
https://lib.uliege.be https://matheo.uliege.be

¿If we had to do it again¿ - an algorithmic view of the magic formula behind a

commercially successful French hip-hop song

Auteur : Zolotariov, Denis

Promoteur(s) : Ittoo, Ashwin

Faculté : HEC-Ecole de gestion de l'Université de Liège

Diplôme : Master en ingénieur de gestion, à finalité spécialisée en digital business

Année académique : 2022-2023

URI/URL : http://hdl.handle.net/2268.2/18786

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

“IF WE HAD TO DO IT AGAIN”

an algorithmic view of the magic formula behind a commercially successful
French hip-hop song

Jury: Master Thesis submitted by
Supervisor: Denis ZOLOTARIOV
M. Aswhin ITTOO For the degree of
Reader : Master in Digital Business
M. Chuor PORCHOURNG

Academic year 2022/2023

Chapter 1

Acknowledgements

1

First of all, I would like to sincerely thank HEC Liège for the level of education I
received during my university studies, and the incredible opportunity to learn so many
diverse things, whether in class, through projects or through this master thesis.

The first persons I would like to thank are my teachers Messrs. Ittoo & Schyns,
who supported my idea in the early stages of reflection and that have given many useful
pieces of advice for the successful completion of this thesis. Thanks to my supervisor Mr.
Ittoo, in particular, for his trust and for the autonomy he gave me, which pushed me to
overcame the plethora of issues I encountered, to surpass myself and to be proud of my
accomplishments.

Thanks also to Mr. Poumay, who kindly answered my LDA-related questions when I
felt really stuck.

On a more general note, I would like to take this opportunity to thank the teachers who
were able to captivate us, the students, and make us learn, as well as all the people who con-
tribute to making HEC and the University of Liège places conducive to study and fulfillment.

In my personal life, too, I would like to thank all the acquaintances with whom I
exchanged on my thesis, who gave me support, ideas or pieces of advice. Here, I obviously
think of Elsa, Aliocha, Anouar, Dimitri, Delil, Laura, Roman, Anthony, Alexia,
Justine, Martin, Laureen, Delphine, Benjamin, Cédric, Victoire, Véronique,
Pauline, Annelyse, Bérénice, Julien, Sorenza, Arthur & Julien. I cannot forget
also people that were so enthusiastic about my thesis (surprisingly for me) that asked me
to read it when it is over: Anissa, Adin, Dylan, Laoro, Nicolas, Mateo.
I thank you very much for your encouragement and interest.

To conclude, the achievement of this thesis took much longer than I expected, but I met
a lot of people, I discovered many things and I learned during the whole process, nonstop.
I even learned more about myself, my ability to deal with cumulative workload, with stress
and to respect my limits. I surely would have loved to achieve even more, but I realise that I
gave my best at each step without ever quitting and that I have attained a very decent result.

For all of that, I would like to express my gratitude.

2

Chapter 2

Table of contents

3

Contents

1 Acknowledgements 1

2 Table of contents 3

3 Figures and source codes 6

4 Introduction 11
4.1 Justification of the topic . 12

4.1.1 The place of Internet in our lives . 12
4.1.2 The place of music in our lives . 13
4.1.3 The place of Hip-Hop in the global music industry 14
4.1.4 The place of France in Hip-Hop . 15

4.2 Research objective and detailed research question 15
4.2.1 A correlation model . 16
4.2.2 A prediction model . 16

4.3 Envisaged method . 16
4.3.1 Success definition and limitations . 16
4.3.2 Database creation and data to store 16
4.3.3 Hypotheses testing and model improvement 16
4.3.4 Prediction model . 17

4.4 Outline . 17

5 Developments 18
5.1 Theoretical framework . 19

5.1.1 Success: definition and limitations 19
5.2 Methodology . 20

5.2.1 Type of research . 20
5.2.2 Data collection and analysis . 21
5.2.3 Scientific literature review . 41
5.2.4 Problems encountered and solutions found 45

5.3 Results . 62
5.3.1 Making predictions . 64
5.3.2 Storing our model . 64

5.4 Discussion . 65

6 Conclusions 66
6.1 Limitations . 67
6.2 Future research paths . 67

7 Appendices 69
7.1 Developments . 70

7.1.1 Methodology . 70
7.2 Conclusions . 84

7.2.1 Future research paths . 84

4

7.3 Additional appendices . 86

8 List of resource persons 91

9 Bibliography and references 93

5

Chapter 3

Figures and source codes

6

List of Figures

5.1 Example of a Genius page within this album 22
5.2 Our artists.txt file . 24
5.3 Our artists.txt file, filtered . 25
5.4 Preview of the Diamond certified releases after LDA model running 32
5.5 Model comparison without weighting average 39
5.6 Model comparison with oversampling . 40
5.7 Feature importance analysis of our first model version 44
5.8 Feature importance of model version 2 - taking release month into account . 44
5.9 Feature importance of model version 3 - taking release day into account . . 45
5.10 Our first heatmap result, which is completely incorrect 46
5.11 Our second heatmap, with correlation matrix 47
5.12 Heatmap, third version: less features, removal of certification levels 48
5.13 Updated topic labels in MongoDB . 52
5.14 A result sample based on our incorrect code 53
5.15 Result sample with variable selection for model training fixed 53
5.16 Result from a small example code written on an online Python compiler

(Programiz) . 55
5.17 Misuse of tokens list . 56
5.18 All topics we had after topic labeling . 57
5.19 Preview of our topics replacement list . 59
5.20 Our gigantic database with features dummified 61
5.21 Sample of our .csv prediction file . 64

7.1 Sample of our statistical model analysis . 80
7.2 Our initial k-fold cross-validation result with Decision Tree (overfit) 82
7.3 Our k-fold cross-validation result with Random Forest (overfit) 83
7.4 Our final result of k-fold cross-validation with Random Forest and the

oversampling technique applied . 83
7.5 Sample of our scientific literature database on Notion 87
7.6 Sample of our scientific literature database on Google Spreadsheet 88
7.7 Sample of our main page for the research thesis on Notion 88
7.8 Overview of our MongoDB database . 89
7.9 An overview of our Platinum MongoDB collection 89
7.10 Overview of our GitHub page for the research thesis (available at [GitHub, 2023]) 89
7.11 By-hand correction to some releases . 90

7

List of Tables

5.1 Classification report: oversampling RF + day/month/year variable split . . 38
5.2 Random songs comparison for both topic modelling algorithms 58
5.3 Results of the statistical tests . 63
5.4 Results of Chi-square realized on topic x and certification level variables . 63

7.1 Classification report: hard Voting Classifier (LogReg, RF & SVC) 71
7.2 Classification report: hard Voting Classifier (DT, RF & SVC) 71
7.3 Classification report: hard Voting Classifier (RF, SVC & KNN) 72
7.4 Classification report: hard Voting Classifier (RF, SVC & NB) 72
7.5 Classification report: hard Voting Classifier (RF, DT, SVC, NB & KNN) . 73
7.6 Classification report: soft Voting Classifier (RF,DT, SVC, NB & KNN) . . 73
7.7 Classification report: soft Voting Classifier (RF, SVC & NB) 74
7.8 Classification report: soft Voting Classifier (LR, RF & SVC) 74
7.9 Classification report: soft Voting Classifer (DT, RF & SVC) 75
7.10 Classification report: soft Voting Classifier (RF, SVC & KNN) 75
7.11 Classification report: oversampling RF . 76
7.12 Classification report: oversampling RF + month/year variable split 76
7.13 Classification report: oversampling RF + day/month/year variable split . . 77
7.14 2001, 2011 and 2021 best-selling rap albums comparison 85

8

List of source codes

5.1 Retrieving all artist names through Genius 22
5.2 Constructing the artist name’s list . 23
5.3 Cleaning furthermore the artist name’s list 24
5.4 Retrieving certified albums through SNEP 26
5.5 Retrieving album’s content . 28
5.6 Pre-processing data before storing . 29
5.7 Latent-Dirichlet Allocation (LDA) topic modelling 31
5.8 Running our LDA algorithm and storing results in variables 32
5.9 Storing topic modelling result in JSON file 33
5.10 Storing album data in MongoDB . 34
5.11 Creating Pandas’ DataFrame . 35
5.12 Pre-processing of the DataFrame’s data . 36
5.13 Defining our heatmap . 37
5.14 Results of our heatmap . 37
5.15 Double-split method to train our model . 38
5.16 Our Python code for our incorrect first heatmap 46
5.17 Our second heatmap . 47
5.18 Correct code for the heatmap . 48
5.19 Repetitive patterns for words in initial LDA version 49
5.20 Our program for word2vec topic modelling 50
5.21 Modifying MongoDB’s data to correct topic modelling 51
5.22 Replacing values in topic 1,topic 2 and topic 3 51
5.23 Our initial training model variable selection 52
5.24 Our variable selection, fixed . 53
5.25 Fixing the duplicated topic columns . 55
5.26 Correct bit of code for pre-processing text contents 56
5.27 Full code for themes grouping and filtering 60
5.28 Making featurings a binary variable . 62
5.29 Predicting the level of certification a record will get 64
5.30 Saving our model in a .joblib file . 65

7.1 Declaration of the Random Forest algorithm with oversampling technique . 70
7.2 Declaration of the Decision Tree algorithm with oversampling technique . . 70
7.3 Declaration of the Gaussian Naive Bayes algorithm with oversampling technique 70
7.4 Declaration of the K-nearest Neighbors algorithm with oversampling technique 78
7.5 Declaration of the Logistic Regression algorithm with oversampling technique 78
7.6 Declaration of the Support Vector Classifier algorithm with oversampling

technique . 78
7.7 SMOTE oversampling . 79
7.8 imblearn’s undersampling . 79
7.9 SMOTEENN sampling . 79
7.10 One example of Voting Classifier model . 80
7.11 Feature importance analysis code . 80
7.12 Our array dummifier topics() function . 81

9

7.13 Addition to array dummifier topics() to deal with conflicting column names 81
7.14 Our function join labels(), working in pair with array dummifier topics() 82
7.15 Output of the Decision Tree k-fold cross-validation method 82
7.16 Initial output of the Random Forest k-fold cross-validation method 83
7.17 Our final output for the oversampled Random Forest k-fold cross-validation

method . 84
7.18 Our k-fold cross-validation algorithm taken from [Affiah, 2022] 87

10

Chapter 4

Introduction

11

4.1 Justification of the topic

4.1.1 The place of Internet in our lives

We live in a digital world. We are connected more than ever before, we spend more time
than ever on the Internet for always more reasons, whether it is for our personal leisure time
or for work, for educational purposes or entertainment. A lot of what we do is digitalized,
sometimes even transferring our habits from the real world to the digital one. This all
results in an ever growing user base all around the world, as [Degenhard, 2023] shows: just
to take the last two years, we went from 4,852 millions of users in 2021 to 5,100 millions
the next year, a 5% increase for a technology soon to turn 30. The same source even goes
as far as predicting this trend will only keep up, reaching 5,300 millions in 2023 and no
less than 6,192 millions in 2028.

The impact and importance of the Internet in our lives is therefore undeniable.

What do all these users do on the Internet? According to a research conducted by
[Petrosyan, 2023b] on a population of 16 to 64 years old1, when we re-group results by
topics and order them by the highest ranked one first, the main activities seem to be:

1. Learning : searching and finding information (1), keeping up-to-date with news and
events (3), researching how to do things (5), etc.

2. Social interactions : staying in touch with friends and family (2), etc.

3. Creativity purposes : finding new ideas or inspiration (6), etc.

4. Entertainment : watching videos, TV shows or movies (4), accessing and listening
to music (7), filling up spare time and general browsing (8), etc.

5. Commercial purposes : researching products and brands (8), etc.

”Accessing and listening to music” represents the answer of 44% of the participants.

[Ceci, 2023b], in turn, focuses on the worldwide users activity but on smartphones
in a one-year span, going from July 2022 to June 2023, on a population whose age goes
from 18 to 64 years old2. Among all respondents, the top 5 activities and their respective
percentage are listed here below:

1. 74.7% of respondents use their smartphone to chat or send messages

2. 70.95% of respondents use them for e-mailing

3. 62.9% for online banking

4. 61.7% to listen to music

5. 61.1% to watch videos

And these results are interesting. Indeed, we observe that communication and learning
are predominant reasons we use technology, which is not surprising, but also that music
seems to have a very important place in our day-to-day lives. It even reaches
fourth place in the study conducted by [Ceci, 2023b], ahead of video watching, which is a
massive market nowadays.

1Unfortunately, nor the population size or segmentation is available to our knowledge.
2Here too, unfortunately, we don’t have much indication on the population size or segmentation.

12

4.1.2 The place of music in our lives

One way to understand how considerable the music market is, is by using the observations
we have just discussed and given by [Degenhard, 2023]; if we take 5,100 million as the
number of Internet users we currently have and multiply it by the percentage of respondents
of any of the last two researches we discussed regarding their music consumption, we observe
that we had at least 2,244 million music listeners (and 3,162 million listeners if we
take the second results) in the world in 2022, which is a massive market.

Now, considering smartphone activities is of interest, as [Petrosyan, 2023a] demon-
strated that we preferably access the Internet through any type of phones in 95% of cases,
and only 63% of the time through any type of desktop. By carrying on in this subcategory,
one could further ask what this traffic represents in terms of user number of revenues, for
instance.

[Ceci, 2023a] gives us the first answer: among all downloaded Android applications on
the Google Play Store during June 2023, users mostly downloaded:

1. Social media applications: Instagram (68.92 millions), Facebook (38.52 millions),
WhatsApp Messenger (29.57 millions), etc.

2. Video makers: mAst (26.02 millions), Viamaker (23.77 millions), etc.

3. Shopping applications: Meesho (16.21 millions), etc.

4. Music streaming application: Spotify (16.11 millions), etc.

Spotify, the leading music streaming platform [Curry, 2023] [Götting, 2023], is the only
one of its category appearing in this top 20. Not only that, but it ranks higher than very
important markets, such as TV and series streaming or Telegram. This, once again, tends
to prove the impact music has.

The second part of our question (that is, the importance of the sector revenue-wise)
is answered by [StatistaResearchDepartment, 2023]; gaming is the best selling segment in
mobile applications, revenue wise, with 225,339 millions of dollars in 2022. In the same year,
music is ranked fifth most profitable segment, with $12,028 millions in revenue. Forecasts
also inform that this upward trend will most probably continue, with 17,880 millions of
dollars of revenue expected in the music sector, an increase of 31% compared to 2023.
[Curry, 2023], on its side, estimates music streaming revenues to $43.4 billion in 2022.

Music can also be consumed in different ways. [Curry, 2023] highlights five of them
and ranks them by the profitability in the United States in 2022:

1. Streaming (83%)

2. Physical (11%)

3. Other digital (4%)

4. Synchronized (2%)

[Smirke, 2023], in turn, gives its ranking but based on global music consumption in
2022:

1. Streaming (67%)

2. Physical (17.5%)

3. Performance rights (9.4%)

13

4. Other digital (3.6%)

5. Synchronized (2.4%)

This shows us that streaming has a very, very dominant position in the market, as it is
by far the most profitable way of creating, selling and consuming music.

Naturally, each country has its culture, tastes and consumption habits. Thanks to
[StatistaMarketInsights, 2023], we learn that in 2017, the top 5 countries in the world with
the most music streaming revenues were:

1. United States: 3.924 million $

2. United Kingdom: 916 million $

3. China: 912 million $

4. Germany: 792 million $

5. France: 500 million $

The booming of the sector is confirmed by the data of 2023:

1. United States: 10.200 million $

2. China: 3.178 million $

3. United Kingdom: 1.973 million $

4. Germany: 1.442 million $

5. France: 1.069 million $

And [Smirke, 2023] proves it: in order, the United Kingdom, Germany and France
are the most profitable European countries in the music streaming industry, with France
having a increase of revenues of 7.7% compared to 2021, an increase even greater than the
European average, which is 7.5%.

4.1.3 The place of Hip-Hop in the global music industry

Now that we know the financial size of the international music market, the next question
would be: what is the most popular genre of music in music streaming platforms?

According to [Milkman, 2021], the result goes as such for each of the leading music
streaming platforms in 2021:

• Apple: Hip-Hop (48%)

• YouTube: Hip-Hop (38‰)

• Spotify: pop (44%), then Hip-Hop (24%)

• Pandora: country (35%), then pop, then Hip-hop

• Amazon Music: pop (48%), then country, then Hip-hop

This brings some interest in analyzing Hip-Hop more deeply.

14

4.1.4 The place of France in Hip-Hop

The United States is, without a doubt, the biggest and most profitable Hip-Hop country
market of all [Le Monde, 2020] [Lynne, 2022]. With the latter put aside, what would be
the next country to be the most important for this culture?

Although opinions may diverge, a certain literature has suggested France as being the
second biggest Hip-Hop market of all [Le Monde, 2020] [Lynne, 2022].

Arguments toward this hypothesis can be found by analysing national rankings; indeed,
if we take the top 10 albums of 2022 in the 3 European countries we have spoken earlier,
and if we look at the number of rap artists present in this top 10, we can observe the
following:

• United Kingdom: 1

• Germany: 1

• France: 5 to 73

For comparison’s sake, during the same year, only 4 top-10 albums in United States
were produced by rappers.

Such observations indicate the very unique place of Hip-Hop in France, a phenomenon
that can be linked to the Toubon Law, which dates back to 1994 and that formulates the
obligation to follow the quota of at least 40% of song radios to be French-spoken on private
and public radios in traffic peak hours [Mourgere, 2015].

Considering it as an opportunity, a private radio company named Skyrock decides
to take advantage of this situation to make a considerable programming shift and be-
coming a 80%-based Hip-Hop and R&B radio, a first in France history [Chakor, 2019]
[Wikiwand, 2023e]. Indeed, up until that moment, radios have played very little of these
two genres.

This, joined to the emergence of public television programs dedicated to this culture
from the United States (such as ”H.I.P H.O.P” [Wikiwand, 2023d]), will contribute to
making Hip-Hop only more and more popular, spreading it across the whole country and
inspiring the younger French generations to practice it.

All this artistic expression, passion and spreading will lead, in 2019, for Paris to be
elected the most successful city for Hip-Hop by the American website [Oliver, 2020] based
on record sales.

In the light of the information given in this section, this research thesis proposes trying
to predict future music commercial success, which is a very strong indicator for the music
industry and undoubtedly an objective pursued by all, and this research to take place in
the French Hip-Hop market.

4.2 Research objective and detailed research question

My research objective is twofold:

1. What factors make a French Hip-Hop song successful?

2. How well can we predict the commercial success of a future French Hip-Hop song,
based on the analyzed factors?

3This difference can be explained by the definition of ”rapper” that we want to take here; indeed, some
rappers could be linked to other music genres.

15

4.2.1 A correlation model

The first question will imply gathering data from commercially successful French rap
albums in order to test factors, features that impact the success of its constituting songs.
This will require creating a sustainable statistical model and then try to improve it based
on the available scientific literature and eventually trade press.

4.2.2 A prediction model

Once this prediction model is created and running, we will go to step 2: trying essentially
to predict new releases’ commercial success. To simulate it, we are going to run our model
on never prior observed data to check its accuracy.

Together, these two questions form my research question - “Can the commercial
success of a French rap song be predicted by features such as the context in
which the said song is dropping out and its content?”.

4.3 Envisaged method

The tools that I will use throughout this research thesis will be VSCode4, Python5 and
numerous of its libraries and MongoDB6.

4.3.1 Success definition and limitations

To achieve the above-stated objectives, we will first need to answer a simple yet essential
question : “How can we define success?”; more exactly for us, what can we consider as a
musical commercial success in the French rap industry? At this stage, a clear quantitative
definition will be given and with it will also be defined its limitations.

4.3.2 Database creation and data to store

Once the definitions are given, we will carry on by creating our database and populating
it with our data: album name, release year, artist name, and so on. This will be done
thanks to programming. The database storing system will be MongoDB, as it allows to
store semi-structured data, also called documents. This means that even if we encounter
incomplete album data, the storing system will not break, and it will then be our job to
replace it by some significant information if and when needed.

To this, among different features, we will also try to include some Natural Language
Processing (NLP) analysis on the lyrics - retrieving the main covered topics of each song
to have a clearer view on its content.

4.3.3 Hypotheses testing and model improvement

The features must be relevant - to know what criterias can be considered useful, we will
rely on a relatively small set of features first, selected by intuition and review of success
stories, and then improve it with two things, namely the results of our analyses and some
literature review.

Also, it is worth noting that what we mean by ”success level” here is the official
certification levels for the albums: we will analyze three of them, the most relevant ones,

4Visual Studio Code, also named VSCode, is a source-code editor made by Microsoft. [Microsoft, 2023]
5Python is a high-level, general purpose programming language. [Python, 2023]
6MongoDB is a document-oriented database management system that doesn’t require specific data

structure. [MongoDB, 2023]

16

namely Diamond, Platinum and Gold. These are also the classes that we will try to predict
throughout this research thesis.

4.3.4 Prediction model

At last, we will put in use our model by trying to predict future releases’ commercial
success level. Therefore, we will keep as an objective during this thesis to make our model
reusable for further researches or analyses in our field.

All of our used code is available:

• Most important snippets: in the body of this thesis

• Relevant snippets: in the appendices

• All of our code: in our GitHub repository, available from [GitHub, 2023]

4.4 Outline

This research thesis proceeds in two main steps. Section 6 will dive into our work: starting
with the theoretical framework, we will define which definition of ”success” we have taken,
taking the opportunity to points out its limitations. We then will give every information
needed regarding methodology: the type of research, the data collection and analysis
methods, and so on. Then, it will be time to dive into the scientific literature, mostly to
gather new potential features to try. However, we obviously encountered some issues, and
we will discuss theses and the found solutions in the next section.

Once this is done, it will be time to present final results. We will observe the accuracy
and robustness of our model, thanks to several different statistical and algorithmic tech-
niques. This will be followed by some brief discussion.

The last step will be Section 7, where we will conclude. We will start by summarizing
the limitations in regards to the hypotheses we have taken. At last, some of these limitations
will be presented as new future research paths, suggesting to use our findings to pursue
the analysis on this domain.

17

Chapter 5

Developments

18

5.1 Theoretical framework

5.1.1 Success: definition and limitations

To predict the success of a song, we first need to define what ”success” is. [Webster, 2023],
a public English dictionary, defines it as a ”degree of measure of succeeding”, a ”favorable
or desired outcome”. So, re-phrasing our question, it becomes: what does it mean to be a
commercially successful song in the music industry? As spoken in [Cross, 2016], although
several metrics exist, there is one that is well-defined, objectively measurable and for which
the data is abundantly available: music certifications.

Music certifications are granted by official organizations to reward artists and labels for
meaningful achievements. To get these certifications, the artists and labels need to reach
a certain level of sales, which is objectively determined by the organizations of each country.

In the United States - which is the leading country in terms of music revenues in 2022
according to [Smirke, 2023]-, the organization responsible for these awards is the RIAA1.
RIAA was initially launched in 1958 and has known changes in certification conditions,
notably due to streaming services arrival. Currently, the three main levels are as follows:

1. Diamond album: 10,000,000 units

2. Platinum album: 1,000,000 units

3. Gold album: 500,000 units

Additionally, multi-platinum albums are albums sold at at least 2,000,000 units, and
they increment by 1,000,000 (a 3-times platinum albums is, therefore, an album that
reached 3,000,000 units sold).

But since 2016, the international music industry has faced a big change. Indeed, in
order to take into account the emergence of streaming platforms, which transformed our
way of consuming entertainment (including TV programs, series and also music), sales
equivalences have been introduced; starting from then, in the United States, a unit was
equal to:

1. One digital or physical album sold or shipped

2. 10 tracks from a downloaded album

3. 1,500 on-demand audio or video streams of songs from the album

Now, for France, the organization that rewards certifications is called ”SNEP”2, and its
role is to be ”the main employers’ organization for producers, publishers and distributors
of recorded music, partners of music artists in France” [SNEP, 2023b].

Its actual certification levels are as follows, according to [Wikiwand, 2023c]:

1. Diamond album: 500,000 sales equivalents

2. Platinum album: 100,000 sales equivalents

3. Gold album: 50,000 sales equivalents

1”RIAA” stands for Recording Industry Association of America. [Wikiwand, 2023b]
2”SNEP” stands for Syndical National de l’Édition Phonographique. [Wikiwand, 2019]

19

As for the United States, multi-platinum albums can be reached but by increments of
100,000 units, and up to 300,000 sales only. We observe that in France too, we take into
account streaming through sales equivalence3. Here is the formula for unit sales equivalents:

sales equivalence = album sales+ streaming sales (5.1)

where

streaming sales =
total album streams− most streamed album song

2
1500

(5.2)

Therefore, throughout this research thesis, we will always refer to this meaning of
success - a song that is commercially successful is a song whose album has
received certification (and obviously, the highest sales, the rarest certification, the
better) - as it is objective, measurable and official.

It is also very important to note that another path was conceivable, namely focusing
not on the album certification, but on the single certification. This category also exists
and has produced sufficient amount of data4. However, we have decided to prefer focusing
on albums for several reasons: first and foremost, we tried to explain success by the release
context as much as possible, and we quickly reached the understanding that album releases
have more information than single releases. Second, a single is oftentimes announcing
an album release, which is in turn the real commercial target, as artists tend to make
the most out of them, to capitalise on it with international tours, more promotional
efforts, and so on. However, single certifications could have worked in pair with album
certifications if we had decided to cross-check both; this will be discussed in the conclusions5.

5.2 Methodology

5.2.1 Type of research

The produced knowledge was basic, in the sense that it aimed to develop an under-
standing on main features to predict the success of an album song, while also
being applied, as it provided a program to test the features and predict success.

Therefore, it surely was exploratory in the features’ side of things, but it was mainly
explanatory, as the most important thing to retrieve from this research was the model
and its results.

The approach was hybrid: first, we tested a small sets of features, which is inductive
approach, but then we analyzed the literature to test theories, which is deductive.

3The terms ”sales equivalence” seem to have changed signification throughout time. We observe that at
first in France, one spoke about sales equivalence when addressing the sales originating from streaming
platforms exclusively but nowadays, it seems like more and more use these words to designate the total
quantity of sales, physical and downloads included. We will prefer this second definition, as it seems more
contemporary.

4For instance, to find the most recent certified singles in France: [SNEP, 2023a]
5What can be already said is we initially planned to work on the albums to correlate songs data inside

of the latter to understand more accurately the reasons for commercial success. As it will be explained, we
unfortunately did not do that.

20

The data was mainly secondary, as all statistics regarding albums was retrieved
either from Genius or the SNEP website.

Since we analysed lyrics content, which is quantitative, but also worked with quantita-
tive data (such as the page view number), our research methods were mixed.

We controlled our variables, trying to determine the causes and the effects, which made
it an experimental research.

Our sampling method was a non-probability one: although we wanted to predict
success of songs not in our set, we could only apply our findings to the specific subjects of
our research.

We also selected data at a single point in time , which made it a cross-sectional study.

At last, as we adapted our features and rules during our research, our design was
flexible.

Regarding the training model, we try to predict a class variable, which made it a
classification model6.

5.2.2 Data collection and analysis

In this section, we are going to detail the most important steps taken to reach our objective,
which is to create a model which could predict what song will be certified and to which
degree. But in order to do that, we had to rely on some data, and more specifically data
of previously certified albums, as it will be the basis of our research. Once we will have
this data, we will pre-process it, removing noise and extreme values, to then store the
important features into a database to be able working from it directly. After that, we
will train our model based on unseen data, test its efficiency and try improving it with
additional features or corrections.

Regarding data collection, the latter was completely based on the SNEP website[SNEP, 2023a],
which provided all records used afterwards.

However, we didn’t want to retrieve all genres of records; we wanted specifically French
Hip-Hop releases. So, we had to find a way to filter records. To do so, we proceeded in
several steps.

Retrieving artist names

The first one was downloading the JSON file that gathered the list of all French Hip-Hop
records ever put in [Genius, 2023], which is the leading music lyrics website and which has
a very strong community around especially French rap music. In order to be correct and
precise, we needed one unique source that has the most exhaustive list of artists possible,
and Genius being a renowned Hip-Hop website, it was the perfect candidate to do so.
Moreover and very importantly for me, it had a Python library, called LyricsGenius7, which
allowed manipulating Genius records with ease.

6A sample of statistical model comparison made early in this research can be found in the Appendices,
p.80

7[Miller, 2023]

21

1 #To retrieve the JSON file with all the data

2 album = genius.search_album("Discographie du rap français", "Genius France")

3 album.save_lyrics()

Source code 5.1: Retrieving all artist names through Genius

The code hereinabove shows exactly how we managed to retrieve all French rap albums
ever published on Genius. ”Discographie du rap français” being an album-like page
artificially put up by the Genius community to list all releases year by year starting from
1982, we simply used save lyrics(), a function allowing us to store all the information
regarding an album in a JSON file.

Figure 5.1: Example of a Genius page within this album

Now having one unique JSON file that contained a very large amount of French Hip-Hop
releases with artist and release names, we needed to build a list of artist names that we
could then input into the SNEP website. This artist name list could then be saved in a
separate file, to proceed to further cleaning.

22

1 import json

2 import regex as re

3

4 #List to store all French rap artists

5 artists = []

6

7 with open('Lyrics_DiscographieduRapfrançais.json') as json_data:

8 data = json.load(json_data)

9 i=0

10 for element in data["tracks"]:

11 text = data["tracks"][i]["song"]["lyrics"]

12

13 #We split the document into yearly releases

14 doc = text.split("\n")

15 #We only keep artist names

16 for line in doc[1:]:

17 #To remove dates

18 entry = re.sub("\- (.*\/.*?)\ :|* (.*\/.*?)\ :", " ", line)

19 #To remove noise before artist names

20 entry = re.match(".? (.*?)\ -|^(.*?)\ -", entry)

21

22 #We store new names

23 if(entry):

24 new = entry.groups()[0]

25 if new is not None:

26 if new not in artists:

27 artists.append(new)

28 else:

29 new = entry.groups()[1]

30 if new not in artists:

31 artists.append(new)

32 i+=1

33 #We sort the list in alphabetical order before saving it

34 sorted = sorted(artists)

35 # print("Liste d'artistes: ", artists)

36 file = open("/Users/haternel/Downloads/diamondCertificationDB/artists.txt","w")

37 for artist in sorted:

38 file.write(artist + "\n")

Source code 5.2: Constructing the artist name’s list

23

Figure 5.2: Our artists.txt file

Now that we had a list of artists as exhaustive as possible, we cleaned it a second time
and put every name in uppercase to avoid issues related to case sensitivity in the ordering
(fortunately, the SNEP website was case-insensitive):

1 file = open("/Users/haternel/Downloads/diamondCertificationDB/artists.txt","r")

2 whole = file.read()

3 artists = whole.split("\n")

4

5 #Erasing the empty first element in the list

6 del artists[-1]

7

8 artists = sorted(artists)

9

10 #Storing in artists_filtered.txt

11 ret = open("/Users/haternel/Downloads/diamondCertificationDB/artists_filtered.txt","w")

12 filtered = []

13 for artist in artists:

14 artist = artist.upper()

15 if artist not in filtered:

16 filtered.append(artist)

17 ret.write(artist + "\n")

Source code 5.3: Cleaning furthermore the artist name’s list

24

Figure 5.3: Our artists.txt file, filtered

Now, we had everything we needed to retrieve all the records related to our French rap
artists.

Retrieving list of certified albums

Now that we finally have a usable, satisfactory and near-exhaustive list of French rap
artists, we dived into the retrieval of records through the SNEP website, using Selenium8,
a Python library that aims, among other things, at reading website pages and interacting
with the latter in a methodical and automatic way.

1 import time

2 from selenium import webdriver

3 from selenium.webdriver.common.keys import Keys

4 from selenium.webdriver.common.by import By

5 from selenium.webdriver.chrome.service import Service

6 from selenium.webdriver.support.wait import WebDriverWait

7 from selenium.webdriver.support import expected_conditions as EC

8

9 #Retrieving our artist names' list

10 file = open("/Users/haternel/Downloads/diamondCertificationDB/artists_filtered.txt", "r")

11 whole = file.read()

12 artists = whole.split("\n")

13 del artists[-1]

14

15 #We specify that we want the webdriver to be of the Chrome type

16 # driver = webdriver.Chrome()

8[Muthukadan, 2023]

25

17 chromeOptions = webdriver.ChromeOptions()

18

19 #We define which destination folder we want

20 prefs_or = {"download.default_directory" :

21 "/Users/haternel/Downloads/diamondCertificationDB/snep_query/or"}

22 prefs_plat = {"download.default_directory" :

23 "/Users/haternel/Downloads/diamondCertificationDB/snep_query/platine"}

24 prefs_diamant = {"download.default_directory" :

25 "/Users/haternel/Downloads/diamondCertificationDB/snep_query/diamant"}

26 prefs_a_filtrer = {"download.default_directory" :

27 "/Users/haternel/Downloads/diamondCertificationDB/snep_query/a_filtrer"}

28 chromeOptions.add_experimental_option("prefs",prefs_a_filtrer)

29

30 #We firstly scrap the site to accept cookies

31 cookies = "https://snepmusique.com/les-certifications/"

32 driver.get(cookies)

33 time.sleep(3)

34 cookie = driver.find_element(By.ID,"cn-accept-cookie")

35 cookie.click()

36

37 for element in artists:

38

39 #We retrieve the right address

40 start = "https://snepmusique.com/les-certifications/?certification="

41

42 #We define parameters

43 ##Levels of certification

44 certifs_diam = "Diamant,Double%20Diamant,Triple%20Diamant,Quadruple%20Diamant"

45 certifs_plat = "Platine,Double%20Platine,Triple%20Platine"

46 certifs_or = "Or,Double%20Or"

47

48 ##The rest

49 format = "categorie=Albums"

50 artist = "interprete=" + element

51 query = start + certifs_diam + "&" + artist + "&" + format

52 driver.get(query)

53

54 #We let the page load

55 time.sleep(3)

56

57 try:

58 #We check if there is an absence of results

59 empty = driver.find_element(By.XPATH,("//div/h2[contains(text(),

60 'Désolé, aucun résultat ne correspond à vos critères de sélection')]"))

61 print(artist, " has not been found on the webpage.\n")

62 except:

63 #We click on the CSV button to download if there is a result

64 right_div = driver.find_element(By.CSS_SELECTOR,

65 'a.btn_red.btn_print.icon-download')

66 right_div.click()

67 print(artist, " has been searched in the webpage.\n")

68 time.sleep(3)

69

70 driver.close()

26

Source code 5.4: Retrieving certified albums through SNEP

The output of this code was CSV files where each row represented a certified album with
the following information:

• Artist name

• Project name

• Editor or distributor

• Type of project

• Certification level

• Release date

• Certification date

To carry on, we kept only some of the variables: namely, the artist and project names, the
certification level and the release date.

Until now, we have retrieved aimed rap artist names and all of their nationally certified
releases. Now, we wanted to dig into each of their certified albums to gather all the
information we could to store it in a database.

Retrieving certified albums’ content

Until now, we only had the names of the albums that were certified, not their content. The
following snippet allowed us to retrieve JSON files for each certified album in order to get
meaningful information, namely the lyrics of each song of the albums as well as the song
names and featurings.

1 from lyricsgenius import Genius

2 import json

3 import csv

4 import regex as re

5 from datetime import datetime

6

7 '''

8 Here, we can select from:

9 diamond_path = 'snep_query/diamant/dump_diam.csv'

10 platinum_path = 'snep_query/platine/dump_plat.csv'

11 platinum_issues = 'snep_query/platine/plat_issues.csv'

12 gold_path = 'snep_query/or/dump_gold.csv'

13 gold_issues = 'snep_query/or/gold_issues.csv'

14

15 With the following syntax:

16 with open(xxx,'r') as yyy:

17

18 Where:

19 - xxx: path to the desired component

20 - yyy: name of the desired component

21 '''

22

23 with open(diamond_path,'r') as dump:

24 csv_dump = csv.reader(dump, delimiter=";")

27

25 for row in csv_dump:

26

27 #Information that is used along the whole release

28 artistName = row[0].lower()

29 releaseName = row[1].lower()

30 releaseDate = row[5]

31 releaseDate_cleaned = datetime.strptime(releaseDate,"%d/%m/%Y")

32 print("Searching on Genius for: " +

33 releaseName + " of " + artistName)

34

35 album_spotipy = genius.search_album(releaseName, artistName)

36 releaseName_json = album_spotipy.name.replace("’","").replace("'","").

37 replace(":","").replace(" ","").replace("#","").replace("&","").

38 replace("-","").replace("=","").replace(",","").replace("(","").

39 replace(")","").replace("%","").replace("$","").replace("!","").

40 replace("?","").replace("-"," ").replace("(","").replace(")","").

41 replace("+","").replace('"','')

42 releaseName_final = album_spotipy.name

43

44 album_spotipy.save_lyrics()

45 print("Album found on Genius")

Source code 5.5: Retrieving album’s content

In this snippet example, we see that we take the diamond albums and we retrieve useful in-
formation, such as the artist name, the release name and date (which we format to standard).

There are two important steps left: first, we search the album on Genius based on two
parameters: the release name and the artist name by using LyricsGenius’ library. Once we
have it, we clean the release name so as to avoid any issue later on: indeed, this name will
have to match with the formatted name which is automatically given by Genius when
we save the album information in JSON format. That is why we have this relatively
consequent cleaning, which may not be optimal indeed.

The second important step left is to use the save lyrics() command from LyricsGenius to
download the corresponding JSON file.

Pre-processing album data

Now, we have the JSON files of each certified album we want. What is left to do is to
pre-process this data and then store it into MongoDB. We do the following program record
per record:

1 import json

2 import regex as re

3 from string import digits

4 from frenchLDA import topic_model

5

6 with open('Lyrics_' + releaseName_json + '.json') as f:

7 output = json.load(f)

8 i=0

9 instrumental = False

10 for song in output["tracks"]:

28

11 if output["tracks"][i]["number"] is None:

12 continue

13 featurings = []

14 themes = []

15 title = output["tracks"][i]["song"]["title"]

16 primary_artist = output["tracks"][i]["song"]["primary_artist"]["name"]

17

18 featured = output["tracks"][i]["song"]["featured_artists"]

19 song = output["tracks"][i]["song"]

20

21 if featured is None or len(featured) == 0:

22 featurings = "NULL"

23 else:

24 j=0

25 for features in featured:

26 featurings.append(output["tracks"]

27 [i]["song"]["featured_artists"][j]

28 ["name"])

29 j+=1

30

31 text = re.sub('^(.*\n){1}','',output["tracks"][i]["song"]["lyrics"])

32 if not text:

33 instrumental = True

34 else:

35 text = re.sub('You might also like','',text)

36 text = re.sub('Embed','',text)

37 text = re.sub('\[.*\]','',text)

38 text = re.sub(re.escape(releaseName) + '?.*\n','',text)

39 remove_digits = str.maketrans('', '', digits)

40 text = text.translate(remove_digits)

41

42 if not "stats" in output["tracks"][i]["song"] or

43 len(output["tracks"][i]["song"]["stats"]) == 0

44 or not "pageviews" in output["tracks"][i]["song"]["stats"]:

45 pageview = 0

46 else:

47 pageview = output["tracks"][i]["song"]["stats"]["pageviews"]

48

49 if instrumental or len(text.split()) <= 15:

50 themes = ""

51 else:

52 themes = topic_model(text)

Source code 5.6: Pre-processing data before storing

Once again, the pre-processing and cleaning part here is quite heavy. We will break it
down into smaller pieces.

1. We make a loop on each song of the JSON file

2. We check if there is any data linked to the current element

(a) If the answer is yes: we carry on normally

(b) Otherwise: we skip this song (might be album cover, booklets, etc.)

3. We check if there is a featuring on the song

29

(a) If the answer is yes: we mark ’1’ in the featurings variable

(b) Otherwise: we mark ’0’

4. We check if there is some textual content in the current song

(a) If the answer is yes: we remove the noise such as non-desired Genius promotional
text or numbers

(b) Otherwise: we mark the boolean variable instrumental as True

5. We check if we have page views for the song

(a) If the answer is yes: we write it in the pageview variable

(b) Otherwise: we write ’0’ in it

6. Finally, we check if we have enough text to analyze

(a) If the answer is yes: we run the cleaned text in the topic model() function

(b) Otherwise: we let themes variable be blank

Before proceeding further, we are going to see what happens in the topic model() function.

Topic modelling

When there was enough textual content to be analyzed (we put the threshold at 15 words,
as we have observed with trials-and-errors that the different natural language processing
(NLP) algorithms we used were able to return information above this limit), we used
topic model() function, a function we created, which is as follows:

1 #Libraries

2 ##Text management

3 import spacy

4

5 ##LDA topic modelling

6 from gensim.models import Phrases

7 from gensim.corpora import Dictionary

8 from gensim.models import LdaModel

9

10 ##Storage

11 import json

12

13 #Launching the Spacy's library

14 stop_words = set(stopwords.words("french"))

15 nlp = spacy.load("fr_core_news_sm")

16

17 #LDA algorithm

18 def topic_model(text,artist,releaseName,songName):

19 ##Pre-processing

20 spacy_docs = nlp(text)

21

22 docs = []

23 for token in spacy_docs:

24 tokens = []

25 if len(token.orth_) > 2 and not token.is_stop:

26 tokens.append(token.lemma_.lower())

27 docs.append(tokens)

28

30

29 ##Bigrams management

30 bigram = Phrases(docs, min_count=10)

31 for index in range(len(docs)):

32 for token in bigram[docs[index]]:

33 if '_' in token:

34 docs[index].append(token)

35

36 ##Creating a dictionary with all the words

37 dictionary = Dictionary(docs)

38

39 ##Removing extreme values in the dictionary

40 if(len(spacy_docs) >8):

41 '''v2: dictionary.filter_extremes(no_below=1, no_above=0.25)'''

42 '''v8: dictionary.filter_extremes(no_below=2, no_above=0.01)'''

43 dictionary.filter_extremes(no_below=1, no_above=0.01)

Source code 5.7: Latent-Dirichlet Allocation (LDA) topic modelling

To understand this algorithm, we will proceed in several steps. Please keep in mind that
each song having 15 words or more passes in this function one at a time.

In this first part, we take our lyrics and we convert them into a SpaCy’s list of words,
called here ”documents”9. We then check that each document is at least 2 letters long and
is not a stop-word (in NLP, one important thing to do is to remove noisy words, meaning
frequent small words that form our sentences but don’t give much information, such as
”to”, ”at”, etc. These stop-words are defined per languages; here, working on French songs,
we chose to load the SpaCy French stop-word list).

Once this is done, we take the lemma of the word we are actually considering, which is
the standard, short version of the word, as to erase any variation (e.g.: ”lovers” becomes
”love”, ”eating” becomes ”eat”, etc) and to group together same topics. We then make
sure the word is in small letters, and we fill in our list of tokens.

Once we have pre-processed our words, we can now create our dictionary using the function
Dictionary(). One last concern are extreme values - what if we have very frequent words
that can damage our topic modelling? To avoid that, we use the filter extremes()
function. After testing several parameters combination, we reach a satisfactory result
when we use no below = 1 and no above = 0.01, which designate the range of words we
want to keep, and these are respectively present at least once in our dictionary and that
compose no more than 1% of the latter.

Having defined our dictionary, we now launched our LDA model10:

1 ##Running the LDA model

2 corpus = [dictionary.doc2bow(doc) for doc in docs]

3 model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=3,

4 chunksize=1000, passes=5, random_state=1, alpha='asymmetric')

5

9SpaCy is a Natural Language Processing (NLP) tool in Python. [Spacy, 2023]
10In natural language processing, Latent Dirichlet Allocation (LDA) is a Bayesian network (and, therefore,

a generative statistical model) that explains a set of observations through unobserved groups, and each
group explains why some parts of the data are similar. The LDA is an example of a Bayesian topic model.
[Wikiwand, 2023a]

31

6 ##Storing in variables list of 5 words composing each topic

7 word_iteration = 0

8 for (topic, words) in model.print_topics(num_words=5):

9 if word_iteration == 0 :

10 words_1 = words

11 word_iteration += 1

12 continue

13 if word_iteration == 1 :

14 words_2 = words

15 word_iteration += 1

16 continue

17 if word_iteration == 2 :

18 words_3 = words

19 word_iteration += 1

20 continue

Source code 5.8: Running our LDA algorithm and storing results in variables

Here, we decided to take the next parameters:

• Our corpus is simply the words in our dictionary;

• We want to retrieve 3 topics per song, which leaves room for discovering several
subjects but doesn’t force too much repetition for smaller texts;

• Each topic will have 5 words constituting it, once again in the objective of having a
compromise between not too many words (could fail for shorter texts) and not too
little (allowing to make connections between several outputs)

32

Figure 5.4: Preview of the Diamond certified releases after LDA model running

Having done that, we now needed to store the results in JSON files to re-use them
afterwards.

1 ##Structuring output data

2 release_data = {

3 "artist_name": artist,

4 "release_name": releaseName,

5 "song_name": songName,

6 "song": [

7 {

8 "topic_1": {

9 "topic": None,

10 "words": words_1

11 },

12 "topic_2": {

13 "topic": None,

14 "words": words_2

15 },

16 "topic_3": {

17 "topic": None,

18 "words": words_3

19 }

20 }

21]

22 }

23

24 ##Storing in a JSON file

25 outfile = open("release.json","r+",encoding="utf8")

26 outfile.seek(0,2)

27 json_object = json.dumps(release_data, indent=4,ensure_ascii=False)

28 outfile.write(json_object + ",\n")

Source code 5.9: Storing topic modelling result in JSON file

This design was thought to allow automation, as this particular structure enabled very
easily navigating in the file and do the unique thing our LDA model could not do, which is
automatically put a topic label for each suite of words. This label was therefore written by
hand, replacing each ”None” by the most coherent topic summarizing word. This will be
discussed more in depth afterwards.

Data storing in MongoDB

Now that we had all of the relevant data available and correctly formatted, we dumped our
tracks information into MongoDB thanks to PyMongo. In this example, we are working
with the Diamond collection:

1 from pymongo import MongoClient

2

3 # Initializing MongoDB client

4 client = MongoClient()

33

5 db = client["certificationDB_test_final"]

6 diamondcertificationDB = db["diamondcertificationDB"]

7 platinumcertificationDB = db["platinumcertificationDB"]

8 goldcertificationDB = db["goldcertificationDB"]

9

10 item = {

11 "artist_name" : artistName,

12 "release_name" : releaseName_final,

13 "release_date" : releaseDate_cleaned,

14 "certified_date" : certifiedDate_cleaned,

15 "track_number" : i+1,

16 "track_name" : title,

17 "primary_artist" : primary_artist,

18 "featured_artists" : featurings,

19 "track_lyrics" : text,

20 "themes" : themes,

21 "genius_pageview" : pageview

22 }

23 certificationDB.diamondcertificationDB.insert_one(item)

24 i += 1

25 print("Album stored in MongoDB")

Source code 5.10: Storing album data in MongoDB

Creating a DataFrame in Python

Now that we had stored all of our albums in MongoDB, we could work with them more
easily. The first thing to do was to load this data into Python and to do so, we needed a
library to display databases and having functions to manipulate them at our convenience.
So, we decided to use Pandas11, a broadly used library for these two targets.

1 ''' STEP 1/ LAUNCH '''

2 # Configure libraries

3 warnings.filterwarnings('ignore')

4 plt.rcParams['figure.figsize'] = (10, 10)

5 plt.style.use('seaborn')

6 pd.set_option('display.max_columns', 500)

7

8 # Initializing MongoDB client

9 client = MongoClient()

10 db = client["certificationDB_test_final"]

11 diamondcertificationDB = db["diamondcertificationDB"]

12 platinumcertificationDB = db["platinumcertificationDB"]

13 goldcertificationDB = db["goldcertificationDB"]

14

15 # Retrieving each collection

16 diamond_db=diamondcertificationDB.find()

17 plat_db=platinumcertificationDB.find()

18 gold_db=goldcertificationDB.find()

19

20 ''' STEP 2/ WORKING WITH PANDAS '''

11Pandas is a Python data analysis library. [Pandas, 2023]

34

21 # Constructing Pandas' DataFrame

22 df_diamond = pd.DataFrame(list(diamond_db))

23 df_platinum = pd.DataFrame(list(plat_db))

24 df_gold = pd.DataFrame(list(gold_db))

25

26 frames = [df_diamond,df_platinum,df_gold]

27 df_full = pd.concat(frames)

Source code 5.11: Creating Pandas’ DataFrame

Since we were working with a considerable amount of data, we needed to make sure
that we would be able to capture the most information possible, hence the maximum
amount of columns displayed set at 500 for Pandas. The rest of the code above is very
easily understandable, as it was just initializing the database, retrieving collections and
constructing the DataFrame.

The concatenation of frames was aimed at merging collections together, as this was not
the case by default.

1 # Dropping irrelevant columns

2 '''

3 Assumptions for now:

4 - artist_name: irrelevant, as we have the primary_artist field

5 - _id,track_lyrics: irrelevant

6 - certified_date: we want to avoid playing with durations

7 - release_name,track_name,track_number,primary_artist: not major factors, might be

8 tested later -> make other iterations of the model

9

10 Track_name is not erased here, since we need this condition checker

11 in array_dummifier_topics (first version). We erase it afterwards.

12 '''

13

14 df_full = df_full.drop(['artist_name','_id'

15 ,'track_lyrics','certified_date'

16 ,'track_number','release_name','primary_artist'

17],axis=1)

18

19 # Missing values

20 '''print("Null values counter: \n",df_full.isnull().sum())'''

21

22 # Converting date variables into numbers before scaling

23 df_full['release_date'] = pd.to_datetime(df_full['release_date'])

24

25 # Extracting year from release_date

26 df_full['release_date'] = df_full['release_date'].apply(lambda x: x.year)

27

28 # Scale numeric data

29 df_full_copy = df_full.copy()

30 scaler = StandardScaler()

31 num_cols = ['genius_pageview','release_date']

32 df_full_copy[num_cols] = scaler.fit_transform(df_full[num_cols])

33

34 ''' STEP 3/ OUR FUNCTIONS '''

35 # Separating array cells before encoding

35

36 ## Function to explode, dummify and add prefix to categorical array variables

37 def array_dummifier_topics2(data):

38 # Extraction of unique topics

39 topics = set()

40 for col in ['topic_1', 'topic_2', 'topic_3']:

41 topics.update(data[col].apply(lambda x: x['topic'] if

42 isinstance(x, dict) else '').unique())

43

44 # Removal of null or None values in topics

45 topics.discard(None)

46 topics.discard('null')

47

48 # Creation of binary columns for each topic

49 for topic in topics:

50 data['topic_' + topic] = data.apply(lambda row: 1 if

51 any(row[col]['topic'] == topic for col in

52 ['topic_1', 'topic_2', 'topic_3']

53 if isinstance(row[col], dict)) else 0, axis=1)

54

55 # Suppression of topic_1, topic_2, topic_3 columns

56 df = data.drop(['topic_1', 'topic_2', 'topic_3'], axis=1)

57

58 return df

59

60 ''' STEP 5/ CATEGORICAL DATA '''

61 # Dummifying topics

62 df_full_copy = array_dummifier_topics2(df_full_copy)

63 df_full_copy = df_full_copy.drop("track_name",axis=1)

Source code 5.12: Pre-processing of the DataFrame’s data

Once again, we needed to clean and transform our data to fit our objective. Here, we
followed this tutorial [Atha, 2021] and adapted where needed the following simple steps:

1. Dropping irrelevant columns: initially, only themes, featuring, page views and
release data interested us, so we erased from the DataFrame superficial elements.
Although track name was judged irrelevant for our analysis, we still maintained this
column so far for the sake of further verifications.

2. Checking for missing or odd values: it was very important to make sure we have
not got any weird values or errors in our database, as it would impact our analysis.

3. Converting variables into the correct format: here, only the date variable was
changed, but it remains a very important check-up to make to use the right variables
in the right format.

4. Scaling numeric data: using numeric values without a scale doesn’t make sense;
therefore, we need to pass our integers and floats into a standard scaler to even our
numbers.

5. Transform our topic columns: indeed, until now we kept our topic columns in
form of an object with two strings inside of it. However, to analyze our topics, here
we can just retrieve the topic label. After that, we transform the labels into binary
variables so as to compare records and their respective topics. At last, we delete the
columns topic 1, topic 2 and topic 3, as we will not use them anymore.

36

Checking variable independence

Once the model is constituted, the next big step is to check whether there are dependence
issues to arise or not. To do so, there are several different techniques, but the one we used
first from the topic modeling step (see 5.26) is called the heatmap.

1 ''' STEP 6/ CHECKING VARIABLE INDEPENDENCE '''

2 correlation_matrix = df_full_copy.corr()

3 plt.figure(figsize=(10, 8))

4 sns.heatmap(data=correlation_matrix, annot=False, cmap='coolwarm')

5 plt.xticks(rotation=45)

6 plt.yticks(rotation=0)

7 plt.show()

Source code 5.13: Defining our heatmap

Source code 5.14: Results of our heatmap

This graph represents the evidences of correlation between our different features. On both
axes, we find the same features; this is normal, as the intention is to compare each pairs
of features together. This also explains why we see a diagonal red line: it is the identity pair.

As one can observe, our model seems no to suffer from variables dependence, which is
good12.

Training our model

Once our DataFrame was finally in the format we desired, it was time to train our model.
We decided to take the double-split method in order to divide our dataset; although other
methods exist, this one worked just fine and was very easy to understand. After trying
several combinations, the final split was made as such:

12For an insight on encountered difficulties regarding heatmap creation, please refer to 5.2.4

37

• Training set size: 70% of the dataset

• Validation set size: 15% of the dataset

• Test set size: 15% of the dataset

This is what we observe in the following code snippet:

1 ''' STEP 7/ TRAINING THE MODEL '''

2 # Set training & testing data

3 ''' DOUBLE SPLIT METHOD'''

4 ## First split: train / other

5 X_train, X_rem, y_train, y_rem = train_test_split(feature, target,

6 train_size=0.70)

7

8 ## Second split: validation / test

9 X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem,

10 train_size=0.15)

Source code 5.15: Double-split method to train our model

Now, what model to chose? In order to make sure to take the right one, we thoroughly
tested the following ones:

• Random Forest

• Decision Tree

• Naive Bayes

• Logistic regression

• K-nearest neighbors

• Support Vector Classifier

One can find the respective code snippet for each algorithm in the Appendices, starting
from p. 70.

By using a classification report to help us evaluate the performance of the models and
to give us an overview of the latter on the dataset, we were able to run our comparison
tests much more rigorously and methodically. This produced table figures that one can
found in the Appendices p. 71.

Precision Recall F1-score Support

Diamond 0,74 0,66 0,7 154

Platinum 0,88 0,82 0,85 941

Gold 0,8 0,87 0,83 976

Accuracy 0,83 2071

Macro average 0,81 0,78 0,79 2071

Weighted average 0,83 0,83 0,83 2071

Table 5.1: Classification report: oversampling RF + day/month/year variable split

38

In this section, we will only discuss the results of our final and most prediction-efficient
model, which is the oversampling Random Forest version13 that also benefits, in its feature
variables, from the split between the release day, month and year.

First, let us take a quick look at each axis to have a good understanding of the results.
Each classification report aims to calculate, among other things, how well can we predict
each certification level (Diamond, Platinum and Gold). These predictions can be averaged
one of the two following ways: either taking into account the proportion of each real
instance in a given class (also named the ”Support”), or not, giving us respectively
weighted & macro averages for a given class.

These are our rows. Now, in the columns, we find our metrics:

• Accuracy: the total ratio of correct predictions on all predictions made

• Precision: ratio of correct predictions for a given class

• Recall: ratio of real instances of a given class correctly classified by the model

• F1-score: harmonic mean of the precision and the recall given a class

Now, we needed to decide which metric to optimize. Our goal was to predict the correct
certification as consistently as possible, no matter the certification; therefore, we
are less interested by the macro average than the weighted one, as the first does not take
into account the disproportion in our data sample, meaning it will be influenced by the
most dominant class and potentially lead to higher prediction results than in reality.

Figure 5.5: Model comparison without weighting average

Now, we have to pick between precision, recall, F1-score and accuracy. Precision and recall
give us metrics per class, but we are more interested in the overall performance of our
model. Fortunately, F1-score and accuracy do just that for us. At last, the accuracy can
be a good metric to follow, but it is unfortunately impacted by the unweighted samples,
too, which is not the case of the F1-score. The F1-score, indeed, allows us to capture

13Regarding the oversampling technique used, please refer to the next section, p. 40.

39

all the efficiency of our model, whether it is in terms of precision or accuracy, without
forgetting the least present class in our sample. Therefore, we choose to maximise the
F1-score metric in this research thesis.

Now, to come back to our classification report showed hereinabove, we indeed observe a
major disproportion between the Diamond class, with only 154 instances, compared to
Platinum and Gold (respectively 941 and 976 instances). However, the algorithm is able to
run correctly, as the precision and the recall remain at sufficient level for Diamond releases,
although one can notice a significant decrease in recall compared to the rest. Yet, the
F1-score, once weighted and averaged, outputs very good prediction capabilities overall.

Therefore, and after running extensive trials on different training algorithms whose results
can be observed in the Appendices p. 71, we found that Random Forest has the highest
F1-score in weighted average, and therefore we will keep this algorithm for the rest of
the research.

Figure 5.6: Model comparison with oversampling

Improving our model

The next question was to know if we could improve our model and if so, how. As before,
several approaches were used to try and reach a better result14:

• Balancing the set: here, we tried to fix the unbalance between the diamond set and
the two others; indeed, we observed a considerable difference:

– Diamond set: over 2,000 songs

– Platinum set: over 7,000 songs

– Gold set: over 7,000 songs

This unbalance could potentially explain the poor results obtained when our models
tried to predict the diamond songs.
Therefore, we tried the following fixes:

– Data oversampling, using the SMOTE() function from the imblearn library

– Data undersampling, using the RandomUnderSampler() function of the same
library

14For the corresponding code snippets, please refer to the Appendices.

40

– A combination of both previous approaches, in the form of the SMOTTEEN()
function (still the same library)

In this set of solutions, it was the hybrid SMOTTEEN method which worked
the best

• Searching for the best predictor model: testing each model was fastidious. It remained
possible, but not efficient. This is why we tried to approach it methodically by using
the V otingClassifier() function of the sklearn library, which allowed to compare
several prediction models at the same time and produce the best output possible.
In this set of tests, Random Forest Tree ended up still being the most relevant
model.

• Searching for the best set of parameters for our model: another way of tweaking our
results is to directly change parameters of the current model. Once again, this can be
done manually or automatically. For efficiency’s sake, we preferred the second option
by using the function GridSearchCV () of sklearn library. Here were the different
combinations of parameters that we tested

– max depth: 50, 80 or 100

– max features: 2, 3 or 4

– min samples leaf: 3, 4 or 5

– min samples split: 8, 10 or 12

– n estimators: 100, 300, 500, 750 or 1000

The obtained results concluded that no major improvement could be done, as it
returned very similar results to what we already had with the oversampled Random
Forest approach.

• Modifying the set of features considered: what if some were useless, or on the
contrary, what if new features could tremendously improve our model? This is what
we tried to explore by running a feature importance analysis, specifically designed for
classification models. It revealed to be really insightful, as it was able to highlight
less or more important elements to work around.

This, in turn, informed us that our model had relatively relevant features that
could not be set aside, as it would hinder our prediction abilities15.

After all these observations and testing, it was now time to try improving our model in a
different manner. Until now, we have tried to change or, at best, remove elements from
our model. By referring to existing scientific literature in place, we would be able to search
for now features to take into account in the continuous effort of improving our predictions.

5.2.3 Scientific literature review

The aim of the section could be defined as building upon the model we currently have in
order to improve our prediction abilities. But in order to improve it, we must consider new
relevant values, and these can be found in the available scientific literature on this subject.
Hereunder, we only consider the literature that serves our purpose by bringing the most
value to our research.

The scientific literature we found trying to experiment and explain music success through
some features could be divided into 5 different explanation topics: artist popularity,

15To observe related results, please see 5.9

41

marketing efforts, the time and the place, the post-release pieces of information and the
scientific approach. We propose to look at it here afterwards.

1. Artist popularity We already lightly touched this subject by taking into
consideration the lyrics page views number, which could to some extent represent
the popularity of the artist. This, of course, is not the only way to measure the
popularity of an artist, and is arguably not the most complete way of considering the
latter. On that note, many researchers tried to encapsulate data which could define
or impact artist popularity: among others, [Bhattacharjee et al., 2007] proposed, in
his paper about music piracy and its impact on music success seen through the
scope of music ranks, that the superstar status could have significant impact on
artist success. What he referred to was the status that a very small percentage
of artists have, a status where artist tickets, concerts and previous albums’ sales
reached massive numbers, numbers so big that the latter oftentimes entered the pop
culture, and whose next project is expected with considerable ”hype”. And this
could be interesting to inspect, as this suggestion was made back in 2007; since then,
it is obvious to us that by having even more superstar examples in the industry, the
research would only be more accurate. [Strobl and Tucker, 2000] extended on that
topic, speaking of ”consumption capital”, when the artist becomes so popular
and so renown that consuming its craft becomes mainstream and easy, as opposed to
searching for and experiencing new artists’ craft, which can be time-consuming and
unsatisfactory.

However, that is not all. Artist popularity’s status could also be considered through
its total number of sales or its number of certified releases, [Lee et al., 2003]
proposes. This is a more numeric approach that suggests taking advantage of
the great number of available data online, which is what we tried to do in our
research. Knowing that this study has been made in 2003, we think it would be very
interesting to update it nowadays.

At last for this part, [Strobl and Tucker, 2000] & [Aguiar and Waldfogel, 2021] both
spoke of popularity in terms of social network and public engagement impor-
tance, emphasizing the impact of proximity to one’s audience and the network effect,
where the more people listen to your music and share their preferences, the more
new people join the trend. To take this approach, however, it would be necessary
establishing threshold values that could be as clear and objective as possible to
test this feature’s influence. Moreover, it would be important to check whether the
network effect can be at least partially responsible for mid- or long-term success, or
rather if this effect fades out quickly after a sudden burst.

2. Marketing efforts In addition to artist’s popularity, one can also consider
marketing techniques to increase artist awareness and solidify its positioning or
music branding, as suggested by [Berns and Moore, 2012]. Indeed, music can be
seen as cultural good, therefore benefiting from usual marketing approaches. Several
pieces of research, namely those of [Lee et al., 2003], [Bhattacharjee et al., 2007] &
[Dertouzos, 2008] go even further, as they prove the importance of getting on the
radio to boost up music sales. Still, it remains important to keep in mind that this
research dates from 2008, allowing to ask oneselves what impact radio presence plays
in the current times. [Lee et al., 2003], for instance, speaks about the radio as a very
necessary step to promote one’s music, the latter’s achievement therefore witnessing
the promotional efforts put into the release.

[Aguiar and Waldfogel, 2021] even goes a step further by considering the impact of
getting on Spotify official playlists, and this research proves indeed the very

42

fruitful consequences for the artist and its popularity as seen through its subscriptions
and most evidently, its monthly streams. But here also, it would be important to
verify whether this impact is a short-term trend or if this has longer term consequences.
Another limitation to take into account here is that searchers only considered songs
entering once in the said playlists, whereas some songs may enter several times,
potentially re-surging after a first fall in the ranks.

3. Time and place [Bhattacharjee et al., 2007] further suggested two features regard-
ing the context in which the project releases: its year period release and the
artist label. The first is motivated by the simple observation of New Year’s holidays’
impact on consumption, where sales tend to boost up at approaching Christmas
and the New Year Eve; the second is linked to the different work methods of labels,
regarding whether one speaks about a major label, with obviously more funds and
potentially a bigger network, or an independent label, with fewer of both.

4. Post-release information Until now, we have seen potentially important features
that had in common their precedence to the project release, meaning it was informa-
tion publicly available even before the project came out. [Bhattacharjee et al., 2007]
suggests also exploring post-release information, such as online reviews on the
project to further reach bigger audience through the public itself, or more precisely
the network effect in action. These reviews could in fact intrigue more listeners to
give the project a try or on the contrary, spare their time listening to it.

But by further diving into platforms & web available data, we also observe that the
start position in the charts, also called ”rank”, could be an interesting indicator
of later success, as it is also proposed by [Bhattacharjee et al., 2007]. Indeed, the
searchers observed that projects tend to stay or decrease in ranking, but rarely do
they improve their rank. Naturally, this observation could be counter-tested (or not)
nowadays, as this study is 16-years old, but it still remains an interesting feature to
test.

But what about music itself? That could, too, be success indicator. Features
like album & artist genres, respectively suggested by [Strobl and Tucker, 2000]
& [Lee et al., 2003], could prove be relevant, although those tend to blend more
than ever before, asking the question of categorization relevance in this thesis.
[Kellaris and Kent, 2023], on the other hand, developed interest in the music tempo,
tonality and texture, and highlighted success prediction relevance. Therefore,
and since each music genre as its own rhythm, tonality and texture, this somehow
supports the suggestions of the previous research regarding album and artist genre
relevance. At last, [Berns and Moore, 2012], in his paper about neural prediction of
cultural success, emitted the hypothesis that music quality could play a prediction
role, too.

5. Scientific approach Speaking of the research of [Berns and Moore, 2012], the latter
focused on the neuro-biological approach to explain music tastes, hence music
consumption. The study tested what areas of the brain reacted to newly discovered
music, in link to listener’s rating of the said music. It turned out that this approach
could also at least partially explain music success, although the author emitted
questions about sample representativeness and objectivity of cerebral activation.

The outcome of the scientific literature review was to consider one additional feature in
our model in the name of the year time period in which the album was released,
although many of the ones stated hereinabove would undoubtedly bring interesting
insights, due to a desire to focus on already-running model instead of trying potentially

43

time-consuming changes and improvements.

When done so, we re-ran our feature importance analysis and we indeed observed that this
new data split was even better at predicting success than the previous one.
For the feature importance analysis source code, please refer to the Appendices p. 80.

Figure 5.7: Feature importance analysis of our first model version

Figure 5.8: Feature importance of model version 2 - taking release month into account

44

Figure 5.9: Feature importance of model version 3 - taking release day into account

One can observe hereinabove our different versions and their respective results. We already
discussed the first version, with our initial features. The second explored the same features,
with the addition of the release month. The last one added the release day. By adding
the three date components together, we observe a better prediction ability than initially
(reaching no less than 49.69% of feature importance when we started with 26.87%),
and that without losing too much value anywhere else, which is a strong improvement indeed.

5.2.4 Problems encountered and solutions found

This part is dedicated to the most significant issues we encountered during our research
thesis. First, we will explain what the issue was: what caused it and what impact it had.
Second, we will detail how we managed to work around it: what tests we made, what we
tried to do, and essentially what was our solution to fix it. At last, we will briefly explain
what impact such changes had.

In overall, our main model issue was overfitting, which can be described as having too
strong or merely impossibly accurate predictions in our data, oftentimes consequential to a
model which struggles to generalize but is good at getting the specificities of the currently
observed information and hence, is making very strong results but only in our specific data.
The related fixes found will be discussed in pp. 57 & 60.

Creating a coherent heatmap

A heatmap, as explained before, is a graphical representation of the relation between
variables in a specific DataFrame. The aim of the heatmap is to assess whether dependence
issues may arise or not between variables, which would lead to erasing, replacing or in any
case modifying our current model.

The issues we encountered with this tool is to put in parallel with issues in the fields of
topic modelling and topics quantity in overall. Indeed, when we started running our first
codes, we would observe very strange results, such as the following.

45

Figure 5.10: Our first heatmap result, which is completely incorrect

1 p1 = sns.heatmap(df_full_copy)

2 plt.show()

Source code 5.16: Our Python code for our incorrect first heatmap

What were the main issues here ? Well, everything:

1. Variables must be the same on both axes (as we try to assess dependencies and
correlations), which is not the case here

2. On the Y axis, we find a series of number that does not make any sense

3. The heatmap is completely blank

4. There are too many variables taken into account at once

5. A heatmap must work starting from a correlation matrix, which is not given here

So we proceeded to try correcting the heatmap. Without it, we had less insight on what
was going on in our model, which is unfortunately the objective of this graph.

46

Figure 5.11: Our second heatmap, with correlation matrix

1 correlation_matrix = df_full_copy.corr()

2 plt.figure(figsize=(10, 8))

3 sns.heatmap(data=correlation_matrix, annot=True, cmap='coolwarm')

4 plt.xticks(rotation=45)

5 plt.yticks(rotation=0)

6 plt.show()

Source code 5.17: Our second heatmap

This heatmap was much better already. Here, we could observe no significant correlation
between variables, although some negatively correlated features seemed to appear regarding
certification levels. We were quick to remark that these variables had nothing to do here,
as they were not part of the features analyzed.

47

Figure 5.12: Heatmap, third version: less features, removal of certification levels

1 feature = df_full_copy.drop('certification_level',axis=1)

2 target = df_full_copy['certification_level']

3

4 correlation_matrix = feature.corr()

5 plt.figure(figsize=(10, 8))

6 sns.heatmap(data=correlation_matrix, annot=False, cmap='coolwarm')

7 plt.xticks(rotation=45)

8 plt.yticks(rotation=0)

9 plt.show()

Source code 5.18: Correct code for the heatmap

At last, we arrived at satisfactory results. Following issues were fixed:

• Less topic labels (in relation to topic modelling)

• Removal of certification levels as analyzed features

• Correction of axes

• Creation of a correlation matrix

Once we reached this result, we ran a k-fold cross-validation analysis on our accuracy to
find that in that area too, overfitting-related issues were fixed16

Choosing the right topic modelling algorithm

One of our main problems was undoubtedly topic modelling. We spent a lot of time in
research of a satisfying topic model algorithm. Our difficulties can be summarized into

16One can see the result in the Appendices, p. 84. Right after it at p. 84, one can also see that the
written output gave us ”NaN” arrays for other metrics, which we unfortunately could not resolve at time,
and thus although the model was running smoothly.

48

two different aspects: the research of the right algorithm and the research of the right
parameters.

To find the right algorithm first, we had to review articles and make tests to see the
best fit. Fundamentally, we tried two types of natural language processing algorithms:
word embedding algorithms and Latent Dirichlet Allocation (LDA) algorithms.
These algorithms were tried on two arbitrarily chosen albums: ”PSLP” by Pollux17 and
”13 organisée” by 13 Organisé18. The choice was made such as to have, for the sake of
representativity and extremes’ testing, respectively:

• ”PSLP” by Pollux: a project with 5 songs which are on average 400 words and 3
minutes long, with no presence of featurings

• ”13 Organisé” by 13 Organisé: a project with 14 songs which are on average 1,000
words and 5 minutes long, with a lot of featurings

We initially struggled to write a working program with the LDA algorithm. Indeed,
as one can see in Figure 5.19, we observed very repetitive patterns in our output
(which were, moreover, not very insightful) when we ran the program on ”PSLP”
by Pollux, meaning the album which had not so much textual content. To some ex-
tent, the same problem could be seen with the second album, especially regarding repetition.

Source code 5.19: Repetitive patterns for words in initial LDA version

That is why we turned our attention to word2vec, which seemed to work sufficiently enough
to be interesting. However, word2vec does not work like LDA: whereas the latter returned us
a sequence of words which represented a certain number of topics, in our program, word2vec
returned us the 15 most frequent words, once the pre-processing and filtering were done.
This is not the same as returning topics, but we unfortunately failed to observe that initially.

Therefore, we went on and ran our program with word2vec, whose code can be seen
hereunder.

1 from gensim.models import Word2Vec

2 import spacy

3 import nltk

4 from nltk.corpus import stopwords

5 import re

6 from gensim.models import Phrases

7 from gensim.corpora import Dictionary

8 from sklearn.decomposition import PCA

9 from matplotlib import pyplot

10 from gensim.test.utils import datapath

11 from gensim import utils

12 import gensim.models

17[Genius, 2022]
18[Genius, 2020]

49

13

14 def embedding(doc):

15 model = Word2Vec(doc)

16 stop_words = set(stopwords.words("french"))

17 nlp = spacy.load("fr_core_news_sm")

18 wholeText = re.sub("\\n"," ",doc)

19

20 spacy_docs = list(nlp(wholeText))

21

22 docs = []

23 for token in spacy_docs:

24 tokens = []

25 if len(token.orth_) > 2 and not token.is_stop:

26 tokens.append(token.lemma_.lower())

27 docs.append(tokens)

28

29 model1 = gensim.models.Word2Vec(docs, min_count = 1, workers=4, sg=0)

30 return model1.wv.index_to_key[:15]

Source code 5.20: Our program for word2vec topic modelling

This program is very similar to the one we are using in our current model, except when we
run the topic model.

As we said, we ended up with a list of 15 words, ranked from the most frequently appearing
one to the least one. This is what we initially put into our storage system, in a column
called themes.

Changing that required accessing to the storage, retrieving the right columns (called ”fields”
in MongoDB), re-running our topic modelling algorithm, labeling the said topics and
storing in the right place the new data in new fields. And this is precisely what we can see
hereunder:

1 # Importing libraries

2 from pymongo import MongoClient

3 import pandas as pd

4 import json

5

6 # Initializing MongoDB client

7 client = MongoClient()

8 db = client["certificationDB_test_final"]

9 diamondcertificationDB = db["diamondcertificationDB"]

10 platinumcertificationDB = db["platinumcertificationDB"]

11 goldcertificationDB = db["goldcertificationDB"]

12

13 # Import all the records per certification level

14 json_file = open("release_diam.json")

15 data = json.load(json_file)

16

17 # Retrieving each collection

18 diamond_db=diamondcertificationDB.find()

19 plat_db=platinumcertificationDB.find()

20 gold_db=goldcertificationDB.find()

21

50

22 # Constructing Pandas' DataFrame

23 df_diamond = pd.DataFrame(list(diamond_db))

24 df_platinum = pd.DataFrame(list(plat_db))

25 df_gold = pd.DataFrame(list(gold_db))

26

27 #Deleting unwanted fields

28 query = {'$unset':{'themes':''}}

29 diamondcertificationDB.update_many({},query)

30

31 #Inserting new fields for each topic

32 topic_array= ["topic_1", "topic_2", "topic_3"]

33 j = 0

34 for index, row in df_diamond.iterrows():

35 for line in data:

36 filter = {'track_name':line['song_name']}

37 for i in topic_array:

38 new_value = { '$set':{i:{'topic':data[j]['song']

39 [0][i]['topic'],'words':data[j]['song'][0][i]['words']}}}

40 diamondcertificationDB.update_one(filter,new_value)

41 j+= 1

Source code 5.21: Modifying MongoDB’s data to correct topic modelling

As can be observed hereinabove, before inserting new values into MongoDB, we wrote a
condition to make sure that we are in the right record: namely, the name of the actual
track in MongoDB had to correspond to the name of the track in the JSON
file which, as a reminder, contained all the sequence of words that helped us define the
correct topic labels per song.

But that was not all. Now that we had decent results for the covered topics for each
considered song, we needed to modify the DataFrame that we had in our program: indeed,
in order for our model to run correctly, we only wanted to keep the topic label and not the
sequence of words defining it.

1 # Function to replace words in a topic cell

2 def replace_words(topic_cell):

3 if isinstance(topic_cell, dict):

4 if 'topic' in topic_cell:

5 topic = topic_cell['topic']

6 if topic in dictionnaire:

7 new_topic = dictionnaire[topic]

8 topic_cell['topic'] = new_topic

9 return topic_cell

10

11 # Word replacement in columns topic_1, topic_2 and topic_3

12 df_full_copy['topic_1'] = df_full_copy['topic_1'].apply(lambda x: replace_words(x))

13 df_full_copy['topic_2'] = df_full_copy['topic_2'].apply(lambda x: replace_words(x))

14 df_full_copy['topic_3'] = df_full_copy['topic_3'].apply(lambda x: replace_words(x))

Source code 5.22: Replacing values in topic 1,topic 2 and topic 3

After this replacement, our topics were processed in the array dummifier topics2()’s

51

function that we presented before19, which transformed them into dummy variables.

Figure 5.13: Updated topic labels in MongoDB

Getting the training model right

One very simple yet crucial mistake we made was not to split the dataset we had into the
features we want to make analysis from on one side, the target variable on the other. This
was due to a lack of understanding that blocked us for a relative long period of time.

1 #Selecting our feature & target variables

2 feature_diam = df_full_copy.drop('certification_level_Diamond',axis=1)

3 target_diam = df_full_copy['certification_level_Diamond']

Source code 5.23: Our initial training model variable selection

Instead, as one can see above, we only dropped a specific dummy variable column (one of
the three possible certifications), which obviously led to a very poor result, as the target
variable should have rather been treated as a class variable.

19See 5.12

52

Figure 5.14: A result sample based on our incorrect code

Figure 5.14 shows this poor result. We can observe that although several different
usually very efficient training algorithms have been tested, none really gives a satisfactory,
overfitting risk-free outcome.

A decent outcome is only reached once the code is fixed:

1 #Selecting our feature & target variables

2 feature = df_full_copy.drop('certification_level',axis=1)

3 target = df_full_copy['certification_level']

Source code 5.24: Our variable selection, fixed

Figure 5.15: Result sample with variable selection for model training fixed

Figure 5.15 shows our second set of tests made on training algorithms. We can observe the
main model performance measures: accuracy, precision, recall, F1-score, etc. Here, as
discussed at p. 37, we made the choice to prioritize the F1-score maximisation, as it

53

tends to encompass both precision and recall, which makes it generally a pretty
good key performance indicator.

Based on the F1-score, we can observe that indeed, the Random Forest algorithm
is the best algorithm among those which we tested to predict accurately on
average our certification levels based on the features of the song.

Topic dummification

Another issue encountered regarding topic modelling originated from our need to dummify
our class variables, which turned out to be problematic for topics and featurings20, as they
both had too many empty columns to display in our model, which ineluctably induced
overfitting.

More specifically, topics were duplicated, and sometimes even tripled, due to their
particular form: indeed, topic 1, topic 2 and topic 3, which all three represented topics
discussed in each song, were exclusive between them per song (meaning, a song could have
no more than one occurrence of any specific topic), but non-exclusive between them from
song to song (meaning, if ”love” appeared in song 1 at position topic 1, nothing prevented
it from appearing in topic 2 in song 2). This, obviously, needed to be dealt with, since it
did not bring any useful complementary information.

Our first strategy followed the next reasoning:

For each song, for
topic(i)

where
i ∈ {1, 2, 3}

1. Take topic(i)

2. Retrieve the topic inside of the cell

3. Fill the cell with only the topic label

4. Dummify the topic label

5. Repeat until end of database

To understand why we needed step 3, one must remember that our topic columns contained
the topic label but also the sequence of words that caused the topic label.

This algorithm can be found in the Appendices, p. 81.

This strategy did not function, because Pandas’ DataFrame caused an error. After many
search, we concluded that the origin of this error was the lack of behavioral definition in
our algorithm when we met the case where there were conflicting names. To solve that, we
then proceeded to create suffices, so as to avoid conflicting column names (see Appendices,
p. 81). The aim behind it was to proceed once again step by step: above all, we needed
to keep all of our topic columns, since we did not want to lose information. Then, when
we would dummify everything, we would be able to make a RegEx query for all column
names having the label we desired, and join them together. Joint was possible following
the next idea in an conflicting environment:

20For this issue, please refer to p. 60.

54

1. If topic was not yet encountered in our song: the value in this cell will simply go
from ”0” to ”1”

2. If topic was already stated for this song: it is an error, since we designed our topic
columns to be exclusive song per song

Given the above, we concluded that the maximal value for a dummified topic
column in our DataFrame could never be greater than 1, and joining same-label
topic columns could only mean making an addition.
The resulting algorithm, called joinlabels(), is found at Appendices, p. 82.

However, that still was not enough: as one can observe hereunder, the reached results were
not as expected.

Figure 5.16: Result from a small example code written on an online Python compiler
(Programiz)

We spent a lot of time trying to figure out how to correctly sum on the X axis, but it
somehow failed. So we had to take another approach.
Here below is the code that fixed this issue.

1 def array_dummifier_topics2(data):

2 # Unique topics extraction

3 topics = set()

4 for col in ['topic_1', 'topic_2', 'topic_3']:

5 topics.update(data[col].apply(lambda x: x['topic']

6 if isinstance(x, dict) else '').unique())

7

8 # Removal of null or None values from topics

9 topics.discard(None)

10 topics.discard('null')

11

12 # Creation of binary columns for each topic

13 for topic in topics:

14 data['topic_' + topic] = data.apply(lambda row:

15 1 if any(row[col]['topic'] == topic for col in

16 ['topic_1', 'topic_2', 'topic_3'] if

17 isinstance(row[col], dict)) else 0, axis=1)

18

19 # Removal of topic_1, topic_2 and topic_3

20 df = data.drop(['topic_1', 'topic_2', 'topic_3'], axis=1)

21

22 return df

Source code 5.25: Fixing the duplicated topic columns

What this code makes differently, is that it uses Python’s lambda to define two variables,
namely x and row, which are used iteratively to respectively extract the topic from each
concerned cell and to encode binary values in the right columns after one last verification.

55

And this approach works.

For precedent versions and trials to reach this code, please refer to the Appendices.

Bigrams and extreme values filtering

At the very end of July, we detected a considerable mistake in our running code. As
one can see here below, during the LDA topic modelling phase (see p. 31, we try to
pre-process text content by filtering each word, considered as a ”token”, to respect
two conditions: being 2-letters long at least and not being a stop word. But, what
we should do instead is consider sentences instead of separated words, so as to
allow bigram formations, correct dictionary definition and eventually, better topic modelling.

Figure 5.17: Misuse of tokens list

This is a mistake that occurred at model creation, because we had trouble understanding
what the correct algorithm tried to do; we actually thought this part was irrelevant, be-
cause we thought its use was to split documents when there were several to be given as input.

But in our model, tokens serve no use, since it reinitialized at each word passing, never
taking more than a word at once.

1 docs = []

2 ##Splitting spacy_docs into sentences

3 for sent in spacy_docs.sents:

4 tokens = []

5 for token in sent:

6 if len(token.orth_) > 2 and not token.is_stop:

7 tokens.append(token.lemma_.lower())

8 ##Sending to docs not words, but list of words (= sentences)

9 docs.append(tokens)

10

11 ##min_count reduced: words must appear at least 2 times in docs

12 bigram = Phrases(docs, min_count=2)

13 for index in range(len(docs)):

14 for token in bigram[docs[index]]:

15 if '_' in token:

16 docs[index].append(token)

Source code 5.26: Correct bit of code for pre-processing text contents

As seen just above, we also used this occasion to correct the parameters given to the
bigrams creator function, since our initial min count = 10 parameter, which filtered words
and bigrams which appeared less than 10 times in our text contents, was way too high of a
threshold for our values.

56

We then tested the results of our new thematic modeling on a small sample of Diamond
tracks to verify their accuracy. Obviously, this work was highly subjective, which the task
of defining the words that best represent each song inherently tends to suggest. The result
can be seen on the next page.

As expected, the labels we are able to retrieve from this version of the algorithm are better.
We finally observe some bigrams, too, as well as diversified vocabulary. Regarding our
filtering parameters, here is the set we have chosen:

• For Phrases(): min count = 2

• For Dictionary.filter extremes(): no below = 2, no above = 0.5

For other parameters combination results, please see the Appendices.
However, implementing this change would have meant re-labelling all of our sequence of
words for all three levels of certification. The first time, this took us nearly 3 weeks of
extensive workload. Since this error was observed very late in the research thesis, and
in regards with the time it would take to correct it, this unfortunately was not implemented.

Still, as we will discuss in section 5.3, one can observe already very satisfying prediction
capabilities in our model, even without the bigrams contribution. However, this will be
clearly specified in our limitations.

Quantity of topics analyzed

Another issue related to the topic modelling we had was the quantity of topics that we
analyzed. As stated previously, these labels were put manually and at first, no concern
was given to the amount of different labels possible. The first objective was to label all
records and decrease amount of different labels later, if needed.

This need was met once all records were labeled. At that moment, we had no less than 332
different topics, which was too much to be relevant.

To see the total number of unique topics we had, we re-started from our full DataFrame
(meaning: the frame with Diamond, Platinum and Gold releases), created a list of top-
ics named , looped through our whole DataFrame and added those never encountered before.

57

Tested song Current model words output Current model results New model words output New model results Best topic modeler

GIMS - Tant pis
1. rien, devoir, faire, prouver, battre
2. homme, trop, donner, douleur, âme
3. dos, agir, pouvoir, préférer, rien

1. danger violence
2. colère mort souffrir

3. objectif

1. insurmontable, rien, rien insurmontable, pis, paix
2. pis, insurmontable, rien insurmontable, rien, disent
3. pis, faire faute, dos poids, lot

1. colère mort souffrir
2. bien-être santé sport

New model

Nekfeu - N*que les clones (pt.2)
1. clone, nique, bon, prendre, sortir
2. ici, penser, nan, indique, confort
3. assiette, conscience, violent, bel, embrasser

1. religion morale
2. ennui routine zone
3. danger violence

1. n*que, n*que clone, clone, code, sentir
2. dire, bon, jamais, voir, prendre
3. voir, monde, école, clone, donner

1. religion morale
2. passé

Current model

Nekfeu - Tricheur ft. Damso
1. baba, mal, ville, trop, deviner
2. demain, succès, bang, bendo, guerre
3. falloir, annai, braise, évacuer, tokyo

1. famille maman
2. richesse succès

3. profiter érotisme voyager

1. trop, falloir, vie, sale, fesse
2. bientôt, changer, arrêter, ouais, mamma
3. bientôt, changer, bientôt arrêter, arrêter, baba

1. famille maman
2. changer espérer futur rêver
3. profiter érotisme voyager

New model

Nekfeu - 1er rôle
1. vie, jamais, aimer, script, film
2. acteur, écrire, homme, crochetée, terre
3. vie, générique, rôle, donner, tête

1. art culture sport
1. tête, oeil, vis, cut, coupe
2. aimer, code, figu, devenir, réalisateur
3. cut, acteur, jamais, vie, mektoub écrire

1. art culture sport
2. amour femme flirt

New model

Booba - DKR
1. quartier, quitte, vouloir, lion, tailler
2. maillé, bordeaux, casser, monsieur, être
3. mula, quitte, maillé, vouloir, n*gro

1. ennui routine zone
2. travailler

3. profiter érotisme voyager

1. mailler, lion, tailler, élan, monsieur
2. marier, vouloir, casser, dos, plat
3. mailler, quitte, quartier, dégât, mailler

1. travailler
2. amour femme flirt

3. profiter érotisme voyager
Equal

Table 5.2: Random songs comparison for both topic modelling algorithms

58

Figure 5.18: All topics we had after topic labeling

This led to a reduction of topics in several different manners:

• Re-grouping under one word labels that were quite similar
Example: jeunesse and passé were considered linked enough to go under one label;
although both could have served as the ”umbrella” topic, passé was considered more
suitable as it restrained less the field of possible interpretations, which we were
looking for here.

To do so, we simply replaced wrote passé as the replacement value of jeunesse.

• Erasing non-relevant labels
Example: magie was one of those words which was very distinguishable, potentially
providing us more information than words such as amour or drogues, which we
found quite often; however, its use was so anecdotal that erasing it did not seem as a
loss of information at all.

To erase a label, we simply put ”null” as its replacement value.

• Re-grouping several labels together with an underscore () when concepts
were pretty close one to another
Example: amour, femme and flirt were all strongly linked, yet they all proposed
a slight nuance that was considered interesting to keep, giving us therefore:
amour affection flirt.

This was done by hand, in our replacement list file.

Figure 5.19: Preview of our topics replacement list

59

1 ''' Creating a dico and replacing themes '''

2

3 #Loading text file containing our dictionary

4 with open('all_mindmap_wip_test.txt', 'r') as file:

5 lines = file.readlines()

6

7 #Creating the dictionary based on text file lines

8 dictionnaire = {}

9 for line in lines:

10 line = line.strip().split(' ')

11 mot = line[0]

12 valeur = line[2] if len(line) > 1 else None

13 dictionnaire[mot] = valeur

14

15 #Pop empty first value

16 if ' ' in dictionnaire:

17 dictionnaire.pop(' ')

18

19 #Replace word function

20 def replace_words(topic_cell):

21 if isinstance(topic_cell, dict):

22 if 'topic' in topic_cell:

23 topic = topic_cell['topic']

24 if topic in dictionnaire:

25 new_topic = dictionnaire[topic]

26 topic_cell['topic'] = new_topic

27 return topic_cell

28

29 #Replacing words in topic_1, topic_2, topic_3 columns

30 df_full_copy['topic_1'] = df_full_copy['topic_1'].

31 apply(lambda x: replace_words(x))

32 df_full_copy['topic_2'] = df_full_copy['topic_2'].

33 apply(lambda x: replace_words(x))

34 df_full_copy['topic_3'] = df_full_copy['topic_3'].

35 apply(lambda x: replace_words(x))

Source code 5.27: Full code for themes grouping and filtering

This fortunately worked, as we passed from 332 topics in total to as low as 20, which was
a great sign for our prediction model.

Too many columns for featuring

One of the reasons that led to having an overfit was the quantity of columns in our
DataFrame.

60

Figure 5.20: Our gigantic database with features dummified

And, after some reflection, we decided to change our featuring variable, as we observed
the tremendous amount of dummy variables producted by the latter. Indeed, initially,
this variable was considering each guest artist on a track as a separate feature, treating it
therefore as a dummy variable, which led to an absurd amount of columns with 0-filled
values. The model was so big and buggy that we had to store it in a CSV file before
loading it, as re-running our program would take too much time.

We ultimately reached the conclusion that it was a big problem, as much on the efficiency
side as well as on the practical side, since it could definitely be a major reason for our
model overfitting. Thus, this needed to be changed.

But this still could be an interesting explanatory variable; so, instead of simply erasing it,
the decision we took was to make it binary:

• featuring = 1 if we had artist(s) featured on the track

• featuring = 0 otherwise

This way, we hoped to observe a potential impact (or not) of other artist’s presence on the
success of tracks.

And here is the code to do this conversion:

1 ''' STEP 5.2/ FEATURINGS AS BINARY VARIABLE '''

2

3 df_full_copy["featured_artists"] = df_full_copy["featured_artists"].

4 replace('NULL',0)

5

6 # Function to replace values different from 0 to 1

7 def replace_non_zero(value):

8 if value != 0:

9 return 1

10 else:

11 return value

61

12

13 # Application of the function to the right column

14 df_full_copy['featured_artists'] = df_full_copy['featured_artists'].

15 apply(replace_non_zero)

Source code 5.28: Making featurings a binary variable

5.3 Results

Our model displayed very interesting outcomes, as it pointed relatively strong
prediction capabilities.

But first of all, let us proceed by analyzing different parameters such as variable
independence and correlation between features.

Table 5.3, on next page, displays the statistical tests done on some of our features. As
one can observe, there are in total 4 statistical tests realized on different combinations of
features to help us highlight variable dependence, homoscedasticity, etc. To sum it up, the
outcome shows us a small dependence between featuring presence and record
certification and a negative correlation between the release day and the number
of views on a song.

Table 5.4, on next page too, in turn, represents all the Chi-square tests done on the
combination of the record certification and the topics we have determined. We can once
again observe variable dependence among the following sets of features:

• Certification level & topic bien-être santé

• Certification level & topic changer espérer futur rêver

• Certification level & topic passé

• Certification level & topic origines pays

• Certification level & topic homophobie racisme

• Certification level & topic objectif

To interpret it, the results inform us the said topics show a greater probability to have a
release of a specific certification, which is indeed interesting for our prediction ability.

Regarding the date split into year, month and day, a possible hypothesis would be that the
scientific research observations were proven correct, in the sense that the release date of
a music project could indeed influence the short-, mid- or long-term success of
an album, and therefore of its constituting songs. The common example in that regard
is given by albums releasing just before the Christmas holidays, which, as one knows, is
a very significant commercial period of time, where sales tend to meaningfully increase.
Another example would be the release time in the month: potentially, some albums could
benefit from an early-month release, as people tend to consume more in that time, which
also impacts leisure and cultural goods consumption. Indubitably, our first model, which
only had the release year, did not capture that.

62

Statistical test Chi-square Student ANOVA Pearson

Null hypothesis
(H0)

Variable independence Population means are equal Population means are equal Absence of variable correlation

Tested features
Featured artists &
certification level

Topics &
certification level

Pageviews &
certification levels (Diamond

and Platinum)

Pageviews &
certification levels (Platinum

and Gold)

Pageviews &
certification levels (Diamond

and Gold)

Pageviews &
certification levels (Diamond, Platinum

and Gold)
Year & Month Year & Day

Year &
pageviews

Month & Day
Month &
pageviews

Day &
pageviews

Value 10,30812 See next table. 19,13255 14,06746 28,36269 372,38536 0,05342 -0,14144 0,06466 -0,155216 0,04739 -0,00286

p-value 0,00577 See next table. 3,46188e-77 3,76574e-44 4,12698e-157 1,07649e-152 5,59726e-05 8,62323e-27 1,06477e-06 5,51327e-32 0,00035 0,82939

Reject H0? Yes See next table. No No No No No No No No No Yes

Table 5.3: Results of the statistical tests

Statistical test Chi-square

Null hypothesis
(H0)

Variable independence

Tested topic
internet,

technologies
bien-être,
santé

profiter,
érotisme,
voyager

amitié,
équipe

religion,
morale

danger,
violence

changer,
espérer,
futur,
rêver

ennui,
routine,
zone

business,
industrie

art,
culture,
sport

police,
prison,
système

colère,
mort,
souffrir

passé rap travailler
origines,
pays

amour,
femme,
flirt

homophobie,
racisme

famille,
maman

richesse,
succès

objectif

Value 19,39873 5,25221 139,83756 23,50454 15,19912 77,23542 2,34087 24,17891 23,52855 13,16805 31,88252 59,88099 9,79801 30,83447 1,36879 2,49546 51,26056 0,94329 41,48562 49,50958 10,15869

p-value 6,13225e-05 0,07236 4,31179e-31 7,87143e-06 0,00050 1,69255e-17 0,31023 5,16844e-06 7,77750e-06 0,001382 1,19343e-07 9,93132e-14 0,007454 2,01549e-07 0,50439 0,28715 7,39452e-12 0,62397 9,80645e-10 1,77472e-11 0,00622

Reject H0? No Yes No No No No Yes No No No No No Yes No Yes Yes No Yes No No Yes

Table 5.4: Results of Chi-square realized on topic x and certification level variables

63

5.3.1 Making predictions

To further test our prediction ability, we decided to use the predict() function of our current
Random Forest Tree model. This simple function enabled us to very easily visualize the
power of our model.

1 '''STEP 12/ MAKING PREDICTIONS'''

2 df_full_copy['certification_level_prediction'] = rf.predict(feature)

3 df_full_copy = df_full_copy.reindex(sorted(df_full_copy.columns), axis=1)

4

5 # Save new dataframe into csv file

6 df_full_copy.to_csv('predictions.csv', index=False)

Source code 5.29: Predicting the level of certification a record will get

Figure 5.21: Sample of our .csv prediction file

The full .csv file can be found at [GitHub, 2023].

This, as expected, corroborates totally results we have reached statistically.
The model is therefore usable.

5.3.2 Storing our model

For further re-usability, we follow the guideline in [Atha, 2021] and we store our model
into a .lib file. What this file allows is re-using this model on any computer and by-passing
the training step.

1 ''' STEP 13/ SAVING THE MODEL'''

2 from joblib import dump, load

3

4 # Saving model

5 dump(rf, 'certification_level_classification.joblib')

64

6 # Loading model

7 clf = load('certification_level_classification.joblib')

Source code 5.30: Saving our model in a .joblib file

5.4 Discussion

The result of our model tend to confirm several hypotheses:

1. A song commercial success can be at least partially predicted by its
features: we observe very strong prediction capabilities in our model when we take
into account the release time, the presence of featurings or not, the covered topics
and the online popularity of the said song.

2. The release year time plays a role: as proposed by [Bhattacharjee et al., 2007],
the release date indeed seems to play a significant role in the success of an album.
We observe it as we progressed from initially only taking the release year, to then
year and month, to finally consider the year, the month, but also the day. All the
three together summed proved to be more accurate predictors than just by taking
one of them separately.

3. Analysing singles certification could have been a strong plus: among many
other features to try, we think that taking singles certification into account could
have been a very meaningful improvement. Indeed, when we think of song success,
the certification comes to mind very quickly. This was planned but unfortunately, we
were not able to achieve that in time.

Now that we have achieved a fully working prediction model, we consider it important to
talk about limitations regarding our results and future research paths.

65

Chapter 6

Conclusions

66

6.1 Limitations

This thesis tried to propose a prediction model for music success. However, hypotheses
were naturally taken to accomplish this objective. In this section, we are going to highlight
these hypotheses to describe their limitations.

1. We focused on French national charts to predict Hip-Hop success: here, we
can already highlight several restrictions taken during this thesis: the geographical,
language and music genre constraints in first place. We needed to put a frame to our
research by limiting our scope. We believe that our observations, extended to other
genres or countries, could lend meaningful results.

2. We retrieved albums, but we analyzed songs: unfortunately, due to a lack of
time, this thesis neither used singles present in the corresponding albums to analyse
their impact on the latter, potentially leading to a commercial album success analysis,
nor did it encapsulated singles certifications as a variable in our model. Both could
have potentially improved or nuanced our predictions, and we surely think they are
very interesting hypothesis to try.

3. Prediction accuracy could have been boosted by the album effect: what we
mean here by ”the album effect” is that the songs of the same album reach the same
success level, as we have concentrated on the success of albums and not singles. This
has not been tested, but it could potentially be a wrong reasong for which prediction
is that good.

4. Our topic modelling could have been improved: as discussed in section 5.25,
we could have taken into account information given by bigrams in our topic modelling
algorithm. Unfortunately, we made a mistake that we failed to correct on time, but
we managed to still retrieve satisfying results.

6.2 Future research paths

The nature and scope of this thesis inevitably put aside some potentially relevant features
and explanatory criterias. Here, we propose to highlight the most important ones we
observed, based on scientific literature.

1. Importance of the artist’s popularity: a very interesting feature would be to
take into account the popularity of the artist we are analyzing. Scientific literature
has shown us this approach makes sense, and it would be particularly fitting to use
the quantity of publicly available data nowadays to improve the predictions. Of
course, the first step would be to correctly define what we intend by ”popularity”.
As shown in [Lee et al., 2003], one definition could be the total number of sales the
artist made throughout his or her whole career, as well as the number of certifications
his or her received. Another interesting approach would be to take into account its
social network presence and popularity, as this domain is playing a major role in the
discovery and renown of artists today.

2. Importance of the featured artist(s): now that we know the featuring has some
impact in the commercial success of a release, it would be interesting to carry on
this path by looking at the specific popularity of the featuring. This could also be
combined to a point stated above, which is correlate it with the popularity of the
featured artist (for instance its total number of sales, or its social network popularity,
etc).

67

3. Importance of the musical characteristics of the song: as we have seen
in [Kellaris and Kent, 2023], assessing the different components of a song result in
useful information. Therefore, re-examining the tonality, the texture, the tempo and
potentially more characteristics of a song in the light of available data on Spotify
for instance, such as its genre or its total duration, its spectre and so on, could be
beneficial for our model.

4. Importance of the music label: the music industry is divided in roughly
two categories: independent, small labels and massive major labels. As seen in
[Bhattacharjee et al., 2007], the methods and means of one category are not equal to
the other one; it would therefore be interesting to test this difference more in depth.

5. Importance of the duration before certification: the quantity of available
projects today is bigger than ever, with the rise of streaming audio services and the
digitalisation of music production. In that regard, one interesting question could be:
are albums certified faster than before1? Does that play a role in music’s commercial
success? Were past artists less prone to certification? Are older releases taking
advantage of the duration effect nowadays by winning more certifications?

6. Importance of the album: in this thesis, we made the choice to analyze each song
separately, although they all belong to certified albums. But what if we analyzed
certified songs instead? Some reach certification even if the albums they were put
out never did, or they simply do not belong to any album. Moreover, an interesting
analysis could be to reflect on the impact of the album for the constituting songs:
meaning, if we have two very successful songs in the same album, for instance, could
that potentially increase the chances for this album to be successful, too? What
effects can create a short or long tracklist?

7. Importance of certification categorization: at last, we have focused on the main
three levels of certification in our study, starting from the rarest (and thus, the most
successful): diamond, platinum and gold. But what about the non-certified albums?
They could have been added to our set, yet they were left out. Certifications have
also sub-categorization; some albums can be 1x platinum, or 2x platinum, just to cite
this simple example. Could that impact our predictions, too? It is certainly worth
testing.

As one can understand, this field is very fruitful and could lead other very important
discoveries.

1Table 7.14 makes a small-set comparison of best selling Hip-Hop albums in the United States across
three decades: 2001, 2011 and 2021, and checks the time needed to reach Platinum certification. One very
distinguishable observation is although artists tend to reach Platinum quite fast (going from several months
to more or less one year) both in 2001 and 2021, the tendency is quite different in 2011: in average, a top-10
selling album needs 4.5 years to reach Platinum. One explanation path could be the economic crisis and
the consequent downward trend in the music industry before streaming accountability in 2016. This all
lead to consider this field very interesting to analyze.

68

Chapter 7

Appendices

69

7.1 Developments

7.1.1 Methodology

Data collection and analysis

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running RF with oversampling

9 rf = RandomForestClassifier()

10 rf.fit(X_train_resampled, y_train_resampled)

Source code 7.1: Declaration of the Random Forest algorithm with oversampling technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running DT with oversampling

9 dtc = tree.DecisionTreeClassifier()

10 dtc.fit(X_train_resampled, y_train_resampled)

Source code 7.2: Declaration of the Decision Tree algorithm with oversampling technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running NB with oversampling

9 nb = GaussianNB()

10 nb.fit(X_train_resampled, y_train_resampled)

Source code 7.3: Declaration of the Gaussian Naive Bayes algorithm with oversampling
technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

70

Precision Recall F1-score Support

Diamond 0,17 0,88 0,28 148

Platinum 0,75 0,58 0,65 951

Gold 0,62 0,36 0,46 972

Accuracy 0,5 2071

Macro average 0,51 0,61 0,47 2071

Weighted average 0,65 0,5 0,54 2071

Table 7.1: Classification report: hard Voting Classifier (LogReg, RF & SVC)

Precision Recall F1-score Support

Diamond 0,22 0,8 0,34 158

Platinum 0,72 0,6 0,65 925

Gold 0,63 0,47 0,54 988

Accuracy 0,55 2071

Macro average 0,52 0,62 0,51 2071

Weighted average 0,64 0,55 0,57 2071

Table 7.2: Classification report: hard Voting Classifier (DT, RF & SVC)

71

Precision Recall F1-score Support

Diamond 0,18 0,84 0,3 145

Platinum 0,71 0,57 0,63 919

Gold 0,62 0,41 0,49 1007

Accuracy 0,51 2071

Macro average 0,51 0,61 0,47 2071

Weighted average 0,63 0,51 0,54 2071

Table 7.3: Classification report: hard Voting Classifier (RF, SVC & KNN)

Precision Recall F1-score Support

Diamond 0,19 0,87 0,31 160

Platinum 0,71 0,61 0,65 936

Gold 0,63 0,34 0,44 975

Accuracy 0,5 2071

Macro average 0,51 0,61 0,47 2071

Weighted average 0,63 0,5 0,53 2071

Table 7.4: Classification report: hard Voting Classifier (RF, SVC & NB)

72

Precision Recall F1-score Support

Diamond 0,17 0,86 0,28 128

Platinum 0,72 0,58 0,64 952

Gold 0,62 0,41 0,49 991

Accuracy 0,51 2071

Macro average 0,5 0,61 0,47 2071

Weighted average 0,64 0,51 0,55 2071

Table 7.5: Classification report: hard Voting Classifier (RF, DT, SVC, NB & KNN)

Precision Recall F1-score Support

Diamond 0,21 0,78 0,33 149

Platinum 0,76 0,57 0,65 981

Gold 0,59 0,49 0,53 941

Accuracy 0,55 2071

Macro average 0,52 0,61 0,5 2071

Weighted average 0,64 0,55 0,57 2071

Table 7.6: Classification report: soft Voting Classifier (RF,DT, SVC, NB & KNN)

73

Precision Recall F1-score Support

Diamond 0,17 0,9 0,29 156

Platinum 0,75 0,6 0,67 971

Gold 0,61 0,31 0,41 944

Accuracy 0,49 2071

Macro average 0,51 0,6 0,46 2071

Weighted average 0,64 0,49 0,52 2071

Table 7.7: Classification report: soft Voting Classifier (RF, SVC & NB)

Precision Recall F1-score Support

Diamond 0,21 0,85 0,33 146

Platinum 0,73 0,59 0,66 940

Gold 0,64 0,45 0,53 985

Accuracy 0,55 2071

Macro average 0,52 0,63 0,51 2071

Weighted average 0,65 0,55 0,57 2071

Table 7.8: Classification report: soft Voting Classifier (LR, RF & SVC)

74

Precision Recall F1-score Support

Diamond 0,23 0,75 0,35 134

Platinum 0,71 0,6 0,65 975

Gold 0,6 0,51 0,55 962

Accuracy 0,57 2071

Macro average 0,51 0,62 0,52 2071

Weighted average 0,63 0,57 0,58 2071

Table 7.9: Classification report: soft Voting Classifer (DT, RF & SVC)

Precision Recall F1-score Support

Diamond 0,2 0,79 0,32 152

Platinum 0,72 0,58 0,65 954

Gold 0,6 0,44 0,51 965

Accuracy 0,53 2071

Macro average 0,51 0,6 0,49 2071

Weighted average 0,63 0,53 0,56 2071

Table 7.10: Classification report: soft Voting Classifier (RF, SVC & KNN)

75

Precision Recall F1-score Support

Diamond 0,57 0,35 0,44 141

Platinum 0,68 0,68 0,68 943

Gold 0,65 0,68 0,67 987

Accuracy 0,66 2071

Macro average 0,63 0,57 0,59 2071

Weighted average 0,66 0,66 0,66 2071

Table 7.11: Classification report: oversampling RF

Precision Recall F1-score Support

Diamond 0,62 0,58 0,6 160

Platinum 0,78 0,75 0,76 930

Gold 0,73 0,76 0,74 981

Accuracy 0,74 2071

Macro average 0,71 0,7 0,7 2071

Weighted average 0,74 0,74 0,74 2071

Table 7.12: Classification report: oversampling RF + month/year variable split

76

Precision Recall F1-score Support

Diamond 0,74 0,66 0,7 154

Platinum 0,88 0,82 0,85 941

Gold 0,8 0,87 0,83 976

Accuracy 0,83 2071

Macro average 0,81 0,78 0,79 2071

Weighted average 0,83 0,83 0,83 2071

Table 7.13: Classification report: oversampling RF + day/month/year variable split

77

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running KNN with oversampling

9 nn = KNeighborsClassifier()

10 knn.fit(X_train_resampled, y_train_resampled)

Source code 7.4: Declaration of the K-nearest Neighbors algorithm with oversampling
technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running LR with oversampling

9 lr = LogisticRegression()

10 lr.fit(X_train_resampled, y_train_resampled)

Source code 7.5: Declaration of the Logistic Regression algorithm with oversampling
technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running SVC with oversampling

9 clf = svm.SVC()

10 clf.fit(X_train_resampled, y_train_resampled)

Source code 7.6: Declaration of the Support Vector Classifier algorithm with oversampling
technique

1 #Loading SMOTE library

2 from imblearn.over_sampling import SMOTE

3 smote = SMOTE()

4

5 #Oversampling

6 X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

7

8 #Running RF with oversampling

9 rf = RandomForestClassifier(random_state=0)

10 rf.fit(X_train_resampled, y_train_resampled)

78

Source code 7.7: SMOTE oversampling

1 #Loading RandomUnderSampler

2 from imblearn.under_sampling import RandomUnderSampler

3

4 #Undersampling

5 rus = RandomUnderSampler()

6 X_train_resampled, y_train_resampled = rus.fit_resample(X_train, y_train)

7

8 #Running RF with undersampling

9 rf = RandomForestClassifier(random_state=0)

10 rf.fit(X_train_resampled, y_train_resampled)

Source code 7.8: imblearn’s undersampling

1 #Loading SMOTEENN

2 from imblearn.combine import SMOTEENN

3 smote_enn = SMOTEENN()

4

5 #Resampling

6 X_train_resampled, y_train_resampled = smote_enn.fit_resample(X_train, y_train)

7

8 #Running RF with SMOTEENN

9 rf = RandomForestClassifier(random_state=0)

10 rf.fit(X_train_resampled, y_train_resampled)

Source code 7.9: SMOTEENN sampling

1 #Loading libraries

2 from sklearn.ensemble import RandomForestClassifier, VotingClassifier

3 from sklearn.linear_model import LogisticRegression

4 from sklearn.svm import SVC

5 from imblearn.combine import SMOTEENN

6

7 #Defining SMOTEENN

8 smote_enn = SMOTEENN()

9

10 #Resampling

11 X_resampled, y_resampled = smote_enn.fit_resample(X_train, y_train)

12

13 # Models definition

14 clf1 = RandomForestClassifier()

15 clf2 = SVC(probability=True)

16 clf3 = KNeighborsClassifier()

17

18 #Creating the final model

19 eclf = VotingClassifier(estimators=[('rf', clf1), ('svc', clf2), ('knn', clf3)],

20 voting='soft')

21

79

22

23 #Training the final model

24 eclf.fit(X_resampled, y_resampled)

Source code 7.10: One example of Voting Classifier model

Figure 7.1: Sample of our statistical model analysis

Scientific literature review

1 #Features importance computation

2 feature_importances = rf.feature_importances_

3

4 #Features importance displaying

5 for name, importance in zip(X_train.columns, feature_importances):

6 print(f"Feature: {name}, Importance: {importance}")

Source code 7.11: Feature importance analysis code

80

Problems encountered and solutions found

1 def array_dummifier_topics(dataframe,collection):

2 # Opening JSON

3 f = open("json_dumps/release_"+ collection +".json")

4 data = json.load(f)

5

6 # Looping - retrieving labels

7 topic_array = ['topic_1','topic_2','topic_3']

8 for row in data:

9 for index,line in dataframe.iterrows():

10 if(row['song_name']==line['track_name']):

11 for topic in topic_array:

12 temp = row['song'][0][topic]['topic']

13 # if not temp == "NaN":

14 if temp != "NaN":

15 dataframe.loc[dataframe[topic] == line[topic], topic] = temp

16

17 df1 = (dataframe[col["topic"].explode().str.get_dummies().groupby(level=0).sum().

18 add_prefix('topic_'))

19 dataframe = dataframe.drop(col, axis=1).join(df1)

20

21 f.close()

22 return dataframe

Source code 7.12: Our array dummifier topics() function

1 # Looping - changing fields in the DF

2 for topic in topic_array:

3 df1 = (dataframe[topic].explode().str.get_dummies().groupby(level=0).

4 sum().add_prefix('topic_')) #creating a new column

5

6 if topic == 'topic_3':

7 dataframe = dataframe.drop(topic,axis=1).join(df1,rsuffix='_right2',

8 how='outer')

9 else:

10 dataframe = dataframe.drop(topic,axis=1).join(df1,lsuffix='_left',

11 rsuffix='_right',how='outer')

Source code 7.13: Addition to array dummifier topics() to deal with conflicting column
names

1 def join_labels(df):

2 labels = []

3

4 #For topics, we change their name from `topic_name` to simply `name`

5 for col in df.columns:

6 if(re.match('^topic_.*',col)):

7 test = re.search("(?<=_).+(?=_)|(?<=_)(?!left)(?!right).*",col)

8 label = 'topic_'+test.group()

9 df.rename(columns = {col:label}, inplace = True)

81

10 if not label in labels:

11 labels.append(label)

12

13 #Adding columns, erasing duplicates

14 for label in labels:

15 #We sum our similar columns

16 df[label]= df.loc[:, label].sum(axis=1)

17

18 #We dump duplicates

19 df = df.loc[:,~df.T.duplicated(keep='first')]

20 return df

Source code 7.14: Our function join labels(), working in pair with
array dummifier topics()

Figure 7.2: Our initial k-fold cross-validation result with Decision Tree (overfit)

1 {'Training Accuracy scores': array([1., 1., 1., 1., 1.]),

2 'Mean Training Accuracy': 100.0,

3 'Training Precision scores': array([1., 1., 1., 1., 1.]),

4 'Mean Training Precision': 1.0,

5 'Training Recall scores': array([1., 1., 1., 1., 1.]),

6 'Mean Training Recall': 1.0,

7 'Training F1 scores': array([1., 1., 1., 1., 1.]),

8 'Mean Training F1 Score': 1.0,

9 'Validation Accuracy scores': array([0.58682266, 1., 1., 1., 1.]),

10 'Mean Validation Accuracy': 91.73645320197045,

11 'Validation Precision scores': array([1., 1., 1., 1., 1.]),

12 'Mean Validation Precision': 1.0,

13 'Validation Recall scores': array([0.09690444, 1., 1., 1., 1.]),

14 'Mean Validation Recall': 0.8193808882907133,

15 'Validation F1 scores': array([0.17668712, 1., 1., 1., 1.]),

16 'Mean Validation F1 Score': 0.8353374233128834}

Source code 7.15: Output of the Decision Tree k-fold cross-validation method

82

Figure 7.3: Our k-fold cross-validation result with Random Forest (overfit)

1 {'Training Accuracy scores': array([1., 1., 1., 1., 1.]),

2 'Mean Training Accuracy': 100.0,

3 'Training Precision scores': array([1., 1., 1., 1., 1.]),

4 'Mean Training Precision': 1.0,

5 'Training Recall scores': array([1., 1., 1., 1., 1.]),

6 'Mean Training Recall': 1.0,

7 'Training F1 scores': array([1., 1., 1., 1., 1.]),

8 'Mean Training F1 Score': 1.0,

9 'Validation Accuracy scores': array([0.55603448, 0.91256158, 0.98706897, 0.99261084,

10 0.99630542]),

11 'Mean Validation Accuracy': 88.89162561576353,

12 'Validation Precision scores': array([1. , 0.84108967, 0.99048913, 0.98539177,

13 0.99198932]),

14 'Mean Validation Precision': 0.961791977324754,

15 'Validation Recall scores': array([0.02960969, 0.99730821, 0.98115747, 0.9986541 ,

16 1.]),

17 'Mean Validation Recall': 0.8013458950201884,

18 'Validation F1 scores': array([0.05751634, 0.91256158, 0.98580122, 0.99197861,

19 0.99597855]),

20 'Mean Validation F1 Score': 0.7887672590333978}

Source code 7.16: Initial output of the Random Forest k-fold cross-validation method

83

Figure 7.4: Our final result of k-fold cross-validation with Random Forest and the over-
sampling technique applied

1 {'Training Accuracy scores': array([0.9966133 , 0.99784483, 0.99676724, 0.99769089,

2 0.99645936]),

3 'Mean Training Accuracy': 99.70751231527093,

4 'Training Precision scores': array([nan, nan, nan, nan, nan]),

5 'Mean Training Precision': nan,

6 'Training Recall scores': array([nan, nan, nan, nan, nan]),

7 'Mean Training Recall': nan,

8 'Training F1 scores': array([nan, nan, nan, nan, nan]),

9 'Mean Training F1 Score': nan,

10 'Validation Accuracy scores': array([0.61083744, 0.61576355, 0.51970443, 0.58990148,

11 0.57142857]),

12 'Mean Validation Accuracy': 58.1527093596059,

13 'Validation Precision scores': array([nan, nan, nan, nan, nan]),

14 'Mean Validation Precision': nan,

15 'Validation Recall scores': array([nan, nan, nan, nan, nan]),

16 'Mean Validation Recall': nan,

17 'Validation F1 scores': array([nan, nan, nan, nan, nan]),

18 'Mean Validation F1 Score': nan}

Source code 7.17: Our final output for the oversampled Random Forest k-fold cross-
validation method

7.2 Conclusions

7.2.1 Future research paths

84

Year 2001 Release date Certified after 2011 Release date Certified after 2021 Release date Certified after

#1 Ludacris - Word of Mouf 27/11/01 Platinum after 2 months Drake - Take care 15/11/11 Platinum after 2 months Drake - Certified Lover Boy 3/09/21 Platinum after 1 month

#2 Ja Rule - Pain is love 2/10/01 Platinum after 1 month Jay-Z & Kanye West - Watch the throne 12/08/11 5x plat after 9 years, 3 months Pop Smoke - Shoot for the Stars Aim for the Moon 2/07/20 Platinum after 1 year

#3 Jay-Z - The Blueprint 11/09/01 Platinum after 1 month Beyoncé - 4 28/07/11 Platinum after 1 month Doja Cat - Planet Her 24/06/21 Platinum after 1 year

#4 2Pac - Until the end of time 27/03/01 Platinum after 2 months Lil Wayne - Tha Carter IV 28/07/11 Platinum after 7 years, 4 months Lil Baby - My Turn 28/02/20 Platinum after 3 months

#5 D12 - Devil’s night 19/06/01 Platinum after 3 months Chris Brown - F.A.M.E. 18/03/11 Platinum after 5 years Rod Wave - Soulfly 26/03/21 Platinum after 1 year, 4 months

#6 Missy Elliott - Miss E. . . so addictive 26/04/01 Platinum after 3 months Wiz Khalifa - Rolling papers 29/03/11 Platinum after 5 years, 3 months Moneybagg Yo - A Gangsta’s Pain 23/04/21 Platinum after 7 months

#7 DMX - The great Depression 23/10/01 Platinum after 2 months J. Cole - Cole World 20/09/11 Platinum after 4 years, 5 months Juice Wrld - Legends Never Die 10/07/20 Platinum after 1 year, 3 months

#8 Nas - Illmatic 19/04/94 Platinum after 7 years, 7 months Big Sean - Finally Famous 28/06/11 Platinum after 6 years, 4 months Polo G - Hall of Fame 11/06/21 Platinum after 7 months

#9 Busta Rhymes - Genesis 27/11/01 Platinum after 4 months Young Jeezy - TM: 103 Hustlerz Ambition 20/12/11 Platinum after 8 years, 7 months Post Malone - Hollywood’s Bleeding 06/09/19 Platinum after 1 year, 7 months

#10 Fat Joe - J.O.S.E. 26/11/01 Platinum after 6 months Bad Meets Evil : Hell: The Sequel 14/07/11 Gold after 2 months Lil Durk - The Voice 24/12/20 Platinum after 1 year, 7 months

Table 7.14: 2001, 2011 and 2021 best-selling rap albums comparison

85

7.3 Additional appendices

1 from sklearn.model_selection import cross_validate

2 def cross_validation(model, _X, _y, _cv=5):

3 '''Function to perform 5 Folds Cross-Validation

4 Parameters

5 ----------

6 model: Python Class, default=None

7 This is the machine learning algorithm to be used for training.

8 _X: array

9 This is the matrix of features.

10 _y: array

11 This is the target variable.

12 _cv: int, default=5

13 Determines the number of folds for cross-validation.

14 Returns

15 -------

16 The function returns a dictionary containing the metrics 'accuracy', 'precision',

17 'recall', 'f1' for both training set and validation set.

18 '''

19 _scoring = ['accuracy', 'precision', 'recall', 'f1']

20 results = cross_validate(estimator=model,

21 X=_X,

22 y=_y,

23 cv=_cv,

24 scoring=_scoring,

25 return_train_score=True)

26

27 return {"Training Accuracy scores": results['train_accuracy'],

28 "Mean Training Accuracy": results['train_accuracy'].mean()*100,

29 "Training Precision scores": results['train_precision'],

30 "Mean Training Precision": results['train_precision'].mean(),

31 "Training Recall scores": results['train_recall'],

32 "Mean Training Recall": results['train_recall'].mean(),

33 "Training F1 scores": results['train_f1'],

34 "Mean Training F1 Score": results['train_f1'].mean(),

35 "Validation Accuracy scores": results['test_accuracy'],

36 "Mean Validation Accuracy": results['test_accuracy'].mean()*100,

37 "Validation Precision scores": results['test_precision'],

38 "Mean Validation Precision": results['test_precision'].mean(),

39 "Validation Recall scores": results['test_recall'],

40 "Mean Validation Recall": results['test_recall'].mean(),

41 "Validation F1 scores": results['test_f1'],

42 "Mean Validation F1 Score": results['test_f1'].mean()

43 }

44

45 # Grouped Bar Chart for both training and validation data

46 def plot_result(x_label, y_label, plot_title, train_data, val_data):

47 '''Function to plot a grouped bar chart showing the training and validation

48 results of the ML model in each fold after applying K-fold cross-validation.

49 Parameters

50 ----------

51 x_label: str,

52 Name of the algorithm used for training e.g 'Decision Tree'

86

53

54 y_label: str,

55 Name of metric being visualized e.g 'Accuracy'

56 plot_title: str,

57 This is the title of the plot e.g 'Accuracy Plot'

58

59 train_result: list, array

60 This is the list containing either training precision, accuracy, or f1 score.

61

62 val_result: list, array

63 This is the list containing either validation precision, accuracy,

64 or f1 score.

65 Returns

66 -------

67 The function returns a Grouped Barchart showing the training and validation

68 result in each fold.

69 '''

70 # Set size of plot

71 plt.figure(figsize=(12,6))

72 labels = ["1st Fold", "2nd Fold", "3rd Fold", "4th Fold", "5th Fold"]

73 X_axis = np.arange(len(labels))

74 ax = plt.gca()

75 plt.ylim(0.40000, 1)

76 plt.bar(X_axis-0.2, train_data, 0.4, color='blue', label='Training')

77 plt.bar(X_axis+0.2, val_data, 0.4, color='red', label='Validation')

78 plt.title(plot_title, fontsize=30)

79 plt.xticks(X_axis, labels)

80 plt.xlabel(x_label, fontsize=14)

81 plt.ylabel(y_label, fontsize=14)

82 plt.legend()

83 plt.grid(True)

84 plt.show()

Source code 7.18: Our k-fold cross-validation algorithm taken from [Affiah, 2022]

87

Figure 7.5: Sample of our scientific literature database on Notion

Figure 7.6: Sample of our scientific literature database on Google Spreadsheet

Figure 7.7: Sample of our main page for the research thesis on Notion

88

Figure 7.8: Overview of our MongoDB database

Figure 7.9: An overview of our Platinum MongoDB collection

Figure 7.10: Overview of our GitHub page for the research thesis (available at
[GitHub, 2023])

89

Figure 7.11: By-hand correction to some releases

90

Chapter 8

List of resource persons

91

Below, one can find all the resource persons contacted during the realisation of this thesis,
with the full name, mail address and field of expertise.

First name Last name Mail address Field of expertise

Aswhin Ittoo ashwin.ittoo@uliege.be

Supervisor

Management information systems

Natural Langage Processing (NLP)

Michael Schyns M.schyns@uliege.be

Digital Business Master’s coordinator

Management information systems

Digital Business and Business Analytics

Judicaël Poumay Judicael.Poumay@uliege.be Management information systems

92

Chapter 9

Bibliography and references

93

Bibliography

[Affiah, 2022] Affiah, I. (2022). How to Implement K fold Cross-Validation in Scikit-
Learn. https://www.section.io/engineering-education/how-to-implement-k-fold-cross-
validation/.

[Aguiar and Waldfogel, 2021] Aguiar, L. and Waldfogel, J. (2021). Platforms, Power, and
Promotion: Evidence from Spotify Playlists*. The Journal of Industrial Economics,
69(3):653–691.

[Atha, 2021] Atha, R. (2021). Building Classification Model with Python.
https://medium.com/analytics-vidhya/building-classification-model-with-python-
9bdfc13faa4b.

[Berns and Moore, 2012] Berns, G. S. and Moore, S. E. (2012). A neural predictor of
cultural popularity. Journal of Consumer Psychology, 22(1):154–160.

[Bhattacharjee et al., 2007] Bhattacharjee, S., Gopal, R. D., Lertwachara, K., Marsden,
J. R., and Telang, R. (2007). The Effect of Digital Sharing Technologies on Music
Markets: A Survival Analysis of Albums on Ranking Charts. Management Science,
53(9):1359–1374.

[Ceci, 2023a] Ceci, L. (2023a). Top Android apps by global downloads 2023.
https://www.statista.com/statistics/693944/leading-android-apps-worldwide-by-
downloads/.

[Ceci, 2023b] Ceci, L. (2023b). Top smartphone users activities 2022.
https://www.statista.com/statistics/1337895/top-smartphone-activities/.

[Chakor, 2019] Chakor, T. (2019). Rap et médias, de la dépendance à l’indépendance
? https://ventesrap.fr/rap-et-medias-de-la-dependance-a-lindependance/.

[Cross, 2016] Cross, A. (2016). There’s a New Way to Measure Commer-
cial Success in Music and It Involves Music Streaming — Alan Cross.
https://www.ajournalofmusicalthings.com/theres-a-new-way-to-measure-commercial-
success-in-music-and-it-involves-streaming/.

[Curry, 2023] Curry, D. (2023). Music Streaming App Revenue and Usage Statistics (2023).
https://www.businessofapps.com/data/music-streaming-market/.

[Degenhard, 2023] Degenhard, J. (2023). Global: Internet users 2013-2028.
https://www.statista.com/forecasts/1146844/internet-users-in-the-world.

[Dertouzos, 2008] Dertouzos, J. N. (2008). Radio Airplay and the Record Industry: An
Economic Analysis.

[Genius, 2020] Genius (2020). 13 Organisé by 13 Organisé. https://genius.com/albums/13-
organise/13-organise.

[Genius, 2022] Genius (2022). Pollux - PSLP Lyrics and Tracklist — Genius.
https://genius.com/albums/Pollux/Pslp.

94

[Genius, 2023] Genius (2023). Genius — Song Lyrics & Knowledge. https://genius.com/.

[GitHub, 2023] GitHub (2023). Codeternel/research-thesis: A GitHub repo to
keep track of my research thesis advancements and alternative file versions.
https://github.com/Codeternel/research-thesis.

[Götting, 2023] Götting, M. C. (2023). Global music streaming subscribers
2022. https://www.statista.com/statistics/653926/music-streaming-service-subscriber-
share/.

[Kellaris and Kent, 2023] Kellaris, J. J. and Kent, R. J. (2023). An Exploratory Investiga-
tion of Responses Elicited by Music Varying in Tempo, Tonality, and Texture.

[Le Monde, 2020] Le Monde (2020). La France est-elle vraiment la
deuxième terre du rap ? Et si oui, pourquoi ? (Rap Business Ep. 2).
https://www.youtube.com/watch?v=f5kIjAikHbs.

[Lee et al., 2003] Lee, J., Boatwright, P., and Kamakura, W. A. (2003). A Bayesian Model
for Prelaunch Sales Forecasting of Recorded Music. Management Science, 49(2):179–196.

[Lynne, 2022] Lynne, K. (2022). Around the World — Global Hip-Hop.
https://www.allmusic.com/blog/post/around-the-world-global-hip-hop.

[Microsoft, 2023] Microsoft (2023). Visual Studio Code - Code Editing. Redefined.
https://code.visualstudio.com/.

[Milkman, 2021] Milkman, S. (2021). Slicing Contemporary Music Tastes by Demo-
graphics and Consumption. https://colemaninsights.com/coleman-insights-blog/slicing-
contemporary-music-tastes-by-demographics-and-consumption.

[Miller, 2023] Miller, J. (2023). LyricsGenius: A Python client for the Genius.com API —
lyricsgenius documentation. https://lyricsgenius.readthedocs.io/en/master/.

[MongoDB, 2023] MongoDB (2023). MongoDB: The Developer Data Platform — Mon-
goDB. https://www.mongodb.com/.

[Mourgere, 2015] Mourgere, I. (2015). Chansons françaises à la radio
: Des tubes oui, mais pas que ! — TV5MONDE - Informations.
https://information.tv5monde.com/culture/chansons-francaises-la-radio-des-tubes-oui-
mais-pas-que-23705.

[Muthukadan, 2023] Muthukadan, B. (2023). Selenium with Python — Selenium Python
Bindings 2 documentation. https://selenium-python.readthedocs.io/index.html.

[Oliver, 2020] Oliver, M. (2020). Paris, France Was the Most Successful City for Hip-Hop in
2019. https://djbooth.net/features/2020-01-09-france-got-something-to-say-album-sales.

[Pandas, 2023] Pandas (2023). Pandas - Python Data Analysis Library.
https://pandas.pydata.org/.

[Petrosyan, 2023a] Petrosyan, A. (2023a). Devices used to access the internet 2022.
https://www.statista.com/statistics/1289755/internet-access-by-device-worldwide/.

[Petrosyan, 2023b] Petrosyan, A. (2023b). Reasons for using the internet worldwide 2022.
https://www.statista.com/statistics/1387375/internet-using-global-reasons/.

[Python, 2023] Python (2023). Welcome to Python.org. https://www.python.org/.

[Smirke, 2023] Smirke, R. (2023). IFPI Global Report 2023: Music Revenues Climb 9%
to $26.2 Billion. https://www.ifpi.org/ifpi-global-music-report-global-recorded-music-
revenues-grew-9-in-2022/.

95

[SNEP, 2023a] SNEP (2023a). Les certifications. https://snepmusique.com/les-
certifications/.

[SNEP, 2023b] SNEP (2023b). L’organisation. https://snepmusique.com/lorganisation/.

[Spacy, 2023] Spacy (2023). spaCy · Industrial-strength Natural Language Processing in
Python. https://spacy.io/.

[StatistaMarketInsights, 2023] StatistaMarketInsights (2023). Music Streaming - United
States — Statista Market Forecast. https://www.statista.com/outlook/dmo/digital-
media/digital-music/music-streaming/united-states.

[StatistaResearchDepartment, 2023] StatistaResearchDepartment (2023). Global: Mobile
app revenue by segment 2019-2027. https://www.statista.com/forecasts/1262892/mobile-
app-revenue-worldwide-by-segment.

[Strobl and Tucker, 2000] Strobl, E. A. and Tucker, C. (2000). The Dynamics of Chart
Success in the U.K. Pre-Recorded Popular Music Industry.

[Webster, 2023] Webster, M. (2023). Definition of SUCCESS. https://www.merriam-
webster.com/dictionary/success.

[Wikiwand, 2019] Wikiwand (2019). Wikiwand - Syndicat national de l’édition phono-
graphique. https://www.wikiwand.com/fr/Syndicat national de l’édition phonographique.

[Wikiwand, 2023a] Wikiwand (2023a). Latent Dirichlet allocation - Wikiwand.
https://www.wikiwand.com/en/Latent%20Dirichlet%20allocation.

[Wikiwand, 2023b] Wikiwand (2023b). RIAA certification - Wikiwand.
https://www.wikiwand.com/en/RIAA certification.

[Wikiwand, 2023c] Wikiwand (2023c). Wikiwand - Disque de certification.
https://www.wikiwand.com/fr/Disque de certification.

[Wikiwand, 2023d] Wikiwand (2023d). Wikiwand - H.I.P. H.O.P.
https://wikiwand.com/fr/H.I.P. H.O.P.

[Wikiwand, 2023e] Wikiwand (2023e). Wikiwand - Skyrock.
https://wikiwand.com/fr/Skyrock.

96

Executive summary

97

The topic of this master research thesis was to discover what features can explain the
commercial success of a French hip-hop released song. To do so, the decision was taken
to analyse certified French hip-hop albums, as they gathered many songs together and
provided a time frame and other possibilities for correlation. We used a classification
model approach to train a model to be able to predict correctly what set of features would
reach what certification.

To start, we created a MongoDB database with all of the certified French hip-hop albums
that we retrieved from SNEP, the national organisation for music certification. To filter
records that were not hip-hop, we used a non-exhaustive, yet as rich as it gets list of the
French hiph-hop artists available on Genius. For each list entry, we queried SNEP website
to download the corresponding .csv file that contained certified albums data.

Having our certified albums list, we proceeded to input these names, one album at a time,
into a Python library named LyricsGenius. LyricsGenius is an API that allows to retrieve
all data related to specific albums stored in Genius. This is where we got, among other
elements, the lyrics of each song.

Once all data related to each song was collected, it was time to run a topic modelling
algorithm, which happened to be a Latent Dirichlet Allocation one in our case. After some
pre-processing, all of this data was then ready to be stored in MongoDB.

Having our database system storage, we now accessed it through Python, and more
precisely through Pandas, a library to display and work with tables (called ”dataframes”)
more easily. Here again, we had some pre-processing to do before model training: changing
topic columns’ content, variable dummification, topics grouping to decrease model size and
improve efficiency, etc. We checked variable independence and then split our data set into
train, validation and test sets.

At that time, we tested plenty of different prediction algorithms, such as Naive Bayes,
K-nearest neighbors, and so on. It was also at that moment we take a look at the scientific
literature to see what additional feature to take into account, learnings that we applied at
best. Our metrics highlighted the over-sampled version of the Random Forest algorithm
was the best pick for our set of data, with no less than 83% of F1-score, which is the
metrics we decided to focus on, as it encompassed both precision and recall.

Having this trained model, we were now able to make predictions. A sample of the result
can be found in our appendices. We observed that the quality of our model was confirmed.

At last, we saved our model in a .joblib file for reusability. We then proceeded to discuss the
biggest problems we encountered in our model, and we described how we fixed each of them.

Although the result of our model was very good, there were many other features to test
and hypothesis to try. That is what we discussed very briefly in the limitations of this
thesis. We indeed believe that there remains a lot of data to analyse, useful discoveries to
make and we tried to give some of these future research paths to conclude this thesis.

Number of words:
25,158

98

