As the elements within vectors ym and qm are never employed concurrently,
they can be stored in the same memory space. Also in order to improve the robustness of the
implementation, the search vectors vm will be normalized as it is usually the case.

Regarding memory utilization, there exists a distinction between SGMRES and RB-
SGMRES methods. Indeed, the simpler GMRES approach almost mirrors the memory re-
quirements of the classical GMRES algorithm in term of vectors. The only difference lies in
the necessity to retain the first search vector v1, as it does not correspond to a vector within
the basis Ck. Consequently, during a cycle of k iterations, k+2 vectors must be stored in the
SGMRES method. On the other hand, the memory consumption of the RB-SGMRES method
is comparable to the GCR/Orthodir methods since two sets of vector bases must be stored.
As a result, the storage requirement for the RB-SGMRES method involves a total of 2k + 1
vectors.

The computational requirements of the SGMRES and RB-SGMRES methods are however
similar. Here again, the total number of matrix vector products in a full cycle of k iterations

26



Tim Gabriel CHAPTER 2. KRYLOV ITERATIVE SOLVERS

Algorithm 7 One cycle of the restarted SGMRES or RB-SGMRES methods.

1: Compute r0 = b−Ax0.
2: for m = 1, . . . , k do

3: if ∥rm−1∥/y1 < tol then ▷ Check for convergence.
4: Exit.

5: if Residual based or m = 1 then ▷ New search direction.
6: vm = rm−1/∥rm−1∥
7: else
8: vm = cm−1

9: cm = Avm

10: for i = 1, . . . ,m− 1 do ▷ Arnoldi-like iteration with modified Gram-Schmidt.
11: ti,m = (cm, ci)
12: cm = cm − ti,mci

13: tm,m = ∥cm∥
14: cm = cm/tm,m

15: qm = c∗mr0 ▷ Update the residual.
16: rm = rm−1 − qmcm

17: for m = k, . . . , 1 do ▷ Find the solution.

18: ym =
(
ym −

∑k
i=m+1 hm,i yi

)/
hm,m

19: for m = 1, . . . , k do
20: xm = xm−1 + ymvm
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is k + 1. For the other computation needs, the number of operation in the mth iteration is of
approximately (2m + 3)n products and (2m + 2)n sums for the computation of the residual
norm, the orthonormalization of the new vector cm and the update of the residual. As a
concequence, the main loop corresponds to (k2 + 4k)n products and (k2 + 3k)n sums for a
cycle of k iterations. For the resolution of the triangular system of size k, a negligible amount
of computation is needed as the problem size n is assumed much larger than the number of
iterations k. And finally to the update of the solution, kn more products and sums are used.
The total number of products and sums used in the SGMRES and RB-SGMRES method are
of the order of (k2 + 5k)n and (k2 + 4k)n respectively. The computational requirements are
then comparable to the GMRES method.

2.5 Comparison of the Krylov subspace methods

All the methods presented here correspond to the residual minimization over the Krylov
subspace Km for m iterations. Therefore, these methods are mathematically equivalent in
exact arithmetic as previously mentioned. The memory and computational requirements are
these methods can then be directly compared. Also, an important aspect related to these
different implementations is the management of the error introduced be the finite precision
arithmetic.

Derivation of the methods

The main attributes of these methods can be deduced by examining the selection of two
critical properties inherent to these techniques. The different properties between the methods
is resumed in the Figure 2.1.

Firstly, the selection of an orthonormal basis to represent the product between the search
directions and the problem matrix Avm is required. This choice will determine the memory
and computational requirements of the methods and will have a influence on the numerical
stability of the methods. In the instance of the GCR and Orthodir methods, these vectors are
directly orthogonalized and stored as part of this basis. Therefore, this leads to the deduction
that the search directions vm are A∗A-orthogonal. In contrast, for the GMRES method,
the orthonormal basis corresponds to the search basis itself, incorporating the next search
direction: Vm+1. And for the (RB-)SGMRES method, the orthonormal basis is defined by a
basis Cm, which comprises the vectors Avm that have been orthonormalized with respect to
each other. The key distinction from the GCR and Orthodir methods lies in the fact that the
search directions vm are not made A∗A-orthogonal to one another and therefore the vector
cm is not equal to Avm.

Then, the second important property corresponds to the definition of the next search
direction. Indeed, it might be possible to define it from the last search direction or from
the residual vector. This choice will however not change the consumption of the method
considered, but it will only influence its numerical stability. This property correspond to
the difference between the Orthodir/GCR and SGMRES/RB-SGMRES methods respectively.
However, for the GMRES method, the next search direction must necessarily be defined from
the last direction.

Numerical stability

When the resolution employs a large number of directions, the orthogonalization process
can accumulate round off errors in finite precision arithmetic. This can lead to a reduction of
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Figure 2.1: Properties comparison between GMRES, SGMRES and GCR.

the orthogonality between vectors and eventually to numerical instabilities. Such a situation
may arise when a substantial number of iterations are needed for convergence. This can occur,
for example, when dealing with a sizable problem or if the convergence tolerance, denoted as
tol, is set to a low value. In practice, these instabilities are reduced by using the modified
Gram-Schmidt orthogonalization, but they can still have an influence. Furthermore, enforcing
the algorithms to restart after a small number of iterations will result in a reduced usage of
directions, consequently mitigating the accumulation of error. However, it is important to
note that this approach could potentially decrease the convergence of the resolution. The
accumulation of errors is managed differently by each of the methods presented here, resulting
in distinct numerical stability properties.

The solver exhibiting more favorable behavior in term of stability is the GMRES method
as it was demonstrated in [38] and [39] for its implementation with the Householder reflections
or the modified Gram-Schmidt process. Conversely, the Orthodir and SGMRES method may
exhibit bad numerical behavior as emphasized in [32]. Indeed, this reference illustrates the
limitations of these methods on specific examples and it highlights the superiority in term of
stability of their residual based counterparts, specifically GCR and RB-SGMRES. Another
observation from this reference is that the GCR and the RB-SGMRES methods behave almost
equally to the GMRES method. This then justifies the use of either of these three methods
when the number of directions used becomes large.

Memory and computational requirements

An essential aspect of these methods lies in their memory and computational consumption.
In order to compare them, a complete cycle of k iterations is examined. Notably, it is assumed
that the size of the considered problem n is significantly larger then the number of iteration k
and therefore all the requirements not related to a vector or a vector operation can be neglected.
For instance, the need to store and solve a k by k triangular system in the GMRES-like methods
can be neglected. Consequently, the main contributions to the storage and operation count
are resumed in the Table 2.1. It’s important to highlight that the memory requirements
associated to the matrix A, the right-hand side b, and the solution xk are not taken into
account in this analysis. Additionally, operations associated with matrix-vector products are
treated separately from other operations.

Firstly, as indicated by Table 2.1, the GMRES method stands out as the most appealing
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Number of GMRES SGMRES RB-SGMRES GCR/Orthodir

scalars stored (k + 1)n (k + 2)n (2k + 1)n (2k + 1)n

matrix vector
products

k + 1 k + 1 k + 1 k + 1

scalar
multiplications

(k2 + 4k)n (k2 + 5k)n (k2 + 5k)n (32k
2 + 9

2k)n

scalar additions (k2 + 3k)n (k2 + 4k)n (k2 + 4k)n (32k
2 + 5

2k)n

Table 2.1: Approximate memory and computation requirements of one cycle of the restarted
Krylov subspace methods for k iterations in one cycle.

option, accumulating all of the advantages. Indeed, it requires the least amount of memory
storage and the fewest computational operations in comparison to all other methods. Moreover,
since it exhibit the highest stability in the context of finite precision arithmetic, the GMRES
solver is the method of choice for solving a single linear problem. Secondly, the requirements of
the simpler GMRES are only slightly more expensive than those of GMRES, however it is more
prone to lead to some numerical instabilities. In contrast, the RB-SGMRES method offers a
better stability, albeit necessitating nearly twice the memory allocation of the classic GMRES
method. Finally, the most resource demanding solvers, both in terms of storage and operation
count, are the GCR and Orthodir methods. They require nearly twice the memory capacity of
GMRES and roughly fifty percent more operations. Consequently, given the enhanced stability
of GCR, there is no interest to opt for Orthodir over GCR.

2.6 Improvement techniques for Krylov subspace methods

As these methods find application across a wide range of application, various enhance-
ments have been developed over the years to refine their effectiveness. The central objective
has consistently been to improve the convergence of these methods. In this quest, the devel-
opment of preconditioned solvers emerged as a valuable approach. The challenge is then to
identifying an appropriate preconditioner. Some methods such a flexible GMRES (FGMRES)
[40], GMRES recursive (GMRESR) [41] and GCR with inner orthogonalization (GCRO) [42]
proposed to use another iterative methods as a preconditioner. This leads to the creation
of nested algorithms, consisting of an outer and an inner iterative method. Numerous addi-
tional algorithms have also been developed. The main goal of these methods is to decrease the
number of stored directions, consequently reducing the computational workload necessary for
convergence, while achieving the highest possible level of convergence.

Another widely used category of algorithms aims to achieve similar objectives by improving
the convergence of the restarted techniques. Indeed, the restarting of the algorithm can help
mitigate consumption, however this might result in the degradation of the convergence of the
method or even lead to stagnation. Subsequently, certain approaches were developed to reuse
a carefully chosen subspace across cycles, with the intention of enhancing the convergence
process. Certain techniques directly preserve specific search directions, as seen in GCRO
with outer truncation (GCROT) [43]. Alternatively, some methods involve approximating a
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few matrix eigenvectors using the precedent search space, and employing them to enhance the
convergence of subsequent cycles. This strategy is applied in algorithms like restarted GMRES
augmented with eigenvector (GMRES-E) [44], GMRES with deflated restarting (GMRES-DR)
[45], simpler GMRES-DR [46], and GCRO with deflated restarting (GCRO-DR) [47].

This class of improved restarted methods was initially developed to enhance the conver-
gence of the restarted cycles when solving a single linear problem. However, these techniques
can also be exploited to improve the convergence of the methods when solving a sequence of
linear problems with different right hand sides. The effectiveness of these approaches has been
established in studies [47], [48], and [1]. Therefore, some recycling Krylov subspace methods
will be investigated in the context of full waveform inversion, with the goal of enhancing the
overall convergence of the process. Also, when solving multiple systems of equations that have
different right hand sides, an opportunity arises to leverage the parallel computation and reuse
of the search directions across these systems. This concept is effectively implemented within
the block recycling Krylov subspace methods as described in [49] and [50]. These methods will
not be covered here, although they would be correspond to a natural extension of the current
work.
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Chapter 3

Krylov subspace recycling

As it was mentioned in the previous chapter, variations of Krylov subspace methods where
developed in order to accelerate the convergence rate of the solutions by recycling some infor-
mation between the restarts of the methods or between systems with different right hand sides.
These methods will be of a great interest in the context of a full waveform inversion since it
consists in the resolution of multiple linear systems with different right hand sides following
the explanation provided in Chapter 1. The idea behind these techniques is summarized in [51]
and consists of selecting a portion of the Krylov subspace from a resolution and then reusing it
in the subsequent resolution. If the recycled subspace is well chosen, then the resulting search
space of the next resolution could provide a better approximation of the solution, and therefore
the convergence of the method might be improved. Such methods have already been shown to
be effective in many scientific and engineering applications, and they continue to be an area
of active research [47], [48] and [1]. The recycled subspace can be represented in various ways.
For instance, it can be depicted through search directions [43] or approximated eigenvectors
[47]. In the current work, only the recycling of search directions without further processing
will be examined. This simple way of choosing the augmentation space is already sufficient to
compare the different recycling Krylov methods and if the whole Krylov subspace is recycled,
it should provide the best results possible. Other, more complex, subspace augmentations exist
such as the very popular deflated restarting [45] [46] [47], but they will not be considered here.
The utilization of such methods might potentially reduce the consumption of the recycling
methods and could be addressed in future research.

To harness the potential of the recycled subspace, some modifications are required in the
Krylov iterative solvers. More generally, it is imperative to develop variations of the Krylov
subspace methods to take advantage of supplied directions that are expected to be carefully
chosen. Such a modification for the conjugate gradient method was proposed in [52]. This
paper introduces a first method, InitCG, which improves the initial guess by using the pro-
vided directions. To further enhance the convergence, a second approach, AugCG, introduces
an orthogonality constraint between the given directions and the computed ones. This con-
straint mirrors the one between the search directions themselves. As a result, the supplied
directions are treated as if they were directions computed within this method. Consequently,
the technique identifies the approximate solution through the exploration of a search subspace
formed by augmenting the Krylov subspace with the provided directions. This explains why
this method is called augmented CG. The extension of this technique to the minimization
methods is possible and the resulting algorithms will then be referred as augmented methods.
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The augmentation of the GCR method is rather straightforward due to the simple update
rule and orthogonal property. The only additional requirements in comparison to the classical
algorithm are to computation of the directions multiplied by the matrix, the enforcement of the
orthogonality constraint between all the directions considered and the update of the solution
and the residual at the beginning. For the simpler GMRES method a similar methodology
could be used but with the properties of the SGMRES method. Then, the augmentation
directions will undergo the Arnoldi-like process in order to form a basis that is capable of
representing all augmentation directions multiplied by the problem matrix. Also, the update
rule for the residual must also be used for each augmentation direction. In the end a larger
triangular system will be solved to find the coefficient used to update the approximate solution
with both the augmentation and the computed directions. An augmented method with the
same properties as the GMRES method would be attractive, however this will not be possible.
Indeed, the GMRES method is based on the fact that the multiplication of a search direction
Avm by the problem matrix must be representable by a linear combination of the corresponding
next search basis Vm+1. However, if the search directions are augmented directions, this is
no longer possible as it will be shown in Section 3.2.1. Therefore an augmentation process
based on the classic GMRES method is not possible. However, building on what is done for
SGMRES, an augmentation technique for GMRES can be provided. In the following, the
augmentations methods for GCR, GMRES and simpler GMRES will first be presented. For
these algorithms, a notation closely related to the one used in the derivation of the algorithms
in Chapter 2 will be employed to facilitate the implementation.

Once the augmentation methods are described, they can make use of any provided search
directions. For an improvement in the convergence behavior of the methods to be expected,
these directions must be relevant with respect to the system that is aimed to be solved. The
simplest way of choosing these augmentation directions is to reuse directions computed in
precedent resolutions. On top of being a simple procedure, these directions will exhibit certain
properties arising from their origin in the resolution of a Krylov iterative method. For instance,
the recycled directions will already have the properties required by the resolution method. Also
the multiplication of these directions with the matrix will be easily available. Subsequently,
this will lead to some simplifications within the augmentation techniques and it will result
in methods that will be referred to as methods with subspace recycling. Thus in term of
matrix vector product, the recycling of directions will not require any additional matrix vector
product. This is a very appealing property since the matrix vector product are expected to be
expensive compared to all the other resolution operations (orthogonalizations, normalizations,
updates, ..). When solving a single system, the augmentation can be used at each restart,
then recycling some of the directions of precedent cycles. If all directions are recycled, then it
would correspond to the same sequence of solutions as the resolution without restarting. On
the other hand, when multiples systems with different right hand sides are solved, then the
augmentation can be used at the beginning of every resolution. It will then be possible to use
the recycled directions both at the beginning of each system resolution and at the beginning
of each restart.

3.1 Augmented GCR method

3.1.1 Augmentation with arbitrary directions

The augmented GCR method with arbitrary directions can be perceived as a straight-
forward expansion of AugCG as delineated in [52]. The approach is detailed in [53] when
augmenting directions are recycled from prior resolutions. However, some additional efforts
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are necessary due to the arbitrary nature of the augmented directions. Let us represent these
p augmentation directions as a matrix Wp were each of its columns is a vector. These aug-
mentation vectors must be A∗A-orthogonal and scaled in order to have the same properties as
the search directions of the GCR method. Once these properties are imposed, it will result in
a basis that will be noted Vp similarly to the notation in Chapter 2. This will allow to use the
same notation for the updates rules as defined in (2.5) and for the orthogonalization process,
e.g. (2.7). In augmented GCR, the fist step is then to form the basis Vp from the augmenta-
tion directions Wp. Then the residual is minimized over the augmentation space by using the
basis and the update rules as defined in (2.5) for each direction. Once the residual and the
approximate solution have been update with respect to the augmentation space, the standard
GCR method can be employed with an additional orthogonality requirement. The m search
directions computed by the GCR method will then be noted {vp+1, . . . ,vp+m}. The overall
basis representing the union of the augmentation subspace and the Krylov subspace is defined
as the matrix Vp+m, where the first p directions correspond to the augmentation directions
and the m other correspond to the new computed search directions. Then any direction vi

must be A∗A-orthogonal to Vi−1 in order to fit in the definition of the GCR method. Since
the vectors vi can represent either the augmentation directions or the new search direction,
then all direction considered must be A∗A-orthogonal.

This augmentation method is described in the Algorithm 8. Its main disadvantage is that
the augmentation of one vector corresponds to the same requirements as executing one iteration
of the GCR method. Indeed, a matrix vector product is needed as well as the orthogonalization
to all the orther directions. Therefore, the augmentation directions must have a large impact
on the convergence in order to justify their use instead of one iteration of the GCR method.

Algorithm 8 Augmentation of the GCR method with arbitrary directions.

1: Compute r0 = b−Ax0.
2: for j = 1, . . . , p do

3: vj = wj ▷ A∗A-orthogonalization of augmentation directions.
4: (Av)j = Avj

5: for i = 1, . . . , j − 1 do
6: βi,j = ((Av)j , (Av)i)
7: vj = vj − βi,jvi

8: (Av)j = (Av)j − βi,j(Av)i

9: βj,j = ∥(Av)j∥
10: vj = vj/βj,j
11: (Av)j = (Av)j/βj,j

12: yj = (rj−1, (Av)j) ▷ Update the solution and the residual.
13: xj = xj−1 + yjvj

14: rj = rj−1 − yj(Av)j

15: Classical GCR method with theA∗A-orthogonalization with respect to all p+m directions.

3.1.2 Augmentation with subspace recycling

As it was described, when solving restarted cycles or a sequence of linear systems, one
simple space augmentation strategy would be to reuse a part of the Krylov subspace of the
precedent resolution. This offers two significant benefits: the directions forms already a A∗A-
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orthogonal basis and their multiplication with the problem matrix are also readily available.
The only requirement for the augmented directions is to form a A∗A-orthogonal basis, this
implies that all directions or any subset of a Krylov subspace can be recycled. By storing both
the vectors vp and Avp from one resolution to another, no more operation is needed and the
minimization over the augmentation subspace can be done right away.

The augmentation of the GCR method with a recycled subspace is described in Algo-
rithm 9. The augmentation with a precedent Krylov subspace can then be done without any
additional matrix vector product or orthogonalization of the recycled directions. Then, to pro-
ceed in the GCR method, the only additional cost is located in the orthogonalization of each
new search direction. Indeed, one must make sure that the new direction is A∗A-orthogonal
to all other directions including those originating from the recycled subspace. The limitations
of this strategy are the same as for the classical GCR method. As the total number of stored
directions grows, the memory demand increases linearly and the number of operation due to
the orthogonalization increases in a quadratic manner. Fortunately, the workload linked to the
matrix vector products is expected to remain unchanged. Since these operations correspond to
a majority of the computation requirement, then the augmented GCR method with subspace
recycling will not result in considerably higher costs than the classical GCR method.

Algorithm 9 Augmentation of the GCR method with subspace recycling.

1: Compute r0 = b−Ax0.

2: for j = 1, . . . , p do ▷ Update the solution and the residual.
3: yj = (rj−1, (Av)j)
4: xj = xj−1 + yjvj

5: rj = rj−1 − yj(Av)j

6: Classical GCR method with theA∗A-orthogonalization with respect to all p+m directions.

3.2 Augmented GMRES-type methods

3.2.1 Augmentation with arbitrary directions

The augmentation of methods with a structure resembling that of the GMRES method is
elaborated in [54] for any arbitrary set of directions. This augmentation approach will initially
be introduced within the context of the simpler GMRES method. Using this as a foundation,
the extension of this approach to the GMRES method will be detailed. Subsequently, these
augmentation techniques will be simplified to enable the recycling of Krylov subspaces. How-
ever, selecting a subset of a Krylov subspace will result in additional operations, which will
also be explored in the following.

Augmented simpler GMRES method

Again, the p augmentation directions are described as a basis Wp. These basis vectors are
then multiplied by the matrix A and using the Arnoldi-like process of the SGMRES method,
a orthonormal basis Cp is formed. This will allow to express the vectors Awi from this basis
Ci in the same manner as in the SGMRES method. Once all the augmentation directions are
processed, one finds a relation similar to (2.17) but for the vectors Wp. As it was done for the
augmented GCR method in Section 3.1, a notation close to the one used in the derivation of the
classical method will be used to simplify the implementation. Therefore, here the augmentation
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vectors will also be denoted by Vp = Wp. The Arnoldi-like process will then produce a basis
Cp and a matrix Tp such that

AVp = CpTp, (3.1)

where again Tp is a p by p upper triangular matrix of the orthogonalization coefficients. The
use of the augmentation search directions will lead to a decrease of the residual norm since
the augmented SMGES method will minimize the residual norm over the augmented Krylov
subspace. This effect on the initial residual r0 can equivalently be expressed as is projection
on the complement space of the basis Cp as it is the case in the classical implementation of
simpler GMRES in (2.20). The updated residual with respect to the p augmentation direction
is defined as

rp = r0 −CpC
∗
pr0. (3.2)

The SGMRES method will then used this residual as the initial residual to start the
resolution. In that way, the first search direction will be defined as: vp+1 = r′0/∥r′0∥. Then, all
the computed search direction vp+m will undergo the Arnoldi-like process with respect to the
basis Cp+m. In other words, the corresponding vector cp+m will be orthogonalized with respect
to all the vectors of Cp+m thus leading to the last column of the matrix Tp+m composed of
p + m elements. The resulting matrix Tp+m will therefore still be upper triangular and the
relation due to the Arnoldi-like process will still hold:

AVp+m = Cp+mTp+m with Tp+m =



t1,1 . . . t1,p t1,p+1 . . . t1,p+m

. . .
...

...
. . .

...
tp,p tp,p+1 . . . tp,p+m

tp+1,p+1 . . . tp+1,p+m

. . .
...

tp+n,p+m


. (3.3)

The rest of the algorithm stay the same as if the first p directions corresponds to search direction
computed in iterations of the classical algorithm. The last step in the augmented SGMRES
method correspond then to update the initial guess x0 by minimizing the residual vector rm
over the augmented Krylov subspace. Again, by using similar notation as in Charpter 2, this
can be described as:

Find xp+m = x0 +Vp+myp+m such that yp+m = argmin
ỹp+m

∥rp+m∥. (3.4)

The minimization will be performed by exploiting the relation (3.1) and this will again corre-
spond to the resolution of an upper triangular system:

Tp+mỹp+m = qp+m where qp+m = C∗
p+mr0. (3.5)

Then, in order to find the coefficient yp+m, one must first compute the vector qp+m = C∗
p+mr0.

The augmentation of the simpler GMRES method with arbitrary direction is described
in Algorithm 10. Similarly to the augmented GCR method, the requirements for handling
one arbitrary augmentation direction are the same as those needed for one iteration of the
SGMRES method.
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Algorithm 10 Augmentation of the GMRES-type method with arbitrary directions.

1: Compute r0 = b−Ax0.
2: for j = 1, . . . , p do

3: cj = Avj ▷ Compute the Cp basis.
4: for i = 1, . . . , j − 1 do
5: ti,j = (cj , ci)
6: cj = cj − ti,jci

7: tj,j = ∥cj∥
8: cj = cj/tj,j

9: qj = c∗jr0 ▷ Update the residual.
10: rj = rj−1 − qjcj

11: Classical GMRES-type method with the additional orthogonalization with respect to the
basis Cp and the resolution of a triangular system of size p+m.

Augmented GMRES method

Unlike the augmented GCR and SGMRES methods, the augmentation of the GMRES
method cannot be deduced solely from the attributes of its traditional implementation. If one
aims to augment the Krylov subspace using p vectors wp, while imposing a relationship similar
to the one established by the Arnoldi iteration (2.8), the following conditions must be satisfied:

A[WpVm] = [WpVm+1]H̄p+m. (3.6)

Here, Hp+n is a matrix with dimensions p+m+1 by p+m, following a Hessenberg structure
similar to the classical GMRES method. This relation would impose significant constraints on
the augmentation vectors, as each vector wi multiplied by the matrix A must be representable
using the basis Wi+1 or the basis [WpV1] for the vector wp. While this property may hold
for the majority of vectors, such as when recycling vectors from a previous resolution, the final
vector will not satisfy it in general. This is because the subsequent search vector must be
defined based on the residual vector, and indeed it is unlikely that the vector Awp corresponds
to a linear combination of the augmentation vectors Wp and the residual. Therefore, the
augmentation of the GMRES method must be done in another way.

The GMRES method can then be augmented by using a methodology similar to the
augmented simpler GMRES method. This approach will require to store a basis Cp and an
upper triangular matrix Tp to express the multiplication of the augmentation vectorsVp = Wp

by the matrix A as it represented in (3.1). Then, the initial residual vector update with respect
to the augmentations vectors. This is done by projection it in the complemented space of the
basis Cp as described in (3.2). The GMRES method is initiated with this projected residual
and the Arnoldi process will also orthogonalize the search direction with respect to the basis
Cp. If the set of computed search directions is represented by the basis Vp+1:p+m, this will
results in the relation:

AVp+m = A[VpVp+1:p+m+1] = [CpVp+1:p+m+1]H̄p+m (3.7)

where the matrix of coefficient H̄p+m is a p+m+1 by p+m matrix with an hybrid structure
between an upper triangular and an Hessenberg matrix. This is due to the fact that the first
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part of the matrix H̄p+m results from the relation (3.1) while the second is constructed by the
Arnoldi iteration. This structure can then be represented as

H̄p+m =



t1,1 . . . t1,p h1,p+1 . . . h1,p+m

. . .
...

...
. . .

...
tp,p hp,p+1 . . . hp,p+m

hp+1,p+1 . . . hp+1,p+m

hp+2,p+1 . . . hp+2,p+m

. . .
...

hp+m+1,p+m


(3.8)

The subsequent application of the Givens rotations will not affect the first part of this matrix
and therefore this matrix can still be transformed into an upper triangular matrix.

At the end of the GMRES method, the approximate solution is again found by minimizing
the residual norm as in (3.4). Although, the derivation of the residual norm will be different
since the relation (3.7) differ sightly:

rp+m = r0 −AVp+myp+m = r0 − [CpVp+1:p+m+1]H̄p+myp+m (3.9)

= [CpVp+1:p+m+1](qp+1 − H̄p+myp+m).

The vector qp+m is then defined from the the multiplication of the initial residual with the
basis in the right hand side of (3.7): qp+m = [CpVp+1:p+m+1]

∗r0. This vector is similarly
defined as in the simpler GMRES method but with another basis. Furthermore, since this
basis has an hybrid structure, then the vector qp+m will also have a special structure. Its p
first components will actually correspond to the orthogonalization coefficients used when the
residual is projected. This is similar to the simpler GMRES method. Then, the first search
direction computed v1 will be defined from the projected residual. All the following vector will
then be orthogonalized with respect to this vector and also to all the augmentation vectors.
This implies that all the computed search directions except the first one will be orthogonal
to the initial residual vector. This time, this is similar to the GMRES method. This can be
summarized as

qi =


(ci, r0) for i < p+ 1,

∥rp∥ for i = p+ 1,

0 for i > p+ 1.

(3.10)

In order to minimize the residual, Givens rotations will be used such as in the GMRES
method. With m rotations, the matrix H̄p+m can be transformed into a fully upper triangular
matrix R̄p+m. The Givens rotations will also needed to be applied to the vector qm, thus
resulting a triangular system that can be solved to minimize the residual:

ḡp+m = Ωm . . .Ω1qp+m and R̄p+n =



t1,1 . . . t1,p h1,p+1 . . . h1,p+n

. . .
...

...
. . .

...
tp,p hp,p+1 . . . hp,p+n

rp+1,p+1 . . . rp+1,p+n

0
. . .

...
. . . rp+n,p+n

0


. (3.11)
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The minimization of the residual norm can then be achieved by solving a triangular system
Rp+myp+m = gp+m, where the last rows of R̄p+m and ḡp+m are removed. Additionally, similar
to the approach used in the classic GMRES method, the residual norm will be given by the
absolute value of the last element of ḡp+m.

This description of the augmented GMRES method fits into the interpretation outlined
in Algorithm 10. This augmentation technique is applicable to both the GMRES and the
simplified GMRES methods and the slight distinctions between these approaches are hidden
in line 11. However, these disparities essentially mirror the differences inherent in the classical
versions of these methods, making them readily deducible.

3.2.2 Augmentation with subspace recycling

Once more, the recycling of the Krylov subspace offers the possibility of introducing sim-
plifications into the augmentation methods. Indeed, if the basis Cp and the matrix Tp are
inferred from a prior resolution, there is no requirement for their explicit computation. One
necessity is however to compute the vector qp, as it must be derived from the initial resid-
ual of the specific problem. Subsequently, the residual is also updated before initiating the
GMRES-type method. The resulting augmentation technique is resumed in Algorithm 11.

It remains necessary to setermine a method to acquire the basis Vp and Cp, along with the
matrixTp, at the end of a resolution process. In the case where the entire Krylov subspace is re-
cycled, the task is straightforward for the SGMRES method, as these elements are immediately
accessible. For the GMRES method, these elements are not directly provided. Nevertheless,
they can be derived by combining the search basis vectors with the Givens rotations:

AVm = Vm+1H̄m = VmΩ∗
1 . . .Ω

∗
m︸ ︷︷ ︸

C̄m

R̄m︸︷︷︸
T̄m

(3.12)

Consequently, an extra step becomes necessary in the context of the recycled GMRES approach:
computing the basis Cm based on Vm+1. Fortunately, this additional task is expected to
be relatively cheap, as it involve only vector operations without the need for matrix vector
products, making it efficient in terms of computational resources. The overall computational
requirement for this step comprises (4m+2)n products and (2m+1)n additions. Furthermore,
it’s important to note that the additional storage of the basis Cm contribute to an increased
need for memory capacity. This procedure is outlined at the end of Algorithm 11.

The last aspect that needs clarification regarding the recycling technique is the process of
selecting only a subset of the Krylov subspace rather than using the entire subspace. This won’t
be a straightforward task, as the representation of the vector Avi necessitates the presence of
all previous vectors, as illustrated in (3.1) or (3.7). Hence, this matter will be addressed in the
subsequent section.

3.2.3 Partial subspace recycling

To selectively recycle a portion of a subspace, it becomes essential to devise an approach
that eliminates the dependance on the directions not chosen. The upcoming section will
introduce a technique designed to disentangle dependence from a single direction. While this
method pertains to just one direction, its repeated application is sufficient to end up with the
desired subspace.
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Algorithm 11 Augmentation of the GMRES-type method with subspace recycling.

1: Compute r0 = b−Ax0.

2: for j = 1, . . . , p do ▷ Update the residual.
3: qj = c∗jr0
4: rj = rj−1 − qjcj

5: Classical GMRES-type method with the additional orthogonalization with respect to the
basis Cp and the resolution of a triangular system of size p+m.

6: if GMRES then
7: cp+1 = vp+1 ▷ Compute the basis Cp+m.
8: for i = 1, . . . ,m do
9: cp+i+1 = vp+i+1

10: cp+i = cicp+i + sicp+i+1 and cp+i+1 = −sicp+i + cicp+i+1

11: cp+m = cmcp+m + smcp+m+1

For instance, if the jth direction is not selected for the recycling, then all the directions
after that one must be modified in order to be able to express their multiplication by the
matrix A without that jth direction. This will allow us to erase the jth column and row of
Tp in the relation describing the vectors AVp. This dependance is clear when looking at the
following relation:

AVp = CpTp. = Cp



t1,1 . . . t1,j . . . t1,p
. . .

...
. . .

...

t1,j
. . .

...
. . .

...
tp,p


. (3.13)

More specifically, the vector Avp can be explicitly expressed from the basis Cm. It will allow
us to remove the jth vector in the representation of the vector vp by using the following
transformation:

Avp =

p∑
i=1

ti,pci ⇒ v′
p = vp −

tm,p

tm,m
vi. (3.14)

This vector update will then modify the representation of the vector Avp. To integrate this
changes, the elements of the matrix Tp must be modify and this will indeed lead to nullify the
jth element of the pth column:

Av′
p = Avp −

tj,p
tj,j

Avp =

j−1∑
i=1

[
ti,p −

tj,p
tj,j

ti,j

]
︸ ︷︷ ︸

t′i,p

ci.+

p∑
i=j+1

ti,pci. (3.15)

These two updates must be applied to all the vectors from j + 1 to p. The representation of
the vectors AVp is updated in such a way that it becomes possible to remove the vectors vj ,
cj and the jth column and row of the matrix Tp from the the relation (3.13):
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T′
p =



t1,1 . . . t1,m−1 t1,m t′1,m+1 . . . t′1,p
. . .

...
...

...
. . .

...

t1,m−1
... t′m−1,m+1 . . . t′m−1,p

tm,m

tm+1,m+1 . . . tm+1,p

. . .
...

t′p,p


. (3.16)

The removal of the jth direction from the subspace is done in a manner that preserves
the desirable properties of the other directions. Consequently, the vectors ci will remain
orthogonal to each other and maintain their normalization. This ensures that the remaining
subspace remains suitable for subspace augmentation. The only expensive operation here is
the modification of the search directions in (3.14). The vector updates will lead to additional
operations of the order (p− j)n product and sums to remove the jth direction. On the other
hand, the updates of the matrix Tp will only require a negligible amount of operation. When
the total number of directions used is restricted, the worst case scenario arise when the recycled
subspace is already full (p + k directions) and when the first k directions must be erased in
order to recycle the directions computed in the last cycle of k iterations. This will correspond
to (kp + k2/2 − k/2)n additional products and sums. As it will be shown in the numerical
experimentation, this worst case scenario is however unlikely and the additional operations
due to the removing of search directions in the partial recycling strategy will remain limited.

3.3 Comparison between recycling methods

All the recycling techniques discussed in this context are expansions of well-established
Krylov iterative methods, which have been extensively researched in existing literature. Specif-
ically, the recycling approaches for the GCR and Orthodir methods are explicitly introduced
in [53] and [1] respectively. However, the incorporation of these methods with a flexible set
of directions was not addressed. In contrast, the augmentation of the GMRES method with
a diverse set of directions was directly treated in [54]. Therefore, it can serve as a founda-
tional element for recycling methods within the GMRES subspace framework. While numerous
advanced recycling techniques for GMRES have been experimented with, as previously men-
tioned, the basic recycling of directions without deflation did not was experimented in the
literature. The expansion of the recycling technique to the simpler GMRES method is also
an original contribution since only the deflated restarted simpler GMRES has previously been
covered. Lastly, the selective subspace recycling methods as presented in this work were not
already covered in the literature for GMRES-type methods.

Once again, a direct comparison between the methods is possible and the computational
requirements are resumed in Table 3.1. The numerical stability of these techniques will persist
unchanged, as they rely on the foundation of the classical algorithm. Hence, opting for the
GMRES method or the residual based variant of the other approaches is advisable in situations
where the problem at hand could potentially lead to instabilities or when a substantial number
of directions are employed.

In terms of memory requirements, the GMRES method loses its advantage over the others
due to the necessity of storing an additional basis for subspace recycling. In the worst-case
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scenario, the SGMRES method may also need to store two separate sets of vectors to represent
the recycled subspace. However, these two sets can significantly overlap, as it is the case in the
classical algorithm. Hence, the only method offering a storage advantage is the simpler GMRES
approach that is not based on the residual. It is important to bear in mind, though, that this
specific method carries the potential for numerical instabilities, as elucidated in Section 2.5.

This recycling techniques will avoid an increase in the count of matrix vector products,
which offers a notable advantage since matrix vector products are typically the most resource-
intensive operation across numerous applications, particularly in the present context. In terms
of computational demands, all GMRES-type methods necessitate roughly equivalent amounts
of operations. Depending on the utilization of the recycling techniques, either the count of re-
cycled directions p or the number of iterations k will be relatively larger compared to the other.
However, in both scenarios, the GCR or Orthodir method will again require approximately
fifty percent more operations.

However, supplementary operations are required when the number of recycled directions
is restricted and specific retained directions are chosen. In the most adverse situation, this can
result in the additional operations outlined in Table 3.2. This additional cost exclusively affects
GMRES-type methods, ultimately resulting in the GCR and Orthodir methods attaining a
comparable level of efficiency to the GMRES-type techniques. Nevertheless, it’s worth noting
that this worst-case scenario isn’t necessarily commonplace, and in practical applications, the
supplementary cost might remains constrained.

In summary, the GMRES method maintains its preferred status due to its theoretically
superior stability properties. Nevertheless, it doesn’t exhibit lower storage consumption, as
was the case with the classical algorithm. As a result, the RB-SGMRES approach might yield
comparable outcomes in practical scenarios, while demanding roughly equivalent computa-
tional and memory resources. Lastly, when stability is not a concern, the simpler GMRES
method could result in reduced storage demands compared to other methods, thanks to the
potential sharing of vectors between its two stored bases.

Number of GMRES SGMRES RB-SGMRES GCR/Orthodir

scalars stored (2p+ 2k + 1)n (2p+ k + 2)n (2p+ 2k + 1)n (2p+ 2k + 1)n

matrix vector
products

k + 1 k + 1 k + 1 k + 1

scalar products (2kp+k2+8k)n (2kp+k2+5k)n (2kp+k2+5k)n (3kp+ 3
2k

2+ 9
2k)n

scalar additions (2kp+k2+5k)n (2kp+k2+4k)n (2kp+k2+4k)n (3kp+ 3
2k

2+ 5
2k)n

Table 3.1: Approximate memory and computation requirements of one cycle of the restarted
Krylov subspace methods for k iterations in one cycle and p recycled directions.
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Number of GMRES SGMRES RB-SGMRES GCR/Orthodir

scalar products (kp+ 1
2k

2− 1
2k)n (kp+ 1

2k
2− 1

2k)n (kp+ 1
2k

2− 1
2k)n 0

scalar additions (kp+ 1
2k

2− 1
2k)n (kp+ 1

2k
2− 1

2k)n (kp+ 1
2k

2− 1
2k)n 0

Table 3.2: Additional computation cost resuired to remove k direction from a recycled subspace
of size p+ k in the worst case senario.

3.4 Selection strategies for partial subspace recycling

When dealing with a substantial number of systems or when the system’s size necessitates
numerous iterations for convergence, both memory and computational requirements can again
become a limiting factor. The complete subspace recycling strategy encounters the same
drawbacks as the non-restarted versions of these methods. Consequently, the necessity for
partial subspace recycling becomes significant. This partial subspace recycling entails two
distinct tasks. The first task involves determining the optimal directions of the subspace to be
employed in recycling. Subsequently, the selected directions must be appropriately conditioned
to align with the augmentation frameworks delineated in Section 3.1 and 3.2. No further
adjustments are necessary for the GCR or Orthodir method, whereas for the GMRES-type
approach, the corresponding operations were discussed in Section 3.2.3.

The most straightforward approach to restricting the number of recycled directions involves
retaining only the first directions. In addition to the simple direction selection, no further oper-
ations are necessary for GMRES-type methods, as the initial directions inherently possess the
right properties. This method, despite its simplicity, already yields satisfactory performance.
More sophisticated methods could be derived from assessing the impact of each direction on
the reduction of the residual norm or from considering the orthogonality properties of the di-
rections. In [55], it was demonstrated that an effective strategy for selecting recycled directions
involves retaining those directions that exert the most influence during orthogonalization. In
other words, this involves selecting the directions associated with the largest orthogonalization
coefficients. Some subspace recycling strategies will be studied in Section 4.1.4 and 4.2.5.
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Chapter 4

Numerical experiments

In this chapter, we will delve into the resolution of wave scattering problems through
the utilization of the domain decomposition method coupled with subspace recycling Krylov
solvers. By considering various applications, we can elucidate the advantages and limitations
of employing such methods within a this practical framework.

To numerically address the problems at hand, we will exploit some of the Gmsh related
libraries. Consequently, the construction and meshing of models, along with their associated
subdomains, will be executed using Gmsh. Subsequently, the GmshDDM library will facilitate
the formulation of domain decomposition problems, utilizing the GmshFEM library for gener-
ating and solving volume-related problems. This collection of libraries, along with their source
code, is readily accessible on the ONELAB repository1. Notably, the contribution of this work
resides in the implementation of recycling iterative solvers to address the interface problem
within the GmshDDM library. A version of this library incorporating these contributions can
be found within a dedicated project2.

The resolution of the small-scale problem can be managed by a laptop. However, for
tackling larger scales of resolution, a high performance computing massively parallel cluster will
become necessary. In this context, the NIC5 cluster, accessible to members of the University of
Liège, will be used. Detailed specifications about the cluster can be found on the “Consortium
des Équipements de Calcul Intensif” website3.

4.1 Homogeneous case

As a starting point, the resolution of the Helmholtz equation can be investigated within
the scope of wave scattering in a homogeneous medium. The simulation of such a problem
will first be detailed for a single point source excitation. Despite its purely theoretical nature,
this particular scenario already allows for the demonstration of some fundamental properties
of the domain decomposition method and its resolution with iterative methods. Following this,
the analysis will be expanded to incorporate multiple problems with a point source excitation,
thereby revealing the potential of recycling schemes to accelerate multiple resolutions. Through
this examination, valuable insights will be gained concerning the properties of recycling meth-

1https://gitlab.onelab.info/gmsh
2https://gitlab.onelab.info/timgabriel/ddm-master-thesis-tim-gabriel
3https://www.ceci-hpc.be/clusters.html
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ods and to apply them in practical applications. Only after, a more concrete example will be
explored

4.1.1 Analytical solution

In the context of a homogeneous infinite domain, it is possible to analytically compute the
solution for a point source excitation. Leveraging the inherent symmetry of the problem, one
can employ the polar coordinate system to deduce the analytical solution. When the source
of excitation is positioned at the origin, the Helmholtz equation takes on the following form:

∆u(r, θ) + k2u(r, θ) = 0, (4.1)

where r represents the distance from the origin, and θ indicates the angle formed with respect to
the x axis. It is important to note that the source point under consideration can be visualized as
an excitation originating from a line perpendicular to the plane defined by r and θ. As a result,
the solution would remain unchanged along this third dimension. The intrinsic symmetry of
the solution suggests that it can be structured as function of separable variables: u(r, θ) =
R(r)Θ(θ), with R representing a function associated with the variable r, and Θ is associated
with the variable θ. Subsequently, the Helmholtz equation (4.1) can be expressed using the
polar representation of the Laplacian:

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) + k2R(r)Θ(θ) = 0 (4.2)

The individual contributions of each function can be isolated such that

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ r2k2 = −Θ′′(θ)

Θ(θ)
= C∗. (4.3)

Here, C∗ represents a constant value. The anisotropic nature of the problem will enforce the
function Θ(θ) to adopt a constant value, therefore the constant C∗ must inevitably equal zero.
As a result, through the application of the variable substitution ρ = kr, the radial element
R(r) is expressed as the differential equation:

ρ2R′′
∗(ρ) + ρR′

∗(ρ) + ρ2R∗(ρ) = 0. (4.4)

The solution to this equations are the well-known Bessel functions where the associate integer
is zero. Overall, the solution of the Helmholtz equation is given by

u(r, θ) =
1

4

[
− Y0(kr) + iJ0(kr)

]
, (4.5)

where J0(r) and Y0(r) are the Bessel functions of respectively the first and the second kind
[56].

4.1.2 Numerical solution

The homogeneous problem at hand can be effectively solved using a numerical approach, as
outlined in Section 1.3. Within this framework, the propagation of a wave with a frequency of
f = 1Hz will be investigated in a medium where the propagation velocity remains uniformly
constant, with c(x) = 1m/s. The computational domain under consideration is a square
region, featuring a side length of 2.5m. This domain is partitioned into nine subdomains, all
of equal dimension. Additionally, a point of excitation is placed at the central location of this
domain with a magnitude of 1. For the discretization, elements of size lc = 0.02m and of the
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first order are employed. The desired accuracy for the resolution of the interface problem is
set at tol = 10−6, and the GMRES method will be used. It is important to note, however,
that alternative solvers could also be considered without changing the outcome.

The results of such a numerical simulation are illustrated in Figure 4.1, and a comparison
is made with the exact solution of a wave propagating in an unbounded homogeneous space.
The observed disparities in the solutions predominantly arise from the influence of boundaries
and the application of imperfect absorbing boundary conditions. Indeed, however how much
the mesh is refined, some inevitable disparities will remain between the numerical and the
analytical solution. Consequently, the comparison to the analytical solution is not an optimal
benchmark to assess the accuracy of the numerical solution. Therefore, in order to facilitate
a relevant comparison between the solutions, an excessively refined solution will be computed
and used as a reference to compare solutions.

To obtain reliable solutions using numerical simulation, a study of the different parameters
of the simulation must be carried out. First, the mesh will be progressively refined to minimize
errors within the solution. The finite elements will here always be considered of the first
order. After, the optimal tolerance on the iterative method will be found to limit le number
of iterations required to reach this tolerance while keeping an accurate solution.

Mesh refinement

To investigate the impact of mesh refinement, the problem will be addressed without
employing the domain decomposition method. For the purpose of establishing a basis for
comparison, the discrepancies between the approximate solution fields and an over-refined
solution (lc = 0.002m and first order) will be computed, as it was mentioned. It is important
to note that the problem solution exhibits an asymptote in the real field at the excitation point.
This characteristic can lead to significant variations in the solution when different meshes are
employed. Consequently, only the imaginary field will be used to assess the accuracy of the
solution. Here, the root mean square error will be used in order to aggregate the errors over the
whole field into a scalar value. One drawback of the RMSE metric is that it is disproportionally
influenced by outliers. This emphasizes the fact that the real field should not be considered
for the estimation of the error on the solution. The error associated to the imaginary part of
the solution ui(x) can then be defined from the most accurate solution available ui∗(x) such
that

RMSE =

√
1

Ω

∫
Ω

(
ui∗(x)− ui(x)

ui∗(x)

)2

dΩ. (4.6)

The results associated with this analysis are depicted in Figure 4.2. It can be seen that
at least a mesh size of lc = 0.08m should be considered in order to obtain a not too large
relative error in the solution, roughly 1.56% for elements of the first order. This mesh size
correspond to having λ/lc ≈ 12 points along a wavelength. However, in practical application,
a more refined mesh should be considered. Indeed, in [57], a study on the numerical simulation
was conducted for the Helmholtz equation in one dimension with a different error metric more
suited for the analysis. The main conclusion of the study is that the estimate of the error
contains two contributions that varies with the nondimensional wavenumber defined as kL
where L is the size of the domain. Then, for simulation with relatively small adimensional
wavenumber (kL < 100) a constant number of points per wavelength can yield solutions with
a sufficient resolution if the number of point is at least of 20. This is due to the fact that the
leading term of the error will increase in that situation as the wave number multiplied by the
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(a) Real part of the approximate solution. (b) Imaginary part of the approximate solution.

(c) Real part of the exact solution. (d) Imaginary part of the exact solution.

(e) Real part of the error. (f) Imaginary part of the error.

Figure 4.1: Exact and approximate solution of a point source scattering wave in an homoge-
neous medium and the associated relative error.
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Figure 4.2: Root mean square error on the solution for element sizes lc of 0.32, 0.16, 0.08, 0.04,
0.02 and 0.01m compared to an overly refined simulation (lc = 0.002m).

mesh size: error≈ klc. For large adimensional wavenumber values (kL > 100) however, this
will not be sufficient since the leading term will scale as l2ck

3. Thus the required mesh to obtain
accurate solutions will need to be finer for large wavenumber. Following that and since one
small wavenumbers will be considered, we will continue with a mesh size of lc = 0.04m since it
will correspond to 25 nodes representing one wavelength. Nonetheless, it is worth highlighting
that the choice of desired solution accuracy should be determined based on the specifics of the
particular application being studied.

Resolution of the interface problem

During the resolution of the interface problem, the results of the various studied methods
would match in exact arithmetic. However, since computations are carried out in finite preci-
sion arithmetic, disparities will arise in the outcomes. In Figure 4.3, the relative residual norms
are depicted as a function of the iterations in the resolution using the studied solvers without
restarting. This figure reveals that once a sufficient number of iterations has been completed,
the method ceases to exhibit further improvement. This phenomenon arises due to the com-
putational precision limit, which is slightly less than 10−15 for double-precision floating-point
variables. Additionally, this figure distinctly showcases the inherent numerical instabilities in
the SGMRES and Orthodir methods. At some required tolerance, these methods demand
more iterations to attain a comparable decrease of the residual norm. They are able to reach-
ing residual norms as small as those attainable with other methods with more iterations in
this particular example, but this is not always the case in general as demonstrated in [32].
Nevertheless, these differences only manifest when the residual norm is exceedingly tiny. This
suggests that these methods could still be suitable when the tolerance on the resolution is not
set too low, and therefore when the number of directions used remains moderate.
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(a) For all the iterations. (b) For the last iterations.

Figure 4.4: Evolution of the residual norm for the classical and modified Gram-Schmidt or-
thogonalization with the GMRES method. Solid lines represent the true residual norm while
dotted lines represent is the residual norm approximated by the method.

(a) For all the iterations. (b) Zoom on the last iterations.

Figure 4.3: Evolution of the residual norm for different Krylov solvers without restarting.
Solid lines represent the true residual norm while dotted lines represent is the residual norm
approximated by the method.

The use of modified Gram-Schmidt orthogonalization can significantly impact the stability
of the methods. Figure 4.4 illustrates the relative residual decrease for the GMRES method
using the classical and modified processes. No major differences can be seen between the two
methods for a single resolution of a problem of small size as considered here. This would
justify the use of the classical Gram-Schmidt orthogonalization. However, as the problem
becomes larger and as the number of iteration increases then differences may occur and since
the classical process do provide only limited advantage, the modified process is preferred most
of the time in practical implementations.

The resolution of the interface problem using an iterative method necessitates defining a
tolerance that will serve as the stopping criterion. To compare the solutions, the error with
the overly refined solution will be used once again. As it can be seen in Figure 4.5a, the error
on the solution quickly decreases when the tolerance on the interface resolution gets smaller.
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(a) Error on the whole solution. (b) Number of iteration for the interface problem
to converge.

Figure 4.5: Influence of the tolerance value of the interface problem on the accuracy of the
solution and the number of iterations associated.

Then, it reaches a lower value and it does not decrease anymore. This minimum value actually
corresponds to an error of the same order as the error due to the mesh and therefore it can
not be decreased by decreasing the tolerance of the iterative method. The resolution of the
interface problem will then be considered as having converged. This can then explain why
the residual norm shown in Figure 4.3a decreases a lot for the few first iterations and then
decreases smoothly. The first part of the curve correspond to large modification of the solution
while the second does not affect the accuracy of the solution substantially.

The choice of the tolerance also affects directly the number of iterations required to reach
this specified tolerance as it is depicted in Figure 4.5b. Hence it has a huge consequence on
the overall memory and computational consumption of the iterative method. In the following,
systems with a larger amount of degrees of freedom will be considered. Additionally, the
domain will be decomposed in a larger number of subdomain, increasing even more the size
of the interface problem. Therefore a rather conservative tolerance will be chosen. A value of
10−6 appears to be a favorable balance between ensuring the convergence of the error on the
solution due to the domain decomposition, and the associated computational demands. Here
again, the particular application considered and the requirements on the solution should enter
into account when choosing the value of this tolerance.

Domain decomposition

The numerical solution for this wave scattering problem can be achieved using the do-
main decomposition method rather then classical finite element method but it comes with its
advantages and disadvantages. While various domain decomposition strategies are possible,
the focus here will be to share the computational workload within a distributed computing
system. As a result, a straightforward domain decomposition approach will be adopted. In
this method, the domain will be divided into subdomains with the same aspect ratio as the
whole domain, ensuring uniform sizes across all subdomains. This implies the use of a square
number of subdomains. Additionally, the chosen mesh consists of first order elements with a
size of lc = 0.04m and the tolerance of the interface resolution will be set to tol = 10−6 as
mentioned.
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In Figures 4.6, the evolution of the number of degrees of freedom for both the volumic
problems and the interface problem is depicted as the number of subdomains increases. As
evident, the number of degrees of freedom for the resolution of each individual subdomain
decreases significantly, since it corresponds to distribute the total number of degrees of freedom
between all subdomains. Conversely, the interface problem experiences an increase in the
number of degrees of freedom as the interface size gets larger. Nonetheless, this increase
remains notably limited in comparison to the reduction in degrees of freedom observed for
the subdomain problems. This observation shows the capacity of the domain decomposition
method to segment a volumic problem into smaller subproblems, albeit at the expense of
resolving an interface problem. This ability is particularly promising if it translates into reduced
memory and computational consumption for the overall solution.

(a) For one volumic problem. (b) For the interface problem.

Figure 4.6: Number of degrees of freedom for different numbers of subdomains.

The limitations of the method will then be the increased storage and computation de-
mands required to resolve the interface problem. Two significant factors come into play when
evaluating the computation consumption of the interface problem: the size of the problem and
the number of iterations. The actual size of the interface problem increases with the number
of subdomains as represented in Figure 4.6b. Moreover, the increased size of the interface
problem can lead to more iterations to achieve convergence of the resolution. This trend is
depicted in Figure 4.21, although the increase in the number of iterations is not as significant
as the growth in the number of degrees of freedom. This point is further emphasized by Fig-
ure 4.7b, which illustrates the ratio of the number of iterations required for convergence to the
number of degrees of freedom in the corresponding problem. This suggests that the resolution
of such interface problems for a large number of degrees of freedom might exhibit a favorable
scalability.

Observing the data, it becomes apparent that the number of iterations required differs
significantly based on whether the number of subdomains is even or odd. This variance could
be attributed to the placement of the point source excitation. In cases where the number
of subdomains is even, the point source is positioned at the intersection of four domains.
Conversely, when the number of subdomains is odd, the point source resides at the center of
a domain. Then, when a point is situated on an interface, it might require more iterations for
the iteration method to converge. It is worth noting that when a source lies at the interface
of domains, its value is distributed among the subdomains. For example, in situations where
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the number of subdomains is even, one-fourth of the excitation is allocated to each involved
subdomain. An alternative approach could have been to introduce the excitation in just
one subdomain. While this would have ultimately resulted in the same solution, it would
have necessitated more iterations for the method to converge. This is because of the uneven
initialization caused by the excitation being concentrated in a single subdomain.

(a) Number of iterations to converge. (b) Number of iterations to converge divided by
the number of degrees of freedom.

Figure 4.7: Number of iteration required to converge for different numbers of subdomains.

(a) Computational time. (b) Memory consumption (Maximum resident set
size).

Figure 4.8: Consumption of the resolutions for different numbers of subdomains.

Given the relatively modest size of the problem under consideration, the domain decom-
position method may not prove to be significantly advantageous in terms of memory usage
limitations. This is demonstrated by the storage requirements illustrated in Figure 4.8b. Some
gains can be achieved with four, nine or twenty five subdomains, yielding improvements of up
to 21% on the storage consumption. However, since the size of the interface problem is not
small in comparison to the volumic problem, its memory consumption quickly adds up thus
leading to a memory demand comparable or larger to the monodomain resolution. Further-
more, in relation to computational resources, the scale of the current problem is insufficient to
result in inefficient resolution using a direct solver for the monodomain. This is particularly
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true given the two-dimensional nature of the problem, where direct solvers are very efficient.
Therefore, the domain decomposition method will most of the time be less efficient in term
of computational time in the simulations considered here. In the following, the number of
subdomains used will be set to 9 for the simple homoneous problem.

4.1.3 Resolutions of multiple source points

The simple propagation of waves in a uniform field remains the same regardless of the
location of the source point. Consequently, when disregarding the boundaries, if the excitation
source changes position, the solution to the corresponding problem is simply the translated
solution at the new location of the source point. Nevertheless, sequentially solving problems
with varying source point positions will offer theoretical insights into evaluating the efficiency
of recycling techniques for iterative solvers in the context of the domain decomposition method.
This arises due to the fact that the directions employed in solving an interface problem can be
reused in subsequent resolutions. Hence, it can also be anticipated that these directions will
be advantageous when the solutions are not drastically different.

In this context, we will consider 32 distinct excitation sources, each separated by a quarter
of the wavelength. The variations among these problems are solely attributed to differences in
the source term, leading to variations in the right-hand side only. Moreover, the source points
considered here will lie along the horizontal axis and will be treated in a left-to-right order. A
10,̧m square domain will be used and divided into nine smaller square subdomains. Ultimately,
a similar mesh (lC = 0.04m and first order) and resolution tolerance (tol = 10−6) will be used.

Figure 4.9 presents the relative residual norms for these thirty-two resolutions as a function
of the total number of matrix vector products used. Notably, the recycling of directions already
reduces the residual norm even before any iterations of the method, and prior to any matrix
vector products. Additionally, the trend indicates that the rate of convergence intensifies with
an increased number of recycled directions.

Figure 4.9: Relative residual norms as a function of the number of matrix vector product for
multiple scattering problems.
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One drawback of recycling, however, is that the initial resolutions using recycling tend to
be less efficient than resolutions without recycling. The results presented here were computed
using the GMRES method, yet using any other solver would have led to similar outcomes.
The decrease in convergence efficiency during the initial resolutions must be attributed to the
exploration of the search space by the method. When recycling a search space, the inherent
subspace explored by the method will differ, as it begins with the residual vector projected out
of the recycled space. Additionally, the search directions will be orthogonalized with respect to
the augmentation space, leading to the exploration of even a different subspace than the Krylov
subspace corresponding to the projected residual. Using this subsequent subspace might be less
efficient than using the traditional one for solving this specific linear problem. Nevertheless,
once a substantial number of directions are recycled, the resolution using recycling methods
will require fewer iterations, leading to reduced computational requirements, particularly in
terms of the overall number of matrix vector products. This can be clearly seen in Figure 4.10,
which displays the number of iterations needed for convergence across different considered
source points. Consequently, the total number of iterations in the entire resolution decreases
from 2365 to 1067, representing a nearly 55% reduction in this simple scenario.

Figure 4.10: Number of iterations required to converge for different right hande sides when
using the full subspace recycling or no recycling at all.

It is worth noting that the number of iterations required to solve a problem without restart-
ing is not consistently the same. This variability is particularly evident in the example depicted
in Figure 4.10, where two resolutions necessitate a larger number of iterations. This discrep-
ancy is attributed to the proximity of the corresponding source points of these problems to a
subdomain interface. In Figure 4.11, the solution for the ninth right-hand side is displayed.
This reveals that the solution of the interface problem will exhibit more extreme values near
this point. This then contributed to the increase in the number of iterations required for the
convergence of the iterative method. The additional iterations are also noticeable in the iter-
ation count when subspace recycling is employed. Moreover, this increase in the number of
iterations influences the preceding and subsequent resolutions centered around these points.
This phenomenon can be elucidated by considering the sequential exploration of problems from
left to right. In proximity to the interfaces, the chosen excitation sources are positioned in
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distinct subdomains. Consequently, their respective solutions will exhibit considerable varia-
tions on the interfaces. This discrepancy is especially pronounced for interfaces nearest to the
excitation source. Such significant differences in solutions contribute to the less pronounced
reduction in the iteration count in those cases. Collectively, these factors clarify the observed
pattern in Figure 4.10 and provide insights into the reduced improvements provided by the
recycling method when the considered excitation point are situated near another subdomain.

Figure 4.11: Solution for the ninth excitation point where all 32 excitation points are repre-
sented.

4.1.4 Influence of parameters on the recycling

Previously, the significant enhancements that recycling strategies can bring to the resolu-
tion of multiple scattering problems was demonstrated, particularly in a homogeneous field.
Now, let us investigate how this method performs under different parameter selections for
the problem. The frequency of the wave stands as a critical parameter in the study of wave
propagation. However, due to our focus on a theoretical homogeneous medium with a predeter-
mined wave propagation speed, conclusions regarding a specific frequency can be extrapolated
by straightforwardly scaling the other parameters. As a result, in the subsequent analysis, we
will maintain a consistent frequency for the wave of 1Hz, ensuring the mesh remains unchanged
throughout. All other relationships will be formulated with respect to this constant frequency.

Effect of the meshing

To initiate the exploration, one can begin by examining the influence of mesh size on
the performance of the recycling strategy. While maintaining a separation of 0.25λ between
32 source points where λ = 1m is here the wavelength, the mesh size can be adjusted to
gauge the impact on the recycling strategy. Of course, the mesh size must remain sufficiently
small to ensure an accurate representation of the solution without introducing excessive errors.
Therefore, we will consider a maximummesh size of 0.08m, although this might not be sufficient
for practical applications. The outcomes of this investigation are illustrated in Figure 4.12.
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As the grid becomes finer, more elements are introduced along the interfaces, causing
the size of the interface to expand with the total problem size. Consequently, resolving a
single problem will demand more iterations. Interestingly, this increase in iteration count
does not adversely affect the benefits offered by the recycling strategy. The relative reduction
in the iteration count remains relatively consistent as the mesh size is decreased. There is a
noteworthy exception related to the coarser mesh. However, it is important to emphasized that
a coarser mesh might fail to accurately represent the solution. Hence, any excessive reduction
in the iteration count might be attributed to this lack of accurate representation. Furthermore,
the finer mesh exhibits a more pronounced reduction in the iteration count compared to other
meshes. However, this effect is mitigated by the increase in the number of iterations at the
initial stages and near the interfaces.

Figure 4.12: Relative number of iterations required to converge for different mesh sizes and for
different right hande sides.

Spacing of source points

Another interesting variation would be to adjust the spacing between the different source
points. This is motivated by the understanding that when excitation points are in close proxim-
ity, their corresponding solutions tend to be closely related. This suggests that sharing search
directions between neighboring solutions could yield greater benefits. Additionally, given the
periodic nature of the Helmholtz equation, there might be advantages in spacing the sources
by multiples of half the wavelength. To explore different spacings, a smaller number of source
points will be considered as this will allow for the investigation of larger spacings. However,
the finite size of the domain and the limited size of elements impose constraints on the range
of spacing available within the two extremes. The smaller spacing cannot be close to the mesh
size (lc = 0.04), and at least 8 points will be required to observe the effects of the recycling
strategy. In the end, this results in an interval between 0.125 and 1 times the wavelength.
The outcomes of these spacing variations are depicted in Figure 4.13. It is important to note
that the domain decomposition remains the same and the points are positioned at the center
of the domain to minimize boundary condition interference. Consequently, depending on the
scenario, some points might be closer or farther from an interface, leading to potential increases
in the iteration count at those points. This explains why the first and last points corresponding
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to the 0.5λ spacing are higher than anticipated.

Figure 4.13: Number of iterations required to converge different spacing between the sources
and for different right hande sides.

From this analysis, one can infer that the spacing between source points has the potential to
enhance the recycling scheme, particularly when the spacing is comparably small relative to the
wavelength. However, when the spacing aligns with the wavelength, no significant discrepancy
in the effectiveness of the recycling method is observable. Unfortunately, spacings larger than
the wavelength are not examined in this study due to the constraints imposed by the domain
size. Nevertheless, slightly larger spacings will be investigated in Section 4.2.3, alongside a
larger scale problem. It is important to consider that these findings were derived within the
context of a particular domain decomposed into nine subdomains. Thus, an exploration of
whether domain decomposition impacts the recycling method could also be of interest.

Relative size of the interface problem

When the number of subdomains is augmented, the number of degrees of freedom of the
associated problem will correspondingly increase. Consequently, the relative reduction in the
iteration count enabled by the recycling strategy for different domain decomposition will be
examined here. Figure 4.14 illustrates the number of iterations required to achieve convergence
with recycling for a given number of subdomains. This value is divided by the mean number of
iterations necessary to solve the problems without recycling. To enhance clarity, this approach
is chosen instead of directly dividing the recycling iterations count by the number of iterations
in the non-recycling resolution of the same system. By following this method, the impact of
recycling on interface points close to boundaries remains distinguishable, unlike the alternative
scenario.

This approach allows us to discern that smaller interface problems modestly benefit from
a better recycling performance. This could be attributed to the reduced number of degrees of
freedom, causing recycled directions to be more likely to align favorably with subsequent di-
rections due to the limited diversity of directions. However, more significantly, the observation
reveals that as the number of domains increases, the enhancement attributable to the recycling
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strategy appears to remain consistent and does not degrade as the size of the interface problem
expands. If this pattern remains verified for larger problems, it will induce a good scalability
of the recycling method.

Figure 4.14: Relative number of iterations required to converge for different numbers of sub-
domains and for different right hande sides.

Recycled subspace selection strategies

As discussed in Section 3.4, various strategies for selecting the optimal directions to retain
for recycling are feasible when the quantity of recycled directions is limited. In this context,
we will explore four strategies, two of which are straightforward: retaining the first or the
last direction. However, two additional strategies will also be examined. The first strategy
involves retaining directions that contributed to the most substantial relative reduction of the
residual norm upon their inclusion in the search space. This necessitates storing a measure
of the relative residual decrease for all directions, which remains constant throughout all the
resolutions. The second method entails selecting directions that have an important role in
the orthogonalization process. This corresponds to retaining directions linked to the most
significant coefficients in absolute value during the orthogonalization.

To study these selection strategies, the same set of problems with 32 excitation source
points will be resolved, but with a constraint of storing a maximum of 800 recycled directions.
The results for the various selection strategies are illustrated in Figure 4.15. It is evident
from the figure that selecting the last direction yields the poorest performance. Conversely,
the simple approach of retaining the first directions proves highly effective, delivering superior
performance despite its uncomplicated principle. However, the two latter strategies do not
exhibit an advantage over the other and particularly not over the ”first direction” strategy.

4.1.5 Resolutions of a grid of source points

Instead of exclusively considering sources aligned along a single axis, the examination
presented here above can be extended to the resolutions wave scattering for source points
distributed across the entire two-dimensional plane. While this scenario may not directly

58



Tim Gabriel CHAPTER 4. NUMERICAL EXPERIMENTS

Figure 4.15: Number of iterations required to converge for different subspace recycling selection
and for different right hande sides.

correspond to the upcoming practical application, it can provide valuable insights for related
problems. For instance, this extension anticipates three-dimensional scenarios where grids of
emitters and receivers are employed for full waveform inversion to image subsurface structures.
By employing a grid of source points instead of a linear axis, a potential can be anticipated to
be able to represent more intricate solutions through the combination of recycled directions.
Consequently, a higher level of improvement in iteration count could be expected, as more
information is available through solving problems with source terms varying across all spatial
dimensions. In this analysis, we will consider an eight by eight grid of excitation points, each
separated by the same distance as in previous cases (0.25λ). These points will be resolved
in sequence, traversing from left to right and then from the bottom to the top. The setup is
illustrated in Figure 4.16a, which shows the solution for the first points.

An interesting behavior is observed in the iteration counts, as shown in Figure 4.16b.
The reduction in the iteration count is almost the same as the one observed for the case of 8
points separated by the same 0.25λ distance, as depicted in Figure 4.13. The only difference
in the solutions is indeed a vertical shift due to the change in the spatial arrangement of the
source points. However, when transitioning to a new row, an initial increase in iteration count
is evident, as the new point is located at a vertical position that has not already be solved.
Nevertheless, the overall iteration count continues to decrease rapidly in subsequent resolutions.
This decrease is even more significant than what was experienced with point sources aligned
along a single axis, as demonstrated in Figure 4.10.

In less than twenty iterations, the method exhibits a considerable reduction in iteration
count, with only one or two iterations required for certain right-hand sides. This is in clear
contrast to the approximately 70 iterations needed without recycling. This scenario exploit-
ing an additional dimension, showcases the potential of combining the domain decomposition
method with the subspace recycling technique. Consequently, this combination holds great
promise for three-dimensional full waveform inversion.

Despite increasing the distance between sources, the benefits of recycling remain substan-
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(a) Solution for the first excitation where all 64
excitation points are represented.

(b) Number of iteration per right hand side for
the 64 different excitation points are represented.

Figure 4.16: Solution and iteration count for a grid of 8 by 8 source points where the sources
are solved from left to right and from the bottom to the top.

tial, as demonstrated in Figure 4.17. Also, when the spacing becomes largely smaller than
the size of the wavelength, some additional improvement are obtained, as elaborated in Sec-
tion 4.1.4. Additionally, one can observe that the increments resulting from changing rows of
source points are less pronounced for larger spacing. To rationalize this phenomenon, one could
argue that in the case of a spacing of ds = 1λ, the method accumulates more directions. This
accumulation allows then for better approximation of solutions, even if the next considered
excitation source correspond to a different row.

Figure 4.17: Number of iteration per right hand side for a grid of 8 by 8 source points and for
different spacings of the sources.
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4.2 Marmousi case

The Marmousi model is a synthetic subsurface model used in seismic imaging and ex-
ploration geophysics. It is often employed as a benchmark in the geophysical community for
testing and evaluating seismic imaging algorithms and inversion techniques. The model was
created to mimic the geological features and complexities of a real subsurface environment. The
Marmousi model is particularly notable for its intricate and challenging subsurface structures
that can pose difficulties for seismic imaging and interpretation. The synthetic nature of the
Marmousi model allows researchers and geophysicists to compare the performance of different
seismic processing and imaging algorithms in a controlled and well-understood setting. It has
been an important tool for the development and validation of seismic imaging and inversion
techniques.

Therefore, following the approach outlined in [2], we will use this model as a more practical
context involving wave scattering and full waveform inversion. The Marmousi model serves
as the practical scenario, with its velocity field portrayed in Figure 4.18. To simulate a more
realistic environment, a water layer is included at the top of the model. The complete model
spans 9192m in width and 3116m in height. In the work of [2], the acoustic wave emitters and
receivers occupy identical positions. This strategic alignment simplifies the inversion process,
as the adjoint problems can be derived as straightforward linear combinations of the direct
problem solutions. Consequently, our focus will be confined to resolving the direct problems,
specifically the scattering of waves through point source excitation. In [2], a total of 122
emitters/receivers were utilized, positioned 72m apart and located 216m beneath the upper
boundary in the water layer. The frequencies considered in that study are 2, 4, and 6Hz.

Figure 4.18: Velocity field of the Marmousi model.

As part of the research conducted in [2], the Marmousi model is employed for full waveform
inversion without the domain decomposition method. In this study, the classical finite element
method is employed for resolution. This approach yields favorable results due to the efficient
resolution capabilities of direct solvers in two-dimensional scenarios. Moreover, these solvers
can even leverage the parallel processing capabilities of modern computing systems. However,
the ultimate goal of this method is to extend its applicability to three-dimensional scenarios.
Practical applications often demand three-dimensional resolutions of the full waveform inver-
sion, making it highly desirable. Nonetheless, three-dimensional finite element problems pose
challenges for direct solvers, as even a relatively modest number of degrees of freedom can
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lead to substantial memory and computational demands. As a result, this study focuses on
the domain decomposition method in two dimensions, serving as an initial step towards tack-
ling three-dimensional cases. This preliminary investigation aims to provide insights into the
distinctive properties of decomposition method and how to improve it with subspace recycling.

As explored in Section 4.1.2, the decomposition of the domain significantly decreases the
number of degrees of freedom of the problems handled by the direct solver. However, due
to the two-dimensional context, this reduction does not necessarily translate to a decrease
in computational time since this kind of problems are already efficiently managed by direct
solvers. Nevertheless, memory requirements are diminished, although the reduction will not
be substantial. The size of the interface problem in two dimensions will be smaller than
volume problems when the subdomains considered are sufficiently large. This relationship
emerges because the ratio of degrees of freedom between the interface and volume problems is
approximately proportional to the ratio of the surface area to the perimeter of the subdomains.
Consequently, the increase in memory consumption remains gradual, and it’s only when a
substantial number of subdomains are employed that the memory usage becomes comparable to
that of the monodomain resolution. This situation arises when the size of the interface problem
approaches the size of the volume problem, as observed here when the number of subdomains
exceeds 25. The diverse characteristics associated with varying numbers of subdomains are
condensed into separate plots within Figure 4.19. The conclusions drawn from these findings
align with those reached for the homogeneous case.

As this approach will be extended to three dimensions, it is foreseeable that both memory
and computational demands for the monodomain case will exhibit unfavorable scalability with
the number of degrees of freedom in the case of the monodomain resolution. Consequently,
the disparity between the monodomain approach and the domain decomposition method is
likely to become more pronounced. While the relative size of the interface problem compared
to the volume problems might not be as small as in the two-dimensional case, the advantages
gained from the factorization of smaller volume problems are anticipated to be significant.
This contrast may become evident not only in terms of memory usage but also in the improved
computational efficiency attainable through the domain decomposition approach.

Based on the distinct consumption patterns observed during the resolution of Marmousi
scattering problems with varying numbers of subdomains, as illustrated in Figure 4.19, a
suitable compromise must be found. On one side, the interface problem must be sufficiently
large to capture its potential nuances, while on the other side the computational time must
be maintained manageable. As a result of this consideration, resolutions will predominantly
employ 25 subdomains in the following. The solutions for a single source at frequencies of 2,
4, and 6,Hz are depicted in Figure 4.20.

4.2.1 Recycling strategy

Moving away from the context of a homogeneous medium, the subspace recycling strategy
will now be employed to accelerate the simulation of scattering waves in a more practical
application. Here, the frequencies considered will range from 1 to 8Hz, with each frequency
utilizing a mesh that ensures approximately 25 nodes represent one wavelength. Consequently,
different mesh sizes will be employed for different frequencies, allowing for comparisons between
frequencies using either an appropriate mesh or a unique mesh.

First, let us examine the simulation results for a frequency of 4Hz with and without the re-
cycling strategy, utilizing a domain decomposition into 25 smaller subdomains as illustrated in

62



Tim Gabriel CHAPTER 4. NUMERICAL EXPERIMENTS

(a) Number of degree of freedom of one volume
problem with respect to the number of domains.

(b) Number of degree of freedom of the interface
problem with respect to the number of domains.
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(c) Number of iteration for the interface to con-
verge.
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(d) Number of iterations to converge divided by
the number of degrees of freedom.

(e) Time taken by the resolution on a single node
(without MPI).
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Figure 4.19: Consequences of the number of domains for the resolution of one system on the
Marmousi model.
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(a) For the frequency of 2Hz.

(b) For the frequency of 4Hz.

(c) For the frequency of 6Hz.

Figure 4.20: Real part of the solution to the wave scattering in the Marmousi model using the
domain decomposition method.
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Figure 4.21. In order to obtain an accurate solution, a mesh size of 15m will be required which
leads to 16, 1102 degrees of freedom for the entire domain considered. The related volume
problems will have on average 6444 degrees of freedom while the interface problem correspond
to 6680 degrees of freedom. This comparison clearly highlights once again the substantial po-
tential of recycling methods in significantly reducing the number of iterations. In the absence
of recycling, the total iteration count is approximately 17, 000, whereas the recycling strategy
reduces it to only around 3000, corresponding to less than 18% of the matrix vector products.
This represents a significant reduction in the overall number of operations and, consequently,
simulations employing the recycling strategy require just 35% of the computational time com-
pared to classical resolution. For instance, on a single NIC5 node with 32 threads (OpenMP
threads), the recycling-based simulation takes only 28 minutes, whereas the classical resolution
would take 1 hour and 22 minutes.

An important observation must be done on the increase in the number of iterations as
source points near interfaces are considered. Unlike in the homogeneous case discussed in
Section 4.1, these additional iterations are not mainly due to proximity of the excitation
point to an interface. This increase is present in non-recycling simulations as well, but its
magnitude is far smaller compared to the sharp rise observed in the recycling-based simulations.
Furthermore, this augmentation is not a localized phenomenon, the iteration count begins to
rise even before reaching the point closest to the interface. Moreover, this increase does not
immediately drop back after resolving the problem related to point the closest to the interface.
Instead, it decreases again only after several subsequent right-hand sides. This rise in the
iteration count can then be primarily attributed to the change of domain of the solutions.
The recycled directions might not be adequate to improve the resolutions of points in or close
to another domain. Therefore, more iterations will be required in comparison to the other
resolutions. However, as iterations accumulate and new directions are recycled, the recycled
subspace becomes better equipped to capture the next solutions, resulting in a subsequent
decrease in iteration count.

Another noteworthy observation is the diminished impact of the relative initial iteration
increase in recycling simulations for the first few resolutions. This is in contrast to the smaller
homogeneous medium scenario detailed in Section 4.1. Additionally, in the extreme points
of the domain, a high iteration count is required without recycling, attributed to the largely
varying amplitude of the related solution across the whole domain. The magnitude disparity
leads to substantially different solutions on the interface, causing an additional computational
cost for extreme points. When recycling is employed to accelerate the convergence of the
method, the initial iteration increase remains evident for the first resolution due to the absence
of recycling directions. However, it is worth noting that for the last resolutions, corresponding
to the rightmost points, the slight increase observed in the non-recycling case is no longer
present. Even if this increase is limited, the recycling method might contribute to reducing the
augmentation of the number of iteration associated with solutions exhibiting large magnitude
differences.

4.2.2 Influence of frequency

The first point of the following analysis will be to examine how variations in frequency
impact the resolution. This holds particular significance in practical scenarios where multiple
frequencies are used for full waveform inversion. To eliminate mesh-dependence, a consis-
tent mesh is employed across all simulations. Given that the 8Hz simulation necessitates a
maximum mesh size of lc = 7.5m, this mesh size is adopted for all frequency simulations.
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Figure 4.21: Number of iteration required for each right hand side with total recycling or
without recycling for a frequency of 4Hz.

The outcomes regarding different frequencies are illustrated in Figure 4.22. Notably, a trend
emerges: as frequency decreases, the improvement in resolution through recycling becomes
more pronounced. Despite this trend, the recycling approach remains highly advantageous
even at higher frequencies. For instance, with the highest frequency under consideration,
the total iteration count decreases from around 19, 000 to just 5, 000 iterations, representing
roughly a quarter of the total iterations.

It is important to emphasize that the problem remains identical across all frequencies,
resulting in a different spacing between source points relative to the wavelength. This minor
distinction might account for the varied effectiveness of the recycling approach. Further explo-
ration involving problem resolution while maintaining a relatively constant spacing relative to
the wavelength will then provide valuable insights.

Additionally, it is noteworthy that when source points near the interfaces are considered,
the iteration count increases for all frequencies, albeit more significantly for lower frequencies
than for higher ones. This phenomenon could be attributed to the fact that simulations at lower
frequencies tend to accumulate fewer directions on average. Consequently, when a substantial
change in the solution arises, these do not provide a large improvement to the resolution and a
larger number of iteration are required to solve the interface problem. In contrast, simulations
at higher frequencies amass a greater number of recycled directions as points close to the
interfaces are addressed. Consequently, a larger space is described by the recycled directions
which can then enhance the convergence of simulations.

An interesting observation when using a single mesh and varying the considered frequency
is that the number of iterations required to solve the interface problem without recycling in-
creases for lower frequencies, as evident in the first column of Table 4.1. However, the recycling
strategy demonstrates greater efficiency for lower frequencies, as illustrated in Figure 4.22. As
a consequence, the number of iterations decreases rapidly for low frequencies due to the re-
cycling approach. Without the recycling method, resolving low frequencies with the domain
decomposition method on a fine mesh turns out to be more computationally expensive than
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Figure 4.22: Number of iteration required for each right hand side with total recycling and for
different frquencies. Also the mesh considered here is the same for all frequencies considered.

resolving high frequencies (assuming the mesh is always sufficient to represent the solutions
accurately). This contradicts the intuitive expectation that high frequencies, which capture
more complex solution structures, would require more computation. Nevertheless, with the
recycling technique, resolving low frequencies becomes more advantageous. This phenomenon
can be explained by the fact that solutions for low frequencies exhibit simpler structures, as
depicted in Figures 4.20 and therefore two distinct solution are more prone to share similarities.

Frequency Total
System

First Second Third

f = 1
24686 181 182 184

With recycling: 2287 181 176 59

f = 2
22009 186 187 186

With recycling: 2682 186 200 126

f = 4
19764 172 169 166

With recycling: 3506 172 196 168

f = 6
18947 156 158 160

With recycling: 4317 156 202 177

f = 8
18943 155 171 177

With recycling: 5093 155 157 158

Table 4.1: Number of iterations required to solve the Marmousi scattering problem with dif-
ferent frequencies on a single mesh (lc = 7.5m).

4.2.3 Influence of the spacing of the sources

As it was shown in Figure 4.22, the performance of the recycling method vary might
with the frequency. To investigate whether these variations in iteration counts across different
frequencies are attributed to the differences in the spacing of the excitation sources or not,
the change of frequency will be explored while maintaining a constant spacing relative to the
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wavelength. This scenario is illustrated in Figure 4.23. Remarkably, when the spacing between
the sources is kept constant in relation to the wavelength, the differences between frequencies
in terms of recycling improvements disappear. This suggests that the frequency of the wave
being considered does not significantly impact the efficiency of recycling. Instead, it appears
that the spacing between the sources holds a more substantial influence.

Figure 4.23: Number of iteration required for each right hand side with total recycling and for
different frequencies while keeping the spacing at a constant wavelength length (0.192λ).

The impact of source spacing on recycling improvements can be observed in Figure 4.24.
When this spacing is relatively small compared to the wavelength, the reduction in iteration
count becomes more pronounced as the spacing decreases. This observation can help explain
the differences seen in Figure 4.22. In that case, while the spacing remains constant at ds =
72m, the spacing in terms of the wavelength varies from 0.048λ for 1Hz to 0.384λ for 8Hz.
Nevertheless, it is worth noting that as the spacing approaches the size of the wavelength, the
diminishing effect on the iteration reduction becomes less significant, and there comes a point
where the recycling improvements are no longer influenced by the spacing. It is important to
highlight that recycling still provides substantial benefits even for larger spacings. As a result,
this method remains effective across various spacings between the source points. Additionally,
there might be a slight enhancement in the performance of the recycling method by using small
spacings relative to the wavelength.

4.2.4 Influence of the mesh size

An important facet of the method lies in its adaptation to various mesh configurations.
This is a significant aspect to explore, as it allows us to observe how the method behaves when
applied to more refined meshes. This analysis is presented in Figure 4.25, where the number
of iterations required for convergence is depicted for different right-hand side problems using
the recycling method. To comprehensively cover a range of mesh conditions, the simulations
with a frequency of 1Hz are considered.

Notably, without the recycling method, as the mesh is refined, the number of iterations
required to solve a problem increases as the mesh size becomes smaller. This trend is evident
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Figure 4.24: Number of iteration required for each right hand side with total recycling and for
different spacing in term of wavelength (6[Hz]).

in the initial system shown in the figure and is explain by the fact that smaller mesh sizes
lead to a larger number of degree of freedom and therefore to a larger number of iterations to
converge. However, a noteworthy observation is that the recycling method greatly enhances
the resolution for all mesh configurations. Moreover, it consistently achieves a significantly low
number of iterations across different mesh sizes. Consequently, the resolution outcomes for all
considered meshes become highly similar, with only slight discrepancies at the beginning and
near interfaces can be distinguished.

As anticipated, there is an augmentation in the iteration count near interfaces. However,
this increase is also influenced by the refinement of the mesh. Specifically, the finer the mesh,
the larger the increase in iteration count. This behavior can be attributed to the transition
of the excitation point from one subdomain to another, causing a substantial change in the
solution behavior along the interface. Given this variability, the current recycled subspace fails
to accurately capture parts of the solution, leading to an increase in the iterations. The mesh
size dependence of this phenomenon can be explained by the fact that as the mesh becomes
finer, the number of degrees of freedom along the interface increases. Therefore, if the solution
exhibits substantial changes, more directions are required to account for the variations in the
refined mesh scenarios.

4.2.5 Recycled subspace selection strategies

In this context, the partial subspace recycling approach can also be employed with all the
solvers. Also, the same selection strategies as those discussed in Section 4.1.4 can be applied.
However, it is important to note that the total number of right-hand sides considered here is
significantly larger, therefore an effective selection strategy will be even more important.

In the first plot of Figure 4.26, the various selection strategies are applied to a the simula-
tion of waves with a frequency of 4Hz, resulting in an interface problem with 6680 degrees of
freedom. The limits on the maximum number of stored directions is set to a very small num-
ber of 500 directions. In this plot, it becomes evident that the strategy involving the largest
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Figure 4.25: Number of iteration required for each right hand side with total recycling and for
different mesh size lc (4[Hz]).

orthogonalization coefficient outperforms the others. However, the two other strategies, the
one retaining the initial directions and the one selecting the directions that led to the most
substantial decrease in the residual norm, are not far behind in terms of performance. The
only strategy that clearly performs poorly is the one that retains the last directions.
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Figure 4.26: Number of iteration required for each right hand side with different recycling
strategies and with a maximum of 500 recycled directions.

The strategy keeping the directions corresponding to the largest orthogonalization coeffi-
cients might be a good strategy when a small number of directions are recycled. However, as
the number of recycled direction increases, the performances of the differents strategies does
not remain the same. A similar simulation will be considered, but this time with a maximum of
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1000 and 1500 directions are recycled. The results obtained with different selection strategies
are represented in Figure ??. Interestingly, the strategy based on selecting the largest orthog-
onalization coefficient exhibits a less favorable behavior in this scenario. The strategy that
focuses on the largest residual norm decrease also performs comparatively less effectively. And
as before, the strategy of keeping the last direction continues to show suboptimal results. On
the other hand, the strategy of retaining the first direction maintains a consistent performance.
This strategy appears to be more resilient and robust compared to the others. Additionally,
the slight disadvantage of choosing the first direction strategy in the previous scenario indicates
that, in practical applications, opting for the first direction recycling strategy remains a solid
choice. Nevertheless, further comparisons and experiments need to be conducted to confirm
this assertion.

A last interpretation can be done on the strategy keeping the last directions. Indeed, on the
Figure 4.27b, this strategy leads to periodic fluctuations in the required number of iterations.
One plausible explanation for this phenomenon is that the initial directions play a crucial
role in recycling as proved by the performance of the corresponding strategy. When these
initial directions are discarded, the method quickly loses its recycling improvement. As the
simulation progresses, the augmentation space regains different directions that might contribute
more effectively to recycling. Consequently, the performance of the method improves again.
However, as these crucial directions are replaced with new ones, the performance diminishes
once more, leading to a recurring cycle of periodic fluctuations.

(a) For a maximum of 1000 recycled directions. (b) For a maximum of 1500 recycled directions.

Figure 4.27: Number of iteration required for each right hand side with different recycling
strategies and with large numbers of recycled directions.

4.2.6 Computational time of the solvers

One important consideration when selecting a solver to address the interface problem lies
in the computational demands. As demonstrated in Section 3.3, the number of operations
should be comparable for GMRES-type methods, while GCR and Orthodir methods require
about fifty percent more operations, excluding matrix vector products. However, given that
matrix vector products are known to be computationally intensive, they will constitute a signif-
icant portion of the computational time. Since the number of matrix vector products remains
consistent across all methods, the discrepancies among the methods will contribute only to
a small portion to the overall computational load. To validate this, the computational times
of the various methods are depicted in Figure 4.28. This visualization clearly illustrates that
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there are negligible differences in computational time among the methods. Any minor varia-
tions are attributed to measurement noise, as even between GMRES-type methods and GCR
or Orthodir, no discernible differences can be observed. In most scenarios, the predominant
computational workload will stem from matrix vector products. Consequently, the disparities
in computational requirements between the methods are generally negligible. In cases where
differences are detectable, they typically exist between GMRES-type methods and the alterna-
tives. As no discernible benefits arise from using methods other than GMRES-type methods,
the latter should be the preferred choice in most situations.

Figure 4.28: Computational time of the different solvers with recycling.

4.2.7 Stability of the solvers

As a final study, we will highlight the limitations of the methods in terms of numerical
stability by exploring problems with an even higher number of degrees of freedom in this
section. The focus will be on the scattering of waves with a frequency of 2Hz and a mesh
size of lc = 10m. Similar to previous cases, the domain will be divided into 25 subdomains.
However, a change will be made in the element order, employing second-order elements to
further increase the number of degrees of freedom. Consequently, the volumetric problems
will have 54899 degrees of freedom, while the interface problem will involve 19840 degrees of
freedom. In this scenario, the GMRES method will be tested using both the classical and the
modified Gram-Schmidt orthogonalization techniques. Similar observations could be drawn
with all solvers. The outcomes are depicted in Figure 4.29.

Upon examination, it is evident that the classical approach fails to provide a solution for the
interface problem after only the fifth right-hand side is considered. The solution stagnates at a
value exceeding the tolerance threshold, therefore the method is unable to reach a satisfactory
solution. This starkly highlights the potential pitfalls of using the classical Gram-Schmidt
orthogonalization, particularly when confronted with sizable interface problems. Furthermore,
adopting the modified Gram-Schmidt process incurs no additional costs, except for a potential
loss of parallelization opportunity. However, given that the benefits of parallelization would not
substantially outweigh other associated costs, such as the matrix vector product computations,
the practical consensus favors the use of the modified Gram-Schmidt method.
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(a) Using the classical Gram-Schmidt orthogonal-
ization.
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(b) Using the modified Gram-Schmidt orthogo-
nalization.

Figure 4.29: Residual decrease for multiple right hand sides of a large scale problem using
recycling methods with GMRES. More precisely, the plotted values represent the estimated
residuals obtained from the method iterations.

As said, in the context of the problems considered here, there are no noticeable differences
in the numerical stability between the different methods. Even if the numerical instability
of the SGMRES and Orthodir methods were proven in [?] for some specific examples, no
reductions in the convergence was notices in all the different cases studied along this work.
Therefore, in the context of the problems resolved here and considering problems in the same
range of sizes, the choice of the method in not crucial from that perspective. However, as it was
shown in the last example, as the size of the problem is increased, the numerical stability of the
solvers becomes more essential to find the solution to the problem. Then, more exploration at
significantly larger scales should be studied to find where the numerical stability of the different
methods start to show its limits. This can correspond both to a large the size of the problem
and to the nature of the problem considered. In [32], concretes example of problem causing
numerical instabilities are given.

4.3 Conclusion on the practical use of recycling Krylov solvers

The current chapter explore the practical use of Krylov iterative solvers paired with recy-
cling strategies. Specifically applications within the context of domain decomposition methods
for scenarios in two dimensions are considered. These applications involve tackling a sequence
of linear problems with different right-hand sides. Notably, it is demonstrated that these tech-
niques yield significant advantages by considerably reducing the necessary iteration count to
achieve convergence for the interface problem. Considering the inherent suitability of these
methods for a possible expansion into three-dimensional scenarios, future works should be
considered to address such cases with subspace recycling methods.

An analysis of the different parameters of the application considered was conducted, yield-
ing several insightful conclusions on the performance of the subspace recycling strategy. The
number of subdomains was found to exert limited influence on the recycling performance, as
long as the interface problem possesses a certain minimum size. In the context of full wave-
form inversion, it was revealed that the primary factor impacting the efficiency of the recycling
method was the spacing of source points. Proximity between excitation points correlated with
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an enhanced recycling strategy performance when the spacing was small relative to the wave-
length. However, as the spacing approached approximately half the wavelength and exceeded
it, the influence of spacing on recycling performance ceased to exist. Additionally, the study
indicated that frequency had negligible impact on recycling performance when the spacing was
held constant in terms of wavelength. Another noteworthy observation was that varying mesh
densities led to an increased number of iterations being necessary to solve one problem with
finer meshes. However, the recycling method effectively mitigated this difference in iteration
counts. Throughout all the examined test cases, there was no instance that demonstrated the
ineffectiveness of the total subspace recycling method. On the contrary, this method consis-
tently led to significant reductions in the total number of iterations required by the iterative
approach.

Moreover, a concise demonstration illustrated the feasibility of partial subspace recycling
coupled with judiciously selected search directions. This presentation underscored the sub-
stantial impact of the search direction selection strategy on the performance of the recycling
method. Notably, the findings consistently underscored that retaining the initial directions
proved most effective, producing satisfactory outcomes across a majority of scenarios.

The final observation of this study indicates the absence of significant differences among
the various solvers considered in terms of computational requirements. This can be attributed
to the substantial operation count and memory demands inherent in the domain decomposition
framework. As a result, these demands overshadowed any variations arising from the iterative
resolution of the interface problem. Notably, the most resource-intensive operation within the
iterative methods is the matrix vector product. However, all the considered methods required
approximately the same amount of this particular operation, resulting in similar performance
across these methods. Additionally, the memory consumption associated with the recycled di-
rections will be negligible in comparison to the storage required by the volume problems when
large subdomains are considered. Furthermore, the analysis determined that the application
of the modified Gram-Schmidt orthogonalization technique within the iterative methods en-
sured the absence of numerical stability issues across the examined problems. Therefore, in
this specific context, selecting a recycling Krylov solver over another is unlikely to result in
substantial discrepancies in outcomes.
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In the Chapter 1, the full waveform inversion framework is introduction in the context
of subsurface tomography. This method require the resolution of large scale finite element
simulations, i.e. large linear problems, of wave scattering in time-harmonics. This then lead to
interested of using the domain decomposition method in order to handle large scale problem
and therefore the need to use iterative methods to solve the problem at the interfaces. On top
of that the full waveform inversion also require the resolution of a sequence of linear problems
with varying right hand sides. This then form an examples of the need to efficiently resolve a
sequences of linear problems with varying right hand sides using iterative methods.

Then in the Chapter 2, an in depth presentation of Krylov subspace iteration methods is
presented with a particular focus on minimization solvers. This concern three kind of solvers:
the GCR, GMRES and SGMRES methods. Also the concept of residual based algorithms
is presented and lead to the variation of some algorithms. From that study, it was outlined
that the main characteristics of the solvers are the computation and memory consumption as
well as there numerical stability. It is outlined that the GMRES method stand out as the
most advantageous method on all characteristic. This is do to the fact that method like GCR
require almost twice as much storage and fifty percent more operation than most of GMRES-
type methods. Also, GMRES possesses the more stable numeric behavior in theory than all
the others even if in practice no clear difference is measured with residual based methods.

In the Chapter 3, the extension of the Krylov iteration method is presented notably to
enable the efficient resolution of sequence of linear problem with different right hand sides.
There, the augmentation technique is derived for all solvers and its particular application to
the subspace recycling is presented. This enables then to reuse the directions used in each
resolutions for the next resolutions. From that, chapter one can conclude that almost all
the methods will have roughy the same storage consumption. However, the additional cost
associate to method like GCR combined with recycling still remains and therefore GMRES-
type method are still the most advantageous. This time the GMRES method is still vary
advantageous but other methods have close characteristics. Also, it is noted that the SGMRES
method can provide a reduction in memory consumption with respect to the other methods.
Lastly, the partial recycling strategy is presented for each methods and selection strategy are
briefly proposed.

In Chapter 4, the practical application of subspace recycling iterative solvers is explored
in the context of two-dimensional wave scattering problems using domain decomposition. Sig-
nificant improvements achieved through subspace recycling is demonstrated across different
problem scales. The impact of problem parameters on the performance of the recycling strat-
egy is also studied. The findings show that the recycling methods remain effective even for a
large number of subdomains. Moreover, certain parameters, such as a small spacing between
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sources, enhance recycling performance in this context. Interestingly, we also observe that the
recycling method remains effective even with larger spacing. Among all the tests conducted,
the total recycling method consistently proves highly effective, leading to a substantial reduc-
tion in the total iteration count of the iterative solver. Throughout the study, various aspects
indicate the potential extension of this method to the three-dimensional case, suggesting the
feasibility of such an extension and its potential for significant improvements. Furthermore,
the feasibility of partial subspace recycling was observed and the selection of search direc-
tions is discussed. This demonstration emphasizes the considerable influence of the search
direction selection strategy on the performance of the recycling method. The final conclusion
of this chapter is that, in the specific example of resolution using the domain decomposition
method, no major differences between the iterative solvers can be discerned. Consequently,
any recycling method can be employed without causing a measurable impact on performance.

There are several potential extensions of the current work that could be explored. Regard-
ing the specific application presented here, which is full waveform inversion, the ultimate goal
would involve extending the methods to a three-dimensional case. This extension would pri-
marily necessitate adaptations in the domain decomposition example presented in this study.
However, no more adaptation of the recycling iterative solvers are necessary. Numerous indica-
tors strongly suggest that such an extension could yield compelling results, making it a worthy
subject for future research. Also, in the specific application studied here, the right-hand sides
are available simultaneously. Therefore, it is possible that promising methods like the Block
Krylov method could lead to even greater improvements in resolution [1], [50]. Comparing
these methods with the ones presented in this work would be interesting. Additionally, it is
worth highlighting that the recycled Krylov solvers detailed in this study are not confined to
domain decomposition methods. Exploring their application in other practical scenarios could
be intriguing, potentially unveiling diverse performance outcomes among various solvers. Fi-
nally, one limitation of the recycling Krylov methods presented here is their applicability only
to sequences of linear problems with different right-hand sides but with the same matrix. It
could be intriguing to consider extending this method to linear problems where the matrix is
slightly perturbed, as it is the case in [47].
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