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Abstract
This master thesis explores the application of a surrogate model to achieve the integration

of electricity network constraints into integrated assessment models, that attempt to predict the
evolution of the main features of the society, including economic, demographic, climatic and energy
factors.

Tools were developped to run Dispa-SET, a dispatch model for the European electricity
network, to build a dataset of simulations on adequate sample points. This dataset is then used to
train the surrogate model employing appropriate machine learning methods. Finally, this model
is integrated into the MEDEAS IAM, connecting their variables in a meaningful way, and the
resulting model is run for different scenarios.

Results show that integrating the model in MEDEAS leads to a lower prediction of the
production of variable renewable energy sources compared to the initial MEDEAS output.
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1 Introduction
Our societies are fueled by energy. Historically, fossil fuels offered a relatively easy to

access, store and use energy for decades, bringing a solution to this energy issue.

The rising awareness of the climate change, mostly caused by the release of large amounts
of greenhouse gases conducts to a paradigm shift. To meet climatic goals, strict limits on emissions
have been established, consequently limiting the prevously endless source of energy that were fossil
fuels over the long term [2]. This directly impacts the solutions depending on their combustion,
releasing massive amounts of carbon dioxide.

The solutions to compensate for the lacking energy generation, that from now on should
not derive from fossil fuels, are renewable energy sources. These refer to every energy generation
technique originating from a renewable source, such as the sun, the wind and the rivers. However,
the production of these units is not systematically sustainable. For example, the photovoltaic cells
necessary for the exploitation of the incoming solar energy are pretty difficult to recycle, making
them rely on specific materials that are not obtainable renewably. Still, their use on a complete
lifetime, and increasing capabilities in recycling, justifies the investment in their construction.

In this context, a meaningful increase in the electricity produced from such energy sources
is to be expected, particularly from the most prominent ones:

– the sun, through photovoltaic panels,

– the wind, through on-shore and off-shore wind turbines,

– rivers, through hydroelectric dams,

– biomass, through adequate units, and

– geothermal energy, through geothermal power stations.

The third one, due to its dependency on the geographic context, will however not expand
foerever, as there are not illimited spots to build such dams. In this work, the biomass and
geothermal energy sources, less common for the time being, are not considered.

One thus falls back to photovoltaic and wind energy, but both have a major, trivial draw-
back: they rely on the sun and the wind, respectively. And this is a significant concern, because
the amount of energy that can be generated by exploiting these is variable, hence their designation
as variable renewable energy sources, or VRES.

That variability does not necessarily involve poor predictability, for example, there is on
average more photovoltaic production potential during summer. On a daily scale as well, with the
day night cycle. Weather forecasts can be taken advantage of in order to predict wind turbines’
production.

The idea of residual load, the difference between the actual load and the amount of energy
that can be provided from renewable sources. This residual load fluctuates, therefore needing
conventional electricity units to be dispatched in real time. But since these units have start-up
and shut-down costs, minimizing these remains attractive. Hence, flattening the residual load
curve is desired, what governs the dispatch the units available on the network.
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1.1 Flexibility assessment in energy system models

As explained before, higher shares of VRES in the electricity production mix create the
additional challenge, that is the handling of the partlially predictable variability of wind and sun
energy.

This handling requires a larger flexibility of the electrical system, that is, a better ability
to adapt to both anticipated and unforeseen changes in the demand and supply [3].

Existing mechanisms to improve the flexibility of a power system include:

– Use of the regular dispatchable energy production plants to compensate for the energy deficit
that may arise from VRES. Plant characteristics play a role to address short term drops in
production, as some start up time might be required [4].

– Large interconnected electricity networks, that are able to smooth the VRES power output.
There may be not enough sun in some region, creating a deficit, while there is too much
in the neighboring country. By connecting them, the overproduction will compensate the
unerproduction of the other [5].

– Energy storage facilities. Of course, storing the produced energy for later use is an easy way
to account for the intermittency of the production. Typically, storing solar energy during day
time to be used in the night. These technologies include pumped hydro-storage, batteries,
compressed air. While pumped hydro-storage units are the most common, their very limited
expansion options make them unlikely to grow in the future [6].

– Acting on the demand, in the extent that it can change its shape by promoting policies to the
end users. Such policies focus on flattening the daily demand curve, facilitating the energy
production dispatch. Typically, asking to delay greedy devices like dishwashers until night,
where the overall demand is lower. But this could extend to other domains, such as electric
vehicles charge, heating and cooling etc [6].

The two main consequences of insufficiently flexible energy systems are curtailment, when
there is too much energy produced, and load shedding, when there is not enough electricity to
satisfy the demand. In case of load shedding, parts of the grid may be entirely shut down.

1.2 Short-term dispatch models

There exist tools built in order to assess the behaviour of large electrical systems, that
are subject to higher share of VRES. These tools typically aims at predicting the electricity flows,
dispatching available power plants in order to match the production to the demand.

For these purposes, such tools typically set low time steps, e.g. 1 hour, and their simulation
period spans up to one year [7]. This level of granularity is required in order to capture sufficiently
well the variations in the availability of variable RES. In association, significant levels of details
are modelled, like simulating every existing units.

Their scope might range from the electrical system only, to the entire energy system,
hence encompassing for example heating, transportation, and industry matters. Some also include
economical considerations [8].

And from there on, some higher level metrics can be computed, and in particular, we are
interested by:
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– the curtailment, that is, the energy produced in excess while the electricty demand was
already met, that end up wasted, and

– the lost load, that is, the energy that could not be produced, hence some demand could not
be served.

The Antares simulator, PLEXOS and MAON models are examples of such tools. Among
them, the Dispa-SET model [9] is selected for this work. Dispa-SET is open-source, and focused
on balancing problem in the European grid specifically.

This model is formulated in linear programming, that is, a set of linear constraints are
defined and an objective function is given. The solver inputs both of these and computes the
parameters values that maximize the objective function while matching the constraints.

1.3 Integrated assessment models

On another level, integrated assessment models (IAM) aim at estimating the evolution of
large, intricated systems involving a lot of different interconnected areas and actors. These are
often multidisciplinary and require a lot of modelling choices.

In particular, some IAM attempt to model the evolution of the whole society, from a
socio-economical perspective, including environmental aspects and energy concerns. MESSAGEix,
GCAM and MAgPIE are examples of such models that have been used in the IPCC reports [10]
[11] [8] [12].

Within this category of IAMs, the MEDEAS model [13] is selected for this work, being
open-source as well and providing a specific european model.

MEDEAS is expressed in terms of systems dynamics, that is, the evolution of the state of
the simulation is computed as a function of its current state. And this involves solving a set of
differential equations.

1.4 Model linking

Due to computational constraints, IAMs often have a pretty low level of temporal, or
spacial accuracy [14]. This is not the case for dispatch models, that carry out more extensive
simulations. Therefore, establishing a link between two of these models is interesting, as the IAM
would benefit from the better accuracy of the energy models.

An high-level illustration of the position of MEDEAS and Dispa-SET on the timescale is
provided in Figure 1.1 [9].

1.4.1 Linking types

There are several strategies that may be used in order to link two models together [14].

– Soft linking: the models communicate between each other. This communication may be
uni-directional or bi-directional. Both of the models are run iteratively, thus keeping their
separate efficiencies in the same order of magnitude. However, the iteration lead to low
overall speed, and convergence is not guaranteed.

– Hard linking: the models are combined into a single, unified mathematical formulation. This
newly created model can then be solved all at once. This approach is burdened by higher

3



Figure 1.1: An illustration of where Dispa-SET and MEDEAS operate on the timescale

computational costs and lower chance of feasibility.

These linking types are illustrated in Figure 1.2.

Figure 1.2: Illustration of the different linking methods [15].

One may also add model integration, consisting in completely embedding a model into
the other. But this is not tractable in this setting, and would also requires compatible model
formulations, as explained below.

In this case, hard linking is not possible owing to the different formulations of Dispa-SET
(linear programming), and MEDEAS (system dynamics).

We also dismiss the soft linking strategy because of its slowness, and absence of convergence
guarantee.

1.4.2 Surrogate models

Considering the effects of VRES in long-term integrated assessment models is a challenge
since they don’t have a sufficient time resolution to capture the rapid variations within the system.
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The linking technique explored in this work is the surrogate model. In this case, an
approximation of the Dispa-SET dispatch model is integrated into the MEDEAS IAM.

The idea behind surrogate models is simple. First, a fast, convenient approximation of the
model is made, then it its completely integrated in the other model. For this purpose, the relevant
outputs of the Dispa-SET model is approximated from relevant inputs regarding MEDEAS, then
the approximator is inserted in the model.

Similar work has been done by Parrado-Hernando et al. in [16], that aims at "capturing
features of hourly-resolution energy models". The methodology used to acquire the data presents
two downsides that are addressed in this work.

First, the inputs of the energy model are handled as discrete variable, and simulation have
been run using all possible combination for these values. This can be seen in some of their figures,
where the data points seem to follow some lines. While it does not invalidate the process, this
creates a bias in the repartition of the data. Second, linear approximation are used to fit the data
obtained. Admittedly, this is identified as a limitation of the work.

To palliate these, the input space is tackled as a continuous domain for the design of
experiment, and other machine learning technique are considered as to candidates for the creation
of the surrogate model.

The soft-linking approach has already been explored [17], [18], and the hard-linking remains
the hardest to investigate, notably due to incompatible formulations. Surrogate models are still
unexplored and are of great interest for this use case.

As the combination of the two models uses an approximation, this appriximation being
fast will not burden the computations of the IAM, hence keeping it efficient.

Surrogate models then provide a promising strategy for the implementation of this inte-
gration problem.

1.5 This work

1.5.1 Objective

This master’s thesis is dedicated to the integration of the flexibility constraints, the Dispa-
SET surrogate model, into the MEDEAS model, with reduced details on this aspect. This includes
the creation of a proper dataset, the definition, training and integration of the surrogate model
into MEDEAS.

It extends previous work as such an approach, as discussed above, has not yet been imple-
mented in this context.

1.5.2 Contributions

This work follows what was started by another student, Carla Vidal, that went until the
surrogate model training, included. Given that improvements where implemented in Dispa-SET
since then, the runs had to be re-done. However, there were no easy to use scripts to set up the
simulation files etc., so that is has been chosen to write new ones.

Additionally, the present thesis also explores other machine learning algorithms, although
the same choice of neural networks is made, this time based on better performance compared to
the other options.
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Another student, Jade Paris, was in responsible of the linking of the surrogate model, given
as a functions of some inputs variables into the MEDEAS model, and its actual use and runs of
MEDEAS with the surrogate model integrated.

This work constisted in:

– The writing of scripts to run Dispa-SET on those experiments

– The choice, definition and implementation of an adequate machine learning model, and its
training

– The integration the model in MEDEAS, by writing a C++ external function library for
Vensim, or by inserting it into the PySD model of MEDEAS directly in python

– Runs and analysis of the improved MEDEAS model

The global workflow is depicted in Figure 1.3.

Figure 1.3: Worflow of the master thesis

All the produced work, and necessary data is available in the online github repository at
the following address: https://github.com/Rayerdyne/master-thesis.

1.5.3 Outline

This document is organized into seven main sections. The second section presents an in-
depth description of the Dispa-SET model, along with the tools employed within its framework.
Following this, the third section provides a detailed account of the MEDEAS model, outlining its
underlying principles and the broader framework in which it operates.

To facilitate the successful integration of models, the fourth section outlines the process of
data generation. This encompasses a complete overview of the methodologies employed to produce
the necessary training data, the design of experiments and the execution of Dispa-SET runs.

Subsequently, the fifth section describes the surrogate model, offering a comprehensive
description of its design. The section further expounds on the training and validation processes
undertaken to ensure accurate alignment of the surrogate model with the main models’ outcomes.

The sixth section then shifts the focus to the crucial process of integrating the surrogate
model into MEDEAS. A step-by-step description is provided, elucidating how the surrogate model
becomes an integral component of the broader MEDEAS framework, and how it interacts with the
existing models.
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In the seventh, the document offering a comprehensive summary of the resulting model
and outcomes. This section also provides interpretations of the observed results.

Finally, the last section concludes, reflecting on the work and identifying any limitations
and outlining future areas of research for further enhancements.
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2 The Dispa-SET model

2.1 Overview

The Dispa-SET model [9] is described in the source [19] as "an open-source unit commit-
ment and optimal dispatch model focused on the balancing and flexibility problems in European
grids".

More precisely, it is focused on simulating large scale power systems, with emphasis on
high shares of VRES. As such, it is used as tool for the analysis of the impacts of VRES on the
power systems, thank to its ability to take into account several technical constraints of the power
system.

A schematic of the Dispa-SET architecture is displayed in Figure 2.1.

Figure 2.1: Block diagram of the architecture of the Dispa-SET model

Its interface is written in the Python programming language, and calls GAMS [20] as the
main solver engine.

2.2 Unit commitment model

Dispa-SET is essentially a tool to instanciate, execute and analyse the results of its Unit
Commitment Model (UCM). This is the core modelling of the network, aiming at representing the
reality.
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The UCM consist of two parts [19]:

1. The scheduling of the generation units, i.e. their start-up, operation and shut-down,

2. The allocation of the demand to the production, such as to minimize the network costs.

The former arises the need of binary variables to accurately model start-up and shut-down
decisions. The latter is referred to as the economic dispatch problem, and also determines the
exact output of each committed unit.

Since featuring both integer (binary) and continuous variables, this problem can most
conveniently be expressed as a Mixed-Integer Linear Program (MILP), but can be relaxed to a
Linear Program (LP).

2.2.1 Objective function

The first component of the UCM is the objective function, whose value is minimized by the
simulation. In Dispa-SET, it corresponds to the overall operating costs of the complete network.
These costs typically include transportation, power and heating costs required to split efficiently
the demand between the available generation units.

The total system costs is split as follows:

– Fixed cost : fixed amount, charged if the unit is on.

– Variable costs : amount that is a function of the power output the units are operating at.

– Start-up and Shutdown costs : amount charged on start and on shutdown of a unit.

– Ramp-up and Ramp-down costs : costs due to the increase or decrease in power output of a
unit.

– Shed load costs : costs due to necessary load sheddings.

– Loss of load costs : due to generated either exceeding the demand, or not matching it .

– Transmission costs : due to the use and wear of the transmission network.

– Spillage costs : due to spillage in storage units.

We can formulate, Equation 2.1 to represent the objective function, where u refers to the
index on each units, i is the time index, and n the zone index.

Table 2.1 summarizes all the names appearing in the equations.

2.2.2 Supply and demand balance

A key component in the UCM is the fundamental constraint that has to be met, the
supply-demand balance in terms of energy production (supply) and consumption (demand), in the
day-ahead market.

The supply sources are:

– The power outputs from each units

– The power outputs from storage units discharging

– The (eventual) net income from importation from neighbouring zones

– The (eventual) shed load
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Symbol Meaning
Cost[StartUp|ShutDown]u Cost of the start up or shut down of unit u
CostRamp[Up|Down]u Cost of the ramping up or down of unit u
Cost[Fixed|V ariable]u Fixed or variable cost of operating unit u
Commitedu 1 if unit u is turned on, else 0
Poweru The power unit u operates at
TimeStep The duration of one simulation time step
CostLoadSheddingn Cost of the load shedding in zone n
ShedLoadn The amount of load being shed in zone n
LostLoad Lost load, i.e., load that is neither produced, nor accounted

as load shedding
V OLL Value of lost load, i.e., its price per MWh
CostOfSpillage Cost of spillage in storage units
Spillages Amount of spillage in storage unit s
Locationu,n Boolean, 1 if unit u is in zone n, else 0
Flowl,n The electric flow between zones l and n
Demandn The demand in zone n
StorageInputs The power being inputted into the storage unit s

Table 2.1: Description of the variables used in Equations 2.1 and 2.2

Whereas the demand originates from:

– The load in that zone

– The (eventual) net exportations to neighbouring zones

– The power consumed by charging storage units

– The power consumed by P2H (power to heat) units

Equation 2.2 expresses this target energy production and consumption balance.

2.2.3 Other constraints

Some other most notable constraints in the UCM are described in the following. Bounds
on the power output and on the ramp-up and ramp-down, based on the characteristics of the units
are set. Other constraints govern the behaviour of the storage units.

2.2.4 Rolling horizon

The ideal solution would be to solve the entire system, for every time step in the complete
duration of the simulation in one go. But this would create a system too large to be efficiently
solved.

To address this, the UCM is split into smaller, tractable parts. The simulation is built for
smaller time frames, called optimization periods, over which the simulations can be made easily.

The start of optimization period j overlaps the optimization period j − 1, to that the
simulation j is the correct prolongation of the same setting fixed by the simulations up to j − 1.
The period that overlaps is called the look-ahead, in which the values of the parameters for period
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MinTotalSystemCost = ∑
u,i

(CostStartUpu,i + CostShutDownu,i) +∑
u,i

(CostRampUpu,i + CostRampDownu,i) +∑
u,i

CostF ixedu · Comittedu,i · TimeStep+∑
u,i

CostV ariableu,i · Poweru,i · TimeStep+∑
n,i

CostLoadSheddingn,i · ShedLoadn,i · TimeStep+∑
n

V OLL · LostLoad · TimeStep∑
s,i

CostOfSpillage · Spillages,i

(2.1)

Equation 2.1: Objective function of the Dispa-SET model

∑
u

(Poweru,i · Locationu,n) +
∑
l

Flowl,n,i

= Demandn,i +
∑
s

(StorageInputs,i · Locations,n)+

− ShedLoadn,i − LostLoad

(2.2)

Equation 2.2: Supply-demand balance in Dispa-SET

j − 1 is determined during simulation j − 1, and are used as fixed context for simulation j. A
depiction of rolling horizon is given in Figure 2.2.

2.2.5 Mid-term scheduling

Without further constraints, the optimization will most often leave all storage facilities
empty at the end of the simulation horizon (typically a few days). This is a consequence of the
variable operational cost of discharging these storage units being smaller than the cost of running
another unit, thus charging extra fixed and variable costs.

To address this issue, the Dispa-SET model has to be run in Mid-Term Scheduling (MTS)
mode. In this mode, the initial and final levels of the storage units (in particular, pumped hydro
storage units) are given as exogenous input to the model. These levels are enforced with additional
constraints.

However, this options has additional requirements. The formulation has to be set to LP,
the rolling horizon is turned off and the time resolution is risen to one day. To reconcile these
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Figure 2.2: Depiction of the rolling horizon mechanism

needs with the greater time precision imposed for accuracy, two problems are solved. First, the
MTS problem in LP, providing data used by the second one, solving the UCM instance in MILP.

In this work, the MTS mode is enabled, and the exogenous inputs, for both initial and
final levels, are set to half of the storage capacity.

2.3 Problem formulations

Dispa-SET features several, different formulations, with a significant impact on the realism
and accuracy of the output. These formulation differ in the way the simulation is created and the
constraints defined.

2.3.1 Linear programming

In the LP formulation, every variable is considered to be continuous, and can take values
continuously down to zero. In particular, this applies to the Commited variable, hence enabling
any power output from 0 to the unit’s maximum power.

However, the LP formulation lacks the capacity to enforce minimum operating levels for
units effectively, leading to potentially unrealistic scenarios, for example a nuclear unit operating
at 10% of its maximal power, what is not achievable.

2.3.2 Binary formulation

To mitigate this issue, the Commited variable is made boolean. That way, the minimum
operating value can be enforced when the corresponding commited boolean is set to one.

This strategy, however achieving the better accuracy targetted, is unfortunately often
intractable in realistic settings, due the large number of binary variables (one for each unit) yielding
an exploding number (2N) of options to be examinated.

2.3.3 Mixed integer linear programming

The MILP formulation is created to leverage the computational cost of the simulation
while keeping a good level of accuracy. The main idea is to group the units that share similar
properties together, and only keep track of the number of units in each group that are currently
commited.

This permits the number of options to explore reasonnable, without hurting the precision
of the output.
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In this work, the MILP formulation is chosen due to its better efficiency-to-computational-
cost trade-off.

2.4 Reference simulation

This work takes the simulation over the year 2019 as a reference. Accordingly, the several
input timeseries, including the demand, the availability factors, and the flows between each zones
are used.

Dispa-SET also detects congestion issues. These appear when a link transmits too much
power for its capacity. For electric wires, congestion causes a wire to retain heat, what may
threaten the wire integrity. While seemingly harmless, this phenomenon is likely to be on the
rise, for example when an area produces a lot of renewable energy, and has to transmit it to some
neighbour in deficit.

The annual dispatch plot generated by Dispa-SET for the reference simulation in Belgium
is displayed in Figure 2.3.

Figure 2.3: Dispa-SET reference simulation. Commited units over one year in Belgium

The observations drawn from Figure 2.3 are as follows:

– The units "BE_STUR_NUC" and "BE_STUR_BIO_CHP" are almost always on. These
correspond to turbines powered by nuclear energy and bio fuels respectively. The latter is a
combined heat and power unit.

– Wind turbines, both on-shore and off-shore, have roughly the same availabilities.

– The higher availability in PV energy during summer is apparent, along with the day-night
cycle.

– Other units like "BE_ICEN_BIO", "BE_STUR_BIO", "BE_GTUR_GAS_CHP" and
"BE_ICEN_GAS_CHP" seem to be turned on while wind units generate less power, espe-
cially during winter.

Figure 2.4 presents a dispatch plot over a week in Germany.

In Figure 2.4 we first observe some curtailment in the first day, indicated by the red area.
The green striped region indicates that the zone was exporting excess production during the week.
This is aligned with the depicted NTC, presenting a greater flow outwards than inwards. Moreover,
the reservoirs of storage units were predominantly full. As the demand was entirely met by the
production, no load shedding appeared. In the latter case, the load curve would be higher than
the production and importations sum.
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Figure 2.4: Dispa-SET reference simulation. Dispatch plot over a week in Germany
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3 The MEDEAS model

3.1 Overview

This sections aims to describe the main components of the MEDEAS Integrated Assessment
Model (IAM) and its components, with a focus on the parts that are the most relevant in this
context.

Named "Modelling the Energy Development under Environmental And Socioeconomic
constraints", the project endeavors to construct a modern computational model to predict the
future of the energy systems in Europe, while integrating a wide range of physical and social
constraints.

First, the IAMs are depicted, then a high-level description of the MEDEAS model is
provided. The third subsection will explain more in depth in a key component of MEDEAS, the
energy return on investment. In the fourth subsection, the modelling of the RES in MEDEAS is
covered. Finally, the principal scenarios in MEDEAS are presented in the fifth subsection.

3.2 The MEDEAS integrated assessment models

MEDEAS is an open-source IAM, built to "guide the transition to a low carbon European
socio-economy" [21].

Integrated assessment models are used to make general purpose analysis, amalgamating
insights from diverse domains, such as economy, environment and energy, land use etc. These
kinds of models, once properly defined from a mathematical point of view, can then be simulated
by computer, for their result to be analysed.

Given the considerable uncertainty and intricate interdependencies among model compo-
nents, there exists a multitude of IAMs with varying methodologies.

As an additional point of consideration, the model being open-source is probably one
strength as an IAM, meaning that any expert in one domain may be able to contribute to the
project.

As previously quoted from their website, the MEDEAS model has been built with the
purpose of guiding decarbonation in Europe. It has been designed to compensate for the flaws
of other available IAMs, in order to inform policy makers towards a transition to more carbon-
independent, sustainable energy.

MEDEAS is built using the Vensim software, and can be used from the Python program-
ming language through the pySD package.

3.3 Model overview

MEDEAS, funded by the EU’s Horizon 2020 program, under the "Modelling and analysing
the energy system, its transformation and impacts (social, environmental and economic aspects of
the energy system)".

And to do so it models the long-term implications of the decisions made by the society. As
one cannot predict them, several hypothesis are needed to fix the choices that will be made. Such
a set of hypothesis on the evolution of the long-term policy of the society as a whole is called a
scenario.
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MEDEAS typically sets the simulation horizon between 1995 and 2060, though for longer
term analysis it might be raised up to 2100. It also features different settings:

– MEDEAS-W, the global one,

– MEDEAS-EU, targeting the European Union,

– MEDEAS-AU and MEDEAS-BG, targetting Austria and Bulgaria respectively.

The MEDEAS IAM is organized into seven modules, encompassing economy, energy, energy
infrastructures, materials, land use, climate change and socio-environmental impacts indicators.
The general structure is illustrated in Figure 3.1.

Figure 3.1: The MEDEAS IAM modules

In this work, the MEDEAS-EU version are considered, since it has the same geographical
scope than the Dispa-SET model.

3.3.1 System dynamics

Formulated using system dynamics, the MEDEAS model leverages Vensim software to
aggregate insights from diverse experts and domains. This also enable easy modelling of feedback
between the different components.

System dynamics is a modeling language, made to obtain understandings of complex and
dynamic systems. It achieves using nodes and arrows, corresponding to values and relations
between those respectively. The former can be either a stock, a flow or a constant, while the
latter makes the link through equations. It is therefore possible to create feedback loops and
complex interconnected networks.
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System dynamics have been popularized by the world3 model, used to predict the conse-
quences of long-term policies applied by the society on the planet in the Limits to Growth report
[22].

This approach is evidently far from the linear programming paradigm, that has a too
different mathematical formulation for both to be combined.

3.4 Energy return on investment

When having energy consideration in the long term, the energy return on investment
(EROI) assumes a crucial role.

EROI signifies the exploitable energy obtained from a resource to the amount of exploitable
energy spent to acquire that resource [23].

The EROI serves as a critical metric for the assessment of the energy sources efficiency,
providing a measure of how efficient this energy source is to make use of. On most cases, the EROI
of RES is lower, meaning a lower energy gain, than fossil fuels’.

It’s important to differentiate between EROI and net energy gain, where the latter repre-
sents the surplus energy available for public use. Obviously, its value should be larger than zero
for the operation to be profitable.

Equations 3.1 and 3.2 summarize their definitions and the relationship between the two.

EROI =
Energyreturned
Energyinvested

(3.1)

NetEnergy = Energyreturned − Energyinvested = Energyreturned

(
1− 1

EROI

)
(3.2)

However, this also requires to set a definition on what exactly is the energy invested on
the aquisition of an other resource. The MEDEAS model thus ovvers several EROI values relating
to different approaches [24].

– Standard EROI, that "includes the direct (i.e. on site) and indirect (i.e. offsite energy needed
to make the products used on site) energy requirements to get the energy (e.g. build, operate
and maintain a power plant)" [24].

– Point of use EROI, that includes the energy cost of obtaining and transporting the fuel to
the actual location where it will be used by society.

– Extended EROI, that " considers the energy required to get, deliver and use a unit of energy,
i.e. the energy required to produce the machinery and devices used to build, operate and
maintain a power plant or a transportation facility (tank truck, pipeline, etc.) as well as
the energy required for exploration, investment, communication, labour, etc. in the energy
system" [24].

In this context, we focus on the standard EROI.

In MEDEAS, the EROI is dynamically computed, meaning it is an endogenous variable,
as the ratio of the exploitable energy delivered to consumers, over the sum of the total energy costs
required for operating the plant and the energy costs of handling the variability of the power output
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and the costs of operating the energy transportation network. The total costs for an operating
plant include the building, maintenance and disposal costs.

On Figure 3.2, a depiction of a high-level energy flow is given. The exploitable energy
delivered to consumers is the flow labelled (1), and the operating costs of the plants (2), whereas
the costs accounting for the handling of variabilities is labelled (3) and for energy transportation
(4). Equation 3.3, 3.4 and 3.5 below shows the MEDEAS’ computation of the EROI based on
these.

Figure 3.2: Representation of society’s principal energy flows[25]

EROIst =
(1)

(3) + (4)
(3.3)

EROIpou =
(1)

(2) + (3) + (4)
(3.4)

EROIext =
(1)

(2) + (3) + (4) + (5)
(3.5)

Furthermore, MEDEAS [25]:

– Assumes the EROI of non renewable energy sources to be constant over time,

– Dynamically estimates the EROI of RES producing electricity,

– Allocates technologies based on their EROI as a performance measure, meaning that higher
EROI RES will be preferred,

– Computes overcapacities as a result of an increasing share of VRES endogenously,

– Takes additional losses into account for the use of storage units.

3.5 Modelling of RES

MEDEAS addresses the implications of variability in electricity production technologies,
though not as comprehensively as Dispa-SET.
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3.5.1 Limitation

First, it is recalled that the time step used by MEDEAS is coarse. Its recommended
value is 0.03125, expressed as a fraction of a month. This amounts to approximately a day:
0.03125× 365.25

12
= 0.951.

This value is clearly too high to model extensively daily variations of the power output of
solar photovoltaic units, for example.

In the following, the mechanisms implemented by MEDEAS in order to incorporate the
RES variability are described.

3.5.2 Grid extension

MEDEAS estimates, per MW of VRES, the additional electricity grid extensions required
in order to incorporate those in the existing network. The materials needed for these expansions
are also computed, what ultimately affects the EROI.

3.5.3 Storage units

In MEDEAS, the foremost storage technology used is the pumped hydro-storage (PHS). It
contrasts with the Dispa-SET setting where batteries are the main storage technology. As already
discussed, that is to because the european region is almost saturated in terms of PHS, as one could
not find suitable location for new units to be built.

An estimation of the storage needs as a function of the VRES share is depicted in Figure
3.3 [26].

Figure 3.3: Energy storage capacity required as a function of the VRES share according to [26].

3.5.4 Dispatchable RES pants

The evolution of the capacity factor (CF) as the RES share among the electricity mix
evolves is described. The capacity factor is the ratio of the electricity produced by a unit over a
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period of time ∆t over the maximum amount of energy that could have been produced. This is
represented on Equation 3.6.

CF =
Energyproduced

∆t× PowerCapacity
(3.6)

The other meaningful metric in this context is the overcapacity, that is, the ratio of the
energy that could have been produced, over the energy actually produced.

overcapacity =
∆t× PowerCapacity − Energyproduced

Energyproduced
(3.7)

An estimate of the overcapacity of dipachable RES is provided in [26], the resulting capacity
factor evolution is depicted as a function of the VRES share in Figure 3.4. It can be observed that
capacity factor decreases quadratically in the VRES share in the electricity mix.

Figure 3.4: Capacity factor of RES evolution depending on the VRES share [26]

3.5.5 VRES plants

MEDEAS relies on estimates of the VRES induced overcapacities from [27]. These two
main impacts of the VRES share are accounted for:

– The exponential growth of VRES overcapacities and

– The decrease of the VRES capacity factor.

The two estimate functions used in MEDEAS [25] from [27] are presented in Figure 3.5.

The capacity factor is evaluated as a function of the overcapacity, following Equation 3.8,
that can actually be derived from Equations 3.6 and 3.7.

CF =
1

1 + overcapacity
(3.8)
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Figure 3.5: (a) Overcapacity estimate and (b) CF reduction of VRES plants on [25]

3.6 Scenarios

Given inherent uncertainties about the decision that will be made and will rule the society
in the future, several sets of hypothesis, called scenarios, are defined.

When running the MEDEAS model, these scenarios are run in parallel, using Vensim tools
for parallelism.

By default, the three following scenarios are available, but user-defined scenarios may be
added and run [21].

– Business as usual, BAU: corresponds to no particular effort being implemented, the transi-
tion continues as it is.

– Optimal Level Transition, OLT: where all the resources available are allocated to the best
renewable transition possible, that has become a social priority. The only constraints for
faster transition are physical limitations.

– Mid-Level Transition, MLT: is a mix of the previous ones, some effort are made but not all.
Actions towards renewable transition are delayed.

A depiction of these scenarios in terms of emissions over time is given in Figure 3.6.

These scenarios have been defined somewhat arbitrarily, but the custom scenario capability
opens the door to anyone willing to use a more precise, more accurate scenario, given for example
additional information brought by major events in the future.
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Figure 3.6: Qualitative illustration of the BAU, MLT and OLT (here, referred to as OT) scenarios
for the greenhouse gas emissions in Europe from [21]

22



4 Dispa-SET simulation and database generation

4.1 Overview

This section describes the process that lead to the creation of the dataset, required in order
to train the neural network model.

First, an input space is defined, on which we properly select points to form the dataset
features. Then, computationally expensive simulations are run on these points, and extract mean-
ingful data is extracted from the simulation results to obtain the desired output features predicted
by the model.

Finally, this dataset is used to train the surrogate model on [28].

4.2 Data preparation and initial parameters

As stated earlier, this setting only considers the european power system in Dispa-SET,
then to create and validate our surrogate model. Each simulation is run over a period of 2019.

4.2.1 Unit groupings

In this context, the specific technology and fuel types of each plant hold no relevance,
as they have no influence the input features of our dataset. There are less input features than
technology-fuel pairs, and only the formers matter for the surrogate model training. Hence, the
units are categorized into five groups: flexible units, slow units, storage units, PV units and wind
units.

IRENA [3] describes flexible units as "units that can ramp up and down quickly, have a
low minimum operating level and fast start-up and shutdown times". This criterion is be used to
separate units into slow and flexible units, and their relative shares dictates the Shareflex input.
This criterion is presented in Table 4.1.

Units Fuel Condition
Flexunits GAS, HRD,

OIL, BIO, LIG,
PEA, NUC,
GEO

PartLoadMin < 0.5 and TimeUpMin < 5
and RampUpRate > 0.01

Slowunits PartLoadMin ≥ 0.5 or TimeUpMin ≥ 5 or
RampUpRate ≤ 0.01

Table 4.1: Classification of flexible and slow units

Refer to Tables 9.5 and 9.6 for identification of their respective names.

One also has to consider the limit on the number of hydroelectric units that can be build
given a geographical area. Since EU is already almost at saturation, stationary batteries, i.e. large
scale arrays of batteries, are considered, among other energy storage technology (e.g. compressed
air, electric vehicles’ battery grid).

The groups can be simply described with technology-fuel pairs as follows:

– Storageunits with (OTH, BATS)

– PVunits with (SUN, PHOT)
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– Windunits with either (WIN, WTON) or (WIN, WTOF), the latter not being considered in
this work

4.2.2 Parameters estimates

The availability factors of PHOT and WTON are also required, as well as the peak load.
These values are given as time-series inputs to the simulations, for the year 2019. To give an order
of magnitude, their averages, the derived capacity factor, are given in Table 4.2.

Variable Value Units
CFPV 0.1314 [·]
CFWTON 0.2604 [·]
CFWTOF 0.3780 [·]
PeakLoad 440929 MW

Table 4.2: Average values of the capacity factor over all zones, and maximum total demand over
the timeserie, i.e. sum of the demand in each country

4.3 Design space

For data sampling, the design space is of crucial importance. Its shape and dimensions, as
well as the chosen sampling strategy, have a direct impact on the balance of the dataset, that can
ultimately introduce some bias in the data.

4.3.1 Shape

The first necessary step in order to select our data points for our dataset, is to define the
space in which we sample them. In our case, this space is the product of 6 ranges, that is a 6
dimensional hypercube.

One may argue that some areas of this hypercube, typically around the vertices, will be
extremely unlikely to happen in a real setting. More precisely, as this cube is the input space of
the surrogate model that will be connected to another model, it may be suitable to prune the areas
of the cube that will never be reached. Indeed, if we know that some areas will never be queried,
there is no use covering them.

Furthermore, assuming we would obtain the exact space of possible queries, this space is
not likely to resemble some common shape like hypercube, hyperball or their combinations. Given
that most of designs of experiments techniques assume these kinds of spaces, a mapping would be
needed to benefit from more effective sampling strategies, designed for common shapes. Such a
mapping would be pretty complex to develop.

More importantly, the cost of being more general than strictly required is small, mainly
consisting of a slightly larger surrogate model (in this specific case, a larger neural network), and
a larger dataset.

For these reasons, the hypercube is selected.

24



4.3.2 Input variables

The six adimensional variables are described in the following, alongside with their range.
Each of these corresponds to one dimension of the hypercube.

The notation PowerCapx refers to the maximum power output of all the units in x, and
PeakLoad stands for the maximum total demand. See Table 4.2 for the values of the CF and peak
load value.

1. CapacityRatio [·]
Ratio of the maximum production over the maximum demand.

CapacityRatio =
PowerCapflexunits + PowerCapslowunits + PowerCapstorageunits

PeakLoad
(4.1)

2. ShareFlexibility [·]
Share of the units that are flexible.

Shareflex =
PowerCapflexunits

PowerCapflexunits + PowerCapslowunits

(4.2)

3. ShareStorage [·]
Ratio of the maximum power output of all storage units over the maximum demand.

Sharestorage =
PowerCapstorageunits

PeakLoad
(4.3)

4. ShareWind [·]
Ratio of the maximum power output of all wind units over the maximum demand.

Sharewind =
PowerCapwindunits

PeakLoad
· CFWTON (4.4)

5. SharePV [·]
Ratio of the maximum power output of all PV units over the maximum demand.

SharePV =
PowerCapPV units

PeakLoad
· CFPV (4.5)

6. rNTC [·]
Net transfer capacity ratio. This variable is a measure of the grid effect on the network, as
the zones are able to transmit power between them.

The data we are provided contains hourly logs of the power transmitted between each pair
of zones. The following describes how to compute the rNTC value given these.

First, we compute the average net transfer capacity (NTC) for each zone z to any other zone
x over each of the Nh hours in the input data, via Equation 4.6.

NTCz→x =
1

Nh

∑
h

NTCz→x,h (4.6)
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Then Equation 4.7 is used to compute the zonal NTC, that is the ratio of the sum of all
NTCs from this zone to any other zones, over the peak load for that zone.

NTCz =

∑
xNTCz→x

PeakLoadz
(4.7)

A zonal NTC of 1 for zone z thus means that z would be able, at any time, to fulfill the
integrity of its demand by importing electricity from connected zones.

The final rNTC value is a weighed sum of the zonal NTCs. The weight for a zone z is
computed as the ratio of its peak load over the sum of each peak loads. This is expressed by
Equation 4.8.

rNTC =
∑
z

PeakLoadz∑
x PeakLoadx

NTCz (4.8)

4.3.3 Output variable

The target outputs of the systems are the curtailment and the load shedding. In order to
make these values more scalable, we normalize them, by the maximum RES generation that could
be produced (that is, the sum of the availability factors multiplied by the power capacity for each
units), and the total demand respectively.

This normalization renders the output scalable, enabling its utilization in other systems,
that have different scales. Without, the curtailment prediction is dependent on our specific training
setting, and the resulting model, outputting absolute values, could not be used for any other setting.
Scaling the outputs therefore enables easier generalization of the future model.

1. Curtailment

Percentage of the curtailment to the maximum RES generation from all units:

Curtailment = 100× EnergyCurtailed

8760
∑

units CF ∗ PowerCapu
(4.9)

Where EnergyCurtailed represents the total amount of energy from VRES in MWh for all
zones considered, CF is the yearly capacity factor and PowerCap is the installed capacity
for each unit in MW.

2. LoadShedding

Percentage of the shedding to the total demand, that is, the part of the demand that has
not been satisfied:

LoadShedding = 100×
∑

ShedLoad∑
Demand

(4.10)

4.3.4 Reference values and ranges

The Dispa-SET simulation presented in Section 2.4 is taken as reference, and its main
parameters are provided in Table 4.3.

A plausible variation range is then defined for the six important inputs (Table 4.3), covering
the possible evolutions of the electricity system up to 2050.
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Variable Value Lower bound Upper bound
CapacityRatio 1.658 0.5 1.8
ShareFlexibility 0.418 0.01 0.99
ShareStorage 0.497 0 0.5
ShareWind 0.106 0 0.5
SharePV 0.035 0 0.5
rNTC 0.282 0 0.7

Table 4.3: Values of the different variable for the reference simulation in 2019.

4.4 Design of experiments

A strategy to choose sampling points from some design space is called a design of exper-
iment (DoE). It aims at producing a set of samples that represent as best as possible the entire
design space, a property that is required to obtain a well balanced dataset.

The main methods to achieve such sampling are [29] illustrated in the following.

1. The "naïve" sampling: take samples at regular intervals on the design space. Note that one
may not choose the same intervals for different dimensions, and we have to set the strategy
around the boundaries. It is depicted in Figure 4.1a.

2. The Monte-Carlo sampling: pick samples at random all over the design space. It is depicted
in Figure 4.1b.

3. The Latin-hypercube sampling [30], maximizing a criterion that is either [31]:

(a) centering samples in sampling intervals

(b) maximizing the minimum distance between two samples

(c) maximizing the minimum distance between two samples, but place sample in a random
location in its interval

(d) minimizing the maximum correlation between two samples

These are depicted in Figures 4.2a, 4.2b, 4.2c and 4.2d.

From these 2-dimensional illustration it is clear that the latin hypercube sampling performs
best, the naive sampling featuring too much regularities that is not wanted, as they may introduce
some bias, and Monte-Carlo sampling tends to make more clusters of samples, that would be
inefficient (indeed, making two times the same simulation is useless).

The number of points is set quite arbitrarily to 2000. This leads to an average of 6
√
2000 =

3.550 points per dimension, if the points had been placed on a 6-dimensional grid in the input
space.

4.5 Generation of the dataset

With the input samples now obtained, the next step is now to compute the simulations on
each of these points.

But this task is not trivial since the data that corresponds to these exact configuration is
not available. It is thus needed to craft some new simulation settings given a reference, that is the
year 2019.
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(a) Naïve strategy (b) Monte-Carlo strategy

Figure 4.1: Basic sampling strategies

4.5.1 Adjusting functions

To address this, Dispa-SET provides utility functions that adjust the installed capacities
within the power generation fleet.

– adjust_flexibility modifies installed capacities to reach the desired Shareflex.

To do so, it first computes the target capacity, by multiplying the total capacity by the desired
Shareflex. It then add or subtracts the missing or exceeding flexible unit power capacity to
each zone, weighting by their total capacity. Equation 4.11 gives an approximation of the
update, but the full algorithm is presented in Algorithm 1.

PowerCapz,new = PowerCapz,old +
PowerCapz,old∑
x PowerCapx,old

(target− actual) (4.11)

Depending on the sign of the flexibility difference δ, the remainder variable is set and the
algorithm loops over each zones, computes a ratio corresponding approximately to how much
the considered zone has to contribute to the change. Then the amount of flexible generation
capacity is added or removed accordingly.

– adjust_capacity applies a linear scaling to the power output of some given set of units, in
particular, it will be called multiples times to adjust the storage, PV and wind capacities.

Scaling factors applied to match desired values are summarized in Table 4.4.

Units Scaling factor
Storageunits Sharestorage
Windunits

CapacityRatio·Sharewind

CFwton

PVunits
CapacityRatio·SharePV

CFPV

Table 4.4: Scaling factors applied to different units

– adjust_rntc applies a linear scaling to each zonal NTC time series.
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(a) LHS with center criterion (b) LHS with max min distance criterion

(c) LHS with max min distance and center criterion (d) LHS with correlation criterion

Figure 4.2: Latin hypercube sampling strategies with every criterion

4.5.2 Extracted outputs

Each simulation generates multiple outputs beyond curtailment and lost load values, some
other outputs variables are extracted from the simulations, although not immediately exploited.

Of course, these may prove to be useful for future research.

All the outputs extracted from the simulations are displayed in Table 4.5.

Distinction should be made between the Shedding and the LostLoad. The former is a
consequence of voluntary action, following set rules between consumers and producers. The latter
is a consequence of additional variables added to Dispa-SET to reduce the infeasibility issues,
assigning a high cost to the capacity the system is not able to generate due to maximum capacity
and ramping constraint being reached. The Energy Not Served (ENS), is defined as the sum of
Shedding and LostLoad, and thus accounts for the actual difference between the demand and the
production predicted by Dispa-SET.
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Algorithm 1 Adjust_flexibility algorithm
1: if δ > 0 then:
2: remain← δ
3: for z ∈ zones do
4: weight← totalz

current_total_cap− cum_sumz+totalz

5: added_cap← min(weight · remain, totalz − flexz)
6: new_flex_capz ← flexz + added_cap
7: new_slow_capz ← slowz − added_cap
8: end for
9: else if δ < 0 then:

10: remain← −δ
11: for z ∈ zones do
12: weight← totalz

current_total_cap−cum_sumz+totalz

13: removed_cap← min(weight · remain, flexz)
14: new_flex_capz ← flexz − removed_cap
15: new_slow_capz ← slowz + removed_cap
16: end for
17: else
18: new_flex_capz ← flexz

19: new_slow_capz ← slowz

20: end if

4.5.3 Dataset creation

With the help of the adjusting functions, creating a whole dataset now comes down to
generate samples from LHS as previously discussed, adjusting the reference simulation setting to
each sample, run the simulation and extract the desired features from the outputs.

As this whole process is be completely automated, it is pretty easy to obtain a second
dataset, based on a different LHS. In particular, a smaller dataset is interesting for the validation
and testing stages of the surrogate model, as will be elaborated in subsection 5.3.1.

4.6 Implementation

Running all of these simulation is not feasible on a basic hardware. A single MILP simula-
tion typically takes around two hours to complete on the cluster, as the latin hypercube sampling
targeted 2000 simulations, yielding to 4000 hours or 166.6 days if the simulation are run sequen-
tially. Moreover, the testing phase also requires a significant amount of runs. This arises the need
for the cluster use, and thus of submitting these as jobs on the cluster.

As the NIC5 cluster, provided by CÉCI, is obviously shared, one needs to manage the
submitted jobs appropriately. In our case, we simply have the same program to be run multiple
of times, that are jobs independent of each other, running the linear programming software used
by Dispa-SET, GAMS (General Algrbraic Modeling Language) [20].

4.6.1 Steps

For a complete experiment to be completed, these steps have to be followed:
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Parameter Unit Parameter Unit
Cost €/MWh Shedding TWh
Congestion h LostLoad TWh
PeakLoad MW CF gas [·]
MaxCurtailment MW CF nuc (nuclear) [·]
MaxLoadShedding MW CF wat (water) [·]
Demand TWh CF win (wind) [·]
NetImports TWh CF sun [·]
Curtailment TWh

Table 4.5: Values extracted from each simulations

1. Generating the reference simulation (cfr Section 2.4), to extract the data that will be ma-
nipulated by the adjusting function

2. For each sample, do:

(a) Call the adjusting function and create the simulation directory, with all the simulation
input data

(b) Call GAMS in this simulation directory

(c) Fetch GAMS outputs in this directory

4.6.2 Scripts and code

All the files for this section lie in the data-generation folder.

The steps presented above almost map to a script or function written. The flow of the
dataset generation is as described here.

1. The SLURM (Simple Linux Utility for Resource Management) script main.sh is submitted
on the cluster. It fetches relevant data in the config.py script.

2. It submits the generation of the reference simulation as another job on the cluster and waits
for its completion.

3. It calls sampling.py with argument –sample-only, that will create the samples.csv file
containing all the samples.

4. It prepares the file dataset.csv by writing its header line.

5. It finally runs the bash script launch-job-series.sh, with serie index 0, that will submit
some fixed number of sample jobs, as an array, through the SLURM script launch-simulation-jobs.sh.

6. Each sample job runs:

(a) The simulation directory is prepared by calling the sampling.py script with argu-
ment –prepare-one and the index of this simulation (it reads the corresponding line in
samples.csv).

(b) GAMS is called on the simulation directory.

(c) The simulation results are read with read_results.py –single, then outputted to
dataset.csv.

(d) The simulation directory is cleaned.
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This list is not exhaustive, see the Annex for a complete version.

4.6.3 Technical aspects

During the creation of this set of scripts, some technical details require specific attention:

– The GAMS solver offers options to define the number of threads to do the computations,
that number of threads cannot exceed the number of allocated CPUs by SLURM for that
job, as it would disturb the node on which it is running, including affecting unrelated jobs.

The thread setting in the UCM_h.gms file generated by Dispa-SET is set to 16 by default, this
line may be removed if one wants to set it manually through the command line, as the file
input takes precedence over the command-line value set.

– The total amount of each prepared simulation directory is too large to fit on the allocated
disk memory on the $HOME partition on the cluster. Moreover, for efficiency it is better to
use the $GLOBALSCRATCH file system.

– The Dispa-SET ajdusting function do not write adjusted data to a directory if this directory
already exists before the function is called. That is, the directory containing the simulation
files should not be created beforehand.

– Due to SLURM limiting the maximum number of jobs a user can have in the submit queue,
queuing all the simulation jobs at once is not possible. Moreover, the number of simulation
appeared to cause issues with the SLURM maximum array size.

This is the reason why launch-job-series.sh exists. The script takes as an argument the
serie index i, then starts a [0 : 399] array of launch-simulation-jobs.sh jobs, with i as an
argument. As the latter script has also access to its array index via SLURM environment
variables, it can compute the intended simulation index, that covers the [400i : 400i + 399]
range. The next series is queued with the job array as a dependency, so that it is not launched
before the current series terminated.

4.6.4 Unsuccessful simulations

During the execution of the simulation, it appeared that for some of them GAMS was
completely stuck at some point, hence wasting resources and preventing the other simulations to
start by keeping available CPUs busy.

A timeout on the GAMS simulation has therefore been set, after looking at the typical
duration of a "regular" simulation. The simulation that were timed out had thus the corresponding
error message in their output, that can be checked when reading the results.

Hence, we can label the samples whose simulation failed with an additional error field in
the dataset, and compare them to the other. Typically, around 10% of the simulation fail, in this
case 218 over 2400 total.

Loading this dataset and separating the successful simulations from failing ones, and ex-
tracting meaningful metrics from both, it appeared that the failing simulations featured an average
share flexibility significantly higher than the other, while the other input parameters seemed around
the same. The share of flexible generation is taken in the [0.01, 0.99] interval, and the average of
failing simulations is around 0.49 higher than the average of the successful ones.
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To further validate our observation, the quantiles of the distribution of the share of flexible
generation in the stalling settings are explored, and it appears that they lie really high, the first
one (25%) is around 0.9, the median lies near 0.95 and the third one (75%) is around 0.96.

More decisively, the maximum value of a successful simulation is 0.9011, while the minimum
value of a stalling simulation is 0.9015, that is, slightly more than the max of valid simulations.
Thus, there exists a net boundary between the simulation that run successfully and the other.

The distribution of ShareF lex values in both part of the dataset is depicted as boxplots
in Figure 4.3

Figure 4.3: Distributions of the ShareF lex parameter value in the unsuccessful simulations against
successful simulation. The distributions of the other parameters are similar.

As a consequence, the validity region for the surrogate model has to be updated, as there
is no way of producing an estimate of the outputs on a region where no sample was simulated
correctly.

This issue is interpreted as the simulations with too high flexibility are harder to solve
than the other, as the system has a lot of options to choose from when confronted to a change in
demand, yeilding an exponential growth of the realistic evolutions of the system.

It is noteworthy that in about 30% of the simulation, a division by zero error was also
stated. Since this happens in the preprocessing, it has no influence on the results and this error is
discarded.

4.6.5 Dataset fields

For completeness, all the fields in the created dataset in dataset.csv are shown in Table
4.6.

Only two of these, LoadShedding and Curtailment are actually used to train the surrogate
model, and six as the model features. As the marginal cost of including all the other outputs is
null, they are saved as well in case someone would find a use for it in the future.
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Parameter Unit Parameter Unit
Cost €/MWh Curtailment %
Congestion h MaxLoadSheddingShare1 %
PeakLoad MW CF gas [·]
MaxCurtailment MW CF nuc [·]
MaxLoadShedding MW CF wat [·]
Demand TWh CF win [·]
NetImports TWh CF sun [·]
Curtailment % Capacity ratio [·]
Shedding % Share flex [·]
LostLoad TWh Share sto [·]
MaxRESGeneration MW Share Wind [·]
TotalGeneration TWh Share PV [·]
ShareRESGeneration % rNTC [·]
LoadShedding [·]

Table 4.6: Dataset fields. "%" as a unit means a unitless ratio multiplied by 100. Elements
displayed in green correspond to the six features, and elements in blue the two target outputs.

1The MaxLoadSheddingShare is taken as a fraction of the demand at the time.
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5 The surrogate model

5.1 Overview

This section presents the training process that have led to the description and definition
of the target surrogate model, given a ready to use dataset, and the desired characteristics.

This is a straightforward example of regression problems, aiming to predict some output
features from the input features, given a number of training example in a dataset. This is a typical
machine learning problem, and is be addressed accordingly.

Initially, the performance of different methods are measured and the best one is selected.
Then, a model is trained and evaluated, forming the core surrogate model.

5.2 Machine learning methods

This subsection assesses some of the most common machine learning algorithms for regres-
sion problems [32].

5.2.1 K nearest neighbors

In this context, the K-nearest neighbors (k-NN) methods is among one of the easiest to
implement, using tools like the scikit-learn [33] module in python. Indeed, these simply require
a single parameter value k and output the average value of the output features of the k nearest
neighbors, computing a distance on the input features.

This features the drawback of not being able to learn quick variations in the outputs, as
the averaging over the nearest sample points will filter out high frequency variations.

Results obtained with k-NN for various values of k are shown in Table 5.1.

k Validation error
4 0.05082837
5 0.051765025
6 0.047083396
7 0.046183977
8 0.049501333
9 0.049218103
10 0.04949624
11 0.05036374
12 0.050881956
13 0.05243453
14 0.052941263
15 0.05362743
16 0.05440363

Table 5.1: Results obtained with k-NN

The optimal performance is achieved when k is set to 7. Decreasing values of k lead to an
increase in error due to overfitting, whereas increasing values of k result in higher errors attributed
to underfitting.
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5.2.2 Decision trees

Decision trees, along with extremely randomized trees [34] are easy to implement2 machine
learning methods as well, as they also involve a constrained and fixed number design parameters.

These methods, however, exhibit the limitation of producing piecewise constant output,
and as stated above, it is required to be able to represent significantly fast variations in the output.
Although it is possible to mimic using many successive steps, being peicewise constant will now
introduce non linearities in the outputs, that is, unwanted steps in the prediction.

Results obtained with decision trees are shown in Table 5.2.

Number of trees Validation error
25 0.02385
35 0.02347
45 0.02275
55 0.02342
65 0.02361
75 0.02272
85 0.02360
95 0.02255
105 0.02294
115 0.02379
125 0.02263
135 0.02232
145 0.02317

Table 5.2: Results obtained with random forests

The highest accuracy is achieved with 135 trees. However in this case, the results are not
as straightforward as for the k-NN technique, that showed a monotonic decrease, the minimum
then an increase. As randomness is involved when choosing the splits when building the trees, the
results are subject to a slight variance, inducing less obvious results. However, after 145 trees, the
error starts steadily increasing.

These performance are higher than those of the nearest neighbors method, but not as
strong as the following techniques.

5.2.3 XGBoost

XGBoost is currently one of the most popular machine learning technique [35]. It actually
is an efficient implementation of a machine learning method, tree boosting.

Boosting aims to construct a string predictive model from so-called weak learners, which
in this case, are trees. Each learner is trained on the error of the output of the previous model, so
that the previous output plus the newly trained learner output is a better prediction of the target
output. Moreover, the samples are weighted in favor of the ones that were badly predicted by the
previous model, in order to make sure we correct past mistakes.

In tree boosting, the main hyper-parameters are:
2Again, using scikit-learn
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– the number n of weak learners stacked

– the learning rate, a constant factor applied to the target difference (target output minus
previous model output)

– the maximum depth of the weak learners

Resulting performance for some values of the hyper-parameters are reported in Table 5.3.

XGBoost’s results are really good, achieving at best around 0.006 mean squared error on
the validation set. This is not surprising given that this technique is quite popular in the literature.

It is important to note that the method was tested over a previous version of the dataset
(the one produced in [36]) and not on the one generated in this thesis because the results were not
yet available. The performance metrics should however not very dramatically between the former
and the latter version of the dataset.

The best performance is observed with a maximum depth of 4, a learning rate set to
0.03 and 2000 trees. Further fine-tuning may slightly improve this value, in particular reduce the
learning rate and increase the number of trees even more, but further investigation showed that
the performance stagnate starting from 1800.

5.2.4 Kernel-based methods

One might consider applying a kernel method with one of the other method mentioned
above. While this may indeed improve the quality of the resulting model, and also solve the
issue that was representing fast changes in the output, nevertheless, finding a suitable kernel is a
difficult.

Since there is no ready-to-use kernel for this specific case, and that finding such a kernel
would be a hard task, kernel methods are discarded.

5.2.5 Artificial neural network

Artificial neural networks (ANN) are used in this work to build our surrogate model. These
types of methods offer a large flexibility, due to their entirely customizable architecture, as well as
a large learning capacity. This makes them able to modelize with good accuracy some complex,
non-linear functions.

In most recent applications of these ANNs, a lot of different strategies are used to process
the data efficiently. For example, convolutional layers convey a lot of meaning in the context of
image processing, or transformers are well suited to process sequences [37].

In this case, the inputs boils down to the 6 variables values, listed in Table 4.3. There
are no patterns in this data, because even if their actual values were correlated in some way,
the simulations dataset we have as an input at this stages has its input features drawn from
a latin hypercube sampling, meaning they have a fixed, very low correlation. This correlation
originates from the fact that the sampling aims at optimizing the design space coverage, not from
a meaningful, exploitable source.

Thus, a simple multi-layer perceptron (MLP) architecture is chosen, and the next require-
ment is to describe the characteristics of that MLP, that are:

– The number of layers
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d lr n err d lr n err d lr n err
3 0.03 10 0.5248 4 0.1 10 0.1564 5 0.2 10 0.03299
3 0.03 20 0.3367 4 0.1 20 0.04522 5 0.2 20 0.01088
3 0.03 50 0.1100 4 0.1 50 0.01059 5 0.2 50 0.007287
3 0.03 100 0.033627 4 0.1 100 0.007168 5 0.2 100 0.006907
3 0.03 200 0.01294 4 0.1 200 0.006018 5 0.2 200 0.006681
3 0.03 500 0.007804 4 0.1 500 0.005489 5 0.2 500 0.006624
3 0.03 1000 0.006434 4 0.1 1000 0.005325 5 0.2 1000 0.006623
3 0.03 2000 0.005553 4 0.1 2000 0.005294 5 0.2 2000 0.006623
3 0.1 10 0.1886 4 0.2 10 0.04046 6 0.03 10 0.4870
3 0.1 20 0.06469 4 0.2 20 0.01313 6 0.03 20 0.2861
3 0.1 50 0.01586 4 0.2 50 0.007588 6 0.03 50 0.06760
3 0.1 100 0.009350 4 0.2 100 0.006579 6 0.03 100 0.01544
3 0.1 200 0.007291 4 0.2 200 0.006219 6 0.03 200 0.007516
3 0.1 500 0.005978 4 0.2 500 0.006029 6 0.03 500 0.006548
3 0.1 1000 0.005558 4 0.2 1000 0.006007 6 0.03 1000 0.006381
3 0.1 2000 0.005375 4 0.2 2000 0.006007 6 0.03 2000 0.006343
3 0.2 10 0.059425 5 0.03 10 0.4916 6 0.1 10 0.1368
3 0.2 20 0.02037 5 0.03 20 0.2894 6 0.1 20 0.03335
3 0.2 50 0.009474 5 0.03 50 0.07119 6 0.1 50 0.008382
3 0.2 100 0.007554 5 0.03 100 0.01647 6 0.1 100 0.006850
3 0.2 200 0.006287 5 0.03 200 0.006834 6 0.1 200 0.006594
3 0.2 500 0.005976 5 0.03 500 0.005326 6 0.1 500 0.006504
3 0.2 1000 0.005935 5 0.03 1000 0.005069 6 0.1 1000 0.006491
3 0.2 2000 0.005894 5 0.03 2000 0.004952 6 0.1 2000 0.006491
4 0.03 10 0.5013 5 0.1 10 0.1425 6 0.2 10 0.0302
4 0.03 20 0.3042 5 0.1 20 0.03577 6 0.2 20 0.01046
4 0.03 50 0.08414 5 0.1 50 0.008340 6 0.2 50 0.007929
4 0.03 100 0.02168 5 0.1 100 0.006145 6 0.2 100 0.007743
4 0.03 200 0.008364 5 0.1 200 0.005640 6 0.2 200 0.007651
4 0.03 500 0.005841 5 0.1 500 0.005433 6 0.2 500 0.007622
4 0.03 1000 0.005203 5 0.1 1000 0.005371 6 0.2 1000 0.007622
4 0.03 2000 0.004922 5 0.1 2000 0.005371 6 0.2 2000 0.007622

Table 5.3: Results for some values of the XGBoost parameters. The learning rate is labelled "lr",
the maximum depth "d" and the number of estimators n, while the validation error is denoted by
"err".

– The numbers of neurons in each layers

– The activation function at each layer

Some experiments are run to provide some baselines for getting a first approximation of
what performs well. These results are presented in Table 5.4.

These result outperform every other method. The fact that different but close architecture
show similar performance brings some confidence about the reproducibility: the random initial-
ization of the weights in the network could have led to an exceptionally good model. Moreover,

38



Architecture Validation error
(180, ’relu’, 0.4), (100, ’tanh’, 0.4) 0.00484
(180, ’relu’, 0.4), (100, ’tanh’, 0.4) 0.00499
(180, ’relu’, 0.4), (100, ’tanh’, 0.4) 0.00480
(70, ’relu’, 0.5), (70, ’relu’, 0.5) 0.04538
(100, ’relu’, 0.4), (100, ’relu’, 0.4) 0.02506
(100, ’relu’, 0.5), (100, ’relu’, 0.5) 0.04111
(100, ’relu’, 0.6), (100, ’relu’, 0.6) 0.04481
(100, ’relu’, 0.7), (100, ’relu’, 0.7) 0.10410
(80, ’relu’, 0.7), (80, ’relu’, 0.7) 0.06514
(150, ’relu’, 0.6), (100, ’relu’, 0.6) 0.02693
(250, ’relu’, 0.4), (125, ’relu’, 0.4) 0.01295
(200, ’relu’, 0.5), (125, ’relu’, 0.5) 0.01734
(200, ’relu’, 0.5), (125, ’tanh’, 0.5) 0.00532
(200, ’relu’, 0.4), (125, ’tanh’, 0.4) 0.00555
(200, ’relu’, 0.4), (100, ’tanh’, 0.4) 0.00581
(150, ’relu’, 0.45), (100, ’tanh’, 0.45) 0.00585
(150, ’relu’, 0.5), (100, ’tanh’, 0.5) 0.00603
(150, ’relu’, 0.4), (80, ’tanh’, 0.4) 0.00597
(220, ’relu’, 0.5), (125, ’relu’, 0.5) 0.01086
(250, ’relu’, 0.5), (125, ’relu’, 0.5) 0.02421
(250, ’tanh’, 0.4), (125, ’tanh’, 0.4) 0.04193
(200, ’relu’, 0.5), (150, ’relu’, 0.5), (100, ’relu’, 0.4) 0.07372
(120, ’relu’, 0.4), (120, ’relu’, 0.4), (120, ’relu’, 0.4) (120, ’relu’, 0.4),
(80, ’relu’, 0.4)

0.12163

(50, ’relu’, 0.3), (50, ’relu’, 0.3), (50, ’relu’, 0.3), (50, ’relu’, 0.3) 0.08267
(50, ’relu’, 0.4), (50, ’relu’, 0.4), (50, ’relu’, 0.4), (50, ’relu’, 0.4) 0.14292
(50, ’relu’, 0.2), (50, ’relu’, 0.2), (50, ’relu’, 0.2) 0.02622
(50, ’relu’, 0.2), (50, ’relu’, 0.2), (50, ’relu’, 0.2), (50, ’relu’, 0.2) 0.05221
(50, ’relu’, 0.3), (50, ’relu’, 0.3), (50, ’relu’, 0.3) 0.05723
(50, ’relu’, 0.4), (50, ’relu’, 0.4), (50, ’relu’, 0.4) 0.08706
(150, ’relu’, 0.5), (150, ’relu’, 0.5), (150, ’relu’, 0.5) 0.07769
(150, ’relu’, 0.5), (100, ’relu’, 0.5), (100, ’relu’, 0.5) 0.08809
(150, ’relu’, 0.5), (150, ’relu’, 0.5), (100, ’relu’, 0.5) 0.08098
(200, ’relu’, 0.5), (200, ’relu’, 0.5), (150, ’relu’, 0.5) 0.07682
(190, ’relu’, 0.5), (190, ’relu’, 0.5), (140, ’relu’, 0.5) 0.06489
(200, ’relu’, 0.5), (200, ’relu’, 0.5), (150, ’relu’, 0.5), (30, ’relu’, 0.3) 0.08749
(200, ’relu’, 0.5), (200, ’relu’, 0.5), (150, ’relu’, 0.5), (50, ’relu’, 0.3) 0.09094
(200, ’relu’, 0.5), (200, ’relu’, 0.5), (200, ’relu’, 0.5) 0.07010
(150, ’relu’, 0.5), (150, ’relu’, 0.5), (150, ’relu’, 0.5), (150, ’relu’, 0.5) 0.13490

Table 5.4: Results for some architectures of neural networks. Architectures are formatted as a list
of layers, which are written as (n, a, p) tuples, where n is the number of neurons, p the dropout
value and a the activation function

several runs of the same architecture yield similar ouputs, validating this intuition.
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It is worth mentioning that some larger network architecture, e.g. (300,′ relu′, 0), (300,′ relu′, 0),
(200,′ relu′, 0) achieved really good results, even slightly better than the best one. However these
were not implementing dropout, so that they are high changes of being subject to overfitting. If
dropout is added, the observed performance decrease, confirming the overfitting hypothesis.

This is why the relative smallness of the network is a strength, as it will also act against
overfitting, as having fewer parameters leaves less room for learning noise.

5.2.6 Selection of the machine learning technique and parametrization

In the end, neural networks are opted for. They benefit from the best performance in terms
of mean squared error on the validation test, but neural networks MLPs also present the following
advantages:

– They are relatively lightweight, in comparison to the K-nearest neighbors methods, that
needs to store the entire dataset, and the randomized trees, that need to store its trees
structures. Neural networks only needs their weights that are fairly small with this few input
variables.

– Grasp non-linear behaviour with accuracy

Preliminary experiments basically consist in the test undertaken to assess the performance
of different architectures (reported in Table 5.4). While the firsts steps of testing used another
dataset that available at the time, ultimately the generated dataset was the only one in use for
this assessments.

The architecture is selected as the optimal one among baselines, and is provided in Table
5.5. While hyper-parameter tuning may have produced another result, the latter could potentially
suffer from overfitting, as described above.

Layer index Layer type Weights count
1 Fully connected linear layer, 6 inputs to 180 outputs 6× 180 = 1080
2 ReLU activation function 0
3 Dropout layer, with p = 0.4 0
4 Fully connected linear layer, 180 inputs to 100 inputs 180× 100 = 18000
5 tanh activation function 0
6 Dropout layer, with p = 0.4 0
7 Fully connected linear layer, 100 inputs to 2 outputs 100× 2

Table 5.5: Description of the layers of in the selected architecture for the model

Consequently, the final parameterization of the model involves the setting of all its weights,
that lie in layers 1, 4 and 7. The total count of parameters adds up: 1080 + 18000 + 200 = 19280.

5.3 Machine learning aspects

5.3.1 Validation and testing

In machine learning, validation and testing are crucial steps in order to ensure the perfor-
mance of a model. To implement these, one must separate the data into three sets.
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– The validation set is used for hyperparameters tuning. Given its influence on the model, it
can introduce bias into the model.

– The test set is used to evaluate the model’s performance, on unseen data.

– The training set is used to train the model.

Typical machine learning applications dispose of a single, fixed dataset, that has to be
split to constitute three desired sets. However, in this context, we can inexpensively run sets of
simulations to obtain more data points, from another LHS. It is interesting to consider generating
more than a single dataset from a unique LHS.

For the training set, joining different sets drawn with LHS is not expected to improve
performance. As the LHS are independent of each other, there is a great chance to draw samples
that are really close to each other, or worse, equal, what the LHS aims to avoid.

On the other hand, using a set drawn from a different LHS (than the one used for the
training set) for testing and validation is interesting. This will provide data that spans the whole
input space, but not yet exactly the same as the data used for training. Thanks to the input space
coverage, the evaluation made at testing will be more extensive, and thanks to being independent
of the training data, this evaluation should remain unbiased.

Conversely, the validation set being sampled from a LHS now providing a guarantee that
it spans the whole space could make the work of the learning agent easier, giving it access to each
of the LHS sample from the training set.

However promising, this approach will not be done in this work, to ensure that the unbiased
property of the trained model persists, and that the term "validation error" keeps the exact same
meaning as in the literature.

5.3.2 Overfitting

An inherent challenge to machine learning methods is the overfitting, or its opposite,
underfitting. These terms refer to the cases where the training is respectively too specific to the
training data, and not enough specific.

Overfitting is a result of excessive learning, leading to learning some noise or some par-
ticularities of the dataset, while underfitting means that there is not enough learning, so that the
model is not able to represent all the cases, even the one that are well represented in the available
data.

The main tool used to prevent it in a neural network is the dropout. During the training
phases, each neuron on a layer will have some probability p, typically between 0.3 and 0.5, of being
set to 0, independently of its value. This methods ensures that the network will not be excessively
relying on some neurons in its output. During testing oviously, the dropout is removed and all
neurons are functional.

5.3.3 Underfitting

On the other hand, underfitting means there is not enough learning happening. For ex-
ample, a neural network with only 2 neurons corresponding to the ouputs could not learn any
non-linear functions, with some tweaks due to the eventual activation function.
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In this setting, although underfitting is still a shortfall, it is not regarded as bad as the
overfitting. The latter introduces errors that come from noise that is completely random, inevitably
introducing imprecisions. But we keep in mind that the target to be approximated, that are outputs
from the Dispa-SET model, are themselves an approximation, though accurate, of the reality. So
if these are subject to some bias or imperfections, the best model would learn them as well.

Because an underfitting model of the dataset created using Dispa-SET would still be a de-
cent estimate of the reality, which is the primary objective in this context, underfitting is preferable
to overfitting.

These will have to be assessed during training to ensure the validity of the model.

5.3.4 Bias

An other source of imprecision in machine learning is the bias. This relates to the fact that
there exist some noise in the data, that cannot be filtered out, or imprecisions in the assumptions,
that inevitably conducts to noise in the output.

However, in this setting, there is very little one could implement to reduce its significance.
First, the data points have been drawn from a latin-hypercube sampling strategy, that precisely
aims at spreading the samples equitably all over the input space. Then, the output features were
computed from a Dispa-SET run on this sample.

Hence, the primary source of bias that can be addressed pertains to model training inac-
curacies resulting from suboptimal model design.

The other plausible source of bias is the simulation made in Dispa-SET. Of course, Dispa-
SET is also itself a model, thus relying on some assumptions and subject to its own modelling
of the reality. And as such, it may introduce a bias in its computations, that will necessarily be
learned by the surrogate model. But there is no way to assess this bias, and obviouly Dispa-SET
itself focuses on making that bias as negligible as possible.

This consideration is of interest, as Dispa-SET has multiple formulations, namely LP and
MILP, that then have different bias with respect to reality.

5.4 Training

5.4.1 Implementation

All the files for this section lie in the nn folder.

The implementation of the training process comprises the following files:

– config.py, that holds all the high-level specifications of the training, such as the names of
the outputs, the train-test-validation set ratios, the number of epochs etc.

– model.py, that contains the function building the model, thus the definition of the neural
network’s architecture.

– baselines.py, that contains code to train models with pre-defined architectures, in order
to quickly and easyly have an overview of the order of magnitude involved.

– train.py, that contains the code for the hyperparameter tuning and model training.

– view.py, that contains the utilities to visualize the results.
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– tests.py, that contains the testing of the other machine learning methods (k-NN, trees,
XGBoost)

– data, logs, models directories, that contain the datasets, the runs’ logs, and the trained
models respectively.

5.4.2 Results

The selected architecture is a two-layer network:

1. 180 neurons, ReLU activation, 0.4 chance of dropout

2. 100 neurons, hyperbolic tangent activation, 0.4 chance of dropout

The mean squared error over the training epochs is shown in Figure 5.1.

Figure 5.1: Mean squared error on the validation set

The occurrence of overfitting appears unlikely, as evidenced by the trend observed in Figure
5.1, wherein the validation error exhibits no notable increase beyond a certain number of training
epochs. This pattern contrasts with the ongoing reduction in training error.

5.4.3 Observations

To further confirm the absence of overfitting in this result, the view.py file is used to
browse across the multi-dimensional function, with surface plots.

These plots draw one of the outputs against two of the inputs, keeping the four other
inputs constant. These constant values are summarized in Table 5.6. Attention should be paid to
the scale of the plots, as these do not start at 0.

Several surfaces are depicted in Figure 5.3. The following observation are made from the
latter illustrations.
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Figure 5.2: An (unrelated) example of clear overfitting, the validation loss increasing after some
time

Input name Value
Capacity ratio 1.15
Share flexibility 0.5
Share storage 0.25
Share wind 0.25
Share PV 0.25

rNTC 0.35

Table 5.6: Default values for constant inputs. These are the middle of their base interval, see Table
4.3

– Figure 5.3a follows the natural intuition, as higher shares of storage units and flexible units
both contribute to the reduction of the curtailment.

– Figure 5.3b points out the crucial impact of the share of flexible units on the load shedding
for small values. Naturally, when peaks in demand appear, if no unit is susceptible to be
started, there is no other way than to cut the exceeding demand out.

– Figure 5.3c also confirms the intuition, as it outlines the increase in curtailment with an
increase of either share solar or share PV.

– Figure 5.3d is the most intriguing one. First, it is noticed that the scale is the lower here.
The most surprising part is that it features local minima, and that when the share PV is
close to 0, the load shedding as a function of the share of wind energy is U-shaped. This
phenomenon is hard to explain theoretically, the most likely cause remains a weak learning
of the model.

Moreover, the shape of the surface changes rapidly when changing the other constant values,
therefore taking other values than disclosed in Table 5.6, which validates the hypothesis of a
weak learning.
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In comparison, the other surfaces do not move that significantly with similar change, coming
down to a slight upwards or downwards shift, depending on the direction of the change,
occasionnaly with a light amplitude change.

– Figure 5.3e follows the intuition as well, but also highlights the stronger impact of the
capacity ratio on the curtailment compared to the rNTC. This is not surprising, as the share
of electricity import is not that huge. However, this may change dramatically depending on
the country considered.

– Figure 5.3f is interesting, as it shows that the load shedding grows when both the rNTC and
capacity ratio lower. As low rNTC means little importation possible, and low capacity ratio
not much margin to fulfill the demand, this actually makes sense.

45



(a) Curtailment against share flexibility and share
storage

(b) Load shedding against share flexibility and share
storage

(c) Curtailment against share wind and share PV (d) Load shedding against share wind and share PV

(e) Curtailment against capacity ratio and rNTC (f) Load shedding against capacity ratio and rNTC

Figure 5.3: Different views of the multi-dimensional function, with four fixed inputs and two
varying inputs.
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6 Integration

6.1 Overview

This section elucidates the procedure for incorporating the trained surrogate model into
the MEDEAS model.

The MEDEAS model is built with the Vensim software, and is available to the public as a
Vensim model file. However, the python library pysd [38], focused on system dynamics simulations,
is able to parse such files and run the simulations. The rationale behind not capitalizing on this
opportunity is expounded upon in the initial subsection.

The task of integrating the surrogate model into MEDEAS is divided into two smaller
steps:

1. Vensim integration, that is to make the surrogate model, available as a Tensorflow model,
callable from within a Vensim model

2. Variable linking, Link the input and output features of the surrogate model to the actual
variables used in the MEDEAS model

6.2 Vensim integration

6.2.1 The Vensim software

Vensim is a system dynamics simulation software, developped by Ventana Systems, Inc.
It primarily solves the system of differential equation represented by the user-defined model, and
is mainly used, according to its description, "for developing, analyzing, and packaging dynamic
feedback models" [39].

Its most common application areas include [40]:

– Transportation and energy,

– Project management,

– Environment.

Vensim also comes in different distribution, such as Vensim PLE that is the free, personal
learning edition. In this work, Vensim DSS is used, with an academic license.

6.2.2 Vensim external functions

This specific feature of the Vensim software is evidently of great interest for this work. It
enables the user to provide and use custom functions in Vensim models and simulations.

To do so, the user needs to provide a dynamically linked library (DLL), packaged as a dll
file, then provide its path in Vensim. These files are Windows specific (as Linux uses so files and
macOS dylib), hence they have to be handled as such.

Dynamically linked libraries are pieces of compiled code that can be loaded at runtime by
another program. User-defined functions necessarily need to be loaded at runtime, as the software
cannot know them in advance. These are typically compiled from the C or C++ programming
language. In this work, C++ has been chosen, as the library to load and call Tensorflow models
that is used is written in that language.
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To integrate user-defined functions in its simulation environment, the library is expected to
provide some functions, that follow an interface that the Vensim software knows and can employ.
This interface comprises of a set of functions that is described in Table 6.1.

Function name Description

version_info
Provide information about the Vensim version this library has been
built for

set_gv
Utility to set the global variable that depend on the Vensim simu-
lation environment

user_definition
Provide a way to get all the necessary information about each user-
defined function, mostly their names, number of arguments and a
identifier code

simulation_setup
This function is called by Vensim on simulation startup, allowing
the library to do some preparative work if needed, such as allocating
memory

simulation_shutdown Same as simulation_setup, but on simulation shutdown

vensim_external
This function is expected to, given an array of input arguments,
their number and a function code, call the function associated to
that code and write its return value into the first input argument.

Table 6.1: Description of the mandatory functions that a Vensim user library has to provide

Luckily, Vensim DSS ships with an example of such a library. As this file is not pub-
licly disclosed, caution should be paid to keeping the library code private—actually, the external
function capability is only available in Vensim DSS.

In the implementation of the library, this file was copied then adapted, as suggested in
Vensim’s documentation.

6.2.3 Calling a Tensorflow model

As a result, it becomes imperative to invoke our model, which is referred to as a Tensorflow
model, utilizing either the C or C++ language."

In order to do so, one basically needs two things:

– the model in question, saved in a directory from the Tensorflow python API.

– the Tensorflow library, which is another DLL, to perform the actual computations from
C/C++.

The complicated part being the linking between the two. In order to do so, the Cppflow
tool is used. It serves as an intermediary layer between C++ and the Tensorflow model. This tool
is not available in C, this is the primary reason why the library is implemented in C++.

The main purpose of Cppflow is precisely to run Tensorflow models from C++, and to
achieve this it provides user-friendly functions for loading models and making predictions using
input data.

For ensuring the correct linkage between the library code and the two employed tools,
namely the Tensorflow DLL and CppFlow, an apt linking strategy is imperative. To facilitate this,
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Makefiles were crafted using the GNU make utility for streamlined compilation3.

On this, one thing is to be remembered: some code may compile and link successfully, but
one also has to link properly the path to the DLL you linked to, that is, not only to the compiler.

6.3 The pysd option

As previously introced, the pysd python library can read and run Vensim model files. Of
course, as the surrogate model is primarily defined in that language, one would deduce that its
integration would be easier that way.

Though not explored in this work, integrating the surrogate model through pysd is ex-
pected to be relatively straightforward. Using the library loading functionality, a python module
representing the simulation can be obtained. This module is then loaded with pysd to run the
simulation. The linking can thus be done by editing the module file directly, and inserting the call
to the model at the appropriate place.

However, this approach was not selected. Although contemplated at a subsequent stage
of the project, subsequent to the integration into Vensim having been implemented, the principal
rationale stems from the convenience afforded by the resultant model. If the model combination
was made available sa python module, it would be much harder for external people to edit the
original MEDEAS model from Vensim, then run the modified version while keeping the surrogate
model integrated. The editor would have to manually re-insert the surrogate model into the python
module, that also have to be recreated.

Keeping the surrogate model available as a Vensim external function is therefore a signifi-
cant benefit for the further improvements of the model, as it enables edits to be made to MEDEAS
independently of the surrogate model.

Another update has to be mentionned here. In facts, J. Paris had trouble making the
MEDEAS model run successfully with the integrated surrogate model had contact with the
MEDEAS developping team, that advised to wait for the release of a update of the MEDEAS
port to python, making use of pysd and expected to be more stable and convenient. The main
issue was that she were to leave before the anticipated release date, such that it was not acheivable.

This newer Python port with pysd might ultimately render direct integration in Python
more portable and convenient. This would offer the same advantage as the Vensim external
function. Still, this function was created and finished before learning the future availability of the
new python port.

6.4 Variable linking

In its underlying workings, the MEDEAS model does not directly employ all the variables
that appear in our surrogate model. This necessitates establishing connections between the two.

Fortunately, many of the desired values bear a close relationship to existing variables within
the MEDEAS energy module, so these links are expected to be as simple as linear rescalings or

3Previously, a program calling a Tensorflow model was created, but this did not worked from the DLL. Then,
a workaround was developed using a worker process (a seperate program) and Windows’ tools for interprocess
communication. Later, it was discovered that the issue with calling Tensorflow stemmed from errors in linker
arguments during library compilation. Once these linker issues were resolved, the need for the worker process
workaround became redundant.
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combinations.

The input variables, that are summarized in Table 4.3, do not map directly to already
existing variables in the MEDEAS model. Thus, some mappings have to be made between the
inputs and outputs of the surrogate model, the Dispa-SET side, and the MEDEAS side. For clarity,
all the variables in Dispa-SET are displayed in blue, while those from MEDEAS are coloured in
red.

This work has been done with the help of Jade Paris, a student making her master’s stage
thesis on this specific topic as well.

6.4.1 Variables available in MEDEAS

The first step in this process is to list relevant variable present in MEDEAS, that are
exploited in the following when drawing connections between the surrogate model and MEDEAS.

These variable are enumerated in Table 6.2.

MEDEAS variable name Description Unit Notation

FE elec generation from so-
lar PV TWh

Total yearly production
from solar photovoltaic
units

TWh
GenerationPV

Total FE Elec demand
TWh

Yearly total electricity de-
mand

TWh
Demandtot

FE Elec generation from off-
shore wind TWh

Total yearly production
from offshore wind turbines

TWh
Generationwind−offshore

FE Elec generation from on-
shore wind TWh

Total yearly production
from onshore wind turbines

TWh
Generationwind−onshore

Total capacity elec storage
TW

Total power output of stor-
age units

TW
Storagetot

Total FE Elec genetaion
TWh EU

Total yearly electricity pro-
duction from all units

TWh
Generationtot

new capacity installed
growth rate RES elec

Yearly growth rate of the
electric network capacity

[·]
Growthcapacity

Table 6.2: Relevant variable in MEDEAS

Regrettably, certain values are entirely absent within MEDEAS, rendering their deduction
directly from the extant model unfeasible. But since these are mandatory to run the model, a
value needs to be provided. Therefore, a constant value will be set.

These have been introduced as parameters into MEDEAS, and their potential impact on
the results should be evaluated. Since these may have an influence on the results, this influence
will have to be assessed. This falls out of the scope for this thesis and is a lead for further works.
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6.4.2 Linkings

The equations that establish links between the input variables from the surrogate model
and MEDEAS variables are elucidated in Table 6.3.

Input variable (from
surrogate model) Linking equation

sharePV sharePV =
GenerationPV

Demandtot

sharewind sharewind =
Generationwind−onshore +Generationwind−offshore

Demandtot
shareflex shareflex = 40%

sharestorage sharestorage =
Storagetot
Demandtot

×365× 24

Capacityratio Capacityratio =
Generationtot

Demandtot
rNTC rNTC = Growthcapacity

Table 6.3: Variable linking equations. The left-hand side are Dispa-SET variables, and right-hand
side MEDEAS variables.

These connections must be implemented within the Vensim model, or incorporated directly
into the computation when utilizing the python version of MEDEAS.
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7 Results analysis

7.1 Overview

This sections endeavors to describe the results observed when running the MEDEAS model
while integrating the created surrogate model, and comparing them with the results previously
obtained with MEDEAS.

This comparative assessment is to be conducted across the different scenarios that are
defined in MEDEAS, that differ by the evolution of the electricity production mix. These scenarios
were detailed in Section 3.6. To streamline the analysis, we narrow the focus on two scenarios:
Busines As Usual (BAU) and Optimal Level Transision (OLT). The Mid-Level Transition scenario
(MLT), falling between the two, does not contribute significantly to gaining valuable insights.

7.2 Electricity production

The purpose of this comparison is to highlight the impact of integrating the Dispa-SET
surrogate model on electricity production values between two scenarios: the default MEDEAS runs
and the modified MEDEAS runs integrating the Dispa-SET model.

To make this comparison, four runs are needed, default MEDEAS and modified MEDEAS,
integrating the Dispa-SET surrogate model, both with BAU and OLT scenarios.

7.2.1 Photovoltaic units

The photovoltaic electricity production predictions from the four simulations are graphi-
cally presented in Figure 7.1.

Figure 7.1: Electricity production predictions from photovoltaic units

We can observe that the modified MEDEAS prognosticates a diminished amount of PV
energy relatively to default MEDEAS, for both scenarios. In OLT, the difference becomes more
pronounced as the production level rises, resembling the effect of linear scaling.
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7.2.2 Onshore wind

Figure 7.2 illustrates the varying predictions of the onshore wind production.

Figure 7.2: Electricity production predictions from onshore wind units

In a similar fashion to the photovoltaic production, the modified MEDEAS outputs what
looks like a scaled version of the default MEDEAS output. Notably, a peak is discerned around the
year 2050 within the Optimal Level Transition (OLT) scenario employing the default MEDEAS
configuration. In contrast, this maximum is slightly shifted to around 2047 when utilizing the
modified MEDEAS.

7.2.3 Offshore wind

Predictions of the offshore wind electricity production in the four scenarios considered are
given in Figure 7.3.

Figure 7.3: Electricity production predictions from offshore wind units

Offshore wind electricity results follow the trend observed previously, that is, the modified

53



model predicting a smaller amount of electricity and overall as well as a larger production decrease
in OLT.

7.2.4 Hydroelectricity

The results for hydroelectricity production across the four scenarios are depicted in Figure
7.4.

Figure 7.4: Electricity production predictions from hydroelectric units

Contrary to the previous results, where the results are grouped by scenario, that is, the
shape of the curve is dictated by the scenario then is slightly changed by the model, these outcomes
are grouped by model. In contrast, the outputs of the modified MEDEAS model for both the BAU
and OLT scenarios are closely aligned with each other but distinctly diverge from the outputs of
the default MEDEAS model.

This phenomenon can be attributed to the fact that hydroelectricity is not favored by
Dispa-SET, therefore these units are avoided when possible, hence leading to a smaller use. This
may be due to the geographical constraints these units are suject to, limiting their growth are
there is no spot to build new units.

These aspects also pertain to pumped hydro-storage units, as such installations could
potentially be erected on rivers. On average, the unit produces the amount of electricty dictated
by the river’s flow, but the total energy produced over a set period is dependent on the specific
dispatch of that unit, used as a tool to manoeuvre the electricity network.

7.2.5 Electricity mix

Figure 7.5 exhibits the different predictions for the electricity mix in 2050.

Similar to the earlier observation revealing reduced VRES production, the proportion of
VRES in the overall electricity mix also diminished in the modified version of the MEDEAS model.

A noteworthy change is the decrease in the share of hydroelectricity in the OLT scenario
compared to the BAU scenario, for both default and modified MEDEAS. This can likely be at-
tributed to the overall higher total production in the OLT scenario, leading to a relatively decreased
share as hydroelectricity generation remains constant.
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(a) BAU using default MEDEAS (b) BAU using modified MEDEAS

(c) OLT using default MEDEAS (d) OLT using modified MEDEAS

Figure 7.5: Electricity mix projection in 2050 for the four considered cases

7.3 Curtailment

As the surrogate model explicitly outputs the curtailment, this variable can then be plotted
over a run of the modified MEDEAS. The results obtained for both scenarios are displayed in Figure
7.6.

We can observe from Figure 7.6 that the OLT scenarios suffers from higher proportions of
curtailment, with an higher growth rate, than in the BAU scenario. Nonetheless, this increased
rate appears to demonstrate stability.

The curtailment indirectly implies additional carbon emissions. Because some excess elec-
tricity produced from VRES is curtailed on prosperous days, this energy cannot be recovered, while
the demand remains the same. This means that some other unit has to produce that amount of
energy that could have been used but has been lost, eventually leading to carbon emissions.

It might be concluded that curtailment is inevitable, nonetheless every option has not been
covered. For instance, the consideration of various categories of storage units, predicated on the
ratio of storage capacity to power output, has been notably absent from the analysis. Given that
storage facilities wield a substantial impact on curtailment dynamics, the pursuit of a more precise
modeling approach for these entities could potentially yield valuable insights.
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Figure 7.6: Curtailment prediction of the modified MEDEAS for BAU and OLT scenarios

7.4 Discussion

The figures presented consistently conclude that integrating the surrogate model, i.e. tak-
ing power systems constraints into account, leads to a lower prediction of electricity production
from VRES. This outcome is somewhat counterintuitive, as the consideration of the increasing
part of curtailment suggest larger amounts of wasted energy.

A plausible interpretation aligning with the observations is that due to the imposition of
more restrictive constraints, the deployment of VRES is more challenging than initially estimated.
Consequently, since greater efforts are required to achieve the same share of renewable energy
production, e.g. because more storage unit need to be built, equivalent efforts result in a diminished
proportion of VRES.
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8 Conclusion
The objective of this thesis was to assimilate refined flexibility constraints, assessed via the

Dispa-SET model, into an Integrated Assessment Model (IAM) known as MEDEAS, employing
a strategy involving the integration of a surrogate model. This approach has been effectively
executed, accompanied by judicious selections of input and output variables.

Then, the resulting modified version of MEDEAS has been run and observations have been
made. In particular, they predicted lower shares of VRES in both optimal effort and business as
usual scenarios.

In the process, a database of simulations has been created on points generated through
latin hypercube sampling. The complete workflow has been automated and run on a cluster.

Once the database was available, it served as the starting point to train the surrogate
model. The best method was selected after several had been reviewed. Although neural networks
proved superior performance, XGBoost, among gradient boosting techniques, remained highly
competitive.

Finally, the linking of the model to MEDEAS has been performed, by creating an exter-
nal function in Vensim, in which it is described. Collaboratively with J. Paris, the model was
incorporated into MEDEAS, establing connections between the surrogate model and MEDEAS
variables.

8.1 Future work

In this work, the core mechanisms for the integration have been implemented. Therefore,
the most interesting contributions lie in the accuracy of surrogate model and in the quality of
choice of variable. Although six inputs and two outputs have been employed, the potential for
enhancing accuracy lies in refining these choices. For example, adding one input to account for
different kinds of storage facilities.

Concerning the data generation process, there remain a need to explore alternative LHS pa-
rameterizations. Another influential parameter whose impact has not been assessed is the number
of simulations, that has been arbitrarily set to 2400 in this thesis.

Regarding the surrogate model creation, we discussed in Subsection 5.3.1 the eventual use
of multiple LHS to generate multiple datasets. Delving into these alternatives could potentially
contribute to the refinement of the training process. a notable observation from Subsection 5.4.3
pertains to one of the depicted surfaces, specifically Figure 5.3d, exhibiting swift transformations
when the remaining input parameters are altered. This suggests some weakness in the learning of
the surrogate model that could be explored.

Additionally, specific links between the surrogate model and MEDEAS have not been
established, towards the share of flexible units and the rNTC inputs, given as constants. Evaluating
the impact of their values on the results would bring valueable information. Moreover, relationships
could be developed and incorporated into the MEDEAS model to account for these variables.
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Annex A: scripts and code
This annex documents briefly the roles of each scripts and code files.

Data generation

See Table 9.1.

File name Description
config.py Holds high level specification of the dataset to be created, such as the

number of samples, the LHS strategy, and output files names.
read_results.py Fetches the results from simulation directories, either one by one or all

at once.
reference.py Runs the reference simulation and serializes the results in a json file.
sampling.py –sample-only: only run the LHS and store the samples in a CSV file.

–prepare-one idx: prepares the simulation directory for one sample
given its index. With no arguments, runs LHS and prepare all the
simulation directories.

utils_francois.py Stores the modified version of the adjust_capacity function of Dispa-
SET, taking into account different storage unit types.

main.sh Starts all the scripts in the right order in order to produce a dataset.
Runs the reference simulation, the sampling, prepends the header to the
dataset file (as CSV), and starts the first series.

launch-job-series
.sh

Submits a series of simulation jobs, and a job that will submit the fol-
lowing series with the current one as a dependency. If the series index
given as argument is too high, exits.

launch-reference-
job.sh

Submits a job that runs the reference simulation.

launch-simulation-
jobs.sh

Submits the jobs required to run a simulation from a series. It takes the
series index as an argument and the number in that series from SLURM
environment variables. Uses sampling.py –prepare-one, GAMS and
read_results.py successively.

gams-simulation.sh Submits a job running the GAMS simulation of an already prepared
simulation, for testing purposes.

read-one.sh Submits a job fetcing the results of an arleady ran GAMS simulation,
for testing purposes.

get-longest-
simulation.sh

Bash script that calls the seff utility on each of the simulation ran
to extract the longest ones. This has mainly be used once to set the
simulation timeout that prevent stalling simulation to waste resources.

Table 9.1: Description of the data-generation files

Neural network

See Table 9.2.
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File name Description
config.py Holds the configuration of the network to be trained, name, data to use,

inputs and outputs.
model.py Holds the description of the model to be trained, via the build_model

function.
baselines.py Builds and trains different, predefined neural network architectures, and

stores their performance. This eases the process of looking for a good
architecture for the ANN, to guide the bounds in the hyper-parameter
tuning. With sort -k2 -t ’>’ -i logsbaselines-results.txt one
easily sorts the results by increasing order.

train.py Executes the tuner search for the best model and training of that best
model.

view.py Holds different utilities to view the results of some model and its per-
formance. Use view.py –surface <in1> <in2> <out> to create a 3D
surface of the out-th output depending on the in1 and in2-th inputs. The
other inputs are constant and parameterizable with sliders.

Table 9.2: Description of the files for the neural network part.

Integration

See Table 9.3.

File name Description
external.h Header file for external.cpp.
external.cpp Main source file for the library.
main.cpp Code for running a test program.
Makefile GNU make file for automating compilation.
tensorflow.dll Tensorflow library file for Windows, can be downloaded from here.

Table 9.3: Description of the integration files.
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Annex B: Dispa-SET components and representation
Dispa-SET provides us with several predefined configurations, each of these defining the

zones and their units of interest, and linking to the relevant data (e.g. times series provided as
csv files).

In this work, the european setting is used, that is, the zones simulated correspond approx-
imately to the European Union.

Zones

Most of the EU contries are represented, for completeness they are reported in Table 9.4.

Code Country Code Country
AT Austria IE Ireland
BE Belgium IT Italy
BG Bulgaria LT Lithuania
CH Switzerland LV Latvia
CZ Czech Republic NL Netherlands
DE Germany NO Norway
DK Denmark PL Poland
EE Estonia PT Portugal
EL Greece RO Romania
ES Spain SE Sweden
FI Finland SI Slovenia
FR France SK Slovakia
HR Croatia UK United Kingdom
HU Hungary

Table 9.4: Countries present in Dispa-SET EU, and their ISO Alpha 2 country codes. These are
all the EU contry except for Cyprus and Malta and Luxembourg, plus Norway, Switzerland and
the UK.

Technologies

Table 9.5 lists all the technologies taken into account by Dispa-SET, alongside with their
main properties:

– VRES: does the technology belongs to VRES?

– Storage: can it store energy?

– Flexibility: ease of control of the unit’s power output.

Due to the intermittency of their resources, and because one cannot dispatch them, VRES
are considered inflexible.

However, hydroelectric units with a reservoir are have some room for flexibility, due their
ability to manage their storage level.

Steam turbines, because of their dependency on the fuel used, e.g. nuclear energy would
be less flexible than natural gas.
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Identifier Description VRES Storage Flexibility
COMC Combined cycle No No High
GTUR Gas turbine No No High
ICEN Internal combustion engine No No High
STUR Steam turbine No No Medium
HDAM Conventional hydro dam No Yes Medium
HROR Hydro run-of-river Yes No Low
HPHS Pumped hydro storage No Yes Medium
WTOF Offshore wind turbine Yes No Low
WTON Onshore wind turbine Yes No Low
PHOT Solar photovoltaic Yes No Low
BATS Stationary batteries No Yes High

Table 9.5: Technologies present in Dispa-SET

Heating and combined heat and power units are not covered, as only the electricity is of
interest in this scope.

Fuels

Table 9.6 summarizes the fuel types in Dispa-SET.

It is important to highlight that technologies may not always be powered by the same fuel,
for instance, the steam turbines can use most of them.

Each unit must specify its technology and fuel. Depending on the optimization problem
formulation, units featuring the same (technology-fuel) pair will be grouped together and thereafter
be treated as one single unit. This grouping is of crucial importance, as it will define the behaviour
of the simulation when using the MILP formulation (see ??).

Fuel Description
BIO Biofuels
GAS Gas
HRD Coal
LIG Lignite
NUC Nuclear energy
OIL Petroleum
PEA Peat Moss
GEO Geothermal steam
SUN Solar energy
WAT Hydro energy
WIN Wind energy
WST Energy from waste
OTH Other fuels and energy carriers

Table 9.6: Fuel types in Dispa-SET

A major consideration for the optimization problem is the fuel prices, which are listed in
Table 9.7.
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A key feature is the relationship between the price of coal and the price of gas: depending
on which one is the cheaper, the optimal behaviour change dramatically. Obviously, the cheapest
one will always be preferred over the other when choice arise.

Price
Nuclear 3
Black coal 20
Gas 45
Fuel-Oil 65
Biomass 10.08
Lignite 7.23
Peat 9.36

Table 9.7: Fuel prices considered, in €/MWh

Other prices

Some other price values are relevant, such as the price of the load shedding per MWh.
These are presented in Table 9.8.

What Price
CO2 25
Unserved Heat 84.21
Load Shedding Cost 1000
Transmission 0
Unserved H2 75
Curtailment Cost 20

Table 9.8: Other relevant prices, in €/MWh

These values define the significance of each problem relatively to each other, hence what
option is the least costly. For instance, the shedding cost could be so low compared to the carbon
emissions that it is preferable not to run any coal unit to produce 1MW than to shed 1MW. This
example is extreme, but outlines the fact that these prices impact the simulation outcome via their
use in the objective function.

Power plants

As a dispatch model, Dispa-SET evidently has to model the units it dispatches, namley
the power plants that are present in each of the modelled zones.

For performance reasons, some of the units initially described are merged into clustered
units at the pre-processing step. Thus, the amount of variable in the simulation is reduced, while
the accuracy is not significantly impacted [9].

Dispa-SET disposes of utilities to do so, but also needs to craft the new, aggregated units
properties table. These are defined by the set of feilds that are shown in Table 9.9.

For the storage units, one needs some more parameters, given in Table 9.10. These feilds
will remain blank for the other unit types.
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Field Description Type
Unit Unit name string
PowerCapacity Maximum power output value in MW
Nunits Number of initial units clustered integer
Zones The unit’s zone string
Fuel The fuel used string
Efficiency The unit’s efficiency real in [0,1]
MinEfficiency Efficiency at minimum load real in [0,1]
MinUpTime Minimum up time value in hours
MinDownTime Minimum down time value in hours
RampUpRate Ramp up rate value in minute−1

RampDownRate Ramp down rate value in minute−1

RampingCost Cost of ramping up or down value in €/hour
StartUpCost_pu Start up cost per clustered unit value in €
NoLoadCost_pu Cost of having no load on a unit value in €/hour
PartLoadMin Ratio of the minimum nominal capacity real in [0,1]
StartUpTime Time to start up the plant value in hour
CO2Intensity Amount of CO2 emitted per MW value in €/MW

Table 9.9: The table fields used to describe a optionnally aggregated power plant unit

Field Description Type
STOCapacity The total energy storage capacity value in MWh
STOSelfDischarge The discharge rate (w.r.t. to the total) value in day−1

STOMaxChargingPower Maximum energy inflow value in MW
STOChargingEfficiency The unit’s charging efficiency real in [0,1]

Table 9.10: Fields describing the storage capabilities of the units

Their discharge efficiency will be assigned to the common Efficiency field, and the Power-
Capacity will be assigned the power output on discharge.

For batteries units, the RampUpRate and RampDownRate fields are set to 1, while the
others but efficiency are set to 0.

The crucial capability of storage units is their storage volume. In previous work in this
context, the number of hours a unit can run at maximum output capacity is fixed as 4 hours, thus
implicitly fixing a storage capacity given a power output.

This choice is arbitrary and leads to a simplification of the reality, where one could find
huge differences in this ratio. To remove this, an option is added in Dispa-SET’s adjusting function,
to be able to filter the adjustments by range, making it now able to discriminate the units based
on the storage capacity over maximum output power ratio, enabling its use to adjust storage units
with different "longevity" separately.

However in reality, most of the difference is between the pumped hydro storage, that can
typically output their maximum power for a longer time, and the other storage technologies, such
as batteries.

At the end, this differenciation is not done, as it would also require the inputs of the
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surrogate model to be changed, to take into account the share of "high-longevity" storage units
with respect to the "low-lengevity" ones.

Notes on the other inputs

We can make a few miscellaneous remarks about Dispa-SET input data.

– The electricity demand is a time series from year 2019, per zone. It is assumed to be
independent of the price.

– The net transfer capacities (NTC) between the different zones are given as inputs as hourly
times series over a year. Then the maximum is picked and it is assumed that it remains
constant over the year.

– The availability factors (AF) for renewable energy sources, defined as the ratio of the nominal
power that is possible to output hourly. It is given as an hourly time series (adimentional).

This variable energy generation is either curtailed or sent to the grid.

Non-renewable technologies have their AF set to 1.

In this work, AF denotes the hourly capacity factor, and CF (Capacity Factor) refers to the
annual value. Hence, the capacity factor is the yearly average of the availability factor.
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Annex C: Vensim models
Vensim offers a variety of tools to describe models, but at the end every model is an

interconnection of variables, the math hiding in the connections between these.

Vensim provides the following types of variables:

– Auxiliary variables, that are regular variable that have no memory, that is, are independent
from their value at the previous time step and are computed from every type of variable.

For example, a temperature variable that is computed from some sunshine and latitude,
that is used to compute the birth rate of rabbits and foxes.

– Constant variables, that hold one value.

For example, a mathematical constant like π.

– Data variables, or exogenous variables, whose value evolve over time but is not dependent
of the model.

For example, typical sunshine data over a year.

– Stock variables, that change only over time as a function of the incoming rates, i.e., they
integrates the rates.

For example, the population of some species at a given time.

– Rate variables, or flows, that directly impact the Stock variables.

For example, the birth or death rate of some population at a given time.

The connections between the variables are virtually done by arrows. The only practical use
of arrows is to make the variable at the origin appear in the selection of variables in the variable
equation screen for the variable pointed by the arrow. But obviously they are of great utility in
terms of visualization of the model.

An illustrative example of a Vensim model is depicted in Figure 9.1.
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Figure 9.1: An example model in Vensim: Lotka-Volterra predator-prey model.
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