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Abstract

Charge Density Waves (CDWs) are characterized by an instability of the elec-
tronic structure, that is coupled with a distortion in the atomic arrangement in
a metal, leading to a decrease in energy (lower than the high symmetry phase)
along with the appearance of an unstable phonon mode. CDWs in Transition Metal
Dichalcogenides (TMDs) have been researched for the past four decades. Aided by
the advancement of computational power and the development of computational
methods, there have been successful attempts at simulating these CDWs using
first principle methods [1, 2]. Although these methods are quite accurate, they are
computationally very expensive, and hence there is a need for faster alternatives
like classical Molecular Dynamics (MD) simulations. As a solution, we propose
the use of Machine Learning Interatomic Potentials (MLIPs), fit to first principles
calculations, in order to reduce simulation times and costs, while achieving near
ab initio accuracy.

In this study, we compared two types of MLIPs - Spectral Neighbor Analy-
sis Potential (SNAP) and Moment Tensor Potential (MTP), trained on a set of
Density Functional Theory (DFT) that are ab initio calculations. They were then
tested to investigate if they can reproduce the CDW distortion in two monolayer
TMDs - 1T-TiSe2 and 1T-TiS2. The Python package ‘MLACS’ [3] is used for the
ML training. The results of this thesis show that the chosen MLIPs are orders of
magnitude faster than ab initio calculations, but might not be accurate enough.
Phonons calculated using finite-difference approximation clearly show an unstable
mode at the M point for monolayer 1T-TiS2, indicating the CDW state as found
in the literature [4]. Yet, no instability was found for the monolayer 1T-TiSe2.
The phonon modes were then calculated at finite temperatures using a theory
of anharmonic vibrations called the Temperature Dependent Effective Potential
(TDEP) [5]. TDEP is a method to calculate the free energy of a system and not
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just the potential energy. It renormalizes all orders of anharmonicity as well and
makes it perfect for our research. Phonons calculated using TDEP do not show
an instability, which could be a limitation caused by the potential’s accuracy or
even the DFT “ground truth” calculations. This study hence demonstrates that
MLIPs calculated can be used for MD simulations, but have certain limitations.
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1
Introduction

Charge Density Waves (hereby referred to as CDWs) have been an alluring topic
of research [1, 2, 4] for many decades now. They appear because of an electronic
instability that translates into a Periodic Lattice Distortion (PLD). They have been
researched upon because of their influence on electrical properties and their relation
with superconductivity in materials [6]. There have been multiple computational
studies on different materials containing CDWs using ab initio methods, but not
using classical potentials.

To understand the behavior of a material, knowledge of its interatomic potential
energy plays a very important role. Minimizing this potential energy will give the
ground state structure of the system. This potential energy of the system can be
found, for example - by using ab initio methods such as Density Functional Theory
(DFT) and other electronic structure methods, or using classical potentials. Once
the interatomic potential energy has been found, the next step is to study the
lattice dynamics to understand the interplay between the electrons and phonons, in
order to extract physical properties such as thermal conductivity, phase transitions
etc. Properties also change with temperature and hence we need methods to find
temperature-dependent equilibrium structures and the system’s evolution with
temperature.

Accurate methods such as ab initio Molecular Dynamics (AIMD) are very
computationally intensive and require a lot of time. But, in order to save time,
one cannot use only classical molecular dynamics because of its lower accuracy. As
a solution and as a compromise between the accuracy and speed of calculation, this
study proposes the use of Machine Learning Interatomic Potentials (referred to as
MLIPs from here onwards). This study aims to be a proof of concept depicting
advancement in MLIPs, leading them to be able to accurately predict quantum
phenomena such as CDWs.

This chapter gives an overview of what CDWs are and their origin, what MLIPs
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1.1. CHARGE DENSITY WAVES (CDWS)

are, and other essential topics whose knowledge is required to understand this
thesis.

1.1 Charge Density Waves (CDWs)

1.1.1 What are CDWs?
Crystalline metals are characterized by their uniform electron density and their

perfectly periodic lattices in their equilibrium state. However, in certain cases,
below a transition temperature (TCDW ), the electron density gets reordered into
a standing wave with a periodic increase and decrease in electron density (peaks
and troughs), instead of being fully uniform. This change leads to a reordering
of the perfectly periodic lattice into new equilibrium positions by distorting the
atomic positions with a longer periodicity. The resulting low-temperature state,
where there is a modulation of the electronic density is hence called the Charge
Density Wave (CDW) state.

Origins of CDWs

CDWs are quite system dependent. There are multiple explanations for why
they occur, such as Peierls’ instability, electron-phonon coupling, and Fermi surface
nesting. However, there is none that can uniformly explain the origin of CDWs
in all materials. The two distortions - lattice and electronic density, do not occur
together by coincidence. The CDW formation relies on the lattice distortion,
meaning that a strong electron-phonon coupling is necessary to drive it. But, there
is a debate on whether the instability observed is primarily that of the lattice or
the electronic system.

The most widely accepted model is that of the Peierls’ instability in 1D. This
model is an explanation of how the ionic/lattice distortion is a secondary effect
that occurs due to the electronically driven charge redistribution. Figure 1.1 from
Ref.[7] gives a schematic representation of the Peierls description of instability for
a 1D case. Figure 1.1(a) shows a 1D chain with a periodic lattice (above the
transition temperature TCDW ), while Figure 1.1(b) shows the restructured lattice
with the Periodic Lattice Distortion (PLD).

Figure 1.1(c) shows the electron band structure (in reciprocal space) for the
1D undistorted chain, around the Fermi level. The material is in a metallic state
and hence there is no bandgap. The Brillouin zone boundary is located at ±π

a

(where a is the cell parameter), while the Fermi wave vector (kF ), that defines
the highest energy electron, is at kF = ± π

2a
. This structure is unstable at lower

temperatures and causes the lattice to get disturbed. Figure 1.1(b) shows the
distortion as a dimerization. This means two adjacent lattices have combined to
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CHAPTER 1. INTRODUCTION

form a new unitcell. The new cell parameter is 2a and the Brillouin zone reduces
to half its original size, to ± π

2a
. The coincidence of the kF with the new Brillouin

zone boundary opens up a band gap, creating the transition of the material from
a metal to a semiconductor. This distortion is hence associated with an increase
in the energy of the system. The electronic instability that causes this transition
was given the name Peierls’ instability.

Such instabilities in materials can be understood using the knowledge of phonons
(as will be described in Section 2.3.1) and their soft modes. The above-mentioned
transition can be measured by studying temperature-dependent phonons. The
transition to the semiconductor phase occurs because of a highly unstable phonon
mode present in the metallic phase. This is termed as the Kohn anomaly.

An additional reason behind the creation of the CDW can be attributed to a
phenomenon known as Fermi Surface Nesting (FSN). The Fermi surface denotes
the boundary that separates the occupied and unoccupied electron states. Within
the reciprocal lattice, it outlines a collection of momentum points where electrons
possess their maximum energy at absolute zero temperature. Nesting is a process
where specific sections of a material’s Fermi surface exhibit highly resembling
shapes and begin to closely align within the momentum space. Put differently,
there exists a significant overlap between the momentum vectors linking equivalent
points on both Fermi surfaces. The occurrence of Fermi surface nesting directs
the potential toward a more energy-efficient arrangement in the system. This
lowered energy state can be attained by allowing electrons to transition between
the nested regions, thereby minimizing the overall electronic energy. Consequently,
the material’s crystal lattice undergoes a spontaneous distortion to accommodate
this more energy-efficient arrangement.

1.1.2 CDWs in Transition Metal Dichalcogenides (TMDs)
Transition metal dichalcogenides (TMDs) are a class of materials that consist of

layers of transition metal atoms sandwiched between two layers of chalcogen atoms.
Their general chemical formula is MX2, where M represents a transition metal
element and X represents a chalcogen element. TMDs have been experimented
upon for a very long time now. Amongst them, the existence of CDW in the
compounds 1T-TiSe2 and 1T-TiS2 (where “1T” is the tetragonal phase with a
P 3̄m1) has been a matter of debate for both experimentalists and theoreticians.
A deep look into the literature available shows us the need for a more extensive
study on these compounds. Figure 1.2 is a schematic of the layered structure of
1T-TiSe2 from Ref. [1]. Figure 1.2(c) shows the direction of displacements of
each atom while the material transitions from the high symmetry phase to the
periodically distorted CDW phase.

Currently, the literature reports a difference between what is found in experi-

3



1.1. CHARGE DENSITY WAVES (CDWS)

Figure 1.1: Schematics of the Charge Density Waves from Ref.[7] showing (a) 1D
atomic chain with uniform electron density (above transition temperature TCDW ),
(b) 1D atomic chain with restructured atom sites and electron density (below
TCDW ), (c) electron band structure of the metal phase above TCDW and of (d) the
semiconductor phase below TCDW

ments and simulations. For example, the experimentally found TCDW in monolayer
1T-TiSe2 is 200K [8], while DFT (ab initio) studies show a TCDW of 440K. As for
1T-TiS2, experimental studies of the electronic structure give qualitatively differ-
ent results for the bandgap - some say it is a semiconductor [9], while others find
a semimetal [10]. Such a difference in the experimental results might be due to
the different growth conditions used. On the other hand, DFT studies of 1T-TiS2
show a dependence of the CDW state on dimensionality - beneath a thickness of
4 monolayers [4]. An accurate potential that can be used for classical Molecular
Dynamics (MD) will hence aid this direction of research strongly and motivated
this Master’s thesis project.

Figure 1.3(a) is a plot showing the temperature dependence of the phonons
for monolayer 1T-TiSe2, from Ref [1], calculated using DFT. Figure 1.3(b) from
Ref.[2] shows a schematic of the Brillouin zone of a 1T lattice. It clearly shows the
strong instability at the M point (with the reciprocal space vector

[
π
a
,− π√

3a
, 0

]
),

and how the instability reduces with increasing temperature. There are similar
reports for the M point instability for monolayer 1T-TiS2 as well [4]. The motiva-
tion behind this study is to try to reproduce this very instability in both materials
using MLIPs that are fit on accurate ab initio data.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Schematic of the lattice structure of monolayer 1T-TiSe2 from Ref.[1],
and the atomic displacements associated with the Periodic Lattice Distortion as-
sociated with the CDW phase transition

(a) (b)

Figure 1.3: (a) Temperature-dependent phonon dispersion curve from Ref.[1] for
monolayer 1T-TiSe2; (b) Schematic of the Brillouin zone from Ref.[2] of octahedral
TMDs (like 1T-TiSe2)

1.2 Why Machine Learning Interatomic Poten-
tials (MLIPs)?

Theoretical research must always deal with tradeoffs between methods that
give very quick and inaccurate results or slow but accurate results. MLIPs are a
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1.2. WHY MACHINE LEARNING INTERATOMIC POTENTIALS (MLIPS)?

set of numerical and non-empirical potentials that offer the best of both worlds.
Amongst all the available methods of calculating interatomic potentials, empirical
or otherwise, the usage of MLIPs seems to be an extremely promising prospect.
They are trained on ab initio data but are then used to calculate system properties
using fast classical methods. Once trained on a given limited set of ab initio data,
these MLIPs can run simulations with near ab initio accuracy, but thousands of
times faster. Machine learning and MLIPs have hence been used in simulations
for about a decade now, in a very wide variety of domains [11, 12, 13, 14].

There have been advancements in the MLIPs themselves, as new and improved
methods have been developed. The most popular and efficient are - Gaussian
Approximation Potentials (GAP), Neural Network Potentials (NNP), the Spectral
Neighbour Analysis Potential (SNAP), and the Moment Tensor Potential (MTP).

This thesis is a study of how two of the above-mentioned MLIPs - SNAP and
MTP perform with regard to learning delicate temperature-dependent mechanisms
such as CDWs and how MLIPs can help accelerate their study. These methods
have been chosen for their greater efficiency. Unlike methods like NNP, these do
not require a large volume of data to fit the MLIP. They are also quick to train
and are faster to execute as compared to GAP.
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2
Methodology

This chapter elaborates in detail the methods and tools we used to study CDWs
in the chosen monolayer TMD materials 1T-TiSe2 and 1T-TiS2.

2.1 ab initio calculations
As explained in the abstract, the goal of this study involves training an MLIP

on a given dataset. The dataset is made of different configurations of the given
system whose energies, forces, and stress are calculated with ab initio accuracy.
This section explains how these configurations are created.

2.1.1 Density Functional Theory (DFT) - an ab initio method
The current state of the art in electronic structure simulations are ab initio

methods, which give accurate results with a cost scaling as the cube of the number
of electrons (or more for higher order methods). In order to create the config-
urations mentioned above and calculate their ground state energies, we will use
Density Functional Theory (DFT [15]). DFT is a method where the energy of a
many-electron system is determined by using its electronic density instead of the
full many-body wave function. In this study, we use the software Abinit [16], for
all the calculations involving DFT.

The Hohenberg-Kohn theorems [15] provide the theoretical foundation for den-
sity functional theory, stating that the electron density uniquely determines the
ground-state energy and vice versa. However, in practice, solving the many-body
Schrödinger equation for a many-electron system is computationally challenging
due to the complexity of electron-electron interactions.

A practical solution was given to this problem in the form of the Kohn-Sham
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2.1. AB INITIO CALCULATIONS

equation (Equation (2.1)) [17]. This theory considers fictitious orbitals (called the
Kohn-Sham orbitals) that are designed to have the same electron density as the
real system.− ℏ2

2m∇2 + Vext(r) + Vxc(n(r)) +
∫ VH︷ ︸︸ ︷

n(r′)
|r − r′|

dr′

︸ ︷︷ ︸
Veff

ψi(r) = ϵiψi(r) (2.1)

where − ℏ2

2m
∇2 is the kinetic energy, n(r) is the net electron density (defined

below) Vext(r) is the external potential on the system which includes the interaction
of electrons with external fields (for example, atomic nuclei), VH(r) is the Hartree
potential which represents the electrostatic repulsion between electrons, and Vxc(r)
is the exchange-correlation potential that accounts for the quantum mechanical
effects of electron exchange and correlation.

The net electron density (n(r)) proposed by Kohn and Sham [17] is given in
equation Equation (2.2) , where ψi is the wave function of each Kohn-Sham orbital
of the system. The DFT implementation used in this study (using the software
Abinit) uses a plane wave basis set for these wave functions.

n(r) =
N∑

i=1
| ψi(r) |2 (2.2)

The wavefunction ψi(r) (the eigenvalues of the above equation) and energy ϵi

are the solutions to the Kohn-Sham equation for the ith electron. In our case, for
the Vxc, we use the Generalized Gradient Approximation (GGA), which incorpo-
rates the gradient of the electron density as well.

The Hamiltonian, given by the Kohn-Sham equation (Equation (2.1)) governs
the DFT calculation in the form of a self-consistent field. The density is calculated
in a loop and is iteratively optimized (known as Self Consistent Field (SCF)) to
within a given tolerance for which the eigenstates which solve the equation also
produce the input density.

The DFT implementation in Abinit uses what is called a pseudopotential. It
replaces the VH and Vxc due to core electrons and the Vext due to the nucleus with
an effective potential. This is done to make sure that the Schrödinger equation
does not take into account the Coulombic potential term for core electrons.

2.1.2 Convergence of the DFT parameters for the unitcell
There are many variables such as the choice of basis set, and k-point grids

that go into calculating the ground state energy of a system using DFT. The basis
set defines the Kohn-Sham orbitals used by DFT (ψi(r)). k-points are sampling

8



CHAPTER 2. METHODOLOGY

points in the first Brillouin zone of a material. The Brillouin zone is defined better
with an increase in the density of the k-point grid. These variables need to be
optimized in order to get an accurate enough result in the minimal possible time.
Hence, there is a need to perform a convergence study on these parameters and
determine their optimal values.

The structures of monolayer 1T-TiSe2 and 1T-TiS2 have been known for a
very long time and hence can easily be found on websites like the Materials Project
[18]. But, in order to calculate the ground state energy using DFT, for the specific
exchange-correlation functional that is being used (PBE-GGA [19]), the calculation
precision needs to be converged with respect to each of the variables discussed
below.

• Kinetic energy cut off for the pseudopotential - The number of plane
waves that are needed to integrate accurately the total energy, mainly im-
posed by the pseudopotential.

• Size of the k-point grid chosen - The density/number of points on the
Brillouin zone that the wave functions will be evaluated at.

• Electronic temperature - The variable to ensure physically correct oc-
cupation of electronic bands around the Fermi level. It also depends on
the statistical model (such as Gaussian or Fermi-Dirac statistics)followed to
“smear” these electrons.

• Interlayer distance - Since DFT assumes a periodic boundary, the inter-
layer distance for a non-monolayer system can be increased to a point where
there is very little interlayer interaction.

• Cell parameters/ relaxation - Minimization of the pressure in the system,
hence relaxing it to its ground state.

Once all the parameters are converged for the unit cell, supercells can be con-
structed from it.

2.2 Classical Molecular Dynamics (MD)
In stark contrast to the ab initio methods, classical Molecular Dynamics (MD)

uses classical potentials (and not DFT) to govern the atoms along their potential
energy surface (PES). This method is hence very quick in comparison to a method
such as DFT. Yet MD offers much lower accuracy if empirical/semi-empirical po-
tentials are used to calculate the PES.
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2.3. CALCULATION OF PHONON CURVES

In MD simulations, systems are considered to be a part of specific ensembles
such as the canonical (NVT), grand-canonical (µVT), etc., that define the degrees
of freedom that each atom possesses. In order to force such degrees of freedom
to remain constant (such as constant temperature or pressure), specific barostats
and thermostats are defined.

In the numerical implementation of MD, the Nose-Hoover thermo/barostat [20]
and the Langevin thermo/barostat are the most commonly used methods. Both
these methods make sure that the average kinetic energy of the system remains
constant, following the equipartition theorem for the canonical ensemble. To sim-
ulate NPT, an additional barostat needs to be added to the system.

In the scope of this study, classical MD simulations are used to replace the
tedious AIMD (ab initio Molecular Dynamics) simulations. Machine Learning
has been used to create classical potentials that can do this job very well, hence
closing the distance between AIMD and MD through MLMD (Machine Learning
Molecular Dynamics). MD simulations have been used in this study extensively
and will be explained in the next sections.

2.3 Calculation of phonon curves

2.3.1 What is a phonon?
A phonon is defined as a quantum of mechanical vibration for a given peri-

odic lattice, representing a long-range collective oscillation in an elastic manner.
Knowledge of the phonons of a lattice allows one to calculate material properties
such as thermal conductivity [21]. Properties such as electrical conductivity can
also be calculated by understanding phonons in combination with the electron-
phonon coupling. In this study, for example, a change in phonon frequency at a
specific point in the Brillouin zone describes the onset of a Charge Density Wave
(CDW). There are multiple methods to calculate phonons and the most common
ones are described in the following subsection.

Before advancing, it is important to understand what the Interatomic Force
Constant (IFC) is. The IFC is usually derived using the harmonic approximation
as given in the Equation (2.3) below. We perform a Taylor series approximation
of the potential until the second-order term.

V(R) ≈ V(R0) +
�

�
�

�
��>

0
∂V (R)
∂R

∣∣∣∣∣
R0

u+ 1
2
∂2V(R)
∂R2

∣∣∣∣∣
R0

u2 (2.3)

where u = R − R0 is the displacement of atoms about their equilibrium position
at R0. The second term - the first derivative of the potential at R0 is 0, as
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it is a minima. Simplifying Equation (2.3), we get a double sum as given in
Equation (2.4).

V(R) ≈ V(u) = 1
2

∑
lκ

∑
mµ

Φmµ
lκ uκ

l u
µ
m (2.4)

where Φmµ
lκ is the IFC and κ and µ denote the unit cell index, and uκ

l denotes the
displacement around the equilibrium position.

The dynamical matrix is defined as:

Φmµ
lκ = ∂2V (R)

∂Rκ
l ∂R

µ
m

∣∣∣∣∣
R0

F ourier T ransform−−−−−−−−−−−→ D(q) =
∑
mµ

Φmµ
lκ√

MκMµ

eiqRm (2.5)

where q, Mκ and Mµ are the masses of the interacting atoms. Diagonalizing this
dynamical matrix D(q) (making it an eigenvalue equation) and calculating the
eigenvalues gives the phonon frequencies ω2. ω2 is hence the curvature of the
potential energy surface at a given point. A phonon mode (of vibration) is said to
be stable if the curvature is greater than 0, and unstable if it is negative (making
ω imaginary). In specific cases such as CDWs as mentioned above, it has been
found that there is a strong unstable phonon mode (large imaginary value of ω)
associated with it. Knowledge of phonons hence helps us in determining if the
given state of the system will transform into the CDW state.

The next sections describe how we can calculate the IFC (Φ) and further cal-
culate the phonons themselves using different techniques.

2.3.2 Calculating phonons using Finite-Difference method
Calculating the phonon dispersion curve is quite straightforward when using

the Finite-Difference method. It gives a broad idea of whether our potential is
able to reproduce the same curves as with DFT. For this, the package Phonopy
[22, 23] was used. It is important to mention that this method does not take into
consideration temperature effects and hence gives the curve corresponding to the
T = 0K DFT data.

The calculation of phonons begins with the calculation of the Interatomic Force
Constants (IFCs, Φij), defined (same as in Equation (2.5)) as the second derivative
of potential energy (Equation (2.6)). Φ is also the first derivative of the forces.

Φij = ∂2V (R)
∂Ri∂Rj

∣∣∣∣∣
R0

= −∂fi(R)
∂Rj

∣∣∣∣∣
R0

(2.6)

Using the finite difference approximation, the IFC (Φij) can be calculated as
follows. The forces can be obtained by either DFT calculations of different super-
cells, or from other methods such as using MLIPs.

11



2.3. CALCULATION OF PHONON CURVES

Φij = −∂fi(R)
∂Rj

∣∣∣∣∣
R0

≈ −fi(R0 + δRj) − fi(R0)
δRj

(2.7)

where δRj is a very small displacement of atom j, and fi(R0) → 0. The Fourier
transform of these Φij gives the phonon frequencies.

This method, however, has a few drawbacks - long-range interactions are not
considered, it is very susceptible to noise from the DFT data, it has finite-size
effects, and it requires the calculations to be performed on supercells.

A solution to these problems is the Density Functional Perturbation Theory
(DFPT). DFPT is based on the concept of linear response theory, which deals
with how a system’s properties change in response to small perturbations. In the
case of DFPT, the perturbations typically involve small atomic displacements from
their equilibrium positions. Yet, our goal here is to be able to calculate phonon
dispersion curves using the MLIPs we fit. The next section explains how this can
be achieved.

2.3.3 Temperature Dependent Effective Potential (TDEP)

The finite difference method does not involve temperature-dependent calcu-
lations as the corresponding potential energy does not evolve with T. For our
case of CDWs, we have a strong dependence on temperature and hence require a
method to calculate phonons at specific temperatures. We have chosen to employ
the Temperature Dependent Effective Potential (TDEP) [5, 24, 25, 26] method.
TDEP calculates the free energy of the system and renormalizes all orders of an-
harmonicity.

We begin the formulation with the Hamiltonian, under the assumption that
the system follows the canonical ensemble. The Hamiltonian is given as follows by
Equation (2.8).

H =
∑

i

P2
i

2Mi

+ V (R) (2.8)

The next assumption is that the atoms vibrate around an equilibrium position
⟨R⟩. The above Hamiltonian can hence be written as given below in Equation (2.9)
and Equation (2.10). This is now the effective harmonic Hamiltonian.

H̃ =
∑

i

P2
i

2Mi

+ Ṽ (R) (2.9)
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Ṽ (R) = 1
2

∑
i,j

(Ri − Ri)Θi,j(Rj − Rj)

= 1
2

∑
i,j

uiΘi,juj

(2.10)

where Ri are the effective equilibrium positions and Θi,j are the effective (now
temperature dependent) Interatomic Force Constants (IFCs). The free energy
associated with the Hamiltonian is given by Equation (2.11).

F̃0 = −kBT ln[Z̃] (2.11)
where Z̃ is the partition function of the effective harmonic potential at temperature
T, given by -

Z̃ =
∫
dRe−βṼ (R) (2.12)

To find the extremum of the Free energy (F̃0), we need to equate its gradient
with respect to the IFCs to 0, the result of which is given in Equation (2.13)

∇ΘF̃0 = ⟨uTu⟩Ṽ

2 (2.13)

It can further be shown [27] that the effective IFC for the canonical ensemble
is given by the following Equation (2.14).

Θ = kBT

⟨uTu⟩
(2.14)

TDEP, unlike the harmonic approximation, is not a calculation that is per-
formed only in the locality of the equilibrium position of the atoms. Instead,
the set of possible positions of the canonical ensemble is taken into consideration,
and the anharmonic theory is applied to the average position and not the equi-
librium position. Along with this, as mentioned above, it is the free energy that
is calculated and not only the potential energy. This makes it very useful for
temperature-dependent calculations. It renormalizes all orders of anharmonicity,
hence giving more accurate results.

In order to run TDEP calculations, we need the average position of the atoms
and their distribution in the canonical ensemble. Additionally, if we need to look at
temperature dependence, we need to make sure that the material’s thermal expan-
sion is taken into consideration. We hence used a stepwise calculation procedure-

• Step 1 - A supercell (whose size is a convergence parameter) is created from
the unit cell of the high symmetry phase.
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2.4. MLIPS

• Step 2 - This supercell is allowed to evolve at the specific temperature ac-
cording to the isobaric-isothermal ensemble (NPT) to allow room for thermal
expansion for that temperature. The configurations created are averaged to
get the reference unit cell size.

• Step 3 - A new supercell is created using this unit cell and is now allowed to
evolve according to the canonical ensemble (NVT). We now have the correct
average cell and positions of the atoms from the first NPT run, and the
correct distribution of the atomic positions for the NVT ensemble, which are
required for TDEP.

• Step 4 - TDEP calculations are then performed to calculate the phonon
dispersion curves.

For all the above-mentioned calculations, in order to get ab intio accuracy, we
need to use methods such as AIMD. As mentioned before, such methods are very
computationally expensive and time-consuming. We hence adopted the Machine
Learning route, as will be explained in further sections.

2.4 MLIPs
As explained in Section 1.2, MLIPs offer a very strong benefit - they do not

oblige us to compromise between accuracy and speed of calculation. Unlike empir-
ical and semi-empirical potentials that depend on some kind of experimental data,
our MLIPs are purely numerical and are trained on highly accurate electronic struc-
ture numerical calculations. This section goes into detail on the chosen MLIPs,
how they are constructed, and their advantages and disadvantages.

2.4.1 Structure of an MLIP
The end goal of an MLIP is to be able to define the potential, the energy, and

the forces of a previously unseen configuration. As for this new configuration, all
we have is the data of its structure, i.e., the atomic positions. MLIPs use different
methods to translate these atomic positions into energy, forces, etc.

When an MLIP is learning from a given data set, it follows a sequence of steps
to calculate and understand the atomic interactions. The atomic positions are
first transformed into what is called a descriptor, a (usually nonlinear) function
of the positions, which is rotationally and translationally invariant, and chosen to
streamline the following steps (there are more properties of a descriptor that will
not be discussed in this thesis). Once a list of descriptors is calculated, a Machine
Learning (ML) model will be used (such as linear regression, neural network, or
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other functional form) to learn a pattern from these different configurations. The
pattern is then used to find the energy/potential of the new configuration. Fig-
ure 2.1 is a simple schematic that describes the same.

Atomic positions (R) Descriptor
(Input to ML) ML Model

Figure 2.1: The stepwise sequence involved in creating an MLIP from a set of
configurations for a simple linear fit

2.4.2 The chosen MLIPs

MLIPs have existed for a long time now and there have been extensively used,
as mentioned in Section 1.2. Over the years, many ML methods such as Neural
Networks (NN), Gaussian Approximation Potentials (GAP)[28], Moment Tensor
Potentials (MTP)[29] and Spectral Neighbour Analysis Potential (SNAP)[30] have
been developed to calculate interatomic potentials[31]. Figure 2.2 from Ref.[32]
shows a plot of the performance assessment of some of the commonly used MLIPs
found in the literature. Different metrics are chosen to determine which MLIP
performs the best. Based on the properties being calculated, it can be based on
the error in forces, energy, stresses, etc.

Two of the most efficient MLIPs - Spectral Neighbour Analysis Potential (SNAP)
and Moment Tensor Potential (MTP) were chosen in order to make a comparison
in their performance for CDW. The next subsections discuss in detail how these
potentials are mathematically formulated.

Spectral Neighbour Analysis Potential (SNAP)

The Spectral Neighbour Analysis Potential (SNAP) [30] calculates the density
of neighbors in a spherically symmetric space that is centered around one atom.
It also describes the interaction of atoms at higher orders (interaction terms with
3 atoms or more). The calculation of this descriptor begins with the neighbor
density, which is defined as follows in Equation (2.15), as a sum of delta functions
around a central atom i positioned at R in three-dimensional space.
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Figure 2.2: Plot of performance assessment of some of the available MLIPs found
in literature, from Ref.[32]

ρi(R) = δ(R) +
∑

Rii′ <RC

fc(Rii′) · wi′ · δ(R − Rii′) (2.15)

where ρi(R) is the neighbor density, wi′ are dimensionless weights to distinguish
atom types (species), Rii′ is the vector joining the position of the central atom i to
the neighboring atom i′, and fc(Rii′) is the switching functions that ensures that
the contribution of each neighbor atom goes to zero at a distance of RC .

The SNAP descriptors derived from ρi(R) differ depending on the functions
used to describe the angular and radial components. The one used in this study
is the “SO(4) descriptor”. Here, the components are formed upon a basis of 4D
spherical harmonics and can be concisely represented as Equation (2.16). Here,
j = 0, 1

2 , 1, . . . and m,m′ = −j,−j + 1, . . . , j − 1, j. Unlike the 3D spherical
harmonics, here, the radial dimension is also mapped onto a third polar angle θ0
and becomes periodic.

Y mm′

j = f(θ, ϕ, θ0) (2.16)

where theta is the polar angle and phi is the azimuthal angle.
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Once we have the basis functions, the descriptor Dnmm′l
i can be calculated by

projecting the neighbor density (ρi(R)) onto the hyper-spherical basis functions
described above. Equation (2.17) uses the Dirac notation to simplify the equation.
Here, gn is the radial basis.

Dnmm′l
i = ⟨gnY

mm′

l |ρi(R)⟩ (2.17)

Once the descriptor is calculated for each form of neighbor interaction (pair,
triplet, etc.) per atom, this can be then combined using a set of coefficients to
calculate a net effective contribution by each atom (Ei) (Equation (2.18)). The
value of j, which defines the limit of the values of m and m′ as mentioned above,
becomes a hyperparameter (to be set and converged during the calculation itself).

Ei =
∑

nmm′l

γnmm′l ·Dnmm′l
i (2.18)

Finally, the potential of the system (the end goal) is calculated using a linear
combination of the effective contributions (Ei) (Equation (2.19)).

V (R) =
∑

i

Ei (2.19)

Moment Tensor Potential (MTP)

The Moment Tensor Potential (MTP) [29] is a nonlinear potential unlike the
SNAP potential mentioned above. This subsection goes into detail on how an
MTP is calculated for a given configuration (cfg). Equation (2.20) shows that
the potential energy of interatomic interaction (Emtp(cfg)) is defined as a linear
combination of the contribution by atom i in the neighborhood ni.

Emtp(cfg) =
n∑

i=1
V (ni) (2.20)

The function V (ni) is expanded into a linear set of basis functions (Bα) as
given in Equation (2.21) below.

V (ni) =
∑

α

ξαBα(ni) (2.21)

where ξ = {ξα} are parameters found from fitting to the training configurations.
The next step is to define the moment tensor descriptors (or moments Mµ,ν(ni))
themselves, that are used to define the functional form of Bα. The moments have
a radial and an angular component.
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Mµ,ν(ni) =
∑

j

fµ(|rij|, zi, zj) rij ⊗ · · · ⊗ rij︸ ︷︷ ︸
ν times

(2.22)

where fµ are the radial functions, Rij are tensors of rank ν and ⊗ defines a tensor
outer product of vectors. zi is the atomic type of the central atoms and zj is the
atomic type of the neighbouring atom. The radial function fµ is defined between
an Rmin and Rcut that are the minimum distance and the cut-off distance for the
interaction and is the term that makes the MTP nonlinear. The angular part,
defined by the outer product of the tensors is hence of rank ν.

In order to construct Bα, the so-called level of moments is defined (Equa-
tion (2.23)).

levMµ,ν = 2 + 4µ+ ν (2.23)

The contraction of the levels is defined by the dot product (where the levels
are added) and the Frobenius product (where the levels are multiplied). All such
contractions are by definition invariant to rotations, atomic permutations, and re-
flections. Finally, a maximum level levmax is used to include all the basis functions
under the value of levmax. How well the MTP performs hence relies on the tensors
rij, the number of different contractions (defined by levmax), and the Rcut.

2.4.3 Training procedure for MLIPs

There is a specific procedure for training an MLIP. One needs to first create a
dataset that the MLIP will be trained with. The dataset can be multiple different
configurations of different sizes of supercells, or of the same supercell. Along with
the configurations themselves, we also need the data on the energy and the forces
acting on each of the atoms. The essential idea is to have a dataset that represents
the potential energy surface (PES) of the given system, in a representative set of
conditions (T, P). The MLIP is then trained using each of the configurations. In
order to use it for Machine Learning, there are two major criteria that the dataset
needs to fulfill - accuracy and large dataset size. In order to fulfill the former, it
would be ideal to create new configurations that follow the canonical ensemble for
the final potential that we need. In order to do this, once each configuration is
created, we use the current entire dataset to retrain the MLIP, and then create a
new configuration using this MLIP itself. In this manner, each new configuration
is forced to follow our current best potential. As the data set size increases (for
the latter), the MLIP represents the potential energy surface better and better.
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2.4.4 MLACS
As one can imagine, there are many parameters that go into this procedure.

Moreover, it takes time to perform each of the DFT energy/forces calculations on
the configurations themselves. It would be an extremely taxing job to create new
configurations and train the MLIP by feeding each configuration by hand. In order
to facilitate this, we need an automated workflow. Dr. Aloïs Castellano [3] has
created a Python package called Machine Learning Assisted Canonical Sampling
(MLACS) that does exactly this. It interfaces ab intio software like Abinit [16]
(that help calculate the energy/forces on the system) and the software LAMMPS
[33] (which implements classical MD and the MLIP functional forms) to create new
configurations using the iteratively trained MLIP. This makes it immensely easier
to handle all the various parameters that go into the MLIP training. Figure 2.3
shows a simplistic flowchart of the procedure MLACS follows. MLACS is also
interfaced with the Atomic Simulation Environment (ASE) [34, 35] that helps
steer and analyze atomic simulations.

DFT on 
Initial 

configuration 
(R0)

Train MLIP

ML 
Molecular 
Dynamics 
(MLMD)

DFT on
New 

configuration 
(Ri)

MLIP

Ground state 
calculated using 

DFT

Figure 2.3: A flowchart of the sequence involved in creating an MLIP using MLACS

2.4.5 Finding the best hyperparameters
Each MLIP has its own set of hyperparameters that need to be intelligently

chosen to produce the best possible MLIP. In an ideal scenario, the best MLIP
is the one that gives the least error while also taking the least time to calculate
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the energy/forces of a system. But, since we are creating an MLIP that has finite
accuracy and should be able to handle very large systems, we must balance its
speed vs accuracy. In order to compare multiple MLIPs, we perform what is
called a Gridsearch algorithm. Here, we choose a set of values for each of the
hyperparameters and train the MLIP using each of the combinations possible.
The error is calculated using a testing set that is set aside from the global dataset
when training. While the MLIP is being trained and tested, the amount of time
taken for the MLIP to predict the data regarding a new configuration is also
calculated (usually per atom). This now gives us an idea of how much time each
of the hyperparameter combinations takes to predict the energy/forces of a new
configuration as well as how accurate is it.

These values are then plotted on an ’Error vs Calculation Time’ graph giving
rise to what is called a Pareto frontier. (This is further discussed in Section 3.2).
The MLIP that optimally fits our preference is then chosen and used for further
calculations.

The results of the calculations and methods used in this section are presented
in the next chapter.
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3
Results and Discussion

The previous chapter elaborated on all the methods and kinds of calculations
that were performed in this study. The objective is to be able to describe CDWs
using the MLIPs generated using these methods. This chapter is essentially a
detailed analysis of all the results of this study.

3.1 ab initio calculations using DFT

3.1.1 Groundstate convergence studies
As explained in Section 2.1.2, in order to calculate the energy of the ground

state of a given material, multiple parameters need to be converged in order to
save calculation time and achieve the required accuracy. Also, each of the MLIPs
chosen have different hyperparameters that need to be optimized to get the fastest
and the most accurate potential.

The high symmetry structures for monolayer 1T-TiSe2 and 1T-TiS2 were taken
from the Materials Project [11]. These structures need to then be relaxed and have
the parameters converged for the specific exchange-correlation functionals used.

For any kind of convergence study, there is always a tolerance value that needs
to be considered. Based on the kind of properties that will be studied later on,
the tolerance values are chosen. The tolerance value comes from experience and
from a thorough scientific literature review. It is also known that DFT is an
approximation and that is it not one hundred percent accurate. It hence has an
intrinsic limit to its precision but is considered “absolute truth” for the MLIP fit.
DFT involves several approximations - the potential energy surface considered is
that obtained in the Born-Oppenheimer approximation, the exchange correlations
functionals are approximations and the SCF (Self Consistent Field) cycles have
their own tolerance. Also, simulations are performed on perfect crystals which are
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approximations of true materials in physical experiments. Moreover, the MLIP
that is being fit on the configurations also has a limit on its accuracy. We hence
use a tolerance of a difference of 1 meV/atom in the energy of the system that is
calculated. Mathematically it is represented as follows.

Total Energyn − Total Energyi < 1meV per atom (3.1)

where n is the highest value (usually chosen such that the value is over-converged)
and i is the index of the variable at which the Total Energy is being calculated.
The difference in energies defined above in Equation (3.1) is converged within the
aforementioned tolerance value.

Convergence of kinetic energy of the pseudopotential

The pseudopotentials used are norm-conserving and work with the Perdew-
Burke-Ernzerhof (PBE [19]) functional, which is a GGA exchange-correlation func-
tional. They were taken from the Pseudo-Dojo website [36].

The cutoff values that were used for studying the convergence are
{10,15,25,35,45,55,65,100} Hartree. The SCF cycles converged to a differ-
ence in total energy of the system of 1−10 Hartree between two iterations.

Figure 3.1 is a plot describing the convergence of the kinetic energy cutoff
imposed on the pseudopotential, that defines the number of plane waves included
in the basis set, hence affecting the accuracy and efficiency of the calculation. As
explained above in Equation (3.1), the tolerance of 1 meV/atom is applied to find
the converged cutoff value. The monolayer 1T-TiSe2 converged with a cutoff of
50 Hartree and 1T-TiS2 with a cutoff of 45 Hartree. Although any value above
these can be chosen, the improved accuracy is not necessary.

Convergence of size of k-point size and electronic temperature

Figure 3.2 and Figure 3.3 show the convergence of k-point grid size (as explained
in Section 2.1.1) along with the electronic temperature for both the materials.
When the k-point grid size is limited, discretization of the reciprocal space might
not accurately capture the electron occupation around the Fermi level. Adding
a “smearing” temperature increases the width over which the electrons can be
smeared, smoothing out the k-points. A statistical model of a thermodynamical
ensemble is used to populate the electrons in those bands. In order to increase
the speed of the calculation, we do both to find a balance between the electronic
temperature given and the density of the k-point grid used. Even in this case, the
same tolerance of 1 meV/atom (as mentioned in Equation (3.1)) is used.

The values of k-points grid size (square grids - n × n) used are
{10,12,14,16,18,20,24,28,40}, for smearing temperatures (in Kelvin) of
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Figure 3.1: Plot of difference in energy vs the kinetic energy imposed on the plane
wave basis set for (a) monolayer 1T-TiSe2 and (b) monolayer 1T-TiS2

{1.16,5.80,11.60,58.02,116.04,580.22,1160.45} (the same in eV are
{0.0001,0.0005,0.001,0.005,0.01,0.05,0.1}).

From Figure 3.2(b), it can be easily concluded that the plot for 1T-TiS2 has
converged (reached the tolerance level) very quickly as compared to 1T-TiSe2.
This could be because of the band gap that is visible in the groundstate electron
band structure of 1T-TiS2, which makes it an insulator. Since insulators do not
have electron occupation above the Fermi level, they could be insensitive to higher
temperature smearing.

Convergence of interlayer distance

A monolayer consists of a single layer of material. Yet, as mentioned earlier,
DFT uses periodic boundary conditions as it does the calculations in the reciprocal
space. This means that even a monolayer will be replicated indefinitely. Instead,
we can increase the size of the cell parameter in the z direction such that the
interaction between the repeated layers will come to a minimum and will hence be
treated as a monolayer. We not only lack the necessary computational capacity to
accommodate an infinitely large cell size, but our requirement is only a monolayer.
We hence need to converge this parameter using the same tolerance value used
above. Figure 3.4 shows the above-mentioned convergence plot. This ensures that
the material we are working with is an isolated monolayer.
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Figure 3.2: (a) Plot of convergence of difference in energy vs k-point grid size, with
change in electronic temperature (for monolayer 1T-TiSe2); (b) Plot of difference
in energy vs electronic temperature at each converged k-point size
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Figure 3.3: (a) Plot of convergence of difference in energy vs k-point grid size, with
change in electronic temperature (for monolayer 1T-TiS2); (b) Plot of difference
in energy vs electronic temperature at each converged k-point size
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Figure 3.4: Plot of interlayer distance convergence for (a) monolayer 1T-TiSe2
and (b) monolayer 1T-TiS2

3.1.2 Electronic band structures

As explained in Section 1.1.1, CDWs are associated with a second-order phase
transition from an insulator phase (below TCDW ) to a metallic phase (above TCDW ).
It is hence of utmost importance to plot the electronic band structures of the high
symmetry phase to understand the electron bands and their occupation around
the Fermi level. The material has to ideally be a metal in its high symmetry
phase. A major factor that affects the bandgap in simulations is the exchange-
correlation (xc) functional used. For example, the Local Density Approximation
(LDA) and the Generalized Gradient Approximation (GGA) xc functionals are
known to underestimate the band gap strongly.

We chose to use the PBE-GGA xc functional [19] based on a review of the avail-
able literature. For the case of 1T-TiSe2, it has been shown that using the LDA
xc functional, the theoretical cell of the system does not display any instability [2],
while on the other hand, using the PBE-GGA xc functional (correctly) displays
a large phonon instability at the M point of the Brillouin zone [2, 37]. Addition-
ally, the use of the LDA+U functional led to an increase in the phonon frequency
(thereby making it more stable) with an increase in U correction. For the case of
1T-TiS2 as well, the LDA+U correction did not display any instability (no CDW
phase) [4]. The use of the modified Becke-Johnson functional (mBJLDA) [4] gave
a good estimation of the bandgap.
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Given this background we concluded that it made sense to first choose the PBE-
GGA functional [19] and calculate the electron band structure, following which, the
energies and forces of supercells (to be run using MLACS) are calculated. Shown
in Figure 3.5 are the electron band structures for both monolayer 1T-TiSe2 and
monolayer 1T-TiS2, calculated using the GGA xc functional. It is quite clear from
Figure 3.5(a), that 1T-TiSe2 is a metal since there is no band gap at all. On the
other hand, 1T-TiS2 (Figure 3.5(b)) presents a very small bandgap of 0.0737 eV.
These calculations were performed with the addition of electronic temperature to
ensure the physically correct occupation of electron bands around the Fermi level.
A temperature of only 11.60K (0.001 eV) was used for the monolayer 1T-TiSe2,
while a higher temperature of 116.04K (0.01 eV) was used for the monolayer 1T-
TiS2. Yet, there was a bandgap only for the latter. This means that 1T-TiS2,
even within the GGA approximation (we know that it underestimates the band
gap), presents a semiconducting phase.

According to the experiments, the bandgap of bulk 1T-TiSe2 is about 0.045
eV at room temperature, and the transition to a higher band gap phase occurs at
200K [38]. But there is not much data available for the monolayer 1T-TiSe2.

In order to look at the effects of the xc functional on the band gap of 1T-TiS2,
we further calculated the electron band structures using two other meta-GGA
functionals. We first used the modified Becke-Johnson (mbJ) exchange func-
tional [39] in combination with the PW-LDA [40] correlation functional. Here,
the ground state structure was imported from calculations with the PBE-GGA
[19] functional. We then used the re-regularized SCAN (Strongly Constrained and
Appropriately Normed) exchange functional by Furness et al in combination with
the re-regularized SCAN correlation functional [41, 42] (with larger value for eta).
Figure 3.6(a) and (b) show the electron band structures for monolayer 1T-TiS2
when using the above described mBJ and SCAN functionals respectively. The
bandgaps calculated were 0.0756eV and 0.7538 eV for the mBJ and SCAN func-
tionals respectively. The SCAN functional has clearly overestimated the bandgap
value (as compared to the literature, which shows values between 0.05 to 2.5eV
[43, 44]).

Since we know that CDWs exist in both the materials in their low temperature
states, it would be ideal to see a metallic phase from their electron band struc-
tures. The PBE functional looks satisfactory, but the mBJ functional might be
more apt to our study. Given the successful demonstration of CDWs in both the
materials using the GGA functional and the availability of a substantial dataset
for comparative analysis, we chose this functional for all the DFT calculations in
the rest of the study.
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(a) (b)

Figure 3.5: Plot of the electron band structure calculated using the PBE pseu-
dopotential for (a) monolayer 1T-TiSe2 and (b) monolayer 1T-TiS2

(a) (b)

Figure 3.6: Plot of the electron band structure calculated using the (a) mBJ and
(b) SCAN pseudopotential for monolayer 1T-TiS2
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3.2 Finding the best MLIP parameters
In Section 2.4.5, we discussed how the best MLIP is chosen in a given family.

In short, We train the MLIP on different combinations of hyperparameters and
then plot them on an ’Error vs Calculation Time’ graph. Shown in Figure 3.7 and
Figure 3.8 are such plots for the two chosen MLIPs (namely SNAP and MTP) for
TiSe2 and TiS2 separately. It can be clearly seen that there is a specific border (a
curve) in the plot, above which the graph is populated. This curve (as represented
in the graph) is called the Pareto frontier. It is a convex curve that shows the
optimal balance between the time and accuracy of each MLIP. If we move away
from the frontier into the region inside, we do not gain any increase in accuracy
for the given increase in calculation time. The ideal hyperparameter set is usually
picked when the error is converged - meaning, with an increase in calculation
time, there is only a minute reduction in the error and we are at the limits of the
underlying MLIP functional form. Shown in Table 3.1 and Table 3.2 are the final
hyperparameters chosen for the potentials, for each of the materials.

The error was defined as a linear combination of errors on the energy, forces,
and stress, as given in Equation (3.2). The different coefficients help weigh the
error that is most important for the required calculation (energy, force or stress)
by magnifying its contribution.

Error(∆) = σ1 ·RMSEenergy + σ2 ·RMSEforces + σ3 ·RMSEstress (3.2)

where RMSE is the Root Mean Square Error between the values calculated by
the MLIP and those given by the ab initio DFT.

Following are the hyperparameters and all of their values that were used in the
grid search of the MLIPs.

3.2.1 Hyperparameters for the SNAP potential
• chemflag - Toggle variable whether to or not consider the different chemical

species around a given atom. If off, all atoms would be weighted equally.
The values can be {0 or 1}.

• Rcut - The radius within which neighboring atoms are considered for a given
central atom. The values considered were {4.0,4.2,...,6.0} in Angstrom.
These values were chosen after studying the inter-atomic distances and the
size of the supercell used for the DFT calculations.

• 2Jmax - The maximum value of the parameters m and m′ chosen for the
angular basis set (spherical harmonics in 3D). The values considered were
{5,6,7,8}. It was observed that a 2Jmax value of 7 already gave the same
order of accuracy as a 2Jmax of 8. Hence, we stopped at 8.
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• training ratio - The dataset of configurations is divided into a training and
testing set. The MLIP is first fit on the training set and then tested on the
testing set. The training ratio is hence the ratio of number configurations
considered for training, to the total number. The values considered for the
training ratio were {0.7,0.8,0.9}.

• number of splits into train and test sets - It is not enough to split
the configurations set once. Multiple random splits ensure that the MLIPs
are not overfitted on similar configurations and hence learn the full Potential
Energy Surface (PES). The value chosen was 5, as there was very little change
observed, onc changing the test and train sets.

3.2.2 Hyperparameters for the MTP potential
• Rcut - Similar to the SNAP potential, the values considered are

{4.0,4.6,...,7.4} in Angstrom, based on the supercell size.

• levmax - The number of different contractions of the moments calculated (as
explained in Section 2.4.2). The values considered were {14,18,22,24}. A
level of 18 already gave the same order of accuracy as the higher ones.

• training ratio - As with the SNAP potential, the values chosen are
{0.7,0.8,0.9}.

• number of splits into train and test sets - Unlike the SNAP poten-
tial, the chosen value here is 4, since the MTP takes slightly longer for the
calculation of the MLIP.

As mentioned above, in the Figure 3.7 and Figure 3.8, the points represented
in red form the Pareto frontier. From these points, we choose the one at the
inflection point where the frontier becomes much flatter. It is visible from these
figures that MTP potentials are more accurate: most of the data points for the
MTP potentials lie near the Pareto frontier as well, showing stability with changes
in parameters.

It is also important to mention that the calculation times are all very small.
Even if we choose the MLIP with the longest calculation time, we still end up
nowhere near the time taken to calculate the energy/force using ab inito methods
such as DFT. This is a clear win for MLIPs. To compare the time taken for
the MLIP calculations, we used a serial version of LAMMPS for both SNAP and
MTP. Figure 3.7 and Figure 3.8 show that the SNAP potential is definitely faster
at calculating the energy, the forces, and the stress on the system as compared to
the MTP potential.
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Figure 3.7: Plot of accuracy vs calculation time when using different hyperparam-
eters for (a) SNAP potential and (b) MTP potential, for monolayer 1T-TiSe2
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Figure 3.8: Plot of accuracy vs calculation time when using different hyperparam-
eters for (a) SNAP potential and (b) MTP potential, for monolayer 1T-TiS2

Figure 3.9 and Figure 3.10 show the correlation plots between the forces cal-
culated by DFT and the MLIP, for the SNAP and MTP potentials respectively,
on data previously unseen by the MLIP (test set). They show very good R2 (co-
efficient of determination) errors with values very close to 1. Correlation plots are
hence a very good measure of how well the MLIP learns from the provided DFT
configurations.
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Hyperparameters 1T-TiSe2 1T-TiS2

chemflag 1 1
Rcut (Å) 5.8 5.8
2Jmax 6 8
Training ratio 0.8 0.9

Table 3.1: Final parameters chosen for the SNAP potential

Hyperparameters 1T-TiSe2 1T-TiS2

level 18 18
Rcut (Å) 7.0 7.0
Training ratio 0.9 0.9

Table 3.2: Final parameters chosen for the MTP potential

(a) (b)

Figure 3.9: Correlation plot for the forces calculated by DFT and the chosen SNAP
potential, for (a) monolayer 1T-TiSe2 and (b) monolayer 1T-TiS2

3.3 MLIP predicts the CDW

The previous sections dealt with all the steps that go into creating the MLIP,
namely - generating the first principles ground state geometry and electronic struc-
ture with the xc functional (PBE-GGA). The rest of this chapter will deal with

31



3.3. MLIP PREDICTS THE CDW

(a) (b)

Figure 3.10: Correlation plot for the forces calculated by DFT and the chosen
MTP potential, for (a) monolayer 1T-TiSe2 and (b) monolayer 1T-TiS2

the results obtained from performing calculations using MLIPs that are fit these
first principles results. Specific tests, namely - checking for physical distortion
and checking for the instability at the M point (Kohn anomaly) have been per-
formed to check the sensitivity of the MLIPs created. Since CDWs are a quantum
phenomenon, it is expected that a classical potential might not be able to fully
describe the process.

3.3.1 Ground state structure using the MLIPs
Using the MD package LAMMPS, an energy minimization was performed on

a 10 × 10 supercell for both materials. Since the high symmetry phase is already
in an equilibrium state with all the internal forces nullified, the supercell first
needs to be distorted a little by giving all the atoms random (but not too large)
displacements. Following this, the supercell is allowed to relax and find a stable
energy minimum using the conjugate-gradient method. This is done by using the
LAMMPS command minimize. The relaxed structures, using the MTP MLIP are
presented in Figure 3.11. They show a very clear PLD that is a positive sign of
the presence of a CDW (as explained in Section 1.1.1).

In Section 3.2, we showed that the MTP potential is more accurate than the
SNAP potential and hence we have made calculations mainly with the MTP po-
tential.

As it is now clear that the MLIPs can predict the lattice distortion, the next
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Figure 3.11: Schematics showing the periodic atomic distortion depicting values
of angular distortion in (a) monolayer 1T-TiSe2 (gray atoms are Ti and orange
Se) and (b) monolayer 1T-TiS2 (gray atoms are Ti and yellow S).

step is to look at whether this instability can be predicted with the use of phonon
dispersion curves.

3.3.2 Phonons calculated using finite-difference method
Figure 3.12 shows plots of the phonon dispersion curves calculated using the

finite difference method as explained in Section 2.3.2. Each plot shows three
curves. The black dotted curve represents the phonons calculated using the data
received directly from DFT calculations. The blue curve is calculated using the
SNAP potential and the red, using the MTP potential. As discussed in Section
2.3.2, phonons calculated using the finite difference do not take into consideration
the temperature effects.

For both materials, the phonons calculated from the DFT data are very sim-
ilar to those from the literature [4, 37, 45] (as shown in Figure 1.3 [1]). They
show a very strong instability at the M point of the Brillouin zone (as shown in
Figure 1.3(b)), pointing to the Kohn anomaly. This once again confirms that the
exchange-correlation functional chosen does indeed produce a CDW. The results
of the previous section (Section 3.3.1) make it clear that upon relaxation with the
MLIP, the atoms do find the energy minima corresponding to the CDW state.
Yet, in the case of 1T-TiSe2, the phonons calculated (using the finite-difference
method) using both SNAP and the MTP (Figure 3.12(a)) do not predict the in-
stability, meaning the high symmetry phase is (at least meta) stable.

For the case of 1T-TiS2 (Figure 3.12(b)), although the frequency of the unstable
phonon is not as high as the DFT calculated phonon, both the MTP and SNAP
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MLIPs manage to show an instability, confirming the existence of the CDW in the
MLIP potential energy surface.

The difference in instability between the two materials is quite puzzling. A
quick look at the electron band structures calculated using the GGA functional
(Section 3.1.2) shows us that monolayer 1T-TiSe2 is a metal in its high symme-
try groundstate while monolayer 1T-TiS2 is a semiconductor. The CDW phase
transition on the other hand is defined by a semiconductor (CDW phase) to metal
transition (high symmetry phase), and hence it is 1T-TiSe2 that should be showing
the stronger instability.

The instability shown by the MLIPs for monolayer 1T-TiSe2 is also very small
as compared to the groundstate DFT calculation. This is most likely due to the
limitation of the accuracy of these potentials, wherein they are unable to describe
sensitive phenomena like CDW phase transitions. The above-drawn conclusion is
based on the fact that there have been no dynamics run to calculate the phonons,
but instead, it solely relies on the forces and their derivatives calculated by our
own potential. If the potential has learned the quantum effect, it should surely
show up here.
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Figure 3.12: Phonon dispersion curves calculated using the harmonic approxima-
tion and finite-difference method for (a) monolayer 1T-TiSe2 and (b) monolayer
1T-TiS2
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3.3.3 Temperature dependent phonons using TDEP
As explained in Section 2.3.3, we use the anharmonic lattice dynamics theory

called TDEP to calculate the temperature-dependent phonons using our MLIPs.
Figure 3.13 shows the phonon dispersion curves calculated over a range of tem-
peratures (50K to 600K) for both materials. Based on whether or not the CDW
exists at a particular temperature, the instability (phonon frequency) at the M
point will vary. If the transition temperature (TCDW ) lies in the range of temper-
atures chosen, the phonon frequency should show a clear shift from an imaginary
to a positive value (as shown in literature Figure 1.3).

As explained in Section 2.3.3, there are multiple steps taken to calculate the
phonons using TDEP. In short, TDEP requires a unit cell (with a cell size taking
thermal expansion into account), and a distribution of configurations pertaining to
the canonical ensemble, for each temperature. The unit cell needs to be of the high
symmetry phase in order to make sure that TDEP is able to define the M-point
instability well.

In neither of the Figure 3.13(a) or (b), do we see a phase transition down to 50
K. There is definitely a strong dependence of the phonons on temperature, partic-
ularly at the M point, as we see the phonon softening with reducing temperature,
but no destabilization.

There are multiple variables that can be tuned in the TDEP calculations.
One such variable is the first-order force constant correction, which corrects the
reference atom positions to obtain the finite temperature equilibrium structure.
An alternative to this correction is to fit the expansion in cell size for different
temperatures with a function and then interpolate to whichever temperature is
required. Both of these methods were tested with very similar results, with neither
describing the phase transition accurately. This could mean two things: the chosen
MLIPs - SNAP and MTP are either not sensitive to quantum phenomena like
CDWs (meaning they are unable to accurately reproduce DFT data) and hence
require more accurate potentials like Neural Network Potentials (NNP). Or, the
hyperparameters chosen for the MTP gridsearch (Section 3.2) are not accurate
enough, and interactions over a longer range need to be considered.

35



3.3. MLIP PREDICTS THE CDW

M K
Wave vector

0

50

100

150

200

250

300

Fr
eq

ue
nc

y 
(c

m
1 )

600 K
550 K
500 K
450 K
400 K
350 K
300 K
250 K
200 K
150 K
100 K
50 K

(a)

M K
Wave vector

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y 
(c

m
1 )

600 K
550 K
500 K
450 K
400 K
350 K
300 K
250 K
200 K
150 K
100 K
50 K

(b)

Figure 3.13: Phonon dispersion curves calculated using TDEP for (a) monolayer
1T-TiSe2 and (b) monolayer 1T-TiS2
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4
Conclusions

In summary, this Master’s thesis presents a comparison of the speed and ac-
curacy between two MLIPs - SNAP and MTP, to check if they can successfully
predict the second order phase transition seen in the two monolayer TMDs - 1T-
TiSe2 and 1T-TiS2 chosen for this study. MLIPs are extremely fast as compared
to AIMD simulations. We have shown that the calculation times (per atom) are
in the order of milliseconds, and can hence be used for large systems and long
MD integration times, and in combination with techniques like TDEP to calculate
material properties.

It was initially concluded that the PBE-GGA exchange-correlation functional
could predict the band gap with enough accuracy, especially because of the al-
ready available literature and scientific data. However, since the phonon disper-
sion curves did not give us the desired properties, the choice of the functional
definitely has to be revisited. The groundstate of the two materials was calcu-
lated using DFT and the MLIPs were then trained using the package MLACS.
The MLIP hyperparameters were tuned and the SNAP and MTP potential were
compared. We also showed that the MTP potential is more accurate than the
SNAP potential. An anharmonic theory (TDEP) was then used to calculate the
temperature-dependent phonons for both materials.

The MLIP/DFT correlation plots also show that they are quite accurate at pre-
dicting the forces on the atoms, energies, and stress. This has been demonstrated
by running MD simulations where the system transitions to the CDW state when
relaxed. The MLIP supercells show a clear Periodic Lattice Distortion (PLD), a
clear sign of the CDW phase. However, phonon dispersion curve calculations on
the other hand gave us conflicting results. Finite difference calculations predicted
the existence of the CDW for monolayer 1T-TiS2 and not for 1T-TiSe2. This is
a clear sign of inaccuracy of the MLIPs as there are no other dynamics at play. If
the MLIPs were able to predict the CDW for 1T-TiS2, it means that they most
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likely need to be tuned better for the case of 1T-TiSe2.
Phonons calculated using TDEP on the other hand showed no instability at the

M point down to 50K, even for 1T-TiS2. This leads us to conclude once again that
the MLIPs fit on our data were not able to reproduce the DFT data accurately
enough to predict the CDW. In the case of TDEP, the quantum level information
that might be hidden in the MLIPs should be visible, because of the molecular
dynamics that were performed during the calculations. Although we see a PLD
during the MD test, we do not see the unstable phonon in this case.

In conclusion, the MTP and SNAP potentials that were fit on our data were not
accurate enough to reproduce the same instability seen in the scientific literature.
The use of more accurate hyperparameters or of better potentials like NNP (albeit
at a higher computational cost) needs to be carried out and compared to the
results of this thesis. On the whole, these potentials can be used for classical MD
simulations as they were indeed able to predict the groundstate of the CDW phase
for both the materials. Once the MLIP learns the CDW instability, it can be used
to calculate material properties such as thermal conductivity. Hereto, from all the
observations made, it can be inferred that a study of the effect of other exchange-
correlation functionals that can be used in place of the GGA functional for the
DFT “ground truth”, will shed light on whether the functional plays a major role
in the final MLIP produced.
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