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Abstract

This thesis investigates strategies to improve and extend modern SMT solv-
ing procedures to effectively handle problems involving finite domains, whether
they are explicitly defined or concealed within the problem’s encoding. The
research comprises both theoretical analyses and empirical evaluations. The
central contributions are twofold:

First, a quantifier elimination strategy is developed. The research reveals
that quantifiers significantly hinder solver efficiency when applied to finite
domains, using Sudoku as an example. An algorithm is introduced to au-
tomatically detect “effective finite domains” in quantified Skolem formulas
over integers, and eliminate quantifiers through exhaustive instantiation. A
prototype implementation is made, showing this procedure improves solver
performance and can be used even with solvers lacking quantifier support.

Second, the thesis explores the theory of uninterpreted functions with
domain cardinality constraints. It establishes the NP-completeness of the
satisfiability problem for a set of literals in this theory. SAT-based algorithms
extending classical congruence closure are proposed, ensuring the efficiency
of congruence closure for large or infinite domains while transitioning to SAT
solvers for smaller domains. The proposed algorithms await implementation
and validation within an SMT framework. Notably, addressing the loss of
conflict set generation and equality deduction when SAT is employed remains
an open challenge for future research.
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Chapter 1

Introduction

In the realm of computational logic and formal verification, the task of de-
termining the satisfiability of logical formulas plays a key role in various
applications, ranging from software and hardware verification to automated
reasoning and constraint solving. SAT solving, a technique rooted in proposi-
tional logic, is a fundamental approach employed to tackle such satisfiability
problems by transforming them into propositional encodings. The expres-
sivity of propositional logic is however limited, and SAT may not be the
best approach for problems for which more specialized, efficient algorithms
exist, such as linear arithmetic . The Satisfiability Modulo Theories (SMT)
framework has emerged as a powerful approach to address this problem by
combining first-order logic with specialized theories tailored to specific do-
mains.

SMT is a rapidly growing field, opening a wide area of research. Each
year, an international competition, SMT-COMP [1], is organized. Standard-
ized benchmarks [2] are used to evaluate and compare the performance of
different SMT solvers supporting the SMT-LIB input format [3].

SMT has a wide range of applications, including hardware and software
verification [4][5], automated theorem proving [6], model checking [7], con-
straint satisfaction problems [8], and even applications in security [9]: SMT
can be used for symbolic execution [10], allowing the detection of bugs and
potential vulnerabilities, or helping in the reverse engineering and analysis
of malware. It also has uses in cryptography, through the verification of
cryptographic protocols [11], or using the constraint solving capabilities for
cryptanalysis [12].

The research in thesis falls in the scope of the ANR (Agence Nationale
de la Recherche, France) project BLaSST 1 (Enhancing B Language Reason-

1https://merz.gitlabpages.inria.fr/blasst/
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ers Using SAT and SMT Techniques), in collaboration with ClearSy, CRIL
(Lens), and Inria Nancy.

It was found that, during verification efforts, the proof obligations arising
from industrial models often contain problems which are combinatorial in
nature. Usually, this is the result of the problem being defined on some un-
derlying finite domain. For such problems, SAT-based techniques, reducing
the problem to a propositional encoding, are usually very effective and effi-
cient. However, propositional encodings have limited expressivity, and can be
quite tricky or unintuitive to work with. Allowing those finite domain prob-
lems to be encoded in the language of first-order logic makes them easier to
express, and also allows for the encoding of problems that may be impossible
to express in purely propositional logic, for example because some compo-
nent of the problem also relies on an infinite domain, with an infinite amount
of constraints to encode. It can also be the case that the problem contains
a mix of combinatorial, finite domain constraints, and constraints that can
be more efficiently reasoned with using a specialized solver. For example,
linear arithmetic problems are often best solved with methods based on the
simplex algorithm. For such problems, the exclusive use of SAT may not
be the most efficient approach: combining different specialized techniques,
including SAT, such that each part of the problem can be reasoned about
efficiently can lead to better results. This is exactly the goal of Satisfiability
Modulo Theories. Unfortunately, SMT solvers can often struggle working
with finite domains, and in some cases lead to poor performances compared
to the equivalent SAT approach.

This lack in competitiveness can be due to multiple reasons. One of
them can be the inefficiencies between the different theory solvers and the
underlying SAT solver. If a theory solver fails to give concise explanations of
why an assignment fails, or if conflicts involve many literals, the SAT solver
does not learn much from each call to the theory solver, and is left to check
every possible assignment exhaustively. There can also be inefficiencies in the
exchange of information between the different theory solvers, when multiple
theories are involved. In those cases, it may be beneficial to include some
(for example SAT-based) combinatorial reasoning at the level of the theory
solver itself, in order to come up with a satisfying assignment directly.

Another possibility for SMT struggling with finite domains is that the
finiteness of the domain is hidden within the specifics of the encoding. Typ-
ically, finite domains only have a finite number of constraints applied to
them, and those constraints can thus be expressed exhaustively. Still, those
constraints often being repetitive, it may be more natural to make use of
universally quantified formulas to encode them. Doing so usually hides the
fact that the domain is finite from the solver, as the constraints now apply
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to an infinite number of elements. In most cases, the domain can still be
considered finite, because the constraints are only really restrictive for some
finite amount of elements. This is however not always obvious to the solver,
and it can fail to apply appropriate techniques to solve the problem because
it is unable to recognize that the domain is inherently finite. In such cases,
it would be helpful to have way to detect the presence of a finite domain, so
that appropriate techniques can be applied to solve the problem efficiently.

The goal of this work is to come up with ways to extend and improve
modern SMT-solving procedures in order to better handle problems that
range over some finite domain, be it explicitly defined, or hidden within
the encoding of the problem. To do that, different approaches are studied
and compared theoretically. Their correctness is established, as well as their
completeness and complexity whenever possible. Some approaches are also
tested empirically on the well-known Sudoku problem, a good representative
of combinatorial, finite domain satisfiability problems.

The next chapters are organized as follows: Chapter 2 introduces the
notation, gives some theoretical background on logic and satisfiability, and
goes over the basics of how modern SMT solvers work, as well as some of
the more advanced notions which are relevant to this work. Chapter 3 intro-
duces the Sudoku problem, how it is relevant to satisfiability problems over
finite domains, and the multiple ways it can be encoded as a satisfiability
problem. The Sudoku example is used throughout this work as a motivating
example, as well as to show how the different approaches work in practice.
Chapter 4 contains a quick analysis of how current solvers handle Sudokus
in their different encodings, illustrating that there is room for improvement
especially for quantified encodings. Chapter 5 explores ways to automati-
cally detect instances of finite domain problems in quantified encodings on
integers, and how to automatically convert them to more efficient quantifier-
free encodings, capturing the finite nature of the problem. Finally, Chapter
6 attempts to extend the congruence closure algorithm, commonly used for
reasoning on equality and uninterpreted functions, to domains with a finite
cardinality constraint. This way, equalities imposed by the finite size of the
domain can be directly deduced at the level of the theory solver for unin-
terpreted functions. After showing that the problem is NP-complete, a way
of combining a SAT solver with the classical congruence closure algorithm
is proposed, leading to an efficient procedure for solving Sudokus (and other
related problems) encoded in SMT.
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Chapter 2

Background

This chapter introduces the notations, and gives a summary of the important
notions from propositional and first-order logic which are used throughout
this work. It also briefly explains how SAT solving works, and gives an
overview of the inner workings of SMT solvers. Definitions, theorems, and
explanations are adapted from [13][14][15][16]. Proofs (or links to proofs) can
also be found there, but are not copied here as they would take up space and
are not particularly relevant for this work.

2.1 Propositional logic

Propositional logic deals with formulas composed of boolean propositions
and connectives. It is one of the simplest forms of logic.

Definition 1 (Propositional formula). A propositional formula is a string
of symbols combining boolean propositions and connectives, in the following
way:

• a proposition, usually denoted with a (possibly indexed) lowercase let-
ter (e.g. p, q) is a formula;

• ⊥, ⊤ are formulas;

• if φ is a formula, ¬φ is a formula;

• if φ and ψ are formulas, (φ ◦ ψ), where ◦ can be ∨, ∧, ⇒ or ⇔, is a
formula.

⊥ and ⊤ represent formulas that are respectively always false and always
true. ¬ represents the negation of a formula. ∨ represents the disjunction
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(inclusive or) of two formulas, ∧ represents their conjunction (and),⇒ repre-
sents implication, and⇔ represents equivalence. Parentheses can be omitted
when there is no ambiguity. In particular, operators ∧ and ∨ are associative:
p ∧ q ∧ r is the same as either p ∧ (q ∧ r) or (p ∧ q) ∧ r (and similarly for
∨). When parentheses are missing, ¬ takes precedence over other operators.
Parentheses can also be added to improve readability.

Definition 2 (Interpretation of a (set of) propositional formula(s)). An in-
terpretation of a (set of) formula(s) containing propositions p1, . . . , pn is a
function I : {p1, . . . , pn} −→ {T, F} assigning a truth value to each propo-
sition in the (set of) formula(s). A truth value is assigned to a formula φ
according to the following rules:

• I[⊥] = F , I[⊤] = T ;

• I[¬φ] = F if I[φ] = T , T otherwise;

• I[φ1 ∨ φ2] = F if I[φ1] = F and I[φ2] = F , T otherwise;

• I[φ1 ∧ φ2] = T if I[φ1] = T and I[φ2] = T , F otherwise;

• I[φ1 ⇒ φ2] = F if I[φ1] = T and I[φ2] = F , T otherwise;

• I[φ1 ⇔ φ2] = T if I[φ1] = I[φ2], F otherwise;

An interpretation makes a set of formulas true if and only if it makes every
formula in the set true.

Definition 3 (Model). An interpretation I of a formula φ is a model of φ
(denoted I |= φ) if and only if it makes the formula true: I[φ] = T . An
interpretation of a set of formulas S is a model of S (denoted I |= S) if and
only if I[φ] = T for all φ ∈ S, i.e., if it is a model of every formula in the
set.

Definition 4 (Satisfiability). A (set of) formula(s) is said to be satisfiable if
and only if it has at least one model. Otherwise, it is unsatisfiable.

Definition 5 (Validity). A formula φ is said to be valid if and only if every
interpretation is a model of φ. This is denoted |= φ.

Theorem 1. A formula is valid if and only if its negation is unsatisfiable.

Definition 6 (Logical consequence). A formula φ is a logical consequence
of a set of formulas S (denoted S |= φ) if and only if every model of S is a
model of φ.
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Theorem 2 (Deduction theorem). Given a formula φ and a finite set of
formulas S = {ψ1, . . . , ψn}, the following statements are equivalent:

• S |= φ, i.e. φ is a logical consequence of S;

• S ∪ {¬φ} |= ⊥, i.e. S ∪ {¬φ} is unsatisfiable;

• |= (ψ1 ∧ . . . ∧ ψn)⇒ φ, i.e. (ψ1 ∧ . . . ∧ ψn)⇒ φ is valid.

If S is infinite, only the first two statements are equivalent.

Theorem 3. Given a set of formulas S and a logical consequence φ of S
(S |= φ), S is satisfiable if and only if S ∪ {φ} is satisfiable.

Definition 7 (Logical equivalence). Two formulas φ and ψ are logically
equivalent (denoted φ ←→ ψ) if they have the same models, i.e., if I[φ] =
I[ψ] for every interpretation I.

Theorem 4. Two formulas φ and ψ are logically equivalent (φ ←→ ψ) if
and only if |= φ⇔ ψ.

Theorem 5. Every n-ary connective (n > 2) can be simulated with binary
connectives and negations.

Definition 8 (Literal, clause, cube). A literal is either a proposition, or the
negation of a proposition (e.g. p, q, ¬r). A clause is a disjunction (∨) of
literals (e.g. q∨¬p∨ r). A cube is a conjunction (∧) of literals (e.g. ¬p∧¬q).

Definition 9 (Conjunctive normal form). A formula is in conjunctive normal
form (CNF) if it is a conjunction of one or more clauses.

Definition 10 (Disjunctive normal form). A formula is in disjunctive normal
form (DNF) if it is a disjunction of one or more cubes.

Theorem 6. Every formula is logically equivalent to a CNF and to a DNF.

For example, ¬(p ⇒ q) ∨ r is equivalent to (p ∧ ¬q) ∨ r (DNF), and
(p ∨ r) ∧ (¬q ∨ r) (CNF).

Theorem 7 (Tseitin transformation [17]). Every formula φ can be trans-
formed in linear time into an equisatisfiable CNF, i.e., a CNF which is sat-
isfiable if and only if φ is satisfiable.

Theorem 8 (Compactness theorem). A (possibly infinite) set of formulas is
satisfiable if and only if all its finite subsets are satisfiable.

In particular, this last theorem guarantees that any unsatisfiable set of
formulas, even infinite, has a finite unsatisfiable subset.
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2.2 SAT solving

Definition 11 (Satisfiability problem). The satisfiability problem in propo-
sitional logic (SAT) is the problem of determining whether a (finite set of)
propositional formula(s) is satisfiable.

The SAT problem is a well-known NP-complete problem [18]. A decision
procedure for the propositional satisfiability problem is commonly called a
SAT solver. Despite the difficulty of NP-complete problems, modern SAT
solvers are able to efficiently solve many common instances of the problem, up
to sizes with millions of propositions. This makes SAT solvers very versatile
tools that are used for many applications in fields such as hardware and
software verification, automated reasoning, and artificial intelligence among
other things. The practice of encoding an NP problem in SAT before giving
it to a SAT solver is a generic and common approach, which often results in
an efficient procedure for solving said problem.

Modern, state-of-the-art SAT solvers use an algorithm called conflict-
driven clause learning (CDCL) [19]. The details of the algorithm will not
be discussed here, as they are not particularly relevant for this work, but
here is a brief overview. The algorithm expects an input formula in CNF,
generally given to the solver in the DIMACS format [20]. An equisatisfiable
CNF can efficiently be derived from any arbitrary formula using the Tseitin
transformation [17]. The CDCL algorithm keeps track of a partial assignment
of truth values to the propositions using a stack. It does a few operations:

• Propagation: when every literal in a clause is assigned a negative value
except one, this last literal must be assigned true. If all the literals in
a clause are false, a conflict is reached.

• Decide: when there is nothing to propagate, no conflict, and only a
partial assignment, a value must be decided arbitrarily for one of the
remaining propositions.

• Conflict analysis: when a conflict is reached, a new clause can be
learned, which would have avoided taking the decision that lead to
this conflict.

• Backtracking: after a conflict is reached and analysed, the last steps
are undone (literals are popped from the stack) until the conflict clause
learned in analysis contains one unassigned literal. Then, propagation
can resume.

The details of conflict analysis are not given here, but it is a key part of the
algorithm. Generally, the smaller a conflict clause is, the more useful it is,

11



as it reduces the number of possibilities to consider. Many additional tech-
niques are used to make SAT solvers more efficient. They include heuristics
for taking decisions, clause removal, conflict clause minimization, and many
other things.

2.3 First-order logic

Applications in many fields, notably software verification or automated theo-
rem proving, are interested in reasoning beyond propositional logic. Indeed,
the expressivity of propositional logic is quite limited, and determining the
satisfiability of formulas in more expressive logics proves very useful. First-
order logic (FOL) expands on propositional logic and allows for much greater
expressivity. Propositions become predicates, meaning their truth values can
depend on a certain number of terms. Those terms can also depend on other
terms (i.e., there are functions). Last but not least, independent variables
can also be quantified either existentially or universally. The combination of
functions and quantifiers makes the satisfiability problem in first-order logic
is only semi-decidable: unsatisfiability can be deduced in finite time by an
algorithm, but if the formula is satisfiable, the algorithm may never termi-
nate. In SMT, we consider sorted first-order logic, where terms can be of
different sorts, or types, corresponding to different domains.

Definition 12 (Many-sorted first-order language). Amany-sorted first-order
language is a tuple L = (S,V ,F ,P , r, d), comprising:

• a countable non-empty set of sorts S;

• a countable set of variables V =
⋃

τ∈S Vτ , where Vτ are the disjoint
countable sets of variables of sort τ ;

• a countably infinite set of function symbols F ;

• a countably infinite set of predicate symbols P ;

• a function r : F ∪ P −→ N, assigning an arity to each function and
predicate symbol;

• a function d : F ∪P −→ S∗, assigning a sort in Sr(f)+1 to each function
symbol f ∈ F , and sort in Sr(p) to each predicate symbol p ∈ P .

Nullary predicates are propositions and nullary functions are constants. The
signature of L is the tuple (S,F ,P , r, d).
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Definition 13 (First-order term). Given a sort τ and a first-order language
L = (S,V ,F ,P , r, d), the set of τ -terms is the smallest set such that:

• each x ∈ Vτ is a τ -term;

• for each function symbol f ∈ F of sort (τ1, . . . , τn, τ), f(t1, . . . , tn) is a
τ -term if t1, . . . , tn are τ1, . . . , τn-terms respectively.

Sort(t) = τ if t is a τ -term. A ground term is a term which does not depend
on any variables.

Definition 14 (Atomic formula). Given a first-order language
L = (S,V ,F ,P , r, d), the set of atomic formulas, or atoms, is the smallest
set such that:

• for each predicate symbol p ∈ P of sort (τ1, . . . , τn), p(t1, . . . , tn) is an
atomic formula if t1, . . . , tn are τ1, . . . , τn-terms respectively;

• for each pair t, t′ of τ -terms, t = t′ is an atomic formula.

A literal is either an atomic formula, or the negation of an atomic formula.
⊤ and ⊥ correspond to universally true and false atoms, respectively.

Definition 15 (First-order formula). Given a first-order language
L = (S,V ,F ,P , r, d), the set of formulas, is the smallest set such that:

• atomic formulas are formulas;

• if φ is a formula, ¬φ is a formula;

• if φ and ψ are formulas, (φ ◦ ψ), where ◦ can be ∨, ∧, ⇒ or ⇔, is a
formula;

• if φ is a formula and x ∈ V is a variable, ∀x φ and ∃x φ are formulas.

Definition 16 (Scope, free and bound variables). The scope of a quantifier
(or its variable) is the formula under the quantifier. In ∀x φ or ∃x φ, the
scope of x is φ, x is quantified in ∀x or ∃x, every occurrence of x in φ is
bound. A variable occurence is free when it is neither bound nor quantified.
A formula is closed if it does not contain any free variables.

Similarly to propositional logic, parentheses can be added or removed to
improve readability. A dot after a quantified variable stands for an opening
parenthesis closing at the end of the formula. ∀x, y φ stands for ∀x∀y φ.
For example, ∀x, y. x = f(y) ∨ (p(x)⇒ p(y)) stands for ∀x∀y (x = f(y) ∨
(p(x)⇒ p(y))).
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Definition 17 (First-order interpretation). An interpretation of a formula
in a many-sorted first-order language L = (S,V ,F ,P , r, d), is a tuple I =
(D, IV , IF , IP), where:

• D assigns a non-empty domain Dτ (set) to each sort τ ∈ S. Those
domains are not necessarily distinct;

• IV assigns an element in Dτ to each variable x ∈ Vτ ;

• IF assigns a function Dτ1 × . . .×Dτn −→ Dτ to each function symbol
f ∈ F of sort (τ1, . . . , τn, τ);

• IP assigns a function Dτ1 × . . . × Dτn −→ {T, F} to each predicate
symbol p ∈ P of sort (τ1, . . . , τn);

Given an interpretation I = (D, IV , IF , IP), Ix/d represents the interpretation
(D, I ′V , IF , IP) where I ′V [x] = d and I ′V [y] = IV [y] for each variable y other
than x. An interpretation assigns a value I[t] ∈ Dτ to each τ -term t:

• if t is a free variable, I[t] = IV [t];

• if t = f(t1, . . . , tn), I[t] = IF [f ](I[tn], . . . , I[tn]).

. Similarly, it assigns a truth value to each formula:

• for predicate atoms, I[p(t1, . . . , tn)] = IP [p](I[tn], . . . , I[tn]);

• for equality atoms, I[t = t′] = T if I[t] = I[t′], F otherwise;

• I[∀x φ] = T if Ix/d[φ] = T for each d ∈ DSort(x), F otherwise;

• I[∃x φ] = T if Ix/d[φ] = T for at least one d ∈ DSort(x), F otherwise;

• the rest is interpreted as for propositional logic.

Definitions 3-7 for models, satisfiability, validity, logical consequence, and
logical equivalence in propositional logic hold for first-order logic. Theorems
1-4 (including notably the deduction theorem) hold as well.

Theorem 9 (Undecidability of first-order logic). The problem of checking
whether an arbitrary first-order logic formula is satisfiable or not is undecid-
able.

Theorem 10 (Semi-decidability of first-order logic). There exists a sound
procedure to check the satisfiability of (finite or denumerable sets of) first-
order formulas, that always terminates for unsatisfiable (set of) formulas.
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2.4 Herbrand theory

Theorem 10 is a result stemming from Herbrand theory. Herbrand theory
gives a multitude of results which are fundamental for satisfiability solving
in first-order formulas. The most important ones are given below.

Definition 18 (Prenex form). A formula is in prenex form if it is written as

Q1x1 . . . Qnxn(φ)

where Q1, . . . , Qn ∈ {∃,∀}, x1, . . . , xn ∈ V , and φ is quantifier-free. The
formula φ is the matrix of the prenex form.

Theorem 11. Any first-order formula can be converted to a logically equiv-
alent prenex form.

This is done through a series of equivalence-preserving steps which bring
the quantifiers to the top level.

Definition 19 (Skolem form). A formula is in Skolem form if it is in prenex
form without existential quantifiers.

Theorem 12. Any first-order formula can be converted to an equisatisfiable
Skolem form.

The process of converting a formula to an equisatisfiable Skolem form
is known as Skolemization. Because of the nice properties of formulas in
Skolem form (notably in Theorems 13 and 14), it is often used as a first step
in solvers. Skolemization works by introducing Skolem functions to replace
existentially quantified variables. For example, formula ∀x, y∃zφ(x, y, z),
where φ(x, y, z) can be any formula containing free variables x, y, and z, is
equisatisfiable with ∀x, y φ(x, y, f(x, y)), where f is a fresh function symbol.
This transformation can be repeatedly applied to any formula in prenex form
in order to remove all existential quantifiers.

Definition 20 (Herbrand sets). Given a many-sorted first-order language
L = (S,V ,F ,P , r, d) and a formula φ in language L, the family H of Her-
brand sets for φ assigns for each sort τ ∈ S, the smallest set Hτ such that:

• for each constant a ∈ F of sort τ used in φ, a ∈ Hτ . If no constant
of sort τ is used in φ, then Hτ includes one new arbitrary constant, so
that Hτ is never empty;

• for each function f ∈ F of sort (τ1, . . . , τn, τ) used in φ, and for all
elements t1 ∈ Hτ1 , . . . , tn ∈ Hτn , the term f(t1, . . . , tn) is in Hτ .
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The Herbrand set Hτ is essentially the set of ground τ -terms than can
be generated from the function symbols in φ, possibly with an additional
constant symbol if none was present in φ.

Definition 21 (Congruence relation). Given a set of terms T , a congruence
relation RC on T is a reflexive, symmetric and transitive relation such that
if f(t1, . . . , tn), f(t

′
1, . . . , t

′
n) ∈ T and if (ti, t

′
i) ∈ RC for each i ∈ {1, . . . , n},

then (f(t1, . . . , tn), f(t
′
1, . . . , t

′
n)) ∈ RC .

A congruence relation RC on T partitions T into a set of congruence
classes, also called quotient set, denoted T/RC . A congruence class is a
(maximal) subset of T in which all elements are congruent, i.e., for each
pair of terms t, t′ in a congruence class, (t, t′) ∈ RC . For more details and
examples on congruence relations, see Section 6.1 on congruence closure.
Each interpretation I defines a congruence relation RC

I on the set of terms:
(t, t′) ∈ RC

I if and only if I |= t = t′.

Definition 22 (Herbrand interpretation). Given a formula φ in a many-
sorted first-order language and the associated family of Herbrand sets H, a
Herbrand interpretation I = (D, IV , IF , IP) is an interpretation such that:

• there exists a congruence relation RC
τ such that D assigns Hτ/R

C
τ to

sort τ ;

• for any constant a of sort τ in φ, I[a] = Ca, where Ca is the class in
Hτ/R

C
τ containing a;

• for any term f(t1, . . . , tn), if I[ti] = Ct′i for each i ∈ {1, . . . , n}, then
I[f(t1, . . . , tn)] = Cf(t′1,...,t′n).

For any ground term t, and Herbrand interpretationH, we haveH[t] = Ct.
A Herbrand model is a Herbrand interpretation which is also a model.

Theorem 13 (Herbrand theorem). A (set of) closed Skolem formula(s) is
satisfiable if and only if it has a Herbrand model.

Theorem 14 (Second Herbrand theorem). A (set of) closed Skolem for-
mula(s) is unsatisfiable if and only if there is a finite unsatisfiable set of
instances of this (these) formula(s).

These last two results allow the elaboration of a semi-decision procedure
to check the satisfiability of first-order formulas (Theorem 10). Here is a
brief overview of how this is done. Formulas that contain free variables can
easily be transformed into an equisatisfiable closed formula by replacing each
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occurrence of a free variable by a corresponding (fresh) constant. Theorem
13 reduces the problem of finding a model among all possible interpretations
to finding a model among Herbrand interpretations. This allows to reduce
the satisfiability problem for sets of ground formulas to SAT, essentially by
assigning a proposition to each atom (we skip over the details).

A set containing closed quantified formulas in Skolem has the same Her-
brand models as the set of instances of those formulas on the correspond-
ing Herbrand sets. This allows reducing the satisfiability problem of closed
first-order Skolem formulas to the satisfiability of a (usually infinite, but al-
ways countable) set of propositional formulas. The compactness theorem
(Theorem 8) guarantees that if this set is unsatisfiable, there exists a finite
unsatisfiable subset. This leads to theorem 14 and to a semi-decision pro-
cedure by enumerating the finite subsets of propositional formulas in a fair
order and evaluating their satisfiability. If the (set of) first-order formula(s)
is unsatisfiable, one of those subsets will as well, and vice-versa, meaning
unsatisfiability can be shown in finite time.

2.5 Satisfiability modulo theories

Herbrand theory leads to a generic semi-decision procedure, based on propo-
sitional SAT solving, for the satisfiability of first-order formulas. This is
great, but turns out to be not very effective at dealing with certain theo-
ries (i.e., sets of formulas) which are very useful in practice. Examples of
such theories include integer arithmetic, or the theory of arrays. Further-
more, such theories sometimes contain axiom schemas leading to infinitely
many axioms. This means the theory cannot be easily communicated to
the solver, as it cannot be represented as a finite set of formulas. On the
other hand, many specialized and efficient techniques have been developed
for reasoning on those theories, one example being the simplex method for
linear arithmetic. Satisfiability modulo theories aims at reconciling general
SAT solving for first-order formulas with specialized solving techniques for
first-order theories.

2.5.1 Theory solver

Theories can be described as a (possibly infinite) set of first-order formulas,
called axioms. In recent literature, theories are instead usually defined as the
set of interpretations which make those axioms true.

Definition 23 (Theory). A theory T in first-order language L is an arbitrary
set of interpretations on L. A formula φ in language L is said to be T -
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satisfiable if and only if some element of T is a model of φ. A set Γ of ground
formulas in language L T -entails a ground formula φ, written Γ |=T φ if and
only if every model of Γ in T satisfies φ as well.

Definition 24 (Theory solver). A theory solver for a theory T (T -solver)
is a procedure which takes as input a collection of literals in the language L
of T and decides whether it is T -satisfiable.

2.5.2 Ground SMT solving

In SMT, decision procedure for the T -satisfiability of ground formulas are
based on an extension of CDCL (cf. Section 2.2) called CDCL(T ), also often
seen as DPLL(T ) [21] (DPLL being an ancestor of CDCL). As for CDCL,
the details are glossed over.

CDCL(T ) works with two parts: a CDCL-based SAT solver, and a theory
solver for theory T . First, the SAT solver treats each literal in the formula as
a proposition, and tries to find an assignment. When an assignment is found,
one needs to check whether the truth value assigned to each literal is consis-
tent with theory T (i.e., if it is T -satisfiable). The T -solver is called to check
if this is the case. If yes, the assignments returned by the SAT solver and the
T -solver form a model, and the formula is satisfiable. Otherwise, the T -solver
needs to provide an explanation for why the set of literals in T -unsatisfiable,
in the form of a clause. Such an explanation can always be generated: in
the worst case, the simple negation of the set of literals can be taken as
explanation, but as for conflict clauses in CDCL, smaller explanations (i.e.
smaller clauses) reduce the search space more, and are thus preferred if they
can be (efficiently) generated by the T -solver. Once this clause is added, the
current assignment of the SAT solver becomes invalid, and the SAT solver
continues the search for another assignment. If no boolean assigment of the
literals can make the formula true, the formula is unsatisfiable.

As for CDCL, many additional techniques are employed to make this
process more efficient in practice.

2.5.3 Theory combination

In many cases, multiple theories can be involved. When that happens, the
theory solvers must work together to find a satisfying assignment common to
all theories. Fortunately, there exist methods for reconciling multiple special-
ized theory solvers into a theory solver for the combinations of the theories.
One such theory combination method is the Nelson-Oppen combination pro-
cedure [22].
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Definition 25 (Disjoint languages). Two first-order languages
L1 = (S1,V1,F1,P1, r1, d1) and L2 = (S2,V2,F2,P2, r2, d2) are disjoint when
F1 ∩ F2 = P1 ∩ P2 = ∅, i.e., when both languages have no predicate or
function in common.

Definition 26 (Union of disjoint languages). The union of two disjoint lan-
guages L1 = (S1,V1,F1,P1, r1, d1) and L2 = (S2,V2,F2,P2, r2, d2) is the
language L = (S1∪S2,V1∪V2,F1∪F2,P1∪P2, r, d), where r is the function
equal to r1 when its argument is in the domain of r1, otherwise it is equal
to r2. Function d is defined similarly.

Definition 27 (Restriction of an interpretation). Given an interpretation I
in language L, a restriction of I to a subset of L is the interpretation equal
to I for every domain, function symbol, predicate symbol in the subset of L.

Definition 28 (Union of theories). The union T of theories T1 and T2 in
disjoint languages L1 and L2 is the set of all interpretations I such that the
restriction Ii of I to Li is in Ti, for i ∈ {1, 2}.

Definition 29 (Stably infinite theory). A theory T for language L is stably
infinite if for any T -satisfiable formula φ in L, there is a model of φ in T
whose domain is infinite.

Definition 30 (Convex theory). A theory T for language L is convex if for
any finite conjunction Γ of equalities of L, Γ |=T

∨
1≤i≤n xi = yi if and only

if Γ |=T xi = yi for some i ∈ {1, . . . , n}.

Nelson-Oppen offers a way to combine theory solvers for stably infinite
theories on disjoint languages by sharing Ti-entailed (disjunctions of) equal-
ities between the theory solvers. If theories are convex, entailed disjunctions
of equalities do not need to be shared, since at least one of the equalities in
the disjunction can be deduced and shared on its own. If additionally the
theory solvers can efficiently generate such entailed equalities, an efficient
procedure for the union of the theories is obtained.

When at least one of the theories is non-convex, however, complexity
skyrockets, because the number of possible disjunctions of equalities is expo-
nential in the number of possible equalities. More recent theory combination
schemes, such as delayed theory combination [23] or model-based theory com-
bination [24] attempt to mitigate this by performing a CDCL-like search on
which equalities hold between the shared variables.
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2.5.4 Quantifiers

So far, the methods described for satisfiability modulo theories only work for
ground formulas. They also work really well in practice. When quantifiers
are present, arriving to efficient procedures becomes a lot more difficult. The
usual methods for dealing with quantifiers in SMT are based on instantia-
tion. First, a formula is Skolemized, then ground instances are generated
from the quantified formulas using various techniques, and fed to the ground
SMT solver in the hopes of finding a conflict. If the ground instances are
unsatisfiable, then the formula is unsatisfiable. Otherwise, no conclusion
can be drawn, but the model found for the ground instance may be used to
choose which instances to generate next. Some of the techniques used for
instantiation are the following:

• trigger-based instantiation using E-matching [25] [26], where the in-
stances are generated based on the terms found in the formula;

• model-based quantifier instantiation (MBQI)[27] [28], where the model
generated by the ground solver is extended to a full model for the
quantified formula. Instances are then generated which try to contra-
dict this model. If this is not possible, an actual model was found and
the formula is satisfiable;

• conflict-based instantiation [29] and congruence closure with free vari-
ables [30], which are efficient techniques to detect and generate in-
stances that contradict the current state of the ground solver;

• enumerative instantiation [31] [32], based on Herbrand theory, which
tries to enumerate instances in some exhaustive heuristic order.
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Chapter 3

Sudoku in SMT

In order to study the behavior of SMT solvers on finite domains, we will
need to rely on example problems. In this work, we will mainly focus on the
well-known Sudoku problem, as it can easily be encoded as an SMT problem
and naturally relies on a finite domain. It is also representative of the kind
of problems that may occur in an industrial setting1. As a reminder, the
Sudoku problem consists in a 9 by 9 grid which must be filled with numbers
1 through 9, in such a way that each of the nine rows, columns and 3 by
3 subgrids (also called blocks) contains each number once, and only once.
Given a grid with some of the numbers already filled in, the goal is to find
the (unique) filling of the grid that satisfies all of these constraints. There
exist many variants of this problem, including Sudoku on larger grids, such
as 16 by 16 or 25 by 25.

3.1 Encoding

To encode a Sudoku in SMT, we start by labeling each row and each column
with a number between 1 and 9. Then, we define a function A : D×D −→ D,
with D = {1, 2, ..., 9}, which maps each position in the grid to the number
contained in that cell. We can see that the finite domain D naturally appears
both in the domain and the image of A. In practice, the easiest way to
represent the elements of D is to use the built-in integer sort, but we need to
keep in mind that only the numbers 1 through 9 are relevant when encoding
the constraints. The constraints are the following:

• 1 ≤ A(i, j) ≤ 9 with i, j ∈ {1, . . . , 9};
1See for instance https://www.clearsy.com/en/research-and-development/

blasst/
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• A(i, j) ̸= A(i, k) with i, j, k ∈ {1, . . . , 9} and j ̸= k (rows);

• A(i, j) ̸= A(k, j) with i, j, k ∈ {1, . . . , 9} and i ̸= k (columns);

• A(i, j) ̸= A(k, l) with i, j, k, l ∈ {1, . . . , 9}, i ̸= k or j ̸= l and cells (i, j)
and (k, l) in the same block;

• A(i, j) = k with i, j, k ∈ {1, . . . , 9} and number k in cell (i, j).

3.1.1 Quantifier-free encoding

The easiest way to encode the Sudoku constraints is simply to encode all
of the constraints exhaustively. Since the grid is finite, so is the number
of constraints. This kind of encoding is not only easy to understand for
humans, it is also easier to deal with for the SMT solver than more succinct
encodings using quantifiers, as we will see in Chapter 4. Some examples of
the constraints to encode are:

• A(2, 4) ̸= A(2, 7);

• A(5, 7) ̸= A(9, 7);

• A(5, 4) ̸= A(6, 6);

• 1 ≤ A(8, 3) ≤ 9;

• A(1, 1) = 3

3.1.2 Propositional encoding

Uninterpreted functions and integers are not actually necessary to solve Su-
dokus. Sudokus can be encoded with simple propositional logic. First create
9 · 9 · 9 = 729 propositions pi,j,k, with 1 ≤ i, j, k ≤ 9. Proposition pi,j,k rep-
resents whether cell (i, j) contains number k. The constraints can then be
encoded as such:

• Each cell contains at least one number:∧9
i=1

∧9
j=1

(∨9
k=1 pi,j,k

)
;

• Each cell contains at most one number:∧9
i=1

∧9
j=1

∧
1≤k<l≤9(¬pi,j,k ∨ ¬pi,j,l);

• Each cell in the same row must be different:∧9
i=1

∧
1≤j<k≤9

∧9
l=1(¬pi,j,l ∨ ¬pi,k,l);
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• Each cell in the same column must be different:∧
1≤i<j≤9

∧9
k=1

∧9
l=1(¬pi,k,l ∨ ¬pj,k,l);

• Each cell in the same block must be different. For each (unordered) pair
of distinct cells (i, j) and (k, l) within a same block, add the constraint:∧9

m=1(¬pi,j,m ∨ ¬pk,l,m);

• For each known number k in cell (i, j), the corresponding proposition
must be true: pi,j,k.

The obvious problem with this encoding is that it is very unintuitive
compared to the others. It might well be the easiest to solve for the SMT
solver (only the embedded SAT solver would be at work here), but the cost
of distilling different problems down to a propositional encoding can be quite
high. One of the purposes of using more expressive logics is to avoid this
cost.

3.1.3 Encoding using quantifiers

Having to encode each constraint individually can be cumbersome, especially
if we want to encode larger problems, such as a 16 by 16 or 25 by 25 Sudoku.
We only really have four kinds of constraints that apply to the whole grid,
so we can get away with only encoding four quantified constraints. One set
of suitable quantified formulas (barring the constraints for known numbers,
which still need to be encoded individually) is:

• ∀i, j. 1 ≤ i, j ≤ 9⇒ 1 ≤ A(i, j) ≤ 9;

• ∀i, j, k. (1 ≤ i, j, k ≤ 9 ∧ j ̸= k)⇒ A(i, j) ̸= A(i, k) (rows);

• ∀i, j, k. (1 ≤ i, j, k ≤ 9 ∧ i ̸= k)⇒ A(i, j) ̸= A(k, j) (columns);

• ∀i, j, k, l. (1 ≤ i, j, k, l ≤ 9∧⌊ i−1
3
⌋ = ⌊k−1

3
⌋∧⌊ j−1

3
⌋ = ⌊ l−1

3
⌋∧(i ̸= k∨j ̸=

l))⇒ A(i, j) ̸= A(k, l) (blocks);

where all quantifiers range over the integers. This kind of encoding of course
generalizes better to other sizes, and does not require adding constraints when
the size is increased. It also seems more natural to encode each Sudoku rule
as a single constraint rather than as a constraint on each cell. Similarly, in
an industrial setting, expressing constraints using quantifiers is more natural
and helps confidence in the models and the verification task. However, this
kind of encoding is much more difficult to handle from the solver’s point of
view. It generally leads to a much worse performance in terms of computation
time, and sometimes the solver is unable to solve the problem at all.
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Chapter 4

Performance of existing solvers

In this chapter, the performance of various state-of-the-art SMT solvers on
finite domain problems is assessed using the Sudoku problem, given to the
solvers using various encodings similar to those described in Section 3.1. The
problems are encoded in the SMT-LIB language [3], a standardized interface
to SMT solvers implemented by most state-of-the-art solvers. The solvers
investigated are Z3 [33], CVC5 [34], and Yices [35]. Yices does not offer
support for quantified formulas, so no measurement is given in those cases.

4.1 Satisfiable case

The first few tests consist in solving a 9 by 9 Sudoku using different encodings.
In this case, there is a (unique) solution to the Sudoku, so the solver should
return sat with a model of the formula. Results are in Table 4.1. The
different encodings are the following:

1. The first encoding corresponds to a quantifier-free encoding without
using the built-in integer sort. Instead, a sort is declared along with
nine distinct elements of that sort corresponding to the Sudoku digits
{1, . . . , 9}. This avoids the need to use a theory solver for integer
arithmetic. This also prevents the use of order predicates, such as ≤.
Conditions like 1 ≤ A(8, 3) ≤ 9 can instead be encoded like: A(8, 3) =
1 ∨ . . . ∨ A(8, 3) = 9. Other than that, the encoding is the same as in
Section 3.1.1;

2. The second encoding corresponds to the quantifier-free encoding de-
scribed in Section 3.1.1, using the built-in integer sort;

3. The third encoding is a quantified encoding corresponding to the one
given in Section 3.1.3, with the slight difference that the block con-
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straints are encoded using modulo operators instead of integer division.
This is because integer division is not part of the SMT-LIB standard.
Modulos are not part of it either, but are supported by all three solvers
as part of their integer arithmetic facilities. Note that with this encod-
ing, all the quantified constraints are limited to the 9 by 9 grid of the
Sudoku, even if A is defined on Z× Z −→ Z ;

4. The fourth encoding is similar to the third, but the constraint imposing
numbers between 1 and 9 is extended to the whole infinite grid on
which A is defined, i.e., ∀i, j. 1 ≤ i, j ≤ 9 ⇒ 1 ≤ A(i, j) ≤ 9 becomes
∀i, j. 1 ≤ A(i, j) ≤ 9. This is obviously still satisfiable (just assign any
number between 1 and 9 to the infinitely many cells outside the 9 by
9 grid), but it tests the boundaries of what each solver is capable of,
since a model is now subjected to infinitely many constraints, and can
thus be harder to find;

5. The fifth encoding is similar to the fourth, with the addition that the
rows and columns constraints are also not restricted to the grid any-
more. For the rows, the constraint becomes ∀i, j, k. (1 ≤ j, k ≤ 9∧ j ̸=
k) ⇒ A(i, j) ̸= A(i, k), meaning the elements A(i, 1), . . . , A(i, 9) must
be distinct for any row i ∈ Z. A similar transformation is applied to
the column constraint. This is satisfiable, for example by repeating any
row from the 9 by 9 grid infinitely many times outside the grid, and
similarly for the columns. For example, having A(i, j) = A(6, j) for all
i ∈ Z \ {1, . . . , 9} and j ∈ {1, . . . , 9} satisfies all the row constraints
outside the grid if they are satisfied for row 6;

6. The last encoding corresponds to a quantified encoding repeating the
Sudoku constraints every 9 cells everywhere on the infinite grid. This
is satisfiable by repeating the solved 9 by 9 Sudoku infinitely many
times in all directions, i.e., by setting A(i, j) = A(k, l) if i ≡ k (mod 9)
and j ≡ l (mod 9). Multiple variations of this encoding were tried, all
having the same unique model. Since they all give similar results, they
are grouped into one here.

As can be seen in Table 4.1, the presence of integer arithmetic leads to a
slight slow down, particularly noticeable for CVC5. It appears strange that
CVC5 performs so poorly compared to the other two solvers. Looking into
the scripts used by CVC5 for SMT-COMP [36] does not reveal any options
that significantly improve this.

Quantifiers, as expected, make the problem more difficult. The time taken
by each solver is almost multiplied by 10. The A function, constrained over
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Encoding Z3 CVC5 Yices
quantifier-free, no integers 0.024 0.450 0.163

quantifier-free 0.051 2.367 0.190
quantified, finite grid constraints 0.528 18.837 /
quantified, infinite grid constraints 0.550 19.839 /

quantified, infinite row/column constraints 0.627 dnf (> 12h) /
quantified, repeated Sudoku constraints dnf dnf /

Table 4.1: Time taken (in seconds) to solve a 9 by 9 Sudoku using various
encodings (satisfiable case).

the integers, requires an infinite model, i.e., one that assigns an integer to
every grid cell, even if the constraints are only effective within the grid. This
leads CVC5 to give up and return unknown at first for any of the quantified
encodings. Enabling the --mbqi option (for model-based quantifier instan-
tiation, cf. Section 2.5.4) solves this problem and allows the solver to find
a model for two of the four quantified encodings. It appears like Z3 auto-
matically makes use of MBQI, allowing it to find a model too. The models
constructed by MBQI for A are based on imbricated if-then-else constructs,
assigning individual numbers to some finite amount of grid cells, and even-
tually assigning the same number to every cell beyond a certain point. With
such constructs, the periodic function required to satisfy the constraints of
the last encoding can never be found. It then makes sense that none of the
solvers were able to find the assignment satisfying the last encoding. It is
however unclear why CVC5 with MBQI is unable to find the solution for the
fifth encoding.

4.2 Unsatisfiable case

The next tests are about checking unsatisfiability. To do that, the (unique)
solution of the Sudoku is negated in the encoding. The solver then needs
to try to find another solution, and should return unsat when realising that
there is none. The same encodings are tested. The results, in Table 4.2,
are not very different. The main differences are that everything is a bit
faster, CVC5 even being four times as fast in the quantified case, and that
Z3 and CVC5 are able to find solutions for every encoding, including the last
one. This makes sense, since there is no need to find a complicated infinite
model anymore: only a contradiction needs to be found, and it can be found
within the initial 9 by 9 grid. The additional constraints do not make this
any harder: they only add possibilities for more contradiction (unlike in the
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satisfiable case where they added more constraints on the models, making
them harder to find). It is also interesting to note that the --mbqi option is
no longer necessary for CVC5. Other instantiation methods (likely trigger-
based) are enough to generate the ground instances that lead to a conflict.

Encoding Z3 CVC5 Yices
quantifier-free, no integers 0.022 0.511 0.010

quantifier-free 0.041 1.868 0.021
quantified, finite grid constraints 0.413 4.668 /
quantified, infinite grid constraints 0.496 4.658 /

quantified, infinite row/column constraints 0.412 4.815 /
quantified, repeated Sudoku constraints 0.471 4.564 /

Table 4.2: Time taken (in seconds) to verify that a 9 by 9 Sudoku has no
other solution, using various encodings (unsatisfiable case).

4.3 Larger Sudokus

One of the advantages of using quantified encodings is that they are easy to
generalise to larger sizes. Here is a quick study on the impact of the Sudoku
size on solve time for quantified encodings. Only the first quantified encoding
is used, i.e., the one described in Section 3.1.3, only applying constraints to
the 9 by 9 grid, because it is the most natural out of all the quantified en-
codings studied. Chapter 5 develops a method for transforming a quantified
encoding with effectively finite constraints such as this one into a quantifier-
free encoding. This allows an easy testing of quantifier-free encodings (with
integers) as well. As results are similar for the satisfiable and unsatisfiable
cases on a 9 by 9 Sudoku using those encodings, only the satisfiable case is
studied. Results are given in Table 4.3.

Encoding Z3 CVC5 Yices
quantifier-free 9x9 0.051 2.367 0.190
quantified 9x9 0.528 18.837 /

quantifier-free 16x16 0.335 48.211 0.812
quantified 16x16 12.426 dnf (> 12h) /

quantifier-free 25x25 84.729 dnf 61.607
quantified 25x25 730.783 dnf /

Table 4.3: Time taken (in seconds) to solve Sudokus of multiple sizes using
quantified and quantifier-free encodings.
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The results show that solving time increases rapidly with the Sudoku size.
This was expected, as it is pretty much what happens even using SAT solvers.
Quantifiers only contribute to make this worse. In the 16 by 16 case, they
even prevent CVC5 from solving. For some reason, CVC5 performs much
worse than the other two solvers, preventing it from solving the quantifier-free
25 by 25 case.
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Chapter 5

A first approach: dealing with
quantifiers

We saw in Chapter 4 that SMT solvers can be much more effective when
they do not have to deal with quantifiers. This becomes interesting when we
realise that, when dealing with fixed finite domains, quantifiers are actually
not necessary. Indeed, if the domain is finite, a quantified formula only has a
finite number of instances. If the domain is known a priori, the formula can
thus be replaced by the (finite) set of its instances. There is of course a trade-
off here: if the domain is large or if many variables are quantified, the set of
instances can be way too large to be used practically. Here, we explore ideas
to eagerly instantiate formulas quantified over finite domains as a way to
improve the performance of existing solvers. We will focus on formulas that
are in Skolem normal form, that is formulas for which all the quantifiers are
at the front, ranging over the whole formula, and all quantifiers are universal
quantifiers. A set of formulas can be converted to an equisatisfiable set of
Skolem forms via a process known as Skolemization, which is often applied
as a first step in solvers (cf. Section 2.4).

5.1 Detecting finite domains over integers

In the Sudoku example, we are using integers to represent elements of our
finite domain. This can be very useful as a way to encode the problem, and
might be used as a way to encode other similar problems that work on a
finite domain. From the solver’s perspective, however, this is problematic, as
it hides the fact that the domain is finite. The domain of integers is indeed
not finite, and the domain is only effectively finite because of the constraints
that are expressed in the formulas. If we want to apply techniques to work
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on finite domains, we first need a way to detect these finite domains.
One thing to keep in mind is that, whatever we might do with a supposed

finite domain, the solver must still return the right answer for the formula
it was given. If a formula is universally quantified over the integers, for
example, finding a satisfying assignment still means finding an assignment
that makes the formula true for all the integers, not only those in the finite
domain. In that sense, the actual domain of the (set of) formula(s) is still
infinite. The reason why we can say that there is an “effective” finite domain
is because some finite part of the problem contains most of the difficulty.
Solving only that part would make solving the whole problem on the infinite
domain easy.

There is a great variety of ways to encode effectively finite problems on
the integers (i.e. problems with a finite “difficult” part encoded over the
integers), and detecting all of them automatically would be an extremely
difficult task. In fact, this is undecidable since it is quite straightforward
to make the problem of recognizing finite problems for some formulas as
hard as satisfiability checking for full first-order logic. Instead, we can try
to detect some common occurrences of finite problems, which are similar in
their structure. This is what is attempted here.

Looking at the formulas of Section 3.1.3 for Sudokus, one can notice
the following: when i or j is outside of {1, . . . , 9}, each formula becomes
automatically true, no matter the value of A(i, j). In other words, integers
that are not part of the domain make the formula trivially true when used
to instantiate a variable. This can be used as a definition of the “effective”
finite domain.

Definition 31 (Effective domain). For a formula of the form
∀x, y1, . . . , yn φ(x, y1, . . . , yn), where x is quantified over the integers and
φ(x, y1, . . . , yn) is an arbitrary formula containing free variables x, y1, . . . , yn,
we define the effective domain for variable x as the set of integers d such that
̸|= φ(d, y1, . . . , yn). If this set is finite, we call it the effective finite domain
of variable x.

In other words, we can say that an integer is outside of the effective
finite domain if and only if the instances of the formula using this integer are
valid. This definition makes it possible to extract the finite “hard” part of
the problem, and obtain the solution to the complete problem by solving this
extracted problem, as shown in the rest of this chapter. This definition is
also quite general: it can work with many more problems than just Sudokus
in that specific encoding. All finite domain problems can be encoded over
the integers in a similar way: map each element of the finite domain D to
an integer, then convert each Skolem formula over D to a Skolem formula
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over the integers by adding the condition that the quantified variables are
integers that correspond to elements of D. For example, if elements of D are
mapped to integers 1 to |D|, the formula

∀x1 . . . ∀xn. φ(x1, . . . , xn)

where φ(x1, . . . , xn) is any quantifier-free formula, becomes

∀x1 . . . ∀xn. (1 ≤ x1 ∧ x1 ≤ |D| ∧ . . . ∧ 1 ≤ xn ∧ xn ≤ |D|)⇒ φ(x1, . . . , xn)

The two problems are then equisatisfiable. Most natural encodings of finite
domain problems over the integers will be similar to this, in such a way that
they are also captured by the above definition. In the rest of this chapter, we
may refer to the “effective finite domain” defined up here as just “the finite
domain”, or even “the domain”, when the meaning is unambiguous.

Now, we need a way to identify the elements of the finite domain among
the integers. We are going to assume that the finite domain is represented
as a contiguous block of integers. This allows us to represent the domain
as an interval between and including its first and last element, rather than
a list of all its elements. If this is not the case, we can instead work with
a larger finite domain, again the set of integers between the first and the
last element of the initial finite domain (both included), even if some are
unused. For example, if the finite domain is {1, 3, 6}, we can chose to work
with {1, 2, 3, 4, 5, 6} instead. This does not impact the correctness of the
following approach, although it can influence performance, especially if the
gaps between the elements of the domain are large. With this assumption,
the problem reduces to finding the smallest and the largest elements of the
domain.

Consider first a single formula quantified over one integer variable: ∀x. φ(x),
where x is the quantified variable and φ(x) is a quantifier-free formula in
which x is a free variable (extensions to this will be made in Section 5.3).
We can check whether an integer n is greater than the largest element of the
finite domain D (n > supD) for variable x by checking the validity of the
following formula: ∀x. φ(x) ∨ x < n. Indeed, suppose n > supD: if x /∈ D,
then by the above definition of the finite domain, φ(x) is valid, so it will
always be true. If x ∈ D, it should be smaller than n, and x < n would be
true. This proves that the formula is valid if n is greater than the largest
element of the domain. The converse is also true: if φ(x)∨ x < n is valid for
all x, then φ(x) has to be valid for all x ≥ n. This means that any x ≥ n is
outside the domain, and n is thus greater than every element in the domain.

Similarly, we can check whether n is smaller than the smallest element of
the domain by checking the validity of ∀x. φ(x)∨x > n. The validity of these
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formulas could simply be checked by using the SMT solver itself, using the
fact that a formula is valid if and only if its negation is unsatisfiable. Note
that the formula fed to the solver would not actually be quantified: since
we check the (un)satisfiability of the negation of a universally quantified
formula, the universal quantifier would be turned into an existential one,
and then removed by Skolemization. The formula that would actually be
checked would be of the form ¬φ(x) ∧ x ≥ n, where x is a free variable.

We can now check whether an integer n is greater (resp. smaller) than
the largest (resp. smallest) element in the domain. This is in fact enough
to find the extremities of the domain relatively easily, using a dichotomy
method. Start by finding an upper bound for supD and a lower bound for
inf D. For the upper bound on supD, this can be done by doing a first check
for n = 1 (or any other positive value), then doubling it until we find an
n which is greater than supD. This ensures that we find an upper bound
in O(log | supD|) checks, if this upper bound exists. The same can be done
for the lower bound on inf D by starting with a negative value. Once these
bounds are found, we can refine them and find the exact values of supD
and inf D using dichotomy: if n is the upper bound we found for supD,
we know that supD is between n/2 and n (or between the lower bound for
inf D and n, if n is the starting value). The same can be done for inf D.
Overall, this whole procedure for finding supD and inf D can be done in
O(log | supD|+ log | inf D|) checks.

This procedure assumes that an effective finite domain can be found
within the problem: if the SMT problem over the integers does not en-
code a finite domain problem, or if the encoding is too complicated to fit the
definition of the “effective finite domain” above, then there is no effective
finite domain to be found. In that case, the procedure may not terminate.
If it is not known whether an effective finite domain exists, we can simply
add a maximum in the search for supD (or a minimum for inf D). If an
upper bound is not found below this maximum, simply stop the search and
assume the effective domain is infinite. In practice, encountering a problem
for which supD is above a value like 264 is rather unlikely, and searching up
to that value means the procedure would terminate in around 4 · 64 = 256
checks in the worst case, which is reasonable. Moreover, if the domain is very
large, the techniques we develop here in Section 5.2 would be too slow to be
practical. Not detecting such large domains is therefore a minor issue.
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5.2 Removing quantifiers with exhaustive in-

stantiation

Once the finite domain is identified, the hard part is over, as getting rid
of the quantifiers is fairly straightforward. Since a formula is always valid
outside the domain, all there is to worry about is the finite domain itself.
It suffices to replace the formula by the conjunction of its instances on the
finite domain. The resulting formula is logically equivalent to the original
formula.

This is fairly easy to prove: every interpretation of a formula universally
quantified over the integers assigns the same truth value to the formula and
to the set of its instances, i.e, the formula has the same models as its set
of instances. Furthermore, since the all the instances outside the effective
finite domain are valid (by definition of the effective domain), they are true
in every interpretation and do not impact the truth value assigned to the set.
This means they can be removed from the set of instances without changing
the models of the set. The set of instances restricted to the effective finite
domain thus has the same models as the quantified formula. Naturally, the
conjunction of those instance also does. Since the formula and the conjunc-
tion of its instances on the finite domain have the same models, they are
logically equivalent.

The number of instances is exactly the size of the effective finite domain
for the variable considered. This may cause problems if the size of the domain
is very large. In that case, one may simply give up and revert to giving the
original quantified formula to the solver.

5.3 Extension to multiple formulas quantified

over multiple variables

In most cases, there is more than a single formula, and each formula is
quantified over multiple variables. The above procedure can be extended to
work on any finite set of Skolem formulas.

5.3.1 Multiple formulas

The first thing to notice is that each formula can have a different finite
domain (according to the way we detect finite domains): for example, one
formula may be valid when instantiated with a value outside D1 = {1, 2, 3},
a second formula may only be valid when instantiated with values outside
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D2 = {1, 2, 3, 4}, and a third formula may not even have valid instances at all
(D3 = Z). In that case, there is no global finite domain, as the third formula’s
domain is not finite, but work can still be done to remove quantifiers on the
first two formulas. If we have a procedure that can detect finite domains
and remove quantifiers from single formulas, this procedure can simply be
applied to each formula individually. If a “global” finite domain D exists
(one that is the same for every formula), this procedure is guaranteed to find
formula specific domains Di which are either the same as D or included in D
(Di ⊆ D). This is because the existence of a global domain D would imply
that if any element e ∈ Z\D is used to instantiate any formula, this formula
would become valid. This is precisely how the formula specific domain Di

would be detected: by finding all elements which make the formula valid
when instantiating it. We would find that e is one of those elements, and thus
e /∈ Di. If an element of D makes a formula valid when used to instantiate
it, then that element would not be detected as being part of Di (and thus
Di ⊂ D). This is not a problem as it would only reduce the number of
instances considered when removing the quantifiers of this formula. It would
result in a shorter but equivalent “dequantified” formula.

5.3.2 Formulas quantified over multiple variables

Now, when it comes to formulas that have multiple quantifiers, the same idea
can be applied: a finite domain does not have to be detected for the whole
formula, finite domains can be identified on a per quantifier basis. This is
also useful when dealing with formulas quantified over different sorts (not
only integers): while this procedure cannot deal with quantifiers that range
over, say, the real numbers, it might still be possible to remove some of the
quantifiers that range over the integers within the same formula.

Consider a Skolem formula ∀x1 . . . ∀xn. φ(x1, . . . , xn) (where φ(x1, . . . , xn)
is quantifier free). A procedure to (try to) eliminate a quantifier from the
formula can be built as follow:

1. Push the quantifier to eliminate to the far right:
∀x1 . . . ∀xi−1∀xi+1 . . . ∀xn∀xi. φ(x1, . . . , xn).
This is always possible since top level universal quantifiers permute.
This step is not strictly necessary, but it avoids feeding quantified for-
mulas to the solver when checking for bounds, which is really important
in practice.

2. Consider only subformula ∀xi. φ(x1, . . . , xn) (where x1, . . . , xi−1 and
xi+1, . . . , xn are all free variables) and try to remove the quantifier as
above in the case of a single quantifier. For example, if the subformula
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is found to have an effective finite domain Di = {1, 2}, then it is equiv-
alent to φ(x1, . . . , xi−1, 1, xi+1, . . . , xn)∧φ(x1, . . . , xi−1, 2, xi+1, . . . , xn).

3. Since the resulting formula is logically equivalent to the original sub-
formula, it can simply be replaced inside the complete Skolem formula,
which now has one less quantifier.

This process can simply be repeated for all the quantifiers that range over
the integers.

Similarly to the last section, it can be shown that if there exists an effec-
tive finite domain D for the whole formula, then the finite domains Di found
for each quantifier are equal to or included in D. Indeed, for any element
e ∈ Z\D, we have that φ(x1, . . . , xi−1, e, xi+1, . . . , xn) is valid, no matter the
values of i, x1, . . . , xi−1 and xi+1, . . . , xn. When considering the subformula
∀xi. φ(x1, . . . , xn), we would thus find that e /∈ Di, since the formula is valid
when instantiated with that value. Since no element outside of D can be in
Di, we have Di ⊆ D.

As a result, if all the quantifiers range over the integers and the formula
has a finite domainD, the resulting formula will be a quantifier free formula of
size at most |D|n times the size of φ(x1, . . . , xn) (assuming the finite domain
is a contiguous block of integers, cf. Section 5.1). If some quantifiers do not
have a finite domain or range on sorts other than the integers, the other
quantifiers can still be removed by this process.

5.4 Implementation and results

A prototype implementation of this dequantification procedure was made
using PySMT [37], a python API for SMT, which supports the SMT-LIB
format [3]. This implementation was then tested against the quantified en-
coding from Section 3.1.3. Some tweaking of the PySMT parser was neces-
sary before it could handle the modulo operator used for that encoding, as
modulo is not standard in SMT-LIB.

PySMT does not provide an easy way to Skolemize formulas. An al-
ternative way of doing things is to use the fact that dequantified formulas
are logically equivalent to the starting quantified formula. An algorithm for
dequantifying a formula of any form is the following:

1. Transform existential quantifiers into universal quantifiers by negating
them: ∃x(φ(x))←→ ¬∀x(¬φ(x)).

2. Starting from the bottom of the syntax tree, (try to) transform sub-
formulas of the form ∀x φ(x) into a logically equivalent formula ψ

35



where the top level quantifier has been removed, using the procedure
described in the previous sections.

Note that step one can be performed at the same time as step two while
walking through the syntax tree. This approach has one drawback compared
to Skolemizing first: if some sub-formula cannot be dequantified (be it be-
cause the quantifier does not range over the integers or because there is no
effective finite domain), a (sub-)formula containing it cannot be dequantified
without evaluating a quantified formula. Indeed, Skolemizing allowed the
quantifiers to be swapped such that the formula for checking bounds was
always a quantifier-free formula, but this would not be the case anymore. As
an example, take a formula ∀x.¬∀yφ(x, y), where φ(x, y) is quantifier-free,
and the quantifier ∀y cannot be removed because it ranges over the reals.
Skolemizing gives the formula ∀x.¬φ(x, f(x)). Checking whether the for-
mula is valid when x ≥ n amount to checking whether x ≥ n ∧ φ(x, f(x))
is unsatisfiable. This last formula is quantifier-free, so this is relatively easy.
If we had used the above procedure without Skolemizing, checking the same
bound would amount to checking whether x ≥ n ∧ ∀yφ(x, y), which can be
much more difficult because of the quantifier. Because the quantified encod-
ing of Sudoku on which we test this procedure is already in Skolem form,
and this is only a prototype implementation, this is not an issue in this case.

The quantified encoding given in Section 3.1.3 has an effective finite do-
main D = {1, . . . , 9} for each quantifier, meaning they can all be removed
using this procedure. The times taken to remove the quantifiers for different
sizes are given in Table 5.1.

Encoding Z3 CVC5 Yices
9x9 4.068 8.180 4.913
16x16 15.680 20.028 16.254
25x25 73.546 78.394 74.249

Table 5.1: Time taken (in seconds) to remove quantifiers from the quanti-
fied encoding of Sudokus of multiple sizes, using the procedure developed in
Chapter 5.

It turns out that dequantifying takes a fair bit of time even for small
Sudokus, likely because of the numerous calls to the SMT solver used for
checking bounds. However, the time taken does not explode when dequan-
tifying larger Sudokus like it does when solving them. In the quantifier-free
encoding, the number of constraints to encode grows cubically with respect
to the size of the grid. It appears like that could fit the times obtained here.
For large Sudokus, dequantifying before solving could thus save a fair bit of
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time compared to solving the quantified Sudoku directly. This comparison
is made in Table 5.2.

Encoding Z3 CVC5 Yices
dequantify first 9x9 4.119 10.547 5.103
solve quantified 9x9 0.528 18.837 /
dequantify first 16x16 16.015 68.239 17.066
solve quantified 16x16 12.426 dnf (> 12h) /
dequantify first 25x25 158.275 dnf 135.856
solve quantified 25x25 730.783 dnf /

Table 5.2: Total time taken (in seconds) to solve Sudokus either directly in
their quantified encoding, or by dequantifying first.

For small Sudokus, dequantifying takes a significant amount of time and
is not worth it for Z3. For CVC5, however, it is already twice as fast for
the 9 by 9. When the Sudokus become larger, the advantage becomes much
more significant. On the 25 by 25 Sudoku, it shaves nearly 10 minutes off
of the solving time for z3. This is an almost 80% reduction. CVC5 is not
able to solve even the dequantified version of the 25 by 25, but dequantifying
allows it to solve the 16 by 16 in only a minute, which it could not solve
in the quantified encoding. This dequantification procedure does not use
any quantifier reasoning inside the SMT solver, allowing Yices to solve the
Sudokus as well, although it has no quantifier capabilities. The --mbqi option
is also no longer necessary for CVC5 in the dequantified case.
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Chapter 6

Theory of uninterpreted
functions over finite domains

The last chapter was a rather hands on, experimental approach to improving
the performance of SMT solvers on finite domains. Here, the focus is on
a more theoretical aspect. In SMT solvers, congruence closure is the main
algorithm used to reason about the theory of equality with uninterpreted
functions. On an infinite domain, it can be used to efficiently compute all
the entailed equalities (that can then be propagated to the other theory
solvers), and detect conflicts with disequalities. When the domain is finite,
however, some constraints can arise due to the limited number of available
elements. Those constraints are not taken into account by classical congru-
ence closure. Usually, the conflicts are detected at a later stage when the
different theory solvers fail to find a common satisfying assignment. Then,
the underlying SAT solver is called to propose a new configuration, if there
is one. This process can be rather inefficient. The goal of this chapter is to
study ways to do this reasoning more efficiently by taking into account the
domain cardinality constraints inside the theory solver itself.

6.1 Classical congruence closure

An equivalence relation is a binary relation on a set that has the property
of being reflexive, symmetric, and transitive. Equality is an equivalence
relation:

• Reflexivity: ∀x. x = x

• Symmetry: ∀x, y. x = y ⇒ y = x

• Transitivity: ∀x, y, z. (x = y ∧ y = z)⇒ x = z
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Subsets of elements which are all equivalent (and to which no other element
can be added) form an equivalence class. A set equipped with an equivalence
relation can always be partitioned into a set of equivalence classes, called the
quotient set.

A congruence relation is an equivalence relation which preserves equiv-
alence under some operations. In the case of the theory of equality with
uninterpreted functions, we have an equivalence relation, equality, which is
preserved under function application (monotonicity):

∀x1, . . . , xn, y1, . . . , yn. (x1 = y1 ∧ . . . ∧ xn = yn)⇒
f(x1, . . . , xn) = f(y1, . . . , yn)

It is thus also a congruence relation.
The equivalence closure of a binary relation is the smallest equivalence

relation which includes this relation. Similarly, its congruence closure is the
smallest congruence relation which includes it. For example, given the set
S = {a, b, c, f(b), f(c)} and the binary relation R = {(a, b), (a, c)} on S, we
can compute its equivalence closure:

RE = {(a, a), (b, b), (c, c), (f(b), f(b)), (f(c), f(c)),
(a, b), (b, a), (a, c), (c, a), (b, c), (c, b)}

which leads to the quotient set S/RE = {{a, b, c}, {f(b)}, {f(c)}}. Indeed,
this is the smallest relation which contains R and is also reflexive, symmetric,
and transitive. We can also compute the congruence closure:

RC = RE ∪ {(f(b), f(c)), (f(c), f(b))}

Note that we will always have RE ⊆ RC . The equivalence classes (also called
congruence classes) now are S/RC = {{a, b, c}, {f(b), f(c)}}.

Computing the congruence closure of a relation gives us a way of easily
checking the satisfiability of a quantifier-free formula in the theory of equality
with uninterpreted functions. Consider the following formula:

a = b ∧ a = c ∧ f(b) ̸= f(c)

From the formula, start by building the set of terms S = {a, b, c, f(b), f(c)}.
Now, consider all equalities in the formula and build a relation over S from
them: a = b gives (a, b) and a = c gives (a, c), we end up with the example
from earlier: R = {(a, b), (a, c)}. Then, compute RC , the congruence clo-
sure of R. RC is the smallest set which is a congruence relation on S, and
contains (a, b) and (a, c). In other words, if we interpret RC as the equality

39



relation, it is the smallest possible equality relation for which a = b and
a = c. This means RC contains all the equalities implied by the formula,
and only the equalities that are implied. Now, to check if the formula is sat-
isfiable, simply check whether the disequalities of the formula are in conflict
with the equalities of RC : we have f(b) ̸= f(c) in our formula, but we also
have (f(b), f(c)) ∈ RC , which means f(b) = f(c) is implied by the rest of the
formula. This formula is thus unsatisfiable. If there were no conflicts, the
formula would be satisfiable: simply assign a different value to each congru-
ence class in S/RC . This would satisfy all the entailed equalities, and thus
all the equalities of the formula. Since no two congruence classes are given
the same value, this would also mean that every pair of elements that can be
different are different. Since there are no conflicts, the disequalities would
thus also be satisfied.

The computation of the congruence closure of a relation can be done
efficiently (O(n log n), where n is the total number of symbols in the input
equalities) [38]. In practice, there is no need to keep track of RC as set of pairs
of elements which are equal (this could have a quadratic size), we can simply
keep track of the set of congruence classes. This is done using a union-find
data structure, so that congruence classes can be merged efficiently when two
elements within them are found to be equal.

It is also useful to represent the dependencies of the terms with one
another. For example, f(a, b) depends on a and b, f(f(a, b)) depends on
f(a, b),... These dependencies are commonly represented as a directed acyclic
graph, where the vertices are the different terms, and an edge between term
a and term b means that term a is directly dependant on b. The construction
of such graphs is fairly straightforward. They are mostly useful to keep track
of the direct predecessors of each term in the graph, i.e. the terms which are
directly dependant on a given term. This is important because when two
congruence classes are merged, we want to know which terms are dependant
on the terms that were merged, in order to be able to keep the congruence
rule consistent. Say we have the following terms in their congruence classes:
{{a}, {b}, {f(a)}, {f(b)}}. After handling the equality a = b, the congru-
ence classes of a and b are merged. It is important to notice that f(a) and
f(b) depend on a and b, because by the congruence rule, their congruence
classes now need to be merged too. Using this, the congruence closure can be
computed in the following way. This is a simplified algorithm adapted from
[39] for the sake of illustration. In practice, congruence closure needs to be
backtrackable, incremental, be able to efficiently generate small conflict sets.
This makes the overall algorithm quite a bit more complex. A description of
such an algorithm can be found here: [38].
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1. Start with each element of the set of terms S in its own congruence
class.

2. For each equality in the input, merge the two congruence classes con-
taining the two members of the equality. Note that if we were comput-
ing equivalence closure, we would be done after this step, but now we
also need to make the classes consistent with the congruence rule.

3. Build a set A of the terms that need to be checked against the congru-
ence rule. Initially, all the terms of S are in A.

4. For each term t in A, check against the terms that were previously
checked (i.e. those in S \A) if they are congruent due to the congruence
rule. If a match is found, add their congruence classes to a list of
congruence classes that need to be merged. Then, remove t from A.

5. For each pair of congruence classes that need to be merged, merge the
smaller one into the bigger one. Add all the (direct) predecessors of
the terms that changed congruence class (i.e. those that were in the
smaller congruence class) back into A.

6. If A is empty, we are done, otherwise go back to step 4.

The check in step 4 can be done in constant time using a hash table. The hash
table would map a tuple composed of a function symbol and an congruence
class for each argument of the function to the congruence class corresponding
to the result of the function given arguments in those congruence classes.
Mathematically, this table can be written as τ :

⋃∞
n=0(Σ

(n) × Cn) → C,
where Σ(n) is the set of function symbols of arity n found in S, and C is
the current set of congruence classes. It can be thought of as a way to map
a set of terms that are all congruent due to the congruence rule to a single
congruence class.

If all the terms in S \ A were previously encoded in such a hash table,
it is easy to check if t is congruent to any of them: just check if the entry
that would correspond to t in the table is already populated. There are three
cases:

• If nothing is returned, none of the terms in S \ A is congruent to
t due to the congruence rule. Note that they might still be in the
same of congruence class, or turn out to be congruent later when other
congruence classes are merged.
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• If the class returned is the congruence class of t, it means the congruence
rule applies between t and some other element in S \ A, but they are
already in the same congruence class, so there is nothing to be done.

• If the class returned is different from the congruence class of t, then
there is some element in S \ A that should be congruent to t but is
currently in another congruence class. The two congruence classes will
thus need to be merged.

6.2 Finite domain implications

Classical congruence closure computes, from a given set of equalities, all the
entailed equalities. It does nothing with disequalities apart from checking if
they are in conflict with the entailed equalities. This does not mean disequal-
ities cannot be propagated: for example, given the disequality f(a) ̸= f(b),
we can infer, by the contrapositive of the congruence rule, that a ̸= b. An-
other example: given a = b and a ̸= c, we know that we necessarily have
b ̸= c.

Reasoning about equalities is usually enough: in the classical Nelson-
Oppen procedure for theory combination [22], only the equalities need to
be shared between the different theory solvers, and individual solvers are
only responsible for checking if some formula within their own theory is
satisfiable or not. With an infinite domain, finding all the entailed equalities
is enough to decide satisfiability in the theory of equality with uninterpreted
functions: if there are no conflicts between the entailed equalities and the
given disequalities, a satisfying assignment can always be found (cf. last
section), otherwise the formula is unsatisfiable.

When the domain is finite, however, this is not necessarily true anymore.
Take for example the formula a ̸= b ∧ a ̸= c ∧ b ̸= c on a domain of size
2. The congruence closure algorithm would return the congruence classes
{{a}, {b}, {c}}. Since there are no conflicts with the disequalities, the formula
would be considered satisfiable. This would be true if the domain had at
least 3 elements in it, such that we can assign a different element to each
congruence class. With a domain of size 2, however, this is not possible, so
we may not necessarily find a satisfying assignment. In this case, it is in
fact not possible: a first element can be assigned to a, the second element
needs to be assigned to b because of the first disequality, then c cannot be
assigned anything since it must be different from both a and b, but there are
no elements left in the domain. No satisfying assignment can be found. That
said, the domain being too small does not necessarily lead to unsatisfiability:
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if the formula had been a ̸= b ∧ a ̸= c, then the same set of 3 congruence
classes would be reached by congruence closure, but a satisfying assignment
could be found with b = c.

All of this happens because the domain size implies a hidden condition,
that could be expressed as a disjunction of equalities: a = b ∨ a = c ∨ b = c.
The problem is that this is a disjunction, something that the congruence
closure algorithm is not built to handle. Since none of the equalities of
the disjunction are known to be true on their own, the disjunction makes
propagating equalities impossible, so reasoning about both equalities and
disequalities is now necessary to decide satisfiability. This makes the problem
much harder, and even NP-complete (cf. Section 6.4), so there is no hope of
finding a polynomial time algorithm unless P = NP.

In a classical SMT solver, this kind of formula would be dealt with at
the level of the SAT solver, which would try to guess which of the equalities
hold and which ones do not, then call the congruence closure solver to verify
if this assignment is possible. If not, it would keep trying other assignments
until it runs out of possibilities, at which point the SMT solver is forced to
return unsat. This process can be rather inefficient, as the SAT solver has no
way to know in advance which assignments will be satisfiable (no reasoning
is done on equality at all, it is just treated as an arbitrary predicate, which
could always be true or false). If we could do the entire reasoning about
the finite size of the domain inside the congruence closure solver, this back
and forth would be avoided, and the problem would be solved at once by the
theory solver. This is what is attempted in the rest of this work.

6.3 Application to Sudoku

Congruence closure over finite domains would apply very well to Sudokus. In
the quantifier-free encoding of Sudokus (cf. Section 3.1), all the constraints
are simply disequalities between elements of the same row, column, or block,
or equalities with known elements of the domain. The theory of equality
with uninterpreted functions is actually the only one involved. (In Section
3.1, integers are also involved, but they are only there to represent elements
of the domain, they are not strictly necessary.) The only reason the congru-
ence closure solver is unable to solve the Sudoku on its own is because the
domain is of size 9, instead of infinite. Correctly filling a 9 by 9 Sudoku grid
with infinitely many numbers to chose from would be really easy. If instead
the congruence closure solver could take into account the finite domain con-
straint, the Sudoku would be entirely solved. If it could do that efficiently
(or as efficiently as we can get for NP-complete problems), we would have an
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efficient way to solve the Sudoku using the SMT solver.

6.4 NP-completeness

Congruence closure over finite domains can be shown to be NP-complete.
The proof comes in two steps, as is always the case when proving NP-
completeness. First, we prove that the problem is part of NP by showing
that a solution can be generated non-deterministically and checked in poly-
nomial time. Then, we show that the problem is NP-hard by polynomially
reducing a known NP-complete problem to it (in this case, graph coloring).

The first part is fairly easy: given a formula in the theory of uninter-
preted functions, a domain size |D|, and a non-deterministically generated
partition C of the terms appearing in the formula, representing the set of
congruence classes, checking whether this partition satisfies the formula, the
domain size constraint, and the congruence rule can be done in polynomial
time. Equivalence axioms such as reflexivity, symmetry and transitivity are
automatically satisfied by the properties of a quotient set.

If the formula has size n, where n is the number of (potentially nullary)
function symbols appearing in the formula, the number of distinct terms is
bounded by n. A table mapping each term to its congruence class in C can be
built in linear time to allow subsequent constant time access. Then, checking
whether the formula is satisfied is really easy: for each equality, check that
the two terms are in the same congruence class; for each disequality, check
that they are in different congruence classes. This is done in linear time with
appropriate data structures. Checking the domain size constraint amounts
to checking that the number of equivalence classes (i.e. |C|) is smaller than
or equal to |D|. This ensures that each equivalence class can be assigned a
distinct element of the domain. This takes constant time. Finally, checking
that the congruence rule holds can be done by running the congruence closure
algorithm, starting with C as the set of congruence classes instead of having
each term in a separate class. If any classes are merged, this means the
congruence rule was not satisfied. If C is left unchanged, it was satisfied.
Congruence closure has complexity O(n log n) [38], so this can be done in
polynomial time too. This is assuming O(1) complexity for hash tables,
which is not actually the case in the worst case, but it stays polynomial.
Note that if we use the algorithm from Section 6.1, we only need to go
through the main loop once to know whether classes will be merged or not,
so the overall complexity might be even lower.

To prove that the problem is NP-hard, we can show that there is a poly-
nomial reduction from the graph coloring problem to congruence closure over
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finite domains. Indeed, if it was possible to decide the satisfiability of a for-
mula of the theory of uninterpreted functions under the domain cardinality
constraint |D| ≤ k for some positive integer k in polynomial time, then de-
ciding whether an arbitrary graph is k-colorable (i.e., whether it is possible
to assign one of k colors to each vertex such that no two adjacent vertices
have the same color) would be doable in polynomial time too.

The reduction is done as follows: given a (undirected) graph G = (V,E)
with n vertices labelled v1, . . . , vn, create fresh nullary symbols t1, . . . , tn cor-
responding to each vertex. Then, for each edge {vi, vj} ∈ E, add the dis-
equality ti ̸= tj to the formula. The resulting formula is a conjunction of
disequalities corresponding to each edge of the graph. It is easy to see that
under the domain cardinality constraint |D| ≤ k, this formula is satisfiable
if and only if G is k-colorable. Simply create a bijective map between the
elements of D and the k colors. If the graph is k-colorable, then a satisfying
assignment of the formula is obtained by assigning to ti the element of D cor-
responding to the color of vi. Conversely, if there is a satisfying assignment
of the formula, a k-coloring of the graph is obtained by coloring vi with the
color that corresponds to the element assigned to ti.

This finishes the proof that congruence closure over finite domains is NP-
complete. One can also note that functions are not involved in the reduction,
so we have an even stronger result: deciding the satisfiability of a formula in
the theory of equality under a domain cardinality constraint |D| ≤ k (with
k > 2, as graph coloring is only NP-complete for k > 2) is NP-complete.

6.5 Approaching the problem using SAT

When confronted with an NP-complete problem, a common approach is to
reduce the problem to a satisfiability problem in propositional logic, then
use a state-of-the-art SAT solver to do the heavy lifting. Since SAT is NP-
complete, it is possible to find a polynomial-sized encoding of any NP problem
in SAT. The hope is then that the SAT solver is able to solve the problem
efficiently in most cases. Obviously, due to NP-completeness, there are al-
ways some cases that will lead to exponential time. The effectiveness of this
approach is dependent on the initial NP-complete problem, as well as the
particular encoding that is used. Indeed, a bad encoding can lead to the
SAT solver not being able to reason efficiently about the problem, even if the
original problem was “simple”.

As it turns out, two of the problems for which this approach is particularly
effective, and often used in practice, are the Sudoku and graph coloring prob-
lems. This is promising because these two problems seem closely related to
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the problem at hand. The link between the theory of uninterpreted function
over finite domains and graph coloring is particularly apparent through the
reduction in Section 6.4. Sadly, the reduction goes in the wrong direction:
graph coloring can easily be encoded as a formula in the theory of unin-
terpreted functions restricted to a finite domain, but the converse is more
complicated. If there was a “straightforward” reduction to graph coloring
(i.e. a reduction where the resulting graph is not too complicated, or stays
similar in structure to the original problem), the reduced problem could sim-
ply be encoded in SAT the way graph coloring is usually encoded, and this
would hopefully lead to an efficient procedure for this problem.

In the case where only a single sort is involved in the formula, an al-
most straightfoward reduction to graph coloring is possible, after applying
the classical congruence closure algorithm. Some additional constraints need
to be encoded, but they can be added at the level of the SAT encoding. This
method is explained in the next section. When multiple sorts are involved,
possibly with different cardinality constraints for each sort, additional tech-
niques are necessary. In particular, it can be shown that reasoning about
each sort independently is not possible, as complex interactions can arise
between elements of different sorts. The problem thus needs to be dealt with
as a whole, rather than by trying to isolate the different parts. Different
approaches for doing that are discussed in the following sections.

6.6 Algorithm for a single sort

In the case of a single sort, i.e. when all elements/symbols/variables are part
of the same (finite) domain, the problem of satisfiability in the theory of
uninterpreted functions over a finite domain almost reduces to graph coloring
after applying congruence closure. Without the congruence rule, the problem
would directly encode as a graph coloring problem, but a bit more work is
necessary to take the congruence rule into account.

The first step is to apply congruence closure in the same way it would
be applied if there were no cardinality constraints. All the equalities derived
from reflexivity, symmetry, transitivity, or the congruence rule apply just as
well in the case of a finite domain as they do for an infinite domain. The
algorithm results in a set of congruence classes which is such that each pair
of elements within a same class need to be equal according to the equalities
given in the input formula, equality axioms, and the congruence rule. Each
pair of elements which are in distinct classes can be different according to
those rules. Nothing prevents two elements from two different classes from
being equal (if they are equal, the corresponding congruence classes should be
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merged, and the congruence closure should be recomputed). The congruence
closure algorithm only merges classes that must be merged.

At this point, one can already check whether there is a conflict between
the input disequalities and the resulting congruence classes. If two elements
within the same class are supposed to be distinct, the formula is unsatisfiable
regardless of the size of the domain.

Then, one can compare the domain size constraint with the resulting
number of congruence classes. If the size of the domain is larger or equal
to the number of congruence classes, then the problem is not different from
when the domain is infinite: a satisfying assignment is obtained by assigning
a different element to each congruence class. In this way, there can be no
additional conflict with the input disequalities. If the domain is smaller than
the number of congruence classes, this is not possible anymore, as there are
not enough elements to make all the congruence classes different. We now
need to selectively merge classes in such a way that the input disequalities
and the congruence rule stay respected, until there are at most as many
classes as elements in the domain. This is where the problem becomes much
harder.

If we disregard the congruence rule, the remaining problem is actually
equivalent to graph coloring: we want to know if we can assign |D| elements
(or colors) to |C| classes (or vertices) in such a way that the same element
is not assigned to two classes which must be different (or the same color is
not assigned to two vertices which are connected). This is easily encoded in
SAT (see below).

The congruence rule adds a special set of conditions, which does not
transfer well to graph coloring, but can be added to the SAT encoding with-
out too much trouble. If τ : S → C maps a term to the corresponding
congruence class, these conditions can be expressed in the following way:
for each two appearances f(x1, . . . , xn) and f(y1, . . . , yn) of a function sym-
bol f in the input formula, τ(x1) = τ(y1) ∧ . . . ∧ τ(xn) = τ(yn) implies
that τ(f(x1, . . . , xn)) = τ(f(y1, . . . , yn)), i.e. the two terms must be in the
same congruence class if their arguments are pairwise congruent. This is
simply a statement of the congruence rule. In the graph coloring analogy,
this would be equivalent to adding a bunch of conditions which say that if
certain pairs of vertices are assigned the same color, then some other pair
must also be assigned the same color. For example, if the input formula is
g(a, b) = b ∧ g(c, d) ̸= a, the set of congruence classes obtained after con-
gruence closure would be {{a}, {b, g(a, b)}, {c}, {d}, {g(c, d)}}. Translating
this into a graph coloring problem where vertex v1 corresponds to class {a},
v2 to {b, g(a, b)}, etc, the congruence rule would impose the condition that
if vertices v1 and v3 are the same color (i.e. a and c are congruent), and v2
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and v4 also the same color, then v2 and v5 must be the same color too. Such
conditions are of course not part of the classical graph coloring problem, but
they can be just added into the SAT encoding.

In summary, the algorithm is the following:

1. Apply congruence closure, disregarding the domain cardinality con-
straint. If the resulting congruence classes are in conflict with the
input disequalities, return unsat.

2. If the number of congruence classes is smaller than or equal to the
required size of the domain, we already have a model, return sat.

3. Encode the congruence classes, the disequalities, and the domain car-
dinality constraint to SAT (see below).

4. If the SAT solver returns unsat, return unsat. Otherwise, a model can
be extracted from the SAT model (see below), return sat.

Note that SAT is incremental: points 3 and 4 could be done progres-
sively, with the graph coloring problem encoded first, then adding needed
congruence constraint on demand whenever they are not satisfied.

6.6.1 SAT encoding

To encode the problem into SAT, start by encoding the graph coloring part.
If there are |D| elements to assign to |C| congruence classes, this can be done
by creating |D||C| propositions pi,j, with 1 ≤ i ≤ |D| and 1 ≤ j ≤ |C|,
indicating whether element i is assigned to class j. The following conditions
then need to be encoded:

• At least one element must be assigned to each class (|C| clauses of

length |D|):
∧|C|

j=1

(∨|D|
i=1 pi,j

)
• At most one element can be assigned to each class (|C||D|(|D| − 1)/2

binary clauses):
∧|C|

j=1

∧
1≤i<k≤|D|(¬pi,j ∨ ¬pk,j)

• For each pair of classes j and k that must be different (because some
element of class j is different from some other element of class k),

encode this condition as |D| binary clauses:
∧|D|

i=1(¬pi,j ∨ ¬pi,k)

This encodes the graph coloring problem. One can note the similarity with
the propositional encoding of Sudokus (cf. Section 3.1.2). This is because
each Sudoku is essentially an instance of graph 9-coloring.
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Now, the conditions resulting from the congruence rule need to be added.
For each pair of appearances of a function symbol in the input formula, de-
noted f(x1, . . . , xn) and f(y1, . . . , yn), construct a set args = {{c(x1), c(y1)},
. . . , {c(xn), c(yn)}}, where c maps a term to the numerical index of the cor-
responding congruence class. The constraint can then be encoded as: ∧

{j,k}∈args

 |D|∨
i=1

(pi,j ∧ pi,k)

⇒
 |D|∨

i=1

pi,a ∧ pi,b


where a = c(f(x1, . . . , xn)), b = c(f(y1, . . . , yn)), and j and k are taken in
any order. If both i-th arguments are congruent, i.e. if c(xi) = c(yi), then
the corresponding pair can simply be removed from args.

State-of-the-art solvers expect to receive the formula directly in conjunc-
tive normal form (CNF), which is not the case here. Converting the formula
naively using distributive properties and De Morgan’s law leads to a CNF of
exponential size in |D|. Instead, an equisatisfiable CNF of comparable size
can be obtained by introducing some new propositions. This is akin to a
Tseitin transformation.

Start by introducing |C|(|C| − 1)/2 propositions qj,k, with j < k, such
that qj,k is true when classes j and k are assigned the same element (i.e.
when the classes should be merged). Using these, the condition becomes(∧

{j,k}∈args qj,k

)
⇒ qa,b, which is a clause (of size at most arity(f) + 1),

since it is equivalent to:

qa,b ∨
∨

{j,k}∈args

¬qj,k

Unlike before, when their order did not matter, j and k now must be taken
in the order such that j < k, otherwise qj,k does not exist. In practice, not all
qj,k need to be created: only the ones such that {j, k} ∈ args, as well as qa,b,
are needed. These new propositions also need to be linked to the previous
ones:

qj,k ⇔

 |D|∨
i=1

(pi,j ∧ pi,k)


This is again not a CNF. The right to left implication can be encoded as |D|
ternary clauses (for each qj,k):

|D|∧
i=1

((pi,j ∧ pi,k)⇒ qj,k)←→
|D|∧
i=1

(¬pi,j ∨ ¬pi,k ∨ qj,k)
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The left to right implication requires a bit more work. For each qj,k, create
|D| new propositions ri,j,k (with 1 ≤ i ≤ |D|). The implication can then be
encoded using two sets of clauses:

• qj,k ⇒
(∨|D|

i=1 ri,j,k

)
←→ ¬qj,k ∨

∨|D|
i=1 ri,j,k

•
∧|D|

i=1(ri,j,k ⇒ (pi,j ∨ pi,k))←→
∧|D|

i=1(¬ri,j,k ∨ pi,j ∨ pi,k)

For each qj,k, this corresponds to one clause of size |D| + 1 and |D| ternary
clauses.

This concludes the SAT encoding, in conjunctive normal form, of the
satisfiability problem in the theory of equality and uninterpreted functions
under domain cardinality constraints. If the SAT solver returns unsat, the
formula is unsatisfiable. It it returns sat, a model can be extracted from the
SAT model. To do this, simply merge the congruence classes which have been
assigned the same element, i.e. merge classes j and k if there is an element
i such that pi,j and pi,k are both true . If qj,k is defined, this variable also
tells whether the classes should be merged. The resulting set of congruence
classes indicates all the (dis)equalities that should hold.

6.7 Extensions for multiple sorts

The previous algorithm only works in the case where there is a single finite
domain. It is possible to have problems in which multiple domains are in-
volved. Some of the domains can subjected to cardinality constraints, other
domains may be infinite. Of course, only elements within the same domain
can be equal. If we were working with the theory of equality alone, those
domains would thus be completely disconnected. It would then be enough
to apply the previous algorithm once for each domain, and the overall for-
mula would be satisfiable if and only if there is a satisfying assignment for
each individual domain. When functions are added into the mix, interactions
between domains become possible, and treating each domain completely in-
dependently is not possible anymore. For example, there could be a function
f : D1×Z −→ D2, with |D1| = 7 and |D2| = 64. The congruence rule would
result in constraints that link elements from both finite and infinite domains.

6.7.1 Isolating the domains

A first idea might be to reuse the single sort algorithm on each individual
domain, but first computing the additional equalities and disequalities stem-
ming from interactions with other domains. For example, take the problem
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a ̸= b ∧ a ̸= c ∧ f(b) ̸= f(c), where a, b, c ∈ D, |D| = 2 and f : D −→ Z.
f(b) ̸= f(c) imposes b ̸= c. Taking this into account, we can apply the sin-
gle sort algorithm on D with the formula a ̸= b ∧ a ̸= c ∧ b ̸= c. This is
unsatisfiable for |D| = 2, so the original problem is unsatisfiable as well.

Unfortunately, it is not always so simple to track down the constraints
stemming from inter-domain interactions. Had the formula been a ̸= b∧ a ̸=
c∧ f(b, d) ̸= f(c, b), with f : D×D −→ Z, the constraint resulting from the
last disequality would have been b ̸= c ∨ d ̸= b. This being a disjunction, it
cannot just be added to the input for the single sort algorithm: the theory
solver only works on conjunctions of (dis)equalities. A more powerful solver
would be required to be able to work with that kind of constraint. Typically,
a full blown SMT solver would be used to deal with such formulas. Worse,
some conditions might even be impossible to isolate to a single domain. Take
the problem a ̸= b ∧ a ̸= c ∧ A ̸= B ∧ A ̸= C ∧ f(b, B) ̸= f(c, C), where
a, b, c ∈ D1, A,B,C ∈ D2, |D1| = |D2| = 2, and f : D1 × D2 −→ Z.
The last disequality gives the disjunction b ̸= c ∨ B ̸= C, which cannot
be exclusively associated to any of the two domains. There is always the
possibility of guessing which branch of the disjunction is true, but as these
types of clauses add up, the number of possible guesses grows exponentially.
With these issues, trying to eagerly encode all the inter-domains constraints
into constraints for individual domains seems like a bad idea.

6.7.2 Lazy evaluation of inter-domain constraints

Instead of trying to guess in advance which constraints will hold, as suggested
in the last section, another approach may be to start by ignoring the inter-
domain constraints altogether. First try to find a model for each domain,
respecting only the intra-domain constraints, i.e. only taking into account
the input (dis)equalities on this specific domain, along with the axioms of
reflexivity, symmetry, transitivity, and only take into account the congruence
rule for functions that stay entirely within this domain (f : Dn −→ D for
some positive integer n). Then, if a model is found for this domain, see if
it fits with the rest of the constraints. If not, add a clause excluding this
model to the SAT encoding. Repeat until a model is found for each domain,
respecting all of the inter-domain constraints. If at some point we run out of
models to try, the problem is unsatisfiable. Here is a potential algorithm:

1. First execute classical congruence closure, as would be done without
any cardinality constraints. The equalities derived here are all neces-
sary. If there is a conflict with the input disequalities, return unsat.
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2. Select a finite domain for which a model has not been found yet, i.e. a
domain on which the number of congruence classes is greater than the
cardinality of the domain. If there is no such domain, return sat.

3. Encode the intra-domain constraints in SAT.

4. Run the SAT solver to try to find a model for this finite domain.

5. If no model is found, go back to the previous finite domain for which a
model was found. Negate that model in the SAT encoding and back-
track to remove the equalities propagated from that model, then try
again from step 4. If there is no such previous domain, return unsat.
Otherwise, propagate the equalities of the model using congruence clo-
sure.

6. If propagating leads to a conflict with the input disequalities, backtrack,
negate the model in SAT, and try again from step 4. If not, go to step
2.

This algorithm has the advantage that the SAT solver does not need to
start from scratch after each model it tries: if the SAT solver is incremental,
a clause negating the failed model can simply be added to the input, and the
SAT solver can continue with everything it had already learned.

The hope is that most of the conflicts occur within the domain, where
they can be reasoned about and resolved by the SAT solver. If all the conflicts
stem from inter-domain constraints, this is no different from a brute force
approach: try every combination until a global model is found.

Unfortunately, it is quite easy to come up with a problem where this
is the case. Take the quantifier-free encoding of the Sudoku problem. If
the numbers are represented as part of a finite sort D = {1, . . . , 9}, then
everything is fine: the problem is just a statisfiability problem in the theory
of uninterpreted functions, with a single domain of size |D| = 9. The problem
can be solved using the single sort algorithm of Section 6.6, or equivalently,
the above algorithm. The Sudoku will essentially just be re-encoded in SAT,
where it can (hopefully) be solved efficiently. Now, tweak this encoding
slightly: declare a function f : D −→ Z, and instead of encoding the row,
column, and block constraints in the form A(i, j) ̸= A(k, l), encode them
over the integers, through this new f function: f(A(i, j)) ̸= f(A(k, l)). For
example, A(1, 1) ̸= A(1, 6) becomes f(A(1, 1)) ̸= f(A(1, 6)). The constraints
pretty much stay the same, but this slight tweak converts them from being
intra-domain to inter-domain. If we run this algorithm on this new encoding,
things are very different: the row, column, and block constraints are not
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intra-domain constraints, so they do not get encoded into SAT. The SAT
solver comes up with a model for the constraints that were encoded: any 9
by 9 grid of numbers from 1 to 9 works, as long as it respects the numbers
that were already present. Then, this model is checked against the inter-
domain constraints, meaning the grid is checked against the Sudoku rules.
The chances of it working are of course very low, so the model is negated,
and the SAT solver is asked to come up with another one. It tries another
random grid, and the process repeats until the right grid is found. Needless
to say, this is extremely inefficient, and unlikely to solve the Sudoku in any
reasonable amount of time.

There are some ways to improve this algorithm which can mitigate this
kind of problem. The first one is that all inter-domain constraints do not need
to be evaluated lazily. Cases such as f(a) ̸= f(b), with f : D1 −→ D2 can
be converted to constraints on D1: a ̸= b. More generally, each time inter-
domain constraints lead to intra-domain consequences, those intra-domain
consequences can be encoded in SAT. This is a way to reduce the number
of possible models for the SAT solver. This improvement alone would solve
the problem of the above encoding of Sudoku: all the constraints could be
converted back to constraints on D, and the SAT solver would again only
have one model to try: the correct grid. There is however a trade-off to be
made here: computing all of the consequences of inter-domain constraints
can be rather impractical. On top of that, some of them might overlap.
Some more work needs to be done in order to figure out which constraints
are worth spending time on to encode in advance, and which ones should be
left to be evaluated lazily.

A second possible improvement would be be to negate multiple models at
once. When blindly propagating the equalities from the SAT model, finding
a conflict tells us very little: the only thing that is learned is that the model
was wrong, and another model which differs even slightly might be right.
Instead, we could try to track down why the model does not work. Imagine
a model containing the equalities a = b and c = d, and one of the inter-
domain constraints being f(a, c) ̸= f(b, d). That model would obviously lead
to a conflict, but we know this conflict is due to the conjunction a = b∧c = d.
Instead of a clause negating the whole model, the clause a ̸= b∨ c ̸= d could
be added to SAT. This would not only get rid of this specific model, but
also all the models where a = b ∧ c = d, which would all fail for the same
reason. In general, the smaller an explanation is for why the model fails (in
terms of the number of equalities that lead to the conflict; in the previous
example, that would be two), the more models can be excluded. Adding
some reasoning capable of tracking down why models fail, i.e. which are the
equalities that lead to a conflict, could greatly improve the performances
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of this algorithm. Fortunately, there already exist versions of congruence
closure capable of efficiently producing such small explanations [40].

6.7.3 Problems with isolating the domains

The last algorithm might not appear very convincing. Even with the given
improvements, there is still potential for inter-domain constraints to be treated
with what is essentially a brute-force approach, where reasoning about them
may instead be possible and a lot more effective. The system as a whole also
appears quite complex, resembling an SMT procedure with its interaction
with the SAT solver and lazy evaluation of the constraints that are not en-
coded. Overall, trying to reason about the different domains independently
may be a poor idea when they can be interconnected in such complex ways.

Actually, it can be shown that imposing cardinality constraints on one
domain can influence the satisfiability of cardinality constraints on another
domain. This means both domains can never be reasoned about fully inde-
pendently, as the constraints are satisfiable for each domain on their own, but
not when the domains are taken together. This phenomenon appears in an
example from earlier: a ̸= b∧a ̸= c∧A ̸= B∧A ̸= C∧f(b, B) ̸= f(c, C), with
a, b, c ∈ D1, A,B,C ∈ D2, and f : D1 ×D2 −→ Z. Each domain contains at
least two elements: a and b, or A and B. A third element for c (or C) is not
necessary if c can be equal to b (or if C can be equal to B). However, the
last inequality imposes b ̸= c ∨ B ̸= C. If we impose |D1| ≤ 2, the problem
is satisfiable by having b = c. The last inequality can be respected by taking
B ̸= C. Similarly, if we impose |D2| ≤ 2, the problem is satisfiable by taking
B = C and b ̸= c. However, if we try to take both constraints simultane-
ously, i.e. |D1| ≤ 2 and |D2| ≤ 2, the problem is not satisfiable anymore, as
we need b = c∧B = C, but this violates the last inequality. This means that
imposing the constraint on one domain prevents the constraint on the other
domain from being satisfiable.

6.7.4 Full SAT encoding of the multi-sorted problem

So far, the approach to the problem with multiple domains was to split it
into a problem on each individual domain, and try to reconcile the solutions
to get a solution to the global problem. As the last section suggests, this
approach can be problematic. Reasoning on all the domains taken together
has the potential to be really helpful, as it could avoid trying every solution
for every domain until common ground is found (or not). Information learned
on one domain could be propagated to another domain and reduce the search
space drastically. In the last example, with cardinality constraint |D1| ≤ 2,
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it can be learned that b = c, and thus B ̸= C. Important information about
elements in D2 is thus learned, coming from constraints on D1. Using this
information, none of the models where B = C have to be tried.

One way to have this inter-domain reasoning could simply be to encode
the whole problem in SAT, making the SAT solver work on every domain
and their interactions at once. Since the problem with multiple sorts is also
in NP, this must be possible with a polynomial encoding. As it turns out,
extending the encoding of the single sort problem to work with multiple sorts
is fairly straightforward.

One of the challenges is that some domains may have infinite cardinality,
which could not be encoded in the way finite domains are for the problem
with a single sort, since it would lead to infinitely many propositions pi,j.
Fortunately, there is no need to keep track of all the elements of the domain:
only the terms given as input are interesting. Since there is no limit on the
number of elements, there is no need to check that an element is available
for each of the terms (a term can always be different from every other term,
as long as there are finitely many terms). We can simply keep track of which
terms are equal. This is already partly done in the single sort encoding with
the use of the qj,k propositions.

Getting rid of the pi,j propositions lifts the domain cardinality constraints,
but another important rule is lost: transitivity. Transitivity was a natural
consequence of encoding which element is assigned to a term (or to congru-
ence class): if two classes j and k are equal, then they are both assigned the
same element i (pi,j and pi,k are both true). If a third class l is also equal to
class k, it is also assigned element i (pi,l is also true). Since both classes j and
l are assigned the same element (i), they are automatically assumed to be
equal, and transitivity is respected. This is not the case anymore if we only
track which terms/classes are equal: we could have class j equal to class k
and class k equal to class l (qj,k and qk,l both true), but class j different from
class l (qj,l false). This can be remedied by imposing transitivity explicitly,
with clauses of the form:

qj,k ∧ qk,l ⇒ qj,l ←→ ¬qj,k ∨ ¬qk,l ∨ qj,l

In domain with |C| congruence classes, there would be
(|C|

2

)
(|C| − 2) =

|C|(|C| − 1)(|C| − 2)/2 such ternary clauses. Reflexivity is implied in both
encodings (qj,j is not even defined). Symmetry as well: if j < k, qj,k rep-
resents both class j equal to class k and class k equal to class j; qk,j is not
defined. The congruence rule needs to be encoded explicitly, as is done in
the single sort encoding.
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6.7.5 Features of the theory solver

This section describes the features that a theory solver using the previous
algorithm would have, and the ones it would lack. A theory solver can have
a few desirable features [15], namely:

• Model generation: when the set of literals is satisfiable, the theory
solver can provide a model.

• Conflict set generation: when the set of literals is unsatisfiable, the
theory solver can provide a (possibly minimal) subset of literals which
cause the conflict.

• Incrementality: literals can be added without the solver needing to
start from scratch.

• Backtrackability: the theory solver can efficiently undo steps and return
to a previous state.

• Deduction of unassigned literals: the theory solver can deduce the value
of some unassigned literal if it is a consequence of the given set of
literals.

• Deduction of interface equalities: the theory solver can deduce (disjunc-
tions of) equalities which are consequences of the given set of literals.

Modern congruence closure algorithms have most of these features [38]:
they can efficiently produce models, produce small conflict sets, deduce all
entailed equalities, and they are incremental and backtrackable. The algo-
rithm described in the last section keeps all of these properties when the
domain cardinality constraints are not too tight, i.e., when the cardinality
of each sort is larger than the number of congruence classes after applying
congruence closure. In those cases, SAT does not need to be called, and the
algorithm correspond to pure congruence closure.

When at least one of the sorts has more congruence classes than allowed
by its cardinality constraint, the problem is encoded in SAT. Model genera-
tion is intact, which is good. SAT solvers being backtrackable and incremen-
tal, those features are kept as well: when a literal is added, the corresponding
propositions and clauses can be added incrementally to the SAT encoding.
SAT however does not perform any deduction: only a model is generated,
and there is no guarantee that any of the equalities in the model have to
hold.

Equalities may still be deduced in the following way: when a model is
found, take an equality from the model (which was not already deduced by
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congruence closure), and add its negation to the set of literals. If the prob-
lem becomes unsatisfiable, this equality was a consequence of the original set
of literals (and the cardinality constraints). Since each equality has to be
tested individually, this is likely to be inefficient in practice. When cardinal-
ity constraints are involved, the theory also becomes non-convex, meaning
disjunctions of equalities could be deduced as well. The same process may
be used, but as the number of disjunctions of equalities is exponential in the
number of equalities, this is definitely going to be inefficient.

When a new input equality is added incrementally, congruence closure
may be used in parallel with SAT to deduce the equalities which do not rely
on cardinality constraints. If enough classes are merged within congruence
closure when doing this, one may consider starting the SAT encoding from
scratch. This does not preserve incrementality in the SAT solver, but a
smaller encoding (due to less classes) may lead to less work overall.

Since deducing all entailed (disjunctions of) equalities is hard, appropri-
ate theory combination methods for non-convex theories should be used. For
example, delayed theory combination [23], or model-based theory combina-
tion [24].

There is also no obvious way to have efficient conflict set generation when
SAT is involved. This along with the difficulty to deduce equalities are two
important limitations to the SAT-based approach. Future research may try
to find ways to mitigate this.
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Chapter 7

Conclusions

This work started by exploring the capacity of current state-of-the-art SMT
solvers to solve combinatorial finite domain problems such as Sudokus. It was
found that, while most solvers can efficiently solve Sudokus in their quantifier-
free encoding, introducing quantifiers leaves a big hit on performance. This
lead to investigating approaches to automatically remove quantifiers in the
presence of such finite domains.

A definition of an “effective finite domain” was established for Skolem
formulas quantified over integers, allowing the elaboration of an algorithm
for detecting them, and eliminating quantifiers through exhaustive instanti-
ation on the effective finite domain. The algorithm makes use of an oracle
for determining the satisfiability of ground formulas. Since no quantifier rea-
soning is necessary, this technique can be used even with solvers which do
not support quantifiers, allowing them to solve the quantified problem if all
quantifiers can be eliminated. On top of this, the technique is also reason-
ably efficient. For large problems, this allows a significant performance gain
by first eliminating quantifiers and working on the dequantified encoding,
compared to directly working with the quantified encoding.

Future work on this technique includes testing it on various benchmarks
for finite domain problems (such as those provided by Clearsy for the BLaSST
project 1), evaluating when this procedure is worth using and when it should
be avoided, implementing it efficiently in a state-of-the-art solver, and in-
vestigating techniques for partial instantiation when the finite domain is too
large for exhaustive instantiation to be practical. It may also be worthwhile
to investigate whether similar techniques can be applied to sorts other than
the integers.

In the second part of this work, algorithms were developed for working

1https://www.clearsy.com/en/research-and-development/blasst/
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on the theory of uninterpreted functions with domain cardinality constraints.
The satisfiability problem for a set of literals in this theory was shown to be
NP-complete. SAT-based algorithms extending classical congruence closure
were then developed and analyzed theoretically. For domains that are large
enough, congruence closure is preserved as is, maintaining its efficiency along
with efficient conflict set generation, incrementality, backtrackability, and
deduction of entailed equalities. When the domain becomes too small, SAT
takes over ensuring a complete reasoning. The efficiency of modern SAT
solvers hopefully leads to a fast procedure for generating a model or proving
unsatisfiability, while maintaining incrementality and backtrackability.

Those algorithms are left to be implemented and tested within an SMT
framework. When the domain is small and SAT is used, (efficient) conflict set
generation and deduction of equality are lost. The theory being non-convex,
they are not easy to recover. This can make theory combination significantly
harder. Future work may aim at bringing them back, at least in some limited
form.
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Appendix A

Source code

The code used in Chapters 4 and 5 is available on the ULiège GitLab at
https://gitlab.uliege.be/Louis.Dasnois/satisfiability-modulo-theories-

for-finite-domains. It contains various encodings of Sudokus in the SMT-
LIB format [3], described in Chapter 4, and a prototype implementation,
using PySMT [37], of the dequantification procedure described in Chapter 5.
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satile and industrial-strength SMT solver,” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2022, pp. 415–442.

[35] B. Dutertre, “Yices 2.2,” in International Conference on Computer
Aided Verification. Springer, 2014, pp. 737–744.

[36] “cvc5 smt-comp scripts.” [Online]. Available: https://github.com/cvc5/
cvc5/tree/main/contrib/competitions/smt-comp

[37] M. Gario and A. Micheli, “PySMT: a solver-agnostic library for fast
prototyping of SMT-based algorithms,” in SMT workshop, vol. 2015,
2015.

[38] R. Nieuwenhuis and A. Oliveras, “Fast congruence closure and exten-
sions,” Information and Computation, vol. 205, no. 4, pp. 557–580, 2007.

[39] P. Bahr, “Implementation of a fast congruence closure algorithm,” Tech-
nische Universität Dresden, Tech. Rep., 2007.

[40] R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence closure,”
in International Conference on Rewriting Techniques and Applications.
Springer, 2005, pp. 453–468.

64

Barbosa1b.pdf
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35
https://github.com/cvc5/cvc5/tree/main/contrib/competitions/smt-comp
https://github.com/cvc5/cvc5/tree/main/contrib/competitions/smt-comp

