
https://lib.uliege.be https://matheo.uliege.be

Master Thesis : Continuous learning churn prediction in the context of

insurance subscriptions

Auteur : Poizat, Adrien

Promoteur(s) : Geurts, Pierre; 19551

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en science des données, à finalité spécialisée

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/18336

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



Université de Liège - Faculté des Sciences Appliquées

Année académique 2022 - 2023

Continuous learning churn prediction in the
context of insurance subscriptions

Poizat Adrien - s162655
Promoteur académique : Pr. P. GEURTS

Travail de fin d’études réalisé en vue de l’obtention du grade de master "Ingénieur Civil en Sciences
des Données" par POIZAT Adrien.



Contents

1 Context 1
1.1 My Mission within the NRB Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Internship follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 About NRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Data 6
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Target variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Categorical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Numerical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.6 Correlation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.7 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.8 Variable Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.9 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.10 Feature importance using Random Forest algorithm . . . . . . . . . . . . . . . 32
2.2.11 Dimension reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.12 Clustering and Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Data Preprocessing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Churn prediction 46
3.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Gini index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Voting mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Continuous learning 59
4.1 Historical vs. Real-time data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Batch vs. On-line learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 On-Line Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Iterative Ensemble of On-Line Random Forests . . . . . . . . . . . . . . . . . . 61
4.3.2 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 On-Line Gradient Boosting and Extreme Gradient Boosting . . . . . . . . . . . . . . . 63

1



4.4.1 Algorithms comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
.1 Dataset - Description and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . 69
.2 Dataset - Statistical features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

.3.1 Variable distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

.3.2 Correlation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

.3.3 Chi-Square test of independence . . . . . . . . . . . . . . . . . . . . . . . . . . 79

.3.4 T-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

.3.5 Local Outlier Factor and Isolation Forests . . . . . . . . . . . . . . . . . . . . . 82
.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
.5 Continuous learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.5.1 IERF - Confusion matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

.5.2 Weighted XGBoost - Confusion matrices . . . . . . . . . . . . . . . . . . . . . . 86

.5.3 XGBoost with combined sampling . . . . . . . . . . . . . . . . . . . . . . . . . 87

.5.4 Comparison of performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Chapter 1

Context

Customer retention, also known as customer loyalty, refers to the ability of a business to keep its
customers during a specific amount of time, without them leaving for the profit of market competi-
tors. It is a key factor in any business, as several studies(1) have proven that the costs induced by
the set of actions taken to acquire new customers are much higher than the costs to retain existing ones.

"A significant factor in the difference in cost is that consumers tend to buy from brands they trust.
This is why it takes a lot more effort to convert a new customer than to hold a loyal one” (2)

Besides brand loyalty, several factors can explain why companies are that focused on customer re-
tention. One of the main expenses in the acquisition of new customers revolves around advertising and
the need to have successful promotion campaigns on multiple dimensions. These campaigns sometimes
start without much knowledge, targeting a large audience without much focus. In terms of resources,
finding new customers requires a marketing team that will identify factors and leads. Then, a sales
team should be able to reach out to the targets and convince potential future buyers.

Churn is a phenomenon where customers who have agreed to terms and conditions of a contract
in the past make the choice of canceling or terminating that contract, resulting in the loss of a cus-
tomer for the company that initiated the contract. In the context of insurance subscriptions, most of
the subscribers who churn are customers who decide not to renew their contract after a given period.
This decision is very challenging to predict, as the cause can come from any source: financial issues,
competitors’ offers, change in lifestyle... These factors are not numerically conceivable as they are spe-
cific to each situation. Even if they were, most of them are considered as personal private information
and cannot be gathered legally by companies. Because of that, churn prediction is one of the most
challenging tasks in the field of artificial intelligence.

Throughout this work, the three insurance types that are tackled are Car Insurance, Fire Insurance
(for home tenants) and Fire Insurance (for home owners). Car insurances are mandatory for anyone
and fire insurance for owners. Depending on the conditions of a location, tenants can also be obliged
to subscribe to an insurance too. Besides these insurances, Ethias provides insurance contracts such
as Healthcare, Finance Products, General Assistance or Common Right. The three types for which
we will conduct the study are the three contract types with the highest customer base and, thus, are
of the highest interest for Ethias. It is known that the proportion of customers who churn is very low
in comparison to faithful customers. Such an imbalance can cause severe issues in the classification
process.

Binary classification problems exist in multiple fields of work: They are used to diagnose diseases,
for quality control in industries or even spam email detection.The applications of binary classification
are numerous and diverse. In the financial sector, they are applied to trends and market evolution.

1Amy Gallo: The Value of Keeping the Right Customers[6]
2Forbes: Customer Retention Versus Customer Acquisition [9]
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Related to finance, in recent days, numerous businesses tend to focus their effort towards churn predic-
tion, as it costs less to keep faithful customers than find leads to acquire new ones. Such a growth in
interest made the companies very dependent on new predicting technologies. In this context, turning
to artificial intelligence has to be considered, as it is a key concept. Machine learning techniques,
especially, whose role is to predict outputs based on a statistical model that combines multiple inputs,
play a major role in these applications. It was in this context that I got to work on the churn prediction
problem.

1.1 My Mission within the NRB Group

D-AIM is a marketing data analysis platform that is oriented towards artificial intelligence. In February
2022, they unilaterally ended a contract with Ethias Assurance about the product called "d-predict".
This product is a pipeline module whose goal is to predict and detect customers who tend to churn in
the context of insurance subscriptions using machine learning models. Since the contract was ended
unilaterally, Ethias asked the Data Science team of the NRB Group to investigate and recreate this
product from scratch and within a limited amount of time. Although a quite efficient module was built
by C.Schleich and her colleagues, there are some parts of the pipeline that are not well-designed. The
parts that require additional care revolve around three subjects:

• The current module is built with sketchy data cleaning/preprocessing techniques. Obsolete and
irrelevant variables are used for modelling, and no analysis of the data has been conducted. As a
data scientist, my mission is to gain an insightful grasp of the available data in order to be more
efficient in the task of selecting and transforming the information.

• Performance of the model : The models are evaluated using accurate techniques. However, no
retrospective analysis of the results has been conducted with respect to the choices that are made
with the data. My mission is to use my statistical expertise on the data to build models that
would match (or even surpass) the performance of already existing models.

• Continuous learning : The current pipeline is a module that is instantiated each month. Each
month, new models are trained from scratch based on the most recent data and no feedback is
provided about the performance of the module from earlier months. My mission is to propose
a pipeline architecture that would take into account data and models from previous months
without having to rebuild models from scratch. This is a hard challenge as it comes with its set
of constraints such as memory, data and model storage.

These three subjects are treated separately in three chapters, with the first chapter about Data analysis
being the chapter that got most of my attention for multiple reasons. During my Master’s in Data
Science Engineering, I’ve had the chance to learn multiple techniques in the domain of Exploratory
Data Analysis and my wish was to apply these methods to a real-life situation with datasets that
presented a structural challenge. Churn prediction is a good opportunity, as it is a very challenging
task that requires a deep knowledge of its influential factors.Moreover, deepening Data Analysis is a
duty for a Data Science Engineer. While I consider that a Data Science Engineer should be an expert
in various aspects of Data applications (such as Machine learning, Data Analysis, Data Visualization
or Data Engineering), I consider that discovering wishful insights and relations between customer fea-
tures and using them to give interpretations to behaviors is the most important part of such work
(and it is also personally the most exciting). In such a field, there are models that are already known
to be performing well and finding models that would perform better than those that already exist is
not within everyone’s reach. I don’t have the audacity to state that I will find better working models
during this work, but I will try, at the very least.

Another interesting aspect of focusing efforts on data insights is from the side of the company. The
potential market value of such insights is non-negligible, as it allows insurance companies to alter their
way of thinking when it comes to customers retention. If a subset of factors is considered heavily sig-
nificant in the churn outcome, the marketing team should apply their expertise on this specific subset
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and change their retention strategies. As a student who did a lot of theoretical work and projects, I
wanted to look for an internship for which my data science expertise could be of any use in a real life
application as it gives me a strong feeling of accomplishment.

1.2 Internship follow-up

During the internship, I had the chance to work under the wing of C.Schleich who worked on churn
prediction for a few months. She was responsible for the D-Predict module after the contract with
D-AIM had ended. She was very available and since the module was built recently, my discussions
with her about the different matters were rich and resourceful. Three years ago, Ms. Schleich pursued
a master’s in Computer Science Engineering at the University of Liege, with the "Intelligent Systems"
specialization. Since the programs of this master and mine had a lot of common lessons, we could
easily discuss most of the ideas, especially when it came to artificial intelligence, machine learning, and
pipeline structures. Every Friday, I summarized my activities of the week, and at each time she gave
me valuable feedback and ideas for improvement and future work.

I also had the chance to have a rigorous follow-up from my academic promoter Prof. P. Geurts
during the semester, with regular meetings every 2 or 3 weeks. During these remote meetups where
Ms. Schleich was present too, I demonstrated various results from the applications of my different ideas
and discussed uncertainties about innovations. Since Pr. Geurts is a machine learning and algorithmic
expert, his expertise was on point and he oriented my work towards interesting solutions. I appreciated
this follow-up, as it led me to continuously find new ideas for improvement.

Most of my internship was conducted remotely. I was lent a laptop with remote access to the company’s
intranet to work from home. NRB didn’t give me any obligation in terms of office presence, as they
have quite a lax policy in terms of remote working. The team I joined had to be in office for minimum
two days a week, and most of them were comfortable with these two days. I still had the opportunity
to discover the office and I had a dedicated desk to do so. From the beginning of February to the end
of April, I went to the office 1 or 2 times a week, coordinating with Ms. Schleich so I could directly
ask her if I had any questions. I spent most of the remaining time working from home, occasionally
going to the office whenever I had significant uncertainties. I still had the opportunity to get to know
the AI team and have lunch with them. They are not a big team (4 persons) and it was easier to get
to know each one of them individually. The office presence was not very important, as everything I
needed was available on the laptop that I was lent. Whenever I needed data or scripts, Ms. Schleich
would send them to me, as long as she was able to.

In data science studies, there exists the apprehension that not enough data is available to conduct
an efficient study and obtain results that we can trust. There is also the fear that the data is too old
and therefore not representative of the present situation. Fortunately, this is not the case here, as I
had access to half a year of data for three insurance types (car, fire insurance (for tenants) and fire
insurance (for owners), from April 2022 to August 2022. Each dataset has sizes ranging from 60 000 to
300 000 customers with more than 300 features. While the duration might be too short for a long-term
continuous learning study, it remains sufficient for a research work based on historical data.
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1.3 About NRB

(3) With a consolidated turnover of € 501,6 million and over 3,300 employees, the NRB Group is one
of the main Belgian players in the ICT sector with a European vocation. NRB’s mission is to provide
optimal end-to-end IT solutions and services through a close and long-term partnership with its public
and private sector clients to simplify technological, economic, and societal transformation.

Within this context, NRB provides a complete range of ICT services based on four key areas: consul-
tancy, software, infrastructure & cloud services, and managed staffing.

• Consultancy: The consultants assist clients throughout the process of their digital transfor-
mation. In addition, a team of cybersecurity specialists helps them develop and implement the
appropriate policies and technologies, ensuring the integrity of their organisation, systems, and
data.

• Software: The Software Factory consists of development teams, based in Belgium (Afelio) and
in the nearshore centre in Athens, mastering a wide range of technologies for the creation of
mobile and web applications as well as for customised solutions for distributed and mainframe
environments. Moreover, they implement packages from major software vendors such as SAP,
Microsoft, IBM, Cisco, Software AG, and others. NRB disposes of more than 100 SAP experts
implementing ERP, IS-U, FI-CA, financial, logistic and HR projects in public and corporate
organisations and utilities. Their specialists ensure the customisation, the integration and the
maintenance of the solutions supplied.

• Infrastructure services: NRB’s infrastructure and managed operations services encompass
housing and hosting of mainframe, AS400 and distributed systems. To provide these services,
NRB can rely on its own data centres located on two georesilient sites in Belgium, an infrastruc-
ture that comes up to the Tier 3+ requirements of the Uptime Institute.

• Hybrid cloud Services: Thanks to this infrastructure and its strategic partnership with IBM,
NRB launched a unique offering for intelligent hybrid cloud services, branded NECS, short for
NRB Enterprise Cloud Services. This enables customers to access – through one single interface
– and make optimum use of the NRB private cloud and public cloud services from leading global
providers, such as IBM, Microsoft Azure, Amazon or Google.

• Managed Staffing: Finally, NRB provides managed staffing services aimed at offering the
best-fitted profiles at the best possible price taking into account the customer’s requirements. In
February 2020, this service was reinforced by the acquisition of People & Technology, a company
specialising in the provision of IT profiles.

The NRB Group takes a lead in the field of Smart Cities, as we continue to deploy our efforts in
the field of merging technologies, such as Artificial Intelligence (AI), Internet of things (IoT), Robotic
Process Automation (RPA), and security.

NRB focuses on specific sectors such as the public and social sector, the sector of energy & utili-
ties, the financial services sector and the business & industrial sector. Trasys International, business
unit of NRB S.A., aims at European and international public organisations and corporations. The
subsidiaries of the NRB Group offer sector-specific solutions supported by the Group’s scale, ICT
infrastructure and other support.

3More about the NRB Group: https://www.nrb.be/en/about
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1.4 Literature Review

There are multiple arguments that lead to the need for deeply exploring churn analysis in multiple
fields of work. Zhang Rong et al.[17] highlight the main arguments and propose a way to approach the
problem in terms of modelling. However, before actually trying to predict churn, it is mandatory to
have a deep knowledge of the influential factors and attempt to find interpretability with the results [13].

The different techniques for treating customer data in the context of insurance subscriptions with
the goal to predict churn is a subject that is already frequently studied. A.Groll et al.[1] propose
a wide range of machine learning techniques that can be used for the purpose of detecting relevant
factors to the churn problem. The main challenge behind churn prediction is that there is a severe
class imbalance between positive and negative churn cases. V.Effendy et al.[5] propose to handle class
imbalance with the use of combined sampling and weighted random forest, which is an idea that we will
tackle in Section 4.3.1. Customers data can also come with a high proportion of missing data which
needs to be handled. Most state-of-the-art techniques rely on deep learning methods to synthesize
missing data, such as Iterative imputation[16].
Customers databases are highly multivariate and treating them efficiently is a challenge in itself. With
a high number of dimensions and a large customers base, it is mandatory to consider dimensions and
data reduction techniques[11].

Predicting churn is a problem that has already been confronted by multiple machine learning models,
such as tree-based models, Bayesian models, Neural networks, Support Vector Machines and so on.
Currently, the models that have proven to be working at best for churn prediction are boosting algo-
rithm based on stochastic gradient descent [14], as boosting algorithms have been surpassing averaging
algorithms for more than 15 years[10]. As for other techniques, there is also the possibility of focusing
on non-static features and building recurrent neural networks that take into account customer time-
varying data[12]. In the present work, we consider that since clients overlap and the objective is to
perform continuous training, the time-varying features are implicitly taken into account. In the case of
more simple models such as Logistic Regression, there is the question of adding supplementary terms
to the learning algorithm, such as Lasso or Ridge regularization[18].
Continuous churn prediction is a challenge in many ways. Iterative learning requires the use of
On-Line variations of Ensemble methods implementing voting methods[2]. These On-Line Ensemble
methods would use feedback of their training on previous data sets to improve their future inference
performances[7].
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Chapter 2

Data

2.1 Terminology

In the context of this work, some expressions will be used multiple times and sometimes using a different
terminology. Here is a non-exhaustive list of these terms and their signification and synonyms used in
the text:

• Churned customer/positive churned customer: Customer who is positive to churn. Customer
whose output label is Positive (equal to 1 when mapped to an integer, in opposition with negative
churned customer who is labeled as negative, value 0).

• Feature/attribute/candidate variable/input variable: individual measurable property of the data.
In a dataset presented as a table, a feature is represented by a column. Although the term might
vary depending on the discussion that is made (theoretical or practical), the sense remains the
same.

• Output : The term output is defined as the label or target value associated to each data point
in a supervised classification problem.

• Output value/Target output/Target value/Output label: This set of terms refers to the output
of a data point under its different forms. The label is either "Churn" or "No churn" and is
mapped to the output values 1 and 0. The remaining terms can be used when talking about
both representations.

• observation/observed data point: The set of input feature values for one customer. An observed
data point also contains its output, in opposition to unobserved data that contains only the
inputs. The term "observed" refers to the availability of the output value.

About the Data

This section contains all the accessible information about the data that will be manipulated in the
present work. This includes how the data is gathered (multiple sources) and how it is presented
(nomenclature of the different variables, variable types, format). Working with data that belongs to a
client involved not being able to have access to the whole process of client information gathering due
to confidentiality issues.

The nomenclature and specification of the data is displayed in Appendix .1. The file summarizes
all the disclosed information about the definition and nature of the features. The name, description
and values of the features have been kept in their language and form of origin.

Single Views (SV)

The presented datasets concern the identification of risk factors and the prediction of indicators of
churn in the context of insurance subscription. The aim of these datasets is to identify, for each churn
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type, the factors that tend to influence the choice of clients about an insurance contract renewal. The
conditions in which this data was collected remain unknown, since data gathering is on the client’s
side and there is a confidentiality agreement between them and NRB that allows a non-disclosure of
the gathering process.

There are three types of insurance that will be covered in this study (also known as tasks) : car
insurance, fire insurance (homeowner) and fire insurance (tenant). In the process as is, Ethias provides
NRB with customers information that belongs to one of the 5 following categories :

• Client: Personal information such as age, profession, seniority, family situation...

• Products: Information about products and services for which clients have signed up, number of
products, product expiration...

• Sinistre: Information about claims (months since last accident or loss, number of claims...).

• Intervention: Number and type of interventions, dates of intervention...

• Contracts: Specific information about the car and fire insurance contracts : presence of war-
ranties, types of insurance contracts,...

The remaining variables are used for identification. Following the European GDPR security law, the
data requires to be anonymized. The anonymization process is done here by "pseudonymization" of
the customers, which is a mapping of each customer to a series of numbers.

Once all features from each subset are received on NRB’s side, they merge them together to cre-
ate what is called a Single View. At each month, a Single View consists of all the information about
the clients that are in the client base. This means that the same client can be present in multiple
consecutive Single Views (while still having some changes in the features because some of them include
non-static information). This observation is interesting, as having multiple occurrences of the same
client until he churns will allow one to monitor the changes in (only) non-static values and possibly
interpret these changes.

The exposed process takes place every month. There is however an important factor that needs
to be taken into account. Every month, the goal of D-Aim is to provide Ethias with the most accurate
predictions of the current month’s datamart of clients. The issue is that the initial learning process
which is a pipeline that is depicted in Section 3 requires that each month a new model should be
trained with labeled data. Since the data of the present month is not supposed to be labeled (because
otherwise it would mean that the job of predicting would be pointless), there is a need to make use of
old data for which ground truth (the knowledge that a client churned or not) is available. The old data
should not be too old though, because if the gap in time between the present month and the month of
reference is too important, the client base changes too much and the models that will be trained based
on the month of reference will not be as representative as needed for new data (model generalization
will be laborious). The month that is taken as reference is thus the most recent month for which the
target output is available. On the side of Ethias, it takes 3 months to collect the decision of the clients,
since this is the period of time after which Ethias assumes that if one of their client did not give any
intention of renewing the contract, then they indeed are considered as churned.

With this in mind, the data that will be used each month consists of two Single Views : one of
the current month that is the data for which we want to perform a prediction and the other that is
the Single View of the most recent month for which we have acquired the targets, labeled with these
targets. For further understanding, let us consider an example : We want to perform a prediction
for the month of August 2022. It takes 3 months to collect client targets. At the end of July, we
should have thus received the targets of the client base of April 2022. The dataset that will be used
for training the supervised learning algorithm will thus consist of the Single view of April 2022 merged
with the targets obtained in July 2022 while the dataset that will be used for inference (predictions)
will consist of the Single View of August 2022.
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Historical Data

In the last paragraph, it was explained that it took some time on the side of Ethias to acknowledge
that customers had churned. Most of the customers who churn will not give any news during a certain
period, period after which Ethias will consider that they churned. They chose a period of 3 months.
Fortunately, we will work on Historical Data, meaning that we don’t have to wait for 3 months to
acquire targets. Instead, we can directly work on each Single View with the available output labels.
This aspect of the work is important to mention, because when it comes to continuous learning in the
present, this delay is non-negligible.

Household View

There are a lot of features (labeled with "_HH" at the end of the name of the feature) that are said to be
"On Household view". This signifies that there exists a feature with the same name (without the "_HH"
at the end) that is used to determine its value. The value is determined based on the following schema:
If a customer is the only customer in his household, the value of the Household-specific variable will
be the same as the single customer. If there are multiple customers in the same household, the value
might differ (every given precision is shown in the Appendix .1). It is important to specify this aspect
of the Single Views, because when dealing with hypothesis tests and other data analysis tools, there
will be obvious strong relations between these kind of features.

High-dimensional data

With a set of more than 300 features and monthly datamarts whose client base range from 60 000
to 300 000 members depending on the insurance type, it is needless to say that a thorough analysis
of the data will be required to efficiently grasp the full potential of the available information without
sacrificing too much resources. This involves selecting the best subsets of features to build represen-
tative models via methods that are regrouped under the term "Feature engineering". There is also a
possibility to select a subset of observations such as to drastically reduce computation time without
compromising too much on quality.

Whenever the information of a problem is presented as tabular data, most real-life machine learn-
ing processes tend to prioritize an efficient use of computational resources over the faithfulness of
models to this data as it was presented initially. Feature and row selection, if done correctly, reduces
the need of high-cost computational resources without sacrificing too much information. There is how-
ever a catch: Making assumptions that ultimately result in the loss or selection of a fraction of all the
available information induces bias, i.e the outcome of a model built on unfounded (or even founded)
assumptions is prejudiced by these assumptions and there is a possibility that this outcome is not in
accordance with reality. There can be bias anywhere in a machine learning application. Most of it
can be justified and used skillfully with the help of expertise in the domain or a good knowledge of
machine learning processes.

2.2 Exploratory Data Analysis

In this section, we do not consider the changes between the different datamarts of distincts months
and we assume that choosing one Single View per insurance type will be representative enough to
accomplish exploratory data analysis. In this case, the Single Views of April 2022 will be taken as a
reference.

2.2.1 Overview

Table 2.1 is a summary of the dimensions of the available data for April 2022. It can be seen that
depending on the insurance type, the number of clients is quite different. The number of features used
for car insurance is higher because there are multiple warranties that are to be taken into account that
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are not proposed in the other insurance types. Appendix .1 gives full details about the definition and
nature of the features contained in the Single Views.

Insurance type Rows Features
Car insurance 280591 345

Fire insurance (owner) 176459 306
Fire insurance (tenant) 83512 306

Table 2.1: Dimensions of the Single Views for each insurance type, April 2022.

Among the whole set of features, no recent cleaning has been done, therefore there is a non-negligible
presence of obsolete variables that need to be disposed of. In some cases, the obsolete variables are
already replaced by other features in the datamarts. It is thus mandatory to remove them, otherwise
we could be dealing with multicollinearity (variables that are highly correlated) , which we want to
avoid. In some other cases, the features are not collected for new clients or are soon to be replaced.
Moreover, there are variables that are either unique (identification from the pseudonymization) or
missing most of the time (see Section 2.2.3). Table 2.2 gives a display of the dimensions of the problem
after the removal of obsolete and irrelevant variables. It can be seen that there was a lot of rubble in
the datamarts, since we got rid of more than 30% (100+) of the features for each insurance type. After
having analyzed the missingness of the different features, we will choose either to impute the missing
variables or get rid of the feature if the missing ratio is too high. We will see that this first filtering
will heavily reduce the number of features in the datamarts (see Section 2.2.6).

Insurance type Rows Features Numerical Categorical Binary
Car insurance 280591 220 148 46 26

Fire insurance (owner) 176459 196 144 44 8
Fire insurance (tenant) 83512 193 140 44 9

Table 2.2: Dimensions of the Single Views after filtering, April 2022.

Table 2.2 also shows the count of feature types in the datamarts. Having knowledge about the
nature of the features that are dealt with is very important for multiple reasons. First, the statistical
measurement that can be made on the features are not the same depending on the type of feature that
is dealt with. For instance, it is impossible to compute the mean or the percentiles of a categorical
variable so the tools used should be different. In the Appendix 5, some statistical features of the
different variables are computed. For numerical variables, there exists features such as mean, standard
deviation, minimum and maximum value and quarter percentiles. For categorical variables, there exists
the count of unique occurrences (number of category for categorical variables), the most common value
(top) and its frequency. Each of these metrics can be used to perform statistical tests that will be
covered later. The second reason why it is mandatory to know about the data types is about the
learning phase. Some models only work when dealing with numerical data. To make efficient use
of these models, the non-numerical data should be pre-processed and converted into numerical data
without loosing too much information. As a side note, binary indicators are treated as categorical
variables, but it was interesting to observe the quantity of such indicators in the Single Views, hence
the need to separate features that are considered to be categorical in 2 columns : purely categorical
features such as features that contain characters or symbols ("Categorical") and binary indicators
("Binary"). 2.2.

2.2.2 Target variable

The target variable is a boolean variable that is equal to 1 if a client has churned and 0 if not. Let us
first look at the different churn distributions on Figure 2.1. It is first observed that we will be facing
a binary classification problem with a severely unbalanced target class distribution. This observation
implies a lot of things as detecting positive churn cases in such an environment will become quite chal-
lenging. As it is detailed in Section 3.4.1, there are multiple ways of measuring the performance of a
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binary classification task. They depend on the motivation behind the study and the client’s wishes. A
highly unbalanced target distribution means a very high difficulty of achieving some of the objectives
desired by the client or the researchers. For starters, Ethias’s wish is to detect customers that are
positive to churn, because customer attrition is one of their main concern. If a model is trained using
the whole Single View as reference, it means that almost 99% of the observations in the training phase
are labeled as negative. This would result in a model being very efficient in the detection of negative
cases, but not efficient at all in detecting positive cases. In terms of pure accuracy, such a model would
have almost a perfect score (because it would recognize negative cases that are present almost 99% of
the time in every datamart) but it would be useless for the client.

Figure 2.1: Churn distribution of the 3 insurance types, April 2022

With such high imbalance, there is a need to make assumptions on the prior knowledge that we
have by either under- or oversampling the datamarts such as to balance the training and have a model
that perform well both for negative and positive cases. We will see later that balanced sampling gives
more interesting classification performances (see Section 3).

2.2.3 Missing data

The analysis of missing values in the Single Views requires a clear definition of what is considered
missing and what is not. The Single Views are composed of features from different sources and the
missingness is not always expressed as a NULL value. However, the documentation does not mention
whether or not specific symbols express missingness or some sort of information. These symbols in-
clude "?", "." or "-1". An interrogation point "?" could represent an information that should be
delivered in a future Single View, but it could also mean that the information is and won’t be available
at any time. For a static analysis of an individual Single View, it does not change much, but in terms
of interpretability, it can be discussed. This reflection leads to the need of choosing whether or not
these symbols should be considered as missing values (and thus be dealt with using techniques such
as Imputation, see Section 2.2.8). We first take a look at missingness with the assumption that the
mentioned symbols are missing values and then we take a look at the missingness with the assumption
that they are not.

Figure 2.2 is a data-dense display that allows to visualize patterns in data missingness (called nul-
lity matrix). Each row is an observation (100 were randomly picked) and each column is a feature.
The white spaces represent missing values. This matrix shows two things : First, the proportion of
missing data is very high. Some variables are missing more than 90% of the time and dealing with such
a lack of information is complex. Secondly, there exists multiple patterns of jointly missing values that
allow us to introduce the first assumption about the Single Views: Missing Not At Random (MNAR).
The MNAR assumption refers to datasets for which the missingness of variables is related to unob-
served values (other missing variables), as opposed to "Missing at Random" or "Missing Completely at
Random", which assume that there is no relation between the missingness of variables and unobserved
values. This is one important assumption to make, as dealing with MNAR datasets is more challenging
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than dealing with MAR or MCAR. For random missingness, statistical methods can be applied without
much thought, but when there exist patterns, their use can lead to biased or misleading results if they
are not properly addressed.

Figure 2.2: Nullity matrix of 100 random samples of a Single View, with symbols as NaN (Car Insurance,
April 2022)

Concerning the Single Views, there is a choice that needs to be made. The goal is to minimize
the loss of information while minimizing the bias that is introduced. Moreover, we want to be able to
interpret results. Bias can be introduced while (for example) synthesizing data using observed data.
However, the more value a column is missing, the more values will be synthesized and the more bias
will be introduced. The best compromise that was chosen is to keep every feature (whose missing rate
did not exceed 99% and had at least two unique values) and consider only values that are "NULL" as
missing (as they are not a majority). The symbols "?", "." will be treated as particular categories and
will later undergo the process of Categorization (see Section 2.2.7). As for −1, they will be treated as
any integer value, as −1 values only appear in numerical features. The new nullity matrix is displayed
in Figure 2.3. It can be seen that there is a lot less to deal with, and no information is lost for now.
Here again, there are missingness patterns consolidating the assumption of a MNAR Single View.

Figure 2.3: Nullity matrix of 100 random samples of a Single View, without symbols as NaN (Car Insurance,
April 2022)

Let us have a closer look at the patterns. We avoid dealing with every feature that has missing
values by applying a filter of minimum 30% of missing values (the threshold is chosen arbitrarily).
Figure 2.4 is a heatmap that shows the correlation of the missingness of each feature two-by-two.
Values that are close to -1 signify that if one of the two variable is present, then the other is likely
to be missing. A value close to 0 doesn’t imply any relation between the missingness of two variables
and a value close to 1 implies a strong relation. The majority of joint missingness comes from the
"Products" subset of features, where we observe correlations ranging from 0.3 to 1. The reason behind
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the patterns lies in the definition of these features: Some of them are dependent and if one is missing,
then another one or multiple others are automatically missing too, as they are conditional of each
other. This is a phenomenon that occurs a lot with binary indicators. Most of the time, there is an
indicator that conditions the value of another variable. If this indicator is not available, then the other
variable isn’t either. During the analysis, we also discuss how to manage multiple variables that carry
redundant information. Dealing with multicollinearity is a different problem from exposing missing
patterns and will be discussed in Section 2.2.9.

Figure 2.4: Correlation Heatmap of Missingness for all features that are missing at more than 30% (Car
Insurance, April 2022)

2.2.4 Categorical variables

The following discussion is a first attempt towards finding the potential risk factors of churn (First for
categorical features and then for numerical features). This first forecasting attempt is done by indi-
vidually looking at each feature and observing the percentage of churned customers for each value of a
feature. We know for sure that the analysis of the relation between individual variables and the output
is not a task that should be taken as a reference for determining risk factors, as relations between
features and the output are far more complex than simple one-to-one relations. We could however get
insight about some features and then verify our speculations with more elaborate ideas. One of these
ideas involve the use of Random Forest to determine feature importance in terms of classification and
is tackled in section 2.2.10.

Note: For loyalty purposes, the following analysis has been made on datasets with only complete-case
scenarios for the studied features. The analysis considers that there are no missing values, as the case
of these missing values will be covered in Section2.2.8.

Let us first define what is considered non-numerical and numerical variable in the context of Single
Views. Anything that is sorted as a non-numerical variable includes variables that have a string for-
mat (categories, flags, contract types, demographic and personal information, profiles,...) and boolean
indicators. Anything that is sorted as a numerical variable includes temporality variables (seniority
in the company, months since last contract exit,...) and quantities (number of contracts, monetary
values, customer values,...).
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We get some insight about the categorical features by building the histograms of occurrences of the
target variable w.r.t to their categorical value. If the difference in proportion of churned customers is
high between different categories, then it can mean that there is a link between the current feature and
the target variable. An aspect that will be focused on is the difference between churn types. Some fac-
tors can affect only one specific type of insurance while some others are more global and affect multiple
types. The difference in proportion should be relevant, as the number of churn cases is low. The intu-
itive meaning is that small differences cannot lead to reliable hypotheses. For example, Figure 2.5 is a
histogram of the count of churned customer w.r.t their marital status in the context of car insurance.
Between single and divorced customers, the difference in proportion is low (578/45660 = 1, 2% for
divorced customers and 91/11120 = 0, 8% for single customers), so there is not much to say about it.
However, when we compare single customers (0, 8%) with widowers (62/2225 = 2, 8%), this difference
starts to be higher. But one should be careful, because a high difference in the number of samples
can induce this analysis to be skewed. To get efficient insight, we look for high difference in churn
proportion between category values that have a similar number of samples.

Figure 2.5: Count of churn occurrences based on the marital status (car insurance, April 2022)

While doing some exploration of the data, some interesting features that could lead to relevant
hypotheses were observed. Since there is a lot of variables, the exploration is done in accordance
with the 5 feature subsets of the Single Views that are described in Section 2.1 (Client, Products,
Sinistre, Intervention, Contracts) even if sometimes not all subsets are represented.

In the Products variables, the variable P_sortie_TypeLastIARD_HP is defined as the type of the
last contract that was terminated during the historical period of the present insurance subscription
(also called "contract exit"). A customer has a value for this variable if he subscribed for any other
product or service aside from the present insurance subscription. These kind of values are interesting
in the case of cross-selling inquiries (selling products to clients that are already customers). In the case
of Fire insurance (tenant), Figure 2.6 shows us that the different exit types have varying churn rates
(DCO:2, 3%, ASS:1, 6%, AUT:2%, INC:1, 1%) with a (roughly) similar number of samples. Customers
whose last contract exit type is DCO (Common right) are more than two times prone to churn than
customer whose last contract exit type is INC (Fire) and in general, the INC type has the lowest churn
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rate. Without the requirement of expertise in the domain, it is intuitive to say that customers who
already exited a fire insurance contact will most likely not sign up for another fire insurance contract
in the same company and those who still do will therefore be less likely to churn. There is also another
notable observation: the mean churn rate of customers with a contract exit type is higher than the
global churn rate of Fire insurance (tenant) shown on Figure 2.1. This can lead to the hypothesis that
customers who already exited a contract of any type are more prone to churn than those who didn’t.

Figure 2.6: Count of churn occurrences based on P_sortie_TypeLastIARD_HP (Fire insurance - tenant, April
2022)

We now confirm whether or not these intuitions are plausible by looking at the same histogram for
the two other insurance types. Figure 2.7 shows that, in the case of Fire insurance (owner), the INC
type contract exit has still the lowest churn rate and DCO has still the highest (DCO:1, 5%, ASS:0, 8%,
AUT:0, 8%, INC:0, 65%). The intuition that was exposed earlier can lead to a good hypothesis: In the
case of fire insurance (both types), customers that have already exited a fire insurance contract are less
likely to churn from the current contract. Taking a look at Car insurance now, the churn rates vary
in a slightly different pattern (DCO:2, 1%, ASS:1, 45%, AUT:1, 65%, INC:1, 65%). The DCO type has
the highest churn rate, but the INC type has not the lowest rate anymore. Here, the churn rates are
quite close and the difference between the number of cases per category is higher than in the case of
fire insurance. Any hypothesis that stems from these observations would be quite weak. Still, we can
confirm the hypothesis that for all insurance types, the mean churn rate is higher if the customers have
already exited any type of contract. Table 2.3 shows that the churn rate is multiplied by 1,5 to more
than 2 depending on the insurance type.
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(a) Count of churn occurrences based on
P_sortie_TypeLastIARD_HP (Fire insurance -

owner, April 2022)

(b) Count of churn occurrences based on
P_sortie_TypeLastIARD_HP (Car insurance,

April 2022)

Figure 2.7: Comparison of churn occurrences based on P_sortie_TypeLastIARD_HP for Fire and car insurance
types.

Insurance type Global churn rate Mean churn rate for any
P_sortie_TypeLastIARD_HP value

Car insurance 1,19% 1,7125%
Fire insurance (owner) 0,436% 0,9375%
Fire insurance (tenant) 1,09% 1,75%

Table 2.3: Comparison of global churn rate with churn rate specific to the presence of P_sortie_-
TypeLastIARD_HP.

The observations made by looking at the distribution of P_sortie_TypeLastIARD_HP are rein-
forced by doing the same analysis on variables that belong to the same subset of features and that also
concern contract exits. In the Appendix .3.1, there is a compilation of histograms of Product variables
that confirm the hypothesis that if a customer already got out of a contract, he is more prone to churn.
We also take a look at temporal factors that could indicate higher churn rates. In certain situations,
customers tend to exit a contract after a given period of time (counted in number of months) and it is
hard to guess for which reason he would take this decision.

Unfortunately, the variable P_sortie_TypeLastIARD_HP, just like all the other variables tackled in
Appendix .3.1, has a very high missing value ratio (89, 49% in the case of Car insurance). This means
that approximately 10% of the customer base has exited another contract during the period of the
insurance contract. This observation showcases how important features can be even if most of their
values are missing in a dataset. The decision about the conservation of features with missing values
will be influenced greatly by such analyses.

Let us now try to look at variables that are more represented in the dataset in order to obtain hy-
potheses that are compliant with a large portion of the data. In the Clients subset of features, the
variable C_Lifestage_EHP is defined as the customer’s life stage at the end of the historical period
of the present insurance contract. The different categories are: CWC (couple without children), ENS
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(teacher), FAM (family), MED (medior), SEN (senior), SIN (single), YPR (young person). We can
first have a look at the distribution of the dataset among the different lifestage categories. It is im-
portant to note that the low missing value rate of C_Lifestage_EHP (less than 0, 01%) allows us to
consider that the distribution shown on Figure 2.8 is quite representative of the whole dataset. We
can first see that there is a dominant presence of SEN (senior) profiles among the different contracts,
this dominance being only surpassed by SIN (single) profiles in the case of Fire insurance for tenants.
YPR (young) profiles are the least present when it comes to car insurance or Fire insurance for owners
(the latter might be coming from the fact that there are not much young home owners). However,
they are on the heels of SEN and SIN profiles when it comes to Fire insurance for tenants. This can be
explained by the fact that in the world of real estate, there are much more young home tenants than
young home owners.

(a) Car insurance, April 2022 (b) Fire insurance (tenant),
April 2022

(c) Fire insurance (owner), April 2022

Figure 2.8: Comparison of churn occurrences based on C_lifestage_EHP for all insurance types, April 2022.

Looking at the churn rate now, YPR profiles seem to have a very high ratio in comparison with
older profiles such as MED or SEN. When it comes to car insurance, the churn rate of customers
belonging to the YPR category is equal to 2, 5% which is more than twice the global churn rate of car
insurance customers (1, 19%). For young owners too, this rate is equal to 1% against 0, 436%, which
means that the behavior of YPR profiles doesn’t change much among the different contract types.
Table 2.4 gives a ranking of the different lifestage categories based on a weighted sum of their churn
rate among the 3 insurance types, from highest to lowest value. The weights are based on the global
churn rate of each insurance type. As detailed previously by Figure 2.8, YPR profiles have the highest
churn rate across all contract types and SEN profiles have the lowest. It also appears that teachers
(ENS profiles) seem to be less prone to churn than families (FAM) or couples without children (CWC).

Lifestage Category Car insurance Fire insurance (tenant) Fire insurance (owner) Weighted Sum
YPR 2.52% 1.77% 1% 1.9768%
CWC 1.5% 1.57% 0.7% 1,4%
SIN 1.55% 1.07% 0.6% 1.206%
FAM 1.28% 1.06% 0.4% 1.0512%
MED 1.05% 0.98% 0.35% 0.91%
ENS 0.66% 1.38% 0.33% 0.8952%
SEN 0.79% 0.43% 0.4% 0.5836%

Table 2.4: Ranking of the lifestage categories in terms of overall churn rate, April 2022.

16



2.2.5 Numerical variables

In the case of numerical variables, the analysis is quite similar to categorical variables with the differ-
ence that instead of monitoring individual categories, we monitor the evolution of churn rate among
a continuous variable and we introduce the use of boxplots. They are a great tool for comparing
distributions and, combined with the evolution of churn rate, they can lead to a good interpretation
of a distribution’s skewness and overall behaviour.

Let us illustrate how boxplots can give interesting insights about numerical variables. We first take a
look at P_closenext_AUT_EHP and P_closenext_IARD_EHP distributions, in the case of car insurance
(on Figure 2.9). These variables represent the number of months before the end of the next contract
(car insurance contract for AUT and any insurance for IARD). The first thing that is interesting to notice
is that the distribution of P_closenext_IARD_EHP is right-skewed for the car insurance Single View.
Without a good knowledge in the domain, it is not possible to determine clearly the reason of this
skewness, but there are two reasons that come to mind: Either most customers decide to sign up for
IARD contracts that don’t last too long, or the fact that IARD contracts include most of the contract
types means that there are more chances for a customer to have a side-contract that is ending soon.
Since IARD contracts include Car and Fire insurance contracts too, the second reason is quite plausible
as it is not uncommon for a customer to have multiple contracts.
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Figure 2.9: Comparison of churn distribution for Car insurance (P_closenext_IARD_EHP and
P_closenext_AUT_EHP).

Let us now have a look at the boxplots of the distributions of churn for positive (red boxplot) and
negative (green boxplot) based on the distribution of the exposed variables. As done in the previous
section (Section 2.2.4), by looking individually at each numerical value on the graph, it is possible
to observe some changes in churn rate. For example, in the case of P_closenext_AUT_EHP, we ob-
serve that customers that have from 2 to 3 months left until the end of their car insurance contracts
are more prone to churn than customers who only have 0 to 1 month left (806/48729 = 1, 65% vs.
582/49850 = 1, 17%). However, if we take a look at the boxplots of the distribution of churn with
respect to the variables distribution, it can be seen that the boxplots are similar. This signifies that
the positive and negative churn cases have similar distributions among the variables that are being
exposed. Now this is not much problematic since as said earlier, the individual changes between values
can lead to interpretation. But if we wish to have a more global approach and be able to interpret the
changes in a variable as a whole, we should look for distributions of positive and negative churn that
are not similar.

To illustrate the previous statement, let us look at two variables that are specific to the Car in-
surance contracts (from the Contracts subset of features): CTT_AUT_anneecst_EHP, which is defined
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as the year of construction of a vehicle and CTT_AUT_puissance_EHP which is defined as the power
of the most powerful insured vehicle. The distribution are displayed on Figure 2.10. In the case of
CTT_AUT_anneecst_EHP, we can see that both distribution are slightly left-skewed with more insured
vehicles that were constructed in the recent years. Additionaly, we see that the distribution of positive
churn rates (red boxplot) is more left-skewed by simply comparing the positions of the medians in the
positive case interquartile range and the negative case interquartile range. A relation between the dis-
tribution of CTT_AUT_anneecst_EHP and the distribution of churn can thus be enunciated: Customer
with vehicles that were constructed recently tend to churn more than customer with vehicles that were
constructed a long time ago. In the case of CTT_AUT_puissance_EHP, there is an observable positive
(right) skew that is even more marked in the positive churn cases. The underlying assumption of this
observation is that vehicles that are insured are not too powerful most of the time and among these
vehicles, the occurrences of churn are more important among the less powerful vehicles.
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Figure 2.10: Comparison of churn distribution for Car insurance (CTT_AUT_anneecst_EHP and
CTT_AUT_puissance_EHP).

The analyses that were done in the previous sections could be done for multiple features, but the
interesting bits of analysis will come with more efficient techniques. There exists tools that are much
more efficient to perform global analyses. One of them involves the use of random forests to rank the
different features and avoid having to go through all of them one by one (see Section 2.2.10).

2.2.6 Correlation structure

Section 2.2.4 and 2.2.5 gave us an incentive about the potential direct relations between Single View
features and churn. Let us now explore the relation between the features. For this purpose, three sta-
tistical tests are performed: Correlation test (between numerical variables), Chi-squared test (between
categorical variables) and Analysis of variance (ANOVA) test (between numerical and categorical vari-
ables). Each test is given a minor mathematical introduction and then it is performed on the group
of variables that are concerned. Eventually, compelling relations between variables are detected and a
strategy to deal with multicollinearity is established.

Note: The following discussions will take as a reference the 3 Single Views of April 2022. The re-
lations might differ depending on the insurance type. Some relations might appear in some cases and
they might not be verified in other cases. In order to cover most of the features in most situations,
the 3 statistical tests are each performed on a different insurance type. The correlation test takes as
reference the Car Insurance Single View, The Chi-Square test takes as reference the Fire Insurance
(tenant) Single View and the ANOVA test takes as reference the Fire Insurance (owner) Single View.
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Correlation test

Before performing each of the statistical tests, one should be comfortable with the notion of hypothesis
test and p-value. In any hypothesis test, there is a null-hypothesis and an alternate hypothesis. Most
of the time, the null-hypothesis states that two measured experiences involving some variables are not
related at all while the alternate hypothesis states that they are in some way. The p-value is defined
as the probability of observing data at least as favorable to the alternative hypothesis as our current
data set if the null hypothesis is true. In other words, it is a way of quantifying the strength of the
evidence against the null-hypothesis and in favor of the alternate hypothesis.

Let us now introduce one of the most used correlation test. This test will tell us how closely the
distribution of two features fit on a line. The Pearson’s Correlation Coefficient of two random vari-
ables X and Y is defined as

rXY =
E[(X − µX)(Y − µY )]

σXσY
, (2.1)

where µ is the mean and σ is the standard deviation of a random variable. Because of this definition,
the coefficients take their value in the interval [−1, 1]. A positive coefficient indicates that the value
of the slope of the regression line that approximates at best the distribution of both random variables
is positive and the same goes for a negative coefficient with a negative slope. Intuitively, a positive
coefficient means that both variables increase and decrease proportionally while a negative coefficient
means that X decreases as Y increases and vice versa. From this coefficient, one can calculate the
t-statistic that is defined as

t = r ∗
√
n− 2

1− r2
, (2.2)

where n is the sample size. The p-value can thus be computed as such (assuming a two-sided distri-
bution):

p = 2 ∗min (P (T ≥ t|H0), P (T ≤ t|H0)), (2.3)

where H0 is the null-hypothesis. If p is lower than a critical value (often chosen as 0.05), then the
null-hypothesis can be rejected and there is statistical significance. Here, t is obtained by using the
t-statistic, but it can theoretically be obtained using any statistical test.

Figure 6 of the Appendix .3.2 shows a heatmap of the pair-wise correlations coefficients (w.r.t Pearson’s
definition) of all numerical features. It can be seen that there are definitely features that are pair-wise
related and exploration could lead to interesting insights. Here there is a need to apply a filter to avoid
having to go through all the coefficients. This is why a sample of interesting correlations is extracted
from the whole set of correlations disposed on Figure 6. To detect interesting correlations, one should
take absolute values that are important enough to be considered as interesting for a deep observation,
but not too close to 1, as we would be facing multicollinearity. The latter problem is tackled in Section
2.2.9. As an arbitrary choice, we will take a look at correlations whose absolute value range from 0.3 to
0.7. A correlation whose absolute value is less than 0.3 is considered not interesting and a correlation
whose absolute value exceeds 0.7 is considered as too strongly correlated.

Table 7 lists all the pairs of features whose absolute correlation coefficient is between 0.3 and 0.7.
Among these values, we will select 3 pairs (one with a moderate correlation, one with an average
correlation and one with a strong correlation) and take a look at how each variable behaves w.r.t the
other variable of the pair. It is mandatory to keep in mind that Table 7 contains all the correlations
that were defined as "interesting" w.r.t the arbitrary range that was defined earlier, but some of them
remain not much interesting for analysis, so the three examples will be chosen accordingly. The 3
examples are pairs of features that don’t belong to the same subset of features as described in Section
2.1. This choice is motivated by the fact that some subset of features such as Product or Contract
contain variables whose relations with other variables are already given by their definition. For in-
stance, the variable CTT_AUT_Value_EHP (Defined as "Vehicle Value") is calculated based on most of
the features of the Contract subset (and some features of the Product subset). Still, if the analysis
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was centered around CTT_AUT_Value_EHP, it could be interesting to observe the value of each the cor-
relation coefficients of its pairs to determine which are the most taken into account when computing
CTT_AUT_Value_EHP. For features that are dependent of multiple (at least 5) features in Table 7, the
Table is a good indicator of how they depend on each other.

Let us first consider the pair of features (P_primeamtsum_EHP,CTT_AUT_ageveh_ehp)that has a cor-
relation of −0.311041. The first feature is defined as the total sum of bonuses of IARD type contracts
and the second feature is defined as the age of the vehicle. A negative correlation coefficient indicates
that the more one of the feature increases in value, the more the other feature tends to decrease and
vice-versa. Figure 2.11 is a visualization of the evolution of both features, along with a linear regression
of the available data. The slope of the linear regression is indeed negative but quite gentle, and this
is a good occasion of observing some anomalies or outliers. For example, there is an occurrence of a
vehicle that has an age of more than 85 years while most of the ages do not exceed 60 years. There
are also 3 occurrences of bonuses that exceed 10000AC while most bonuses do not exceed 8000AC. Such
outliers can influence greatly the issue of hypothesis tests and are investigated more deeply in Section
2.2.12. In the time being, the focus is on the distribution of features and not single values.

Feature Mean Standard deviation
P_primeamtsum_EHP 815.55 493.59

CTT_AUT_ageveh_ehp 8.92 5.44

Figure 2.11: Relation between P_primeamtsum_EHP and CTT_AUT_ageveh_ehp (Car insurance, April 2022).

The next pair is (P_nbcttAUT_EHP,P_AUT_puismax_EHP_HH) with a correlation coefficient of 0.453619.
P_nbcttAUT_EHP is defined as the number of car contracts and P_AUT_puismax_EHP_HH is the power
of the most powerful insured vehicle on household view. The last notion is important to highlight:
We know for a fact that the pairs of features that include one feature and the corresponding feature on
household view induce strong correlations (see Section 2.1). However, the slight differences between the
two features of the pair can have different impacts when it comes to a comparison with other features.
In fact, the correlation that is considered here is equal to 0.453619, but if the feature on household
view is swapped with the feature on single customer view (P_AUT_puismax_EHP), the correlation coef-
ficient skyrockets to 0.68. Such a leap in value shows that it is sometimes interesting to separate the
single customer view and the household view, as they sometimes lead to distinct relations. Figure 2.12
shows that the slope of the linear regression for the forementioned pair is positive and we observe a
high number of pairs of low power vehicles with a low number of car contracts. Unfortunately, there
are not much possibilities of values of P_nbcttAUT_EHP so the data points tend to stack, hence the
need to fit a simple linear regression line on the distribution.
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Feature Mean Standard deviation
P_nbcttAUT_EHP 1.1 3.3

P_AUT_puismax_EHP_HH 8.92 5.44

Figure 2.12: Relation between P_nbcttAUT_EHP and P_AUT_puismax_EHP_HH (Car insurance, April 2022).

One of the strongest interesting relations found during the analysis is between CTT_AUT_nbannee_-
BM0_EHP, the number of years in the BM01 insured drivers category, and P_lastnbmonthIARD_EHP, the
number of months since the most recent signed IARD type of contract (all contracts that are concerned
by this study). The coefficient of 0.550872 can be explained by the fact that both features are time-
dependent and reflect some sort of seniority in the customer database. Figure 2.13 is again quite messy
as the number of different values taken by CTT_AUT_nbannee_BM0_EHP is low. there again, fitting a
linear regression model on this data provides an increasing line that approximates the distribution.

Feature Mean Standard deviation
CTT_AUT_nbannee_BM0_EHP 4.31 4.24

P_lastnbmonthIARD_EHP 86.97 99.6

Figure 2.13: Relation between CTT_AUT_nbannee_BM0_EHP and P_lastnbmonthIARD_EHP (Car insurance,
April 2022).

All of the 3 examples are approximated with a linear regression model that is without a doubt
very coarse in most situations. This Section does not go deep into machine learning models, so this
is sufficient for our analysis (see Section 3.2 for further analysis of machine learning models). The

1Unfortunately, no further information has been disclosed about Car insurance categories
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correlation is a good measure of how likely an unobserved data point is going to fill in the distribution
of the observed data. However, one must note that the residuals of a prediction obtained via a
machine learning model are not a function of the correlation. The correlation is a good indicator of
multicollinearity and it can give good insight about relations between variables. But when it comes
to performing predictions on unseen data, high correlations can lead in larger residuals than with low
correlations. This is a direct consequence of multicollinearity and the issue is tackled in Section 2.2.9.

Chi-squared test

The following hypothesis test is now performed with as reference the Fire Insurance (tenant) Single
View. In the previous section, the pairwise correlation coefficients between numerical variables were
observed. The definition of the correlation coefficient implied that the mean and standard deviation
of the variables must be known. Categorical features, in their form of origin, cannot provide such
statistical features, as they are not numeric. For such variables, it is mandatory to use another type
of hypothesis test that does not require the presence of means and standard deviations. Pearson’s chi-
squared test is an evaluation method that is useful in 3 situations: A test of goodness of fit (checking if
an observed frequency matches a well-known distribution), a test of homogeneity (comparison of two
or more groups using the same categorical variable) and the test of independence. The chi-squared test
of independence is a hypothesis test that is based on the contingency table of two random variables X
and Y . The contingency table of two random variables X and Y is defined as a mxn matrix, where m
is the number of categories taken by X and n is the number of categories taken by Y such that

CTXY =


o1,1 o1,2 ... o1,n
o2,1 ... ...
... ... ...
om,1 ... ... om,n

 . (2.4)

In the matrix 2.4, oi,j is the number of occurrence of the pair {i, j} and is defined as the observed
frequency of the pair {i, j}. The expected frequency of the same pair is noted ei,j and is computed
as the frequency of the pair under the assumption that the null-hypothesis is true. Chi-Square is thus
given by the squared differences between the observed and expected frequency such that

χ2
c =

N∑
j

(Oj − Ej)
2

Ej
(2.5)

Where c is the number of degrees of freedom which is computed as (nbCategoriesX−1)∗(nbCategoriesY −
1) and Oj is the sum of all observed frequencies of a column of the contingency table

Oj =
M∑
i

oi,j (2.6)

The same definition goes for Ej and ei,j . As with the correlation test, the p-value can be deduced from
χ2.

Let us now perform the chi-square test of independence on the categorical values of the Fire In-
surance (tenant) Single View of April 2022. We choose 0.05 (arbitrarily) as critical value for the
p-value: Every pair of feature whose p-value exceeds 0.05 cannot reject the null-hypothesis to a 95%
level of confidence, hence they are declared as independent. Table 7 gives the Chi-Square Distribution
Table w.r.t the chosen degree of confidence and the degrees of freedom. Along with the results of the
chi-square tests of pairs of categorical variables in Table 8 (the table is a compilation, not all results
are displayed), one can check whether or not two categorical features of the set are totally independent
or not. Unfortunately, the chi-square test of independence is not as intuitive as the correlation test: In
a correlation test, a high correlation coefficient could be interpreted as a strong dependence between
numerical variables. In the case of a chi-square test, a high value of χ2 can only be interpreted as a
strong rejection of the null-hypothesis, i.e a strong rejection of independence. What is meant is that
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the value of χ2 can not be interpreted as intuitively as the value of a correlation coefficient. A high
value of chi-square does not necessarily mean a high dependence of both variables, as its value is largely
influenced by the dimensions of the problem (sample size, categories) and the difference between ob-
served and expected frequencies.

Table 8 of the results of the chi-square tests applied to the Fire Insurance (tenant) contracts is sorted
by p-value in descending order. The first pairs that appear in the table are the ones that are the most
likely to not reject the null-hypothesis, i.e the hypothesis saying that the two features of the pair are
independent. There are two ways of verifying whether or not two variables are independent. One can
directly look at the p-value and if it is higher than 0.05, not reject the null-hypothesis. One can also
look at the value of chi-square and degrees of freedom (dof) and, using the chi-square distribution
table, verify if, for a given significance level (0.05 here), the value of χ2 is higher than the value in
the table. For example, P_cdtypsorASS_HP (Type of last IARD contract exit) and P_lasttypeIARD_-
EHP (Type of most recent IARD contract started) have a chi-square value of 1.605067 for 4 degrees of
freedom. Since we chose a significance level of 0.05, Table 7 tells us that to reject the null-hypothesis
with a 95% confidence level, the minimum value that is required for χ2 is 9.488, which is not the case
here. At the bottom of the Table 8, the pairs of variables have p-values that are quite close to 0 and
even sometimes equal to 0. The features in these pairs are most likely dependent even though we can’t
assure it. For instance, the last pair of the table is C_enfants_EHP (if the customer has children or not)
and C_etatcivil_EHP (marital status) with a χ2 of 5485 with only 5 degrees of freedom and a p-value
equal to 0. The relation between these two variables is quite founded but we see some other pairs
whose relation can sometimes be more ambiguous such as C_sexe_EHP (customer’s gender) and S_-
ASS_nbtot_HP (Number of declared accidents during historical period) with a p-value of 7.335791e−04.

Another interesting aspect of the chi-square test of independence is that it allows to detect the ab-
sence of direct relation between the categorical features and the target variable. The target variable
is boolean, hence it is categorical. For example, we see that target and P_basket_inc_EHP have a
p-value of 0.965, which is equivalent to a 96,5% chance of not rejecting the null-hypothesis. Despite
that, one should note that the previous test is only a test of direct independence: Categorical features
that have a p-value of more than 0.05 with the target variable are not necessarily useless when it
comes to building a model that has the goal to predict a target output. Machine learning models do
not result from simple direct relations between variables and the output. They have the capability to
capture complex relations between groups of features and the target variable. What chi-square tests
with the target variable give us is a simple intuition of variables that could not be of significance when
a predictive model is built. We could consider that building a model that puts more importance on
P_cdtypsorVIP_HP rather than on P_basket_inc_EHP might lead to better performance, based on the
p-value of their chi-square test with the target variable, but again this is just an assumption.

Analysis of variance (ANOVA)

The Correlation test allowed us to determine some levels of dependency between numerical features.
The chi-square test of independence allowed us to check if pairs of categorical features could reject total
independence. We now want to be able to observe if there is statistical significance between numerical
and categorical features. For that purpose, one can monitor the changes in means of a numeric variable
among the different groups of a categorical variable (or multiple categorical variables). This test is
known as the Analysis of variance (ANOVA) and is said to be "one-way" if there is only one categorical
feature and "two-way" if there are two. A two-way ANOVA test is quite interesting in the situation
where we have two categorical variables that are known to have a minimum of interaction. Instead of
performing two separate one-way ANOVA, we test them both at the same time to assess both their
individual effects and their interaction effect on the dependent (numerical) variable. In the first time,
we will take a look at some interesting results of one-way ANOVA tests with the Fire insurance (owner)
Single View and in a second time, we will use the previous insights to proceed to specific two-way tests
that could be of relevance for analysis.
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ANOVA tests come with a set of assumptions that are crucial. If these assumptions are violated,
the results of the tests may not be accurate. If the data that is used for the ANOVA test does not
meet the requirements, it should be transformed. The 4 assumptions of an ANOVA test are the
following:

• Independence: The observations within each group are independent of each other.

• Normality: The dependent (numerical) variable should follow a normal distribution within each
group.

• Homoscedasticity (homogeneity of variances): The variances of the dependent variable should be
equal across all groups.

• Interval or ratio scale: ANOVA assumes that the dependent variable is measured on an interval
or ratio scale.

The ANOVA test is performed as follows. For a categorical variable c with k different groups and a
dependent numerical variable n, once the null-hypothesis (H0: all group means are equal) is stated:

1. Calculate the group means for each value of the categorical feature µ1,µ2,...,µk.

2. Calculate the overall mean µT

3. Calculate the variability between group means vbg. This is done by computing the sum of squares
between groups:

V BG =
k∑
i

ni ∗ (µi − µT )
2, (2.7)

where ni is the number of observations in group i.

4. Calculate the variability within the groups :

vWG =

k∑
i

Ni∑
j

(xi,j − µi)
2, (2.8)

where xi,j are the observed values in group i (number of observations in the group: Ni)

5. Determine the degrees of freedom between (dfB) and within the groups (dfW). It is equal to k-1
between the groups and N-k within each group where N is the total number of observations.

6. The F-value can be obtained the mean square between and within groups:

F =
MSB

MSW
=
V BG

dfB

dfW

VWG
(2.9)

Once obtained, just like chi-square, the value can be either used to determine the p-value or it can be
compared with a critical value using the F-Distribution with the appropriate degrees of freedom.

In the context of Fire Insurance (owner), the Single Views contain 32 numerical features and 167
categorical features (as provided by Table 2.2). Performing a one-way ANOVA test with each pair of
variable would result in a total of 5344 tests and again going through most of them would be laborious,
so we won’t explore too much. Instead, Table 2.5 compiles a small fragment of these tests that contain
interesting results. It is simpler to directly look at the p-values in this case again to keep the table as
light as possible (there is no need to display dfB and dfW ). The f-value is solely provided for guidance.
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Pair of features f-value p-value
C_surveillance_EHP_HH and P_INC_flagvol_EHP 0.231814 7.930938e-01
C_notel_EHP_HH and S_ASS_nbtot_HP 1.123279 3.434655e-01
C_nomail_EHP_HH and S_ASS_nbtot_HP 1.518584 1.447019e-01
P_NBCTTSDSPAR_HH_EHP and P_nbcttAUT_EHP 1.865263 8.263958e-02
P_NBCTTSDSPAR_HH_EHP and C_langue_EHP 3.021792 4.871634e-02
C_nomail_EHP_HH and C_epub_EHP 44.353512 1.213923e-28
C_taillefam_EHP and C_langue_EHP 128.689149 1.418185e-56
C_robinson_EHP and P_nbcttAUT_EHP 83.508960 7.070359e-105
C_anciennete_EHP_max_HH and P_nbcttDCO_EHP 367.840531 0.000000e+00
C_anciennete_EHP_max_HH and P_nbcttPFI_EHP 273.548225 0.000000e+00
C_anciennete_EHP_max_HH and P_nbcttAUT_EHP_HH 1011.018067 0.000000e+00

Table 2.5: Interesting results of ANOVA tests (Fire Insurance (owner), April 2022)

Among all ANOVA tests, we detect a lot of relations between features that belong to Products
and Features. The relations between features that involve seniority and the number of contracts seem
to be quite strong. We could notice it by simply looking at the bottom of the table and observing that
most pairs are related to these 2 groups of features.Looking at the top of the table, S_ASS_nbtot_HP
(number of declared accidents) that was previously exposed seems to have no relation with C_nomail_-
EHP_HH and C_notel_EHP_HH (flags that indicate the presence of email address and phone number on
household view). In the middle of the table, we observe that C_langue_EHP (language spoken by the
customer) could be somehow related to the size of his family C_taillefam_EHP and his number of
contracts of healthcare insurance on household view P_NBCTTSDSPAR_HH_EHP. Stating both relations
separately does not make much sense, but knowing that the size of the family of the customer could
be related to the number of health insurance contract for his household, we could find sense in the
relations that would be indirect. Basically, most of the time, the fact that a p-value is less than 0.05
can not be interpreted directly. Instead, one should take groups of pairs with one or more common
features and create clusters of features that could lead to interpretation. This is how relations can be
found within and between groups of variables.

2.2.7 Data Transformation

For the remaining part of the Single View analysis, the data has to undergo a series of transformations
depending on the situation. This section gives a few details about these transformations and in which
context they are used.

Categorizing

In Python language, Categorizing refers to the process of assigning an integer value to each distinct
instance of a feature (supposedly non-numerical). The integer values are incremental, with the first
category starting at 0 (categories are sorted in alphabetical order). Missing values are given the value
−1. Each non-numerical feature is categorized using this mapping. For instance, the marital status
variable C_Etatcivil_EHP, which has 6 different values, is mapped as follows:

Celibataire→ 0

Cohabitant→ 1

Divorce→ 2

Marie→ 3

Separe→ 4

V euf → 5

NULL→ −1
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This transformation is very relevant to use, because even though strings are mapped to integers, the
features are still treated as particular discrete features by Python, meaning that this mapping doesn’t
induce any order of importance between the different values. This transformation is necessary in many
cases, as it allows to have a Single View that consists of 100% of numerical data. When it comes
to computing spatial distances with algorithms such as K-nearest neighbors (used in Imputation and
Clustering), the transformation is mandatory.

Standard Scaling

Some of the tools used for data analysis involve using and fitting models to some extent. Data that is
not preprocessed can sometimes cause problems in the fitting process, as the impact of the different
features on the model is quite different because of the scale of the numerical values. In these cases,
data standardization/normalization is required in order to give each feature a chance to compete one
against another. The goal of Standard Scaling is to have the mean of each feature equal to 0 with a
standard deviation of 1. For this purpose, the mean µ and standard deviation σ of each column is
computed. Each scaled value z is such that (for an initial value x) :

z =
x− µ

σ
(2.10)

It is important to note that both transformations are reversible and, in some cases, for the sake of
interpretability, they should absolutely be reverted. It is the case for variable imputation. If a variable
is categorized and missing values are imputed using this categorization, considering that the imputation
process does not synthesize undefined values w.r.t the mapping (for example, non-discrete values), the
mapping of the categorization should be kept in memory in order to revert the transformation and
observe the potential changes in the distribution. The same goes for standard scaling, for which the
parameters of the normalization should be kept in order to perform denormalization.

2.2.8 Variable Imputation

The different hypothesis tests were performed on data in its most natural form in order to get a first
faithful insight about the features. Before moving on with the rest of the analysis, it is important to
address the extreme levels of missingness that are exposed in Section 2.2.3. Addressing imputation
before dealing with problems such as multicollinearity or outliers is a good way of enabling a pre-
imputation of the Single Views. This pre-imputation is mandatory to be able to observe potential
outliers, as the fraction of observations that are complete is extremely low and thus, keeping only the
complete observations is not representative of the data at all.

In statistics, imputation is the process of replacing missing data with substituted (or synthesized)
values. Adding synthetic information to data that is considered truthful to reality adds bias and
reduces overall analysis efficiency. Hence, a baseline for a good imputation strategy requires good in-
sights about the nature of the data. Imputation also requires validation, i.e observing how the changes
operate on the statistical features of the variables (mean, median, percentiles, variance and so on) and
if the overall initial representation of the data is not too much denatured by the different methods.

In this section, the different methods that were used to impute data are discussed with as refer-
ence the Car Insurance Single View of April 2022 (to use the summary statistics detailed in Appendix
5). These methods range from very simple and naive techniques (such as median or mean imputation)
to more complex techniques (regression or machine learning techniques such as iterative imputation).
Each of these techniques are tested on the features and the changes in statistic values are observed.

Statistical features

Naive imputation methods consist in replacing the missing values based on statistical features. Mean/median
imputation can be performed on numerical features by replacing missing values by the mean/median of
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the observed values. When it comes to categorical features, one can use the top value (most recurrent
value) as a reference. In the context of Single Views, the missing features are either categorical or
discrete. Discrete variables can be imputed using the median and categorical variables will be imputed
using the most frequent value. P_VIP_qualite_EHP is a discrete value that takes either the value 0,1
or 2 and whose median is 1. Figure 2.14 show that the high missing ratio of P_VIP_qualite_EHP has
a huge impact on the distribution of its value, as the 71,29% of missing values are imputed as 1. This
simple example shows that using single values to impute highly missing features can distort the data
a lot.

Figure 2.14: Distribution of P_VIP_qualite_EHP before and after imputation (Car insurance, April 2022).

We now test the "most frequent" method on two categorical features : C_epub_EHP which has a
missing ratio of 9, 67% and P_cdtypsorASS_HP_HH which has a missing ratio of 96, 31%. The histograms
on Figure 2.15 show that depending on the missing ratio, the impact can be important, as it can
completely change the distribution of the variables.

Figure 2.15: Distribution of C_epub_EHP and P_cdtypsorASS_HP_HH before and after imputation.

The conclusion is clear, simple methods based on statistical features cannot be used in the context
of largely missing data. The distribution of the dominant variable values increase a lot while the
minority values don’t, which creates an ever more unbalanced distribution. It is thus required to
address the matter with more complex ideas. Still, such coarse imputation techniques could work with
a dataset with a low percentage of missing values.

27



K-nearest neighbors imputation

Before going on with the imputation techniques, one should note that applying machine learning tech-
niques to imputation comes with an assumption about the pattern of the missingness. The data can
either be missing partially or completely at random (MAR/MCAR) or not (MNAR). KNN imputation
assumes that the data is MAR/MCAR, which, as we have seen in Section 2.2.3, is not the case.

The K-nearest neighbors method is a machine learning algorithm that labels an observation point
based on the labels of its k closest points in the input space. In classification problems, it is mostly
used to classify unobserved data points based on the observed points. The KNN algorithm requires to
choose a distance metric that fits the problem. Here, as long as the data is normalized, we stick to the
euclidean distance. With missing data, the euclidean distance between two data points X and Y can
be computed as follows:

dXY =
√
weight ∗ squared_distances, (2.11)

where weight is equal to the total number of coordinates (i.e. the size of the input space) divided by
the number of non-missing coordinates. For example, in a input space of size 3, the euclidean distance
between X = (3, NA, 5) and Y = (1, 0, 0) is√

3

2
{(3− 1)2 + (5− 0)2} = 6.59 (2.12)

Once a distance metric has been chosen, each data point with missing values chooses its k nearest
neighbors that have non-missing values for the specific variables that are missing and use the distance
as weights to determine the value that should be imputed. This method is not expected to work
efficiently, as it assumes random missing patterns (MCAR/MAR), which is not the case here. It is
however interesting to test it, as bad results could reinforce the observations about missing patterns
that were made in Section 2.2.3.

Iterative Imputation

Iterative imputation is a multivariate imputation technique that uses complex machine learning con-
cepts for synthesizing missing data. In term, this is the method that will be kept for imputing all of
the variables in the dataset as we will see that it is quite more efficient than the other techniques.

Iterative imputation uses the principle of chained equations to obtain imputed values (more details
are given in this paper[8]). At each iteration, features with missing data are selected as the dependent
variable one after another and the other features are used as predictors to build an imputation model.
This imputation model uses the observations that contain observed data for the current dependent
variable to be trained. This process is done for each variable with missing data and it is then repeated
usually from 10 to 20 times to account for uncertainty and reach a certain level of convergence. To
build the imputation model at the start, missing values in the predictors are initialized either randomly
or based on some strategy. The final imputation is a combination of the different imputed datasets
that uses a set of rules to take into account every imputation (known as Rubin’s rules).

Mathematically, chained equations imputation works as follows: For every variable with missing val-
ues, the algorithm requires an imputation model (which is typically a simple regression model) and a
prior distribution for the model’s parameter. Let X−j be the vector of random variables that excludes
the variable Xj and x−j = (xobs−j , x

mis
−j ) the matrix of all observations x corresponding to X−j (missing

observations are included). We also note p(xj |x−j , ψj) as the probability distribution function of the
imputation model for Xj and p(ψj) for the prior distribution of the unknown parameter ψj . Before
starting the iterations, the missing values xmis

−j in x−j are replaced by either the mean, the median, the
most frequent occurrence or a random observed value. In our case, since most missing variables are
categorical or discrete, the strategy used is "most-frequent". Imputations are drawn from the posterior
predictive distribution of the missing data given the observed data, noted p(xmis|xobs). Under the
ignorability assumption ( once observed variables are taken into account, the treatment of the missing

28

https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-28#:~:text=Chained%20equations%20draws%20the%20imputations,sample%20of%20its%20observed%20values.


values is independent of potential outcomes, i.e it ensures that the treatment is randomized), this
distribution is equal to

p(xmis|xobs) =
∫
p(xmis|xobs, ψ)p(ψ|xobs)dψ. (2.13)

At each iteration, there are thus two steps for each missing variable: First draw ψ∗
j from the posterior

distribution that is proportional to p(ψj)p(x
obs
j |x∗−j , ψj) and secondly, draw missing values from the

predictive posterior p(xmis
j |x∗−j , ψ

∗
j ) (which is obtained when the previous iteration is completed). If

we have a total of K variables with R variables that are incomplete (R ≤ K), given the imputations
from last draw, the drawing of the next iteration will thus take the form (for each variable Xj such
that 1 ≤ j ≤ R)

ψ
(t)
j ∼ p(ψj)p(x

obs
j |x(t)1 , x

(t)
2 , ..., x

(t)
j−1, x

(t−1)
j+1 , ..., x

(t−1)
R , xR+1, ..., xK , ψj) (2.14)

x
mis(t)
j ∼ p(xmis

j |x(t)1 , x
(t)
2 , ..., x

(t)
j−1, x

(t−1)
j+1 , ..., x

(t−1)
R , xR+1, ..., xK , ψ

(t)
j ) (2.15)

Chained equations use the results of the previous iteration and the previous results of the current
iteration to draw values. The final iteration gives the imputations that will form the imputed dataset.
To account for uncertainty, the process is repeated multiple times with different initializations and the
resulting datasets are merged.

Before applying Iterative Imputation on the whole set of features of the Single Views, it is manda-
tory to note that, even if the initial strategy was to replace missing values with the most frequent
observed value, the nature of some features might be lost within the process if the type of model used
for imputation is not appropriate. Using regression models for categorical and discrete variables is
irrelevant, as it outputs continuous values that cannot be mixed with discrete values without distort-
ing the nature of the variables. There are thus two possibilities here: Either we use models that can
handle categorical data such as models based on decision trees, or we transform categorical data by
encoding it to a format that can be handled by regression models. The possibility of using decision
tree-based models was chosen first during the analysis, but because of the high memory usage of these
kind of models, the resources available to perform the tests were insufficient. The tests are performed
on a local machine with a local environment that has no access to any sort of cloud technology, so the
memory usage was limited. The second option is thus chosen. The data is encoded using the same
dummy encoding as presented in Section 2.2.9. With the encoded data, one can use a simple regression
model as imputation model.

Comparing the different methods

The comparison of the different imputation methods is made using the three available Single Views
of April 2022 (for the three insurance types). For the sake of efficiency and memory usage, a fraction
of each Single View is selected (at random) instead of the whole Single View for each insurance type.
The selected fraction of the Single View contains a balanced number of positive and negative churned
customers. This choice is motivated by the fact that the comparison of the imputation techniques
relies on cross-validation using a simple classification model that would not be much efficient if the
selected fraction was too unbalanced. As a consequence, the size of the subsets used for the different
insurance types are different based on the number of available positive churn cases.

The evaluation of each method relies on a cross-validation score that uses a Random Forest Clas-
sifier with the data once it has been imputed. The score is obtained by computing the F1-score of the
classifier with the imputed data. Basically, such an evaluation method would show how the different
imputation techniques impact the way a classification model could efficiently fit the Single Views. The
F1-score is defined as a measure of classification accuracy and more details are given in Section 3.4.
Looking at Figure 2.16, It is observed that the three insurance types are better performing when it
comes to iterative imputation. It can also be seen that on average, KNN imputation does not outper-
form the naïve methods, and it might be explained by the false assumption made for performing this
machine learning based imputation technique (KNN imputation assumes MCAR or MAR while we
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have proven that we have MNAR). The difference in magnitude of the F1-score between the insurance
types is a direct consequence of the size of the selected fraction of the Single View. The classifier
that is used for each subset has the same architecture and no tuning has been performed, because the
goal here was simply to show the difference in performance for each imputation method with a simple
classification model. Moreover, the discussion about the different models used for classification does
not take place here, but in Section 3. This comparison allows us to use iterative imputation for our
future analyses without restraint, but let us not forget that it may cost more resources than a classic
imputation method such as median or mean imputation.

(a) Car insurance, April 2022 (b) Fire insurance (tenant), April
2022

(c) Fire insurance (owner), April
2022

Figure 2.16: Comparison of the different imputation methods on the Single Views of April 2022.

2.2.9 Multicollinearity

In High-dimensional statistics, there is a possibility that, among the set of features that are used to
model an output, some of them give information that is common and building a model using these
features is equivalent to capturing information redundantly. This could lead to inflated prediction
errors. Multicollinearity occurs when there is such a strong relation between two variables. It is
mandatory to tackle this subject in the context of the Single Views, as we have seen that some fea-
tures are directly dependent of others (see Section 2.1). In order to detect multicollinearity between
numerical variables, a high correlation coefficient is a good indicator. Unfortunately, other hypoth-
esis tests like the chi-square test or the ANOVA test are quite limiting when it comes to evaluating
it, so it is best practice to transform categorical data in order to evaluate its potential multicollinearity.

Dealing with the multicollinearity issue is trivial when it comes to numerical variables. For each
pair of variable, run a correlation test and, if the resulting coefficient exceeds a certain threshold (in
absolute value), there is a risk of multicollinearity. Generally, an absolute value of 0.7 is chosen and
this is also the threshold that was selected when running the correlation tests in Section 2.2.6. When
all correlation tests are done,one should get rid of one of the two features of a pair that present a risk of
multicollinearity. The choice of the feature that should be removed is based on potential overlapping.
If there are features that overlap between pairs, the features that should be removed are the ones that
are present in the highest amount of pairs. If there is no overlapping and all the problematic pairs
have distinct features, the choice can either be arbitrary or based on the intention of keeping specific
variables in the model (based on expertise).

In the case of categorical features, one should perform transformation on the data. If one could resort
to the use of category transformation as depicted in section 2.2.7, it is sometimes more convenient to
use methods that allow a direct observation of the relations between different values of a categorical
variable and another variable. The problem of category transformation is that the mapping between
categories and their numerical values is a black-box process and the only way to revert this mapping
is to keep in memory the mapping for each feature. To avoid having to deal with this intermediate
step, we introduce the use of dummy variables. They are binary indicators that indicate the presence
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of a category: For a categorical feature with k categories, k − 1 dummy variables are created (as the
reference category is represented implicitly if all dummy variables are equal to 0). The value 1 is
assigned to the corresponding dummy variable and 0 is assigned to the others. A regression model
is then fit using the dummy variables as predictors. Multicollinearity can be then assessed using the
Variance Inflation Factor (VIF), which is defined as (for one variable i)

V IFi =
1

1−R2
i

, (2.16)

where R2
i is the coefficient of determination for regressing the ith independent variable on the remain-

ing ones. It is function of the target output’s variance and the residuals of the fitted model. A VIF
value of 1 signifies that there is absolutely no relation between the variable and the others, a VIF value
between 1 and 5 means that there is slight correlation between the variables and a value of more than
5 indicates a high correlation. If the VIF exceeds 10, there is significant multicollinearity that cannot
be ignored.

To illustrate this technique, let us try and fit a model using only categorical variables by using dummy
variables. The selected variables are P_sortie_TypeLastIARD_HP_HH, P_sortie_TypeLastIARD_HP,
P_cdtypsorIARD_HP_HH and P_cdtypsorIARD_HP. The following model is fit using the Fire Insurance
(owner) Single View (April 2022). The first two variables have k1 = 4 categories and the two last have
k2 = 2 categories, which makes a total of 2 ∗ (k1 − 1) + 2 ∗ (k2 − 1) = 8 dummy variables. A model is
fit for each dummy variable and the values of R-squared and VIFs are reported in Table 2.6.

Dummy Variable R squared VIF
P_sortie_TypeLastIARD_HP_HH_AUT 0.974273 38.870263
P_sortie_TypeLastIARD_HP_HH_DCO 0.966288 29.662591
P_sortie_TypeLastIARD_HP_HH_INC 0.975079 40.126883
P_sortie_TypeLastIARD_HP_AUT 0.973954 38.393758
P_sortie_TypeLastIARD_HP_DCO 0.966129 29.524202
P_sortie_TypeLastIARD_HP_INC 0.974811 39.699083
P_cdtypsorIARD_HP_HH_E 0.906013 10.639735
P_cdtypsorIARD_HP_E 0.906002 10.638525

Table 2.6: VIF values of the complete subset of features

As one can see, every VIF is above 10, meaning that there is significant multicollinearity. To get
rid of it, we remove the dummy variables iteratively (w.r.t the VIF value) and observe the changes in
value. P_sortie_TypeLastIARD_HP_HH_INC has a VIF of 40.13 so we get rid of it first. As we can see
on Table 2.7, getting rid of it significantly reduced the VIF of P_sortie_TypeLastIARD_HP_INC(from
39.7 to 1.9) which makes sense since both variables represent the same category with the sole difference
that one concerns the customer himself and one is on the household view. We have seen (see Section
2.1) that the relation between these features is strong. We also observe that the other categories of
the same features have their VIF also decreased by a lot, but the VIFs of P_cdtypsorIARD_HP haven’t
much decreased.

Dummy variable R squared VIF
P_sortie_TypeLastIARD_HP_HH_AUT 0.952598 21.096184
P_sortie_TypeLastIARD_HP_HH_DCO 0.954953 22.199045
P_sortie_TypeLastIARD_HP_AUT 0.954164 21.816894
P_sortie_TypeLastIARD_HP_DCO 0.955568 22.506382
P_sortie_TypeLastIARD_HP_INC 0.472622 1.896173
P_cdtypsorIARD_HP_HH_E 0.905346 10.564806
P_cdtypsorIARD_HP_E 0.905435 10.574684

Table 2.7: VIF values once P_sortie_TypeLastIARD_HP_HH_INC is removed.
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Getting rid of P_sortie_TypeLastIARD_HP_HH_AUT, P_sortie_TypeLastIARD_HP_HH_DCO and P_-
cdtypsorIARD_HP_HH_E gives the VIFs values presented in Table 2.8. The successive removal of vari-
ables gives values that are indeed between 1 and 5, which indicates that there is no more risk of
multicollinearity between them. Basically, what was done here is getting rid of two out of the 4 initial
categorical variables: the two "Household view" variables that correspond to the two other variables.

Dummy variable R squared VIF
P_sortie_TypeLastIARD_HP_AUT 0.499600 1.998403
P_sortie_TypeLastIARD_HP_DCO 0.339932 1.514994
P_sortie_TypeLastIARD_HP_INC 0.472535 1.895860
P_cdtypsorIARD_HP_E 0.024409 1.025020

Table 2.8: VIF values of the final subset of features.

The previous manipulation can be performed repeatedly on the whole set of features in the Single
Views to determine a clean set of features to use for a model. In the context of Single Views, the
multicollinearity between numerical features is dealt with using a threshold in correlation value. When
it comes to categorical features, the use of dummy variables is not advised, as some categorical features
have a high number of values. Instead, as detailed in section 2.2.7 category transformation is performed
such that we don’t have to deal with a high amount of new variables.

2.2.10 Feature importance using Random Forest algorithm

In Section 2.2.4 and 2.2.5, we tried to get some insight about the different variables and how they
could impact positively or negatively the presence of churned customers. These analyses were con-
ducted without much thought, as we blindly wandered across the set of available features, looking for
any potentially interesting results. It is now time to put machine learning to the service of the research
in order to narrow it down to the most interesting features. In this section, we use the transparency
of Random Forest models to establish a ranking of the most important features, as far as the binary
classification problem of churned customers is concerned. They offer a possibility to evaluate the rele-
vancy of each feature to a problem by looking at the accumulated decrease of impurity in each decision
tree. Although more details are given about impurity measurement and decision trees in Section 3.2,
we will here limit ourselves to using the Random forest archetype without questioning its architecture
or the methods used for measuring impurity.

The process for determining the importance is quite simple: For each Single View, a Random For-
est model is fitted on a fraction of the Single View, called training set. Once the model has completed
the training, the standard deviation and the mean of the accumulation of impurity decrease within
each tree is computed (SDDI and MDI). The features with the highest MDI are defined as the most
"informative" for the problem. However, there is an issue that needs to be addressed before processing:
Features that have a high cardinality (numerous unique values), tend to have a low MDI because of
their nature. The sparsity of the feature cause a low number of instances for each unique value and
the decision trees have more trouble for detecting patterns that have meaning for the classification.
Additionally, with a large number of unique values, the values become more evenly distributed across
different subsets of data. This lessens the ability of a single value to reduce impurity by itself. To
overcome the bias of the mean impurity decrease, we adopt a more destructive approach called feature
permutation.

The idea behind feature permutation is to train a model just as previously, but then, instead of
observing each tree to compute the decrease in impurity, a test set (fraction of the Single View that
was not used for training) is used. Individually (feature by feature), the values of the feature are shuf-
fled and we monitor the drop in performance. Basically, the features for which we observe the largest
performance drop are the most important ones. For the sake of model efficiency, since the problem
is quite unbalanced, the whole process (fitting and computation of the mean accuracy decrease) is
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repeated on subsets of each Single View from April to August 2022, where each subset is a balanced
subset of positive and negative churned customers.

The advantage of having discussed multicollinearity in Section 2.2.9 is that when we establish a ranking,
there is no redundancy since any variable that carries information that is similar to another variable
would have been removed. Figure 2.17, 2.18 and 2.20 show the 30 features with the highest mean
accuracy decrease (on average, from April to August 2022) for the three insurance types. With this
display, one can expose which variable types are the most responsible of the model’s performance.
Before looking at each insurance type individually, let us detect which features are redundant between
the types. The presence of C_age_EHP (Customer’s age) really ties in with the observations made in
Figure 2.8 and Table 2.4 of Section 2.2.4, as a customer’s age is quite related to his/her lifestage.
We have seen in Table 2.4 that depending on the customer’s lifestage, the overall churn rate could
range between 1.97% for young profiles to 0.58% for senior profiles. When performing feature permu-
tation, shuffling the values of C_age_EHP led to drops in accuracy of more than 1.5% in worst case
scenarios, which is significant for a single feature among hundreds. We also observe that the variable
P_sortie_TypeLastIARD_HP is present in every top 30. The intuition exposed thank to Figure 2.6 and
2.7 of Section 2.2.4 was indeed correct. Some other variables slipped under the radar such as I_MAI_-
nbmonthlast_HP (number of months since the last intervention of type 3) which causes large drops
in accuracy when its values are shuffled. It appears that features that belong to the Intervention
feature subset are important, as they have a strong presence when it comes to great drops in accuracy.

In the context of Car Insurance, the feature that causes the largest accuracy drops is CTT_AUT_-
anneecst_EHP (Year of construction of the insured vehicle). Previously, it was observed that this
feature’s distribution changes whether we considered positive or negative churn cases (see Figure 2.10).
The relation was defined as follows: Customers with older vehicles tend to churn less than customers
with recent vehicles. The drops in accuracy when performing permutation prove that the relationship is
grounded. Additionally, CTT_AUT_puissance_EHP is also present, but has less impact on the accuracy.
There is another feature that is interesting to be discussed. The relationship between C_etatcivil_-
EHP and churn rate was exposed at the beginning of Section 2.2.4. Figure 2.17 proves us that there is
indeed a drop in accuracy on average. However, let us note the very high standard error of the feature
in comparison with the others. The process of feature permutation, in some cases for this feature in
particular, led to large accuracy growths instead of drops, resulting in a widely spread population of
mean accuracy changes. The resulting accuracy drop is thus not much representative of the overall
changes and any relation that stems from the feature C_etatcivil_EHP should be taken with caution.
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Figure 2.17: Feature importance ranked by mean accuracy decrease (on average from April to August 2022) of
Car insurance.

In the context of Fire Insurance (for tenants) (Figure 2.18), the feature named CTT_INC_NBPIECES_-
EHP (number of rooms in the insured housing) has a dominating impact on the performance of the
classification algorithm, with drops in accuracy of more than 4% in worst case scenarios! To understand
the reason behind this tremendous drop in accuracy, one should look at the distribution of churn
cases among the different values of CTT_INC_NBPIECES_EHP. Figure 2.19 shows first the distribution
of positive and negative churn cases w.r.t the distribution of the feature and then it shows the sum
of counts for positive and negative values of CTT_INC_NBPIECES_EHP. The available documentation
about the Single Views does not mention how a negative value should be treated in this case (since
the feature should by definition have only positive integer values), but it can be guessed that the value
−1 expresses a value that is missing/not available. Out of the 913 positive churn cases, only 2 of them
have a positive value of CTT_INC_NBPIECES_EHP! While we have seen that the average churn rate in the
context of Fire insurance (tenant) is 1.09%, the churn rate of a tenant for which the number of rooms of
his/her housing is not available exceeds 1.5%. Now it is trivial to understand why feature permutation
has such an impact: Any input that has the value −1 for CTT_INC_NBPIECES_EHP will be permuted
with a positive value and most of the time, the classification algorithm will classify it as negative churn
(because of the absence of positive churn cases among the positive values of CTT_INC_NBPIECES_EHP).
This means that the great majority of the test set will be classified as negative. Since the training and
testing sets are balanced in terms of target output, an algorithm that classifies most of the unobserved
data as negative is less accurate.
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Figure 2.18: Feature importance ranked by mean accuracy decrease (on average from April to August 2022) of
Fire insurance (tenant).
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Figure 2.19: Comparison of the distribution of CTT_INC_NBPIECES_EHP and churn (Fire insurance (tenant),
April 2022).

On the side of the owners ((Figure 2.20), the number of rooms seem to have less impact on the
performance of the model. It can be seen that customer-related features such as age, postal code or
profession can influence greatly the decision made by the model. In comparison with the other insur-
ances, the standard errors of the most impactful features are high, which means that the establishment
of a ranking would be more laborious.
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Figure 2.20: Feature importance ranked by mean accuracy decrease (on average from April to August 2022) of
Fire insurance (owner).

2.2.11 Dimension reduction

Now that we have a good idea of the nature of the input space, we might want to deal with the
large quantity of data. Even though the process of avoiding multicollinearity allowed to get rid of
a fraction of the Single Views, we are still left with hundreds of features whose organization cannot
be observed. Dimension reduction techniques are defined as methods whose goal is to reduce the
number of dimensions of the input space of dataset, i.e. its number of features. They are also useful
for detecting outliers and clusters of data (details covered in Section 2.2.12), as we will see that the
dimension reduction techniques that are covered will serve as basis for detecting clusters and dealing
with outliers. Even though we see in this Section that the methods that were applied did not lead
to much interesting results, it was still considered interesting to conduct the analysis for a potential
optimization in terms of memory and time usage.

Principal Component Analysis

Before going deep into the analysis of the different methods, it should be mentioned that most of
the methods are supposed to be used in an unsupervised setting, meaning that we explore the data
without the knowledge that customers are classified as positive or negative to churn. However, in this
context, the objective of dimension reduction and clustering is to have a clear visual representation of
the global structure of the data. The main focus is about being able to separate positive and negative
churn cases. This is why the following methods will be processed by considering a supervised setting,
i.e. we will consider the output class labels as input values. This choice is motivated by the fact that
in such a dense setting, separating the cases without having prior knowledge of their distribution (and
when the distribution is that much unbalanced) is too laborious. One example of this statement is
shown in Figure 9 of Appendix .3.4. One of the projection was done using the labels as input, the
other was done without them. The global structure is similar, but the separation is extremely different
from one projection to another (more about T-SNE in Section 2.2.11. Thus, the methods loose some
interest, because unobserved data cannot use the findings of these procedures. The priority is given to
a projection of the data that separates well both cases while having the knowledge of their distribution
and all that while having a faithful global structure of the Single Views.

Principal Component Analysis is a projection method that can represent a largely multivariate dataset
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as a smaller set of features. It is an iterative method that is well-suited for observing projected data in
2D or 3D that works by finding principal components, i.e elements that account for as much variance
as possible. Finding a principal component is equivalent to solving the following optimization problem:
Let us assume that we have a matrix of centered observations X such that

X = [x1 − µ, ..., xN − µ] (2.17)

where µ is the mean vector (used to center the data) and X has the dimensions F x N where F is the
number of features and N the number of observations. The covariance matrix is given by

St =
1

N

N∑
i=1

(xi − µ)(xi − µ)T =
1

N
XXT (2.18)

The goal is to maximize the explained variance of each dimension by maximizing

W0 = argmax
W

tr(WTStW) (2.19)

s.t. WTW = I (2.20)

The solution of this problem can be found by performing an eigenanalysis of St such that

StW = WΛ (2.21)

where Λ are its eigenvalues(2). The pseudocode for the PCA procedure is displayed on Figure 2.21.
Depending on the percentage of variance explained by the different components, we desire to keep d of
them. To account for the majority of the information, a minimum of 70% to 80% of the total explained
variance should be contained in the d components. There are cases where only a few of them suffice
but we will observe that this is not the case in our context.

Figure 2.21: Pseudocode of the PCA procedure

In the following, we apply PCA to the Car Insurance Single View. For PCA to be applied, the
data has been normalized using standard scaling (after each categorical variable has been discretized).
Ideally, we would want the number of principal components d to be at most equal to 3 to be able
to perform a visual exploration. The first PCA is performed on the whole Single View. Figure 2.22
represents the quantity of explained variance for each of the 15 first principal components. It can be
seen that we are quite far from the desired 70% threshold. This simple observation makes it clear that
a 2D or 3D projection is not conceivable. Still, we want to be able to observe if there exist differences
between groups of individuals labeled as negative to churn and groups of individuals that are detected
as churned customers. For this purpose, a subset is built with all of the observations that are positive
churn cases and a sample of negative churn observations. A second PCA is performed on this subset
with the goal to find differences in projection between positive and negative cases. In this particular
setup, Figure 2.24 shows that the first principal component explains 77% of the total variance, which

2More details about the implementation of PCA here
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allows to observe some differences in projection. We can see on both projections that positive churn
cases tend to have smaller values of PC1. The explained variance is specific to the selected subset and
thus it is not representative of the whole Single View at all. But the idea of sub-sampling datasets for
highlighting differences between specific features or outputs is an idea that has already been explored
in multiple fields of work and is known for bringing interesting results. Still, in the context of Single
Views, PCA in itself is not much efficient and linear dimension reduction seems to be a task that does
not need to be deepened.

Figure 2.22: Explained variance of the 15 first principal components of a complete Single View (Car
Insurance, April 2022).

Figure 2.23: 2D projection and
explained variance.

Figure 2.24: 2D and 3D PCA on a balanced sample of a Single View (Car Insurance, April 2022). The
explained variance is sample-specific.

T-SNE

T-distributed Stochastic Neighbor Embedding (or T-SNE) is another great method to visualize high-
dimensional data. It belongs to the Manifold learning algorithms, which is a family of techniques to
approach non-linear dimensionality reduction. Principal Component Analysis and other techniques
such as LDA or IDA are powerful enough to capture linear structural information, but fail to capture
non-linear information. Manifold learning techniques attempt to generalize linear frameworks to be
sensitive to non-linear structures.

T-SNE, specifically, is a method that converts the affinity between data points to probabilities. It
uses the principle of similarity between points to produce a probability distribution and then embed
the data in a lower-dimension space. Mathematically, let xi and xj be two different points of a dataset.
For each data point j we model the probability of xi belonging to the same class (belonging to the
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same class means being a neighbor in this sense) with a Gaussian distribution:

pi|j :=
exp(|xi − xj |2/2σ2j )∑

k ̸=j exp(−|xk − xj |2/2σ2j )
(2.22)

where σj is the variance. Instead of directly setting it as a parameter, the method suggests setting the
expected number of neighbors, also known as perplexity. We will see that the value of this parameter
is quite important. Intuitively, the perplexity represents the balance between conserving the local
structure and the global structure. A higher perplexity prioritizes the global structure, which we
will be looking for, as our Single Views are very dense and heavy. We form the distribution P that
represents the data by symmetrizing the probabilities:

P = (pij)
n
i,j=1, pij =

pi|j + pj|i

2n
(2.23)

We also define the distribution Q that will be the distribution in the lower-dimensional space:

Q = (qij)
n
i,j=1, qij =

(1 + |yi − yj |2)−1∑
k ̸=j(1 + |yk − yl|2)−1

. (2.24)

In order to find the yi, the goal is to have P and Q being as close as possible, which is computed using
the Kullback-Leibler divergence:

KL(P |Q) =
n∑

i=1

n∑
j=1

pijlog
pij
qij
. (2.25)

The gradient of the KL divergence w.r.t yi can thus be found using gradient descent and the optimiza-
tion problem is solved. Figure 2.25 is a simplified summary of the whole algorithm. What is left to
discuss are the parameters. The main parameter that needs to be discussed is the perplexity. Unfor-
tunately, there is no clear mathematical definition of the perplexity and determining a good value for
it requires some experimentation. Appendix .3.4 contains a battery of tests with multiple perplexity
values on 2 and 3 T-SNE components. Out of these tests, some gave interesting structural forms which
can be observed on Figure 2.26. As the different tests can attest, the value of the expected number of
neighbors has a great influence on the projection in the embedded space. It can be seen that greater
values allow to better distinguish the negative and positive churn cases. Starting from p = 100, one
can already observe a clear separation between the two output classes. However, to stay faithful to the
global structure of the Single View, the perplexity is chosen to be greater than 100. A perplexity of 750
is great, because not only is the global structure of the data conserved (very dense data), the choice of
this value marks a clear separation between negative and positive cases, with only a few positive cases
belonging to the very dense mass of data in the center of the embedded space.
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Figure 2.25: Pseudocode of the T-SNE algorithm

Figure 2.26: Application of the T-SNE embedding with a perplexity of 750 (Car Insurance, April 2022).

The results observed in Figure 2.26 will be crucial for the next section about clustering and anomaly
detection, because of two positive elements: The data is very dense and it should be represented as
such when embedded or projected in a lower-dimension space. Secondly, even though the discussed
methods are supposed to be used in an unsupervised setting, the fact that we dispose of the true
output labels as inputs allow us to observe if clustering techniques could reinforce this separation of
cases. Moreover, we could even compare positive churn cases with anomalies and assess the nature of
these cases based on the anomaly detection algorithm (outlier or inlier) and the choice of values for
the tuning parameters.

2.2.12 Clustering and Outliers

The previous analyses are the perfect transition to tackle clustering and anomaly detection techniques.
In fact, Component Analysis and Manifold learning can serve as basis for more complex clustering
techniques, as they already attempt to use some characteristics of the data to create groups of points.
We have seen that T-SNE is indeed a nice way of separating the negative and positive churn cases,
hence we will use it when we have to observe whether or not clusters are well formed and outliers are
found.
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As explained in the beginning of Section 2.2.8, the matter of the presence of outliers in the data is
dealt with once the Single Views have already undergone variable imputation. What is meant is that
the potential outliers found within the Single Views are not issued only from natural information, but
can originate from the imputation methods. Even though it is very unlikely for an imputation method
to create outliers (by its nature, imputation uses the trends in the data to synthesize data that fol-
lows these trends), it is important to state that from this point, the Single Views contain synthetic data.

The detection of observations that are noticeably different from the rest of the data is a task whose
solutions are constantly evolving. During the analysis, three state-of-the-art methods were used on
the Single Views: The first method consists in building density-based spatial clusters and detect the
anomalies within and out of the clusters (DBSCAN). The second method is also density-based and
depends on a score that is based on the local density deviation of an observation w.r.t its neighbors
(Local Outlier Factor LOF). The third method is based on the Random Forest algorithm and consists
in creating Isolation Trees that isolates observations by randomly selecting features and partition the
data based on a random split (Isolation Forest). Each of these methods is tested on the same Insurance
type to compare the performances.

DBSCAN

Density Based Spatial Clustering of Applications with Noise, or DBSCAN, is an unsupervised al-
gorithm that uses the k-nearest neighbors paradigm to create arbitrary-shaped clusters. There also
exists a clustering method called k-means clustering, but DBSCAN has multiple advantages that this
method does not have. First, the clusters of DBSCAN are more flexible in terms of shape, where
k-means clustering is limited to spherical shaped clusters. Secondly, unlike k-means, DBSCAN does
not require to specify the number of clusters initially. However, it requires two parameters: the radius
of neighborhoods for a given data point (called ϵ) and the minimum number of data points in a given
neighborhood (called minPts). The DBSCAN algorithm can be summarized as follows:

1) Take any point p randomly. This point is called a core point if it has a minimum of minPts
points within its ϵ-neighborhood

2) Identify all density reachable points from p with ϵ and minPts parameter. A point y is density
reachable from a point p if and only if a point y is directly density reachable to core point x,
which is also density reachable to core point p.

3) If p is a core point, create a cluster (with ϵ and minPts).

4) If p is a border point, visit a next point in the dataset.

5) Continue the algorithm until all points are visited.

What is left to do now is to set minPts and ϵ. minPts can be either set as double the number of
features or be fine-tuned depending on the desired number of clusters. However, it is not as simple
for the radius ϵ. Since it is also a question of distance, one of the solutions to find the optimal ϵ is to
compute the average distance of every data point to its k-nearest neighbors, known as kNN distances,
and find the elbow point that indicates a sharp change in the value of the distance for the sorted kth

column. Let us apply this method to a sample Single View. Figure 2.27 displays the kNN distance
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plot of the 6th nearest neighbor for each observation in the Single View. The value 6 corresponds to
the number of nearest neighbors used during the computation of the distances. The elbow is located
at ϵ = 0.93.

Figure 2.27: KNN Distance plot of the 6th nearest neighbor (T-SNE embedded Car Insurance, April 2022)

Now that we have set our parameters values, let us proceed with the DBSCAN algorithm. It is
mandatory to note that, since we want to assess the quality of the method, the data that is used
for the algorithm is not the raw Single View, but the T-SNE embedding of the Single View with the
best parameters that were discussed in Section 2.2.11, such that we can visualize the efficiency of
the clustering algorithm on Figure 2.28 (3). While the visual exploration of the previous section was
centered around verifying if the embedding of the data had differences for negative and positive churn
cases, the visual analysis that is done here consists in checking how the different clusters are formed.
Merging both analysis can thus tell us if DBSCAN is a good solution for separating positive and
negative churn cases when the data is embedded using supervised T-SNE with accurate parameters.

Figure 2.28: Left: DBSCAN clustering (minPts = 12 and ϵ = 0.93) of the T-SNE embedded Car Insurance
Single View. Right: Color map of the output labels for the same embedding.

The DBSCAN algorithm creates arbitrarily shaped clusters that are numbered from 0 to n where
n is the number of clusters. The number given to a cluster is not representative of its size and the
clusters are not sorted. The cluster associated to the value −1 corresponds to the set of values that
are not included in any cluster. These values are considered as outliers by the DBSCAN algorithm.
We will see later with more anomaly detection techniques that the outliers found using DBSCAN are
quite accurate (see Section 2.2.12) in this context. Figure 2.28 displays the different clusters of the
embedding discussed in the previous section. There is a total of 8 clusters and since the data is very
dense, the size of each cluster is provided:

ClusterSizes = {0 : 76436, 4 : 962, 1 : 858, 2 : 734, 6 : 705, 5 : 639,−1 : 104, 7 : 80, 3 : 35}.
3Clarification: DBSCAN is an unsupervised algorithm, but it will use a supervised T-SNE projection. This means

that the T-SNE components include the information about class labels (and thus is considered supervised)
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With such a global structure, it was expected that one cluster would totally dominate the rest of them.
However, this is where our T-SNE embedding comes in handy: The dominating cluster doesn’t contain
much positive cases. The majority of the positive cases are contained in one of the smaller clusters
(Cluster 5, pink in Figure 2.28), which shows that DBSCAN did well when separating positive and
negative churn cases. Out of curiosity, it would be relevant to see which proportion of positive churn
cases is contained in the 5th cluster. Table 2.9 gives the count of positive and negative churn cases
for each cluster. Out of the 673 positive cases, 639 (95%) of them are in the 5th cluster. Moreover,
this cluster contains only positive churn cases. The combination of supervised T-SNE embedding
and DBSCAN with well-tuned hyperparameters leads to a almost perfect separation of the two classes.
Besides that, we observe other small clusters that are formed around the cluster 0. These small clusters
mainly contain negative cases, but not more than 1000 samples each. What is left to discuss are the
isolated values around the main cluster, which are considered as outliers. However, HDBSCAN is not
the best tool to highlight outliers, which is why we will now resort to more adequate methods in terms
of anomaly detection.

Cluster -1 0 1 2 3 4 5 6 7 Total
Size 104 76436 858 734 35 962 639 705 80 80553

Positive cases 10 13 0 0 0 0 639 9 2 673
Negative cases 94 76436 858 734 35 962 0 696 78 79880

P/N 0.1064 0.0002 0 0 0 0 +inf 0.0129 0.0256 0.0084

Table 2.9: Count and proportion of churn cases per cluster.

Local Outlier Factor and Isolation Forests

In this section, we talk about two anomaly detection techniques that were used. The first technique is
called Local Outlier Factor. It consists in giving each observation a score that is based on the difference
in density between this point and its n closest neighbors. The density of a point is proportional to its
quantity of close neighbors (within a certain radius). The number n of neighbors is a hyperparameter
that should be at least greater than the desired minimum number of samples in a cluster and not too
high, to account for local and non-local outliers. We have seen that a value of minPts = 12 was great
to have good clusters, so we should have n ≥ 12. Figure 2.29, as well as Figure 10 in the Appendix
.3.5 are displays of the T-SNE embedding with each point being circled (with different values of n).
The size of the circle represents the score, with a high score representing a high probability of being an
outlier. In some of the smaller clusters, we observe a few local outliers. When comparing this Figure
with results found with the DBSCAN algorithm, we observe that the outliers with the highest scores
are located in similar zones of the 2D space. They are mainly located around the central dense area
and the smaller areas on the edge don’t seem to have a particularly high amount of local outliers.
This reinforces the idea that all the observations in the small clusters around the main one have very
similar characteristics that is specific to their corresponding cluster, just as the cluster that contains
only positive churn cases.
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Figure 2.29: Local Outlier Factor scores with n_neighbors = 50 (T-SNE embedding, Car Insurance April 2022)

The second anomaly detection method relies on boundary decision making. An Isolation Forest is
an ensemble of Isolation Trees that isolate observations by randomly partitioning in a recursive fashion.
Each tree uses n samples for training, where n is a hyperparameter. The algorithm also uses contami-
nation c, which refers to the proportion of the data that is expected to be outlying. A contamination
of 0.2 signifies that 20% of the dataset contains outliers. Once a tree has chosen its training set, it
randomly chooses one of the features. It then randomly chooses a split value between the minimum
and the maximum values and starts partitioning. An outlier can be separated from the rest of the
samples in fewer steps than inliers. Isolation Trees thus find outliers by finding the observations that
are the fastest at being separated from the others.

Just as for Local Outlier Factor, multiple tests were performed with different values of the hyper-
parameters n (number of samples) and contamination c. All the tests are available in the Appendix
11. The yellow zone indicates the area where points are considered as inliers and the grey zone is for
outliers. A high contamination tends to segregate a lot data points that were not detected as outliers
by DBSCAN and LOF. As Figure 2.30 shows, if the expected proportion of outliers is 10%, the small
clusters are partly considered as outliers and the cluster that contains the majority of positive churn
cases is fully outlying. To have these small clusters being part of the inliers, one should use a very low
contamination value with a sufficient number of observations for training.

Figure 2.30: Left: Isolation Forest decision boundaries with n = 80000, c = 0.1. Right: Same decision boundaries
with color mapping of the output labels.
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2.3 Data Preprocessing Protocol

This section is a summary of the set of methods applied to prepare the data for the purpose of modelling,
in the sense of predicting the target output. As a lot of data analysis tools were tested, a clarification
of what is really used for preprocessing is necessary.

• Variables filtering : Obsolete variables were removed, as well as data that were missing or had
the same value at more than 99% of the time.→2.2.6

• Categorization : Each non-numerical variable is mapped into a numerical variable.→2.2.7.

• Normalization : The data was normalized using Standard scaling.→2.2.7.

• Iterative imputation : Every column that contains missing data is filled using iterative imputa-
tion.→2.2.8.

• Multicollinearity : If the correlation of a pair of variables exceeds 0.7 in absolute value, get rid
of one of them.→2.2.9.

On an indicative basis, Table 2.10 shows how the different steps change the size of the input space.

Single View Initial After Filtering After multicollinearity (final)
Car 345 229 104

Fire insurance (loc) 306 195 74
Fire insurance (prop) 306 199 82

Table 2.10: Evolution of the number of features during data transformation

As the last part of the Chapter was mainly focused on the observation of the structure of the data,
the methods applied will not be used for preprocessing the data, as they are used in a supervised setting
and they imply a non-negligible loss of information. The main purpose of Section 2.2.11 and 2.2.12 is
observation and in this context, the discussed techniques are not intended for output modelling.
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Chapter 3

Churn prediction

While the Chapter about Data included multiple different settings depending on the methods with the
objective to explore the data and find relations, the Chapters about Churn prediction and Continuous
learning both have the same objective: Predicting whether or not customers will churn in the nearest
future. It involves building machine learning models using supervised learning. The following sections
will exclusively discuss supervised learning techniques.

3.1 Supervised learning

Although some supervised learning techniques were already tackled in the previous chapter, this sec-
tion provides a clear definition of its nature and objectives. The chapter about modelling is exclusively
about supervised techniques, hence it is mandatory to formally describe some fundamentals.

Supervised learning refers to the task of finding a function that uses the inputs of a learning set
to approximate at best the output. This task has two main objectives, which are predictive and in-
formative. New objects, also called unobserved data in opposition with observed data, are given an
output prediction based on their attributes (inputs). Supervised learning is also informative, because
it helps learn the relations between an output and the inputs. The informative goal of supervised
learning has already been achieved in the first chapter of the present work. The second chapter is
focused on the predictive objective of such methods.

Formally, a learning algorithm learns by finding a function f that minimizes some loss function l
over a learning sample. From a learning sample LS = {(xi, yi)|i = 1, ..., N} with xi ∈ X and yi ∈ Y
(X and Y are the distributions of xi and yi), find a function f : X → Y that minimizes the expectation
of some loss function l : Y × Y → R over the joint distribution of input/output pairs:

Ex,y{l(f(x), y)}. (3.1)

For supervised classification, the outputs are symbolic. In this context, there are two output categories,
called Negative and Positive. An observation called Negative corresponds to a customer who did not
churn while a Positive observation refers to a customer who churned. Negative and positive outputs
are mapped to integers in the form Negative→ 0 and Positive→ 1 just as the False and True labels
in binary applications.

3.1.1 Model selection

Later in this chapter, we will talk about the different models that are known to be performing well
for such classification tasks. However, one should know how to be able to evaluate which model
would be the the best in each situation. The best learning algorithm can be chosen based on three
criteria: accuracy, measured by the generalization error, efficiency (computing power and scalability)
and interpretability. For now, let us focus on the first criterion. To understand how the generalization
error is defined, one should be aware of the bias/variance decomposition.In a regression problem, let
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LS be a learning sample drawn from a distribution. A good learning algorithm should perform well
generally for every learning sample. What is sought to be minimized is thus

E = ELS{Ey{(y − ŷ)2}}, (3.2)

where ŷ is the output predicted by the model and y is the true output. This error can be decomposed
into two elements with the following:

ELS{Ey{(y − ŷ)2}}
= ELS{Ey{y − Ey{y}+ Ey{y} − ŷ)2}}
= ELS{Ey{y − Ey{y})2}}+ ELS{Ey{(Ey{y} − ŷ)2}}
+ ELS{Ey{2(y − Ey{y})(Ey{y} − ŷ)}}
= Ey{(y − Ey{y})2}+ ELS{(Ey{y} − ŷ)2}
+ ELS{2(Ey{y} − Ey{y})((Ey{y} − ŷ)}
= Ey{(y − Ey{y})2}+ ELS{(Ey{y} − ŷ)2}

The first term is called the residual error. It is the minimal attainable error. The second term can also
be decomposed into two terms:

ELS{(Ey{y} − ŷ)2}
= ...

= (Ey{y} − ELS{ŷ})2 + ELS{(ŷ − ELS{ŷ})2}

where the first term is the squared difference between the Bayesian model (model based on Bayesian
probability theory and is the best possible model) )and the average model (a learning algorithm trained
on a learning sample). This term is called the squared bias. The last term is the expected squared
difference between the predicted output and the expected predicted output from the learning sample
and is called the estimation variance. This term is a consequence of overfitting the learning sample.
The expected generalization error can thus be rewritten as:

E = vary{y}+ bias2 + varLS{ŷ}. (3.3)

If we apply the generalization error to classification problems, the mean misclassification error corre-
sponds to:

E = ELS{Ex,y{1(y ̸= ŷ(x))}} (3.4)

where x corresponds to the set of inputs. The Bayes model is obtained by

hB(x) = argmax
c

P (y = c|x) (3.5)

and the average model is obtained by finding

argmax
c

P (ŷ(x = c|x)). (3.6)

The mean misclassification error cannot be decomposed into a bias and variance term, but the same
phenomena can be observed.

The mean misclassification error can be computed by splitting the learning sample into two distinct
sets: A training set (observed data) that would be used to train the model and a test set (unobserved
data) that would be used to perform predictions and monitor the model’s performance. Usually, the
test set is smaller than the training set. Most of the time, it is more efficient to make this separation
multiple times in a process called cross-validation. The k-fold cross-validation, for instance, divides
the learning sample into k subsets. The learning algorithm is trained with every subset except one
that will serve as test set. The learning process is repeated until all subsets served as test set. The
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error is computed as the mean error over the predictions made for each subset. Cross-validation is a
tool that will be used multiple times during evaluations as it one of the best ways to exploit the data
contained in a learning sample. In the context of this work, the best models will be chosen as the ones
that minimize the cross-validation mean misclassification error. This is equivalent to maximizing the
classification accuracy, which can take different forms. We will see in Section 3.4 that depending on
the context, the performance measurement tools should be carefully chosen as the distribution of the
observed outputs has a great influence on the choice of relevant metrics.

3.2 Decision trees

When it comes to classification algorithms, decision trees appear to be one of the most state-of-the-art
methods to use. Its simplicity and easily understandable features allow to create multiple complex
variations using trees with different structures. In the context of this work, it is mandatory to intro-
duce the concept as early as possible, as it is both a strong tool for performing predictions (modelling)
and for data analysis (feature importance and more).

A decision tree is defined as such: Each interior node tests an attribute, each branch corresponds
to an attribute value and each leaf is labelled with a class. These attributes can be of any type and
tree splitting will be made according to the values taken by the observations in the learning sample.
Choosing accurate attributes to split the tree the most efficiently requires to define a heuristic which
is based on the fact that a tree should remain as small (a small depth and a few splits per level) as
possible. To achieve this, most algorithms choose a top-down approach which consists in selecting the
best splitting attribute at each level of the tree. The best splitting attribute is the attribute that will
maximize class separation at each level, i.e. reduce impurity in the successors as much as possible. Such
a strategy will favor short paths in trees and thus will produce smaller trees. It is however important
to note that impurity measurement is not the only way to define a splitting criterion, but it is still the
most used method.

3.2.1 Gini index

Maximizing class separation at each iteration of tree building involves making the successors of a node
as pure as possible. Intuitively, for a binary classification problem, the objective would be to have
successors with the highest percentage of one of the two classes. For instance, a successor with 80%
observations labelled with the negative class is more pure than a successor with 60% observations
belonging to the positive class.

There are several tools to measure impurity in the successors of a decision tree. One of them is
called the Gini index and is defined as such. For an instance of a learning sample LS , let us call pj
the proportion of observations belonging to the output class j. It is important to note that we are at
a certain step of the tree building and, in this context, LS corresponds to the fraction of the initial
learning sample that is assigned to the current node. The Gini impurity IGi is such that

IGi(LS) =
J∑

j=1

pj(1− pj). (3.7)

At each step, the goal is to reduce as much as possible this impurity, i.e maximize the expected
reduction of impurity, which is defined as

∆I(LS,A) = I(LS)−
∑

a∈A(LS)

|LSa|
|LS|

I(LSa), (3.8)

where LSa is the subset of objects o from LS such that an object o takes as value for the attribute A
A(o) = a. A(LS) is the set of values of A observed in LS. Equation 3.8 states that we are trying to find
the attribute A that maximizes the difference between the impurity of LS at the current node and the
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sum of all impurities obtained by splitting all objects of the current node into n successors (multiplied
by a factor defined by the ratio between the quantity of objects in the successor and the total number
of objects in LS ). The value of n depends on how the node will be split (which intrinsically depends
on the nature of the attribute and how its values are distributed among all objects of LS )
Once the best attribute A is found, the algorithm of tree building can split objects within the successors
according to their value w.r.t A and go through next iterations.

3.2.2 Overfitting

One of the reason why trees should remain as small as possible is the risk of overfitting. A decision tree
T overfits a learning sample if (simultaneously) there exists a tree T’ such that the predictive error of
T on LS is smaller than the predictive error of T’ on the same LS while the error of T on unseen data
(data that was not used for building the tree) is bigger than the error of T’ on the same unseen data.
The over/under-fitting situation if summarized on Figure 3.1. Since complexity mainly translates by
tree depth in decision trees, the deeper a tree goes, the higher the chances are of overfitting.

Figure 3.1: Evolution of model error w.r.t model complexity (source)

The previous statement can be intuitively explained. In the context of large and dense datasets
such as those studied in this work, there are groups that contain a high fraction of the learning sample
and because of that, groups containing only a few objects will influence the decision trees into making
bad decisions (because of the lack of representation). More importantly, if some groups are too dense,
any object that doesn’t belong to these groups can be considered as outliers (noisy object) and the
more a tree is fitted to noisy data, the more it is prone to overfitting.

There are techniques to avoid overfitting and they involve manipulating the tree building algorithm
with either a pre-emptive (pre-pruning) or a corrective (post-pruning) approach. Pre-pruning consists
in interrupting the tree building before it reaches perfect classification (perfect classification is reached
when each leaf’s impurity is equal to 0, i.e. at maximal tree depth). It is done by defining parameters
that are specific to the problem such as a local sample size Nmin or local sample impurity Ith and use
them as benchmark for stopping the tree splitting. On the other side, the idea of post-pruning is to
split the learning sample into two samples : one for building the tree and one for testing the built tree.
The first sample allows to build multiple trees each with different sizes (one is complete and the others
are copies of the complete trees from which we removed test nodes) and the second sample allows to
calculate the generalization error of each tree to check whether or not they are overfitting. The tree
that minimizes the error on the second sample is then chosen.

Performing pruning on a decision tree is a good step towards an optimal decision tree building. How-
ever, decision trees are very unstable due to their high variance and they are not always competitive
with other algorithms in terms of accuracy. Still, they offer the possibility to observe and monitor how
the attribute values of the different inputs can be efficiently used and classified. They are a great tool
in terms of data analysis thank to their transparency and the absence of a black box effect. It would be
a waste not to make use of such a convenient tool. This is why methods emerged to combine multiple
decision trees together or more generally some model architectures with other model architectures.
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Such strategies are called Ensemble methods and are state-of-the-art in most applications of today’s
society.

3.3 Ensemble methods

In the context of a given method, a learning algorithm is adapted to find the best trade-off between
bias and variance. There is no possible algorithm that minimize both of them at the same time, since
they are complements of each other. There is a need to find the best method with the best learning
parameters that will adjust this trade-off to find the right balance. The purpose of Ensemble methods
is to combine the predictions of several built models to improve predictive power with respect to a
single model. Each small estimator can also be called a "weak learner" as the predictions made by
every weak learner will be combined. There are two main families of ensemble: One of them consists
in building models independently and have as final prediction an aggregation of the predictions of
all models (averaging techniques). The other consists in building models sequentially on modified
versions of the data (Boosting techniques). A model M2 uses as input a modified version of the
learning sample combined with the output of a model M1 that has been built prior to M2 and based
on another modified version of the learning sample. Both families of methods implement some sort
of voting system to take into account the predictions of all models belonging to the ensemble. Most
known averaging techniques include Bagging, Random Forests and famous boosting algorithms include
Gradient Boosting or AdaBoost.

3.3.1 Voting mechanisms

Grouping models together requires that the output of each model should be taken into account. This
require the use of a voting system that needs to be adapted to the application. This voting system
can either be totally fair or not. If the trained models of an ensemble are not supposed to perform
equally relative to each other, voting can be weighted such as to give more importance to models that
are supposed to perform better. For instance, boosting algorithms allow to build models sequentially
by using results of the previously trained models. In most cases, the subsequent models should be
weighted more importantly.

Hard vs. soft voting

Depending on the nature of the output, the mathematics behind the voting mechanism is different. In
the context of classification, Hard voting consists in voting based on an output that is a label, i.e an
output whose nature is one of the classes that need to be predicted. The class label with the most
votes among models is the final prediction. For churn prediction, the outputs would either take the
value 0 (not churned) or 1 (churned). Hard voting is used when the learning algorithm is extreme and
decisive. The K-nearest neighbors method and Support Vector Machines are some examples of such
algorithms. The rigidity of hard voting can sometimes limit the predictive power of an ensemble. The
solution to this rigidity is to add flexibility to the voting by taking into account outputs that are class
membership probabilities (when available). Every classifier provides a probability value of membership
for each class. These probabilities are weighted and summed up. The target label with the highest
sum of (weighted) probabilities is the predicted class label.

Mathematically, Let o be an object of a testing sample TS (unseen data) and Mi(pj(o)) the prob-
ability that o belongs to class j (j ∈ 0, 1, ..., J) given by the model Mi of an ensemble of models
E = {M0,M1, ...,MI}. Assuming that each model is weighted equally, the final prediction ŷ(o) is the
target label that maximizes the sum of probabilities such that

ŷ(o) = argmax
j

I∑
i=0,1,...

1

I
Mi(pj(o)), (3.9)

where I is the number of models (equal weighting). It is important to notice that the predicted class
is indeed the highest sum of probabilities if and only if the probability thresholds of class membership
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are all equal ( 1
J for a classification problem with J target classes). For instance, if the soft voting

mechanism of an ensemble gives as final prediction a vector p(o) = (p(j = 0), p(j = 1)) = (0.30, 0.69)
but that the probability threshold for class j = 1 is 0.75, the predicted class is 0 and not 1, even
though the weighted sum of probabilities is lower for j = 0. Attention is drawn here because dealing
with highly unbalanced datasets such as those of this project require to tune the probability threshold
to something that is not equal among the negative and positive classes.

3.3.2 Random Forests

Introduced by L.Breiman and A.Cutler, Random Forests is an algorithm that is designed around
multiple decision trees. Its principles combine bagging and random attribute subset selection. Figure
3.2 gives a schematic view of the Random Forest algorithm. It is inspired by decision trees in a sense,
but instead of selecting the best splitting attribute among the whole set of attributes of the input
data, it selects the best splitting attribute among a random subset of attributes. For each subset of
attributes, a tree is built by following the tree building algorithm introduced in Section 3.2. Once each
tree is built, predictions are performed by each tree on unseen data. For one particular observation,
the final prediction takes into account each prediction for this object by using a voting mechanism.

Figure 3.2: Random Forest algorithm

Random Forest apply the principle of Decision Trees on multiple training samples built from the
training set. One of the advantages of Deriving the use of Decision Trees to Random Forest is that
we get rid of the overfitting problem: A single Decision Tree for a whole dataset can be very deep
until we reach a desired accuracy threshold. Since Random Forests use bagging (it creates subsets of
data with subsets of features), the trees are far more smaller than if we had to use one for the whole
dataset. Each tree is small enough for us not to worry about overfitting. Another very interesting
thing about Random Forests is that they don’t use any mathematical formulas to select training
samples and subsets of feature. It is still interesting to note that there exists a variation of Random
Forest called Extremely Randomized Trees, or Extra Trees, where the randomness is pushed one step
further. Instead of choosing the best splitting attributes among features (the most discriminative
thresholds), thresholds are drawn randomly for each feature. This reduces the variance of the model
but in counterpart, it increases the bias. Extra Trees models are not discussed in the present work.

3.3.3 Gradient Boosting

Gradient Tree Boosting or Gradient Boosted Decision Trees (GBDT), is an ensemble method that
is also based on decision trees. In opposition to Random Forest, GBDT is a boosting techniques,
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meaning that each tree is built sequentially to correct the inaccuracies of previous trees. This boosting
technique places more emphasis on the data points that have been previously misclassified.While it is
an efficient learning technique, GBDT has its disadvantages: First, a complex GBDT model is more
prone to overfitting, as it is a boosting technique. As explained in Section 3.2.2, any Decision Tree
algorithm can overfit the data if the tree is too deep. Since Random Forest uses bagging, it cannot
overfit, as the final prediction is obtained by majority voting of all the trees built from subsets of the
training set. However, GBDT should be used with a good knowledge and early-stopping of the trees,
as it does not work with bagging. GBDT also has more hyperparameters to tune than Random forest:
Besides the number of trees and the number of features that are common to both approaches, GBDT
requires a learning rate and, just as it was discussed, a maximum tree depth. It is harder to fine-tune
a GBDT model than a Random Forest model.

To understand why Gradient Boosting is called Gradient Boosting, let us formally describe the situa-
tion. Let F0 be a first ensemble that is already built based on a learning sample. For any observation
x of the learning sample, we can model the output F0(x) as

F0(x) = argmin
γ

L(y, γ), (3.10)

where L is the loss function, y the true output value associated to x and γ the predicted value. For
each evaluated observation, one can compute the residual error r = y − γ and build a second model
h1(x). Based on this new model, the output can be modeled as:

f1(x) = f0(x) + h1(x) (3.11)

As we proceed sequentially, the above operation is repeated and the expression can be generalized to

fm(x) = fm−1(x) + αhm(x), (3.12)

where α is a parameter that will be discussed. This equation is the general equation for any boosting
algorithm. The value of α depends on the learning method that is used. In the case of Gradient
Boosting, we incorporate the principle of gradient descent into boosting. At each iteration of the
boosting algorithm, we can compute the pseudo residuals ri,m as

ri,m = −
[
δL(yi, F (xi))

δF (xi)

]
F (x)=Fm−1(x)

for i = 1, ..., n, (3.13)

where F (xi) is the previous model, m is the number of Decision Trees and n is the size of the learning
sample. The loss function of the classification problem is defined as:

−
n∑

i=1

yilog(p) + (1− p)log(1− p) (3.14)

where p is the output probability (probability that an observation belongs to a certain class). we
compute the next model with the goal to minimize the loss function based on the pseudo residuals.
Instead of using the original outputs as targets, we use the residuals. Let us say that hm(x) is the
Decision Tree built based on these residuals. The output value of a leaf is the value of γ that minimizes
the Loss function such that

γm = argmin
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)). (3.15)

The second argument of the loss function is similar to Equation 3.12. Before looping again for each
sequence (each tree building) of the boosting algorithm, one should update the model:

Fm(x) = Fm−1(x) + νmhm(x) (3.16)
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where Fm−1 is the previous model νm is the learning rate and hm is the tree model made on residuals.
The learning rate is a value between 0 and 1 and should be carefully chosen. A high lr can lead to faster
convergence since the model adapts faster to the training set, but this convergence can be towards a
local minimum which is suboptimal. A lower learning rate requires more iterations but is generally
more stable. Moreover, it acts as a form of regularization, as it lessens the contribution of each tree,
leading to less overfitting.

There exist multiple boosting techniques that differ by the way the model is updated. Where Gradient
Boosting uses the negative gradient of the loss function from previous predictions to build new weak
learners, the AdaBoost algorithm assigns weights to data points. Higher weights are given to the points
that were misclassified at the last iteration. The loss function used for both variations is different too:
GBDT uses the deviance and Adaboost minimizes the exponential loss function. Because of the expo-
nentiality, the misclassified examples are penalized more heavily. Adaboost does not need to specify
the maximum tree depth, as it uses only one-node trees. Moreover, it does not use any learning rate as
the final predictions are simple weighted sums. There are multiple differences between every boosting
technique and in the context of this work, GBDT and Adaboost will be the two whose performance
will be compared. We will however see in the next chapter that there exist a more recent boosting
technique that fills in most of the disadvantages of GBDT. This algorithm is called XGBoost (Extreme
Gradient Boosting) and will be tackled in Section 4.4.

3.4 Metrics

This section consists of a discussion about the use of accurate measurements in the evaluation protocol
of the classifiers. There is a need to determine the best metrics, as the case of unbalanced binary clas-
sification requires to search deeper than simply considering classification accuracy. It is also important
to note that with the diversity of the exploited strategies, some models directly gave as outputs class
labels while other gave probabilities of class membership. The defined metrics can only be used in the
case of probabilities once a threshold value has been set. A discussion about the relevant metrics for
the problem (Section 3.4 to 3.4) is followed by the different strategies to use for choosing this threshold
(Section 3.4 to 3.4.1).

Confusion matrix

Binary classification is a problem whose methods of evaluation depend on the context of the problem.
Some problems require to maximize the detection of positive (P) (resp. negative (N)) cases without
paying attention to the fact that false positive (resp. negative) cases can be detected, while some
problems require a cutoff between correctly and wrongly predicted outcomes. One of the most widely
used tools in binary classification is the confusion matrix. Most of the metrics used in classification
problems are based on this artifact.

The confusion matrix is a two by two table formed by counting the number of the four outcomes
of a binary classifier. We denote as true positive/negative (TP/TN), the cases that were correctly pre-
dicted as positive/negative by the classifier, while the false positive/negative (FP/FN) are the cases
that were wrongly predicted as positive/negative by the classifier with respect to the groundtruth
values. It is needless to say that in the context of churn prediction, we refer to positive cases as the
cases of clients who effectively churned. Figure 3.1 represents the definition of the confusion matrix in
the context of churn prediction. Based on this matrix, some basic measurements are derived, each of
them being useful depending on the situation:

• Error rate (ERR): The number of all incorrect predictions divided by the total number of
samples.

ERR =
FP + FN

TP + TN + FP + FN
(3.17)
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Confusion
matrix

Predicted
Positive Negative

Observed Positive Churned client detected as
churned client (TP)

Churned client detected as
non-churned client (FN)

Negative Non-churned client detected as
churned client (FP)

Non-churned client detected as
non-churned client (TN)

Table 3.1: Definition of the confusion matrix in the context of churn prediction

• Accuracy (ACC): The number of all correct predictions divided by the total number of samples.

ACC =
TP + TN

TP + TN + FP + FN
= 1− ERR (3.18)

• Sensitivity (SN): Also called recall or true positive rate (TPR), it is the number of correct
positive predictions divided by the total number of positive samples.

TPR =
TP

TP + FN
(3.19)

• Specificity (SP): Also called true negative rate (TNR), it is the number of correct negative
predictions divided by the total number of negative samples.

TNR =
TN

TN + FP
(3.20)

• Precision (PREC): It is the number of correct positive predictions divided by the total number
of positive predictions.

PREC =
TP

TP + FP
(3.21)

• False positive rate (FPR): It is the number of incorrect positive predictions divided by the
total number of negatives.

FPR =
FP

FP + TN
(3.22)

In the context of churn prediction, the choice of the relevant concepts among this list is discussed
around two aspects. We first want to assess a model’s general performance by observing how it
classifies positives as well as negatives samples. Since the problem is very imbalanced, there is a need
to scale the classification accuracy of both categories (see Section 3.4). In a second time, the case
of churn prediction has as center of attention the efficient detection of churned clients (i.e. positive
cases). With this assumption, it would only be natural to choose measurements such as sensitivity and
precision (see Section 3.4).

Balanced accuracy

To understand why raw accuracy is not a good metric for this problem, let us have the following
example: In a binary classification problem where the class of interest is the least dominant, we have
1000 samples with only 100 samples that belong to the class of interest. A classifier that would classify
every sample as a member of the most dominant class would have an accuracy of 0.9, even though it
didn’t detect any sample belonging to the class of interest. This is a problem, since the priority in this
case is to classify these samples accurately. For such a matter, a metric called balanced accuracy
(B-ACC) is introduced. It is defined as the arithmetic mean of the sensitivity and specificity, i.e. we
have from 3.19 and 3.20

B-ACC =
TPR+ TNR

2
=

1

2

TP ∗ TN + TP ∗ FP + TN ∗ TP + TN ∗ FN
TP ∗ TN + TP ∗ FP + FN ∗ TN + FN ∗ FP

(3.23)
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Taking our example, the balanced accuracy would be equal to 0.5 (TPR = 1 and TNR = 0) which is
a better way of observing that the classifier is not a good fit (if the primary goal is to detect the least
dominant class). Most classifiers tend to jointly maximize sensitivity and specificity, and balanced
accuracy is a good trade-off between both.

F1 score

Focusing on the least dominant class (churned cases), it is now important to see how well detected
cases indeed belong to the positive class. The two questions to ask are: "Which proportion of true
positive cases are detected as positive ?" and "Which proportion of positive detected cases are indeed
true positive cases ?". Sensitivity and Precision are the metrics of interest. The F-score is defined as
a harmonic mean of these two measurements.

F =
(1 + β2)(PREC ∗ TPR)
β2 ∗ PREC + TPR

, (3.24)

where the value of β is discussed in the following paragraph.

The value of β will depend on the priority we want to give to the two measurements that are used in
the definition of the F-score (3.24). A small β value will give more weight to precision while a high
β value will give more credit to sensitivity. Usually, β takes values ranging between 0.5 and 2. The
F1-score is a particular case of the F-score function where β = 1. In this case, we have

F1 =
2 ∗ PREC ∗ TPR
PREC + TPR

. (3.25)

A higher value such as β = 2 could also have been chosen, because in this case, it is assumed that
since the imbalance is quite important, there will be a lot of cases that are wrongly detected as positive
whatever the classifier, hence the precision will be low. This is why sensitivity should be prioritized
(the main objective is the minimization of false negatives (FN)). Choosing β = 1 is a good trade-off
between the minimization of false negatives and false positives.

Thresholding

"Thresholding" or "Decision Threshold tuning" is defined as the task of finding the optimal threshold
value that will serve to determine how a given output probability will be converted into a class label.
There are multiple ways to obtain this value: Some of them are directly computable, while some other
require domain knowledge or data analysis.

In a binary classification problem, the default threshold value is equal to 0.5.An output probabil-
ity inferior to 0.5 results in a class label of 0 while a probability superior to 0.5 results in a class label
of 1. However, several problems can arise from this biased choice:

• Uncalibrated probabilities: Some models output probabilities that are not calibrated such as
decision trees or SVMs (the output probabilities of such models do not correspond to the true
likelihood of the event).

• Use of metrics: The metrics used to train the model can be different than the ones used to
evaluate it (which is not our case).

• Skewness: The class distribution is severely skewed/imbalanced.

• Classification cost: Some problems put priority on the accurate classification of one particular
class by associating costs to misclassification. Different costs result in a sub-optimal interpreta-
tion of the output probabilities.

A naive method of obtaining the optimal threshold value consists in choosing an evaluation metric,
computing class labels for each possible threshold value and keep the value for which the metric scores
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the highest. The problem with this method is that it requires to choose a specific metric (choosing
multiple metrics can lead to the fact that not all of them are maximized for a particular threshold
value). Nevertheless, if a metric is proven to be the most useful, then this approach still remains
efficient in most cases. Besides that, one can choose to combine the use of concepts based on the
confusion matrix with visual representations that are built with respect to the evolution of a threshold
value. Two of the most common visual tools are the precision-recall curve and the ROC curve. Since
the reasoning behind both representations is quite similar, only one of them is tackled in this paper
(see Section 3.4).

ROC and AUC

The Receiver Operating Characteristics (ROC) plot is a display of the evolution of sensitivity/1-
specificity pairs of a classifier with respect to the threshold value that a probability needs to reach
to be considered as part of a class of interest. This curve is one of the most common tools used in
binary classification for decision threshold tuning. With a similar reasoning as when choosing metrics,
the choice of this cut-off depends on the main objective of the classification problem. Maximizing
the prediction capacity of positive cases involves prioritizing a high sensitivity while minimizing the
number of true negatives predicted as positives. If specificity is defined as the proportion of correct
negative predictions among all negative samples (3.20), the 1-specificity refers to the probability that
a true negative case will be classified as positive. The ROC cut-off problem thus involves finding a
threshold value that will maximize the sensitivity while minimizing the 1-specificity.

Figure 3.3 shows examples of different ROC curves for the same problem. Intuitively, the optimization
problem that is tackled requires the curve to be as close as possible to the top-left corner (maximization
of ordinate and minimization of abscissa). The best classifier will then be defined as the model with
the highest Area under the ROC curve (AUC). A perfect classification corresponds to an AUC of
1 while a classification that predicts none of the samples correctly will have an AUC of 0. It also means
that any trained classifier should have at least an AUC of 0.5, as this value is the result of a classifier
that randomly classifies samples as positive or negative (assuming that the chances of the classifier
predicting a case as positive or negative are equivalent to the proportion of positive/negative outputs
in the test set). It is important to note that the ROC curve and the AUC are defined as model-wide
metrics, meaning that they don’t particularly focus on an aspect of a classification problem: they allow
one to assess the overall performance of a classifier.

With a good analysis of the ROC curve and the rigorous understanding of the problem, one can
define a threshold value that will serve as frontier between the positive and the negative class. There

Figure 3.3: ROC curves of different classifiers. The blue curve is the best classifier while the orange curve is
barely better than a random classifier.(source)
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exists multiple selection criteria based on the ROC curve. The Youden J Index, introduced by Youden
in the medical literature, is defined as

J(c) = SN(c) + SP (c)− 1, (3.26)

where c is the cutoff value. The value of c that maximizes the J index is the optimal cut point. Another
approach which is more intuitive relies on finding the threshold that will result in the closest point to
(0, 1) in the ROC plot. The ER criteria is defined as

ER(c) =
√
(1− SN(c))2 + (1− SP (c))2 (3.27)

In opposition to Youden’s J Index, the best cutoff is the value of c that minimizes ER. There exists
other recently proposed methods[15].

3.4.1 Evaluation

In the context of churn prediction, it was decided that the best way to assess a model’s performance
would be to look either at the balanced accuracy, the F1-score or the AUC for the last part of the
project. It was observed that it was interesting to look at multiple metrics, as they all give different
insights about classification performance. No priority is given to any of these three scoring methods.

In this section, the tools that were described earlier are applied in the context of churn prediction.We
use the described classification algorithms to predict churn and we verify that the performance of
models that are supposed to perform well are up to the task in this specific setting (see Section 2.3
for more details about data preprocessing). According to NRB Data specialist and machine learning
experts, the models that are supposed to perform at best are Gradient Boosting models, Decision Tree
classifiers and bagging techniques, with Gradient Boosting supposedly being the most efficient model
for churn prediction.

Before going on with the evaluation of the most known models, one should remind that the Single
Views are heavily unbalanced in terms of output. This difference has an impact on the training of the
models, as they will take the habit of being confronted to negative churn cases, and not enough positive
cases. Thus, they will specialise in recognizing negative cases among all cases, while the recognition
of positive cases might remain too poor. There exist (at least) two solutions to this problem. We
start with the assumption that output classes are balanced in the dataset using balanced sampling to
train the models. One can also synthesize positive cases based on the nature of the existing positive
cases. The problem with this method is that the Single Views contains very few positive cases and it
has been shown that separating positive and negative churn cases is too laborious of a task (1). The
synthesized data could very well not be representative of the original positive cases and introduce a
heavy bias during the training, leading to important performance losses. Consequently, the solution
that was chosen is to train and evaluate every model in two settings: a first setting where the training
set contains 70% positive churn case and an equally sized sample of negative churn cases. The test set
contains the rest of the positive cases and the totality of the negative cases. We will refer to this setting
as Balanced sample. The second setting Full Single View corresponds to the evaluation with the
complete data (Note: The data is preprocessed before being sampled, so both settings undergo the
same set of transformations). The training set of the second setting contains 70% of the whole Single
View, sampled randomly and the test set contains the remaining 30%.

Figure 3.4 represents the evolution of the (cross-validated) balanced accuracy and F1 scores of dif-
ferent known models for the Car insurance type. Appendix .4 contains the same measurements for
Fire insurance types. As it was forecast by the experts, Gradient Boosting is the most efficient on av-
erage with results peaking to more than 70% balanced accuracy. Some algorithms such as Naive-Bayes
offer remarkable performances at some points, but these performances are too irregular for us to trust

1Note: The only time where separation between the cases was possible was during supervised dimension reduction
(Section 2.2.11). However, these transformations are not revertible
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the algorithm. It can also be seen that for almost every case, the performance of the balanced setting is
greater than the unbalanced setting. It would appear that it is a good thing to set the prior assumption
that the positive and negative churn cases are balanced, as it improves the models’ performances. In
the set of models, Naive-Bayes seems to be the only one that is able to make the difference when it
comes to unbalanced data. Logistic regression and AdaBoost seem to perform quite well as they win
over Gradient Boosting in some cases during one or two months. Random Forest is the black sheep as
it is the least performing model on average.

Figure 3.4: Evolution of the cross-validated balanced accuracy and F1 scores (Car Insurance, April 2022 to
August 2022).

While the results that are found are acceptable, they require further fine-tuning. Instead of wasting
a lot of time on optimization of the models, it was decided to move on to the next objective. If we
remember well, the third and last objective of the work was to elaborate a model architecture that
would remain persistent throughout time. Instead of retraining a model from scratch each month
using only the most recent data, the idea would be to use a model built from previous months and
continue to improve its performance by taking into account more recent data. The discussion about
this challenge takes place in the last chapter of the present work.
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Chapter 4

Continuous learning

Pipeline architectures have always been a widely-used tool for companies. They offer automated move-
ment and transformation of the data by defining dedicated data-driven workflows. Famous platforms
such as Amazon or Google developed infrastructures that allow companies to benefit of these Web
services facilities. In the case of D-predict, a new pipeline is instantiated each month such that every-
thing is automated, from the raw Single Views to the associated predictions for these Single Views.
Because each instance is a new instance, it only takes into account the present data, i.e the two Single
Views for training and inference (spaced 3 months from each other). Each pipeline instance trains a
model only based on data from 3 months ago (most recently observed data) without taking anything
else into account. Besides the fact that we cannot change this 3 months duration, as it was defined by
Ethias, this training method is improvable. One could for example take into account multiple months
before the most recently observed data to account for the evolution of the customer base. This could
be done by training a model with a training set composed of multiple months of data. However, with
the actual pipeline architecture, this would require loading multiple Single Views (more than the 2
initial) each month, leading to a high memory usage. There is another indirect way to take into ac-
count past data that can be implemented by ensuring continuity in the models. This alternative is the
focus of the discussion in this chapter. Since it is not advised (and practically hard) to load multiple
Single Views each months and it adds redundancy, we look to use the most efficient models that were
previously identified to build variations of these models that would be able to persist in time while
being frequently updated. Instead of training new models from scratch each month and select the best
for each month, we look to reuse past models that were trained on past data and update these models
each month. This process can be assimilated as Continuous learning.

The current pipeline module consists of 4 blocks : Data Loading, Preprocessing, Training and Infer-
ence. The Data Loading block is responsible for loading two Single Views each month: the unlabeled
Single View of the current month (for inference) and the labeled Single View of the most recently
observed data (4 months old data used for training). The preprocessing block consists in all the data
transformation that is performed, as depicted in Section 2.3. A pipeline instance that accounts for
continuity should add Model Loading/Saving , Predictions Loading/Saving and Predictions Scoring.
The model should be loaded and saved, as the main objective of the chapter is to retrieve the same
model and improve its training each month. The predictions made each month should be saved, as
they are necessary for obtaining feedback. In order to keep all predictions until the labels are obtained,
there is a need to use a queue to buffer the predictions that are waiting for feedback. Figure 4.1 gives
a schematic view of the queuing process. The size of the queue is equivalent to the number of months
that are needed to obtain the true output values of a datamart. The predictions are retrieved from the
queue once the queue is full. Figure 4.2 gives a schematic overview of the pipeline module in its static
form and its transformed version intended for continuous learning. Ideally, the feedback obtained with
Predicstions Scoring could be used for monitoring and eventually bring changes to the model. For
instance, repeated drops of accuracy could lead to a complete or partial reset of the model, if reverting
such a model to one of its previous states is possible.
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Figure 4.1: Functioning of the predictions queuing process in the pipeline module.

Figure 4.2: Schematic comparison between the static pipeline module and the continuous module.

4.1 Historical vs. Real-time data

Up until now, churn prediction was performed with the assumption that the output labels were directly
available, as we built the models on historical data. The pipeline process that takes place in real-time
does not have access to the labels of the current month’s Single View. What is meant is that each
month, the pipeline computes predictions, and the true output values are obtained 3 months later. In
the current pipeline, there is absolutely no feedback implemented when it comes to the evaluation of
the inference 3 months ago. What we need to add to this architecture is a feedback system that returns
useful statistics. This system would serve two purposes as it would allow to monitor the evolution of
the performance of the inferences: First, the analyst could evaluate if the predictions were accurate
and take measures. Secondly, since we use a model that persists over time, this monitoring could serve
as a controller of the continuous learning phase of the model. Depending on the possibilities related
to each continuous model, one could revert the model to one of its previous states if the inference
performances start to drop or even reinitialize it if we consider that the training has been going on for
too long. If the performance becomes stagnant, it would be advised to fine-tune the learning algorithm.
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4.2 Batch vs. On-line learning

We define algorithm continuity as the ability of a learning algorithm to continuously learn without
any limit while training data is available. A continuous algorithm is able to start its training based on
a first subset of data d1, interrupt its training, perform inferences and then resume its training with
others subsets of data d2, d3, d4, ... while being able to compute predictions at any time in the process.

Algorithms that are able to learn while performing inference at any time are called on-line algorithms
while algorithms that are not able to are called batch learning algorithms. In the batch learning cate-
gory, we have seen the KNN algorithm that stores the training data and classifies new instances based
on their proximity with existing data points. If new data is nested to this training set, the algorithm
cannot adapt without retraining. Decision trees, in their canonical form, are built on a static dataset.
Just like KNN, if some new data is loaded, they have to be rebuilt from scratch. It is also the case
for Support Vector Machines and the Naives Bayes algorithm. Dimension reduction techniques such
as PCA that was introduced in Section 2.2.11 are also performed on static data, as any new data
would change the whole structure of the projection. To build efficient on-line variations of learning
algorithms, we could consider Ensemble methods. This family of methods uses weak learners, i.e a
set of similar simple models, to perform predictions that originate from a consensus between the weak
learners. One of the idea behind On-line learning is to alter the structure of the Ensemble such as to
have room to account for the new data. It can be done by adding new weak learners, removing them,
or retraining some of them.

4.3 On-Line Random Forest

Taking Random Forest as an example, an On-line version of the algorithm would consist in initializing
a model with a number of trees n_trees that is inferior to a parameter that indicates the maximal
number of trees called max_n_trees. The first set of n_trees is trained on the first set of training
data. If inference is already required at this point, the model uses these n_trees trees to compute
predictions. Then, when new training data is available, we add a certain number of new trees to
n_trees while ensuring that the sum of trees is still inferior to max_n_trees. The new training data
is used for these new trees. When n_trees is equal to max_n_trees, we can decide either to remove
the n oldest trees to add n new ones, or remove more trees if the performance of the model was better
at some point in time. This illustrates well why feedback is important, as we will be able to benchmark
the moment where the algorithm performed best and eventually revert it to a state prior to its peak
performance.

4.3.1 Iterative Ensemble of On-Line Random Forests

The Iterative Ensemble of Random Forest is an adaptation of the idea of weighted Random Forest
and combined sampling proposed by V. Effendy et al. (2014). The main idea is to combine multiple
samples of a training data by using multiple Random forests and obtaining the final prediction as a
weighing of all the predictions made by the different models. In the context of this work, we develop
an On-Line version of the concept with the use of an object that is called Iterative Ensemble RF. It
is defined as an object that has several Random Forest that are updated each month. Each Random
Forest is trained based on a different subset of data. These subsets of data are all composed of the same
majority of positive churn cases, the sole difference in the subsets being the negative churn cases. For
an IERF object that contains n Random Forest, the model is updated by creating n training subsets
that contain the positive churn cases along with different random samples of negative churn cases such
that each subset is balanced with different negative churn data. In terms of implementation, an IERF
is an object for which 4 procedures are implemented (besides the constructor of the object): A training
procedure, An inference procedure, A model update procedure and a model saving/loading procedure.
This model works as follows: Just as On-Line Random Forest, the IERF object initializes n Random
Forest models. When new data is available, each RF is trained on a separated balanced subset. The
model is then updated and saved. Whenever inference is required, the IERF object is loaded. The final
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prediction is obtained by soft-voting of the n Random Forest models (more details about soft voting
in Section 3.3.1). This final prediction is a "vote of votes", as Random Forests are averaging models.
The difference with classical Random Forest is that additional trees are added to each Random Forest
such that the Ensemble can keep on training. This requires setting a maximum number of trees and
an increment to define the number of trees added for each new training session.

4.3.2 Evaluation protocol

During experiments, it was determined by cross-validation that random forest models that were trained
based on one month of data (one small balanced sample of data of one month) had the highest re-
sults when the number of estimators was between 10 and 30. It was then observed that when the
ensemble exceeded 50 estimators, drops of performance were starting to be observed. These exper-
iments led to the choice of two important parameters: As the Iterative Ensemble is composed of r
Random Forest models (the default value of r is arbitrarily set to 5), one should initialize these r
models with a certain number n_estimators of estimators. Moreover, we cannot add trees to each
Random Forest indefinitely, as it would lead to overfitting and drops of performance. The number
50 was chosen as value for max_n_estimators. Finally, we need an increment for the model, i.e.
a number of trees to add to each forest at each new month. Since it is more practical to choose a
multiple, the increment value is chosen as 10. Now, if we proceed with continuous training, the first
month consists of 5 Random Forest of 10 estimators each that are trained on 5 balanced subset of this
month’s most recently observed data. The second month would then consist of the same 5 Random
Forest to which we fit 10 more estimators, so a total of 20 estimators: 10 estimators fitted on month
m− 1 and 10 estimators fitted on month m. Once the 5th month is reached, The 10 oldest estimators
are discarded and replaced by 10 new estimators that are fitted on the new most recently observed data.

With the described procedure, we can now observe the evolution of the model’s performance over
the months. Figure 4.3 represent the evolution of the model’s performance over a 5 months period.
These performances are computed based on the test sets of the observed Single Views. The perfor-
mance on the test sets are quite constant but it appears that adding estimators didn’t lead to better
results. There is a possibility that Random Forests are capped in terms of capability for this specific
context, as they cannot exceed certain value even if the training phase is long and steady. Let us take
a closer look at how the algorithm classifies the data. Appendix .5.1 gives the Confusion matrices of
all 5 test sets from April to August 2022. It is by looking at these matrices that one can get aware
of the difficulty of the task. Because of the very low churn rate, for one correctly predicted positive
churn case, between 25 and 50 negative cases are also predicted as positive. Among all cases predicted
as positive, there is only a probability of 2% to 4% that the case is indeed a true positive. It is clear
that there is room for improvement that might be found with other machine learning techniques.

Figure 4.3: Evolution of b_acc and f1_scores of the test sets from April 2022 to August 2022 (Car Insurance)

62



4.4 On-Line Gradient Boosting and Extreme Gradient Boosting

The previous chapter led to the conclusion that Gradient Tree Boosting techniques are the most efficient
for our binary classification problem, so it is a logical follow-up to try and push this optimization to
the extreme by looking at what could be improved with Gradient Tree Boosting. Extreme Gradient
Boosting is a variation of GBDT that addresses the majority of its issues. This Scalable Tree Boosting
System proposed in 2016[3] is a revolutionary tool that has already been adopted by many fields of
activities, as it is one of the most state-of-the-art machine learning models of nowadays. XGBoost
brings minor improvements into the implementation of GBDT, but without going too much into its
details, let us list some of these improvements.

• Task distribution: In the literature dedicated to the description of the XGBoost System, a
module called Column Block is introduced. The purpose of this module is to perform parallel
learning, which consists in separating the different operations performed during the training
process to reduce computation complexity. Additionally, the XGBoost technology works with
a Cache-Aware Access, meaning that an internal buffer is allocated for each thread such that
the gradient’s statistics can be fetched in it. This is especially useful when these statistics do
not fit in the CPU. These resources create more comfort in big data settings and can efficiently
accelerate the learning phase.

• Regularization: XGBoost adds a penalty term to the loss function (either Lasso or Ridge regu-
larization) to increase its punitive power. As a consequence, it is less prone to overfitting as it
lowers the variance, but it adds slightly more bias.

• Missing values: Historically, the first public version of XGBoost was not able to manage missing
data. However, recent experiments have led to a version of XGBoost capable of imputing Missing
Data [4]. What is interesting is that the imputation technique that is used is based on MICE,
just as the method described in Section 2.2.8.

• Imbalanced data: The variation of GBDT also offers the possibility to initialize weights for classes
to account for class imbalance. This will be very helpful in the context of churn prediction, as
this imbalance is severe.

XGBoost is an algorithm that requires a lot of fine-tuning, as it can be used for various applications
and its set of hyperparameters is wide. This section compiles the experiments that were performed
to get a fine-tuned optimized version of the algorithm. First, it is important to provide a baseline of
a default performance, as the algorithm was not tested in Section 3. For this purpose, the algorithm
is instantiated without any modification of the parameters. It is trained using a full Single View
preprocessed as explained in Section 2.3 and evaluated with 3 series of 10-fold cross-validation using 3
scoring metrics. The values obtained are reported in Table 4.1. These values will serve as a baseline for
the rest of our experiments. The first observation to be made is the very low mean balanced accuracy
and f1-score that probably comes from the class imbalance. The AUC remain high, as negative churn
cases are dominant and most of them are classified as negative, which gives a high quantity of True
Negative in comparison with the total size of the Single View.

Single View balanced accuracy f1-score AUC
Car 0.50018 0.00079 0.6850

Fire insurance (loc) 0.50122 0.00081 0.6859
Fire insurance (prop) 0.50093 0.00077 0.6855

Table 4.1: Cross-validated mean scores of a default XGBoost Classifier.

The next thing there is to know about XGBoost is that we can choose to consider a prior class
imbalance. The class weighting is a parameter that can also be tuned. We know how the class are
weighted (close to 99% for each insurance type) but it does not necessarily mean that choosing the
true weighting will lead to the best results. The weight tuning is done by performing a variation of
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cross-validation that will compute scores with models that differ in weight initialization. As it is our
main metric, we use two series of 5-fold cross-validation with the balanced accuracy as the deciding
score. The result are reported in Table 4.2. We can see that the scores have improved since the default
testing, with a peak value reached at w = 1000 (w is the expected ratio of negative per positive cases),
which is more than 10 times greater than the true ratio (+- 99). Choosing good class weights can
increase the balanced accuracy by almost 10% in best case scenarios.

Car Insurance w=1 w=10 w=50 w=100 w=1000 w=10000 w=100000
balanced accuracy 0.500137 0.503340 0.550412 0.588775 0.596142 0.584093 0.580536

Table 4.2: Cross-validated mean balanced accuracies per weight value w.

The difference between class weights and other hyperparameters such as learning rate or number
of weak learners is that the class weight can be tuned based on only one Single View, as we consider
that the proportion of churned customers is similar for each Single View of a same Insurance Type.
However, the learning rate and the number of weak learners cannot be tuned based on only one Single
View, as the goal is to have one individual persistent model for each Single View. What is meant is
that if the training was limited to one month (one Single View), the values of learning rate and weak
learners that would have been found by fine-tuning are not the same as if fine-tuning was performed
on a long term basis. The learning rate of a 1-month training should be higher than a continuous
learning rate, as the model needs to adapt to the training data much faster. Moreover, the number
of estimators needs to be large enough in order for the new training phase not to have a too large
impact in comparison with the previous training phases. There is a possibility of performing cross-
validation over multiple months of data, but it would present some issues in terms of memory usage
and computation power. Still, we have the reasons to state that the learning rate should be smaller
than for one month and the number of estimators should be higher. Let us proceed with some more
cross-validation. This time, we use the previously found class weighting with different combinations of
learning rate and number of estimators. Each combination is evaluated using a 5-fold cross-validation
with balanced accuracy as scoring metric. The results are reported on Table 4.3. The peak accuracy is
obtained with the highest learning rate and the highest number of estimators, meaning that we should
turn to a even higher number of estimators when performing continuous learning.

Learning rate
Number of estimators 0.01 0.001 0.0001

100 0.547642 0.549800 0.551018
200 0.556126 0.548614 0.550038
300 0.559002 0.548317 0.549909

Table 4.3: Cross validated mean balanced accuracies w.r.t learning rate and number of estimators (Car
Insurance, April 2022).

Now that we have a good idea of the hyperparameter values, we can proceed with the continuous
learning process. Just as with On-Line Random Forest, we instantiate a XGBoost Model with a
sufficient number of weak learners. At the first month, the model is trained on the most recently
observed data and performs inference for the month’s current data. On an indicative basis, the tests
are performed for the Car Insurance type. We look at Figure 4.4 for the evolution of scores and
Appendix .5.2 for the confusion matrices. Here, in opposition with Random Forest, the model seems
to be greatly influenced by the initialized class weights, as they detect more positive churn cases that
are indeed true positive cases. In counterpart, the proportion of false positive is tremendous. The
class weight is a strategy that can influence a model towards higher classification of the least dominant
class, but it has a serious impact on the classification of the dominating class. One hypothesis is that
this strategy induces a lot of bias and is not robust for any kind of problem.
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Figure 4.4: Evolution of the scoring metrics on the different test sets (Car Insurance)

Another solution is to apply the principle of combined sampling to XGBoost just as it was used
with On-Line Random Forest. This way, we get rid of the weights initialization, as the classes are
already balanced by undersampling the negative class. Appendix .5.3 displays the evolution of the
metrics of an XGBoost Classifier that uses combined sampling. This version is quite better than the
weight initialization version.

4.4.1 Algorithms comparison

Let us now compare the different algorithms described in this chapter. We first described an On-Line
variation of the Random Forest algorithm that uses the principle of combined sampling and soft voting.
We then introduced the possibility of using Extreme Gradient Boosting in an On-Line fashion. We
experimented with a version that is trained on full Single Views by initializing class weights and finally,
we experimented with a XGBoost classifier with the combined sampling idea of On-Line Random For-
est. We also compare these continuous models with the performances of the best non-continuous model
to see if there is a significant difference of performance between the static and the continuous approach.

As it was explained earlier, the pipeline performs inference on new data each month and the out-
putted predictions are kept until the associated true outputs are received. In our case, since the
experiments were performed from April 2022 to August 2022, the comparison will be done for the
inference made in April 2022, as the true outputs associated to these inferences are obtained in August
2022. Table 4.4 gives a summary of the performance of the different models.

Car Insurance, April 2022 b_acc f1-score AUC
Non-Continuous Gradient Boosting 0.6274 0.0204 0.5632

On-Line Random Forest with combined sampling 0.6354 0.0447 0.6445
Weighted XGBoost 0.5314 0.0293 0.5494

XGBoost with combined samples 0.6391 0.0399 0.6446

Table 4.4: Comparison of the different learning algorithms based on inference For Car Insurance
(feedback).

In most cases, the classification is similar. At first sight, one would argue that it is not necessary to
keep the same model each month, as the difference between non-continuous and continuous methods
is small. But the problem seems to be somewhere else. Let us take the current situation: Each dataset
that requires inference of the model can only have access to up-to 3 months old data and not any
data in this 3 months interval, as it is the duration for receiving true outputs. The questions that
come to mind are: "For how much months do one need to train a model before it actually starts
being successful?", as 5 months don’t seem to be enough in this case. Another question to be asked
is "What if the duration of the waiting time was reduced to one month instead of 3?". Since we
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have access to historical data, the last question was probed by training an On-Line Random Forest
model with combined sampling on the Single View of July 2022 and perform inference for the month
of August of the same year. Appendix .5.4 show the difference in score if the duration was reduced.
It is needless to say that the differences observed are a direct cause of the highly multi-varying datasets.

The exposed continuous learning models did not lead to significant results, as the differences in perfor-
mance between static models and updated models are weak. The main cause for this indifference could
be that the duration of the training is too short in comparison with the gap between a month where
data is received for inference and the month where its outputs are obtained. For further improvement,
a long-term experiment should be conducted, with a larger training duration, as 5 months worth of
training don’t seem to have much impact on the inferences. The m month gap between inference and
receiving of the outputs is also an issue, as it has been seen that training a model with a shorter gap
leads to higher performances (Appendix .5.4).
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Appendix

.1 Dataset - Description and Nomenclature

Note: The following file contains all the available descriptions about the variables in the Single Views.
Some variables discussed in the analysis could possibly be missing a description.

Attached file : double click on the following icon
(Some PDF readers do not support file attachment, try using Adobe Acrobat Reader , Foxit Reader or
Wondershare PDF elements if you cannot open the file).
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SV 1 - Clients

		Nom		Description		Outdated		Aggréation famille		Commentaires		Facilité 
(1 = facile 
3 = difficile)		Utilité 
(1 = très utile 
3 = pas très utile)

		C_surveillance_EHP		Flag indiquant si le client est sous surveillance pour un sinistre à la fin de la période historique (soit Flag A (fraude), soit Flag S (surveillance sinistre), soit Flag Z (fiche doute), soit Flag W (refus d'assurer))						Dernière photo uniquement		1		1

		C_surveillance_EHP_HH		>>> same above on household view				sum				2		2

		C_Contentieux_EHP		Flag indiquant si le client est contentieux à la fin de la période historique						Id		1		1

		C_Contentieux_EHP_HH		>>> same above on household view				sum				2		2

		C_Value_EHP		Valeur du client à la fin de la période historique. Valeur = Somme des gains esperés.								1		1

		C_Value_EHP_HH		Do not use (outdated)		x		sum		Attention interprétation : valeur augmente car nouveau contrat ou parce que nouveau membre dans le ménage		2		2

		C_ValueInc_HP		Augementation de la valeur du client durant la période historique. Valeur = Somme des gains esperés. Increase between average 6 first (per1) and average 6 last months (per2). -Per1 si Per2 = 0. Per2 si per 1 = 0. Unknown si per1= per2=0 
Do not use (outdated)		x				 = 0 si même valeur à BHP et EHP, donc pinc = 0 aussi.
 = missing si une des 2 valeurs (bhp ou ehp = missing) et pinc = missing aussi		2		1

		C_ValueInc_HP_HH		Do not use (outdated)		x		sum		Id		2		2

		C_ValuepInc_HP		Augementation de la valeur du client durant la période historique. Valeur = Somme des gains esperés. Relative increase between average 6 first (per1) and average 6 last months (per2). (Per2-Per1)/Per1. -1 si Per2 = 0.  99 si per 1 = 0. Unknown si per1= per2=0
Do not use (outdated)		x		-		Id		2		1

		C_ValuepInc_HP_HH		Do not use (outdated)		x		compute

		C_HistValue_EHP		Valeur du client à la fin de la période historique. Valeur = Somme des gains esperés.
Do not use (outdated)		x				Id		1		1

		C_HistValue_EHP_HH		Do not use (outdated)		x		sum		Id		2		2

		C_HistValueInc_HP		Augementation de la valeur historique du client durant la période historique. Valeur historique = Somme des gains esperés - débours sinistre. Increase between average 6 first (per1) and average 6 last months (per2). -Per1 si Per2 = 0. Per2 si per 1 = 0. Unknown si per1= per2=0
Do not use (outdated)		x				Id		2		1

		C_HistValueInc_HP_HH		Do not use (outdated)		x		sum		Id		2		2

		C_HistValuepInc_HP		Augementation de la valeur historique du client durant la période historique. Valeur historique = Somme des gains esperés - débours sinistre. Relative increase between average 6 first (per1) and average 6 last months (per2). (Per2-Per1)/Per1. -1 si Per2 = 0.  99 si per 1 = 0. Unknown si per1= per2=0
Do not use (outdated)		x		-		Id		2		1

		C_HistValuepInc_HP_HH		Do not use (outdated)		x		compute

		C_Codepostal_EHP		Code postal				-				1		2

		C_Langue_EHP		Langue				-				1		2

		C_Sexe_EHP		Sexe				-				1		2

		C_Age_EHP		Age à la fin de la periode historique								1		1

		C_Age_EHP_max_HH		Age maximum des personnes du ménage à la fin de la periode historique				max				2		2

		C_Age_EHP_min_HH		Age minimum des personnes du ménage à la fin de la periode historique				min				2		2

		C_Taille_Famille_EHP		Nbre de client dans la famille				sum				1		2

		C_Anciennete_EHP		Anciennete du client à EHP								1		1

		C_Anciennete_EHP_max_HH		Anciennete maximum des personnes du ménage à la fin de la période historique				max				2		2

		C_Anciennete_EHP_min_HH		Anciennete minimum des personnes du ménage à la fin de la période historique				min				2		2

		C_Etatcivil_EHP		Etat_civil				-				1		2

		C_Profession_EHP		Profession				-				1		1

		C_enfants_EHP		Présence d'enfants				-		il s'agit de la présence ou non d'enfants, nous ne savons pas combien		1		2

		C_Lifestage _EHP		Lifestage . Enseignant, jeune, famille, medior, senior, single, couple sans enfant				-				1		2

		C_modulo_EHP		Indique si le client à au moins un contract modulo (modulo is a virtual package of various products)				-				1		2

		C_modulo_point_EHP_HH		Nombre de points modullo à EHP						calcul de points se fait par ménage		1		2

		C_robinson_EHP		Flag indiquant si le client est sur la liste robinson								1		2

		C_robinson_EHP_HH		>>> same above on household view				sum				2		2

		C_NoAdresse_EHP		NoAdresse								1		3

		C_NoTel_EHP		Flag NoTel								1		2

		C_NoTel_EHP_HH		>>> same above on household view				sum				2		2

		C_Doute_EHP		Nombre de fiches doutes client								1		1

		C_Doute_EHP_HH		>>> same above on household view				sum				2		2

		C_NoEmail_EHP		Flag NoEmail								1		2

		C_NoEmail_EHP_HH		>>> same above on household view				sum				2		2

		C_Segmentval_EHP		Segment valeur. Croisement valeur actuel et valeur historique. Top, potential, ?, Low
Do not use (outdated)		x				Pas de sens au niveau famille car toutes les personnes d'un ménage ont le même segment		1		1

		C_enews_EHP		optin. Ok for newsletter
Do not use (outdated)		x		-				1		2

		C_epub_EHP		ERROR:#VALUE!				-				1		2











SV 1 - Produits

		Nom		Description		outdated		Aggréation famille		Commentaires		Facilité 
(1 = facile 
3 = difficile)		Utilité 
(1 = très utile 
3 = pas très utile)

		A calculer au niveau du client / mén

		P_Sortie_AmtLastIARD_HP		Prime perdue lors de la dernière sortie de contract durant HP. N'inclus pas les produits financiers. Ne pas considérer les supsensions								2		1

		P_Sortie_AmtLastIARD_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_typeLastIARD_HP		Type de produits (niveau 3) de la dernière sortie durant la période historique. Ne pas considérer les supsensions. ASS = Assistance - AUT = Autos - DCO = Droit Commun - INC = Incendie (IB + IE + BI partic.)								2		1

		P_sortie_typeLastIARD_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_nbmoisLastIARD_HP		Nomber de mois depuis la derniere sortie de contract. Calculer par rapport à EHP. N'inclus pas les produits financiers. Date de renon								2		1

		P_sortie_nbmoisLastIARD_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_iftypelastIARDisAUT_HP		si dernière sortie IARD = auto, alors spécifie si voiture ou autre véhicule

		P_sortie_iftypelastIARDisAUT_HP_HH		>>> same above on household view

		P_sortietype_AUT_HP		dernière sortie auto, spécifie si voiture ou autre véhicule

		P_sortietype_AUT_HP_HH		>>> same above on household view

		P_Sortie_AmtLastAUT_HP		Montant de la dernière sortie auto								2		1

		P_Sortie_AmtLastAUT_HP_HH		>>> same above on household view				calcul				2		1

		P_Sortie_AmtLastINC_HP		Montant de la dernière sortie incendie								2		1

		P_Sortie_AmtLastINC_HP_HH		>>> same above on household view				calcul				2		1

		P_Sortie_AmtLastASS_HP		Montant de la dernière sortie assistance								2		1

		P_Sortie_AmtLastASS_HP_HH		>>> same above on household view				calcul				2		1

		P_Sortie_AmtLastVIP_HP		Montant de la dernière sortie familiale								2		1

		P_Sortie_AmtLastVIP_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_nbmoisLastAUT_HP		Nb de mois depuis la dernière sortie auto								2		1

		P_sortie_nbmoisLastAUT_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_nbmoisLastINC_HP		Nb de mois depuis la dernière sortie incendie								2		1

		P_sortie_nbmoisLastINC_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_nbmoisLastASS_HP		Nb de mois depuis la dernière sortie assistance								2		1

		P_sortie_nbmoisLastASS_HP_HH		>>> same above on household view				calcul				2		1

		P_sortie_nbmoisLastVIP_HP		Nb de mois depuis la dernière sortie familiale								2		1

		P_sortie_nbmoisLastVIP_HP_HH		>>> same above on household view				calcul				2		1

		P_cdtypsorIARD_HP		Type de la dernière sortie IARD (Ethias ou client)

		P_cdtypsorIARD_HP_HH		>>> same above on household view

		P_cdtypsorAUT_HP		Type de la dernière sortie auto (Ethias ou client)

		P_cdtypsorAUT_HP_HH		>>> same above on household view

		P_cdtypsorASS_HP		Type de la dernière sortie assistance (Ethias ou client)

		P_cdtypsorASS_HP_HH		>>> same above on household view

		P_cdtypsorINC_HP		Type de la dernière sortie incendie (Ethias ou client)

		P_cdtypsorINC_HP_HH		>>> same above on household view

		P_cdtypsorVIP_HP		Type de la dernière sortie familiale (Ethias ou client)

		P_cdtypsorVIP_HP_HH		>>> same above on household view

		P_CloseNext_IARD_EHP		Nombre de mois avant l'échéance du prochain contract IARD						sans les SDSCOL		2		1

		P_CloseNext_IARD_EHP_HH		>>> same above on household view				min				2		2

		P_CloseNext_AUT_EHP		Nombre de mois avant l'échéance du prochain contract auto - voiture								1		1

		P_CloseNext_AUT_EHP_HH		>>> same above on household view				min				2		1

		P_CloseNext_AUT_o_EHP		Nombre de mois avant l'échéance du prochain contract auto - autres catégories

		P_CloseNext_AUT_o_EHP_HH		>>> same above on household view				min

		P_CloseNext_INC_EHP		Nombre de mois avant l'échéance du prochain contract incendie								2		3

		P_CloseNext_INC_EHP_HH		>>> same above on household view				min				2		3

		P_CloseNext_ASS_EHP		Nombre de mois avant l'échéance du prochain contract assistance								2		3

		P_CloseNext_ASS_EHP_HH		>>> same above on household view				min				2		3

		P_CloseNext_VIP_EHP		Nombre de mois avant l'échéance du prochain contract familiale								2		3

		P_CloseNext_VIP_EHP_HH		>>> same above on household view				min				2		3

		P_FirstNbyear_Ever		Nombre d'années depuis la signature du premier contract						  = ancienneté client --> nombre d'années		1		2

		P_FirstNbyear_Ever_HH		>>> same above on household view				max		  = max ancienneté ménage		1		2

		P_FirsTtype_Ever		Type du produit d'entrée						 = produit d'entrée		1		2

		P_FirsTtype_Ever_HH		>>> same above on household view				Compute				2		2

		P_FirstTypeniv3_ever		Type of the first product ever booked (niveau 3)
ASS = Assistance - AUT = Autos (A2 + AU) - DCO = Droit Commun - INC = Incendie (IB + IE + BI partic.) - PFI = Produit Financier - SDS = Soins de santé - PFI = Produit Financier - VCL = Vie Classique - e.g. ASS_VCL, SDS_PFI,...				Compute		calcul sur produit d'entree : impossible d'enlever les SDSCOL		2		2

		P_FirstTypeniv3_ever_HH		>>> same above on household view								2		2

		P_FirstnbmonthAUT_pEver		Nombre de mois depuis la signature du premier contract auto - voiture						pour autant que le contrat ait été encore ouverts durant les 36 derniers mois		3		1

		P_FirstnbmonthAUT_pEver_HH		>>> same above on household view				max				3		1

		P_FirstnbmonthAUT_o_pEver		Nombre de mois depuis la signature du premier contract auto - autres véhicules						pour autant que le contrat ait été encore ouverts durant les 36 derniers mois		3		1

		P_FirstnbmonthAUT_o_pEver_HH		>>> same above on household view				max				3		1

		P_LastIARDNbmonth_EHP		Nombre de mois depuis la signature du dernier contract (le plus récent) IARD						sans les SDSCOL		3		1

		P_LastIARDNbmonth_EHP_HH		>>> same above on household view				min				3		1

		P_LastIARDType_EHP		Type du dernier contrat souscrit (niveau3)								3		1

		P_LastIARDType_EHP_HH		>>> same above on household view				calcul				3		1

		P_LastnbmonthAUT_Ever		Nombre de mois depuis la signature du dernier contract (le plus récent) en auto								3		1

		P_LastnbmonthAUT_Ever_HH		>>> same above on household view				min				3		1

		P_LastnbmonthAUT_o_Ever		Nombre de mois depuis la signature du dernier contract (le plus récent) en auto pour les autres catégories que voiture (classic car, moto, cyclo, …)

		P_LastnbmonthAUT_o_Ever_HH		>>> same above on household view

		P_primeamtsum_EHP		Total des primes des contrats IARD à EHP						La partie de SDSCOL que le client paye est excluse		1		1

		P_primeamtsum_EHP_HH		>>> same above on household view				sum				2		1

		P_primeamtAUT_EHP		total des primes des contrats auto								1		1

		P_primeamtAUT_EHP_HH		>>> same above on household view								2		1

		P_primeamtAUT_o_EHP		total des primes des contrats auto pour les autres catégories que voiture (classic car, moto, cyclo, …)

		P_primeamtAUT_o_EHP_HH		>>> same above on household view

		P_resmat_PFI		Montant des réserves mathematiques (same as amount on a savings accounts plus interests)

		P_resmat_PFI_HH		>>> same above on household view

		P_Nbctt_EHP		Nombre de contracts total en cours à la fin de la période historique						sans SDSCOL		1		1

		P_Nbctt_EHP_HH		>>> same above on household view				sum				2		1

		P_NbcttIARD_EHP		Nombre de contracts IARD en cours à la fin de la période historique						sans SDSCOL		1		1

		P_NbcttIARD_EHP_HH		>>> same above on household view				sum				2		1

		P_NbcttVIE_EHP		Nombre de contracts VIE en cours à la fin de la période historique								1		1

		P_NbcttVIE_EHP_HH		>>> same above on household view				sum				2		1

		P_NbCttAUT_EHP		Nombre de contrats auto EHP				sum				1		1

		P_NbCttAUT_EHP_HH		>>> same above on household view								1		1

		P_NbCttAUT_o_EHP		Nombre de contrats auto EHP (autres catégories que voiture)

		P_NbCttAUT_o_EHP_HH		>>> same above on household view

		P_NbCttINC_EHP		Nombre de contract de type Incendie (IB + IE + BI partic.) ouverts à la fin de la période historique				sum				1		1

		P_NbCttINC_EHP_HH		>>> same above on household view								1		1

		P_NbCttASS_EHP		Nombre de contrats assistance				sum				1		1

		P_NbCttASS_EHP_HH		>>> same above on household view								1		1

		P_NbCttDCO_EHP		Nombre de contract de type Droit Commun (autres que VIP) ouverts à la fin de la période historique				sum				1		1

		P_NbCttDCO_EHP_HH		>>> same above on household view								1		1

		P_NbCttVIP_EHP		Nombre de contract de type Vie privée  ouverts à la fin de la période historique				sum				1		1

		P_NbCttVIP_EHP_HH		>>> same above on household view								1		1

		P_NbCttPFI_EHP		Nombre de contract de type Produit Financier ouverts à la fin de la période historique				sum				1		1

		P_NbCttPFI_EHP_HH		>>> same above on household view								1		1

		P_basketIARDVIE_EHP		Basket des produits de niveau 2 possédés à la fin de la période historique. Listes des codes produits distinct ordonnés alphabétiquement et séparé par des "_". C'est à-dire:
IAR si le client possède des produits IARD
VIE si le client possède des produits Vie.
e.g.: IAR_VIE, VIE, "",...				cal		sans les SDSCOL  et sans les VCL+ si le panier est vide il se peut que tous les contrats soient affinity par exemple		3		2

		P_basketIARDVIE_EHP_HH		>>> same above on household view								3		2

		P_Basket_niv3_EHP		Basket des produits IAR de niveau 3 possédés à la fin de la période historique. Listes des codes produits distinct ordonnés alphabétiquement et séparé par des "_". C'est à-dire:
ASS = Assistance - AUT = Autos (A2 + AU) - DCO = Droit Commun - INC = Incendie (IB + IE + BI partic.) - SDS = Soins de santé - e.g.: ASS_AUT, SDS, "", ASS_DCO_INC, ...								3		2

		P_Basket_niv3_EHP_HH		>>> same above on household view				Compute				3		2

		P_Basket_auto_EHP		Basket du type de véhicule assuré à la fin de la période historique.
AUT = Auto - CYC = Cyclo - 
MOT = Moto
CAM = Camionette
DIV = Divers				Compute				3		1

		P_Basket_auto_EHP_HH		>>> same above on household view								3		1

		P_Basket_GarAUT_EHP		Couverture de l'assurance auto. Basket des éléments couverts au moins par une des assurance auto ouverte à la fin de la période historique
ASC = ?
MOB = ?
MOM = mini omnium
OMN = monium
PJ = ?
RC = Responsabilité civil
VOL = vol								3		1

		P_Basket_GarAUT_EHP_HH		>>> same above on household view				Compute				3		1

		P_basket_INC_EHP		BAT for the building
CON for content				Compute				2		2

		P_basket_INC_EHP_HH		>>> same above on household view								2		2

		P_INC_flagvol_EHP		Flag indiquant la présence de la garantie VOL en incendie								2		1

		P_INC_flagvol_EHP_HH		>>> same above on household view								3		2

		P_INC_capbat_EHP		Capital bâtiment assuré				sum				2		2

		P_INC_capbat_EHP_HH		>>> same above on household view								2		2

		P_INC_capcon_EHP		Capital contenu assuré

		P_INC_capcon_EHP_HH		>>> same above on household view

		P_INC_Loyer_EHP		Loyer payer pour le(s) bâtiment(s) assuré(s). 0 si pas locataire. Unknown si pas de bâtiment assuré				sum				2		2

		P_INC_Loyer_HH		>>> same above on household view								2		2

		P_INC_qualite_EHP		propriétaire ou locataire								1		2

		P_AUT_Puismax_EHP		Puissance du vehicule le plus puissance assuré à la fin de la période historique				max				2		1

		P_AUT_Puismax_EHP_HH		>>> same above on household view								2		1

		P_AUT_Valcatmax_EHP		Valeurs du vehicule le plus cher assurés à la fin de la période historique				max				2		1

		P_AUT_Valcatmax_EHP_HH		>>> same above on household view								2		1

		P_VIP_qualite_EHP_HH		isolé-ménge ou senior								1		2

		P_VCA_AUT_EHP		do not use (outdated)		x						1		1

		P_VCA_AUT_EHP_HH		do not use (outdated)		x						1		2

		P_VCA_ASS_EHP		do not use (outdated)		x						1		1

		P_VCA_ASS_EHP_HH		do not use (outdated)		x						1		2

		P_VCA_VIP_EHP		do not use (outdated)		x						1		1

		P_VCA_VIP_EHP_HH		do not use (outdated)		x						1		2

		P_VCA_INC_EHP		do not use (outdated)		x						1		1

		P_VCA_INC_EHP_HH		do not use (outdated)		x						1		2

		P_Domiciliation_EHP		Flag indiquant s'il y a une domiciliation pour l'un des contracts				max				1		1

		P_Domiciliation_EHP_HH		>>> same above on household view								2		1

		P_Fractionnement_EHP		Flag indiquant s'il y a fractionnement autre qu'annuel pour l'un des contracts				max				1		1

		P_Fractionnement_EHP_HH		>>> same above on household view								2		1

		P_max_amountPFI_HP		Max des réserves PFI pendant HP

		P_nbcttFNF_EHP		Nombre de contrats du produit First à fin de la période historique

		P_nbcttCF8_EHP		Nombre de contrats du produit Certiflex8 à fin de la période historique

		P_nbcttFFI_EHP		Nombre de contrats du produit First fiscal à fin de la période historique

		P_nbcttCFI_EHP		Nombre de contrats du produit Certiflex fiscal à fin de la période historique

		P_nbcttSDS_EHP		Nombre de contrats du produit Soins de santé à fin de la période historique

		P_nbcttSDSCOL_EHP		Nombre de contrats du produit Soins de santé collective (via employeur) à fin de la période historique

		P_PIncAmtPFI_HP		increase montant des réserves mathématiques des produits financiers (niveau 3 = PFI) pendant HP

		P_nbcttSDS_HH_EHP		Nombre de contrats du produit Soins de santé à fin de la période historique
>>> on household view

		P_nbcttSDSCOL_HH_EHP		Nombre de contrats du produit Soins de santé collective (via employeur) à fin de la période historique
>>> on household view

		P_nbcttSDSPAR_HH_EHP		Nombre de contrats du produit Soins de santé individuelle à fin de la période historique
>>> on household view





















































































































































































































SV 1 - Sinistre

		Nom		Description		outdated		Agrégation famille		Commentaires		Facilité 
(1 = facile 
3 = difficile)		Utilité 
(1 = très utile 
3 = pas très utile)

		S_ASS_nbtot_HP		Nombre de sinistres déclarés pour l'assistance durant la période historique				sum				2		1

		S_ASS_nbtot_HP_HH		>>> same above on household view								2		2

		S_ASS_nbssdebours_HP		Nombre de sinistres sans débours pendant HP								2		1

		S_ASS_nbssdebours_HP_HH		>>> same above on household view								2		2

		S_ASS_nbtot_Ever		Nombre de sinistres déclarés pour l'assistance depuis l'entrée du client chez Ethias jusqu'à EHP				sum				2		1

		S_ASS_nbtot_Ever_HH		>>> same above on household view								2		2

		S_ASS_Last_Ever		Nombre de mois depuis le dernier sinistre déclaré pour l'assistance. 				min				3		1

		S_ASS_Last_Ever_HH		>>> same above on household view								3		2

		S_ASS_Amount_ever		Montant des paiements liés aux sinitres assistance depuis toujours (depuis l'existence du contrat)								2		1

		S_ASS_Amount_ever_HH		>>> same above on household view								2		2

		S_AUT_nbtot_HP		Nombre de sinistres déclarés pour l'auto durant la période historique		x		sum		we can provide another file with this data if needed (needs some work and needs to be planned in advance but it's possible		2		1

		S_AUT_nbtot_HP_HH				x						2		2

		S_AUT_nbssdebours_HP		Nombre de sinistres sans débours pendant HP		x						2		1

		S_AUT_nbssdebours_HP_HH				x						2		2

		S_AUT_nbtot_Ever		Nombre de sinistres déclarés pour l'auto depuis l'entrée du client chez Ethias jusqu'à EHP		x		sum				2		1

		S_AUT_nbtot_Ever_HH				x						2		2

		S_AUT_Last_Ever		Nombre de mois depuis le dernier sinistre déclaré pour l'auto. 		x		min				3		1

		S_AUT_Last_Ever_HH				x						3		2

		S_AUT_Amount_ever				x						2		1

		S_AUT_Amount_ever_HH				x						2		2

		S_VIP_nbtot_HP		Nombre de sinistres déclarés pour le droit commun durant la période historique				sum				2		1

		S_VIP_nbtot_HP_HH		>>> same above on household view								2		2

		S_VIP_nbssdebours_HP		Nombre de sinistres sans débours pendant HP								2		1

		S_VIP_nbssdebours_HP_HH		>>> same above on household view								2		2

		S_VIP_nbtot_Ever		Nombre de sinistres déclarés pour le droit commun depuis l'entrée du client chez Ethias jusqu'à EHP				sum				2		1

		S_VIP_nbtot_Ever_HH		>>> same above on household view								2		2

		S_VIP_Last_Ever		Nombre de mois depuis le dernier sinistre déclaré pour le droit commun. 				min				3		1

		S_VIP_Last_Ever_HH		>>> same above on household view								3		2

		S_VIP_Amount_ever		Montant des paiements liés aux sinitres familiale depuis toujours (depuis l'existence du contrat)								2		1

		S_VIP_Amount_ever_HH		>>> same above on household view								2		2

		S_INC_nbtot_HP		Nombre de sinistres déclarés pour l'incendie durant la période historique		x		sum		we can provide another file with this data if needed (needs some work and needs to be planned in advance but it's possible		2		1

		S_INC_nbtot_HP_HH				x						2		2

		S_INC_nbssdebours_HP		Nombre de sinistres sans débours pendant HP		x						2		1

		S_INC_nbssdebours_HP_HH				x						2		2

		S_INC_nbtot_Ever		Nombre de sinistres déclarés pour l'incendie depuis l'entrée du client chez Ethias jusqu'à EHP		x		sum				2		1

		S_INC_nbtot_Ever_HH				x						2		2

		S_INC_Last_Ever		Nombre de mois depuis le dernier sinistre déclaré pour l'incendie. 		x		min				3		1

		S_INC_Last_Ever_HH				x						3		2

		S_INC_Amount_ever				x						2		1

		S_INC_Amount_ever_HH				x						2		2

		S_Year_nb_Ever		Nombre de sinistres par an. Calculer depuis l'entrée du client chez Ethias jusqu'à EHP.		x		avg				2		1

		S_Year_nb_Ever_HH				x						2		2

		S_Year_nb_HP				x						2		1

		S_Year_nb_HP_HH				x						2		2

		S_TOT_amt_lastEver		Cout du dernier sinistre déclaré par le client depuis son entrée chez Ethias (avant EHP)		x		calcul				3		1

		S_TOT_amt_lastEver_HH				x						3		2

		S_TOT_amt_lastHP				x						3		1

		S_TOT_amt_lastHP_HH				x						3		2

		S_TOT_amt_maxEver		Montant débours le plus élever payé pour un sinistre déclaré par le client depuis son entrée chez Ethias jusqu'à EHP		x		max				3		1

		S_TOT_amt_maxEver_HH				x						3		2

		S_TOT_amt_maxHP		Montant débours le plus élevé payé pour un sinistre durant la période historique		x		max				3		1

		S_TOT_amt_maxHP_HH				x						3		2

		S_TOT_amount_Ever		Montant débours totale payé pour les sinistres déclarés par le client depuis son entrée chez Ethias jusqu'à EHP		x		sum				2		1

		S_TOT_amount_Ever_HH				x						2		2

		S_TOT_amout_HP		Montant débours pour les sinistre déclarés durant la periode historique		x		sum				2		1

		S_TOT_amout_HP_HH				x						2		2

		S_TOT_last_Ever		Nombre de mois depuis le dernier sinistre.		x		min				3		1

		S_TOT_last_Ever_HH				x						3		2

		S_TOT_nbtot_Ever		Nombre de sinistres déclarés par le client depuis son entrée chez Ethias jusqu'à EHP		x		sum				2		1

		S_TOT_nbtot_Ever_HH				x						2		2

		S_TOT_nbtot_HP		Nombre de sinistres déclarés par le client durant la période historique		x		sum				2		1

		S_TOT_nbtot_HP_HH				x						2		2

		S_TOT_nbssdebours_Ever		Nombre de sinistres déclarés pour lesquels le débours n'a pas été payé. Depuis l'entrée chez Ethias jusqu'à EHP		x		sum				2		1

		S_TOT_nbssdebours_Ever_HH				x						2		2

		S_TOT_nbssdebours_HP				x						2		1

		S_TOT_nbssdebours_HP_HH				x						2		2

		S_TOT_type_lastEver		Dernier produit (niveau 3) pour lequel il y a eu un sinitre
ASS = Assistance
AUT = Autos (A2 + AU)
DCO = Droit Commun
INC = Incendie (IB + IE + BI partic.)
PFI = Produit Financier
SDS = Soins de santé
PFI = Produit Financier
VCL = Vie Classique		x		min				3		3

		S_TOT_type_lastEver_HH				x						3		3









SV 1  Intervention

		Nom		Description				Aggréation famille		Commentaires		Facilité 
(1 = facile 
3 = difficile)		Utilité 
(1 = très utile 
3 = pas très utile)

		I_MAI_nb_HP		Nombre d'interventionde type mail durant la période historique				sum				2		1

		I_MAI_nb_HP_HH										2		2

		I_MAI_nbmonthLast_HP		Nombre de mois depuis la dernière intervention de type mail (dans la periode historique)				min				3		1

		I_MAI_nbmonthLast_HP_HH										3		2

		I_MAI_libellelast_HP		Libellé de la dernière action MAI pour l'affilié

		I_MAI_libellelast_HP_HH

		I_MAI_nbASS_HP		Nombre de mailing assistance reçus par le client								2		1

		I_MAI_nbASS_HP_HH										2		2

		I_MAI_cibledernCAMPASS		flag personne ciblée dans le cadre de la dernière campagne assistance

		I_DEV_nbtot_HP		Nombre d'interventionde type 2 durant la période historique				sum				2		1

		I_DEV_nbtot_HP_HH		>>> same above on household view								2		2

		I_DEV_nbmonthLast_HP		Nombre de mois depuis la dernière intervention de type 3 (dans la periode historique)				min				3		1

		I_DEV_nbmonthLast_HP_HH		>>> same above on household view								3		2

		I_DEV_typeLast_HP		Dernier produit (niveau 3) pour lequel il y a eu une intervention de type 3 (durant HP)
ASS = Assistance
AUT = Autos (A2 + AU)
DCO = Droit Commun
INC = Incendie (IB + IE + BI partic.)
PFI = Produit Financier
SDS = Soins de santé
PFI = Produit Financier
VCL = Vie Classique				calculer sur les produits de tous les membres de la famille				3		1

		I_DEV_typeLast_HP_HH		>>> same above on household view								3		2

		I_DEV_nbrmpl_HP		Nb devis auto remplacements HP								2		1

		I_DEV_nbrmpl_HP_HH		>>> same above on household view								2		2

		I_DEV_nbauto_rempl_EHP_6		Nb devis auto remplacements EHP - 6 mois								2		1

		I_DEV_nbauto_rempl_EHP_6_HH		>>> same above on household view								2		2

		I_DEV_nbauto_rempl_EHP_12		Nb devis auto remplacements EHP - 12 mois								2		1

		I_DEV_nbauto_rempl_EHP_12_HH		>>> same above on household view								2		2

		I_DEV_nbaut_HP		Nb devis auto HP								2		1

		I_DEV_nbaut_HP_HH		>>> same above on household view								2		2

		I_DEV_nbinc_HP		Nb devis incendie_HP								2		1

		I_DEV_nbinc_HP_HH		>>> same above on household view								2		2

		I_DEV_nbrcvp_HP		Nb_devis familiale HP								2		1

		I_DEV_nbrcvp_HP_HH		>>> same above on household view								2		2

		I_DEV_nbass_HP		Nb devis assistance HP								2		1

		I_DEV_nbass_HP_HH		>>> same above on household view								2		2

		I_DEV_nbotr_HP		Nombre de devis pour des autres produits

		I_DEV_nbotr_HP_HH		>>> same above on household view

		I_DOC_nb_HP		Nombre d'interventionde type 2 durant la période historique		x		sum				2		1

		I_DOC_nb_HP_HH				x						2		2

		I_DOC_Last_HP		Nombre de mois depuis la dernière intervention de type 3 (dans la periode historique)		x		min				3		1

		I_DOC_Last_HP_HH				x						3		2























SV 2 - contrats

		Nom		Description		outdated		Aggréation famille		Commentaires		Facilité 
(1 = facile 
3 = difficile)		Utilité 
(1 = très utile 
3 = pas très utile)

		A calculer pour tous les contrats auto

		CTT_AUT_Value_EHP		Valeur du véhicule				sum				1		1

		CTT_AUT_Joker_EHP		Présence Joker à la fin de la période historique. Joker = 5 ans d'ancienneté bonus malus 0 --> Joker. Donc en cas d'accident en tord pas d'impact sur BM				max		camculer le nombre de joker aussi au niveau client et ménage?		1		1

		CTT_AUT_FlagPruning_EHP		Flag indiquant si le client à eu un assenissement durant la période historique. Mis dehors, franchise ou augmente prime				max		camculer le nombre de joker aussi au niveau client et ménage?		1		1

		CTT_AUT_Promo_EHP		Nombre de contrats avec clause promo EHP				sum				1		2

		CTT_AUT_Puissveh_EHP		Puissance du vehicule le plus puissance assuré à la fin de la période historique				max				2		1

		CTT_AUT_PJ_Flag_EHP		Présence de la garantie PJ à la fin de la période								1		1

		CTT_AUT_PJ_Flag_BHP		Présence de la garantie PJ au début de la période								1		1

		CTT_AUT_PJP_Flag_EHP		Présence de la garantie PJP à la fin de la période								1		1

		CTT_AUT_PJP_Flag_BHP		Présence de la garantie PJP au début de la période								1		1

		CTT_AUT_ASC_Flag_EHP		Présence de la garantie ASC à la fin de la période								1		1

		CTT_AUT_ASC_Flag_BHP		Présence de la garantie ASC au début de la période								1		1

		CTT_AUT_MDM_Flag_EHP		Présence de la garantie MDM à la fin de la période								1		1

		CTT_AUT_MDM_Flag_BHP		Présence de la garantie MDM au début de la période								1		1

		CTT_AUT_MOP_Flag_EHP		Présence de la garantie MOP à la fin de la période								1		1

		CTT_AUT_MOP_Flag_BHP		Présence de la garantie MOP au début de la période								1		1

		CTT_AUT_DMA_Flag_EHP		Présence de la garantie DMA à la fin de la période								1		1

		CTT_AUT_DMA_Flag_BHP		Présence de la garantie DMA au début de la période								1		1

		CTT_AUT_OMP_Flag_EHP		Présence de la garantie OMP à la fin de la période								1		1

		CTT_AUT_OMP_Flag_BHP		Présence de la garantie OMP au début de la période								1		1

		CTT_AUT_Domiciliation_EHP		Présence d'une domiciliation de paiement de prime sur le contrat auto								1		1

		CTT_AUT_BMRC_EHP		BonusMalus à la fin de la période historique				-				1		1

		CTT_AUT_BMRC_Inc_HP		Augementation du BonusMalus durant la période historique. Increase between average 6 first (per1) and average 6 last months (per2). -Per1 si Per2 = 0. Per2 si per 1 = 0. Unknown si per1= per2=0				-				2		1

		CTT_AUT_BMDM_EHP		Bonus Malus pour omnium à la fin de la période historique.				-				1		1

		CTT_AUT_BMDM_inc_HP		Augementation du Bonus Malus pour omnium entre le début et la fin de la période historique. Increase between average 6 first (per1) and average 6 last months (per2). -Per1 si Per2 = 0. Per2 si per 1 = 0. Unknown si per1= per2=0				-				2		1

		CTT_AUT_Nbannee_BM0_EHP		nombre d'années au BM00								1		1

		CTT_AUT_YoungDriver_EHP		YoungDriver				-				1		2

		CTT_AUT_Fractionnement_EHP		Code fractionnement police								1		1

		CTT_AUT_modulo_EHP		Contrat faisant partie d'un modulo								1		1

		CTT_AUT_anneeCST_EHP		Annee de construction du véhicule								1		1

		CTT_AUT_VCA_EHP		VCA du contrat		x						1		1

		CTT_AUT_VCA_BHP				x

		CTT_AUT_VCAinc_HP		evolution de la VCA entre BHP et EHP		x						2		2





Nomenclature Produits

		Niveau 1				Niveau 2				Niveau 3				Niveau 4				Niveau 5

		Assurance		ASU

						IARD		IAR		 		 

										Autos (A2 + AU)		AUT

														Voiture		VOI						Catégories : 110-116-120-130

																		Young drivers		YDB		CDCATVH in (110,116,120,130) and (CDPADIV) in (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,99)

														Camionnette		CAM						Catégories : 310-316

																		Young drivers		YDB		CDCATVH in (310,316) and (CDPADIV) in (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,99)

														Moto		MOT						Catégories : 220-226

														Cyclo		CYC						Catégories : 210-216

														Bike & more		B&M						Catégories : 217-218

														Autres		DIV						Catégories : tout le reste

										Incendie		INC

														Locataires		LO2

														Habitation		TR2

										Droit Commun		DCO		 		 		 		 

														Responsabilité Civile  		RCI		 		 

																		Vie privée 		VIP

														 				Académique 		ACA

																		Médicale 		MED

																		Professionnelle 		PRF

																		Chasse + Divers 		CHA

														Tous Risques		TRI

																		Ts risque bagages		BAG

																		Annul voyage temp 		ANT

																		Annul voyage annuelle 		ANA

																		Digital omnium		DIO

																		Autres TR qui n'ont pas de CDPRDNV5 (TR)

														Accidents		ACC

																		Accidents corporels voyage		COR

																		Assurance sports		SPO

																		Autres assurances accidents		DIV

														Aide Juridique		AJU

														Gens de maison		GDM

										Assistance		ASS		 		 

														Véhicule/Personne		VPE		 		 

																		Véhicule		VEH

																		Personne		PER

																		Véhicule + Personne		VHP

														Home Emergency		HEM

										Soins de santé		SDS

														Hospi Cover		HCO

														Medi Confort		MCO

														Medi Base		MBA

														Medi Plus		MPL

														Medi Next		MNX

														Plan Medi Next		PMN

														SMM		SMM

														Dexia		DEX

														Collective fille		COL

						VIE		VIE		 		 		 		 

										Vie Classique		VCL

														Mixte		MIV

																		Mixte		MIX

																		Sigma		SIG

														Décès		DEV

																		Décès		DEC

																		Serenity Life		SLI

																		Serenity Gold		SGO

																		Serenity Assistance		SAS

																		TD liée à First Junior		TDF

														Solde restant dû		SRD

																		Prêt hypotécaire		PHY

																		Financement		FIN

														Rentinvest		REN

														Rentes Individuelles		REI

														Divers		DIV

										Produit Financier		PFI		 		 

														First non Fiscal 		FNF

														Top First		FNW

														First Invest (F3)		FIV

														First Junior (F3)		FIJ/FJR

														CertiFlex8		CF8

														First Fiscal		FFI		 		 

																		Fiscalité ordinaire		FIO

																		Epargne Pension		EPP

														CertiFlex Fiscal		CFI

																		CertiFelx fiscalité ordinaire		CFF

																		CertiFlex Pension		CFP

														Produits Invest		INV

														Bon Assurance		BAS

														Invest23 (F2)		I23

																		Boost Ethico (1010)		BOE		NUSOUPO = 1010

																		Boost Invest (1011)		BOI		NUSOUPO = 1011

																		Lift Invest (1012)		LII		NUSOUPO = 1012

																		Sps Invest (1080)		SPS		NUSOUPO = 1080

																		E-LifeInvest (1031)		ELI		NUSOUPO = 1031

														Multisecurity		SEC
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.2 Dataset - Statistical features

Table 5: Numerical features (car insurance, April 2022)

count mean std min 25% 50% 75% max
CTT_AUT_DMA_EHP 280591.0 6.613897e-02 2.485253e-01 0.0 0.0 0.0 0.0 1.0
CTT_AUT_MDM_EHP 280591.0 2.044720e-01 4.033160e-01 0.0 0.0 0.0 0.0 1.0
CTT_AUT_PJ_EHP 280591.0 2.713237e-01 4.446435e-01 0.0 0.0 0.0 1.0 1.0
CTT_AUT_ASC_EHP 280591.0 8.622087e-01 3.446814e-01 0.0 1.0 1.0 1.0 1.0
CTT_AUT_youngdriver_EHP 280591.0 1.463197e-01 3.534271e-01 0.0 0.0 0.0 0.0 1.0
CTT_AUT_value_EHP 280591.0 1.334063e+04 1.260442e+04 -1.0 -1.0 13576.0 21418.0 185099.0
CTT_AUT_puissance_EHP 280591.0 7.820430e+01 2.653638e+01 4.0 59.0 74.0 90.0 555.0
CTT_AUT_anneecst_EHP 280591.0 2.013079e+03 5.439221e+00 1933.0 2010.0 2014.0 2017.0 2022.0
CTT_AUT_BMRC_EHP 280591.0 1.460311e+00 2.735103e+00 0.0 0.0 0.0 2.0 10.0
CTT_AUT_nbannee_BM0_EHP 280591.0 4.314244e+00 4.235839e+00 0.0 0.0 3.0 10.0 10.0
CTT_AUT_MOP_EHP 280591.0 8.421867e-02 2.777160e-01 0.0 0.0 0.0 0.0 1.0
CTT_AUT_OMP_EHP 280591.0 1.725572e-01 3.778647e-01 0.0 0.0 0.0 0.0 1.0
CTT_AUT_PJP_EHP 280591.0 6.808807e-01 4.661362e-01 0.0 0.0 1.0 1.0 1.0
CTT_AUT_joker_EHP 280591.0 3.841499e-01 4.863945e-01 0.0 0.0 0.0 1.0 1.0
CTT_AUT_fractionnement_HP 280591.0 4.178431e-01 4.932049e-01 0.0 0.0 0.0 1.0 1.0
CTT_AUT_modulo_EHP 280591.0 6.817396e-02 2.520446e-01 0.0 0.0 0.0 0.0 1.0
C_codepostal_EHP 280591.0 4.524190e+03 2.637204e+03 1000.0 2150.0 4100.0 6780.0 9992.0
C_profession_EHP 280576.0 7.237629e+00 1.361005e+01 1.0 4.0 5.0 7.0 99.0
C_modulo_EHP 280591.0 9.211628e-02 2.891905e-01 0.0 0.0 0.0 0.0 1.0
C_robinson_EHP 280591.0 1.890296e-01 3.915328e-01 0.0 0.0 0.0 0.0 1.0
C_surveillance_EHP_HH 280591.0 2.104487e-02 1.457517e-01 0.0 0.0 0.0 0.0 3.0
C_taillefam_EHP 280591.0 1.464683e+00 6.395380e-01 1.0 1.0 1.0 2.0 7.0
C_robinson_EHP_HH 280591.0 2.959539e-01 6.087539e-01 0.0 0.0 0.0 0.0 5.0
C_notel_EHP_HH 280591.0 1.335396e-02 1.157746e-01 0.0 0.0 0.0 0.0 2.0
C_nomail_EHP_HH 280591.0 1.806900e-02 1.343999e-01 0.0 0.0 0.0 0.0 3.0
P_closenext_IARD_EHP 280591.0 3.960305e+00 3.312343e+00 0.0 1.0 3.0 6.0 11.0
P_closenext_AUT_EHP 280591.0 5.364481e+00 3.517517e+00 0.0 2.0 5.0 9.0 11.0
P_primeamtsum_EHP 280591.0 8.155513e+02 4.935934e+02 0.0 483.0 701.0 1016.0 11177.0
P_primeamtAUT_EHP 280591.0 6.503164e+02 3.918817e+02 0.0 372.0 552.0 816.0 6034.0
P_nbctt_EHP 280591.0 2.394375e+00 1.524378e+00 1.0 1.0 2.0 3.0 31.0
P_nbcttIARD_EHP 280591.0 2.340717e+00 1.473332e+00 1.0 1.0 2.0 3.0 31.0
P_nbcttAUT_EHP 280591.0 1.102391e+00 3.297734e-01 1.0 1.0 1.0 1.0 6.0
P_lastnbmonthIARD_EHP 280591.0 8.599742e+01 9.958395e+01 0.0 18.0 49.0 113.0 609.0
P_AUT_puismax_EHP 280591.0 8.905026e+01 4.833483e+01 3.0 61.0 77.0 100.0 1405.0
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P_AUT_valcatmax_EHP 280591.0 1.530725e+04 1.612467e+04 -28.0 -1.0 14298.0 22944.5 362457.0
P_AUT_puismax_EHP_HH 280591.0 1.117042e+02 6.779497e+01 3.0 66.0 88.0 141.0 1405.0
P_AUT_valcatmax_EHP_HH 280591.0 1.952103e+04 2.039403e+04 -29.0 -1.0 16486.0 28223.0 382903.0
P_VIP_qualite_EHP 80554.0 8.696899e-01 4.704881e-01 0.0 1.0 1.0 1.0 2.0
P_fractionnement_EHP 280591.0 4.312326e-01 4.952494e-01 0.0 0.0 0.0 1.0 1.0
P_fractionnement_EHP_HH 280591.0 4.569320e-01 4.981426e-01 0.0 0.0 0.0 1.0 1.0
P_NBCTTSDS_HH_EHP 280591.0 1.323742e-01 3.777944e-01 0.0 0.0 0.0 0.0 6.0
P_NBCTTSDSPAR_HH_EHP 280591.0 1.980106e-02 1.549863e-01 0.0 0.0 0.0 0.0 5.0
P_NBCTTSDSCOL_HH_EHP 280591.0 1.125731e-01 3.468849e-01 0.0 0.0 0.0 0.0 4.0
P_NBCTTSDSCOL_EHP 280591.0 6.346604e-02 2.500921e-01 0.0 0.0 0.0 0.0 4.0
P_NBCTTSDS_EHP 280591.0 7.565816e-02 2.722075e-01 0.0 0.0 0.0 0.0 5.0
P_NBCTTFFI_EHP 280591.0 2.913137e-02 1.792934e-01 0.0 0.0 0.0 0.0 2.0
CTT_AUT_ageveh_ehp 280591.0 8.920874e+00 5.439221e+00 0.0 5.0 8.0 12.0 89.0

Table 6: Categorical and mixed types features (car insurance, April 2022)

count unique top freq
CTT_AUT_BMDM_EHP 147980 5 0 136958
CTT_AUT_promo_EHP 29 3 P98L 23
CTT_AUT_DMA_BHP 220986 2 0 206739
CTT_AUT_MDM_BHP 220986 2 0 173574
CTT_AUT_PJ_BHP 220986 2 0 148404
CTT_AUT_ASC_BHP 220986 2 1 188817
CTT_AUT_value_BHP 220986 27155 -1 75104
CTT_AUT_puissance_BHP 220986 277 66 20061
CTT_AUT_BMRC_BHP 220986 18 0 157774
CTT_AUT_MOP_BHP 220986 2 0 202291
CTT_AUT_OMP_BHP 220986 2 0 179109
CTT_AUT_PJP_BHP 220986 2 1 139011
CTT_AUT_BMRC_inc_HP 220986 32 0 154020
C_sexe_EHP 280591 2 M 148018
C_langue_EHP 280591 3 F 171221
C_enfants_EHP 132800 2 Y 105558
C_age_EHP 280567 55 63 7393
C_anciennete_EHP 280585 64 1 18061
C_lifestage_EHP 280565 7 SEN 74310
C_epub_EHP 253444 3 X 198828
C_etatcivil_EHP 168262 6 Marie 92516
C_age_EHP_min_HH 280570 64 30 6675
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C_anciennete_EHP_min_HH 280590 62 1 23853
C_age_EHP_max_HH 280570 87 63 8134
C_anciennete_EHP_max_HH 280590 67 1 13433
P_sortie_TypeLastIARD_HP 29470 4 AUT 13471
P_cdtypsorIARD_HP 29470 2 C 28591
P_sortie_AmtLastIARD_HP 29470 1358 88 2610
P_sortie_nbmoisLastIARD_HP 29470 24 0 1782
P_sortie_TypeLastIARD_HP_HH 46798 4 AUT 24263
P_cdtypsorIARD_HP_HH 46798 2 C 45099
P_sortie_AmtLastIARD_HP_HH 46798 1671 88 3200
P_sortie_nbmoisLastIARD_HP_HH 46798 24 0 2964
P_sortie_iftylastIARDisAUT_HP 13471 2 voiture 7483
P_sortie_iftylastIARDisAUT_HP_HH 24263 2 voiture 15160
P_cdtypsorAUT_HP 14266 2 C 14114
P_sortie_AmtLastAUT_HP 14266 1377 109 275
P_sortie_nbmoisLastAUT_HP 14266 24 2 800
P_sortietype_AUT_HP 14266 2 voiture 7985
P_cdtypsorAUT_HP_HH 26263 2 C 25717
P_sortie_AmtLastAUT_HP_HH 26263 1700 109 481
P_sortie_nbmoisLastAUT_HP_HH 26263 24 2 1644
P_sortietype_AUT_HP_HH 26263 2 voiture 16566
P_sortie_AmtLastINC_HP 8180 423 82 859
P_sortie_nbmoisLastINC_HP 8180 24 1 499
P_sortie_AmtLastINC_HP_HH 12532 460 82 1231
P_sortie_nbmoisLastINC_HP_HH 12532 24 1 754
P_cdtypsorVIP_HP 3853 2 C 3630
P_sortie_AmtLastVIP_HP 3853 21 67 2290
P_sortie_nbmoisLastVIP_HP 3853 24 0 277
P_cdtypsorVIP_HP_HH 6084 2 C 5623
P_sortie_AmtLastVIP_HP_HH 6084 24 67 3661
P_sortie_nbmoisLastVIP_HP_HH 6084 24 0 407
P_cdtypsorASS_HP 7137 2 C 6580
P_sortie_AmtLastASS_HP 7137 65 88 2969
P_sortie_nbmoisLastASS_HP 7137 24 18 446
P_cdtypsorASS_HP_HH 10342 2 C 9416
P_sortie_AmtLastASS_HP_HH 10342 81 88 3930
P_sortie_nbmoisLastASS_HP_HH 10342 24 18 654
P_closenext_IARD_EHP_HH 280568 12 0 58670
P_closenext_AUT_EHP_HH 280565 12 0 32430
P_closenext_AUT_o_EHP_HH 42719 12 0 5686
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P_closenext_AUT_o_EHP 28048 12 0 3574
P_closenext_inc_EHP_HH 111246 12 3 10524
P_closenext_inc_EHP 80544 12 3 7513
P_closenext_ASS_EHP_HH 134933 12 3 27879
P_closenext_ASS_EHP 103994 12 3 20496
P_closenext_VIP_EHP_HH 112619 12 5 10509
P_closenext_VIP_EHP 80700 12 5 7539
P_primeamtAUT_o_EHP 28048 1640 104 550
P_resmatPFI_EHP 10707 8317 5000 59
P_nbcttVIE_EHP 12189 6 1 9857
P_nbcttAUT_o_EHP 28048 16 1 22724
P_nbcttINC_EHP 80544 13 1 73995
P_nbcttASS_EHP 103994 4 1 103127
P_nbcttVIP_EHP 80700 2 1 80689
P_nbcttDCO_EHP 29877 8 1 26657
P_nbcttPFI_EHP 10707 6 1 8688
P_primeamtsum_EHP_HH 280566 4412 556 304
P_primeamtAUT_EHP_HH 280563 3551 343 446
P_primeamtAUT_o_EHP_HH 42719 2000 104 726
P_resmatPFI_EHP_HH 14929 10126 5000 93
P_nbctt_EHP_HH 280569 26 1 59718
P_nbcttIARD_EHP_HH 280566 26 1 61281
P_nbcttVIE_EHP_HH 16924 12 1 9787
P_nbcttAUT_EHP_HH 280563 7 1 193998
P_nbcttAUT_o_EHP_HH 42719 16 1 32126
P_nbcttINC_EHP_HH 111246 15 1 98214
P_nbcttASS_EHP_HH 134932 4 1 130323
P_nbcttVIP_EHP_HH 112619 4 1 111003
P_nbcttDCO_EHP_HH 42531 8 1 34229
P_nbcttPFI_EHP_HH 14929 12 1 8708
P_firsttype_ever 280585 39 AUT 193392
P_firstnbyear_ever 280585 64 1 18061
P_firsttypeniv3_ever 280585 8 AUT 193392
P_firsttype_ever_HH 280587 39 AUT 183988
P_firstnbyear_ever_HH 280587 67 1 13405
P_firsttypeniv3_ever_HH 280587 8 AUT 183988
P_firstnbmonthAUT_o_pEver 34651 527 22 722
P_lastnbmonthAUT_o_pEver 34651 498 22 869
P_firstnbmonthAUT_pEver 278929 610 10 2848
P_lastnbmonthAUT_pEver 278929 610 10 3509
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P_firstnbmonthAUT_o_pEver_HH 52512 561 22 1000
P_lastnbmonthAUT_o_pEver_HH 52512 527 22 1299
P_firstnbmonthAUT_pEver_HH 279983 610 14 2372
P_lastnbmonthAUT_pEver_HH 279983 610 10 3931
P_lasttypeIARD_EHP 280591 5 AUT 175251
P_lasttypeIARD_EHP_HH 280568 5 AUT 167985
P_lastnbmonthIARD_EHP_HH 280568 606 1 6127
P_basketIARDVIE_EHP 280591 2 IAR_ 268402
P_basketIARDVIE_EHP_HH 280569 3 IAR_ 263645
P_basket_niv3_EHP 280591 32 _ AUT_ _ _ _ _ 116773
P_basket_niv3_EHP_HH 280591 36 _ AUT_ _ _ _ _ 79963
P_basket_auto_EHP 280591 12 AUT_ _ _ _ _ 256399
P_basket_garauto_EHP 280591 16 RCI_PJ _ASC_ _ _ 100946
P_basket_auto_EHP_HH 280565 12 AUT_ _ _ _ _ 243259
P_basket_garauto_EHP_HH 280565 16 RCI_PJ _ASC_ _ _ 94307
P_basket_inc_EHP 80537 3 BAT_CON 60646
P_basket_inc_EHP_HH 111241 3 BAT_CON 86606
P_INC_capbat_EHP 80544 8529 68085 10826
P_INC_capcon_EHP 80544 4858 0 9800
P_INC_loyer_EHP 80544 927 0 61648
P_INC_qualite_EHP 80544 3 PROPRIETAIRE 48388
P_INC_flagvol_EHP 80544 2 1 41955
P_INC_capbat_EHP_HH 111246 11536 68085 13041
P_INC_capcon_EHP_HH 111246 6337 0 12228
P_INC_loyer_HH 111246 1069 0 87036
P_INC_flagvol_EHP_HH 111246 2 1 61080
S_VIP_nbtot_ever 85551 16 0 67215
S_VIP_amount_ever 12089 3657 0 1149
S_VIP_last_ever 18336 373 47 203
S_ASS_nbtot_ever 112645 45 0 66409
S_ASS_amount_ever 45227 4741 115 253
S_ASS_nbtot_HP 14454 12 1 9940
S_ASS_last_ever 46236 358 3 849
S_rcvp_nbtot_ever_HH 119296 18 0 91574
S_rcvp_amount_ever_HH 18398 4341 0 1697
S_rcvp_last_ever_HH 27722 376 47 310
S_ass_nbtot_ever_HH 146078 45 0 80551
S_ass_amount_ever_HH 64129 5277 91 324
S_ass_nbtot_HP_HH 20995 12 1 14293
S_ass_last_ever_HH 65527 363 3 1217
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I_MAI_nb_HP 269490 51 39 15790
I_MAI_libellelast_HP 269490 113 Emailing XSell Bike&More 109866
I_MAI_nbmonthlast_HP 269490 24 0 208105
I_MAI_nbass_HP 200472 27 1 39606
I_MAI_nb_HP_HH 274264 156 39 15066
I_MAI_libellelast_HP_HH 274264 109 Emailing XSell Bike&More 133767
I_MAI_nbmontlast_HP_HH 273691 24 0 230703
I_MAI_nbass_HP_HH 231504 49 2 42920
I_DEV_nbtot_HP 160070 55 1 48843
I_DEV_nbaut_HP 160070 52 1 56941
I_DEV_nbrmpl_HP 160070 37 0 103041
I_DEV_nbinc_HP 160070 16 0 139027
I_DEV_nbass_HP 160070 12 0 103103
I_DEV_nbotr_HP 160070 23 0 91728
I_DEV_nbmonthlast_HP 160070 25 1 11058
I_DEV_nbrmpl_6EHP 15838 18 1 11270
I_DEV_nbrmpl_12EHP 30225 24 1 20552
I_DEV_typelast_HP 160063 6 AUT 101443
I_DEV_nbtot_HP_HH 182846 60 1 44038
I_DEV_nbaut_HP_HH 182846 58 1 54572
I_DEV_nbrmpl_HP_HH 182846 40 0 111729
I_DEV_nbinc_HP_HH 182846 20 0 153098
I_DEV_nbass_HP_HH 182846 14 0 113333
I_DEV_nbmonthlast_HP_HH 182846 25 1 14393
I_DEV_typelast_HP_HH 182838 6 AUT 115191
I_DOC_typelast_HP 144 7 PFI 59
I_DOC_typelast_HP_HH 226 7 DCO 90
P_max_amountPFI_HP 19183 10752 0 4438
P_PIncAmtPFI_HP 11167 20 0 9244
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.3 Exploratory Data Analysis

.3.1 Variable distributions

Figure 5: Compilation of distribution of "Product" variables (Car Insurance, April 2022)
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.3.2 Correlation structure

Figure 6: Heatmap of the correlation coefficients of all numerical variables (Car Insurance, April 2022)

Table 7: Pairwise correlation coefficients that range from 0.3 to 0.7 in absolute value

Pair of features Correlation P-Value
(P_primeamtAUT_EHP,P_AUT_valcatmax_EHP) 0.668158 0.0
(P_AUT_puismax_EHP_HH,P_AUT_valcatmax_EHP_HH) 0.661465 0.0
(P_primeamtsum_EHP,P_AUT_valcatmax_EHP_HH) 0.640584 0.0
(P_AUT_puismax_EHP,P_AUT_valcatmax_EHP) 0.620621 0.0
(P_primeamtsum_EHP,P_AUT_puismax_EHP) 0.611700 0.0
(CTT_AUT_puissance_EHP,P_AUT_puismax_EHP) 0.597720 0.0
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(P_primeamtAUT_EHP,P_AUT_valcatmax_EHP_HH) 0.594949 0.0
(P_primeamtsum_EHP,P_nbcttIARD_EHP) 0.584476 0.0
(P_primeamtsum_EHP,P_nbctt_EHP) 0.564786 0.0
(CTT_AUT_value_EHP,CTT_AUT_puissance_EHP) 0.546523 0.0
(P_nbcttAUT_EHP,P_AUT_puismax_EHP_HH) 0.543969 0.0
(P_AUT_puismax_EHP,P_AUT_valcatmax_EHP_HH) 0.538267 0.0
(P_AUT_valcatmax_EHP,P_AUT_puismax_EHP_HH) 0.528542 0.0
(CTT_AUT_puissance_EHP,P_AUT_puismax_EHP_HH) 0.527328 0.0
(P_primeamtAUT_EHP,P_AUT_puismax_EHP) 0.526888 0.0
(P_primeamtsum_EHP,P_AUT_puismax_EHP_HH) 0.521193 0.0
(CTT_AUT_value_EHP,P_primeamtAUT_EHP) 0.519307 0.0
(CTT_AUT_anneecst_EHP,CTT_AUT_OMP_EHP) 0.492546 0.0
(CTT_AUT_nbannee_BM0_EHP,P_lastnbmonthIARD_EHP) 0.480379 0.0
(P_closenext_IARD_EHP,P_closenext_AUT_EHP) 0.479475 0.0
(CTT_AUT_value_EHP,P_primeamtsum_EHP) 0.479183 0.0
(P_primeamtAUT_EHP,P_nbcttAUT_EHP) 0.473806 0.0
(CTT_AUT_value_EHP,CTT_AUT_anneecst_EHP) 0.469096 0.0
(CTT_AUT_OMP_EHP,P_primeamtAUT_EHP) 0.465997 0.0
(CTT_AUT_puissance_EHP,P_AUT_valcatmax_EHP) 0.458427 0.0
(P_primeamtsum_EHP,P_nbcttAUT_EHP) 0.458249 0.0
(P_nbcttIARD_EHP,P_AUT_puismax_EHP) 0.456508 0.0
(P_nbcttIARD_EHP,P_nbcttAUT_EHP) 0.443074 0.0
(P_nbctt_EHP,P_AUT_puismax_EHP) 0.440667 0.0
(C_taillefam_EHP,P_AUT_puismax_EHP_HH) 0.439747 0.0
(P_primeamtAUT_EHP,P_AUT_puismax_EHP_HH) 0.431440 0.0
(P_nbctt_EHP,P_nbcttAUT_EHP) 0.428126 0.0
(CTT_AUT_puissance_EHP,P_AUT_valcatmax_EHP_HH) 0.423285 0.0
(CTT_AUT_youngdriver_EHP,CTT_AUT_BMRC_EHP) 0.414241 0.0
(P_NBCTTSDS_HH_EHP,P_NBCTTSDSPAR_HH_EHP) 0.398227 0.0
(P_nbcttAUT_EHP,P_AUT_valcatmax_EHP) 0.386603 0.0
(CTT_AUT_OMP_EHP,P_primeamtsum_EHP) 0.383887 0.0
(P_nbcttIARD_EHP,P_AUT_puismax_EHP_HH) 0.376581 0.0
(CTT_AUT_value_EHP,CTT_AUT_OMP_EHP) 0.370401 0.0
(P_nbctt_EHP,P_AUT_puismax_EHP_HH) 0.365406 0.0
(CTT_AUT_joker_EHP,P_lastnbmonthIARD_EHP) 0.364688 0.0
(CTT_AUT_puissance_EHP,P_primeamtsum_EHP) 0.350028 0.0
(P_NBCTTSDSPAR_HH_EHP,P_NBCTTSDS_EHP) 0.348344 0.0
(CTT_AUT_anneecst_EHP,P_primeamtAUT_EHP) 0.336935 0.0
(CTT_AUT_puissance_EHP,P_primeamtAUT_EHP) 0.335235 0.0
(P_nbcttIARD_EHP,P_AUT_valcatmax_EHP) 0.328766 0.0
(C_modulo_EHP,P_VIP_qualite_EHP) 0.325072 0.0
(P_nbctt_EHP,P_AUT_valcatmax_EHP) 0.322925 0.0
(P_nbcttAUT_EHP,P_AUT_valcatmax_EHP_HH) 0.315562 0.0
(C_taillefam_EHP,P_AUT_valcatmax_EHP_HH) 0.314132 0.0
(CTT_AUT_anneecst_EHP,P_AUT_valcatmax_EHP) 0.312316 0.0
(CTT_AUT_youngdriver_EHP,CTT_AUT_nbannee_BM0_EHP) -0.310318 0.0
(P_AUT_valcatmax_EHP,CTT_AUT_ageveh_ehp) -0.312316 0.0
(P_primeamtAUT_EHP,CTT_AUT_ageveh_ehp) -0.336935 0.0
(CTT_AUT_BMRC_EHP,CTT_AUT_joker_EHP) -0.405170 0.0
(CTT_AUT_value_EHP,CTT_AUT_ageveh_ehp) -0.469096 0.0
(CTT_AUT_OMP_EHP,CTT_AUT_ageveh_ehp) -0.492546 0.0
(CTT_AUT_BMRC_EHP,CTT_AUT_nbannee_BM0_EHP) -0.499151 0.0
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.3.3 Chi-Square test of independence

Figure 7: Chi-Square distribution table (green column represent a 95% level of confidence).

Table 8: Results of the chi-square tests (Fire Insurance (tenant), April 2022).
Note: Compilation of results.

Pair of features chi-square p-value dof
P_cdtypsorVIP_HP and I_DOC_typelast_HP_HH 0.000000 1.000000e+00 1.0
P_sortie_iftylastIARDisAUT_HP_HH and P_cdtypsor... 0.000000 1.000000e+00 1.0
P_cdtypsorAUT_HP_HH and P_basketIARDVIE_EHP_HH 0.000000 1.000000e+00 1.0
P_sortie_iftylastIARDisAUT_HP_HH and P_INC_flag... 0.000000 1.000000e+00 1.0
P_firsttypeniv3_ever and I_DOC_typelast_HP 13.179424 9.966527e-01 30.0
P_firsttypeniv3_ever and I_DOC_typelast_HP_HH 14.356203 9.929020e-01 30.0
P_nbcttDCO_EHP_HH and I_DOC_typelast_HP_HH 6.679510 9.925621e-01 18.0
CTT_INC_REDUCTION_EHP and P_nbcttAUT_o_EHP_HH 18.083136 9.919268e-01 35.0
P_nbcttASS_EHP_HH and target 0.540667 9.905585e-01 5.0
P_nbcttDCO_EHP_HH and I_DOC_typelast_HP 7.013172 9.900148e-01 18.0
P_firsttypeniv3_ever_HH and I_DOC_typelast_HP 15.855633 9.839319e-01 30.0
CTT_INC_REDUCTION_EHP and P_cdtypsorAUT_HP_HH 0.803012 9.768408e-01 5.0
P_sortie_iftylastIARDisAUT_HP and P_basketIARDV... 0.001102 9.735166e-01 1.0
P_basket_inc_EHP and target 0.070017 9.655970e-01 2.0
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P_sortie_iftylastIARDisAUT_HP_HH and P_INC_flag... 0.002745 9.582174e-01 1.0
P_nbcttAUT_EHP_HH and I_DOC_typelast_HP 7.608138 8.149548e-01 12.0
P_cdtypsorASS_HP and P_lasttypeIARD_EHP 1.605067 8.078811e-01 4.0
P_sortie_iftylastIARDisAUT_HP_HH and P_nbcttPFI... 0.981201 8.058007e-01 3.0
C_langue_EHP and I_DOC_typelast_HP 3.033102 8.046808e-01 6.0
C_sexe_EHP and P_basketIARDVIE_EHP_HH 0.066107 7.970916e-01 1.0
CTT_INC_REDUCTION_EHP and P_nbcttAUT_o_EHP 23.443280 7.966068e-01 30.0
P_cdtypsorAUT_HP_HH and P_cdtypsorVIP_HP 0.067651 7.947884e-01 1.0
C_lifestage_EHP and I_DOC_typelast_HP 28.942210 7.919793e-01 36.0
P_firsttypeniv3_ever_HH and I_DOC_typelast_HP_HH 23.577026 7.908148e-01 30.0
P_sortie_iftylastIARDisAUT_HP and P_basketIARDV... 0.078946 7.787311e-01 1.0
C_sexe_EHP and I_DOC_typelast_HP_HH 4.328861 6.322660e-01 6.0
P_cdtypsorASS_HP and P_nbcttINC_EHP 0.942692 6.241617e-01 2.0
P_sortie_iftylastIARDisAUT_HP and target 0.242916 6.221081e-01 1.0
P_sortietype_AUT_HP_HH and P_nbcttPFI_EHP_HH 3.548420 6.160741e-01 5.0
P_nbcttAUT_o_EHP and I_DOC_typelast_HP 10.010546 6.150354e-01 12.0
C_lifestage_EHP and I_DOC_typelast_HP_HH 32.941479 6.148408e-01 36.0
C_enfants_EHP and P_cdtypsorASS_HP 0.263965 6.074089e-01 1.0
P_sortie_iftylastIARDisAUT_HP_HH and P_nbcttDCO... 2.721352 6.054835e-01 4.0
P_sortietype_AUT_HP_HH and P_cdtypsorVIP_HP 0.267425 6.050642e-01 1.0
P_cdtypsorVIP_HP_HH and P_nbcttINC_EHP 1.847223 6.047131e-01 3.0
P_cdtypsorAUT_HP_HH and S_ASS_nbtot_HP 3.627057 6.042554e-01 5.0
P_sortie_iftylastIARDisAUT_HP_HH and P_nbcttPFI... 3.642708 6.019125e-01 5.0
P_nbcttAUT_EHP and I_DOC_typelast_HP_HH 4.599233 5.961405e-01 6.0
C_enfants_EHP and P_nbcttAUT_o_EHP_HH 5.534181 5.950643e-01 7.0
C_sexe_EHP and P_nbcttVIE_EHP 2.813069 5.895789e-01 4.0
C_etatcivil_EHP and P_cdtypsorASS_HP_HH 3.730309 5.888601e-01 5.0
P_sortie_TypeLastIARD_HP_HH and P_nbcttVIE_EHP_HH 19.971533 3.344246e-01 18.0
C_langue_EHP and P_INC_qualite_EHP 2.210389 3.311465e-01 2.0
P_cdtypsorASS_HP and P_nbcttVIE_EHP_HH 3.451884 3.270564e-01 3.0
C_etatcivil_EHP and P_sortietype_AUT_HP_HH 5.812496 3.248936e-01 5.0
P_sortietype_AUT_HP_HH and S_ass_nbtot_HP_HH 6.964294 3.241619e-01 6.0
CTT_INC_REDUCTION_EHP and P_sortie_iftylastIARD... 5.886477 3.174224e-01 5.0
C_enfants_EHP and P_cdtypsorVIP_HP 1.014830 3.137485e-01 1.0
P_cdtypsorASS_HP_HH and P_nbcttPFI_EHP 2.326315 3.124980e-01 2.0
P_cdtypsorASS_HP_HH and P_nbcttVIE_EHP 2.361164 3.071000e-01 2.0
P_cdtypsorAUT_HP_HH and S_ass_nbtot_HP_HH 7.157583 3.065196e-01 6.0
P_sortie_TypeLastIARD_HP and P_nbcttDCO_EHP 18.829137 9.273614e-02 12.0
P_cdtypsorASS_HP_HH and P_nbcttINC_EHP 4.841073 8.887391e-02 2.0
P_cdtypsorASS_HP_HH and S_ass_nbtot_HP_HH 9.556351 8.882722e-02 5.0
P_sortie_TypeLastIARD_HP_HH and P_nbcttVIE_EHP 18.989305 8.878687e-02 12.0
P_cdtypsorASS_HP_HH and P_nbcttAUT_o_EHP 8.094399 8.818081e-02 4.0
C_sexe_EHP and P_nbcttDCO_EHP_HH 11.386766 7.713362e-02 6.0
P_cdtypsorIARD_HP and P_basketIARDVIE_EHP 5.478232 1.925473e-02 1.0
P_cdtypsorVIP_HP and P_INC_flagvol_EHP_HH 5.528754 1.870642e-02 1.0
CTT_INC_REDUCTION_EHP and P_nbcttDCO_EHP 28.860075 1.676501e-02 15.0
C_lifestage_EHP and P_sortietype_AUT_HP_HH 15.498758 1.671277e-02 6.0
P_cdtypsorVIP_HP_HH and P_nbcttDCO_EHP 8.260714 1.607714e-02 2.0
P_cdtypsorVIP_HP and target 5.819530 1.584918e-02 1.0
P_sortie_iftylastIARDisAUT_HP and P_nbcttDCO_EHP 12.264644 1.548807e-02 4.0
C_sexe_EHP and P_cdtypsorVIP_HP 5.885833 1.526317e-02 1.0
P_cdtypsorIARD_HP_HH and P_nbcttDCO_EHP 12.318686 1.513229e-02 4.0
P_sortie_TypeLastIARD_HP and P_nbcttDCO_EHP_HH 29.214439 1.509161e-02 15.0
C_epub_EHP and P_sortie_iftylastIARDisAUT_HP 10.503249 1.473887e-02 3.0
C_lifestage_EHP and P_sortietype_AUT_HP 17.497911 7.617433e-03 6.0
P_sortie_iftylastIARDisAUT_HP and P_firsttypeni... 19.406705 7.004368e-03 7.0
C_langue_EHP and P_nbcttDCO_EHP_HH 27.328164 6.928684e-03 12.0
C_sexe_EHP and P_cdtypsorAUT_HP_HH 7.482999 6.228426e-03 1.0
P_nbcttAUT_o_EHP_HH and P_INC_flagvol_EHP 23.108523 5.957135e-03 9.0
C_langue_EHP and I_DEV_typelast_HP 24.722664 5.896724e-03 10.0
C_epub_EHP and P_cdtypsorVIP_HP_HH 16.207737 1.028023e-03 3.0
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P_nbcttVIE_EHP_HH and I_DEV_typelast_HP_HH 73.409134 9.981834e-04 40.0
P_sortie_TypeLastIARD_HP and P_INC_qualite_EHP 16.441311 9.205879e-04 3.0
P_sortie_iftylastIARDisAUT_HP_HH and P_firsttyp... 24.807237 8.208657e-04 7.0
P_cdtypsorAUT_HP_HH and P_nbcttAUT_EHP_HH 24.886383 7.948028e-04 7.0
P_cdtypsorAUT_HP_HH and P_nbcttASS_EHP 14.322045 7.762605e-04 2.0
P_cdtypsorIARD_HP and P_nbcttAUT_o_EHP 21.204120 7.411873e-04 5.0
C_sexe_EHP and S_ASS_nbtot_HP 25.082785 7.335791e-04 7.0
C_sexe_EHP and P_INC_flagvol_EHP_HH 108.627379 2.581454e-24 2.0
P_nbcttPFI_EHP_HH and P_basket_inc_EHP_HH 151.986182 2.878293e-25 14.0
P_sortie_iftylastIARDisAUT_HP_HH and P_lasttype... 123.836174 8.092672e-26 4.0
C_sexe_EHP and P_INC_flagvol_EHP 110.564221 7.371812e-26 1.0
C_sexe_EHP and P_sortie_TypeLastIARD_HP_HH 120.593791 5.748456e-26 3.0
P_sortietype_AUT_HP_HH and P_lasttypeIARD_EHP 124.636827 5.457415e-26 4.0
C_sexe_EHP and C_lifestage_EHP 643.671253 8.820646e-136 6.0
P_nbcttASS_EHP_HH and P_INC_flagvol_EHP 649.903168 3.322118e-138 5.0
C_epub_EHP and P_INC_flagvol_EHP 642.384969 6.522118e-139 3.0
C_lifestage_EHP and P_INC_qualite_EHP 661.228557 1.433124e-139 6.0
P_nbcttVIP_EHP and P_firsttypeniv3_ever_HH 3672.677292 0.000000e+00 14.0
P_nbcttDCO_EHP_HH and S_ass_nbtot_HP_HH 1698.138301 0.000000e+00 42.0
P_cdtypsorIARD_HP_HH and P_cdtypsorASS_HP_HH 2186.278003 0.000000e+00 1.0
P_nbcttVIP_EHP and P_firsttypeniv3_ever 4732.516878 0.000000e+00 14.0
CTT_INC_REDUCTION_EHP and P_basket_inc_EHP_HH 2176.868649 0.000000e+00 5.0
CTT_INC_REDUCTION_EHP and P_basket_inc_EHP 2259.043112 0.000000e+00 5.0
C_enfants_EHP and C_etatcivil_EHP 5485.059811 0.000000e+00 5.0

.3.4 T-SNE

Figure 8: T-SNE on the Car Insurance Single View with multiple perplexity values.
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Figure 9: Left: Examples of T-SNE embedding (unsupervised). Right: Same examples of T-SNE embedding
(but supervised).

.3.5 Local Outlier Factor and Isolation Forests

(a) n = 5 (b) n = 20 (c) n = 50

(d) n = 100 (e) n = 200

Figure 10: LOF scores with different values of n (number of neighbors) (T-SNE embedding of Car Insurance
April 2022).

82



(a) n = 10000, c = 0.1 (b) n = 25000, c = 0.1 (c) n = 50000, c = 0.1 (d) n = 80000, c = 0.1

(e) n = 10000, c = 0.2 (f) n = 25000, c = 0.2 (g) n = 50000, c = 0.2 (h) n = 80000, c = 0.2

(i) n = 10000, c = 0.4 (j) n = 25000, c = 0.4 (k) n = 50000, c = 0.4 (l) n = 80000, c = 0.4

Figure 11: main caption (T-SNE embedding of Car Insurance April 2022).
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.4 Models

Figure 12: Evolution of the cross-validated balanced accuracy and F1 scores (Fire Insurance (loc), April 2022
to August 2022).
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Figure 13: Evolution of the cross-validated balanced accuracy and F1 scores (Fire Insurance (prop), April 2022
to August 2022).

.5 Continuous learning

.5.1 IERF - Confusion matrices

April 2022 Predicted
Positive Negative

Observed Positive 731 281
Negative 33210 49956

Table 9: Confusion matrix on the test set (Car Insurance, April 2022)

May 2022 Predicted
Positive Negative

Observed Positive 889 245
Negative 33355 49779

Table 10: Confusion matrix on the test set (Car Insurance, May 2022)
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June 2022 Predicted
Positive Negative

Observed Positive 879 390
Negative 32309 50876

Table 11: Confusion matrix on the test set (Car Insurance, June 2022)

July 2022 Predicted
Positive Negative

Observed Positive 897 432
Negative 31970 50872

Table 12: Confusion matrix on the test set (Car Insurance, July 2022)

August 2022 Predicted
Positive Negative

Observed Positive 752 374
Negative 31787 51058

Table 13: Confusion matrix on the test set (Car Insurance, August 2022)

.5.2 Weighted XGBoost - Confusion matrices

April 2022 Predicted
Positive Negative

Observed Positive 984 28
Negative 69640 13526

Table 14: Confusion matrix on the test set (Car Insurance, April 2022)

May 2022 Predicted
Positive Negative

Observed Positive 1110 24
Negative 72285 10849

Table 15: Confusion matrix on the test set (Car Insurance, May 2022)

June 2022 Predicted
Positive Negative

Observed Positive 1240 29
Negative 71671 11514

Table 16: Confusion matrix on the test set (Car Insurance, June 2022)

July 2022 Predicted
Positive Negative

Observed Positive 1309 20
Negative 72722 10120

Table 17: Confusion matrix on the test set (Car Insurance, July 2022)
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August 2022 Predicted
Positive Negative

Observed Positive 1107 19
Negative 71685 11160

Table 18: Confusion matrix on the test set (Car Insurance, August 2022)

.5.3 XGBoost with combined sampling

Figure 14: Evolution of the scoring metrics of the test sets evaluated by a XGBoost model with combined
sampling (Car Insurance)

.5.4 Comparison of performances

Car Insurance, August 2022 b_acc f1-score
IERF (trained on July 2022) 0.7304 0.0608
IERF (trained on April 2022) 0.6421 0.0447

July-August
2022 (1 month)

Predicted
Positive Negative

Observed Positive 3157 732
Negative 96876 179137

Table 19: Confusion matrix on the test set (Car Insurance, August 2022, 1 month interval between
train and test set)

April-August
2022 (3 months)

Predicted
Positive Negative

Observed Positive 752 374
Negative 31787 51058

Table 20: Confusion matrix on the test set (Car Insurance, August 2022, 3 months interval between
train and test set)
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