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Chapter 1

Introduction

1.1 Context

The study of stellar pulsations, Asteroseismology, is an important domain of stellar
astrophysics. Stellar oscillations can be used to understand the internal structure
and dynamics of stars. Indeed, pulsations create some patterns of deformation of the
stellar surface that are shown as variations of luminosity and radial velocity when mea-
suring the spectrum. Indirectly, these seismic signatures provide information about
the envelope and sometimes the deep interior of a star. This information can be used
to learn more about stellar evolution.

Asteroseismology is particularly interesting to study red giants. These bright stars,
visible at large distances, have the particularity of having coupled oscillation modes.
Their oscillations can resemble pressure modes and gravity modes at the same ob-
served frequency, which are known as mixed mode. The seismic signature resembling
gravity mode propagates in deep layers, while the one resembling pressure mode prop-
agates in the extended envelope. This is therefore useful for studying distinct parts
of the interior.

In addition, red giants can be used as probes to study the properties of stellar
populations in different regions of the Milky Way. Thanks to this, it is possible to
access valuable information to study the history of our galaxy. This field is referred
to as ’Galactic Archaeology’.

Recent observational advances given by missions such as the NASA’s space mis-
sion Kepler (2009-2018) and ESA’s space mission CoRoT (2006-2012) provided a
large amount of high-quality data in stellar physics. This makes it possible to study
red giant oscillations with unprecedented observational quality, making a revolution
in red giants Asteroseismology.

Given the interest in this field, this work aims to study the physical properties and
evolution of red giants in core-helium burning phase. At first, the trend of various
physical parameters within the core is analysed for a reference star, and then for a
variable envelope mass and core size. This part of the study is based on a code of
stellar evolution, Clés, developed by the group ‘Astrophysique Stellaire Théorique et
Astérosismologie’ of the Department of Astrophysics, Geophysics and Oceanography
of the University of Liége (Scuflaire et al., 2007). The next step aims to extend the
study by using another model based on polytropes as approximation. This qualita-
tive framework provides a complement to the discussion and is implemented with a
Python code developed for the purpose of this work. We compare the model to the
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profiles obtained with Clés and discuss the final results.

In the final part of this master thesis, useful concepts of red giants asteroseis-
mology are introduced. We investigate some features of the mixed mode signature:
the Brunt—Viisild frequency, period spacing and large separation from the asymp-
totic theory. We focus on a reference star, and then study the dependence of these
parameters on the envelope mass and core size.

1.2 Stellar Evolution : Red-Giant Stars

This work concerns low-mass red giants in the helium burning phase. These stars are
in post-main sequence stage characterised by helium burning in the core. To provide
a background to the study of theses celestial bodies, the evolutionary stages from the
post-main sequence to the horizontal branch are presented as follows.

1.2.1 Post-Main Sequence

During their evolution, stars spend a large amount of their lifetime on the main se-
quence where hydrogen is depleted into helium in the core. Central reactions become
less efficient when approaching the end of the main sequence, leading to a complete
shutdown of the hydrogen burning. This phase is referred to as the terminal age
main sequence (TAMS). The transition from the main sequence to the red giant
branch (RGB) can be described as an inert helium core, surrounded by a hydrogen
burning shell located at the base of the envelope. The H-shell becomes the main source
of energy during this phase. As the hydrogen surrounding the He-core is depleting,
the shell gradually becomes thinner, while the mass of the helium core continues to in-
crease. This holds until it reaches the so-called Schénberg-Chandrasekhar limit mass.
Low- to intermediate-mass stars arrive at the end of the main sequence phase with a
He-core mass below this limit.

The evolution of a red giant up to the horizontal branch can be divided into several
stages: the Red Giant Branch (RGB), the Zero-Age Horizontal Branch (ZAHB), and
finally, the Horizontal Branch (HB) in core helium burning phase. Each of these stages
plays a role in shaping a star during its lifetime.

1.2.2 Red Giant Branch

Once the Schonberg-Chandrasekhar limit is reached, the structure of the star read-
justs to maintain hydrostatic equilibrium, resulting in the contraction of the core and
the expansion of the envelope. As the opacity of the cooling envelope increases, it be-
comes convective. Finally, the star reaches the base of the Red Giant Branch (RGB).

Throughout the RGB, the outer layers of the star expand and cool, while the con-
vective envelope goes deeper towards the hydrogen shell. This phase is characterised
by an increasing luminosity.

As the convective envelope deepens, at some point it encounters a region with
distinct chemical compositions compared to the surface. Material from this region
is mixed with surface layers, resulting in short phases called "first dredge-up" and
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"Bump" visible as a zigzag pattern on the Hertzsprung-Russell (HR) diagram (Fig.1.1).

Throughout the ascension on the RGB, the He-core progressively gains in mass.
For low-mass stars (< 1.8 Mg), a critical core mass of approximately ~ 0.48 Mg, is
a state where He-burning reactions are initiated. These stars have a degenerate core,
leading to a thermal runaway called the Helium Flash, marking the end of the red
giant phase and the start of the Zero-Age Horizontal Branch ZAHB.

In contrast, more massive stars have a less degenerate core, resulting in a gradual
onset of helium burning reactions with no helium flash.

1.2.3 Horizontal Branch

The next phase concerns the core helium burning. After the helium flash, the core
expands and cools down. This allows quieter He-burning reactions, which marks the
beginning of the horizontal branch phase. At this stage, the core is convective due
to the sensitivity of the He-burning reactions $-alpha (3 He — C and when there is
enough carbon, C + He — O ) to the temperature!. The end of the HB is reached
with the helium exhaustion in the core, producing a He-burning shell, in analogy to
the hydrogen exhaustion.

The theoretical boundary of the mixed core in red giants follows a model that
includes the so-called semi-convective zone. The following section introduces these
concepts and the general equations governing the interior of a star.

1.3 Stellar Structure and General Equations

This section introduces the governing equations of the stellar interior to describe its
dynamics, structure and provide a background to apprehend the next Chapters.
The theory is based on some assumptions:

e Stars have a spherical shape leading to spherical symmetry and are self-
gravitating. The effects of stellar rotation and magnetic field are neglected.

'Reactions of He-burning are located close to the centre, where T is higher.
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e As a consequence of the first assumption, the physical parameters (density, tem-
perature, pressure, ...) only depend on two variables, the radial distance and
time, (r,t).

e We neglect the time variation of the physical parameters meaning they depend
on one variable only, the radial distance, r.

For a star spherically symmetric, isolated and static, we obtain the following basic
equations.

1.3.1 Equation of Continuity

To study the stellar mass distribution, we define m(r) as the mass contained in a
sphere of radius r, within the interior of the star. At the surface, we obtain the total
mass, m(R) = M.

The mass of a shell, dm, within the sphere (Fig. 1.2) varies with respect to its
thickness, dr, according to
dm = 4mr?pdr,

where p is the density. This is called the continuity equation of the mass.

The differential equation can be integrated to obtain the mass of the sphere as
followed

m(r) :/ 4 pdr.
0

1.3.2 Equation of Poisson

Usually, the gravitational field of a star can be derived from a gravitational potential
®, which is a solution to the Poisson equation

V20 = 47Gp, (1.1)

where G = 6.67408 x 10" Nm?kg~2 is the gravitational constant describing the

gravitational field
_Gm
g = 7"2 .
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1.3.3 Hydrostatic Equilibrium

The hydrostatic equilibrium is derived from the balance of forces of an element within

the interior of a star. Consider a gas column of mass m(r), radial distance r and

density p. The hydrostatic equilibrium is defined as:
dP(r) Gm

ar 2 ?

It describes the forces applied on the element of gas acting against each other to

maintain the structure of a star. The weight of the element must be compensated by

the pressure coming from the matter below it, to avoid a collapse or an explosion of
a star.

(1.2)

1.3.4 Conservation of Energy

Let us consider a shell of thickness dr, mass dm and radial distance from centre r
(Fig. 1.2) inside a sphere of radius r. The power radiated by the sphere is called the
luminosity L,. We assumed the Local Thermodynamic Equilibrium (LTE).

The LTE implies that the rate of energy production of the core is exactly balanced
by the rate of energy dL, transported to outer layers. The source of energy of the core
are the nuclear reactions. Recalling that dm = 4wpdr, we obtain the conservation of
energy

dL, = 4nr’pedr = edm,

where € is the rate of nuclear energy production per unit mass. Finally, the differential
equation becomes

dL,
dm — €

The luminosity of a sphere of radius r is given with the integration over the mass

LT:/ edm’. (1.3)
0

Luminosity vanishes at the centre z = 0 and is equal to the total luminosity at the
surface z = R.

1.3.5 Energy Transport

There are different mechanisms able to transport energy from hot regions, to cooler
ones. Depending on the region of interest, there are three ways to efficiently transfer
energy to the outer layers: radiation, conduction and convection. For the purpose of
this work, we restrain ourselves to the transport by radiation and convection.

— Radiative transfer:

The transport of energy by radiation is a process driven by the gradient of temper-
ature. The exchange of energy operates through photons absorption and re-emission.
The mean free path of these particles, described by the region opacity, has therefore
a huge impact on the process.
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Consider a layer of thickness dr within the interior of a star at a distance r from
the centre. From the radiative transfer equation in LTE, integrated over the whole
frequency range, we define the diffusion equation as

16mr?acT® dT
L, — _Lomr*acT®dl. (1.4)
3Kkp dr
Where the luminosity, L,, is the radiation power crossing a sphere of radius r, a = 40/c
and o denotes the Stephan-Boltzmann constant.

The process of radiative transfer is always present as long as there is a temperature
gradient. The real gradient is defined as

dInT
= — 1.
dln P’ (15)
Describing the variation of temperature 1" with depth, in terms of pressure P.
We explicit the gradient by using the hydrostatic relation % = -2 fgm and the
definition of L,:
_dlnT PdP/dr  PdAT r? 3kPLy, (1.6)

“dlnP  TdT/dr T dr pmG ~ 16macGmTh

< Convection:

The transport of energy by convection is a process driven by the dynamic instabil-
ity of a region. The transfer occurs through the motion of macroscopic mass elements
called convective bubbles when the gradient of temperature is noticeably high. Usually,
the motion of elements around their equilibrium position follows a dynamic stability
implying that these masses come back to their initial position post perturbations. In
the case of dynamic instability, also called convective instability, the motion of the
elements amplifies the disturbance and trigger large-scale motion which is a mixing of
the region.

Convection instability is described through an instability criterion. Consider a
layer of thickness dr at a distance r from the centre (Fig. 1.3). As central temper-
ature and density are higher than in outer layers, their gradient is directed towards
the centre. We study the motion of a bubble of gas moved from r to r 4+ Ar.

Intuitively, we have 2 cases:

e Case 1 if ppubble > pPsurr, the bubble is more massive than the surroundings.
It is pushed back to its initial position by gravity. This is the STABLE case.

e Case 2 if ppubble < Psurr, then the bubble is less massive than the surround-
ings. It is pushed further upward. This is the UNSTABLE case.

Let us define a theoretical gradient, the adiabatic gradient as:

_ O0InT
- 9lnP S ’

vad
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Where §' is the constant entropy. The criterion of instability is given by
dlnT dlnT
< <n> < < - ) (1.7)
S dln P bubble dln P surr

We denote Vj = (%)bubble the bubble gradient and V = (S}EITD)SWT the gradi-
ent of the medium (real gradient).

olnT
OlnP

Therefore, the convective instability condition is

Vaa < Vp <V = V>V, . (1.8)

1.3.6 Schwarzschild criterion

The real gradient within the interior of a star is difficult to determine. If there is
convection in addition to radiative transfer then luminosity is the result of the two
contributions, L = L, + L.. We define another theoretical gradient based on the
definition of the real gradient (Eq.1.5), but using the total luminosity:

dinT _ 3xPL
din P 16macGmT*’

Vrad = (1.9)

This is called the radiative gradient. It expresses the required theoretical gradient
needed to ensure the transfer of the whole produced energy by radiation and it is
larger than the real gradient as L > L,. The Schwarzschild criterion comes from the
convective instability criterion (Eq.1.8) where we assumed Ay = 0 and used the ideal

gas law. We can write:
vrad _ £
\Y% L,
If V> V,q then V,.q > V, which gives the Schwarzschild criterion, another form of
the convective instability condition:

Vad < Viad - (1.10)
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When the radiative gradient is too large, the transport by radiation of L, to outer
layers is not efficient enough to ensure the whole transfer. An instability is created
and drive convective motion that can share the weight of carrying such an amount of
energy L.

1.3.7 Ledoux criterion

The Ledoux criterion is a general case of the Schwarzschild criterion and was proposed
by the astrophysicist Paul Ledoux. In this case, the radial chemical composition of
the region of interest is variable i.e. Vu # 0. The element of matter passes through
a medium of different compositions as it moves through the region. The ideal gas law
is replaced by a general equation of state:

dp adP dT du

p 7;—53;+¢;3 (1.11)

where
_ alnp’
- 81HP T,,u

__ Olnp
0= OlnT

Pu

0l
¢ = alﬁz‘P,T

And a, 6 , ¢ =1 describes an ideal gas.

Let us make the following assumptions and recall some previous results:

e The equilibrium pressure P; = P, between the bubble element and the sur-
roundings implies that dPs; = dF,.

e We assume that the molecular weight of the element does not change, du, = 0,
in contrast to its surroundings where dug # 0.

e The convective instability implies p, < ps. Therefore, we write dpp < dps.
e The pressure gradient is negative i.e. dP/P <0

From equation (1.11), we obtain the following inequality

<$<?) (fl—(?fl (1.13)
o (TR (IEY (BHE) o
N ) (

dInT ¢dlnp
de>s_<5de>; (1.15)

Where:
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_dInT _ O0InT _dlnp (1.16)
T dlP’ T 9P|y M dlnP '
Using realtion 1.8, equation 1.15 becomes
¢
= V<V - gvﬂ (1.17)
¢
& Ve <V — SV“ (1.18)
¢
< Vad < Viad — gvu (1.19)
¢
< Viyad > Vaad + gvu (1.20)

Defining the ledoux gradient Vi = Vg4 + %VW equation 1.20 is the Ledoux
criterion of dynamical instability. From this equation we see that if V, = 0, the
Schwarzschild criterion appears.

Furthermore, the case V,, > 0 has a stabilising effect. This comes from the
moving bubble that encounters a medium of smaller molecular weight. Its motion is
thus slowed down because the element is pushed downwards. In this case of dynamic
stability for a radiative layer then V,4 = V and we assume no heat exchange V; =
Vad such that the elements rise adiabatically. This gives the Ledoux criterion for
stability:

< V9w < Vi (1.21)

1.3.8 Overshooting

In this case, a convective overshooting region refers to an extension of a convective
core. It describes a region where V,.q < V,q but where matter is still mixed with
the convective core because of the inertia of the elements accelerated there. In other
words, this is a mechanism where the mass elements rising in the convective region
continue their motion after passing the convective boundary, even if there is no longer
a net force pushing them upward.

This is due to their inertia that gives them a non-zero velocity. After some
distance, they are slowed down in the extended region and pushed backwards. As
a consequence, mixing occurs beyond the Schwarzschild boundary. This extends the
mixed core size. Overshooting can have a significant influence on the evolution of a
star. This extra-mixing can provide more burning material to the core, and therefore
additional fuel for nuclear reactions.

1.3.9 Semi-Convection

Semi-convection refers to a layer where the Ledoux criterion for stability (section
1.3.7) is operating while the Schwarzschild’s criteria is unstable.

Vad < Viad < Via + %Vﬂ (1.22)
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This comes from the variable chemical composition creating a molecular weight
gradient Ap > 0 that acts against convection. The result is that a displaced mass
element oscillates up and down at a growing amplitude and goes higher and higher
into the layer. This is a region of slow mixing.
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Chapter 2

Theoretical Modelling

2.1 Introduction

This chapter explores the behaviour of several physical parameters of a given star
throughout its evolution on the horizontal branch. These include temperature, lu-
minosity, density, opacity and trajectory in the Hertzsprung—Russell (H-R) diagram.
The modelling is performed using a theoretical model, Clés, covering the entire se-
quence from the beginning of helium core burning to its completion. By varying some
of the initial parameters of the star, the link between the variables is investigated and
the results, interpreted.

Throughout this analysis, the dependence of the evolutionary sequence on the
envelope mass and size of the mixed core is examined.

2.2 Modelling

This section introduces the code, Clés, and the initial parameters of interest.

2.2.1 CLES

Clés, for Code Liégeois d’Evolution Stellaire, is a stellar evolution code developed by
the group "Astrophysique Stellaire Théorique et Astérosismologie" of the Department
of Astrophysics, Geophysics and Oceanography of the University of Liége (Scuflaire
et al., 2007). The version used for this work is able to compute the full sequence of
evolution of a star on the horizontal branch with a set of initial parameters. The code
is separated into two programs, one focusing on the computation of the first model
of the sequence, Zero-Age Horizontal Branch (ZAHB), and the other one on
computing the remaining models of evolution on the Horizontal Branch (HB). For
each step of the evolution, the set of physical parameters of the star are computed on
a grid of points, from the centre to the surface. The code uses the concept of semi-
convective, convective and radiative regions discussed in the introductory Chapter 1.
Our first modelling lead to convergence problems when the end of the core helium
burning phase was reached. In a new version of the code, this problem was solved by
blocking any further extension of the convective core and suppressing mixing in the
semi-convective layer when a critical value of the central helium abundance is reached.

This theoretical modelling is useful in the field of Asteroseismology.
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2.2.2 Semi-Convection Problem

As previously seen in Chapter 1, the radiative gradient in a convective layer is higher
than the adiabatic gradient (V,qq > V4q). At the boundary of the convective zone, the
radiative gradient drops, becomes equal to the adiabatic gradient (V,qq = V4q) then
goes below to form a radiative layer (V,qq < Vgaq). A discontinuity in the radiative
gradient profile appears at the boundary of the mixed core. The origin of this drops
is explained as:

— The nuclear reactions occurring at the centre of the convective core transform
helium into heavier elements (carbon then oxygen). The new chemical elements
are homogenised by the mixing core. As a result, the outer region has a
chemical composition that is distinct since no reaction occurs there and it is
not part of the mixing. This creates a discontinuity in the composition profile
on the border.

— Given these features, the opacity profile has a step shape on the mixed core
boundary. The origin of this discontinuity is presented with a simple model in
Chapter 3 (Eq.3.12). The opacity is mainly due to the free-free transition and
electron scattering. These processes strongly depend on the atomic number
of metallic elements: Z2. While the mixed core increases in mass, Z increases.
The profile is therefore different between the two regions.

— Finally, the discontinuous drop of the radiative gradient on the boundary
is explained by the strong dependence on opacity shown with its definition
(Eq.1.9).

The challenge in modelling a core-He burning star lies in handling the intermediate
zone between the border of the convective zone and the outer radiative zone. When
the star evolves, the radiative gradient tends to increase beyond the convective zone.
This poses a problem when dealing with the mixing of the core because the rise of the
radiative gradient could lead to the creation of an additional convective layer, thereby,
misidentifying the border of the convective core. This is a numerical issue that might
result in helium being re-injected into the core, which is not supposed to happen.

To prevent the radiative gradient from surpassing the adiabatic gradient, the model
introduces a semi-convective zone (Section 1.3.9) by imposing a non-zero molecular
weight gradient V, and ensuring that the adiabatic and radiative gradients are equal
Viad = Vg throughout the layer. This guarantees that the radiative gradient remains
limited by the adiabatic gradient. The issue is illustrated in Figure 2.1.

The semi-convective region is therefore, considered as another extension of the
mixed core but where the mixing is slow, causing a variable chemical composition.
The real gradient V is fixed to be equal to the adiabatic gradient (Vo,q = V) up to
the discontinuous boundary of the semi-convective layer.

2.2.3 General Structure

The model structure of the interior can be divided into several regions:

e The mixing core encompasses the Schwarzschild region and the overshooting
region (Section 1.3.6 and 1.3.8 ) during the early stages of evolution. The core
mass of a star grows throughout its evolution on the horizontal branch. The
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model assumes a homogeneous chemical composition, following the assumption
made for the Schwarzschild criterion.

e Beyond the overshooting region, the rise of the radiative gradient leads to the
presence of a semi-convective region that extends the core, as discussed pre-
viously (Section 2.2.2). In this region, the chemical composition is variable,
resulting in a non-zero molecular weight gradient.

e A radiative helium region lies between the convective core and the hydrogen
burning shell.

e An hydrogen burning shell surrounds the core. Within this shell, hydrogen is
being depleted and transformed into helium through the main chain of reactions,
the CNO cycle.

e Above it, the envelope is mainly convective up to the photosphere. In this work,
our primary focus is on the core and the hydrogen-burning shell.

2.2.4 Initial Parameters

The computation of a full sequence of evolution with Clés is based on several initial
parameters as variables, including the mass of the helium core, total mass, relative
size of the overshooting layer, metallicity, etc. Table 2.1 summarises the default values
of the parameters of interest.

The values are expressed in relation to the solar radius, solar mass, total mass of
the chemical composition, etc. Let ay, denotes the overshooting region in units of
Alog P, Yt the critical mass fraction of central helium, My, the relative mass of
the helium core, Z the metallicity, and M the total mass:
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Initial Parameters | Values
Qoy 0.50
M (Mg) 1
Ycrit 0.1
Z 0.014
Mpe (Mg) 0.45

TABLE 2.1: Some of the initial parameters, by default, of a sequence
of evolution computed by the code Clés are as follows.

The ones discussed in this work are the following:

e Total Mass The evolution of physical parameters is investigated by varying
the initial total mass of the star.

1) The first sequence is computed using a total mass of reference, 1My in order
to analyse the behaviour of the variables throughout the HB. The other param-
eters are kept at their default value.

2) Several sequences are computed by altering the initial total mass of the star,
enabling an analysis of how these variables depend on mass.

e Overshooting parameter «,, The influence of the overshooting layer is ex-
amined by changing the default value (0.50) to a small layer (0.15). This com-
parison makes it possible to distinguish between a significant overshooting and
a nearly nonexistent overshooting.

2.3 Results and Discussion

In this section, we discuss the results of the computed sequence for various physical
parameters. The figures extracted from the evolutionary sequence are displayed as a
set to visualise the behaviour.

2.3.1 Reference Mass

The first part of the results present a reference mass of 1Mg.

H-R Diagram

As a start, we examine the Hertzsprung-Russell diagram of the reference star. Figure
2.2 illustrates the trajectory followed by the star during its evolution on the hori-
zontal branch. The markers represent specific evolutionary steps, along with their
corresponding central helium abundances Y.

The loop observed at the beginning of the trajectory may be attributed to the
onset of core helium burning. The star total luminosity gradually decreases on the
horizontal branch, while the effective temperature shows a slight increase. At a state
around Y.= 0.34, a bifurcation appears in the trajectory. From this point, luminosity
increases while effective temperature slightly decreases.

Surface luminosity is influenced by internal luminosity. Studying the trend of the
internal physical parameters can help to interpret this trajectory. This is precisely
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what is explored in the upcoming sections.
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FIGURE 2.2: H-R diagram for 1 Mg core-He burning star. The mark-
ers indicate a state of central helium abundance (Y.=0.34 in red and
Y. = 0.10 in yellow)
Luminosity

To investigate the H-R trajectory, we examine the local luminosity within the interior
of the star, focusing on the H-shell and the core. These regions provide the energy
source of the star and their combination influences the surface luminosity. The shell

and He-core luminosities are the powers produced by nuclear reactions in, respectively,
the He-core and the H-shell.

Let mg be the mass of a sphere of radius rg, where 0 < rg < rgnen, and M be the
total mass. Then, theses parameters are defined as:

Lie = f(;m edm = L(myg)
Lohens = [ edm = L(M) — L(my).

In Figure 2.3, several regions in the central part of the star can be observed. The
physical parameter (in this case, luminosity) is plotted as a function of the relative
mass m/Mg which covers the centre up to the H-shell. The orange line delimits the
convective core (following Schwarzschild criterion) and includes the extension of the
overshooting layer. The black line defines the boundary between the core and the
hydrogen burning shell. Further descriptions of these regions will be made in Section
2.3.1 with the help of the gradients profile. While central helium is burning, luminos-
ity tends to increase in the core and decrease in the shell.

Figure 2.3 illustrates this trend between the early model Y.= 0.93 and the middle
state Y. = 0.52 (panels 2.3a and 2.3b). The plateau observed at first, in the core
then in the shell, comes from the energy transfer under thermal equilibrium where
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dL/dm = €p in the entire layer. There is no other source and loss of energy through-
out the region than nuclear reactions of He-burning at the centre and H-burning
in the shell.

Later in the evolution, the observed trend changes in the shell. In fact, in Figure
2.3c, starting around Y. = 0.34, the decrease in Lgpe slows down and no longer com-
pensates for the increase in L. As a consequence, the surface luminosity, which is a
combination of the two, stops decreasing and starts to increase. Figure 2.4 shows the
Lghen and Lye profile compared to the variation of the central abundance of helium.
As Y. decreases throughout the horizontal branch, the figure shows the whole evolu-
tion of the He-core and shell luminosity.

The Lgpen decreases during the sequence of evolution then increases at the end,
when the fraction of helium reaches a critical value, Y, = 0.10. This shows the reac-
tivation of the shell observed in Figure 2.3c. He-core luminosity, on the other hand,
tends to increase during the evolution until the critical state Y. = 0.10, where core-He
burning reactions shut down.

— Now, we can understand the H-R diagram much better:

The total luminosity comes from the source of energy. It is then significantly influ-
enced by the H-burning shell surrounding the He-core. A decrease of Lgpe induces a
decrease of the surface luminosity. That explains the first trajectory of the star on the
evolutionary diagram. In addition, the onset of the core-He burning at the beginning
induces a small bump observed in Lge profile and a loop in the H-R diagram. At
the end of the sequence, the reactivation of the Lgne combine to the increasing Lye
affects the total luminosity and as a consequence, it draws a bifurcation in the H-R
diagram.

In order to investigate the trend followed by the luminosity, other parameters need
to be analysed. As mentioned in Chapter 1, the local luminosity mainly depends on
nuclear rate €, opacity and temperature.

Nuclear Reactions

The luminosity trend can be investigated by looking at the source of energy, i.e. the
nuclear rates. The rates can be observed in Figure 2.5 shows in the deep interior. The
helium burns mainly through the 3-a reaction, er, while the hydrogen burning into
helium occurs through the pp-chain and the CNO cycle'. As expected, the helium
burning from the 3-a reaction is located at the centre of the star. this comes from the
high sensitivity to temperature which increases towards the centre. On the other
hand, the H-burning is located in the shell surrounding the core.

Following the evolution, the first two panels (2.5a and 2.5b) show the nuclear rates
profiles between Y. = 0.93 and Y. = 0.52. The shell decreases in activity while the
hydrogen is being depleted into helium. In the core, the helium burning continues.
This is a first result that gives us an indication of why the shell luminosity decreases
while the core luminosity increases.

LCNO cycle is more efficient here.
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The last panel in Figure 2.5¢ shows another interesting result occurring at the end
of the sequence. The nuclear reactions in the shell that were previously decreasing are
starting to increase after passing the critical value Y,.=0.10. As previously mentioned,
the shell luminosity increases gradually starting from roughly the same Y.. This
confirms a reactivation of the shell at the end of the sequence. Furthermore, we can
see once more that the convective core mass decreases at this stage.

Temperature

The temperature profile contributes to the increasing luminosity at the centre. Indeed,
figure 2.6 shows that during the evolution, the central temperature increases. The last
panel, 2.6c, shows that even at the end of the sequence, for this example Y. = 2.57
107%, its trend remains the same in the core. This temperature increase is small but
since the 3-alpha reactions are extremely sensitive to the temperature, this leads to a
significant increase of Ly.

Opacity

The opacity profile (Fig. 2.7), indicates that central opacity increases throughout the
evolution. The reason behind this trend is investigated in the next Chapter 3. An
increase of opacity is accompanied by an increase of the convective core mass.

There are some discontinuities in the profile. They are actually due to a disconti-
nuity in the chemical composition profile. Indeed, in the first panel 2.7a, we see that
the core-He burning creates a chemical composition distinct from the outer core and
that it draws a discontinuity of the opacity profile at the border. This gap becomes
larger as the core-He burning continues.

The third panel highlights the effect of the semi-convective zone on the profile.
It displaces the previous discontinuity at its upper boundary and creates a zone of
variable chemical composition within it. This is in order to stabilise the mixing and
ensure equal gradients (V,q,qg = V = V,4). Beyond the semi-convective zone, the com-
position remains homogeneous and distinct from what the inner zone. The convective
core, overshooting zone and semi-convective zone are illustrated in Figure 2.10b.

At the end of the sequence, while the convective core mass decreases, the chem-
ical composition no longer changes as a result of the end of mixing. This leaves the
discontinuities of the profile intact as shown in Figure 2.8.

Furthermore, from chapter 1, we learned that the radiative gradient is sensitive
to opacity and that its behaviour determines the dynamics of a region (convective,
radiative). Therefore, it is interesting to study gradients, considering what we know
about the profiles of luminosity and opacity.

Gradients

The adiabatic, radiative and real gradients (Voq , Viea , V) are useful parameters
to understand the delimitation of the convective and semi-convective layers. Figures
2.9 and 2.10 show the evolution of these gradients and illustrate the various layers.
Looking at the early and middle stages of the evolution (3 panels of Fig.2.9), we con-
firm that the large value of the radiative gradient at the centre explains the convective
core. Furthermore, we previously observed that the core opacity tends to increase in
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time, leading to energy confinement. This is correlated with the high value of the
radiative gradient.

At the convective boundary, the radiative gradient becomes lower than the adia-
batic gradient. Therefore, outside the convective core, the medium is radiative up to
the convective envelope, which is not studied in this work. When the gradient rises
in the overshooting region to meet the adiabatic gradient, a semi-convective layer
appears. The extension of the semi-convective layer with the evolution causes the
motion of the discontinuity boundary towards the shell. Finally, after reaching the
critical state Y.=0.10, the semi-convective layer disappears and the core-He burning
reactions shut down (Fig.2.11).

Density

In previous figures, we observed a contraction of the convective core when approach-
ing the total exhaustion of central helium. The density profile is interesting to study.
Figure 2.12 shows 3 stages of evolution. From the first panel to the second, density
has a decreasing trend. A discontinuity on the mixed core boundary appears rather
quickly after the start of the core-He burning (panel 2.12b). This comes from a dis-
continuity in the chemical profile due to the nuclear reactions: the mean molecular
weight p has a discontinuous drop on the mixed core boundary due to the core mass
increase. Density depends on the latter through the ideal gas law (p oc uP/T'). While
temperature and pressure are continuous parameters, density is affected by the dis-
continuity of y. With the same reasoning, the semi-convective upper boundary carries
the discontinuity as shown in the last panel 2.12c.

The central density decreases until reaching a helium abundance around Y., =
0.34. From that stage, the it increases (Fig. 2.13). In other words, approaching the
critical value Y. = 0.10 induces a drastic change similar to the previously discussed
shell luminosity. Beyond this stage, the last panel 2.13¢ shows that the core mass
decreases, leading to an increase of the entire density profile. This change of regime
is mainly due to the exhaustion of the available fuel. This is particularly critical in
this case as three helium nuclei need to meet simultaneously to fuse. Fuel exhaustion
of this kind, lead to the core contraction.

Relation (p. , 1¢)

The relation between the central temperature and density (Fig. 2.14) reveals that
while T, increases throughout the evolution, p. decreases until reaching a state around
y.=0.34. From there, it increases. The same results was observed on the density profile
as a function of the mass ratio.

Dependence u

Why density decreases in the core while temperature increases ? To intuitively in-
vestigate this trend, let us remember that these parameters are related to each other
through the ideal gas law:

P
Tox —u
p
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the mean molecular weight p increases in the core during the evolution. The study
of the relation between temperature, pressure and density reveals that temperature
is more sensitive to the mean molecular weight tendency than density. Indeed, the
logarithmic dependence T-P (Fig.2.16) compared between two models extracted from
the sequence of evolution (Y.=0.90 and Y.=0.30), shows that it is not fixed in time
(the figure translates). On the other hand, the logarithmic dependence p-P (Fig.2.17)
compared with the same states (Y.=0.90 and Y.—0.30), shows that the logarithmic
relation between p and P remains fixed in time. In other words, when the central u
increases, to keep the ratio p/P constant, the central temperature increases as well.
This idea is explained more visually with the schematic figure 2.15.

Physically, it can be explained as follows. When temperature increases due to the
increase of the core mass, the nuclear reaction rate also increases. To prevent the core
from producing too much energy compared to what is transported outside the region
(which would cause a thermal disequilibrium), the convective core mass increases.
This expansion affects the reaction rate because it causes a decrease of the probability
of collision between particles (helium atoms have to meet for the 3-a reaction). This
way, the core energy production is kept under control.

Finally, the constant slope in the logarithmic relation between pressure and den-
sity (Fig.2.17) forms the research question explored in Chapter 3, where we use the
polytropes model to express pressure in terms of density. The core of the idea comes
from the results of this Chapter: InP ~ ~ Inp + cst.

Conclusion

The overall results can be understood as follows: After the onset of core-He burning,
the evolution on the horizontal branch begins. The core mass increases with the nu-
clear reactions. In parallel, the central temperature, luminosity and opacity increase.
To maintain control of the energy production, the density decreases. Meanwhile, the
activity of the shell decreases as the hydrogen is depleted into helium. This causes a
decrease of the shell luminosity and the surface luminosity.

However, when reaching a value of central helium abundance in the range [0.34-
0.32| the material becomes poor which decreases the probability of reaction. To main-
tain the needed energy production, either temperature or density must increase. As
T is already increasing, a change in the density profile has the most impact. This
way, the central density increases while the central helium comes closer and closer
to the critical value Y, = 0.10. From this critical abundance, the core-He burning
shuts down due to the fuel exhaustion. To prevent the star from going out of equilib-
rium, the entire core contracts and the envelope expands. This induces a temperature
increase in the shell and causes a reactivation of the hydrogen burning. The shell
luminosity increases in parallel to the surface luminosity. This entire phase explains
the bifurcations observed in some profile such as the density and the H-R diagram,
around and below Y.=0.34.

2.3.2 Envelope Mass Dependence

Let us now investigate the dependence on the envelope mass of these variables. To
quantify this impact, we modify the total mass of a reference star, since the mass of
the helium core is fixed.
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H-R Diagram

From figure 2.18, we observe the dependence on the envelope mass of the evolution
of red giant stars. The trajectories are distinct from the start. The higher the mass,
the higher is the total luminosity and the effective temperature. A bifurcation of the
trajectory appears for each star and the latter occurs around the same central helium
abundance (Y. €[0.34,0.35]). Finally, we notice a strange behaviour for 1.2 Mg, 1.6
Mg and 1.7 Mg, after the critical helium mass fraction Y.=0.10. The solution seems to
explode and this is not physical. It is most likely an effect of the numerical resolution
in the extreme case of Y. — 0.

Luminosity

Figure 2.19 shows the luminosity profile for stars of different masses. The central
helium value Y. used as reference for the plots follows the mass of reference, 1Mg.
The luminosity profiles are at the same age but not exactly the same Y..

At the beginning of the He-core burning (panel 2.19a), luminosity is the same for
each mass in the core, and different in the envelope: the helium core of each mass has
the same initial mass My, while the envelopes have different masses and sizes from
the start. The weight of the envelope above the H-shell is larger for a more massive
star. The temperature and luminosity of the shell are therefore higher and so is the
total luminosity. This is similar to the well-known mass luminosity relation in main
sequence stars. However, the slope of the "mass-luminosity" relation is much smaller
during the core helium burning phase ( L o« M) compared to the main sequence,
where typically L oc M3.

While the He-core grows in mass, the luminosity profiles have the same trend
compared to the one discussed for the reference mass. Ly, increases with time while
Lghen decreases. However, the gap between the set of luminosities increases in the
core during the evolution. The higher is the mass of a star, the higher becomes the
core luminosity. Let us also notice that the core mass grows slightly further for a
more massive star (panel 2.19b). Finally, the last panel 2.19¢ shows that the shell
luminosity starts to increase beyond Y.=0.10.

Furthermore, the envelope mass seems to have an effect on the evolution rate.
The He-core luminosity profile as a function of the age (Fig. 2.20a) and then Y.,
(Fig. 2.20b), highlights that by varying the total mass, the time-scale of evolution is
different. A more massive star has a larger envelope and evolution seems faster. In
other words, the same age does not correspond to the same central helium abundance.
He-core reaches central helium exhaustion earlier for higher masses. This can also ex-
plain why the He-core luminosities for the set of stars separate from each other during
the evolution. The cores evolve at a different rate and as a consequence, the corre-
sponding luminosities increase at a different rate. This result might be understood
as follows: the higher the mass, the higher is Lgpep, then the faster is the progression
of the H-shell inside the envelope. As a consequence, the changes of T' and p inside
the shell and below it are faster and the increase of the He-burning efficiency is also
faster.
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Relation (p. , T¢)

Let us examine the relation between central density p. and central temperature T, in
Figure 2.21, as discussed previously for the reference mass.

The bifurcation of density occurs at the same Y, for the entire set of stars (Y,
€ 10.34, 0.32]). This supports the previous explanation: a poor abundance of central
helium significantly affects the rate of nuclear reactions as the probability of reaction
decreases tremendously. To compensate for this effect and maintain the production
of central energy, the convective core mass decreases (central density bifurcation in
the profile). At some point, helium exhaustion becomes so critical (Y.=0.10) that
this mechanism is not efficient anymore. This also affects the shell that undergoes
a reactivation. Finally, as the entire core contracts, the envelope expands and cools
down, explaining the decreases of the surface temperature in the H-R diagram.

Conclusion

In conclusion, the envelope mass has an effect on the evolution of a star. From the
beginning, the initial total luminosity and temperature are affected by a change of
mass. The evolution rate seems to be also affected by the envelope mass since the
more massive is a star, the faster it reaches the central helium exhaustion. Finally, a
central contraction of the core appears at a similar state for the entire set of stars,
in the range [0.34,0.32]. This supports with the idea of a lack of fuel that tries to be
compensated until the mechanism is no longer efficient to sustain the core-He burning

(Y.~0.10).

2.3.3 Overshooting Variation

We use the same approach, by changing the size of the overshooting region. The
stars of interest in this discussion are the reference mass (ao, = 0.50) and the same
envelope mass with a small overshooting parameters a,, = 0.15.

H-R Diagram

As a starting point, we can examine at the H-R diagram (Fig. 2.22). The trajectories
have a slight difference marked at the beginning of the sequence and at the bifurcation.
Despite these small gaps aside, the trajectories are similar. This small change implies
that the size of the overshooting region does not have a significant impact on the
evolution of the star.

Gradients

To obtain a better understanding of the internal differences between the pair of stars,
we examine the gradients closely. In the first model of the sequence, the size of the
mixed core is clearly distinct (Fig. 2.23a) depending on the overshooting size. As a
consequence, the radiative gradient is different locally leading to a variation of the size
of the mixed core. Later in the evolution, we observe that the rise of the gradient does
not occur at the same time by varying the overshooting. In fact, the semi-convective
layer appears faster in the evolution of a star with a small overshooting.

As an example, in the selected figure 2.24, we observe that the overshooting layer
and the semi-convective layer compensate each other in size. The size of the mixed
core remains therefore approximately the same for both stars. As the discontinuity
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at the border of the mixed core is almost at the same mass ratio m/M, the structure
of the star is similar. This means that the rest of the star is less affected by the over-
shooting change than the core. However, the size difference of the semi-convective
region does affect the chemical profile. As mentioned earlier, the semi-convection
creates a variable chemical profile. A larger semi-convective region implies that the
modification of the chemical profile extends further and is greater, as observed in Fig-
ure 2.25. The chemical composition of the core affects the structure of the star, but
as the difference remains small compared to the entire star, it is not significant. This
also explains why the difference in the H-R diagram is small.

Furthermore, As mentioned previously, the temperature gradient V is fixed as
V = V,q within the mixed core, up to the limit of the semi-convective layer. The effect
of a variation of overshooting with the temperature gradient is therefore negligible.
This is due to the compensation of the layers that keeps the total size of the mixed core
almost the same. This contributes to understanding why the shell, and more generally
the evolutionary trajectory, is just slightly affected by the variation of overshooting.

Luminosity

To confirm that the overshooting does not significantly affect the star on the point of
view of the evolution, the luminosity profile is interesting to examine (Fig. 2.26) . The
plateau of shell and core luminosities are similar in both cases, during the evolution.
This explains the similar trajectories in the H-R diagram.

Conclusion

In conclusion, the size of the overshooting layer affects the size of the mixed core in
early stages and the age appearance of the semi-convective layer. Furthermore, the
two layers seem to compensate each other so that the total extension of the mixed
core remains almost the same in later stages. This means that the size of the semi-
convective layer adapts. The latter affects the chemical composition profile. However,
even with a difference of molecular gradient V, between the pair of stars, the real
gradient (temperature gradient) is more or less the same in the entire core, as a
consequence of the layers adapting their size to each other. The general structure of
the shell and the outer parts is then lightly affected by the variation of overshooting.
As a consequence, the trajectories of evolution are similar and the age that marking
the exhaustion of central helium remains almost the same. We can conclude that the
overshooting does not significantly affect the evolution of a star of reference.
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(¢) Yo = 0.02, the mixed core retracts and the semi-convective layer disappeared at Y. = 0.10 .

FIGURE 2.5: Nuclear rate profiles as functions of the mass ratio m/Mg
for 1 M. The mixed core boundary (convective + overshooting layer)
is the vertical orange line and the shell boundary is the vertical black
line. The figure is divided into 3 sub-figures extracted from the whole

sequence of evolution.
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(B) Y. = 0.31, the core is slowing down its expansion.
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(¢) Y. =2.57 107°* | the mixed core retracts. The semi-convective layer disappeared at Y. = 0.10.

FIGURE 2.6: Temperature profile as a function of the mass ratio

m/Mg for 1 Mg. The mixed core boundary (convective + overshoot-

ing layer) is the vertical orange line and the shell boundary is the

vertical black line. The figure is divided into 3 sub-figures extracted
from the whole sequence of evolution.
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(€) Y. = 0.52, the semi-convective layer expands.

FIGURE 2.7: Opacity profile as a function of the mass ratio m/Mg
for 1 M. The mixed core boundary (convective + overshooting layer)
is the vertical orange line and the shell boundary is the vertical black
line. The figure is divided into sub-figures extracted from the sequence

of evolution.
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(B) Y. = 2 1073, the convective core mass decreases.

1700, Y = 3.02358E-04, C12. = 3.85823E-01, 016, = 5.97848E-01

0.3

T T T T T

Kclés

0.05 0.1 0.15 0.2 0.25
M/Msun

(¢) Y. =3.02 107

0.3

FIGURE 2.8: Opacity profile as a function of the mass ratio m/Mg
for 1 Mg. The mixed core boundary (convective + overshooting layer)
is the vertical orange line and the shell boundary is the vertical black
line. The figure is divided into 3 sub-figures extracted from the whole

sequence of evolution.
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FIGURE 2.9: Gradients profiles and helium mass fraction profile as a

function of the mass ratio for 1 M. The convective zone is in yellow,

the overshooting layer in green and the semi-convective zone in light

blue. The radiative gradient V,,q4 is in red and the adiabatic gradient

Vd in blue. For the real gradient V, V = V,4 in the mixed core and

V = V,uq in the radiative zone. The figure is divided into sub-figures
extracted from the sequence of evolution.
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