e LI.EGEuniversité e
b Library .

https://lib.uliege.be https://matheo.uliege.be

Master Thesis : Diffusion models : seek of information and structure in latent space

Auteur : Maziane, Yassine

Promoteur(s) : Louppe, Gilles

Faculté : Faculté des Sciences appliquées

Dipldme : Master : ingénieur civil en science des données, a finalité spécialisée
Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/18351

Avertissement a l'attention des usagers :

Tous les documents placés en acces ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément
aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), I'utilisateur du site peut lire, télécharger,
copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les
indexer, s'en servir de données pour un logiciel, ou s'en servir a toute autre fin Iégale (ou prévue par la réglementation
relative au droit d'auteur). Toute utilisation du document a des fins commerciales est strictement interdite.

Par ailleurs, I'utilisateur s'engage a respecter les droits moraux de I'auteur, principalement le droit a I'intégrité de l'oeuvre
et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, a titre d'exemple, lorsqu'il reproduira
un document par extrait ou dans son intégralité, I'utilisateur citera de maniére compléte les sources telles que
mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du
document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

3) IEGE

UNIVERSITY OF LIEGE
SCHOOL OF ENGINEERING AND COMPUTER SCIENCE

Diffusion models : seek of
information and structure in latent
space

A dissertation submitted in partial fulfillment of the requirements
for the degree of
Master of Science in Data Science and Engineering

Author Advisor
Yassine MAZIANE Professor Gilles LOUPPE

Academic year 2022-2023

Acknowledgements

I am deeply grateful to Allah, the Most Merciful and All-Knowing, for granting me the
ability to pursue studies and complete this thesis. I am forever thankful for His boundless
mercy that has encompassed every aspect of my accomplishments.

I wish to convey my heartfelt gratitude to Professor Gilles Louppe for his invaluable
teachings and unwavering guidance throughout the course of this work. Your ideas and
mentorship have been instrumental in shaping the outcome. Additionally, I would like to
express my gratitude to all the professors and assistants at the University of Liege who
have provided me with the opportunity to receive this amazing education. Their guid-
ance and expertise have been invaluable and have greatly contributed to the successful
completion of this thesis.

Lastly, I would like to extend my gratitude to my parents for providing me with an ideal
study environment and for their support during my academic journey. Also, I wish to
express my appreciation to my friends for the wonderful moments we have shared and the
mutual assistance we have provided to one another. Your presence has not only enriched
my academic experience but has also contributed significantly to my personal growth.
I am truly thankful for the camaraderie and support that have made this journey both
memorable and rewarding.

Abstract

Diffusion models, a prominent subset of generative modeling techniques, have gained
substantial attention for their ability to generate high-quality data samples from complex
distributions. They work by gradually adding noise to data and learning to remove
this noise. They then generate samples by undergoing a series of denoising steps from
gaussian noise. This thesis aims at understanding the feature choices a diffusion model
makes when generating a sample. We know that the choices must be made between the
gaussian noise sampling and the last denoising step however we don’t know when exactly.
The prevailing consensus in the diffusion model field suggests that the choices are made
at the very beginning of the diffusion but there is no reliable evidence for that.

The central research question thus revolves around the timing and specifics of these choices
the models make. Specifically, this study investigates whether these choices are instanta-
neous, reversible, influenced by certain factors etc ...

Through a series of carefully designed experiments, we explore various facets of diffusion
models. First, we examine the preservation of features along the forward-backward chain
to uncover whether the model aims to replicate initial samples during diffusion. Subse-
quently, we devote considerable effort to comprehending the destruction of information
in the forward process. This exploration stems from the realization that the generative
capacity of diffusion models hinges on the analysis of their forward mechanisms. We then
investigate the actual feature choices made in the backward chain, along with the timings
and contributing factors.

Our findings reveal that the destruction of feature information in the forward process
and the creation of features by choice in the backward process are primarily determined
by the noise variance schedule. Notably, under the linear schedule, the diffusion chain
can be divided into distinct regions. The initial phase, characterized by high informa-
tion retention, contributes mainly to sample aesthetics without altering essential features.
The subsequent region, symmetrically centered in the diffusion process, stands out as the
critical juncture for feature choices. Surprisingly, we observed that these choices are not
instantaneous but evolve over several denoising steps. This realization bears significance
in addressing our research question. The third region on the other is much less interesting.
Samples tend to have lost all their information once they reach it and they essentially
transition to normal samples in that region.

The partitioning of regions within the diffusion depends not only on the time at which
features tend to disappear in the forward process but also on the rate at which they

vanish, as not all features are equally robust against Gaussian noise. While our results
provide valuable insights, we acknowledge that further research could fortify our claims
and explore additional ideas. This thesis contributes to the discourse on diffusion models
by shedding light on the temporal dynamics of feature choices, emphasizing the inter-
play between noise variance and generative capabilities, and opening avenues for future
investigations.

Contents

1 Introduction 6
1.1 Context e 6
1.2 Research question 8

2 Background 11
2.1 Generative modelling L 11
2.2 Density estimation and the curse of dimensionality 12
2.3 From AE’sto VAE’s 13

2.3.1 AE’s . . . 13
232 VAE’s 18
2.4 Diffusion models with score-matching and noise-conditioned score networks 26
24.1 Score vsdensity 26
2.4.2 Score approximation 27
2.4.3 Langevin dynamics Lo 28
2.4.4 Manifold hypothesis 29
2.4.5 Inaccurate score estimation L. 29
2.4.6 Noise conditional score network 30
2.5 Diffusion models as probabilistic denoising models 31
2.5.1 Diffusion models as an extension of VAE’s 31
2.5.2 Forward process 32
2.5.3 Backward process 33
2.5.4 Training the denoising network 34
2.6 Latent diffusion models L 35

3 Related Work 36

3.1 Paper 1: On Analyzing Generative and Denoising Capabilities of
Diffusion-based Deep Generative Models 36
3.1.1 Papersubject 36
3.1.2 Paper contributions L oL 36
3.1.3 Paper conclusions o 39

4 Experiments 40
4.1 Dataset : dSprites 40
4.2 Pilot experiments : VAE study 41

4.2.1 Latent structure importance 42
4.2.2 Latent size importance L. 45
4.2.3 Stochasticity and regularity importance 47
4.2.4 Latent representation importance 48

425 Somenoteson VAE 49

4.3 Pilot experiments : Diffusion model study 52
4.3.1 Latent structure importance 53
4.3.2 Latent size importance L. o7
4.3.3 Stochasticity and regularity importance L. 61
4.3.4 Latent representation importance L. 63
4.3.5 Some notes on diffuserso Lo 64

4.4 Experiments forewordo 67

4.5 Experiment 0 : Feature conservation 68
4.5.1 Experiment summary 68
4.5.2 Experiment backgroundo 0oL 69
4.5.3 Experiment procedure Lo 70
4.5.4 Experiment preparations 71
4.5.5 Experiment results and discussion 72

4.6 Experiment 1: Forward 7
4.6.1 Experiment summaryo 7
4.6.2 Experiment background 000000 7
4.6.3 Experiment procedure 78
4.6.4 Experiment preparations 80
4.6.5 Experiment results and discussion 80
4.6.6 A quick look at normality L. 90

4.7 Experiment 2 : Backward 00000 91
4.7.1 Experiment summaryo 91
4.7.2 Experiment background 92
4.7.3 Experiment procedure 92
4.7.4 Experiment preparations00 93
4.7.5 Experiment results and discussion, 93

4.8 Experiment 3: Real vsfake 98
4.8.1 Experiment summary 98
4.8.2 Experiment backgroundo 99
4.8.3 Experiment procedureo 99
4.8.4 Experiment preparations Lo 100
4.8.5 Experiment results and discussion 100

Conclusion 102

To go further 104

Appendix 105

71 VAEs. . . . 105
7.1.1 Latent structure importance 105
7.1.2 Latent size importance 105
7.1.3 Stochasticity and regularity importance 105
7.1.4 Latent representation importance 105

7.2 Diffusers 105

7.3 Main experiments 105
7.3.1 Experiment 0 : Feature conservation 105
7.3.2 Experiment 1: Forward, 105

Chapter 1

Introduction

1.1 Context

Diffusion models are members of the large family defined by generative modelling, the lat-
ter includes both VAE’s, GAN’s but also density estimation techniques and many others.
They were initially defined by [1] finding their roots in non-equilibrium thermodynamics
but they emerged in several forms and in various frameworks. [2] defined noise-conditioned
score network to approximate the score of noisy data, [3] defined denoising diffusion prob-
abilistic models which simply learn a reverse time-dependent distribution of the noise over
images and [4] introduced it under the SDE framework.

Essentially all these methods fall in the domain of diffusion models but they are simply
perceived from a different angle.

The purpose of diffusion models is to model and generate data samples from potentially
complex distributions. They are primarily used for tasks such as image generation, image
inpainting but they can also be used for more sophisticated tasks such as representation
learning as they learn a usually meaningful representation of the data distribution during
the training process. Indeed, the model must capture important features and structures
of the data to be able to generate samples that are highly likely to be drawn from the
data distribution

Diffusion models’ main idea is to gradually noise to a data sample up until it contains no
information regarding the distribution it was sampled from, one then creates a sample by
feeding this pure noise to a network that was trained to remove a certain level of noise
from an image. At each forward pass the image gets less and less noisy such that after
a certain number of forward passes the image no longer contains noise and has a large
likelihood of belonging to the data distribution the network was trained on. The gener-
ative aspect of diffusion models arises from the use of the denoising network, instead of
simply returning the denoised output, one can return a sample normally close to it, that
is we define a normal around the denoised output and return a realization of that normal
distribution.

The observed brownian paths in figure 2.24 exemplify this process. To summarize, the
diffusion model’s sampling entails drawing Gaussian noise, iteratively denoising with a
network, and stochastically selecting the next output from a normal distribution centered
around the denoised output, with variance dictated by the noise schedule.

As we’ll need at least a shallow understanding of diffusion models to get the point of the

Data <——— Generating samples by dnoiing

Destructing data by adding noise ———> Noise

FES FES B
LU

: Score function

(Probability of perturbed data i

Noise One denoising step

Figure 1.1. Fig. 2. Diffusion models smoothly perturb data by adding noise, then reverse
this process to generate new data from noise. Each denoising step in the reverse process
typically requires estimating the score function (see the illustrative figure on the right),
which is a gradient pointing to the directions of data with higher likelihood and less noise.

research question, we might as well describe their main components in a few lines now.
The class of diffusion models generally consists in these several components :

1.

Noise schedule : A noise schedule defines the levels of noise that gradually increase
in the forward process, i.e, the process in which we add noise. Practically, the added
noise of level t follows a multivariate normal with zero mean and a covariance matrix
set to a multiple of the identity, the multiple is given by the noise schedule evaluated
at t. The noise schedule is designed such that for large t, the distribution of noisy
images converges to a standard Gaussian.

. Forward process : Given a sample z, from a data distribution ¢(xg), a forward

process generates a sequence of random variables xq, 9, x3, ...,z by applying a
transition kernel ¢(z¢|x¢—1). This transition is usually a Gaussian with zero mean
and augmenting variance such that at every transition, the samples get more and
more noisy.

. Backward process : The backward process aims at learning the reverse of the forward

process, i.e, it aims at removing a certain level of noise from a sample. It is defined by
po(zi—1|x¢) and aims at slowly recovering the data distribution. Where the forward
process slowly injects noise to destroy all information and structure of a sample, the
backward process does exactly the opposite.

Training objective : Ideally, we would like the backward process to approximate
as well as possible the reverse the forward process, this would require minimizing
the conditional K L(q(z;—_1|x¢, zo)||pe(zi—1|7:)) over all samples from the data dis-
tribution. This loss can actually be shown equivalent to minimizing the predicted
noise.

Sampling procedure : Assuming a trained denoising model py is available, one can
generate samples by drawing a standard Gaussian sample and then iteratively de-
noise it for T steps

A big picture of diffusion models may be looked at on fig 1.1. The forward process is
applied in the first row while the backward process is applied on the second row to form
data from noise. As we can see on the right, taking a step, in the image space, in the
denoising direction is similar to taking a step towards regions of higher likelihood of the

data. Indeed, the less noisy image is more likely to belong to the data distribution, we’ll
show the previous result in the background section.

Diffusion models are particularly trendy because of their sample quality and ease of train-
ing, they are the new state-of-the-art family of deep generative models. They have shown
their strength in a wide variety of domains such as computer vision, natural language
processing, time series forecasting, representation learning and biomedical imaging.

1.2 Research question

From experiments, we know diffusion models are good at generating images but as these
images have some features that the model must have learnt, it had, at a point in the
diffusion chain, to choose which features this image will have. That is exactly what our
research questions tries to understand : If some features choices about the gener-
ated sample are made, when are they actually made in the diffusion chain ?

Suppose you trained a diffusion model on the celebA dataset, which comprises images
of individuals with varying characteristics such as gender, age, hair color, and more. In
order to generate high-quality images, the sampling process of the diffusion model must
determine specific attributes, such as gender, age, and other characteristics. However, the
precise timing of when these attribute choices are made raises questions.

Are they made when sampling the gaussian noise and thus the whole diffusion chain is
simply about making these features appear at 07 Are they made close to 0 such that the
whole diffusion is rather about making a generic samples while its features will be decided
at the very end 7

Maybe the choice happens several times, first the diffusion model "intends" to generate a
man but as the brownian path slowly takes form, it realizes it’ll be much easier to generate
a woman.

p(z1)

Datax Encoder p(2zo)

_— O
= =e\

-
=1

Reconst. <t < =
p(x|zo) Decoder KL(q(zo|x)||p(20)) Latent Space Denoising

Figure 1.2. Latent diffusion models and brownian paths defined by realizations of the
denoised output

On one hand, if such choices were already made at T and fixed through all the diffusion
chain, then the whole information regarding the features of the sample could be picked up
from the gaussian noise. Quite extremely, we could even suggest there exists a partitioning
of the image space where each pixel is a float in [0,1] such that [0,1]%**%* = Ay B with
AN B = () where if the gaussian noise was in A, the final generated image would be a
man but if the gaussian noise was in B, the generated image would be a woman.

On the other hand, if choices were made close to 0 in the diffusion chain, what is the
purpose of backward-diffusing a sample several times at large cost if it contains no infor-
mation whatsoever 7 Is it purely for aesthetics 7

So far we only considered diffusion models operating in the image space however some
of them operate in a latent space, the latter is simply defined by means of a VAE, this
idea was introduced by [5]. Instead of noising images and learning a model to denoise
them, one noises encodings of these images which are usually of much smaller dimension.
Sampling is then done by drawing a gaussian noise in the VAE space, denoising it for
several steps and then finally decoding from latent space to image space. It allows to
greatly reduce the computation to generate samples as the denoising steps are done in a
smaller space.

On the left of figure 2.24, we can see the encoding part where a VAE encodes a data
sample x to a latent zy. The VAE itself is trained to have good a reconstruction of the
samples of the data set but also to have a latent distribution close to that of a normal.
We will cover all aspects of VAE such as its design up to its training in the background
section but it may be useful to get a shallow understanding of it right here.

As images speak louder than words, we may want to look at fig 1.3 where we see that the
input image is fed to an encoder which outputs a mean vector and a variance vector. These
two elements will then be used to parameterize a normal distribution whose covariance
matrix will have null off-diagonal elements. The latent code is then simply a realization of
that normal distribution, that is what makes VAE stochastic compared to classical AE’s.
Finally, the decoding also stochastically maps the latent to a point in the space in which
in the inputs live.

Notice we talked about vectors but VAE may map objects of any dimensions to objects
of any dimensions, that is, you may map images to arrays but also vice-versa but usually
we like them to conserve the nature of objects they are fed but simply to down-scale them

encode > decode >
Inference Generative

Reconstructed
Image

) 2

Latent
Distribution

Figure 1.3. VAE encoding an image to a mean and variance vector then sampling from a
normal parametrized by these mean and variance and finally decoding the sampled latent

without loosing to much information.

We vaguely introduced VAE’s simply to inform the reader that our experiments will also
take place in the latent space where information stands in a different form.

This work is not novel in the sense that we don’t try to answer a question to which the
community has absolutely no clue. Rather, there is no clear consensus on the matter
even though many papers, which we’ll briefly summarize, argue that the realization of the
gaussian noise has very little but importance but what do matter are the denoising steps
at the very beginning of the diffusion chain, i.e, close to T.

10

Chapter 2

Background

As we're doing a thesis on generative modelling, we’ll first define what it is, why it matters
and describe a few members of that large family. Particularly, since this work is defined
in the diffusion and VAE framework, we’ll focus onto these two members.

2.1 Generative modelling

Generative modeling refers to a class of machine learning techniques that aim to model
and understand the underlying structure of a given dataset in order to generate new data
samples that resemble the original data distribution.

One may wonder why one would want to learn to generate purely synthetic data while
there is already plenty of real data available in the real world?

The first and most obvious reason is simply data augmentation. Extracting raw data can
be time consuming and labelling the data is usually a quite expensive task, especially if
it has to be done manually. It is an accepted idea that the more data a model trains on,
the better it will perform on new data on average. Thus, increasing the data set size by
adding generated samples might be a simple yet effective idea to improve the performance
of a model. This is particularly beneficial when working with limited or imbalanced data
sets.

The second is that generative models can learn meaningful representations of the input
data without the need for explicit labels or supervision. By capturing the underlying
structure and patterns within the data, generative models enable unsupervised learning
tasks such as clustering, dimensionality reduction, and anomaly detection.

Finally, to quote Richard Feynman : "what I cannot create, I do not understand".

Generative models focus on learning the joint probability distribution of the input data
and the corresponding labels P(X,Y’) or simply P(X) if there are no labels. Generative
models are concerned with understanding the structure, characteristics and patterns of
the entire dataset. Essentially they try to learn the features of the dataset that makes it
unique in some sense.

A cat dataset is different from the celebA dataset not simply because pixels are different,
but rather because the features that define a cat, such as pointy ears, whiskers, and a tail
are distinct from the features that define human faces, such as eyes, nose, and mouth.

11

Discriminator

D(x)

Generator

G(z)

|i| \w X

Flow-based models: X Flow _.E—. Inllfrse x/
Invertible transform of f(x) (2

distributions

GAN: Adversarial ’ x
training

VAE: maximize
variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

Figure 2.1. Overview of several famous generative models from

Generative models aim to capture these unique features and their relationships within the
data, allowing them to generate new samples that possess similar characteristics.

They differ from discriminative models in the sense that discriminative models divide the
data space into classes by learning the boundaries, whereas generative models understand
how the data is embedded into the space. The former learns the distribution P(Y|X)
while the latter learns P(X,Y).

There are a lot of generative models but the most popular in chronological order are kernel
density estimators, autoregressive models, VAE’s, GAN’s and diffusion models. We may
observe an overview of the currently most popular generative models on fig 2.1 taken from
! We now proceed to describing the main members of that family, their description length

can be considered proportional to their importance in this work.

2.2 Density estimation and the curse of dimension-
ality

Density estimation techniques have become outdated and are no longer in use however
understanding their major drawback is key to understanding one of the most important
designing choice of diffusion models.

When it comes to generating data, the simplest approach would involve sampling from a
known Probability Density Function (PDF). However, in almost all real-world scenarios,
it is impossible to get the exact PDF. While we might have a general understanding of
the distribution shape, we have no closed form for it. That is why modelization plays
such an important role in today’s science.

Thttps://lilianweng.github.io/posts/2021-07-11-diffusion-models/

12

As a silly example, consider the distribution of men’s sizes. We might expect it to resemble
a normal distribution centered around 175 with a small variance, but this is an assumption
on both the family of distribution that governs the men’s sizes as well as its parameters.
Something better one could do would be to gather a dataset of iid samples that consist
in men’s sizes, postulate a family of distribution and look for the parameters that would
best explain the data. This problem is referred to as "probability density estimation”.

Suppose we are trying to approximate the men’s size density p(x) where x € R. To
get a good level of accuracy in our approximation, we require the data set to contain at
least 10 samples per allowed value of the size, in our case, x would be in the discrete set
{150,151, ...,200} rather than in R, we thus do not deal with a PDF but a PMF P(x) .
This means the data set should be at least of size 500.

Now suppose we want to model the distribution on both the size and the weight where
the weight is in {50, 51,...,100}, so we add a dimension to our feature space. We now
look for P(xy,x2) where x; € {150,...,200} and x2 € {50,...,100} while aiming to
maintain the same accuracy. The problem is that there are many more combinations of
values. Previously, we had only 50 possible sample outcomes, but now we have 50 possible
weights for a given size, resulting in 502 sample outcomes. This means the dataset should
be at least of size 2500.

We quickly realize that for typical images that contain not 2 but 3*720*1280 = 2764800
variables, a dataset large enough to learn decent parameters cannot be constructed.

More generally, to parameterize a density over objects that are n-dimensional with each
sample taking one out of k values and requiring at least m samples per point in the sample
space, one needs mk™ data points in its dataset. Once again, machine learners are hit by

the curse of dimensionality : in high-dimensional spaces, the volume of the space increases
exponentially with the number of dimensions. This means that the data becomes more
sparse and the available data points may not be representative of the entire space. As a
result, estimating the density accurately becomes increasingly difficult.

2.3 From AE’s to VAE’s

2.3.1 AEFE’s

Before diving into the details of VAE’s, it may be worthwhile to motivate their existence by
describing their predecessor : the Auto-Encoder. An AE is a pair of parametric functions
: the encoder fy(z) and the decoder g,(z). The encoder maps points from the original
space X to a latent space Z where the dimension of the latter is usually smaller than that
of the former. The decoder can be seen as the reverse-encoder, it maps a latent z to its
counterpart living in X. A simple overview of AE’s can be found at 2.2 from 2.

By definition, a good encoder-decoder encodes an input object into an object of smaller
size while losing as little information as possible, if all information about the input is lost,

2Francois Fleuret, Deep Learning, UNIGE/EPFL

13

R B
g \

N,
>

— Latent space &

Original space &

Figure 2.2. Auto-Encoder basics : the encoder f maps points from a 3D-space to points
living in a 2D-space and the decoder g does exactly the opposite

then the reconstruction from the decoder will be meaningless and inaccurate, as it won'’t
represent the original input. Therefore, the goal of a good encoder-decoder is to strike a
balance between reducing the size of the input representation (dimensionality reduction)
and preserving enough information to enable accurate reconstruction. Clearly, a good
reconstruction is a necessary condition for an AE to be considered decent.

Let z = fp(x) and X = g4(z), we can define the reconstructed sample as X = g4(fo(x)),
from that we may define the true reconstruction loss for a data distribution p(z) over X

Ligc = Bxpio [[1% = 96(fo(x))|?] (2.1)

As usual we cannot compute the true loss and thus one trains the parameters 6 and ¢ by
using an empirical estimate of that loss :

N
0,6 = argayin+ 3 IIx — go (/o) 2.2
’ =1

Now one has to postulate a model for fy and g4, as usual in deep learning we’ll parame-
terize these two function by neural networks for several reasons :

1. Non-linearity: Neural networks can capture non-linear relationships between vari-
ables assuming non-linear activation function, allowing them to model complex pat-
terns and structures in the data.

2. Representation learning: Neural networks are able to to automatically learn useful
representations from the data through training. By stacking multiple layers and
using non-linear activation functions, neural networks can progressively extract hi-
erarchical features at different levels of abstraction. Furthermore, neural networks
are known for being good at manifold learning making them a choice of interest
when one essentially seeks to project data on a lower-dimensional embedding

14

X (original samples)

72/ 04144200
901 597%4 26075
4074 0\V\3\34u72
gof(X) (CNN, d =2)
74/09/1949%706
9015979976065
90790\ 3\13472
gof(X) (CNN, d = 4)
72/04/ 4984900
9015973547 6065
4O 40\)\3\3072
gof(X) (CNN, d = 32)
72/ 0414689200
90) 5973472605
407140\ 3\3472

Figure 2.3. Reconstructions of MNIST test samples by feeding them to a CNN-based AE
trained on the MNIST dataset, d indicates the number of channels of the latent bottleneck

3. Inductive bias: Based on the input data format, one can choose among various types
of neural networks, such as convolutional neural networks for image data, recurrent
neural networks for sequential data, or graph neural networks for graph-structured
data, making them practical for a wide range of real-world applications.

4. Framework : Powerful computational frameworks, hardware accelerators, and ad-
vancements in training algorithms have greatly contributed to the success of neural
network-based AEs. These advancements enable efficient training and scalability,
making neural networks practical for handling large, high-dimensional data sets.

We may now want to look at the performance an AE could get. As we said previously, a
good AE should have very little reconstruction error but obviously the latter depends on
the size of the bottleneck, the size of the embedding.

For the sake of the example we’ll look at reconstruction for a CNN-based AE trained
on the MNIST dataset. Specifically, 3 AE’s were trained each with different bottleneck
sizes. These sizes are as follows: (2, 1, 1), (4, 1, 1), and (32, 1, 1). We may observe the
reconstruction on fig 2.3, the results are very decent. Indeed, using d=2 variables, we still
manage to recover the digit class label most of the time from the eye, a classifier would
have very decent accuracy on the reconstructions. Furthermore, using d=32 variables,
the reconstruction is almost perfect even though it works with a compression ratio of
283*228 ~ 0.04 since MNIST samples are 1x28x28. Clearly it seems that the larger the
latents, the better the reconstruction. This seems quite expected as the more variables

one has, the information one can keep after compression.

We may conclude that AE’s are good data compressors however we are not interested
in data compression but in generative modelling and we have yet not seen any data
generation. To generate data, a simple starting point would be to define a density model

15

Autoencoder sampling (d = 8)
4457580 +3239%0
0178724442549
2880102869402

Autoencoder sampling (d = 16)
29241?54303#
093863553340
3/ 56Rhor2£F7585

Autoencoder sampling (d = 32)
23§ FH Ll 79 x
W CTEQH 2R 8E 7
A LF34u 2 ET 42 ¢

Figure 2.4. Generating samples by drawing a latent from a normal model living in Z and
decoding them to the image space X

q over the latent space Z. Generating a sample x € X would simply consist in :
1. Sampling z ~ ¢
2. Decoding x = g4(%)

As we need to specify a model, we’ll assume a normal model with diagonal covariance
matrix :

A

q(2) = N(, %) (2.3)

Where [, S are estimated on the training data set embeddings.

As we can see on figure 2.4, the results are terrible. There is no need to further describe
them however we need to understand why they’re being so terrible. We argue the following
reasons are

1. The normal model is a strong assumption with very little backup, there is absolutely
no constraint in our training procedure that imposes some sort of normality to the
latents or any sort of structure at all. The latent space is much irregular as depicted
in fig 2.5. Figure taken from °.

2. The normal mean makes very little when the dataset is multi modal. Suppose the
dataset is evenly composed of green images and red images, the mean will consist in
a yellow image and most samples will be closed to yellow depending on the variance
however there are no yellow samples in the dataset.

3. Our training procedure involved encoding data points and minimizing reconstruction
loss, we're just encoding-decoding points with the smallest reconstruction possible.
This comes with at a big cost : the latent space severely lacks regularity, it is very
poorly organized and structured. A schematic of the problem may be seen on figure
2.6 taken from *.

3https:/ /towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
4https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

16

FAN F"':"}ﬁ‘om#\gw O

WLaningles
C’m:&dewded »
y A
oinds inthne
e spoce Hak =
Bl decoded
A poinds Hat are close

similar once decoded

irregular latent space x V regular latent space

Difference between a “regular” and an “irregular” latent space.

Figure 2.5. Irregularity of the latent space in AE’s

A

encoded data can be decoded
without loss if the autoencoder
A has enough degrees of freedom
\ encoder decoder
2N o

o toe O
Po;_yd- SGW\-PQ‘A f
Q dimengional Qakent space
“training” data for onE: bk va\— without explicit regularisation,
9 for new some points of the latent space

the autoencoder

Figure 2.6. Irregular latent space prevents us from using AE for data generation.

are “meaningless” once decoded

4. The only samples x € X that will look decent are those that are extremely close to
the training data points and they will simply be decoded as the training data points.
This might seem a source for hope however the distance between points grows with
the number of dimensions those points have and thus for image data, it is very
unlikely that a sampled point ends up being close to a training point. Furthermore,
we might argue that outputting almost-identical-to-training-data samples is not

generative modelling.

Sometimes taking a look at the problem from a larger perspective helps. We equipped
the latent space with an arbitrary distribution and observed that it had poor generative
performance. If we want it to have a solid distribution then we’re back at the initial
problem where we try to generate meaningful samples except we do that in Z and not in

X.

In conclusion, AE sampling performs poorly simply because it was trained to decode spe-
cific points to points, as a result the latent space structure is such that decoding a sample
close to another has no reason of outputting a similar sample. The latent space has no
notion of structure and neighborhoods. Introducing some structure constraint, regular-
isation constraint or neighborhood constraint is the key step to increase the generative

performance of an AE.

17

Figure 2.7. Latent variable model of VAE’s

This is actually the step Diederik P. Kingma and Max Welling took by incorporating
probabilistic graphical modelling and variational bayesian methods to AE.

2.3.2 VAE’s

The key change that they added was that instead of having an encoder that maps points
in X to points in Z, VAE’s map points in X to distributions in Z. This allows a point
in X to be indirectly mapped to several close neighbour points in Z.

To formulate the ideas clearly, we’ll resort to graphical probabilistic modelling. Instead
of a simple point-encoder and point-decoder, we’ll define their probabilistic versions.
The graphical model on figure 2.7 effectively contains the following relationships between
data and latents :

e p(z) : the prior latent distribution
o p(x|z) : the likelihood which is directly specified by the model, up to parameters
» p(z|x) : the posterior which is not specified

Under this graphical model and under the assumption that p(z|z) has optimal parameters,
sampling works as follows :

1. Sample a latent from the prior distribution : zy ~ p(z)
2. Decode it to X through the conditional distribution p(x|z = zp)

We have nonetheless 2 problems to solve to get a working VAE.

First, we need to find the form of the posterior distribution otherwise we’ll not be able to
encode points in X.

Second, we need to find the optimal parameters of both mappings.

The first problem can be solved using Bayes formula :

p(x[2z)p(z)

() (2.4)

p(z[x) =

However pg(x®) = [pp(x?|z)ps(z)dz is intractable and thus Bayes helps us by no mean.
Indeed it is intractable since to get the density of 1 observed sample x, we have to
integrate over all possible unobserved z that could have produced this particular x®.
Also, we may already stress that by Bayes the posterior is proportional to the prior
distribution, since the latter is quite a regular, we may expect the posterior to be regular
as well.

18

palx)

7 KL(q(@ v*) || p(z| %)

Figure 2.8. The modeler decides the family of distribution that will be used to approximate
the posterior and the member of that family is chosen as the one that has minimum KL
divergence with respect to the posterior.

Regarding the second problem, at first sight it seems it can actually be solved by maximum
likelihood or log-likelihood.

We overwrite the decoder also called generator p(x|z) by pg(x|z), by maximum of log-
likelihood we have :

. _ - (0
0" = arg mgmelogpg(x) (2.5)

i=1

By following the graphical model we can decompose the marginal as

plx?) = [poxl)p(a)da (26)

And once again we are struck by intractability.

We now resort to the second ingredient introduced by Kingma and Welling : variational
inference.

In summary variational inference is a computational technique used in probabilistic mod-
eling and Bayesian statistics to approximate complex probability distributions. It provides
a way to estimate the posterior distribution of unknown variables given observed data. In
our setup, the posterior p(z|x) is intractable and we thus decide to assume that it belongs
to a certain family of distribution g¢4(z|x) where ¢ parameterizes that family.

As we seek to have a surrogate distribution that is as close as possible to the target poste-
rior, we’ll look for the optimal ¢ that minimizes the Kullback-Leibler divergence between
the two of them as depicted in Figure 2.8 taken from®.

As a reminder, given two PDF’s f(x) and h(x), the KL divergence is defined as :

KL(f||h) = Esflog?) (2.7

Since we're looking for the surrogate distribution with smallest KL divergence to the
posterior we need :
arg min K L{qy (2]x)||p(zx)) (2.8)

By definition of the KL divergence we get :

qs(2|x)]
po(z[x)
Shttps://glouppe.github.io/info8010-deep-learning /pdf/lec11.pdf

(2.9)

arg m(gn Eqy, z1x) [log

19

arg m(gnE%(ﬂx) [log q4(z|x) — log pe(z|x)] (2.10)
But we cannot minimize this directly as it involves the intractable posterior we're currently
trying to approximate, we thus use p(z|x) = % and find :
arg mdinE%(z‘x) [log qs(z|x) — log pe(z,%x)] + log pe(x) (2.11)
And still we cannot minimize this expression of K L(g,(z|x)||ps(z|x)) directly because the
term log py(x) implicitly contains intractable quantities.

To minimize this KL divergence, we need an expression that is either equivalent to it or
that bounds it and which does not contain the annoying terms py(x) or py(z|x).

There are 2 paths leading us to the so-called ELBO, Evidence Lower BOund. The first one
starts with the likelihood of the data, and the second one starts with the KL divergence
between the surrogate distribution and the posterior. Both paths are equivalent in the
sense that they end up optimizing the same objective. However, for the sake of conciseness,
we’'ll only detail the first one here. The second path is available at ©.

Reaching the ELBO from the likelihood

We start from the likelihood we have:

Po(x|2)po(2)
) = By px12)] = B | (2.12)
p(z) a4 (2|%) RCES)
Taking the log on both sides:
Po(x|2)ps(2)
log pg(x) = log Eypz/x [(2.13)
qd(z|x) q¢(z|x)
Using Jensen’s inequality log(E(y)) > E(log(y)), we get:
Po(X|2)po(2)
log pa(x) > Eyp(zx) [l0g (2.14)
q9(z|x) 05 (2]x)
By applying the log product rule, we get:
Po(2)
log po(x) > Egg(apx) [log pa(x|z) + log (2.15
q¢(z|)[(Q¢(Z’X)])

Which can be expressed as:

log po(x) = Eqg(apx) [log po(x|2)] — K L(gs(2[x)[|po(2)) (2.16)
The right-hand side of equation 2.16 is termed the ELBO(x; ¢).

We shall note that the ELBO may also be expressed in other completely equivalent
forms:

ELBO(x: ¢;0) = —K L(q,(z])|[ps(z}x)) + log po(x) (2.17)
BLBO(x; ¢;0) = E, o) l0g pa(x, 2) — log g, (z]) (2.18)

From equation 2.16, we observe that:

Shttps://lilianweng.github.io/posts/2018-08-12-vae/

20

o Maximizing the ELBO maximizes the log likelihood of x as it is a lower bound of
the left-hand side.

o Maximizing the ELBO encourages the encoder to put latents in a position where
their decoding will explain the observed data x well, as indicated by the first term.

o Maximizing the ELBO makes the surrogate distribution close to the prior latent
distribution py(z). This is beneficial for sampling new data points.

From equation 2.17, we observe that maximizing the ELBO minimizes the KL distance
between the surrogate posterior and the true posterior, which was one of the problems we
previously pointed out.

From a larger perspective, training requires a loss function to minimize and we thus define
the loss function as the opposite of the ELBO :

Ly ap(0,) = —Eq, (ax [log po(x|2)] + K L(q4(2|x)||ps(2)) (2.19)

Traditional VAE

So far we assumed that the likelihood model py(x|z) was given, either by domain knowl-
edge or user-specified, now we’ll learn the model by parameterizing it it with a neural
network.

Specifically, the 3 components of the graphical model are now :

e p(z) : the prior latent distribution is a Gaussian

e p(x]|z) : the likelihood follows a multivariate normal model with diagonal covariance
matrix, the mean and variance are given by a Neural network

p, 0 = NNy(z)
po(x|z) = N(x; 1, 0°1)

e p(z|x) : the posterior follows a multivariate normal model with diagonal covariance
matrix, the mean and variance are given by a Neural network

i, 0 = NNy(x)
qs(2|%x) = N (2; 1, 0*1)

As we can see on figure 2.9 from *, both the encoder and decoder map points to normal
distribution in the other space and the output simply is a realization of the corresponding
distribution.

Regarding training, we might think of simply back-propagating gradients of the ELBO.
While it is quite straightforward for the decoder, the gradient of the encoder requires a
small trick to be computed.

Gradients of the decoder py(x|z) are given by :

VoELBO(x; ¢;0) = VoEq,(apx) [log po(x,) — log ¢4 (2|x)] (2.20)
Under sufficient conditions :

VoBLBO(X; 6;0) = Eyy) [Va(log po(x, 2) — log g,(z]x)]) (2.21)

Thttps://fleuret.org/dlc/materials/dlc-slides-7-4-VAE.pdf

21

S

7

/ N

Original space &

N

Latent space #

Figure 2.9. Traditional VAE with normal distribution with diagonal covariance matrix

And as the surrogate is independent of 6:
VoELBO(x; ¢:0) = Eqy, (%) [Vo(log pe(x, z)]) (2.22)
The gradients computation are a bit more complex for the encoder as :
Vs ELBO(x; $;0) = V4 Eq, (2x) [l0g po(x, 2) — log q(z(x)] (2.23)
But as the expectation is carried over a distribution directly dependent on ¢:
Vo ELBO(x; $;0) # Eq,ax) [Vo(log po(x, 2) — log gy(z]x)]) (2.24)

Simply because we cannot back-propagate through the stochastic node z depicted on fig
2.10 taken from ® . Indeed z is parameterized by ¢ but its realizations are not explicitly
dependent on ¢. Similarly, one could not back-propagate to update parameters of a nor-
mal with mean p = 4 and standard deviation o = 1.3. The reason is that a realization,
let’s say 3.89, has no explicit dependence over the parameters of the distribution it was
sampled from.

The solution is to express the stochastic variable as a function of a deterministic variable
and another stochastic variable €, we’ll call this function g(¢,x,¢€). See fig 2.11 for the
updated way of computing the gradients.

Using this trick we get

VoELBO(x;0,0) = VeEpo [f(x, 9(¢,%,€); 0)] = Eye) [Vof(x,9(0,%,€);0)] (2.25)

To conclude this sub-section, we’ll look at the added value of using VAE’s rather than
AE’s for sampling. Results may be seen at fig 2.12. Clearly the results are much better
but they are far from perfect, there are several reasons from that :

8https://glouppe.github.io/info8010-deep-learning /pdf/lec11.pdf

22

z |~ qs(z | %)

Figure 2.10. Graphical view of the computation of unsuccessful the gradients of the loss
function f in the encoder part of VAE’s

(5
=g(¢,xa€)
() (&

Figure 2.11. Graphical view of the computation of successful the gradients of the loss
function f in the encoder part of VAE’s

23

Autoencoder sampling (d = 32)

= S LN I S ¢ /R A
CTETLSTAZ 8
v ¢ 44 2 €35 &

Variational Autoencoder sampling (d = 32)
5915« L35€9%5 3¢
§F 7790V 1L%7°2=710
J O Y O0wl F64YF

Figure 2.12. Sampling from an AE and a VAE with a CNN trained on MNIST

i‘

F

2
1

oo woe

) 4

=

A R

1. Normal latent distribution : latents are sampled from a simple multivariate nor-
mal with null covariance and even though the encoder is trained to be close to
that normal by the KL term in the ELBO, using a normal is a very simple mod-
elling choice. This argument is actually what motivated several-layered VAE’s and
diffusion models

2. Blurriness: one common issue with VAE-generated samples is blurriness. VAE’s
optimize a reconstruction objective, which encourages the model to generate samples
that are similar to the training data. However, this objective can sometimes lead to
blurry outputs because it averages over multiple plausible reconstructions, resulting
in a loss of sharpness and fine details

3. Mode collapse: VAEs can suffer from mode collapse, which means they struggle to
capture and generate samples from all the diverse modes or patterns present in the
data distribution

VAE’s were introduced in 2013, since then tons of variations emerged with each contribut-
ing to either better reconstruction, better sampling or more semantic encoding of training
data points. This page inventories almost all of them before 2022 °.

This section was mainly inspired from the following sources :
1. Lecture 11 of Professor Gilles Louppe : https://github.com/glouppe/info8010-deep-learning
2. Lecture 7 of Professor Francois Fleuret : https://fleuret.org/dlc/

3. Blog post by Lilian Weng : https://lilianweng.github.io/posts/2018-08-12-vae/

9https://github.com/matthewvowels1/Awesome-VAEs

24

https://github.com/glouppe/info8010-deep-learning
https://fleuret.org/dlc/
https://lilianweng.github.io/posts/2018-08-12-vae/

z, - width / size
4 4 1 2

- -)

zz-azimuth
J 8 s

4
n

.
LS
L8
]

n
L}]
1}]

f ey &
f m UMY &
4 m m m ¢ -
m W - g
»a
=
T = A
¥ » = » v o
¥ ¥ = = T

f m = »

|
|
|
|
|
|
R
I
AN
:llﬂn
|

® & &8 8 4 47 8 8 &K

Figure 2.13. A B-VAE was trained on the chairs data set and the first two latents learnt
the size and azimuth generative factors. Each row of the left part was constructed by
traversing z; range of values and then decoding the latent. Similarly the rows of the right
part were constructed by traversing z, range of values. We observe that when z; increases,
the resulting chair looks smaller and when z, increases, it rotates. Taken from [6]

4. Blog post by Joseph Rocca : https://towardsdatascience.com/understanding-variational-autoe

Variants of VAE

So far we introduced the classical Vanilla VAE but hundreds of variants were defined with
each coming up with something new but also limitations. Obviously we’ll not cover all
those variants as this would be pointless for this work but we’ll briefly introduce 2 variants
that we’ll use in our experiments. These 2 variants are the § VAE and the DIP-VAE.
The § — VAFE was introduced to learn disentangled representations of the data. If there
are groups of variables or variables along that are only sensitive to one generative factor
and completely independent of the other generative factors, we call this representation
disentangled. In the context of the dSprites dataset version we're using and which we’ll
describe later, there are 5 independent generative factors. A disentangled VAE which
maps images to a latent z = [z, 21, 29, 23, 24] of size 5 has learnt one generative factor per
latent component. That is, 2z, controls the shape, z; controls the scale, 2z, controls the
X-position etc...

One cool feature that comes up with disentangled representations is attribute manipu-
lation, that is, changing the value of z; and decoding the changed latent should yield
an image whose i-th generative factor has changed. An attribute manipulation can be
observed on figure 2.13.

The -VAE is almost identical to the Vanilla VAE except it puts a weight 3 to the loss
function KL term that penalizes latents that are far from the normal prior. It is thus

Ly-vap(0;¢) = —Eq,) [log po(x|2)] + K L(gy(2|%)||po(2)) (2.26)

25

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

It may seem completely irrational to put a weight on the KL term and expect disentangle-
ment to appear just like that but [7] analyzed and motivated disentanglement in 5-VAE
using the information bottleneck theory and their arguments are quite solid. We won’t
enumerate them as this section serves as a mere introduction. We should note that there
is a trade-off between reconstruction quality and disentanglement level directly induced
by the presence of 5.

The second variant we’ll consider is DIP-VAE which also aims at disentangling the latents
but differently. To keep it short, they simply add to the loss a distance term between the

prior p(z) and g4(z).

Lprp-vap(0,¢) = —Eq, @ [log ps(x|2)] + K L(gs(2|%)[|pe(2)) + AD(gs(2)||p(2)) (2.27)

Where ¢,(z) = [g5(z|x)p(x)dx. The distance function D(a||b) is not taken as the KL
divergence but rather a simpler yet effective alternative : a function measuring the distance
between the first 2 moments of both distributions. For the sake of conciseness, we’ll omit
the mathematical details.

2.4 Diffusion models with score-matching and noise-
conditioned score networks

VAE’s are great for encoding and decent for sampling, the reason they’re not so good at
sampling new data is that they draw latent samples from a normal distribution. Even
though the posterior is trained to be close to a gaussian, it rarely ends up close enough
to it to use it as a latent sampler.

A new method termed "diffusion model" was introduced in 2015 by [1], diffusion models
can be approached from various angles but the two most popular ones remain score-
matching models and denoising models. We here study the approach rooted in score
matching and let the second one for the next section.

The goal of this technique is to generate synthetic data given a data set of i.i.d samples
{x; € RP}Y, drawn from an unknown data distribution pg.(x). The basic idea is to
generate samples by using Langevin Dynamics where the score, i.e, the gradient of the
log-density is approximated by a deep neural network.

2.4.1 Score vs density

Once again we may wonder why one would approximate the score and not directly the
pdf. Let fy(x) be a neural network, as the pdf is a positive quantity we model it by

ef@ (X)

po(x) = Z (2.28)

One could find the optimal parameters 6 of the neural network by maximizing the likeli-
hood of a data set however computing the likelihood requires us to know the normalizing
constant Zj.

As pg(x) constitutes a pdf, it should respect

/pe(X)dx =1 (2.29)

26

e e S N

TR A TR TR R R R A

1 o
...l .
S .
gt s -
OSSR =
! . of !
;

‘ -

- Ty v

& & |

> & X ¥ ¥ 4 d by
v ”
v XA

o

- e — ——

- w W

R e o
R e = =

-

rrrrr

»
.
o
>y
by Yy Y %W
w
%
Bl s e i
e oo v

- w——

P o o et e g A

R W W W W e

S o ¥

f 4 4

€ 4 4 4w A T R e

!

Score vs. density function

Figure 2.14. Weighted mixture of 2d Gaussians with the density drawn in color and the
corresponding scores represented by arrows

And thus
Zy = / e dx (2.30)

Equation 2.30 essentially integrates over all possible images or data points and thus makes
the computation for the normalizing constant intractable.
A direct way to get rid of this annoying normalizing constant would be to take the gradient
of the density or log-density with respect to x. This yields

Vxlog(pe(x)) = Vi fo(x) — Vxlog(Zy) = Vi fo(Xx) (2.31)
The task is now to approximate the gradient of the log-density or more commonly called,

the stein-score usually abbreviated score. A toy example is illustrated on fig 2.14.

2.4.2 Score approximation

The score will be approximated by a deep neural network syg(x) ~ Vylog(py(x)) where
sg(x) : RP — RP. The objective is to minimize the expectation of the Ly norm of the
difference between the true score and the approximated one. Formally

0" = argminEy,,., [Vxlog(po(x) = 50|} (2.32)

This requires to have access to the score ground truth and thus makes the optimization
infeasible as we do not have them. Fortunately, it was shown by [8] that the latter
objective is equivalent to score-matching :

. 1
o = CLTg;TLZ”EPdata(z) [tT(VXSQ(X)) + ||§‘99(X)||%] (233)

Even though equation 2.33 can be solved by typical gradient descent algorithms coupled
with automatic differentiation, it is computationally exorbitant as it requires computing

27

Figure 2.15. Samples generated by Langevin dynamics on top of a network trained to
approximate the score of MNIST samples

the jacobian matrix of sy(x) with respect to x. Notice it is the dimension of the data that
makes it intractable, in a low dimensional setting, the latter would be totally tractable.
Several techniques emerged to deal with this problem such as denoising score matching
or sliced score matching which minimizes efficiently computed random projections of the
jacobian.

2.4.3 Langevin dynamics

Let us briefly introduce Langevin dynamics which are rooted in statistical physics and
named after the french physicist Paul Langevin who was trying to understand the motion
of particles suspended in a fluid.

In the context of generative modeling, Langevin dynamics can be used to sample from
a probability distribution in order to generate new data points. This approach is often
referred to as Langevin sampling or Langevin Monte Carlo.

Langevin Dynamics consist in starting from a random point and going to high density
regions by following the vector field of score. Each step taken in the direction of the score
comes is added a little bit of gaussian noise so that each path is different from another.
In mathematical terms this writes :

€
Tip1 = Ty + §V:r log p(xy) + Ve 2t (2.34)

Where € is the learning rate and z; is sampled from a standard normal

The idea of the technique is then to run a few Langevin steps where each step computes
an approximation of the score using the trained score network. Unfortunately, applying
this idea straight away does not work as we can see on figure 2.15 where a network was
trained to approximate the score of MNIST samples, taken from [2].

This failure is mainly due to 2 reasons the authors identified : inaccurate score estimation
in low density regions and slow mixing of Langevin dynamics. For the sake of conciseness,
we’ll not explain the second reason. To understand the reason score is poorly in low
density regions, we might need to first introduce the manifold hypothesis which is quite
well accepted in the machine learning community

28

Figure 2.16. 3d points located on a Swiss can be uniquely located by unrolling the Swiss
roll into a flat surface and defining 2 coordinates instead of 3

2.4.4 Manifold hypothesis

"The manifold hypothesis states that data in the real world tend to concentrate on low
dimensional manifolds embedded in a high dimensional space", "http://colah.github.io/".
See fig 2.16 for a toy example on a Swiss roll but the idea is similar for images. Indeed,
images definitely do not uniformly fill the space in which they are defined, a very large
majority of images defined on R7°*1280 are pure noise to human eyes. The real, meaning-
ful images the data set contains most likely live on a lower dimensional space. Manifold
learning is interested in projecting data on lower dimensional space while losing as little
information as possible, it can be seen as a non-linear PCA. Deep learning models tend to
be very good at implicit manifold learning such as object recognition or data compression.
The manifold hypothesis will impact the score accuracy as the gradient is taken on the
ambient image space and not on the manifold subspace.

2.4.5 Inaccurate score estimation

The score estimation sp(x) is trained by minimizing an expected loss over the true dis-
tribution, in practice it consists in randomly sampling a sample of the data set and
computing the loss afterwards. The data set, as stated in the manifold hypothesis, does
not fully fill the space in which its samples live but only a tiny fraction of it, hence, noisy
images that occupy a majority of that space are never considered. Making a large error
on the estimation of the score of these images is thus not a problem as they are very rarely
encountered in the data set and thus contribute for a very little part of the total loss. The
problem arises when initializing Langevin dynamics, one usually starts with an iterate 0
that is sampled from an uniform prior distribution as we do not know where high density
regions are located, if we knew we would sample from there right away. The iterate 0
will then follow a vector field that is highly inaccurate and instead of converging to a
high density region will rather random walk in a low density region and finally produce a
meaning less output image.

29

Data density Data scores Estimated scores

e R] | S KRR
B
e R - - - -
. * =T " """ ",Accurate " NNNNNSS===2 7" Accurate ©
W I‘_“_'::ZI". Lyt LN IR Y
AV T . e NEVRURNI AR |
NN R s e s o
e < R P e
AR \ 11
\Wiilnaccurate; 1y ililnaccurate:
o g AR R SRR EE T L s s v b AN
1 R NN van iy
..,._,,,,“II{H N \\\HN
- L [o 5 - X
Accurate JTIZZZEE v w.Accura.te_;._-“::\:QQQ
Y S | AR R
e I’ R SR Y
R) PP S R S S WL Y I \\\\\\\\\\\

Figure 2.17. The true data scores that have an analytical form for that simple toy example
are far from the approximated ones in regions where no data set sample was available

[song2020generative |provide a toy example where the true data distribution consists
of a mixture of two Gaussians with weights 0.2 and 0.8 and effectively observe on 2.17
discrepancies between true scores that have an analytical form and estimated scores by a
neural networks.

2.4.6 Noise conditional score network

The first problem we want to solve is to somehow increase the data in low density regions,
the key contribution of [2] is to add a large amount of Gaussian noise to each pixel of the
data set. This way, the modes of distribution will widen, become less isolated and thus
increase the density of low density regions.

In mathematical terms this leads to :

o (x) = / Pdata(6)N (x]t, 0°I)dt (2.35)

which essentially perturbs pg... with Gaussian noise leading to a smothering effect. Since
the data was perturbed by noise, the estimated scores no longer estimate the true scores
but rather noisy scores, thus LD will produce samples that are noisy. Their idea is thus
to perturb the data with several levels of noise. That is, a noise dimension is added to the
image space and for each sample, one can travel along that noise axis and decide on the
noisiness the sample can have. The point is that approximated scores are more accurate
for low noise levels but the regions of "decently accurate" score grows with the noise level.
An overview of this noise dimension may be observed on fig 2.18. This method was termed
"'Annealed Langevin dynamics" by [2]

Training thus consists in estimating the score at different noise levels. Instead of defining
a neural network per noise level, the authors chose to define one single neural network
sp(x, o) that takes the noise level as input as there can be thousands of noise levels. They
decide to train the network using denoising score matching so that sy(x, o) >~ Vxlog(¢,(x))
with the noise distribution defined as

1-(X|x) = N(x|x, 0°1) (2.36)

For a given o, we want to minimize the loss

1(6;0) = ;Epdamm[HSe(X’ 7) = Vxlog(ds(x))|13] (2.37)

30

Data

Figure 2.18. Impact of the noise level on the accuracy of estimated scores and on the
space span samples cover

Since there is no closed form for ¢,(x) but there is one for ¢,(X|x) the authors actually
use the following loss :

1 - -
U0;0) = 5 Expyusan Bxn o2 ll50(%,) = Vilog(go(X[x)) 3] (2.38)

Notice we take the expectation over x of the conditional ¢,(X|x), this has the effect of
leading to an interesting result : in the end we have sy(X,0) ~ Vylog(q,(X))!

Since the authors chose a Gaussian perturbation Vilog(g,(X|x) = % and they finally

define the global loss as a weighted sum of individual losses at different noise levels :

1
L:

=1

L) == Nol(0,0,) (2.39)

Inference simply is about making a few LD steps at the very noisy levels, the scores will
then be computed at a lower noise level at the exact positions where the previous iterates
ended and make a few LD steps and continue that way. Provided that the smallest noise
level is close to the data distribution, convergence to the data distribution can be proven.
Using this new inference pipeline, results from fig 2.15 have now been greatly improved
as we can see on fig 2.19.

2.5 Diffusion models as probabilistic denoising mod-
els

2.5.1 Diffusion models as an extension of VAE’s

As we repeatedly said, the weak point of VAE’s that make them bad at sampling is
their latent prior distribution. A multivariate normal with diagonal covariance matrix is
an elementary distribution which surely cannot handle the complexity of the real latent
data distribution. The solution is to make the prior latent distribution a learnable
distribution. Classical VAE’s can be defined according to the graphical model 2.20 and

31

(o]
0
Q
3
(v
0
[
\
(]
3
3
o
2
Sy
>
5
T
S
S
7

DTN NGCWIQCTOVO O X L ANOTO
MUMRAALCONSTAPUWN T A2 000
OPWCANIVNBRNNDECELEFRrAOND® LW
VANV OYQAONRsONCANY K¢y
RPVW EFBVWRN L~V A N bWoxO O
S~SOSN EOVCOUNNYDONLET NP W
GNP PN ESIDTooW L LRNEQ
RS LWVYQUININDBOQOLW G
QAVONWRLILWS Yl o CN0
NO+ELONERNVNANSGG 0 €QOVNW S
RO TNNTOINO~NTL~Q W
NrebQO0OeNOQOWOYRWNWNYLANCO
RFrONexAAANY_ALA~ WD ew o
DLW rwodQuoe-dWsasZaWOo
NN Ghoios T ONNRA SO < Goo N O
AN QAW WPNBLQITOoOSRNTODLOO
NOONER/ N WHPIONWS O P TWR
VYW EOCOINwW O DYNOCR & PO L
TSGHADONNVNADHDORNOWQRE AW

Figure 2.19. Samples generated by Annealed Langevin dynamics on top of a network
trained to approximate the score of noisy MNIST samples

po(x | 2)

9(2 | x)

Figure 2.20. Graphical model of a common VAE

diffusion model can be seen as an extension of VAE’s where the prior is itself a VAE that
will be trained. The prior of this VAE is also itself a VAE and so forth until reaching the
hyper-prior which is not a VAE but a usual simple distribution. Thus, diffusion models
are Markovian, because only the previous state defines the next, to be more accurate,
they are Markovian hierarchical VAE’s.

2.5.2 Forward process

In diffusion models, the T encoders and decoders are defined as normal distribution with
each having a different mean and a different diagonal covariance. Specifically, the decoders
actually define the forward process and the encoders define the backward process from
the latents to the data samples x. Note that even though we're talking about encoders
and decoders, the data dimension is kept constant here.

An overview of the forward process is depicted on fig 2.22 where an input sample is

po(x | 21) po(2z1 | 22) po(22 | 23) PG(ZT 1| z7)
ga¢(21 | %) a4(z2 | 1) as(z3 | 22) qp(zr | 271)

Figure 2.21. Graphical model of a diffusion model where the VAE prior of x is yet another
VAE

32

Use variational lower bound

Il

Figure 2.22. The forward process ¢(x¢|x¢—1) gradually adds noise the the data and even-
tually turns it into isotropic gaussian noise

gradually added noise such that in the end the sample looks completely like an isotropic
gaussian noise. Specifically, we consider a sequence of positive increasing noise scales and
for each data point we construct a discrete Markov chain zg, 1, ..., 7 such that xr can
be considered fully gaussian for large T.

In mathematical terms we have :

T

q(xe[xi-1) = N (x4 /1 = Bixe—1, 1) q(x17|x0) = H (x| x¢-1) (2.40)

where (3 denotes a variance schedule and (3 defined Vk in [0, 7] denotes the variance at
the k-th time-step. The variance schedule has an important responsibility as it should
induce samples to gradually lose information and converge to a mean of 0.

Also, an interesting result stemming from using gaussian kernels is that we’re able to
sample an z, for any t in closed form using the reparameterization trick. As shown in '°,
let ap =1— B and a; = [T, i -

Xy = Jouxi_1 + V1 — €1 ;where €_1,€_2, -+ ~ N(0,T)
= Vo _1Xi9 + /1 — ayay_1€,_5 ;where €;_o merges two Gaussians (*)

= Vauxo+ V1 — ae
Q(Xt|X0) = N(Xt; \/@_tXm (1 - @t)I)

2.5.3 Backward process

The backward process defined by the encoders has the exact opposite role of the for-
ward process, it is tasked with removing a slight level of noise from the sample it is fed.
The backward process defines a variational Markov chain in the reverse direction that
constructs Xy, X7_1,...,X1,Xo such that they are ideally sampled from ¢(x;_1|x;). The
distribution ¢(x;_1|x;) is only ideal, even though we got q(x;|x;_1) we cannot compute by
the posterior ¢(x;_1|x;) as it would involve computing the evidence ¢(x;). Mathematically

Ohttps: //lilianweng.github.io/posts/2021-07-11-diffusion-models/

33

q(x¢) ://Q(X1:t|X0)Q(X0)dX1;tdxo (2.41)

The latter is intractable because several samples could lead to x; and one sample could
follow different paths that all lead to x;.

On the other hand, q(x;_1|x¢,Xg) is fully tractable as fixing the initial image largely
narrows down the possibilities. It has the following form :

Q<Xt71|Xt7 Xo) = N(th; ﬁt(xh X0)7 BtI) (242)
where fi,(x;,Xo) = ‘@ﬁ_@f“)xt + ?i;}tﬂt Xo and Bt = %

The reverse distribution ¢(x;—1|x;) is thus approximated by pg(x;—1|x;). The backward
process is fully described by the following equations:

pe(Xo:T) = p(XT) EpG(thl‘Xt) pe(thﬂXt) = N(thl; M@(Xt, t), E(Xt, t)) (243)

where pg(xy,t) is parameterized by a neural network.

2.5.4 Training the denoising network

Training is performed by optimizing the variational upper bound on negative log-likelihood
which completely equivalent to the lower bound on positive log-likelihood.

E, [—log ps(x0)] < E, [— log m1 =L (2.44)

Note we're using an upper bound on the negative- The loss defined as the upper bound
can be decomposed into 3 terms :

L =E, | Dgr(q(xr|xo0)|lp(xr)) + Z; Drer(q(xe-1]%e, Xo)|[po(Xe-1(%:)) — log pe(xo|x1)
i (2.45)

e L7 : the first term expresses the distance between the standard Gaussian at T and
the diffused sample x(y at T.

e Lo : the last term is minor and not worthy of importance.

e [;_ 1 : the main and middle term expresses the distance between the distribution of
the ideally denoised signal and the distribution of the practically denoised signal.
Essentially one noises an input sample by one level and asks the network to remove
one level of noise.

As both distributions are gaussian in L;_;, the KL loss can simply be expressed as an
MSE between means:

1.
L1 =E, Tﬁ||#t(xt’xo) — pe(x, V||| +C (2.46)

34

Algorithm 1 Training Algorithm 2 Sampling

1: repeat 1: x7 ~N(0,T)

2 Xo ~ q(xo) 2: fort="T,...,1do

i: i” I/{}‘(iéorlr)n({l’ T 33 z~N(OI)ift>1,elsez=0

5: Take grad’ient descent step on 4 X1 = \/%7 Xt — jl——fe(xta)) + oz
Vo HE—Ee(@Xo—f—\/l—@te’t)Hz 5: end for

6: until converged 6: return x

Figure 2.23. Training and sampling algorithms of DDPM

Encoder p(z0) Latent Space Diffusion
—

Datax

== q{“")#
. og.%o I'd / j

\./

Reconst.

- . .
p(x|zo) Decoder KL(q(zo|x)||p(20)) Latent Space Denoising

Figure 2.24. Latent diffusion models and brownian paths defined by realizations of the
denoised output

Using the reparameterization trick xo = % Vita“ we can express the loss as

2
Li1=Eyx. ﬁ—t_||e — 69(\/aTtx0 + V1 — age, t)||2 (2.47)

201520@(1 — O{t)

This loss is simply about removing noise added to a clean sample xg.
The training and inference algorithm are on fig 2.23

2.6 Latent diffusion models

So far we only considered diffusion models operating in the image space however some
of them operate in a latent space, the latter is simply defined by means of a regularized
Auto-Encoder, this idea was introduced by [5]. Instead of noising images and learning a
model to denoise them, one noises encodings of these images which are usually of much
smaller dimension. Sampling is then done by drawing a gaussian noise in the VAE space,
denoising it for several steps and then finally decoding from latent space to image space.It
allows to greatly reduce the computation to generate samples as the denoising steps are
done in a smaller space. Even though the idea is quite simple, an overview is shown on
fig 2.24.

This background section served as a basis for introducing all necessary tools to develop
and perform experiments that will try to answer the research question. This section
intended to cover all basic materials and is not exhaustive, if a concept or tool is used
afterwards, we shall explain it afterwards.

35

Chapter 3

Related Work

3.1 Paper 1: On Analyzing Generative and Denois-
ing Capabilities of Diffusion-based Deep (ener-
ative Models

The paper [9] was written by researchers from Warsaw University of Technology : Kamil
Deja and Tomasz Trzcinski and researchers from Vrije Universiteit Amsterda : Anna
Kuzina and Jakub M. Tomczak.

3.1.1 Paper subject

The paper aims at answering the following question : what is the frontier between the
generative and denoising capabilities of a diffusion model. We all know diffusion models
are trained with a denoising loss or a score-matching loss that can usually be shown
equivalent to a denoising one. Even though they are trained to remove noise from initially
well structured images, meaning that for most timesteps the image structure information
is not fully lost, they are yet able to generate completely new images. Therefore how do
they generate when they were only trained to denoise ? It is a common belief in this
field that only the first few backward steps generate most of the information and most of
the remaining steps are simply there to give the image a good look. Similarly said in the
paper "The more adequate intuition might be that in its initial steps, a diffusion model
does not only remove noise but also introduces a new signal according to the distribution
learned from the data". The paper aims at studying this frontier a bit more.

3.1.2 Paper contributions

As the backward diffusion chain is essentially trained to revert the forward chain, much of
diffusion models generative capabilities can be understood by first analyzing the forward
chain. First, they study the noise distribution in the forward diffusion process, i.e, how
corrupted does an image get during the forward process. To quantify this amount of
noise, they rely on the SNR, i.e, the squared mean of the signal over the variance of the
signal. When the SNR is high, much of the signal is present but when it is low, the signal

36

0.0 0
— FashionMNIST
o [as
2B CIFAR10 = £y &
Z. [75) . Z, (3]
wn bD—U.Z wn o0
& = — FashionMNIST & 1ol — FashionMNIST = — PFashionMNIST
~10 < o CIFAR10 CIFAR10 <D CIFARI0
0.0 0.5 1.0 0.0 0.5 L0 0.0 0.5 1.0 0.0 0.5 1.0
t)T t)T t/T t/T
(a) Linear noise schedule (b) Cosine noise schedule

Figure 3.1. Logarithm of the signal-to-noise ratio averaged over the dataset (solid line)
and its standard deviation, and the difference of the log SNR within two consecutive time
steps.

is mostly gone. SNR is defined by :

aXo?

SNR(X(), t) = 1

. 3.1
= (31)
We should note that the SNR is strictly monotonically decreasing.
The authors computed the SNR along the diffusion chain averaged over the whole dataset
and reported the log SNR and its discrete derivative on figure .

We can see on the leftmost figure of that the log SNR drops below 0 after about 20 % of
the steps, i.e, this is the point after which the signal is dominated by the noise but we
thus also know that before those 20 %, the signal is present and strong.

Second, we may wonder whether it’d be possible to reconstruct the original signal given
only its noisy version. Surely we cannot exactly reconstruct it as the forward noise is
random but a decent reconstruction should be possible. We observe on figure 3.2 that
the MAE is rather small for timesteps below 10 %, after which the MAE grows linearly.
That is, the denoising model was good at removing low levels of noise but it gets worse
and worse with the timesteps.

Based on these 2 observations, the authors suggest to divide diffusion models into 2 parts
. a denoiser and a generator. The generator is responsible for transforming the gaussian
noise to a corrupted but structured image and the denoiser is responsible for transforming
the corrupted image to a clear image, it is aesthetics-designed. They further postulate
that only the 20 % steps close to t = 0 correspond to denoising ones, that is no information
is created over there but rather the image is simply cleaned.

To evaluate their assumption, the authors designed several experiments but one of them
makes their assumption pretty convincing. The authors trained a diffusion model on the
CIFARI10 dataset and then evaluated its reconstruction error on CIFAR10 and CelebA.
Looking at figure 3.3 we observe that for timesteps below 10%, the test reconstruction
error on both datasets is similar even though the model knows nothing about CelebA.
The reason is that in this region, the model solely denoises corrupted images and does
not require any information about the data. After this threshold, the reconstruction
error grows fast because the DM has to make generative choices on samples for which it
knows nothing. It has no domain knowledge about CelebA and thus makes pretty poor
generative choices.

37

0.2+
— FashionMNIST
— CIFARIO0
=
0.11
=
00757 0.1 0.2
t/T

Figure 3.2. The averaged reconstruction error calculated using the MAE at different steps
of a diffusion model

0.2
— (CelebA
— CIFARI10
£
T 0.1
=
00750 0.1 0.2
t/T

Figure 3.3. The MAE for a diffusion model trained on CIFAR10 and evaluated on CI-
FAR10 and CelebA

38

3.1.3 Paper conclusions

It appears that their main assumption was accurate: diffusion models exhibit a transition
point at which they shift from a generative to a denoising behaviour. This transition
point is likely contingent upon variables like the noise schedule, as well as other factors
such as the complexity of the dataset and its domain.

39

Chapter 4

Experiments

The main objectives of this work are to determine whether diffusion models make choices
while generating samples. If so, to investigate the specifics of when these choices occur and
who is responsible for making them, whether these choices depend on the space in which
diffusion takes place, as well as other questions mentionned in the research question.

A lot of the experiments we’ll design take place in a latent space defined by means of
a VAE, either vanilla or a variant, therefore we believe it is worth studying them first.
These experiments will also usually require a well-trained diffuser, in the generative sense,
so we’ll also study them a bit. By studying we mean that we want to figure out what
factors positively or negatively impact the performances of a VAE and a diffuser.

The considered factors are : latent structure, latent size, stochasticity, regularity and
latent representation.

If the reader is used to working with VAEs and diffusion models, this section can safely
be skipped.

Before studying VAEs and diffusers, we briefly introduce the main data set with which
we’ll work : dSprites, a data set of sprites built by deepmind.

4.1 Data set : dSprites

"dSprites is a dataset of 2D shapes procedurally generated from 6 ground truth indepen-
dent latent factors. These factors are color, shape, scale, rotation, x and y positions of a
sprite. All possible combinations of these latents are present exactly once, generating N
= 737280 total images". The latent factors can take these values :

o Color: white

o Shape: square, ellipse, heart

 Scale: 6 values linearly spaced in [0.5, 1]
o Orientation: 40 values in [0, 2 pi]
 Position X: 32 values in [0, 1]

« Position Y: 32 values in [0, 1]

Some samples can be observed on figure 4.1.

40

Figure 4.1. dSprites samples

4.2 Pilot experiments : VAE study

To evaluate the performance of a VAE, we need to use some quality metrics or axes to
guide us. Unfortunately there is no unique quantitative metric that fulfills this job, there
are however many of them that we may use to judge the overall quality of a VAE. The
quality of a VAE can be measured by these 3 axes :

1. Test reconstruction error : This axis involves measuring how well the VAE can
reconstruct the test data. It is typically evaluated using a test reconstruction error,
which can be measured using mean squared error or cross-entropy error, depending
on the data type. Practically, we’ll consider the reconstruction error of the whole
test set.

2. Latent Space Exploration : Assessing the representation learnt by the VAE involves
looking at its sampling capabilities and interpolation in the latent space. This eval-
uation helps understand if the VAE has effectively learned a continuous, regular and
meaningful latent space representation, allowing it to generate diverse and realistic
samples. An example of interpolation is given on figure 4.2. Practically, we’ll choose
the 2 first samples of the test set and interpolate 10 latents between them included.

3. Classifier/Regressor Performance : Another way to evaluate the quality of the VAE
is to examine how well a classifier or regressor performs when trained on the embed-
dings produced by the VAE. The VAE’s embeddings should ideally capture mean-
ingful and relevant information about the data, leading to solid performance in

41

downstream tasks. Practically, we’ll train a shape classifier. For the sake of con-
ciseness, this axis will rarely be used.

ééé@é&ééé@

Figure 4.2. A VAE was trained on the celebA dataset, and interpolation can be done
by encoding two different images (shown in the last two columns of each row) and then
decoding any interpolation between their corresponding latents. Image taken from an
article [10]

We stress again that these three axes are not fully sufficient to quantify and draw con-
clusions on performance of a VAE. Additional axes such as likelihood estimation and
interpretability could also be considered depending on the specific use case and require-
ments. Evaluating a VAE from multiple perspectives is essential to gain a comprehensive
understanding of its capabilities and limitations. Now that we have a decent VAE evalu-

ation procedure, we may set up simple experiment that will illustrate the importance of
the 5 factors we consider using the dSprites data set.

4.2.1 Latent structure importance
Experiment goal and context

A dSprites sample of shape (1,64, 64) can be encoded into several different latents. Specif-
ically, it can be represented as either a 2D tensor of shape (1, x, y) or a 1D tensor of
shape (z), where the number of components of the latents is the same, i.e., z = xy.

On one hand, since the samples are 2D squares, it is reasonable to consider mapping
them to smaller 2D squares in order to preserve the structure of the samples. Preserving
the structure means retaining the local information and patterns that are crucial for
understanding the content of the images. These local patterns include textures, features,
and other information that contributes to the overall interpretation of the scene.

To preserve the structure of the images, using Convolutional Neural Networks (CNNs)
seems a suitable approach. CNNs are well-suited for this task due to their inherent ability
to capture local structures and spatial relationships in images. By sliding small filters over

42

- /ﬂ .
/
/

/ Conv2D — BatchNorm — LeakyReLU
MEAN N 1D-Tensors
z —>
0G VAR/ [T Fully connected Layer
/‘ Up C
Down Cony
] -

Figure 4.3. VAE that maps 3D input X and produces a 1D latent variable Z at the
bottle-neck as well as a reconstruction X’. The VAE mainly consists of CNN layers with
2 fully connected layers at the end to extract a 1D mean and 1D log variance that will
parameterize the latent normal distribution.

the input image, CNNs can effectively learn and extract meaningful features from local
regions, contributing to a more accurate representation of the underlying content.

On the other hand, one could use a simple CNN with fully connected layers at the end to
encode image samples to 1D tensors, this comes with the advantage that the latent size is
easily manipulable but this also comes at the cost of the network completely destroying
the spatial relationships between neighbouring pixels. Note that such a network could
also be used to map 2D squares to smaller 2D squares by reshaping the output but this
operation would not preserve any structure.

In regard of understanding latent structure importance, we decide to evaluate 3 VAEs

1. VAE — 1024 : a VAE made of a CNN backbone to extract features and FC layers
at the end that maps (1, 64, 64) to (1024)

2. CONV —VAFE —4—16 — 16 : a basic VAE made of a CNN only that maps (1, 64,
64) to (4, 16, 16)

3. KL —VAE —4—16 — 16 : an advanced VAE made of a CNN that makes use of
attention layers that maps (64, 64, 1) to (4, 16, 16)

These 3 VAE all share latents with 1024 components but have very different structure, we
shall briefly describe them here. They all have a CNN backbone but those that map 3D
inputs to 1D latents naturally have to use fully connected layers at some point. The VAEs
mapping 3D inputs to 1D latents that we used are represented on figure 4.3 while the fully
convolutional ones that map 2D to 2D or 3D to 3D are represented on figure 4.4. The
KL—-VAFE —4—16— 16 we introduced earlier is similar to CONV —VAE —4—16 — 16
except it possesses some self-attention layers, it is represented on figure 4.5.

Results
The test reconstruction errors of the 3 VAEs can be seen on table 4.1.

Samples of VAE—1024 can be seen on figure 7.1 and samples of CONV -V AE—4—16—16

43

R | e
y
/

Conv2D — BatchNorm — LeakyReLU
MEAN
/ [] 3D-Tensors
- Up Conv
LOG VAR

Down Conv

Figure 4.4. VAE that maps 3D input X and produces a 3D latent variable Z at the bottle-
neck as well as a reconstruction X’. The VAE solely consists of convolutional layers.

/ GroupNorm — Conv2D —+ GroupNorm — Dropout — Conv2d — SiLU
MEAN
/ [] 3D-Tensors
/ Up Conv
Down Conv

[] Atention Block

Figure 4.5. VAE that maps 3D input X and produces a 3D latent variable Z at the
bottle-neck as well as a reconstruction X’. The VAE consists of convolutional layers and
self-attention layers.

44

Model Test Reconstruction Error
VAE — 1024 24.25
CONV —VAE —4—16 — 16 20.55
KL—-VAE —4—-16—-16 3.65

Table 4.1. Axis 1: Test reconstruction errors for different structures of Variational Au-
toencoders (VAEs)

can be seen on figure 7.2, as KL —VAE —4—16 — 16 is a VAE pretrained on a large set
of images, its samples are not sprites and thus of low interest. We also put for each model
interpolations between 2 images from the test set respectively as 7.3, 7.4, 7.5.

Interpretation

On one hand, the fully CNN-based VAEs performed better, according to the first axis,
than the classical one with FC layers at the end which may perturb the overall order of
the image. On the other hand, their sampling capabilities and latent space structure seem
far below those of VAE — 1024. Indeed their generated samples seem not to belong to
the data distribution and interpolations between data samples are definitely not smooth.
Smoothness is not a sufficient criterion to assess a latent space structure per se. However
these discontinuities we observe in 7.4 and the blurriness and multi-modality we observe
in 7.5 are clear red flags.

Oppositely, the interpolation capabilities of VAE — 1024 are quite good as we see that
consecutive interpolates are quite similar which is what you expect for a VAE. Indeed,
neighbours should be similar. There is however a small bad feature to note, even though
the change of shape between 2 data samples is pretty smooth, the change in position is
sometimes too sudden, too abrupt. The third row of 7.12 shows a clear example.

We should also note that we sometimes observe purely black images which are often
located in the middle of the interpolation path. We believe these correspond to zones of
the space to which no data was encoded and it seems no data even got closed to being
encoded there as by the stochastic encoding procedure of VAE, this region would have
been populated if it was the case.

From this simple experiment, we are tempted to draw the conclusion that fully CNN-based
VAEs are more fit for image reconstruction because they preserve the input structure
however they seem to have a poor latent space structure compared to those that contain
dense layers.

4.2.2 Latent size importance
Experiment goal and context

The latent size as the name indicates is simply the number of components of the latents
and while encoders usually down scale the input data, there is no general rule on the size
latents should have.

We could expect larger latents to be able to hold more information and smaller latents to
be less expressive as they have less degrees of freedom. Formally, the latent size determines
the level of information compression in the model. A smaller latent size forces the VAE to
capture only the most essential features of the input images, leading to a more compact
representation. Conversely, a larger latent size allows the model to capture more details

45

and nuances in the data but one should note that if the latent size is too small, the
model may not be able to represent the data. Indeed, consider a VAE trained on dSprites
with a latent size of 4, by the pigeonhole principle there is at least one latent component
that holds for at least 2 generative factors in the ideal case where each latent learnt a
generative factor. We can cautiously say that the reconstruction will never be perfect
because encoding most likely lost some information that decoding will not be able to "re-
create". Note that perfect reconstruction is possible in a simple yet unrealistic scenario
: where the latent that holds 2 generative factors learns all pairs of these 2 factors and
maps each pair to an index. It essentially boils down to enumerating each pair and it
would allow for perfect reconstruction but this would ruin all the generative aspect of the
VAE.

We should also note that larger latents are also more prone to over-fitting.

In regard of understanding latent size importance, we decide to evaluate 5 VAEs :

1. VAE — 256 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (256)

2. VAE — 128 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (128)

3. VAE — 64 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (64)

4. VAE — 16 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (16)

5. VAE — 4 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (4)

6. VAE — 1 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (1)

Results

The test reconstruction errors of the VAEs can be seen on table 4.2.

Model Test Reconstruction Error
VAE — 256 16.19
VAE — 128 21.18
VAFE — 64 15.38
VAE — 16 52.11
VAE — 4 120.41
VAE —1 302.81

Table 4.2. Axis 1: Test reconstruction errors for different sizes of Variational Autoencoders

(VAEs)

Samples generated by the VAEs can respectively be seen on figures 7.6, 7.7, 7.8, 7.9, 7.10,
7.11.

We also put for each model interpolations between 2 images from the test set respectively
as 7.12, 7.13, 7.14, 7.15, 7.16, ?7?.

46

Interpretation

We can observe that the reconstruction roughly decreases with the latent space size, we
can simply explain that by the fact that smaller spaces have smaller variables to hold
useful information about a point they wish to encode. The error made by VAE — 1 is
huge w.r.t that of VAFE — 256 simply due to the fact that 1 variable is hardly enough to
hold information about 1 categorical variable and 4 quantitative variables.

From the second axis perspective, one can clearly tell that the sampling capabilities seem
to decrease with the latent size as well. Samples 7.10 drawn from VAE — 4 are much
more likely to come from the data distribution than samples 7.6 drawn from VAE — 256.
We believe this is due to the fact that the whole data set is encoded to a fraction of
the latent space that decreases with the number of dimensions. This could also be due
to the larger network being more prone to overfitting or even the smaller one learning
a more disentangled representation. As we’ll see in 2 sections, learning disentangled
representations usually helps.

From these simple observations, we draw the conclusions that larger latent spaces may
hold larger amounts of information at the cost of having lower sampling capabilities most
likely due to poor disentanglement learning.

4.2.3 Stochasticity and regularity importance
Experiment goal and context

Variational auto-encoders were mainly introduced because auto-encoders latent space had
poor regularity and structure. Auto-encoders thus also had poor sampling capabilities but
very good reconstruction error as they were trained to minimize it.

Regarding the third axis, auto-encoders provide deterministic embeddings which may not
capture all relevant information for downstream tasks like classification and regression.
This lack of stochasticity and regularization might result in overfitting to the training
data and poor performance on the test.

In regard of validating these hypotheses latent size importance, we decide to evaluate a
VAE and an AE with almost similar architecture :

1. VAE — 256 : a VAE made of a CNN backbone to extract features and FC layers at
the end that maps (1, 64, 64) to (256)

2. AE —256 : a AE made of a CNN backbone to extract features and FC layers at the
end that maps (1, 64, 64) to (256)

The 2 architectures are identical except for the last fully connected layer which is twice
larger for the VAE as it should output a mean and a log variance whereas the AE simply
outputs the latent itself.

Results

The test reconstruction errors of the VAE and the AE can be seen on table 4.3. Samples
generated by the VAE and the AE can respectively be seen on figures 7.6 and 7.18. Note
that as AE are not trained to match any normal density, sampling from a standard normal
makes little sense. We thus decided to sample from the mean and standard deviation of
the test set encodings : u, and o,.

47

Model Test Reconstruction Error
VAE — 256 16.17
AFE — 256 1.20

Table 4.3. Axis 1: Test reconstruction errors for an AE and a VAE

Interpretation

We read on table 4.3 that AE — 256 has a better reconstruction error than VAFE — 256
and that is no surprise as it is solely trained to do so. Its latent space representation
is however pretty poor as we can see from its generated sampled which appear on figure
7.18. We are however very surprised of its interpolation skills which are depicted on figure
7.19. We would have expected meaningless interpolates while they are pretty decent.

We can safely conclude that VAEs have a better latent space representation than simple
AEs.

4.2.4 Latent representation importance
Experiment goal and context

Neural networks are overall very powerful tools however their performance is strongly
dependent on the data they're fed. A simplistic network fed with data in a good form
might perform better than a complex network fed with data in another less meaningful
form. The embedding and representation of the data is a major factor to any task in
machine learning.

Therefore we want to know out of the many data representations VAE’s can offer, which
one is the best one ? In our simple set up we’ll simply test 3 VAEs :

1. VVAFE — 256 : a Vanilla VAE made of a CNN backbone to extract features and FC
layers at the end that maps (1, 64, 64) to (256)

2. BVAE — 256 — 10 : a Beta VAE, with 3 set to 10, made of a CNN backbone to
extract features and FC layers at the end that maps (1, 64, 64) to (256)

3. DIPVAFE — 256 : a DIPVAE made of a CNN backbone to extract features and FC
layers at the end that maps (1, 64, 64) to (256)

We note that we have also tested a BVAE — 256 — 30 with [set to 30 but as soon as
the value exceeds 20, the disentangling term is too strong and reconstruction is poor and
generated samples have little likelihood of belonging to the data distribution.

Results
The test reconstruction errors of the different VAEs can be seen on table 4.4

Samples generated by VAE — 256, BVAFE — 256 and DIPV AE — 256 can respectively
be seen on figures 7.6, 7.20 and 7.21.

Interpolations made by the same models can be seen on figures 7.12.

48

Model Test Reconstruction Error
VAE — 256 16.12
BV AE — 256 12.12
DIPVAE — 256 6.57

Table 4.4. Axis 1: Test reconstruction errors for 3 different VAEs

Figure 4.6. 2 samples that share the same posX, posY, scale and orientation but different
shapes

Interpretation

From table 4.4 it is clear that DIPV AE — 256 has the best reconstruction error but
looking at its generated samples on figure 7.21, they look nothing like the expected data.
Conversely, the generated samples of BV AE —256 on figure 7.20 are pretty decent. While
they have very different sampling skills, they are both very good at smoothly interpolat-
ing between data samples as can be seen on figures 7.22 and 7.23. It could be that
DIPV AE — 256 samples were low quality because they were sampled from a standard
normal in Z while the mean and standard deviation of the data set encodings were not
close to (0,1) simply because the KL term had little impact during training but after
verification, it turns out they are very close to (0,1). We thus have found no honest ex-
planation to this behaviour of DIPV AE — 256.

After these 2 observations, we are tempted to say that 5-VAEs seem to be the best of the
3 VAEs as they have decent reconstruction error and decent sampling skills.

Note : AE — 256 and DIPV AE — 256 both had mediocre samples but very good inter-
polations, this suggests that these 2 criteria we used to assess the latent space structure
and representation were actually not both targeting the same feature. If they were, we
should not have drawn opposite conclusions from them.

4.2.5 Some notes on VAE

In this section, we share not necessary but useful insights regarding VAEs, particularly
we’ll look at the latent representation of samples using the different VAEs we’ve intro-
duced.

We consider for example the figure 4.6 which contains 2 samples that share the same posX,
posY, scale and orientation but different shapes. We then look at the different encodings
4.9, 4.8 and 4.7 it admits respectively using VAE -5, BVAE—5and DIPV AE —5.

We may, not totally honestly, observe that the two samples are less distant in 4.8 than in
4.9. Indeed, the absolute difference element wise of the vanilla encodings is [1.0672, 0.8881,
1.0811, 0.3583, 0.9404] while for the 5 encodings it is [1.5316, 0.6429, 0.5234, 0.1331,

49

—0.5 7 1.0
0.0
0.8
0.5 -

—0.5 0.0
0.0 -
:-:- _0.2
0.5 -
-0.4

Figure 4.7. Encodings of the 2 samples using DIPVAE — 5

1.5
Image 1
-0.5
0.0 . - 1.0
0.5 T T T
0 1 2 3 4 0.5
0.0
-0.5
Image 2
-0.5
0.0 -:- _1‘0
0.5
0 1 2 3 4 -1.5

2.5
—0.5
2.0
0.0
0.5 1.5
1.0
0.5
—-0.5 0.0
0.0
—0.5

0.5

Figure 4.9. Encodings of the 2 samples using VAE — 5

20

Figure 4.10. A square from the test set

=10

Image 3 Image 4

4
2

2
o

o

Figure 4.11. 4-channel encoding of the previous square using K. — VAE —4 — 16 — 16

0.4262]. Except for the first component, the J encodings of the 2 illustrated samples
are closer. As this pattern was observed very frequently, we can safely say that this is
due to the disentangling property that BV AE — 5 enjoys. The first latent component is
most likely strongly dependent on the shape, although further analysis using disentangling
metrics such as 8 score, Factor score, or Mutual Information Gap is needed to provide
more confidence to this claim. We may also want to look at fully CNN-based VAEs to

see whether they indeed preserve structure. Consider the square example on figure 4.10
and its encoding on figure 4.11, we can clearly see that that the shape is still present
in the encodings themselves even if it may be a little blurry after several convolutional
layers.

51

4.3 Pilot experiments : Diffusion model study

We now proceed to the second parts of pilot experiments which aim at understanding
diffusion models a bit more.

To evaluate the performance of a diffuser, we need to use some quality metrics or axes
to guide us. Similarly to VAEs, there is no unique sufficient metric to do so. Even
worse, generative models tend to be very hard to evaluate. Computing the likelihood of

generated samples is usually intractable for all generative model types, if they even admit
a likelihood.

We thus choose these 3 essential and informative axes to evaluate diffusion models:

1. Denoising loss: Diffusion models are trained by removing noise from an image to
which a certain level of noise was added. The resulting Mean Squared Error (MSE)
between the target image and the network output serves as a fundamental metric
for assessing a diffusion model’s performance.

2. Sampling capabilities: The primary goal of a diffusion model is to generate new
and plausible data given a dataset. Evaluating the sampling capabilities involves
more qualitative assessments, where visual inspection of generated samples is es-
sential. By comparing the generated samples to the original data samples, we can
gain insights into the model’s ability to capture the underlying data distribution
accurately. A high-quality diffusion model should produce diverse, realistic, and
coherent samples that resemble the data distribution it was trained on. Addition-
ally, assessing sampling diversity, i.e., the model’s ability to generate a wide range
of different samples, is crucial to ensure its capacity for creative and versatile data
generation.

3. Modes coverage : Data sets distributions are usually multi-modal where each feature
can have several modes, a good diffusion model should have learnt all modes of the
distribution and generate them in proportions similar to those of the data set. A
simple way to check for modes coverage is to visually inspect the modes of generated
samples or feed them to a network trained to predict the modes of each feature given
a sample. Practically we’ll ask well-trained classifiers and regressors to guess the
features of each generated samples and stack those predictions. If the diffusion
model has correctly learnt the data distribution and if the regressors and predictors
are very good, then we should observe uniform histograms of each stacked feature
predictions. We should note however that these modes coverage histograms are a
necessary but not sufficient conditions to assure convergence of the diffusion model.
Indeed, consider a diffusion model that generates % of squares, hearts and ellipses but
they are all 3 always appearing at a particular range in the x-position. For example,
squares could appear in [0, 0.33], hearts in [0.34, 0.66] and ellipses in [0.67, 1]. In this
case, the distribution of the x-position and the distribution of shapes would both be
uniform over their range however the joint distribution P(shape, x-position) would
not! The condition we're using is weak because 5 variables were jointly used in the
data generating process but we're only looking at the marginals.

52

I N S N

BatchNorm — FC — ReLU — DropoutBatchNorm — FC — ReLU — Dropout
[] ID-Tensors
[""] Fully Connected Layers

Figure 4.12. Typical diffusion model we used for 1D latent variables as in BVAFE or
V'V AFE space. It mainly consists of fully connected layers.

4.3.1 Latent structure importance
Experiment goal and context

In this section, we’re interested in learning what structure type is most suited to an
appropriate diffuser. What we mean by appropriate is that we want to use diffusers
architectures appropriate to the structure of the input data. If it is a 1D tensor with no
spatial relationships, then an MLP seems well suited while if the data is image-like, a
CNN is a better choice.

In regard of understanding latent structure importance for latent diffusion models, we
decide to evaluate 3 VAEs:

1. DIFF— BV AE—1024 : an MLP-based diffuser working in BV AE space with 1024
latents

2. DIFF —CONV —VAFE —4—16—16 : a CNN-based diffuser working in CONV —
VAE — 4 — 16 — 16 space as defined previously

3. DIFF—KL—-VAFE—4—16—16 : a CNN-based diffuser working in KL —VAFE —
4 — 16 — 16 space as defined previously

Before comparing these diffusion models, we’ll first briefly describe their architectures.
As the latent variables have different dimensions depending on the latent space in which
they live, the diffuser working in that space should naturally be designed in order to take
advantage of that structure and dimensional. That is why for 1D unstructured latent
variables we built an MLP-like diffuser while for 2D or 3D structured latent variables
we used CNN-based diffusion models. They are respectively depicted on figure 4.12 and
figure 4.13.

All architectural details are available in the section "Some notes on diffusers".

Results
The denoising test losses of the three diffusion models can be seen on table 4.5

Samples generated by each of the three diffusion models can respectively be seen on figures

23

Xt

0y /Q
i Sy N

GroupNorm —+ Conv2D — GroupNorm — Dropout — Conv2d — SILU

||
/ Up Conv
| —

Figure 4.13. Typical diffusion model we used for 3D latent variables as in CONV —
VAE — 4 — 16 — 16 space. It mainly consists of convolutional layers.

Model Denoising Test Loss
DIFF — BVAE — 1024 4605.60
DIFF — CONV —VAE —4—-16—16 1269.42
DIFF —KL—-VAE—-4—-16—-16 12.81

Table 4.5. Axis 1: Denoising test losses for different structures of diffusion models. These
were computed by randomly diffusing test data and asking the diffusion model to remove
the noise, the loss is then simply the MSE between the clean sample and the denoised
sample.

4.19, 4.15 and 4.16.

The histograms for mode coverage of DIFF — BV AE — 1024 can be seen on figure 4.17
while those of DIFF — KL — VAE —4 — 16 — 16 are on figure 4.18.

Interpretation

From table 4.5, it is clear that the KL diffusion model is the one that best removes noise
from noisy samples, it however does not guarantee that it will produce the most likely
samples. We remind that DIFF—KL—V AFE and DIFF—CONV —V AFE have the very
same architecture, they simply live in different latent spaces therefore, the architecture is
not the reason for this out performance.

The samples generated by DIFF — KL — VAE are also the best and by far. DIFF —
BV AE — 1024 samples 4.19 are however unexpected, they are not even as good quality
as the samples 7?7 generated by BV AE — 1024 which samples latents from a normal dis-
tribution. We believe this is due to the high dimensionality of the data as we’ll see that
smaller diffusers produce very decent samples.

Finally DIFF — KL — V AE produces samples whose features are quite uniformly dis-
tributed in the data set ranges except the for the shape as the model produces a bit too
many squares and not enough hearts.

We believe these 3 cases are not enough to draw a conclusion about the latent space
structure importance in LDMs but we might give a few reasons why DIFF — KL -V AE

o4

Figure 4.14. Samples generated by DIFF — BV AE — 1024

Figure 4.15. Samples generated by DIFF — CONV —VAE —4 — 16 — 16

95

Frequency

Figure 4.16. Samples generated by DIFF — KL —VAE —4 — 16 — 16

Histogram of Orientation

Histogram of Pos X

Histogram of Pos Y

Histogram of Scale

Histogram of Shape

Mean

271

1
1
1
1
1
1
1
1
1
1
1
06 1
1
s
1
1
1
1
1
|

Orientation

Frequency

«

IS

Mean [0.57

w

04 06

Pos X

08 10

Frequency

w

Mean [0.55

04 06 10

PosY

08

Frequency

IS

Mean

0.8 10 12
scale

Frequency

0.0

10
Shape

05 15 2.0

Figure 4.17. Histograms generated by sampling 50k sprites in BVAE — 1024 space,
decoding them and then passing them to some well-trained classifiers/regressors. As the
orientation was poorly understood by the corresponding regressor network, it should not
be given attention. Regarding the other variables, we wished for a uniform distribution
over their ranges in the dataset, that is, scale should be U[0.5,1].

Frequency

Histogram of Orientation

Histogram of Pos X

Histogram of Pos Y

Histogram of Scale

Histogram of Shape

Orientation

Frequency

Pos X

Frequency

PosY

Frequency

w

1
Mean [0.77
1
1
1

05 06 07 08 09 10 11
scale

Frequency

10
shape

15 2.0

Figure 4.18. Histograms generated by sampling 50k sprites in KL — VAE —4 — 16 — 16
space, decoding them and then passing them to some well-trained classifiers/regressors

56

is pretty good. We believe the most important reason for this performance is that the

KL—-

V AFE is a pretty complex VAE and it was trained with several losses and on several

data sets with a very large domain. The losses included GAN losses, LPIPS loss, dis-
criminator loss, KL distance and reconstruction loss. We believe training the VAE with
a perceptual loss term as well could make the latent space more comfortable for diffusion
models but we leave this idea to future work.

4.3.2 Latent size importance

Experiment goal and context

The latent size is a crucial design choice when building a latent diffusion model for the
following reasons :

1.

Expressiveness and capacity : The latent size significantly influences the diffuser’s
capacity to represent data distributions. Larger latent sizes offer higher expressive-
ness enabling the diffuser to capture complex patterns and detailed features in the
data. However there is one problem : large latent sizes can overfit faster than small
latents. On the other hand, smaller latent spaces might limit the model’s ability to
capture fine-grained details in the data.

Sample generation : The latent size impacts the diversity and quality of generated
samples. Larger latent spaces tend to produce more diverse and varied samples due
to their increased expressiveness. This leads to higher quality generated samples
in terms of diversity with respect to the data set we’re trying to learn. On the
other hand, smaller latent spaces might produce more consistent, but potentially
less diverse, samples during generation.

. Interpretability : In some cases, smaller latent spaces can be more interpretable. A

reduced latent size might lead to more disentangled representations, where individ-
ual dimensions of the latent space correspond to specific generative factors.

Computational efficiency: The choice of latent size also directly impacts the com-
putational efficiency of the model. Larger latent spaces require more memory and
computational resources during training and inference. Smaller latent sizes can lead
to faster training times and lower memory requirements.

In regard of understanding latent size importance for latent diffusion models, we decide
to evaluate 3 VAEs:

1.

DIFF— BV AE—1024 : an MLP-based diffuser working in BV AFE space with 1024
latents

DIFF — BVAFE — 256 : an MLP-based diffuser working in BV AE space with 256
latents

DIFF — BVAE — 16 : an MLP-based diffuser working in BV AE space with 16
latents

DIFF—BVAE—5: an MLP-based diffuser working in BV AE space with 5 latents

DIFF — BVAE —5—Untrained : an MLP-based diffuser working in BV AE space
with 5 latents which will not be trained, it may serve as a benchmark

o7

Figure 4.19. Samples generated by DIFF — BVAE — 1024

Results

The denoising test losses of the 5 diffusion models can be seen on table 4.2.

Model Denoising Test Loss
DIFF — BVAE — 1024 4605.60
DIFF — BVAE — 256 4590.39
DIFF — BVAE — 16 4321.80
DIFF — BVAE -5 3934.41
DIFF — BVAE — 5 — Untrained 4932.97

Table 4.6. Axis 1: Denoising test losses for different sizes of diffusion models. These were
computed by randomly diffusing test data and asking the diffusion model to remove the
noise, the loss is then simply the MSE between the clean sample and the denoised sample.

The samples generated by these diffusion models can be seen on figures 4.19, 4.20, 4.21,
4.22 and 4.23.

The modes coverage histograms of each model can be seen on figures 4.17, 4.24, 4.25, 4.26
and 4.27.

Interpretation

From table 4.6, it is clear that the smaller models are better at removing noise and we
remind that we report the mean noise over the whole test averaged over the components
therefore it is not simply due to them having less components. As we can see on figures
4.19, 4.20, 4.21, 4.22 and 4.23, the smaller models also tend to produce better samples.
Note that even the untrained diffusion model DIFF — BV AE — 5 — Untrained produces
very good samples. We believe this is due to the VAE more than to the diffuser, we ob-
served while training VAEs that smaller VAEs tended to be closer to the standard normal.
Thus whatever the diffuser outputs usually falls within this standard normal range and
thus the VAE decodes these latents to likely samples.

Regarding the feature distribution histograms on figures 4.17, 4.24, 4.25, 4.26 and 4.27,

o8

Figure 4.20. Samples generated by DIFF — BV AE — 256

Figure 4.22. Samples generated by DIFF — BVAE —5

99

Figure 4.23. Samples generated by DIFF — BVAE — 5 — Untrained

Histogram of Orientation Histogram of Pos X Histogram of Pos Y Histogram of Scale Histogram of Shape
H H H 7
1 1 1
030 1 1 1
1 1 I
25 H 4 1 s
1 i
1 i
1 I
2.0 ! f 5
1 i
i 3 [
g g z H z t 74
g g g i g g
& & & H &2 £3
10 !
1
1 2
1
05 i '
5 1
: 1
1
1
00 o } L
4 04 06 08 10 00 02 o4 04 05 06 07 08 09 10 00 0s 10 15 2.0
Orientation Pos X Pos Y scale shape

Figure 4.24. Histograms generated by sampling 50k sprites in BV AE — 256 space, de-
coding them and then passing them to some well-trained classifiers/regressors

Histogram of Orientation Histogram of Pos X Histogram of Pos Y Histogram of Scale Histogram of Shape

1
1
1
H 6

o

S

w
Frequency
IS

Frequency
Frequency
Frequency
Frequency

w

06 ¥ 00 02 04 04 05 06 07 00 05 10 15 20
Orientation Pos X PosY scale Shape

Figure 4.25. Histograms generated by sampling 50k sprites in BV AE —16 space, decoding
them and then passing them to some well-trained classifiers/regressors

Histogram of Orientation Histogram of Pos X Histogram of Pos Y Histogram of Scale Histogram of Shape
1 1
10 1 i 20 7
1 5 I 8
i | s
i |
H H 35 6
08 H H
] 4 1
1 1 30 4 B
i |
306 H z | g2 z z
g ! 2, ! g g g,
H i H \ H R H
2 Mg 276 3 Mean = 0.53 250 3 2
& £ 1 £ & &
04 1 3
2 15 2
2
10
02 N N
05 1 I
0.0] 0.0 0 +
o 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 0.7 0.8 0.9 10 0.0 0.5 10 15 2.0
Orientation Pos X PosY Scale Shape

Figure 4.26. Histograms generated by sampling 50k sprites in BV AE — 5 space, decoding
them and then passing them to some well-trained classifiers/regressors

60

Histogram of Orientation Histogram of Scale Histogram of Shape

1
1
1
1
1
1
1
1
1
L
L

e ————————————————
°
q

nnnnnnnnnnn Pos X Pos Y scale Shape

Figure 4.27. Histograms generated by sampling 50k sprites in BV AE — 5 space using
a non trained diffuser, decoding them and then passing them to some well-trained
classifiers /regressors

it is clear that no diffusion model has successfully learnt the data distribution as all his-
tograms are either far or very far from a uniform distribution. It is however reassuring
that the untrained model has the worst feature distributions 4.27.

We believe the main conclusions to draw from these results are the following. First and
most obvious, latent diffusion models performances are heavily dependent upon the qual-
ity of the latent space defined by the VAE. Second, we believe the latent regions that lead
to meaningful decodings have their size strongly decreasing with the number of latent
variables. Note that it is not a simple task to dissociate the culprit when it comes to weak
generation as it can be the VAE, the diffuser or even both. Third, smaller VAEs tend
to learn more factorized representation of the data, this could highly ease the diffusion
models to learn the latent data distribution p(z|x).

4.3.3 Stochasticity and regularity importance
Experiment goal and context

Another interesting question to ask is whether one should use VAEs or simple AEs for
encoding and decoding the data. As we said several times, AEs encode and decode point
to point, the neighbourhood around a data point might not be encoded close to where
this data point will be encoded. This happens simply because there are no neighbourhood
constraints and generally there is no structure nor regularity in AEs latent space. Training
a diffuser on AEs latent representation of the data set and then using it for inference would,
according to us, yield to 2 possible scenarios :

1. The diffusion model ended up generating a latent very close to the latent of a
training point, decoding this image would thus yield an image very close to the
training point, i.e, the image we were referring to.

2. The diffusion model ended up generating a latent not close enough to any of the
training points and decoding it resulted in a meaningless image.

In the first scenario, the generated image is likely to simply belong to the data set and
in the second scenario, the generated image has very little likelihood of belonging to the
distribution we were targeting. It seems that using AEs is not very beneficial in any
of the 2 cases and it also seems that VAEs would perfectly address these limitations.
However, despite this, [5] claim to use AEs in their stable diffusion implementation. As
we’ll see, using simple AEs is not enough. Their latent space was actually decent because

61

(a) Samples generated by DIFF -V AE—5 (b) Samples generated by DIFF — AE —5

Figure 4.28. Comparison of generated samples

they didn’t use the traditional AE loss but rather a combination of perceptual loss and a
patch-based adversarial objective that is described in their paper.

In regard of understanding regularity importance of the latent space for latent diffusion
models, we decide to evaluate 2 VAEs:

1. DIFF —VAFE — 5 : an MLP-based diffuser working in VAFE space with 5 latents
2. DIFF — AE — 5 : an MLP-based diffuser working in AF space with 5 latents

Results

The denoising test losses of the 2 LDMs can be seen on table 4.8.

Model Denoising Test Loss
DIFF —VAE -5 3789.46
DIFF — AFE -5 4623.00

Table 4.7. Axis 1: Denoising test losses for 2 diffusion models. These were computed by
randomly diffusing test data and asking the diffusion model to remove the noise, the loss
is then simply the MSE between the clean sample and the denoised sample.

Samples generated by the 2 diffusion models can be seen on figures 4.28a and 4.28b.

The histograms for the modes coverage can be seen on figures ref and ref

Interpretation

From table 4.3, it seems DIFF —V AE —5 is the stronger diffusion model yet the samples
4.28a and 4.28b tell otherwise. We may be tricked into thinking that DIFF — AE —5is a
better generative model however it actually always generates the same batch of images. It
is actually not generative at all as we can see on the histograms 4.30. On the other hand,
it is quite surprising that DIFF —V AE — 5 failed to produce high-quality samples given

62

Histogram of Orientation

Histogram of Pos X

Histogram of Pos Y

Histogram of Scale

Histogram of Shape

Frequency

Frequency

Frequency

IS

o

04 05 06 07 0 12 14 16 18 20
scale Shape

2 3 a H
Orientation

Figure 4.29. Histograms generated by sampling 50k sprites in VAE — 5 space, decoding
them and then passing them to some well-trained classifiers/regressors

Histogram of Orientation Histogram of Pos X Histogram of Pos Y Histogram of Scale Histogram of Shape

08 10 12 14 16 : 04 06 08 10 12 : ¥ . X ¥ ¥ 2 00 02 04 06 08 16 18 20 22 24
Orientation Pos X PosY scale Shape

Figure 4.30. Histograms generated by sampling 50k sprites in AF — 5 space, decoding
them and then passing them to some well-trained classifiers/regressors. We note that this
histogram does not generate any square.

that even its VAE was able to. Indeed 4.31 where samples were generated by the VAE led
to serious samples. Unfortunately, we found no satisfying answer to these results.

4.3.4 Latent representation importance
Experiment goal and context

Finally we'’re interested in learning whether it is easier for the same diffuser to learn a
vanilla latent distribution or a g disentangled latent distribution. Particularly, it is worth
noting that as the [value increases, the capacity of the latent space gets more limited
in representing complex patterns as it forces more disentanglement. Thus, there could
be a trade-off between disentanglement and expressiveness in 3-VAE-based diffusers. In

Figure 4.31. Samples generated by VAE — 5

63

regard of understanding representation importance of the latent space for latent diffusion
models, we decide to evaluate 2 VAEs:

1. DIFF —VAFE —5 : an MLP-based diffuser working in V AE space with 5 latents
2. DIFF—BV AE—5: an MLP-based diffuser working in BV AFE space with 5 latents

Results
Model Denoising Test Loss
DIFF —VAE -5 3801.61
DIFF — BVAE —5 3934.87

Table 4.8. Axis 1: Denoising test losses for 2 diffusion models. These were computed by
randomly diffusing test data and asking the diffusion model to remove the noise, the loss
is then simply the MSE between the clean sample and the denoised sample.

Samples generated by these 2 models can be seen on figures 4.28a and 4.22.
Their corresponding histograms can be seen on figures 4.29 and 4.26.

Interpretation

Even though DIFF — BV AE — 5 has a higher test error, it produces far better samples
than DIFF — VAE — 5. Also, it has learnt all modes of the data distribution although
in wrong proportions as it generates very few squares where DIF'F — V AE — 5 does not
generate any.

We are tempted to conclude that a disentangled latent space allows diffusion models to
better converge to the latent data distribution.

4.3.5 Some notes on diffusers

We spent a long time implementing and training diffusers for this thesis and while doing so
we observed many phenomenons that do not fit somewhere else in the writing but which
we believe are worth of talking about. That is why in this section, we briefly describe
these notes.

This section might be skipped if the reader simply desires to get the research question
results.

Architectures of diffusers

As we have shown on the network drawings and said so far, when the latent space is
composed of 2d square latents which preserved the images structure we would use an
appropriate diffuser, that is, a U-net with time inputs. The main library we used for the
project, Hugging Face diffusers, implemented such a U-net2D where the depth, kernel
sizes, time embedding type and other parameters could be defined by the user.

Unfortunately, no appropriate diffuser was implemented for 1D latents except a U-net1D
relying on 1d kernels however the latter was of no use to us since it assumed spatial
relationships between latents components. This assumption is completely wrong in the
VAFE or BV AFE latent space as they contain FC layers at the end. We thus needed to
implement a diffuser for that is fed a 1d tensor and a timestep. We thus rapidly decided

64

to use an MLP or a ResMLP.

Let f(z,t) be the MLP tasked with removing the noise from z; to recover z where z
has shape (LatentSize,). There are several ways of injecting the scalar timestep into the
network such that it knows the level of noise it should try to remove.

1. Concatenate the raw timestep to the flattened noisy sample before the first layer
as shown in figure (ADD FIGURE) but this option poorly works for 2 reasons.
First, as the concatenated input gets deeper and deeper in the network during the
forward pass, the timestep will tend to be forgotten. This results in its corresponding
weights in the network not be updated enough because of the vanishing gradient
as the timestep is far from the zone reached by activation functions. A solution to
that would be to concatenate the timestep at each and every layer of the network
as shown in fig (ADD FIGURE) Second, the timestep information alone is not
well captured by the network. Similarly to transformers, positionally embedding
the timestep will allow the network to better capture it, even if the information
quantity didn’t increase by embedding it, it is simply a different representation of
the same data that eases the job to the network.

2. The second option and the one we aimed for was to simply add trained positional
embeddings to z; at each layer . That is we first positionally embed the timestep
to an array embedding(t) of shape (D,) where D is the embedding dimension.

We first map the scalar t to an array whose i-th component is

emb(t,4) = ¢ - (0g(10000) - ¢
D

]

) v@'e{0,1,2,...,§} (4.1)

embedding(t) = (sin(emb(t)), cos(emb(t))) (4.2)

The task is not to define an MLP f(z,t) anymore but rather f(zy, embedding(t)). To
let the network handle the embeddings as freely as it wants and to fit dimensions, the
embeddings themselves are passed through a 2-layer MLP before adding them to z. where
1 indicates the I-th layer of the MLP. Said more simply, each layer first transforms the time
embeddings and then processes z; ! such that they have the same shape. A detailed view
is shown on figure (ADD figure). Given the positional embeddings, a lot of architectural

paths were possible, we explored 3 and compared their performances as diffusers

1. DIFF—MLP : An MLP that processes z; and embeddings(t) to add them together
and keep passing them to next layers.

2. DIFF — ResMLP : A ResMLP that processes z; and embeddings(t) to add them
together and keep passing them to next residual layers. Residual layers preserve the
size of the input as shown on figure (ADD FIGURE of resMLP).

3. DIFF — ConcMLP : An MLP that concatenates trained embeddings(t) to zy and
keeps passing them to next layers.

The three architectures can be seen on figure (ADD FIGURE).
Show losses of the 3

65

Figure 4.32. The leftmost image corresponds to a sample from the data set and each
sample on its right corresponds to a noisier version of it. Specifically, having set T=1000,
the first noisy sample has a noise level t = 100, the second ¢ = 200, etc... The direction
of forward diffusion is left to right

Figure 4.33. The leftmost image corresponds to a generated sample and the rightmost
image corresponds to gaussian noise. As the direction of backward diffusion is right to
left, following this direction one can see all the intermediary samples generated during
the backward process. At t = 600, the location is not as easy to spot as in the forward.

Some examples of diffusion

We have so far introduced and studied diffusers a bit without even looking at what ac-
tually happens under the hood when one forward diffuses a data sample or when one
backward generates gaussian noise. In this small section we want to give a more practical
look at the intermediary samples as well as the importance of the network schedule.
Consider for example figure 4.32 where a data point was forward diffused for 10 increas-
ing levels of noise. As we can see on the sample in the middle-right, where ¢ = 600, the
location of the shape can be guessed fairly well but classifying its shape already seems
tougher since it quickly looks more and more like a circle or an ellipse.

We now consider the backward example on figure 4.33 where gaussian gaussian was back-
ward diffused in 100 inference steps but we here consider only 10 of them as using 10
inference steps only would lead to low-quality samples. In this direction, it seems the
location is a bit tougher to guess from the sample at t = 600 meaning that the backward
hasn’t properly learned the reverse of the forward process even though it was trained to
do so. Note that we're learning probability distributions so it does not make much sense
to draw such a strong conclusion from samples example. However, we proceed with this
approach because we have observed this particular pattern recurring multiple times when
re-running the experiment on different samples.

The variance schedule used for the experiments is the following one : 4.34. It is a simple
linear schedule going from (0,0) up to (T,0.02). If it were to go to (T,0.001), the variance
at the end would not be large enough and the samples at ¢t = T" would not be gaussian
enough. This would violate the assumptions of diffusion models and hopes of converging
to a good generative model would be null.

Training diffusers

In this work we trained a lot of diffusers which led us to making several possibly useful
observations.
First, it seems that having a low stable loss is a necessary but not sufficient condition for

66

Beta Values over Time

0.0200 4

0.0175 4

0.0150 4

0.0125 +

0.0100 +

Beta Values

0.0075 4

0.0050 4

0.0025 4

0.0000 +

T T T T T T
0 200 400 600 800 1000
Time

Figure 4.34. (8 values of the noise scheduler used

Figure 4.35. Training loss of the model

diffusion models to generate high-quality samples. Indeed consider the example where we
train a diffusion model on the dSprites dataset in pixel space, the training loss can be seen
on figure 4.35. We now look at the samples generated after 200k and 350k steps where
the loss went from 9.8461e-4 down to 7.5258e-4, a relatively small decrease given the loss
started at le-2. Samples generated after 200k steps may be seen on figure 4.36a while
those generated after 350k steps are on figure 4.36b. Clearly, even though the loss has
barely changed, the quality of generated samples is much better at 350k learning steps.
The denoising loss alone is not a sufficient criterion to assess the convergence and quality
of a diffusion model.

show some losses to compare the 3 archis

4.4 Experiments foreword

There is no single experiment within our current knowledge that would be sufficient
to answer the research question. Thus, we undertook the task of conducting several
experiments. The underlying objective of each experiment is to ascertain whether certain
information exists at time ’'t,” where 't” belongs to the set of time instances 0, 1, 2, ...,
T. If a latent variable, in the context of diffusion chain theory, follows a purely isotropic
Gaussian distribution, it inherently carries no informational content. However, if the
latent variable exhibits even subtle characteristics, such as discernible shapes, reasonable
positional estimates, or other features, then we can confidently conclude that it contains

67

(a) After 200k learning steps (b) After 350k learning steps

Figure 4.36. Diffusion model generated samples

certain pieces of information.

The individuals who evaluate these latent variables and attempt to deduce their features
are, in fact, machine learning models like regressors or classifiers. The degree of confidence
in their assessments is quantifiable through their average accuracy."

Notice that so far in this paragraph we haven’t specified any direction in which diffusion
goes. Indeed, our experiments will consider both the forward noisy diffusion direction and
the backward generative diffusion direction. That is because we don’t care whether the
latents x799 seem to hold information going in the forward direction where information is
destroyed or whether they seem to hold information going in the reverse-time generative
direction. At optimality the distribution p(xy) defined by the forward chain and the
distribution ¢(x¢) implicitly defined by the backward chain should be the same. That
is also why one should not be able to tell whether the samples on figure 4.37 are being
generated or noised, one simply cannot tell the direction solely looking at the samples.

4.5 Experiment 0 : Feature conservation

4.5.1 Experiment summary

Our initial experiment was designed to determine whether certain information still remains
present at time T. The setup is relatively straightforward: using the shape feature in the
dSprites dataset, we observed the shape of an image. We then added noise to this image
up to time t = T', and subsequently reversed the process by diffusing the noisy image back
to t=0. If the resulting diffused images frequently reverted back to their original heart
shape, it would suggest that the shape information persists at time T.

68

Po(Xe—1]x:)

q(xXe|x¢—1)

-—————- Forward Diffusion

------ =) Reverse Diffusion

Figure 4.37. Looking at this diffusion chain, one cannot tell whether the images were
generated by the diffusion models from left to right or whether they were denoised by the
diffusion model in the forward direction from right to left. (Source: ')

4.5.2 Experiment background

Assuming a perfect diffusion model, the latter should generate samples whose shape fea-
ture is uniformly distributed in (Square, Ellipse, Heart). That is, generating a lot of sam-
ples and perfectly classifying their shape should generate a shape distribution that is to-
tally uniform. Let x ~ g(xg) denote images sampled from the generative diffusion model,
if it is optimal then it is identical to the data distribution p(xg). Under that same assump-
tion, we have p(Shape = Square|x) = p(Shape = Ellipse|x) = p(Shape = Heart|x) = %
as these are the data set proportions. If diffusing a heart up to T, backward diffusing it
back to 0 and it came back as a heart with a proportion larger than %, then this could
suggest that the shape information is somehow still present at T.

If we were to diffuse the data images up to t=10, we should expect each sample to return
with the same shape since as we will show, for T=1000, diffusing an image up to t=10
barely modifies it.

Instead of focusing only on when ¢ = T, we’ll test various time steps from £ = 0 to = T..
We'll also analyze all 5 generative factors of the dSprites dataset: shape, posX, posY,
orientation, and scale. Since these are numerical, we’ll use MSE instead of accuracy.
We’ll explore traditional diffusion in pixel space and also in different latent spaces using
a VAE or a variant. To ensure statistically significant results, we’ll use thousands of
samples. Given the volume of samples and the need to predict/regress features, we’ll
employ a classifier for shape and regressors for the other 4 numerical factor to predict the
reconstructed sample’s features.

69

4.5.3 Experiment procedure

Objective: The goal of this experiment is to investigate whether shape information is
still present in the latent space S at time ¢ after diffusion. We aim to observe the shape of
an image, apply noisy diffusion up to time ¢, and then perform backward diffusion from
time # to time 0.

1. Initialize the experiment:

Prepare the dataset of images from the dSprites dataset with each image com-
ing with its features about shape, posX, posY, orientation, and scale.

Prepare a well-trained shape classifier working in pixel space.
Prepare a well-trained diffuser working in space S.

Prepare a well-trained VAE if S is a latent space.

Set the maximum time step t=T to T=1000

Choose a noise scheduler, a VAE and a diffusion model trained in the VAE’s
latent space with that noise scheduler.

Set NumberSamples = 0, Square2Square = 0, Heart2Heart = 0 and Ellipse2Ellipse =
0

2. Forward Noisy Diffusion:

Randomly select an image xq from the dataset.
If S # Pixel Space :

— Encode the data using the chosen VAE resulting in the latent representa-
tion z.

— Apply forward noisy diffusion to zy from time ¢t = 0 to t = using the
chosen diffusion model.

— This results in a new noisy image z; at time # after diffusion.
Else :

— Apply forward noisy diffusion to x, from time t = 0 to t = ¢ using the
chosen diffusion model.

— This results in a new noisy image x; at time # after diffusion.

3. Backward Generative Diffusion:

if S # Pixel Space :

— Perform backward generative diffusion on z; from time ¢ = £ to t = 0 using
the same diffusion model.

— Obtain the reconstructed image zg at time t = 0 after the backward diffu-
sion and then decode it using the VAE to Xq.

Else :

70

— Perform backward generative diffusion on x; from time t = £ to t = 0 using
the same diffusion model.

— Obtain the reconstructed image X, at time ¢ = 0 after the backward diffu-
sion.

4. Analyzing Shape Information:

o Use a shape classifier to predict the shape of Xy and read the shape of xy from
the data set.

o NumberSamples + +

o If the shape was initially a square and came back as a square :
— Square2Square + +

o If the shape was initially a heart and came back as a heart :
— Heart2Heart + +

o If the shape was initially an Ellipse and came back as an Ellipse :
— FEllipse2FEllipse + +

5. Repeat Steps 2-4:

e Conduct the above steps for a significant number of samples from the dataset
to obtain statistically significant results.

6. Return results

Square2Square Heart2Heart Ellipse2Ellipse
NumberSamples’ NumberSamples’ NumberSamples

o Return

Note 1: We here considered the case where we are interesting in seeing whether the
categorical variable shape is preserved but we can do exactly the same regarding the 4
other quantitative variables. The only difference is that one has to use a regressor that
outputs a scalar value and compute an MSE rather than an accuracy.

Note 2: We could have performed classification in either the pixel space and the latent
space, this does not matter as long as the VAE and the classifier are well trained.

4.5.4 Experiment preparations

We decided to perform this experiment in pixel space and in 3 different latent spaces:
BVAE — 5, BVAE — 16, and KL — VAE — 4 — 16 — 16. As this experiment requires
a well trained diffuser, VAE, and good classifiers/predictors, we extensively detail their
training process as well as some tests during and post-training to assess their quality
in the appendix. In the appendix there is for each diffuser model its architecture and
training evidence of the 3 axes we chose in the pilot experiments on diffusers section
. loss, sampling capabilities and modes coverage. In the appendix, one can also find
the architecture and the training losses for each classifier /regressor as well as some test
examples. Finally the appendix also contains the architecture and the training losses of
each VAE as well as its reconstruction examples and some generated samples. One can
find the models used for this experiment in Table 4.9.

71

Table 4.9. Models used in experiment 0

Model Pixel Space BVAE-5 BVAE-16 KL-VAE
Diffuser DIFF-PIXEL DIFF-BVAE-5 DIFF-BVAE-16 DIFF-KL-VAE
VAE None BVAE-5 BVAE-16 KL-VAE
Shape Classifier SHAPE-PIXEL | SHAPE-BVAE-5 | SHAPE-BVAE-16 | SHAPE-KL-VAE
PosX Regressor POSX-PIXEL | POSX-BVAE-5 | POSX-BVAE-16 | POSX-KL-VAE
PosY Regressor POSY-PIXEL | POSY-BVAE-5 | POSY-BVAE-16 | POSY-KL-VAE
Scale Regressor SCALE-PIXEL | SCALE-BVAE-5 | SCALE-BVAE-16 | SCALE-KL-VAE
Orientation Regressor ORI-PIXEL ORI-BVAE-5 ORI-BVAE-16 ORI-KL-VAE

One may have observed that in the procedure we specify that if there is a latent space,
one shall decode the generated sample to the pixel space and thus all predictors in latent
spaces seem irrelevant. We actually sometimes used them in our experiments either this
one or the ones and whenever we’ll make use of them we’ll mention it.

4.5.5 Experiment results and discussion

Before delving into details, let’s briefly outline the main conclusions drawn from this
experiment.

Firstly, for low levels of noise, the reconstructed samples tend to retain the same features
as the initial ones. As the noise levels increase to moderate levels, the initial sample’s
features gradually diminish. At high levels of noise, the reconstructed samples become
entirely independent from the initial ones. Secondly, the time, speed and overall rate at
which features tend to lose their information is not the same. Lastly, the space in which
samples live directly impact the aforementioned measures.

We now proceed to analyzing the results of the experiment.

Results in pixel space are on figures 4.38, 4.39, 7.26, 7.27 and 7.28.

We observe on figure 4.38 that for all noise levels smaller than ¢ = 300, the shape conser-
vation is of 100%, that is all samples that are forward and then backward diffused do not
change of shape. The behaviour starting at ¢t = 800 is completely different as the initial
shape information is not taken into account during the generation. Indeed, consider the
blue curve that denotes "Square to square', for ¢ > 800, it completely falls on the 33.333%
square generation plateau. This plateau actually denotes the percentage of squares that
the diffusion model generates when backward diffusing from gaussian noise. When the
blue curve hits the plateau, this means that whether or not you started from a square
in your forward process, that has no importance as a square will be generated 33.333
% of the time. The interval [300,800] is pretty interesting. We could have expected the
shape information to abruptly disappear because at some point the gaussian noise was too
strong, this would have led to a stair-case plot but this really does not happen. Instead,
the shape information tends to smoothly, almost linearly, disappear between ¢t = 300 and
t = 800. For example, at ¢ = 600, 50% of squares come back as squares and so do hearts
and ellipses. As 50% > 33.333%, it may suggest that at ¢ = 600, the shape information is
still present but it is not the only explanation. It could also be that given a noisy sample
originating from a square, the diffusion model thought, from training experience, that the

72

Shape retention in forward backward diffusion

100 4 - —— Square to square
— Ellipse to ellipse
Heart to heart
= Random square proportion
- Random heart proportion
Random ellipse proportion

90 ~

80 1

70

Percentage

60 4

50 4

40 1

-------------------------------- ?:\\'%_,—,_:i -
30 1
o] 200 400 600 800 1000

Noise level

Figure 4.38. Shape retention using a diffusion model in pixel space. Samples were forward
diffused up to a certain noise level and then backward diffused, a neural network would
then classify the resulting shape. Each continuous curves denotes the fraction of initial
samples that conserved its shape during the round trip. The dashed line on the other
hands denotes the proportion of shapes that the model naturally generates. If the shape
conservation ratio is equal to the generative shape ratio, this means the shape information
was lost at this particular noise level or that can also mean it was not taken into account
when generating.

Feature retention in forward backward diffusion

0.08 - LoLd
—=- Random PosX
0.06
AN}
2 0.04 -
0.02 -
0.00
T T T T T T
0 200 400 600 800 1000
Noise level

Figure 4.39. X-position retention using a diffusion model in pixel space. Samples were
forward diffused up to a certain noise level and then backward diffused, a neural network
would then regress the resulting x-position of the sample. The continuous curves denotes
the MSE between the initial sample’s x-position and the resulting sample’s x-position.
The red dashed line denotes the MSE committed when generating many random samples
from the diffusion models, these have no mutual information with the initial sample.

73

Feature retention in forward backward diffusion

Feature retention in forward backward diffusion Feature retention in forward backward diffusion

0.030 8

w
]
=
4
— Scale — Orientation
- 21 ==- Random Orientation
0.000 Random Scale

r T T T T T T T T T + T T T T T T f
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Noise level Noise level Noise level

0.025 -

0.020 +

0.015 4

MSE

0.010 1

— PosY
=== Random PosY

0.005

(a) Y-position retention (b) Scale retention (c) Orientation retention

Figure 4.40. Retention using a diffusion model in pixel space

easiest way to generate a likely sample would be to generate a square.

We believe the reason for this almost-linear behaviour in the [300,800] interval is most
likely due to the forward process variance schedule. The variance schedule is linear and
noisy samples are a linear combination of the clean sample and the noisy sample with
weight given by the variance schedule. As we’ll see in the forward experiment, the vari-
ance schedule is a main player when it comes to information destruction and changing it
will definitely change these curves.

The information on the position can also be somehow quantified as we look on figure 4.39.
For ¢t < 450, the MSE, or rather mean square difference, between the initial sample’s x-
position and the generated sample’s x-position is very small. That is, when we noise a
sample with little noise and backward diffuse it, its position does not change much. We
could believe that. It is very tough for a diffusion model to change the position of a sprite
in a few steps because it would have to recreate a whole sprite at another location. Notice
that there is also here a linear increase in the MSE between ¢t = 500 to ¢t = 800

Consider for example the sixth upper sample of 4.32, asking a diffusion model to generate
a sample from there would most likely lead to a sample at the same location because it
would be pretty hard for it to remove the current sample and create another. It would,
however, not be so hard to turn the heart to a square as one can difficultly tell it is a
heart. Noisy samples at ¢ > 500 tend to all look like blurry circles and its not so hard to
generate a heart, square or an ellipse from a blurry circle.

That is the reason why at ¢ = 500, the MSE on the x-position is still intact while the
shape conservation ratio is at 65 %. It seems that some features information is harder to
remove than others’.

Note that the red dashed line represents the error committed by the regressor when the
diffusion model generates random sprites, i.e, the regressor has no better chance to guess
the initial sample’s x-position than to output the mean, 0.5. Under the data distribution,
the MSE committed would be of 0.0887. This is simply the result of an MSE between
32 linearly spaced values in [0,1] and the random guess x — position = 0.5 . This value
is very close to the following one Ex,,.,.[(Xx—pos — 0.5)?] = 15 = 0.08333 that results
from assuming a uniform distribution. The reason the dashed line is not exactly at ﬁ is
simply because the diffusion model has not perfectly learnt the data distribution and the
features distributions are thus not identical to those of the data distribution.

The conclusion we draw regarding the plots for the y-position 7.26 and the scale 7.27 are
the same as those for the x-position. We note that the plot 7.28 is definitely unexpected,
we won’t give it much thought as the orientation regressor is the most likely culprit.

74

Shape retention in forward backward diffusion

100 4 | —— Square to square
—— Ellipse to ellipse
Heart to heart
90 1 —=-- Random square proportion
=== Random heart proportion
Random ellipse proportion

80 1

Percentage

T T T T T T
0 200 400 600 800 1000
Noise level

Figure 4.41. Shape retention using a diffusion model in KL —V AFE space. The procedure
to generate this plot is identical to that described in 4.38 except that diffusion takes place
in a latent space and classifiers/regressors also work in the latent space.

Feature retention in forward backward diffusion

— PosX
=== Random PosX

6 260 460 660 860 lDIDD
Noise level
Figure 4.42. X-position retention using a diffusion model in KL — VAE space. The
procedure to generate this plot is identical to that described in 4.39 except that diffusion
takes place in a latent space and classifiers/regressors also work in the latent space.

Indeed the orientation regressor training has not gone well and its predictions are not
reliable. We detail this in the appendix.

We might wonder whether we’ll draw the same conclusions from latent spaces. For the
sake of conciseness, we’ll only here show plots of the shape and the x-position, others will
be in the appendix.

Results in KL — VAFE space are on figures 7.24, 7.25, 7.26, 7.27 and 7.28.

It is evident from figure 7.24 that in the KL — VAFE space, the shape information is
lost much earlier—specifically, at ¢ = 250, it becomes entirely indiscernible. Below, we
attempt to provide well-founded reasons for this observed behavior.

We note that the diffusion model we used for this experiment, DIFF — KL — V AFE, has
not fully learnt the latent data distribution as it does not generates the 3 shapes in equal
proportions, indeed it produces 41% of squares.

Regarding this gap between the KL — V AFE results and the pixel results, we know from
[11] that large-sized images are less impacted by gaussian noise as neighbour pixels are
usually redundant, see example the impact of noise on several images of different sizes
on figure 4.43. The KL — V AFE space is (4,16,16) while pixel space is (1,64,64), that’s a
reduction factor of 4. Furthermore, we've seen on figure 4.11 that the 4 channels seemed

75

(b) 128 x 128 (c) 256 x 256 (d) 512 x 512 (e) 1024 x 1024

Figure 4.43. Larger images tend to be less impacted by independent gaussian noise

Shape retention in forward backward diffusion Shape retention in forward backward diffusion

—— square to square
— Ellipse to ellipse 80
80 Heart to heart
--- Random square proportion o
~-- Random ellipse proportion
\ Random heart proportion
60
60
—— Square to square
o o 50 —— Ellipse to ellipse
g g Heart to heart
] %0 --- Random square proportion
g% K ~-- Random ellipse proportion
Random heart proportion
30
20 20
10
o
o
o 200 400 600 800 1000 o 200 400 600 800 1000
Noise level Noise level
(a) Shape retention in BV AE16 space (b) Shape retention in BV AE5 space

Figure 4.44. Shape retention comparison in different latent spaces

to store rather similar information.

As the size is the most likely reason for this difference in behaviour, we’ll run the experi-
ment with 2 BVAES, one of size 16 and the other of size 5.

Results for the experiment performed in BV AE16 space are on figure 4.44a while results
for BVAFES are on figures 4.44b.

Even though the experiment was repeated several times, we believe the shape curves 4.44a
and 4.44b are not enough reliable for us to draw a conclusion. Indeed, on figure 4.44b the
heart shape information seems to be lost at ¢t = 500 and the square shape information
at t = 400 while in the larger space on figure 4.44a, the heart shape information is lost
before the square shape information. This might be due to the diffusion model not being
trained enough.

The main conclusion we draw from experiment 0 are the following ones :

o All features tend to have a certain time threshold before which the addition of noise
barely impacts them and the reconstruction leads to almost identical samples as the
initial ones.

o After this threshold, the information loss tends to be linear until it reaches the
random plateau, most likely due to the variance schedule.

o Features tend to be lost at different times and different speeds.

e The space in which samples live greatly impacts the rate at which the forward
process destroys information.

76

Feature retention in forward backward diffusion

0.08 T====—==fp=——==gf=——=—dd -
0.06 4
L
ul
= 0.04 -
—— PosX in BVAES
0.02 - — PosX In EWAEIfS
=== Random PosX in BVAES
=== Random PosX in BVAElG
ﬂ.ﬂﬂ | T T T T T T
0 200 400 600 800 1000
Moise level

Figure 4.45. X-position retention in BV AE16 space and BV AE5 space

As our experiments are not fully sufficient to support our claims, we’ll design others to
test them and potentially even change them based on how the next experiments turn out.

4.6 Experiment 1 : Forward

4.6.1 Experiment summary

The second experiment we designed aimed at learning whether some information was still
present at some time £. A simple way to see whether any kind of information regarding
the initial sample at time £ is to see whether some information regarding the features of
the initial sample is still present at . That is, we’ll pick a sample from the data set,
diffuse it up to time ¢ and visually inspect its features to see whether we can accurately
predict them from the noisy sample. For example, consider the initial sample xq to be a
heart located in the top left corner and its diffused version xggg, if one can confidently
and accurately predict the initial sample’s features given only its diffused version, then
it is conceivable to believe that xggg still contains information of xq. Surely, instead of
visually inspecting noisy samples, we’ll train models to predict the features of xggg.
Consider for example the following 4.46 forward diffusion chains from data set samples
where 2 samples are progressively diffused. At ¢t = 600, it is pretty hard to dissociate
the heart from the square but if some discriminative information is still there, a classifier
might find it.

4.6.2 Experiment background

None

77

Shape = Heart
Scale =0.80
Orient = 0.96 rad
PosX =0.12
PosY =0.67

t=0

Shape=?
Scale=?
Orient=?
PosX=?
PosY=?
t=600

Shape = Square
Scale =0.70
Orient = 3.38 rad
PosX = 0.032
PosY = 0.68

t=0

Shape=?
Scale=?
Orient=?
PosX=?
PosY =?
t=600

Figure 4.46. 2 data set samples are forward diffused and yet their features can, to the
human eye, be estimated decently for up to ¢t = 600.

4.6.3 Experiment procedure

Objective: The goal of this experiment is to investigate whether some information about
features is still present in the latent space S at time ¢ after diffusion. We aim to train
classifiers /regressors to predict the features of the initial clean sample given only its
diffused version. If the models perform fairly good, then it could suggest that the feature
information is still there.

1. Initialize the experiment:

Prepare the dataset of images from the dSprites dataset with each image com-
ing with its features about shape, posX, posY, orientation, and scale. Split the
dataset into a train-validation-test split, respectively made of 80%, 10%, and
10% of the shuffled dataset.

Prepare a well-trained VAE if S is a latent space.
Set the maximum time step t =T to 1" = 1000.
Choose a noise scheduler.

Define a neural shape classifier working in S tasked with outputting the most
probable shape of a noisy sample it is fed.

Define 4 other neural regressors working in S that will be tasked with out-
putting a scalar value which should be as close as possible to the feature they
are trained to predict.

Define an ADAM optimizer for each network and set the number of epochs to
20.

2. Forward Noisy Diffusion:

For each image x; in the training set:

— If S # Pixel Space:

78

x Encode the data using the chosen VAE resulting in the latent repre-
sentation z;.

« Apply forward noisy diffusion to z; from time ¢ = 0 to ¢ = ¢ using the
chosen diffusion model.

* This results in a new noisy image z,; at time t after diffusion.
— Else:

« Apply forward noisy diffusion to x; from time t = 0 to t = ¢ using the
chosen diffusion model.

* This results in a new noisy image x;; at time t after diffusion.
3. Training Models to Predict from Noisy Samples:
o For each image x; in the training set:
— If S # Pixel Space:

*x Read the image shape from the training set and feed the shape clas-
sifiers both z,;; and the shape label to train the classifier using the
cross-entropy loss.

x Read the image scale from the training set and feed the scale regressor
both z,;; and the scale ground truth to train the regressor using the
MSE loss.

x Repeat the previous step for posX, posY, and orientation.
— Else:

x Read the image shape from the training set and feed the shape classifier
both x;; and the shape label to train the classifier using the cross-
entropy loss.

x Read the image scale from the training set and feed the scale regressor
both x;; and the scale ground truth to train the regressor using the
MSE loss.

*x Repeat the previous step for posX, posY, and orientation.

o Keep training on the training set and validate each model on the validation set
after every epoch.

4. Test the Models:
» For each image x; in the test set:

— If S # Pixel Space:

* Read the image shape from the test set, encode it then diffuse into z,;
and feed the shape classifiers both z;; and the shape label to test the
classifier.

x Read the image scale from the test set and feed the scale regressor
both z;; and the scale ground truth to test the regressor.

79

x Repeat the previous step for posX, posY, and orientation.
— Else:

x Read the image shape from the test set and feed the shape classifier
both x,; and the shape label to test the classifier.

* Read the image scale from the test set and feed the scale regressor
both x,; and the scale ground truth to test the regressor.

x Repeat the previous step for posX, posY, and orientation.
o Keep testing until the whole test set has been covered.

e Return shape test loss, shape test accuracy, scale test MSE, posX test MSE,
posY test MSE, orientation test MSE.

Add a figure for this where I show for an image each of its feature and then its noisy
versions.

4.6.4 Experiment preparations

We decided to perform this experiment in pixel space and in some latent spaces for a
range of time steps b between t=0 and t=T. We may notice that this experiment does
not require a generative diffuser but simply, a well-trained VAE, a noise scheduler and
some untrained classifier/regressor for each space. These latter models should not be
trained as they will be trained for a specific timestep!

The latent spaces we studied are :

1. Vanilla VAE : Latent sizes considered are all powers of 2 from 1 to 256, i.e, 1,2,4,8,16,32,64,128,256
2. 0 VAE : Latent sizes considered are all powers of 2 from 1 to 256, i.e, 1,2,4,8,16,32,64,128,256

3. DIP VAE : Latent sizes considered are 5,16,256

4. Fully Convolutional VAE : Latent sizes considered are (4,16,16)

5. KL VAE : Latent sizes considered are (4,16,16)

4.6.5 Experiment results and discussion

Before delving into details, let’s briefly outline the main conclusions drawn from this
experiment.

Firstly, the noise variance schedule strongly impacts the features information conservation
in the forward process. Secondly and as observed in the previous experiment, features
tend to lose their information at different times, different speeds and the space in which
images live greatly impacts these 2 quantities. Lastly, we observed that most of the in-
formation is gone before ¢ = 600 and thus the remaining timesteps necessity might be
questioned.

We now proceed to analyzing the results of the experiment.

As we did for experiment 0, we’ll first have a look at the results in pixel space as they
are the easiest to interpret. The forward experiments results in pixel space can be seen

80

Shape accuracy vs Noise Level

100 A —— Pixel Space
—=-- Random guess
90

80 A

70 4

Accuracy

60
50 A

40

30 T T T T T T
0 200 400 600 800 1000

Noise Level

Figure 4.47. Shape classifier performance on data that gets gradually more noisy. For
each timestep we train a classifier on the noisy sample shape and report its performance
on the test set. As we can see, the accuracy completely drops from near-100% to 33.33%
which corresponds to a random guess by the classifier as the 3 classes are balanced in the
test set.

on figures 4.47, 4.48, 4.49a, 4.49b and 4.49c.

As we can see on the shape accuracy plot 4.47, the accuracy abruptly drops around
t = 550, this is an unexpected behaviour as we saw in the previous experiment 4.38 the
very smooth behaviour. What is reassuring is that the drop takes place in the interval
[300,800] which we previously identified as the one where things happen. Thinking more
about it and particularly looking at, for example, the seventh upper sample of 4.32 which
corresponds to ¢ = 600, the shape our human eyes can observe is barely a blurry circle
while on its preceding neighbour on the left, we can still recognize the heart characteris-
tics. Sure at ¢ = 600 one can simply see a blurry circle but one can still easily locate it!
That is why the x-position loss curve 4.48 only starts increasing at more than ¢t = 600,
the transition to the random guess plateau is however less steep than the accuracy’s for
the same reasons we stated previously.

The scale loss curve is however quite intriguing as it is not monotonically increasing
whereas the variance schedule is. It is much more intriguing that the scale is badly pre-
dicted at ¢t = 200 while it seems very simple to guess from the third upper sample of 4.32.
Looking at the forward results should help fixing these issues just raised.

Once again we’ll simply plot for the latent spaces the shape accuracy plot and the x-
position MSE loss as the other variables are quite redundant, their plots are available
in the appendix. We remind that we generated these results by following a procedure
identical to that used to generate pixel space results except we're first encoding data to
the studied latent space.

The results for VAEs with a latent size of 1024 can be seen on figures 4.50, 7.31, 7.32,
4.51 and 7.33.

81

MSE Loss

X-position MSE Loss vs Noise Level

0.08 A

0.06

0.04

0.02 A

0.00 A

—— Pixel Space
=== Random guess

T T
400 600
Noise Level

T
0 200

T
800

T
1000

Figure 4.48. X-position regressor performance on data that gets gradually more noisy.
For each timestep we train a regressor on the noisy sample x-position and report its
performance on the test set. As we can see, the MSE completely starts increasing fast
near t = 600 and reaches random performance at ¢t = 1000.

Y-position MSE Loss vs Noise Level

Scale MSE Loss vs Noise Level

Orientation MSE Loss vs Noise Level

0.030

0.06

—— Pixel Space
—-- Random guess

MSE Loss

0.025

0.020

0.015

MSE Loss

0.010

0.005

—— Pixel Space
--- Random guess

0.000

MSE Loss

w
S

w
~

w
°

~
o

n
Y

N
S

I
N

—— Ppixel Space
—-- Random guess

0 200 400 60

Noise Level

(a) Y-position regressor

0 800

1000 0 200 400 600 800 1000

Noise Level

(b) Scale regressor

200 400 600 800 1000

Noise Level

(c) Orientation regressor

Figure 4.49. Regressor performance on noisy data

82

Shape accuracy vs Noise Level

100 + — VAE 1024
—— BWVAE 1024
90 | —— DIP-VAE 1024
—— Conv VAE 1024
— KL-VAE 1024
80 7 ——- Random guess
& 704
z
=
o
% 60 4
50 A
40 -
30 T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.50. Shape classifier performance on data that gets gradually more noisy. For each
timestep we train a classifier on the latent noisy sample shape and report its performance
on the test set. As we can see, the accuracy curve is strongly dependent on the latent
space. It seems latent structure plays almost no role here as the best and worst candidate
are respectively the K. — VAFE and the CONV — VAFE

Scale MSE Loss vs Noise Level

0.030 A

0.025 A

0.020 A
w
8
-
o 0.015
%3]
=
0.010 —— VAE 1024
—— BVAE 1024
0.005 —— DIP-VAE 1024
: — Conv VAE 1024
—— KL-VAE 1024
0.000 4 —-—- Random guess
T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.51. Scale regressor performance on data that gets gradually more noisy. For
each timestep we train a regressor on the latent noisy sample x-position and report its
performance on the test set. As we can see, the MSE curve is different for each latent
space and it seems the KL — VAFE and the CONV — V AE are here again the worst and
best candidates when it comes to resisting to information destruction.

83

From the shape accuracy plot 4.50 and the scale MSE plot 4.51, we make a few observa-
tions :

o All latent shape information is lost at ¢ = 600 as in the pixel case 4.47.

o All latent scale information is lost at ¢ = 600 which is far earlier than its counterpart
in the pixel case 4.49b where information is only fully lost at ¢ = 900.

« Information seems to get destroyed earlier in latent spaces.

« Latent spaces tend to all start losing information at the same time near ¢ = 0 but
they do so at different speeds, furthermore, the information loss is rather smooth.
Oppositely, in pixel space there is an information steep drop at ¢t = 500 where before
it was intact.

o For the most part of the drop, the accuracy curve and the MSE scale loss look linear.
That is especially true for the blue plots of VAE — 1024.

o In all 5 plots, the VAE performs better than the BVAE which performs better than
the DIP-VAE.

As latents are not designed to be human readable, it is tough to look at what noisy latents
actually look like. We simply cannot look as before whether noisy ellipses and hearts both
tend to look like blurry circles however we can still provide some explanations to these
plots.

We believe information gets destroyed sooner in latent space mainly for these reasons
reasons :

o Latents are smaller and we’ve seen that larger objects are less impacted by noise.

« Larger objects are less impacted by noise because they have more neighbours that
look like them such that if at least one neighbour can keep meaningful information,
it can be enough for a model to find it and use it appropriately for its prediction.

o 1D latents had to go through fully connected layers to exist and thus these neigh-
bourhood local information is something they do not have. There might, however,
exist latent data redundancy but simply it won’t be found in neighbour components
which might be harder for a network to learn.

o We believe Conv VAE works best mainly because it preserves local redundancy.

o We believe BVAE is worse than VAE and DIP-VAE is worse than BVAE for the
following reason : they were designed to factorize data. BVAE was designed to
have a disentangled representation of the input data, that is, latent components
share very little mutual information compared to VAE. This means that when one
component is largely noised by mischance, its information is gone and no other
component can replace it. It thus makes sense that DIP-VAEs perform even worse
than BVAEs as they intended to push disentanglement even further.

To assess whether the size and disentanglement really are important, we’ll run the latent
forward

1. In BVAE spaces with exponentially growing size, i.e., BV AE—2" withn € {0,1,2,3,4,5,6,7,8,10

2. In several sizes of VVAE vs BVAE vs DIP-VAE to see whether the disentanglement
really is the culprit for faster information loss.

84

Shape accuracy vs Noise Level

100 1 —— BVAE 1024

BWVAE 256
BWVAE 16

BWVAE 64

BVAE 4

BWVAE 2
Random guess

90 +

80 A

70 4

Accuracy

60 ~

50 A

40

30 T T T T T T
0 200 400 600 800 1000

Noise Level

Figure 4.52. Shape classifier performance on data that gets gradually more noisy. For each
timestep we train a classifier on the latent noisy sample shape and report its performance
on the test set. As we can see, larger BVAEs tend to make a better job at resisting
information destruction.

The results regarding the size forward experiments on shape and scale can be seen on
figures 4.52 and 4.52. For sake of clarity, we actually restrict to 6 curves per plot and not
10 and we, as usual, depict only the shape and scale plots. The full results are available
in the appendix.

As we can see on figure 4.52, the larger BVAEs tend to be better at information conser-
vation, they are better at withstanding gaussian noise. We notice however that smaller
VAEs have a higher accuracy in the region [180,300], we believe this is most likely due to
statistical fluctuations as this experiment was performed once only for sake of resources.
We note that larger BVAEs tend to have their loss more steep while smaller BVAEs tend
to have their loss more smooth even though we might be over-interpreting the results
here. The scale plot 4.53 essentially tells the same stories. Overall, larger VAEs indeed
tend to store information better.

Since we hypothesized that disentanglement could also be a reason for the faster infor-
mation loss of BVAEs and DIP-VAEs compared to classical VAEs, we’ll now compare
several sizes of these models to see whether this hypothesis holds. Again, we’ll stick to
shape and scale for conciseness.

As we can see on the right above plots, for VAEs with a 1024 latent size, the vanilla one
outperforms both the S-VAE and the DIP-VAE but we cant guarantee this is also the
case for other sizes 7

We plot the shape accuracy and scale MSE losses for VVAE, 3-VAE and DIP-VAE 256,16
and 5 on figure 4.54. For each and every forward experiment we ran, the vanilla VAE holds
information longer than the 5-VAE which holds information longer than the DIP-VAE.
This result clearly supports our hypothesis that states that the 2 latter VAEs are not good
at holding information for a long time. We stress again this is most likely due to their
inherent disentangled latent components which are designed to avoid holding information
about their neighbours, this way, there is very little redundancy among latents and thus

85

Scale MSE Loss vs Noise Level

0.030 A

0.025 A

0.020
wl
8
= 0.015 4
Ll
%3]
=
—— BVAE 1024
0.010 1 BVAE 256
—— BVAE 16
0.005 - —— BVAE 64
’ —— BVAE 4
—— BVAE 2
0.000 ——- Random guess
T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.53. Scale regressor performance on data that gets gradually more noisy. For
each timestep we train a regressor on the latent noisy sample x-position and report its
performance on the test set. As we can see, larger BVAEs tend to make a better job at
resisting information destruction. Particularly, the worst and best candidates respectively
are the smallest and largest BVAE.

noise destroys overall information much faster.

We've said so far that DIP-VAEs tended to be better at disentangling than S-VAEs
which also tended to be better at it than classical vanilla VAEs but we have given no
experimental result that would support this claim. We thus report a piece of table given
in [12] that largely supports this claim, see table 4.10. $-VAEs tend to disentangle better
with larger values and DIP-VAEs show the same behaviour.

Table 4.10. Z-diff score Higgins et al. (2017), the proposed SAP score and reconstruction
error (per pixel) on the test sets for 2D Shapes and CelebA (f; = 4, B2 = 60, A = 10,
A1 = 5, Ap = 500 for 2D Shapes; 51 = 4, B = 32, A = 2, A\; = 1, Ay = 80 for CelebA).
For the results on a wider range of hyperparameter values, refer to Fig. 1 and Fig. 2.

Method 2D Shapes CelebA
Z-diff | SAP | Reconst. error | Z-diff | SAP | Reconst. error

VAE 81.3 | 0.0417 0.0017 7.5 1 0.35 0.0876
B-VAE (8 = /) 80.7 | 0.0811 0.0032 81 | 0.48 0.0937
B-VAE (5 = f3) 95.7 | 0.5503 0.0113 6.4 | 3.72 0.1572
DIP-VAE-T (Apg =) 98.7 | 0.1889 0.0018 14.8 | 3.69 0.0904
DIP-VAE-II (Mg = A1) | 95.3 | 0.2188 0.0023 71 | 2.94 0.0884
DIP-VAE-IT (A, = A2) | 98.0 | 0.5253 0.0079 11.5 | 3.93 0.1477

Another point that we may want to study is the impact of the noise schedule on the
forward results, indeed, we said that the way information should disappear is a function
of the noise schedule. To put this hypothesis to the test, we ran the forward experiment
with 3 different noise schedules :

86

Shape accuracy vs Noise Level Scale MSE Loss vs Noise Level

1001 —— VAE 256 0.030 1
—— BVAE 256
90 4 —— DIP-VAE 256
——-- Random guess 0.025 7
80 4
0.020
70 A 9
§ § 0.015 +
3 @
< 60 g
0.010
50 4
—— VAE 256
04 0.005 7 —— BVAE 256
—— DIP-VAE 256
_______________________ - 0.000 4 —-- Random guess
30 T T T T T T T T T T T T
0 200 400 600 800 1000 o] 200 400 600 800 1000
Noise Level Noise Level

(a) Forward experiment shape classifier perfor-(b) Forward experiment scale regressor perfor-
mance in 3 VAE latent spaces with size 256 ~ mance in 3 VAE latent spaces with size 256

Shape accuracy vs Noise Level .
p Y Scale MSE Loss vs Noise Level
100 7 —— VAE 16 0.030 4
—— BVAEl6 | [T = -
a0 - —— DIP-VAE 16
—=-- Random guess 0.025 4
80
0.020
c |]
3 o 0.015
< 60 =
0.010 4
50
0.005 —— VAE 16
20 4 —— BVAE 16
—— DIP-VAE 16
————————————————————————— - 0.000 4 === Random guess
30 = T T T T T T T T T T T
200 400 600 800 1000 0 200 400 600 800 1000
Noise Level Noise Level

(¢) Forward experiment shape classifier perfor-(d) Forward experiment scale regressor perfor-

mance in 3 VAE latent spaces with size 16 mance in 3 VAE latent spaces with size 16
Shape accuracy vs Noise Level Scale MSE Loss vs Noise Level
100 — VAES 0.030 -
—— BVAE S
90 4 —— DIPVAE 5
——- Random guess 0.025 +
80
0.020 A
Z 70 4
< g
3 o 0.015+
£ 60 g
0.010 A
50
0,005 — VAES
0 4 : —— BVAE 5
—— DIPVAES
o [T - 0.000 4 ——- Random guess
0 200 400 600 800 1000 0 200 400 600 800 1000
Noise Level Noise Level

(e) Forward experiment shape classifier perfor-(f) Forward experiment scale regressor perfor-
mance in 3 VAE latent spaces with size 5 mance in 3 VAE latent spaces with size 5

Figure 4.54. Performance of shape classifier and scale regressor in different VAE latent
spaces 87

Beta values of several noise schedules over time Beta values of several noise schedules over time

Beta values of several noise schedules over time

00200 rearechequle 10 Squared cos schedule 10 — Discrete Dirac delta schedule

0.0175
0.0150

0.0125

o
>

0.0100

Beta values
Beta values
Beta values

°
S

0.0075
0.0050
0.2 02
0.0025

0.0000 0.0 0.0

o 200 400 600 800 1000 0 200 400 600 800 1000

Figure 4.55. A linear noise Figure 4.56. A squared cos Figure 4.57. A Dirac noise
schedule noise schedule schedule

Shape accuracy vs Noise Level Scale MSE Loss vs Noise Level

100 1 —— Linear schedule 0.030 4
Squared cos schedule | [TTTTTTT -
90 4 —— Discrete Dirac delta schedule
—-- Random guess 0.025
80 4
0.020
= 4 w
§ " § 0.015
¥ o 0
< 60 4 E
0.010
50 A
—— Linear schedule
20 4 0.005 7 Squared cos schedule
—— Discrete Dirac delta schedule
________ - 0.000 4 === Random guess
30 — T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Noise Level Noise Level

(a) Shape forward results for 3 different sched-(b) Scale forward results for 3 different sched-
ules. ules.

Figure 4.58. Comparison of different schedules

1. The usual linear noise schedule depicted on figure 4.55.
2. A squared cos noise schedule depicted on figure 4.56.

3. A noise schedule with null variance everywhere except in a tight interval [ty, o],
somehow a discrete Dirac delta depicted on figure 4.57.

The shape and scale forward results are given on figures 4.57a and 4.57b. As we can see,
the Dirac accuracy abruptly drops from 100 % to 33% simply because before the variance
spike there was no noise and after it, large amounts of noise were added. We also notice
that the squared cos accuracy is almost identically greater than the linear’s. This is due
to the squared cos variance being almost identically greater than the linear’s. Indeed at
t = 450, the linear schedule variance is of 0.0097 while the square cos schedule variance
has to wait up until ¢ = 800 to reach that bound.

These simple experiments clearly show that there is a strong dependence between features
information preservation and the noise variance schedule. The exact relationship however
remains complicated to put into equations.

Finally, since we so far tried to quantify information in the forward chain on a synthetic

88

€80 8,

Embedding
Space

I
I
I
I
‘ N 1 z, ()€ VL
\ —Zp
[!
D vL o | z,(x)
’/A\ = " 1
/
q(zlx) % | " CNN |
CNN e |} p(xiz,) 1
1N o 1
Z (x) ~ q(2Ix
Z,(x) 2z 2 z,(x) X (%) ~ q(zlx)
53
Encoder Decoder

Figure 4.59. 'Left: A figure describing the VQ-VAE. Right: Visualisation of the em-
bedding space. The output of the encoder z(x) is mapped to the nearest point e;. The
gradient V,L (in red) will push the encoder to change its output, which could alter the
configuration in the next forward pass." Image and caption taken from [13]

data set, we want to see whether the same behaviours will be observed on a real data
set. We thus decided to use a piece of the CelebA data set composed of 20 000 images
of men and women with equal proportions of 50-50. This experiment was performed in
a VQVAE latent space which is almost identical to a classical VAE except it possesses a
nearest-neighbour quantization layer at its bottleneck. A working example of the VQVAE
is shown on figure 4.59. The result of the forward experiment is on figure 4.60. We observe
that on a real data set, the curves are not as smooth as they used to be, furthermore it
seems there are step levels in the descent where the accuracy stays constant for a few noise
levels. Overmore, in this case it seems that some information is still present at ¢ = 800
while in all previously studied latent spaces, no feature information seemed to be present
after ¢ = 600. This result supports our claim stating that information retention is highly
dependent on the latent space structure, size and complexity.

We here reach the end of the experiment 1 and we may logically wonder how all of these
results actually contribute to answering our research question. Initially, our research
question considered the choices made the diffusion model : are some choices made, when,
why 7 So far we’ve however not studied any real diffusion model since we’re simply noising
images in the forward process. The reason we spent much energy in this experiment is
that as the backward diffusion chain is essentially trained to revert the forward chain,
much of diffusion models generative capabilities can be understood by first analyzing the
forward chain.

The main conclusions we can draw from these sub-experiments are :

o As we add noise to data, data information gets gradually destroyed and therefore
features information gets destroyed as well. However the loss of information is
usually not steep and abrupt unless the variance schedule is. More generally, the
features information destruction in the forward process strongly depends on the
variance schedule.

o Features tend to lose their information at different speeds and at different times.

o The space in which images live is pretty important, either it is pixel space or a latent
space. It is important in the sense that its structure, size and overall complexity

89

Gender accuracy vs noise level in VQVAE by forward and backward
100 A

— VOVAE

Gender accuracy

(I) 260 460 660 860 lOIOO
Noise Level
Figure 4.60. Forward experiment on the gender feature of the CelebA data set. Samples
were added a certain noise level and a classifier was trained to predict their gender feature
based on the noisy samples. Test accuracy is reported on the figure.

impact the way images handle noise. Smaller spaces tend to lose information faster
for example.

o For most of the situations studied, features information tends to stay present up
until ¢ = 600. We may question the interest of having forward steps further than
the point where no information seems to be present anymore. The only usefulness
would be to make the signal gaussian if it is not already at the said timestep. We
thus check that below.

o If the backward diffusion chain approximates the reverse forward diffusion chain well
enough, these timesteps should not "create" any information nor make any choices
as no information was present there in the forward process.

The next experiment will put the last bullet point to the test and hopefully contribute to
answering the research question : when are choices made 7

4.6.6 A quick look at normality

We realized during the above experiments that latent signals tended to lose all their infor-
mation before ¢ = 600 and we thus wondered whether the signal was already gaussian at
that time, if so, the remaining steps could be useless. We therefore look at the normality
of images and latents at several timesteps. We do so by plotting histograms of variables
as well as by computing p-values.

We first run this analysis in pixel space and then run it again in the BVAE — 5 latent
space.

We show on figure 4.61 the evolution of a given pixel distribution with the noise level
increasing. We observe that at the beginning the pixel values are in -1,1 since images are
black and white but as t approaches T, the noisy component distribution gets closer to a
standard gaussian. It might suggest that one could essentially stop at ¢ = 750.

90

(@)1= (b)1=250 () =500 (d) (=750 (c) =999

Figure 4.61. Histograms of the first noisy pixel component computed over the whole data
set at different noise levels. As we can see, at the beginning of the diffusion chain, the
data is already quite normal. This is due to the KL term in the VAE training loss.

(1= (b)1=250 () 1=500 (d) (=750 (c) (=999

Figure 4.62. Histograms of the first noisy latent component computed over the whole
data set at different noise levels. As we can see, at the beginning of the diffusion chain,
the data is already quite normal. This is due to the KL term in the VAE training loss.

The case in latent space BVAE — 5 is quite different, as we can see on figure 4.62, the
data is pretty normal even at ¢ = 0, that is due to the KL term in the VAE training
loss. Given that latent images achieve the same normality level as pixel images but much
before, it may be useless to use the same noise schedule for both. This early normality
also explains why the information tended to be lost earlier in latent spaces than in pixel
spaces, simply because the latent data is initially more normal.

4.7 Experiment 2 : Backward

4.7.1 Experiment summary

The third experiment we designed aimed at learning whether some information was al-
ready present at some time 7. A simple way to see whether any kind of information
regarding the generated sample at time £ is to see whether some information regarding
the features of the generated sample is already present at . One should note that in
the previous experiment we used the keyword still while in this experiment we use the
keyword already. That is because in the previous experiment we went in the forward
noising direction while in this experiment we go in the backward generative direction,
i.e, we'll create data. The reasoning is, however, pretty similar. That is, we’ll generate
a sample from gaussian noise, backward diffuse it up to time ¢, and visually inspect its
features to see whether we can accurately predict the features of the generated sample
given only the still noisy sample. For example, consider the gaussian noise xt which when
fully backward diffused is x¢ which corresponds to a heart located in the top left corner.
During the backward chain, we likely generated a yet noisy version x4go. If one can
confidently and accurately predict xq’s features given only x40, then it is conceivable to
believe that x40¢ already contains information of x¢. This would suggest that at t=400,
a most likely definitive choice regarding the sample’s features was already made. Surely,
instead of visually inspecting noisy samples, we’ll train models to predict the features of

91

X400-

One should note that the classifiers/regressors at ¢ are trained such that their guess of the
feature f given x; is as close as possible to the feature f of xo. Therefore, their considered
ground truth is the feature f of xg however, we do not have any ground truth data for
that particular xq as it is not part of the data set! What we’ll consider as ground truth
will be data predicted by classifiers/regressors well trained on the data set.

4.7.2 Experiment background

None

4.7.3 Experiment procedure

Objective: The goal of this experiment is to investigate whether some information about
features is already present in the latent space S at time £ after backward diffusion. We
aim to train classifiers/regressors to predict the features of the generated sample given
only its still noisy version. If the models perform fairly good, then it could suggest that
the feature information is already there.

1. Initialize the experiment:
o Prepare a well-trained classifier working in pixel
e Prepare a well-trained diffuser working in space S.
o Prepare a well-trained VAE if S is a latent space.
e Set the maximum time step ¢t =T to T' = 1000.

e Define a neural shape classifier working in S tasked with outputting the most
probable shape of a noisy sample it is fed.

o Define 4 other neural regressors working in S that will be tasked with out-
putting a scalar value which should be as close as possible to the feature they
are trained to predict.

e Define an ADAM optimizer for each network and set the number of epochs to
20.

o Set the number of TrainingSteps, ValidationSteps, TestSteps = 0.8«len(ds), 0.1x
len(ds), 0.1 % len(ds)

2. Backward Generative Diffusion:
o Sample a gaussian noise in S called zt

« Apply backward diffusion to zr from time ¢t = T down to ¢t = 0 but store z;
during the backward process and zg at the end

3. Gather Ground Truth Data:
o Get the ground truth shape label by classifying zo with the prepared classifier

e Get the ground truth scale value, posX value, posY value and orientation value
by regressing zo with the prepared regressors

92

4. Training Models to Predict from Noisy Samples:
o For each sampled gaussian noise:

— Feed the shape classifier both z; and the shape label we just predicted to
train the classifier using the cross-entropy loss.

— Feed the scale regressor both z; and the scale value we just predicted to
train the regressor using the MSE loss.

— Repeat the previous step for posX, posY, and orientation.

o Keep training for TrainingSteps and validate each model for ValidationSteps
after every epoch.

5. Test the Models:
o For each sampled gaussian noise:

— Feed the shape classifier both z; and the shape label we just predicted to
train the classifier using the cross-entropy loss.

— Feed the scale regressor both z; and the scale value we just predicted to
train the regressor using the MSE loss.

— Repeat the previous step for posX, posY, and orientation.
o Keep testing for TestSteps.

e Return shape test loss, shape test accuracy, scale test MSE, posX test MSE,
posY test MSE, orientation test MSE.

Note 1: We should note that we could classify at t=0 in any space as long as we got
the shape label and feature values. We decided to classify/regress in the S space as its
usually a smaller space and thus the forward pass in the network is much faster.

Add a figure for this where I show for an image each of its feature and then its noisy
versions.

4.7.4 Experiment preparations

Since we need a good diffusion model, VAE and classifier /regressors, we performed this
experiment in 4 spaces : pixel space, KL —V AFE space and BV AE — 16 space. All models
can be found in the appendix.

4.7.5 Experiment results and discussion

Before delving into the details, we briefly outline the main conclusions of the experiment.
Firstly, the features choices the diffusion model makes while generating a sample are not
instantaneous, they are different for each feature and are made during different periods.
Secondly, there is a large period near ¢ = T where no choice seems to be made, only a
generic sprite is created in that period. The sprite then crystallizes to a certain shape
during the rest of the backward diffusion. Lastly, we observed several discrepancies before
accuracy curves computed in the forward process and accuracy curves computed in the
backward process. Therefore, it is not safe to assume that the diffusion model tends to
make choices about features at approximately the same time as the feature was destroyed

93

in the forward process.

We naturally decided to first run the experiment in pixel space as it is the most meaningful
one to us humans.

The test accuracy and MSEs of the different models can be seen on figure 4.63. On
4.63a, we observe very different behaviours between the backward process and the forward
process since the former is smooth while the latter is steep. The binary idea consisting
in "The shape is either clearly here or clearly absent because of the noise" is actually
quite unfounded even though quite intuitive. Due to the forward variance schedule, the
resulting blurriness makes the guess tough but not fully random as we can see on figures
4.32 and 4.33. On these same figures we also observe that the 2 chains seem to be similar
and we thus expect the classifiers curve to be the same. We note that if the diffusion
model has converged and if the classifiers were perfectly trained, the 2 curves should be
identical. We argue the forward classifying curve steepness is due to lack of runs, indeed
only 1 was performed. We believe we’d observe a much smoother curve if the experiment
was averaged enough.

When it comes the X-position, the curves share the same form except the backward one
starts to increase earlier. The observation remains the same for the Y-position and the
scale. The orientation curves on the other other tend to be coherent but we cannot trust
these are the orientation regressor had weak performance.

Once again, it makes sense that choices regarding each feature are not made at the same
time, for example, we can safely say that at ¢ = 400 the position of the sprite is fully
decided as they regressors have near-perfect prediction but at t = 400, the shape accuracy
is only of 58 %. That is, the shape has not been fully decided, it could be heart but also
an ellipse...

The main question we need to answer now concerns the discrepancy between the forward
and backward curves, why do they look similar yet they seem to be shifted from one
another 7 We believe the culprit is simply the diffusion model training, the backward
process seems to not have fully learnt how to reverse the forward process. To assess the
likelihood of this assumption, we designed a third experiment which will simply quantify
the distance between the forwarded diffused samples and backward generated samples at
a certain noise level.

Still we might want to look at the results in latent spaces. The shape and scale results
obtained in the KL —V AF space can respectively be seen on figures 4.64 and 4.65. Once
again, we observe a small shift between those 2 curves, it is even more present in the
shape plot which, as said in the caption, is an unexpected behaviour.

We now look at the reassuring results of the scale and x-position predictions in BV AE—16
space on figures 4.67 and 4.66.

They are reassuring in the sense that as the diffusion model worsens, the forward and
backward curves diverge more significantly. This observation supports our earlier state-
ment that the discrepancy between the curves might stem from the imperfect training of
the diffusion model.

Finally, we also performed the experiment for the celebA dataset in a VQVAE space to
see whether our results would extend to more complex datasets, plot is available on figure
4.69. We observe that once again the overall form of the backward and forward curves is

94

Shape accuracy vs Noise Level

—— Pixel Space forward
Pixel Space backward
—=-- Random guess

100 -

90 +

80

70+

Accuracy

60

50

40

30

T T T T
400 600 800 1000

Noise Level

(a) Shape classifier performance on gen-
erated data at noise level t. Gener-
ative direction goes backward in time.
For each timestep, we train a classifier
on the noisy sample shape we generated
and report its performance on the test
set. From ¢ 600 to ¢ = 1000, the
shape hasn’t been decided yet, resulting
in an accuracy of 33.33%, which corre-
sponds to a random guess by the classi-
fier since the three classes are generated
with equal proportions by the generator.
In the interval ¢ = 0 to ¢ = 600, the be-
havior is significantly different from the
forward process, exhibiting a smoother
and less steep accuracy curve.

Y-position MSE Loss vs Noise Level

0.08

0.06
—— Pixel Space forward

Pixel Space backward
——- Random guess

MSE Loss
=4
=]
iy
|

0.02

0.00

T T T T
400 600 800 1000

Noise Level

T
200

o4

(¢) Y-position regressor performance on
generated data at noise level ¢.

X-position MSE Loss vs Noise Level

0.08

0.06 -
—— Pixel Space forward

Pixel Space backward
=== Random guess

MSE Loss
e
o
iy
L

0.02

0.00 ~

T T T T
400 600 800 1000
Noise Level

T
200

o4

(b) X-position regressor performance on
generated data at noise level t. Gener-
ative direction goes backward in time.
For each timestep, we train a regres-
sor on the noisy sample x-position and
report its performance on the test set.
Notably, the backward and forward pro-
cesses yield nearly identical curves, with
the former showing a slightly earlier in-
crease.

Scale MSE Loss vs Noise Level

0.030

0.025

0.020

0.015 4

MSE Loss

0.010

0.005

— Pixel Space forward
Pixel Space backward
——- Random guess

0.000 1

T T T T
400 600 800 1000

Noise Level

T
200

o

(d) Scale regressor performance on gen-
erated data at noise level ¢.

Qrientation MSE Loss vs Noise Level

354

3.0

MSE Loss
~
wn

~
o

154

—— Pixel Space forward
Pixel Space backward
——- Random guess

400
Noise Level

600

800 1000

(e) Orientation regressor perfor-
mance on generated data at noise

95

level ¢.

Figure 4.63. Regressor and classifier performances on generated data at different noise
levels.

Shape accuracy vs Noise Level

—— KL VAE Space forward
KL VAE Space backward

901 ——- Random guess

50 1

40 1

30

P Mt
Figure 4.64. Shape classifier perfor-
mance on generated data in KL —VAE
space at noise level t. Generative di-
rection goes backward in time. For
each timestep, we train a classifier on
the noisy sample shape we generated
and report its performance on the test
set. The curves have relatively the same
form, but the backward curve reaches a
plateau of 50% accuracy fairly soon. It is
surprising that it reaches 50% accuracy
at t = 1000 where samples are almost
fully Gaussian.

96

Scale MSE Loss vs Noise Level

0.030 4

0.025 4

0.020 4

0.015 4

MSE Loss

0.010 +

0.005 4

—— KL VAE Space forward
KL VAE Space backward
—-- Random guess

0.000 + {

o] 260 46:3' oL (‘560 860 lDbO
Figure 4.65. Scale regressor performance
on generated data in K L—V AFE space at
noise level t. Generative direction goes
backward in time. For each timestep, we
train a regressor on the noisy sample x-
position and report its performance on
the test set. Both curves have the same
form but suffer from a little shift.

X-position MSE Loss vs Noise Level

0.08

e
o
=

—— BVAE 16 Space forward
BVAE 16 Space backward
—-- Random guess

MSE Loss
b
o
&

0.02 4

0.00 1=

’ P Nesetea 0
Figure 4.66. X-position regressor perfor-
mance on generated data in BVAE — 16
space at noise level t. Generative direc-
tion goes backward in time. For each
timestep, we train a regressor on the
noisy sample x-position and report its
performance on the test set. Both curves
have the same form but suffer from a lit-
tle shift.

Scale MSE Loss vs Noise Level

0.030 4

0.025 4

0.020 4

—— BVAE 16 Space forward
BVAE 16 Space backward
——- Random guess

0.015 4

MSE Loss

0.010 +

0.005 4

0.000 + /
T T T T T T
o] 200 400 600 800 1000
Noise Level

Figure 4.67. Scale regressor perfor-
mance on generated data in BVAFE — 16
space at noise level t. Generative direc-
tion goes backward in time. For each
timestep, we train a regressor on the
noisy sample x-position and report its
performance on the test set. Both curves
have the same form but suffer from a lit-
tle shift.

Figure 4.68. We observe that for both features, the forward and backward curves are far
apart even if they start and end at the same point. This is most likely due to the poor
training of DIFF — BV AE — 16. These curves are reassuring because we know from the
generated samples and training curve that the underlying diffusion model is bad, and we
also know that the 2 curves should be identical only under perfect convergence. This is
even more reassuring as we know that the pixel diffusion model is better than the KL-
VAE diffusion model which is better than the BVAE-16 diffusion model and each of the
forward and backward curves are getting worse with the diffusion model quality. In other
words, the better the diffusion model, the closer the curves should get.

97

Gender accuracy vs noise level in VQVAE by forward and backward
100 A

—— VQVAE Space forward
VQVAE Space backward

90 1

80 1

701

Gender accuracy

60 1

. S~

T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.69. Shape classifier performance on generated celebA samples data in VQV AE
space at noise level t. Curves have same form but are shifted from one another.

the same except that there is, once again, a shift between those 2.
The main conclusions we draw from this experiment are the following ones :

o Feature choices are not instantaneous and they are not made at the same time nor
at the same speed. Rather, the diffusion model tends to generate a still noisy sample
and needs several timesteps to define the sample features. For example, the sprite’s
location seems to be decided first.

o For timesteps in [700,1000], there is almost no feature information, that is no feature
choice was made but only a general sample that can crystallize into many different
sample is present.

o Under imperfect diffusion model training, it is not safe to assume that the choices
the diffusion model tends to make choices about features at around the same time
than the time the feature was destroyed in the forward process. Indeed under perfect
training the forward and backward process share the distribution and if, for example,
the shape information was lost immediately at ¢ = 456, then the backward process
should choose the shape information exactly at ¢t = 456.

We stated earlier that the reason the forward and backward curves were shifted was due
to the imperfect diffusion model training. To further analyze these notable discrepancies,
we propose the third experiment which essentially tries to classify between noisy samples
generated during the forward process and noisy samples generated during the backward
process.

4.8 Experiment 3 : Real vs fake

4.8.1 Experiment summary

At convergence, diffusion models should have fully learnt the data distribution on which
they were trained. That is, one should not be able to tell whether a given image was
sampled from the diffusion model or from the data set, they should be seen as identically
distributed even though they are not. This actually does not only concern final samples
but also temporal latents generated during the diffusion process. One should not be able

98

to tell whether x40 is actually a data set sample that was noised or a gaussian noise
which was denoised down to t = 400. Rather, one should not be able to dissociate the
two marginal distributions p(x£y,) and pg(x5ye) which respectively denote the distribution
of noisy samples at ¢ = 400 and the distribution of generated samples at ¢ = 400.

The experiment for a given timestep is then pretty simple. It consists in training a
classifier that will try to dissociate noisy data samples obtained by the forward process
from noisy generated samples obtained by the backward process. If the classifier has an
accuracy significantly higher than 50%, then it would likely suggest that the 2 distributions
contain different information making them different. It can also be a decent diagnostic to
assess the convergence of the diffusion model.

4.8.2 Experiment background

None

4.8.3 Experiment procedure

Objective: The goal of this experiment is to investigate whether some classifier could
dissociate generated data from true data at a given time ¢ in the diffusion chain. If the
classifier performs fairly good, then it could suggest that the backward process has not
learnt how to revert the forward process well enough.

1. Initialize the experiment:

o Prepare the dataset of images from the dSprites dataset with each image com-
ing with its features about shape, posX, posY, orientation, and scale. Split the
dataset into a train-validation-test split, respectively made of 80%, 10%, and
10% of the shuffled dataset.

o Choose a noise scheduler.

e Prepare a well-trained diffuser working in space S.
o Prepare a well-trained VAE if S is a latent space.
e Set the maximum time step ¢t =T to T" = 1000.

o Define a neural classifier working in S tasked with outputting the most probable
real or fake class of a noisy sample it is fed.

o Define an ADAM optimizer for each network and set the number of epochs to
20.

2. Forward and Backward Diffusion:

« Apply forward noisy diffusion to the real data samples up to time ¢ = ¢ to

obtain noisy data samples denoted as zg.

o Apply backward generative diffusion on sampled gaussian noise down to time
t =1 to obtain generated noisy samples denoted as ZE’.

3. Classifier Training:

o Prepare labels for the classifier, using 0 for real data samples and 1 for generated
samples.

99

Classifying forward noised samples from backward generated samples with the noise level

100 1 —— Accuracy in pixel space
—=- Random guess

Accuracy

T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.70. At each timestep t, a pixel space classifier was trained to dissociate between
forward noised samples up to level t and backward generated samples down to level t.
Accuracy on the test set is reported on the plot.

e Train a classifier using the noisy data samples z;f and ZE’ along with their
corresponding labels.

4. Evaluate Classifier:

o Create a test set containing both noisy data samples and noisy generated sam-
ples.

« Evaluate the trained classifier on the test set to measure its accuracy.
o Return the accuracy

Note : We should note that if S is a latent space we can either decide to classify in the
latent space S or first decode the samples and classify in pixel space. As long as the VAE
is well trained, it has no significant impact.

4.8.4 Experiment preparations

We decided to perform this experiment in pixel space, KL —V AFE space and BVAE — 16
space for a range of time steps between t=0 and t=T.

4.8.5 Experiment results and discussion

The plot reporting the classifying accuracy between noised samples and generated samples
in pixel space can be seen in figure 4.70.

We make 3 observations :

1. The accuracy at t = 0 is of 50%, that is the data distribution and the generated
distribution cannot be dissociated by the classifier. This is encouraging as it suggests
there is no visual signal present on generated samples that would spill the beans.

2. Close to t = T, the accuracy is not significantly far from 50%.

3. The most intriguing observation is that for timesteps € [200,800], the accuracy is of
almost 100%, that is samples are clearly different, or at least there is a visual hint
that allows the classifier to dissociate them. This also means that the backward

100

Classifying forward noised samples from backward generated samples with the noise level
100 1

—— Accuracy in KLVAE space
—=-- Random guess

90

801

Accuracy

70 4

60

50 frfmmmmmm et e

T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 4.71. At each timestep t, a KL — VAFE space classifier was trained to dissociate
between forward noised samples up to level t and backward generated samples down to
level t. Accuracy on the test set is reported on the plot.

Classifying forward noised samples from backward generated samples with the noise level

100 1

90

80+
—— Accuracy in BVAE-16 space
——- Random guess

Accuracy

70 A

60

50 frmfmmm e e P e e e e

6 260 460 BCIFU 860 lDIUD
Noise Level
Figure 4.72. At each timestep t, a BVAFE — 16 space classifier was trained to dissociate
between forward noised samples up to level t and backward generated samples down to
level t. Accuracy on the test set is reported on the plot.

has not fully learnt how to revert the forward process and this may explain the
discrepancies we saw in experiment 2.

The plot reporting the classifying accuracy between noised samples and generated samples
in KL — VAFE space can be seen in figure 4.71.

The observations remain the same except here full 50% accuracy is achieved already at
t = 600, we believe that is because in this smaller space, noise propagates faster and
normality is reached sooner.

Finally, the plot reporting the classifying accuracy between noised samples and generated
samples in BVAFE — 16 space can be seen in figure 4.72. From the figure, it is very
clear that the diffusion model has not learnt how to revert the forward process. The
discrepancies in the experiment 2 plots 4.67 and 4.66 are most likely due to that.

We note that using such a discriminator to assess the performance of a diffusion model
might be a good idea but an even better idea would be to use the discriminator results
to make the diffusion model generate closer-to-data samples in GAN way. This idea was
actually implemented in [14].

101

Chapter 5

Conclusion

Our research question aimed at answering the specifics of the features choices a diffu-
sion model makes when generating a sample. Particularly, we were interested in knowing
when these choices are actually made, whether they’re instantaneous, reversible and we
also wanted to know what factors contributed to these choices.

We first studied the feature conservation in the forward-backward chain to see whether
the diffusion model would tend to recreate samples similar those that it forward diffused.
Secondly, we spent a long time studying information destruction in the forward process.
The reason we spent much energy in this experiment is that as the backward process
is essentially trained to revert the forward process, much of diffusion models generative
capabilities can be understood by first analyzing the forward process. Thirdly, we studied
the actual choices made by the diffusion model itself in the backward chain along with
their timings and factors that influence these choices. Finally, we evaluated how well the
diffusion model learnt to revert the forward process.

Each experiment served to either yield novel insights or provide corroborative evidence
for assertions based on the observations derived from preceding experimental outcomes.
Mainly we learnt that the the features information destruction in the forward chain and
the features information "creation" by choice in the backward chain are primarily deter-
mined by the noise variance schedule. Under the usual linear schedule we can divide the
diffusion chain for a particular feature in 3 regions. In the first region that starts at ¢t = 0,
the information retention is pretty high and quite robust to noise in the forward sense
and we observed that in this region, when generating a sample the choice was already
made. It is somehow a region which modifies the look of samples but does not change its
main features. In the second region which is often large and symmetrical with respect to
the middle of the chain, that is where information gets mainly destroyed in the forward
sense and where choices are made in the backward sense. This is the region that aroused
the most interest in us as it directly contributes to answering our research question. We
observed that choices were actually not instantaneous but rather the result of many de-
noising steps. Thus during this region it is not easy to guess a sample’s feature before
the end of the region. In the third region which goes up to ¢ = T', the noisy samples
have lost all of their features information, they are however not always fully gaussian
and we believe this is the only point of this region. In this region, the backward process

102

essentially creates a generic sample which can subsequently crystallize its features in the
second region.

The partitioning of these regions on the diffusion chain from ¢ = 0 to ¢ = T" depends on
the time and speed at which the studied feature gets destroyed in the forward process.
Depending on the samples size, structure and complexity, the regions can be either large
or small. Surely, having a large third region is not very useful and we therefore believe
that the noise variance schedule should be chosen such that the latter is not too large.
We are overall satisfied with out results but we believe there is still a lot of work we could
have done to better support our claims but most importantly we believe there are still
many ideas to dig into. We provide some of these ideas in the "to go further section".

103

Chapter 6

To go further

In this chapter, we enumerate several ideas that we would have liked to experiment with.
Unfortunately, due to time constraints, we were unable to pursue them and as a result, we
have included these ideas in the "To Go Further" section, intended for future endeavors.
We below provide a non-exhaustive lists of tasks which we believe are worthy of time and
energy.

e A lot of our experiments rely on the assumption of a perfectly trained diffusion
model. This assumption is most often never met and that leads us to not being able
to trust the results enough. It would be great to look for better training procedures
and to be able to assess the convergence level of the diffusion model.

o We have stated that the forward experiment results heavily depend on the variance
schedule and we have shown 3 examples of forward results with different schedules.
We believe it would be worth to look at the generated backward results with these
3 schedules as well.

o Since the third region close to t = T is sometimes quite large, it could be a good
idea to try to replace all these slightly useless denoising steps by a single model that
would generate generic samples which could start their diffusion chain from the
second region where generative choices are actually made. This idea was inspired
from [9].

o As we saw, smaller samples tend to reach normality faster than larger samples and
thus we believe the noise schedule should be dependent on the size of samples but
also on their structure and complexity. Note that we do not suggest here to learn
the noise schedule here as it prescribed in [15].

e On a completely different note, it may be worth to study the importance of the
number of inference steps used when generating samples as we observed that they
had a very large impact. It seemed that using more inference steps did not always
lead to better samples.

104

Chapter 7

Appendix

7.1 VAEs

In this section we provide all training losses, samples, interpolations and other metrics for
diagnosing VAEs.

7.1.1 Latent structure importance
7.1.2 Latent size importance

7.1.3 Stochasticity and regularity importance

Interpolation of AE — 256 can be seen on figure 7.19.

7.1.4 Latent representation importance

7.2 Diffusers

In this section we provide all training losses, samples, modes coverage and other metrics
for diagnosing diffusers.

7.3 Main experiments

7.3.1 Experiment 0 : Feature conservation

Plots in the pixel space :

Plots in the KL — VAFE space :

7.3.2 Experiment 1 : Forward

Plots for the latents forward :

105

Figure 7.1. Samples of VAE — 1024

106

Figure 7.2. Samples of CONV — VAE —4 —16 — 16

107

Figure 7.3. Interpolation of VAE — 1024

108

Figure 7.4. Interpolation of CONV — VAE —4 — 16 — 16

109

Figure 7.5. Interpolation of KL — VAE —4 — 16 — 16

110

Figure 7.6. Samples of VAE — 256

111

Figure 7.7. Samples of VAE — 128

112

Figure 7.8. Samples of VAE — 64

113

Figure 7.9. Samples of VAE — 16

114

Figure 7.10. Samples of VAE — 4

115

Figure 7.11. Samples of VAE — 1

116

Figure 7.12. Interpolation of VAE — 256

117

Figure 7.13. Interpolation of VAE — 128

118

Figure 7.14. Interpolation of VAE — 64

119

® & o6 o6 o o

O & & » » » 3 B B

Figure 7.15. Interpolation of VAE — 16

120

Figure 7.16. Interpolation of VAE — 4

121

Figure 7.17. Interpolation of VAE — 1

122

Figure 7.18. Samples of AE — 256

123

Figure 7.19. Interpolation of AE — 256

124

Figure 7.20. Samples of BVAE — 256

125

Figure 7.21. Samples of DIPV AE — 256

126

Figure 7.22. Interpolation of BVAE — 256

127

Figure 7.23. Interpolation of DIPV AE — 256

128

Shape retention in forward backward diffusion

100 —— Square to square
—— Ellipse to ellipse
Heart to heart
90 ~ ——- Random square proportion
=== Random heart proportion
Random ellipse proportion

80 A

Percentage

T T T T T
0 200 400 600 800 1000
Noise level

Figure 7.24. Shape retention using a diffusion model in KL —V AE space. The procedure
to generate this plot is identical to that described in 4.38 except that diffusion takes place
in a latent space and classifiers/regressors also work in the latent space.

Feature retention in forward backward diffusion

— PosX
0.00 4 -=- Random PosX
T T T T T T
0 200 400 600 800 1000
Noise level

Figure 7.25. X-position retention using a diffusion model in KL — VAE space. The
procedure to generate this plot is identical to that described in 4.39 except that diffusion
takes place in a latent space and classifiers/regressors also work in the latent space.

129

Feature retention in forward backward diffusion

0.08
0.06 A
Ll
%3]
= 0.04 4
0.02 -
— PosY
0.00 4 —=—- Random PosY
T T T T T T
0 200 400 600 800 1000
Noise level

Figure 7.26. Y-position retention using a diffusion model in KL — V AE space.

Feature retention in forward backward diffusion

0.030 A

0.025 A

0.020 A

0.015 A

MSE

0.010 A

0.005 A — Scale
=== Random Scale

0.000

T T T T T
0 200 400 600 800 1000
Noise level

Figure 7.27. Scale retention using a diffusion model in KL — V AE space.

Feature retention in forward backward diffusion

_‘{ -
6 -
& 5
=
4
3 —— Orientation
=== Random Orientation

T T T T T
0 200 400 600 800 1000
Noise level

Figure 7.28. Orientation retention using a diffusion model in KL — V AFE space.

130

Shape accuracy vs Noise Level

100 1 —— VAE 1024
—— BVAE 1024
90 - —— DIP-VAE 1024
—— Conv VAE 1024

KL-VAE 1024
Random guess

Accuracy

30 - T T T T T T
0 200 400 600 200 1000
Moise Level

Figure 7.29. Shape classifier performance on data that gets gradually more noisy. For each
timestep we train a classifier on the latent noisy sample shape and report its performance
on the test set. As we can see, the accuracy curve is strongly dependent on the latent
space. It seems latent structure plays almost no role here as the best and worst candidate
are respectively the KL — VAE and the CONV — VAFE

131

Scale MSE Loss vs Noise Level

0030 L ___--—_= _
0.025 -
0.020 -
i
8
-l
7, 0.015 -
u
=
0.010 + —— VAE 1024
—— BWAE 1024
0.005 —— DIP-VAE 1024
) — Conv VAE 1024
— KL-VAE 1024
0.000 ——- Random guess
T T T T T T
0 200 400 600 800 1000
Noise Level

Figure 7.30. Scale regressor performance on data that gets gradually more noisy. For
each timestep we train a regressor on the latent noisy sample x-position and report its
performance on the test set. As we can see, the MSE curve is different for each latent
space and it seems the KL — VAFE and the CONV — V AE are here again the worst and
best candidates when it comes to resisting to information destruction.

132

X-position MSE Loss vs Noise Level

0.08

0.06
%]
(7]
S
L
< 0.04 -
0.02 + —— VAE 1024
— BWVAE 1024
— DIP-VAE 1024
——- Random guess
0.00 +
T T T T T T
0 200 400 600 200 1000
Moise Level

Figure 7.31. X-position regressor performance on latent data that gets gradually more
noisy.

133

Y-position MSE Loss vs Moise Level

0.08 -

0.06

0.04

MSE Loss

0.02 1 —— VAE 1024
— BWVAE 1024
— DIP-VAE 1024
——- Random guess
0.00 A
(III 2[|]D 4[|]D ﬁ[;ID E[IIID lDIDD
Moise Level

Figure 7.32. Y-position regressor performance on latent data that gets gradually more
noisy.

134

Orientation MSE Loss vs Noise Level

MSE Loss

WVAE 1024
BVAE 1024
DIP-WVAE 1024
Conv VAE 1024
Random guess

2.6

2.4+

T T T T T
0 200 400 600 800 1000
Moise Level

Figure 7.33. Orientation regressor performance on latent data that gets gradually more
noisy.

135

Bibliography

Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using Nonequilibrium
Thermodynamics”. 2015. arXiv: 1503.03585 [cs.LG] (pages 6, 26).

Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gradients of
the Data Distribution”. 2020. arXiv: 1907.05600 [cs.LG] (pages 6, 28, 30).

Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Mod-
els”. 2020. arXiv: 2006.11239 [cs.LG] (page 6).

Yang Song et al. “Score-Based Generative Modeling through Stochastic Differential
Equations”. 2021. arXiv: 2011.13456 [cs.LG] (page 6).

Robin Rombach et al. “High-Resolution Image Synthesis with Latent Diffusion Mod-
els”. 2022. arXiv: 2112.10752 [cs.CV] (pages 9, 35, 61).

Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: International Conference on Learning Representations.
2017. URL: https://openreview.net/forum?id=Sy2fzU9gl (page 25).

Christopher P. Burgess et al. “Understanding disentangling in S-VAE”. 2018. arXiv:
1804.03599 [stat.ML] (page 26).

Aapo Hyvérinen. “Estimation of Non-Normalized Statistical Models by Score Match-
ing”. In: Journal of Machine Learning Research 6.24 (2005), pp. 695-709. URL: http:
//jmlr.org/papers/v6/hyvarinen@5a.html (page 27).

Kamil Deja et al. “On Analyzing Generative and Denoising Capabilities of Diffusion-
based Deep Generative Models”. 2022. arXiv: 2206.00070 [cs.LG] (pages 36, 104).

Tim Sainburg et al. “Generative adversarial interpolative autoencoding: adversarial
training on latent space interpolations encourage convex latent distributions”. 2019.
arXiv: 1807.06650 [cs.LG] (page 42).

Ting Chen. “On the Importance of Noise Scheduling for Diffusion Models”. 2023.
arXiv: 2301.10972 [cs.CV] (page 75).

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. “Variational Infer-
ence of Disentangled Latent Concepts from Unlabeled Observations”. 2018. arXiv:
1711.00848 [cs.LG] (page 86).

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. “Neural Discrete Rep-
resentation Learning”. 2018. arXiv: 1711.00937 [cs.LG] (page 89).

Dongjun Kim et al. “Refining Generative Process with Discriminator Guidance in
Score-based Diffusion Models”. 2023. arXiv: 2211.17091 [cs.CV] (page 101).

136

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2112.10752
https://openreview.net/forum?id=Sy2fzU9gl
https://arxiv.org/abs/1804.03599
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://arxiv.org/abs/2206.00070
https://arxiv.org/abs/1807.06650
https://arxiv.org/abs/2301.10972
https://arxiv.org/abs/1711.00848
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2211.17091

[15] Prafulla Dhariwal and Alex Nichol. “Diffusion Models Beat GANs on Image Syn-
thesis”. 2021. arXiv: 2105.05233 [cs.LG] (page 104).

137

https://arxiv.org/abs/2105.05233

