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Abstract

The AIDA collaboration between the NASA and the ESA aims to deviate the binary asteroid
system Didymos. At the date of this thesis, the DART mission has already occurred. Its
objective was to impact the asteroid Dimorphos to deviate it. Considering the recent mea-
surements, it is a success. In particular, the HERA mission, developed by ESA, will study the
asteroid Dimorphos, which is part of a binary system conjointly with a bigger asteroid Didy-
mos. The spacecraft will carry 2 cubesats that will land on the surface of Dimorhpos, and will
eventually bounce on its surface. In this context, this thesis has as objective to simulate the
bounce of Juventas on the surface of Dimorphos and study it through a Monte-Carlo analysis.
By varying the surface properties, the position and speed of the spacecraft, we aim to collect
some information about the success of the mission. A new algorithm has been developed ac-
counting for the rotation of the spacecraft and its 3D shape. The result of this new model will
be studied. Results have shown dependencies between the coefficient of restitutions, incident
angle and contact time. According to the new mission, the mission should not fail and Juven-
tas will not bounce off of Dimorphos. Another study will be made with a noise that will be
applied on the surface of the asteroid to see the impact of small deformations on the bounce
of the spacecraft, showing an increase of the dispersion with an increasing noise.
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Introduction

During the Rosetta mission, the Philae was supposed to land on the site J (named later Ag-
ilkia) of the comet 67P/Tchourioumov-Guérassimenko. It was equipped with an anchor system
and thruster to stick on the ground when the first contact with the surface. Unfortunately,
a critical failure on those systems led the spacecraft to bounce instead of landing. Due to
the weak gravity force, the lander bounced during nearly 2 hours, before coming at rest in
an unsecure position, with a lower illumination than expected perturbing the thermal control
of the probe and the power production of solar panels. Even if the probe could make some
measurements, the operators went through a lot of trouble to solve the problems caused by
this uncontrolled landing and the measurements could be done mainly by luck. The study
of bounces seems to be a field of interest for future missions which aim to land on small,
airless bodies of the solar system. In this context, this work aims to provide a new model to
describe the bounces of the Juventas spacecraft on an asteroid during the Hera mission, with
an emphasis on the 3D shape of it and its rotations.

Before introducing the Hera mission, a presentation about its predecessor, DART, must be
provided. The Double Asteroid Redirection Test (DART) mission, spearheaded by NASA,
launched in 2021 aimed to modify the velocity of Dimorphos, an asteroid from the binary
system Didymos, through an impact. In September 26 2022, the DART successfully hit its
target and deflected the asteroid. The impact was even more effective than expected.

Five years later, it’s the Hera mission, led by the European Space Agency, that will reach
Dimorphos. It will study the consequences of the previous mission and in particular charac-
terize the crater and the properties of its surface. During the mission, the CubeSat Juventas
will be used to scan and land on the surface of the asteroid.

This study is relying on the work of 2 previous theses, the one of Guillaume Hanon and
Guillaume Vanhalst "A study of the landing phase of the Juventas CubeSat on the moon
of the binary asteroid system Didymos" [43] and the thesis of Guillaume Roidin "Landing
trajectories analysis and geophysics of Juventas in the binary asteroid system Didymos" [32]
that is an extension of the previous one. During their work, they developed a propagator for
the Didymos system that will be used in this thesis, and improved in order to emulate the
bounces of the spacecraft.

Master Thesis Structure

Investigating the trajectories of a spacecraft during bouncing events presents notable chal-
lenges due to the inherent complexities associated with both the assumptions made and the
nature of the bouncing surface. Frequently, the intricate factors of rotational dynamics and the
object’s three-dimensional form are overlooked in favor of simplifying the model for efficiency,
especially when a big number of trajectories have to be simulated. A precedent has been set by
Guillaume Roisin [32], wherein a method embracing these simplifications has been developed.
In this context, a new algorithm has been developed, departing from the conventional route
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by including the 3D shape and rotational dynamics of the spacecraft. The core of this thesis
centers on comprehending the implications of this new model. Also, a method has been set to
deform the surface of the asteroid in order to emulate an irregular ground with rocks on its
surface. Finally, a Monte-Carlo analysis is performed to study the different parameters of the
trajectory.

Chapter 1 introduces the core mission addressed in this thesis and provides essential contex-
tual information. It commences by discussing the AIDA collaboration and its twin missions:
DART and Hera. Subsequently, the focus turns towards the Didymos system, elucidating its
physical and dynamic characteristics. Finally, the configuration of the Juventas CubeSat, its
scientific objectives, and the phases of its mission are outlined.

In Chapter 2 of this thesis, the emphasis is on modeling Juventas’ motion within the Didymos
system. The chapter commences with the derivation of the equations governing Juventas’ mo-
tion, taking into account gravitational perturbations and the virtual forces due to the choice of
reference frame. Additionally, a discussion ensues on the influence of solar radiation pressure
and the braking maneuver.

Chapter 3 delves into the modeling of Juventas’ bouncing behavior. It first illustrates colli-
sion detection, followed by the physical equations employed to compute the bouncing motion.
The geometry of Juventas and its mechanical components are also explored, along with their
corresponding modeling techniques. The conditions dictating the cessation of the bouncing
behavior are established.

In Chapter 4, the focus shifts to the vectorization method developed by Guillaume Roisin
[32], specifically the Runge-Kutta Fehlberg method. The adaptation of this method to in-
corporate the bouncing behavior is detailed, including the collision detection process for each
propagator sample and the overarching algorithmic structure.

Chapter 5 is dedicated to the exploration of surface deformations using two distinct meth-
ods. The first method involves the direct placement of generated rocks onto the surface, while
the second method involves directly deforming the surface itself through the application of
Perlin noise.

Chapter 6 presents the diverse outcomes of the simulations. The establishment of initial
conditions is followed by a comprehensive convergence analysis. The results of the simulations
are studied, ranging from the landing position of Juventas to the deflection of its solar panels.

In Chapter 7, the focus lies on evaluating the impact of surface deformations on various
parameters. Multiple samples are subjected to testing on differing surfaces to discern the
influence of noise on the dynamics of bouncing.

The concluding Chapter 8 summarizes the key findings and advancements presented in this
thesis, offering insights for potential future endeavors.
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1 Mission description

This chapter provides contextual information regarding the ongoing mission associated with
this thesis. Initially, the AIDA collaboration is introduced, along with its two separate missions
: DART and Hera. Subsequently, the Didymos system is presented, including its physical
and dynamical parameters. Following that, the Juventas CubeSat is described, outlining its
scientific objectives and mission phases. Finally, the landing trajectories are discussed at the
end of the chapter.

1.1 AIDA

The AIDA (Asteroid Impact Deflection Assessment) collaboration is an international effort
involving the NASA and the ESA dedicated to studying and understanding the impact dy-
namics of asteroids and developing techniques to mitigate potential asteroid threats to Earth.
The collaboration aims to improve our understanding of the physics behind asteroid impacts
and test the feasibility of asteroid deflection strategies. The designated target for the collabo-
ration is the binary asteroid system 65803 Didymos [24], which consists of a primary asteroid
and a smaller moonlet orbiting around it. It was chosen due to the size of the 2 bodies, which
are typically the dimension of asteroids that could threat the Earth. Furthermore, the binary
is relatively near to Earth which increases the feasibility of the mission, and the system’s
disposition allows an easy measurement of the change of speed on the different bodies. The
two main missions within the AIDA are DART (Double Asteroid Redirection Test) and Hera.
DART, led by NASA, aims to impact the smaller moonlet of Didymos, while Hera, led by the
European Space Agency (ESA), will study the impact in detail and provide complementary
measurements of the resulting deflection.

1.1.1 DART

The DART (Double Asteroid Redirection Test) mission is a project led by NASA with the
goal of testing a planetary defense technique for deflecting potential asteroid impacts on Earth,
which is the first mission of its kind [23]. DART’s target is the asteroid Dimorphos, the moon-
let of the Didymos system. A scheme of the mission is shown on the figure 1. .

The objective of DART was to demonstrate the capability of redirecting the trajectory of
an asteroid by deliberately crashing into the smaller moonlet. The spacecraft hit its target on
September 26 2022 and carried a strong kinetic impact with an impact speed of 6.58 km/s.
The deflection was a success, DART induced a modification to the velocity of the celestial
body by 2.7 mm/s [3], which was a number beyond the initial expectations.

DART was equipped with advanced technologies, including autonomous navigation and tar-
geting systems, to ensure precise impact on the moonlet. The spacecraft carried carry a 6U
CubeSat equipped with an onboard camera system, LICIACube, developed by the Italian
Space Agency and was deployed 15 days prior to impact. Its role was to capture images and
data before, during, and after the impact [14]. A picture taken by LICIA is shown on the
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figure 2.

Through the DART mission, scientists and engineers aim to improve our understanding of
asteroid dynamics, refine impact modeling techniques, and provide crucial data for potential
future asteroid deflection missions. By demonstrating the feasibility of kinetic impact as a
viable planetary defense method, DART contributes to our ability to protect Earth from po-
tential asteroid threats.

Figure 1: Scheme of the DART mission
[23].

Figure 2: Image captured by the LICI-
ACube a few minutes after the collision
[21].

1.1.2 Hera

The Hera mission is a project led by the European Space Agency (ESA) as a part of the
AIDA collaboration and scheduled for launch in 2024. Its primary objective is to study and
investigate the impact and effects of the Double Asteroid Redirection Test (DART) mission
on the binary asteroid system Didymos. It is anticipated to arrive at the Didymos system in
2027, so five years after the impact of DART.

Hera’s mission goals encompass a comprehensive analysis of the physical and dynamic proper-
ties of the Didymos system following the DART impact. It aims to provide detailed measure-
ments of the deflection caused by DART, along with characterizing the resulting crater and the
properties of the ejected material [10]. By doing so, Hera will contribute to our understanding
of the effectiveness of the kinetic impact deflection strategy.

The spacecraft will carry a suite of scientific instruments, including asteroid framing cam-
eras, a planetary altimeter, a thermal infrared imager, and two 6U CubeSats named Juventas
and Milani [10]. These instruments will enable Hera to collect valuable data on the asteroid’s
surface, composition, internal structure, and regolith properties. Following approximately two
months of observations, Hera will deploy the two CubeSats, each equipped with their own
scientific instruments, to gather additional data about the asteroid. Additionally, the mission
will focus on studying the moonlet’s orbital and rotational dynamics to enhance our under-
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standing of binary asteroid systems.

Hera will also serve as a technology demonstrator, testing advanced technologies and systems
for future asteroid missions. It will include innovative approaches for small bodies exploration,
using real-time navigation system for close operations [37].

The data gathered by Hera will not only contribute to planetary defense strategies but also
provide crucial insights into the formation and evolution of asteroids and their role in the early
Solar System. By studying the Didymos system up close, Hera will unlock new knowledge
and pave the way for future asteroid exploration missions. The overall mission is illustrated
on the figure 3.

Figure 3: Scheme showing the time line of the Hera mission [9].

1.2 Didymos system

The celestial body considered in this thesis is the binary asteroid Didymos, discovered in 1996.
Nonetheless, it is only in 2003 that the secondary Dimorphos was discovered. Since it is a
Near-Earth Object (NEO), the binary makes an accessible target for the AIDA collabora-
tion, without being too close to the Earth to be an actual threat even after the impact of
DART. Furthermore, the Didymos system is ecliptic relative to the Earth, which allows to
telescope to perform accurate measurements on the orbital period of Dimorphos thanks ot the
brightness variations. Furthermore, a main characteristic of the system is the synchronicity
between the orbit of Dimorphos and its rotation. Indeed, the period of the orbit is 11h55m,
as for the rotation time. Nonetheless, Dimorphos lost this property after the impact of DART
[12], but since the thesis focuses more on the development of a tool to explore the bounce
of a satellite instead of its accurate propagation, this assumption is made along the thesis to
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keep the physical system simpler. It will be a major information during the modeling of the
dynamical system. The main parameters of the Didymos system are summarized in the table 1.

The shape of the components of the system is far from spherical. A 3D model of the 2
bodies are shown on figure 4. Furthermore, the recent images of DART 5 suggest a surface
with a lot of rocks.

Parameter Value
Rotation period of the primary 2.26 ± 0.0001 h
Distance between the center of the primary and the secondary 1.18 +0.004/-0.002 km
Diameter ratio 0.21 ± 0.01
Orbital period of the secondary 11.92 +0.004/-0.006 h
Rotation period of the secondary 11.93 ± 0.01 h [30]
Eccentricity of the orbit of the secondary <0.05 [30]
Diameter of the primary 0.775 ± 0.078 km
Diameter of the secondary 0.163 ± 0.018 km
Total mass of the system 5.278e11 ± 0.54e11 kg
Heliocentric eccentricity 0.383752501 ± 7.7e-9
Heliocentric semi-major axis 1.6444327821 ± 9.8e-9 AU
Heliocentric inclination 3.4076499 ± 2.4e-6 °

Table 1: Table of the different parameters of the Didymos system prior to DART [15].

Figure 4: 3D models of Dimorphos and Didymos [22].
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Figure 5: Picture of Dimorphos taken from DART before the impact [13].

1.3 Juventas

Juventas is one of the two CubeSats that will be on the Hera spacecraft. With a wet mass of
approximately 12 kg [7], the payload is composed of a 3-axis gravimeter, an inertial measure-
ment units (gyroscope + accelerometer), an inter-satellite link, a Low-Frequency Radar and
a visible camera, along with the electronics for the Guidance Navigation and Control. The
propulsion is assured by a cold-gas propulsion system, and the electric power supply by solar
panels and lithium cells batteris. The sun-sensors, star tracker and gyros allow the determi-
nation of the attitude of the spacecraft. The CubeSat is equiped with deployable solar panels,
that can generate a power up to 35 W at 1.8 AU (astronomical unit). The telecommunications
are assured by a 1.36m deployable antenna.

1.3.1 Science objectives & mission profile

Juventas will be focused on the study of Dimorphos and has essentially 4 main objectives :
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Figure 6: Exterior view of Juventas [35].

Figure 7: Internal view of Juventas [35].
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• Study of the gravity field of Dimorphos

• Study of the internal properties of Dimorphos

• Study of the surface properties of Dimorphos and characterization of the crater of DART

• Study of the dynamical properties of Dimorphos.

The Juventas mission will follow different phases [35]. Here is a summary of each one with
a short description, and a time line on the figure 8. The corresponding orbits used for the
observations are shown in the figure 9.

Cubesat Commissioning phase : During the approach of Hera, right after the release
of Juventas, some checks of the systems will be done. This phase will last for 4 days. After
that, when Hera will come in the release distance (between 23 and 30km), a low velocity de-
ployment pod will be used to eject the CubeSat.

Cubesat Insertion Phase (INSP) : Once all the checkups are done, Juventas is ready
for its orbit injection. An hyperbolical trajectory is chosen as such Juventas will perform a
maneuver to enter into a Self-Sustainable Terminator Orbit (SSTO) at an altitude of 3.3 km
of the Didymos system. The insertion lasts 6 days.

SSTO 3.3 km : Once the orbit is stabilized, Juventas will be able to do its first mea-
surements where the surface characterization of the Didymos system will be conducted. The
SSTO orbit is nearly perpendicular to the axis between the Sun and the Didymos system. This
orbit is selected for its stability and to minimize the required ∆V for orbit maintenance along
with the sun radiation pressure (SRP). During the observations phases, Juventas remains on
the SSTO and carries out its primary objectives using the Low-Frequency Radar (LFR) and
radio science measurements with the Inter-Satellite Link (ISL) radio to communicate with the
Hera spacecraft. More than 70% coverage of Didymos and Dimorphos can be expected during
the 30 days of observations [35].

13



Figure 8: Timeline of the different phasis of Juventas.

Transfer from SSTO 3.3 km to SSTO 2 km (TRFP) : Once the observations are done,
Juventas will maneuver and lower its orbit to finally come to a SSTO of 2 km of radius. The
total ∆V required is estimated at 3.7 cm/s.

SSTO 2 km : A new observation phase will begin similarly to the SSTO at 3.3 km. The
combination of the coverage of the first observation phase and the second one leads to a 88%
coverage of the surface of Dimorphos and 99.4% for Didymos.

End of Life Phase - Landing on Dimorphos (EOLP) : Once the coverage of Di-
morphos is done, Juventas departs from the 2 km SSTO and attempts to land on Dimorphos
with a relative impact velocity equal to or less than 10 cm/s. A series of maneuvers are done
during the landing. The last one, called braking maneuver will be executed near the surface
of Dimorphos to reduce the impact velocity and will have a major consideration during this
thesis. During the descent, the onboard camera of Juventas will capture images of Dimorphos,
and if possible, the DART impact site, enabling a better understanding of Dimorphos’ surface
properties. During the bouncing, Juventas utilizes its 3-axis gravimeter, accelerometer, and
gyros to study the bouncing on the surface of Dimorphos. The collected data will allow to
reconstruct the bouncing trajectory and determine the surface properties of the asteroid. If
the spacecraft remains operational after landing, it can carry out its final science objectives,
which involve studying the local gravitational field and the dynamical properties of Dimorphos
during 30 days of observation.
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Figure 9: Representation of the different orbits adopted by Juventas [32].
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2 Dynamic modeling

The main feature of a propagator is the definition of its dynamic, and the equations of motions
that result of it. As such, this chapter shows how each physical feature is inserted inside the
algorithm. A discussion about the different perturbations to consider is done, especially on
the solar radiation pressure. Finally, the implementation of the braking maneuver is shown
along with the initial conditions of the system.

2.1 Circular Restricted 3-Body Problem

Since the orbit of Didymos system is around 1.8 AU, it is relatively far from other celestial
bodies. As such, only the gravitational pull from the primary and the secondary are consid-
ered, the perturbations from the Sun and the Earth are completely ignored. Since both are
orbiting around each other with a very low eccentricity (<0.05), the system will be approxi-
mated as a Circular Restricted 3 Body Problem (CR3BP).

The CR3BP consist of two mass m1 and m2 orbiting around a center of mass CM with a
constant separation. Here, m1 and m2 are Didymos and Dimorphos respectively. The third
mass m, Juventas, is very low compared to the other two ( m

m1
= 10−11 m

m2
= 10−9) and its

gravitational pull is not considered. Instead of using an inertial reference frame, a rotational
frame (also called synodic frame) F = {êr, êθ, êz} placed on the center of mass of the system
and defined such as the masses m1 and m2 keep the same positions along the first axis. So
r1 = r1êr and r2 = r2êr the positions of Didymos and Dimorphos relative to the center of
mass respectively. The figure 10 shows the geometry of the system. Note that r1 < 0 since
the origin of F is at the barycenter.

The angular velocity of the frame is defined as ω = ωêz and the origin is set at CM . The
position of the satellite, in this case Juventas, is expressed as

r = rxêr + ryêθ + rzêz (1)

The acceleration in F is given by [40]

r̈ = (r̈x − 2ωṙy − ω2rx)êr + (r̈y + 2ωṙx − ω2ry)êθ + r̈zêz (2)

The gravitational force Fg on Juventas from the asteroids is expressed as

Fg = −Gm


m1

ξ31
(rx − r1) +

m2

ξ32
(rx − r2)

(m1

ξ31
+ m2

ξ32
)ry

(m1

ξ31
+ m2

ξ32
)rz

 (3)

with
ξi =

√
(rx − ri)2 + r2y + r2z
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Figure 10: Illustration of the C3RBP from [34].

The Newton’s second law gives then the acceleration

r̈ =
Fg

m
(4)

Inserting now (2) and (3) in (4), the equations of motion are finally given by :
r̈x − 2ωṙy − ω2rx +G

(
m1

ξ31
(rx − r1) +

m2

ξ32
(rx − r2)

)
= 0

r̈y + 2ωṙx − ω2ry + (m1

ξ31
+ m2

ξ32
)ry = 0

r̈z + (m1

ξ31
+ m2

ξ32
)rz = 0

(5)

2.2 Gravity perturbation

The model described previously considers each mass as points, which could be a good approx-
imation for bodies with a shape close to a sphere. Nonetheless, this is not the case of Didymos
and Dimorphos. It is why gravitational perturbations are added. To keep the simulation com-
putationally efficient, the potential of each bodies is decomposed into spherical harmonics, and
the gradient is retrieved to get the acceleration.

2.2.1 Gravity of Didymos

Since the satellite is propagating in empty space, the Laplace’s equation ∇2U = 0 is respected.
As such, the harmonics representations are obtained from solving Laplace’s equation. Using
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the spherical coordinates defined as :
ξi =

√
(rx − ri)2 + r2y + r2z

ϕ = arcsin( rzξi )

λ = arctan(
ry
rx
)

(6)

The gravitational potential is then given by

U(ξ, ϕ) =
Gmi

ξi

N∑
n=0

Jn

(
Ri

ξi

)
Pn(sinϕ) (7)

with Pn are the Legendre polynomial of degree n, Ri is the radius of the sphere around the
body i and Jn the harmonic coefficient of degree n.

Here, since the shape of Didymos is relatively close to a sphere, only the zonal perturba-
tion are considered, up to the order 4. The coefficient used in this work are given by the
company GMV [32] : {

J2 = −0.011432722

J4 = 0.004583058
(8)

The Legendre polynomials are given for x = sinϕ = rz
ξ1

by{
P2 =

1
2(3x

2 − 1)

P4 =
1
8(35x

4 − 30x2 + 3)
(9)

The potential then becomes

U1(ξ1, ϕ) =
Gm1

ξ1

(
1 + J2

(
R1

ξ1

)2

P2(sinϕ) + J4

(
R1

ξ1

)4

P4(sinϕ)

)
(10)

with R1 = 399 m the diameter at the equator. Note that R1 is different from the mean radius
of Didymos (387.5 m), since the shape is deformed at the equator.

The gravitational acceleration is then retrieved with :
U1,x = ∂

∂rx
U(ξ1, ϕ)

U1,y = ∂
∂ry

U(ξ1, ϕ)

U1,z =
∂

∂rz
U(ξ1, ϕ)

(11)

2.2.2 Gravity of Dimorphos

Because the proximity of the satellite to Dimophos during the propagation, and because the
asteroid has an irregular shape, its model for the gravity should be more detailed. Instead of
only considering the zonal perturbations, all harmonics will be considered up to the order 4.
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P2,0(x) =
1
2(3x

2 − 1) P4,0(x) =
1
8(65x

4 − 30x2 + 3)
P2,2(x) = 3(1− x2) P4,2(x) =

15
2 (7x

2 − 1)(1− x2)
P4,4(x) = 105(1− x2)2

Table 2: Legendre polynomials used in the equation 14.

Using the same coordinates retrieved using the equation 6, the gravitational potential is given
by :

U(ξi, ϕ, λ) =
Gmi

ξi

N∑
l=0

l∑
m=0

(
Ri

ξi

)l

Pl,m(sinϕ)

(
Cl,m cos(mλ) + Sl,m sin(mλ)

)
(12)

with Pl,m the associated Legendre polynomials and Ri the distance from the center to the
body i.
The matrix C and S are given by GMV [32] as :

C =


0 0 0 0 0
0 0 0 0 0

−0.1325 0 0.0349 0 0
0 0 0 0 0

0.0429 0 −0.0033 0 2.1810× 10−1

 , S = (0)5,5 (13)

Since only the orders below or equal to 4 are considered, the expression of the potential
becomes :

U(ξ2, ϕ, λ) =
Gm2

ξ2

(
1 +

4∑
l=1

l∑
m=0

(
R2

ξ2

)l

Pl,m(sinϕ)Cl+1,m+1 cos(mλ)

)
(14)

And the associated Legendre polynomials are shown in the table 2 The acceleration is then
retrieved by computing the partial derivatives :

U2,x = ∂
∂rx

U(ξ2, ϕ, λ)

U2,y = ∂
∂ry

U(ξ2, ϕ, λ)

U2,z =
∂

∂rz
U(ξ2, ϕ, λ)

(15)

2.3 Perturbed Circular-Restricted 3 body problem

Finally, inserting (15) and (11) in (5), the equation of motion is obtained :
r̈x = 2ωṙy + ω2rx − U1,x − U2,x

r̈y = −2ωṙx + ω2ry − U1,y − U2,y

r̈z = −U1,z − U2,z

(16)

This is the equation that will be solved numerically to compute the trajectory of the satellite.
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2.4 Solar radiation pressure

The previous studies [32] [43] incorporated the solar radiation pressure in their work. Nonethe-
less, this thesis only focus on the bouncing of Juventas on Dimorhpos, with time of propagation
very short. Solar radiation pressure act only as a small perturbation in this case. Furthermore,
it would induce additional compuational time since the algorithm should take into account the
geometry of Dimorphos along with position of the Sun has to be retrieved. It will be showed
that this perturbation can be ignored with very limited consequences. The acceleration of the
solar radiation pressure can be expressed as [26] :

aSRP = −SRP1AU Cr
A

m

1

r2AU

r̂s (17)

where SRP1AU = 4.5 10−6 N
m2 the solar pressure at 1 Astronomical Unit, Cr = 1.5 the reflec-

tivity coefficient, A
m = 1/30 m2

kg the ratio between the effective cross section and the mass of
the satellite, rAU the distance of the satellite to the Sun and r̂s the vector towards the Sun.
Since the gravity on the surface of Dimorphos is of the order of 5× 10−5 m/s2 which leads to
a ratio between the solar pressure and the gravity of 10−4.

But simply comparing the different acceleration between the two forces is not enough. The
perturbation due tot solar radiation pressure can become very relevant on the final position of
the cubesat if it is applied on a long period. An analysis on the time of exposition has to be
done.As it will be shown on the result section 6, the bouncing last rarely more than 2 hours.
If we consider no eclipses, the maximum speed injected in the system is given by :

∆V = aSRP∆t (18)

where ∆t = 2 h = 7200 s. The value obtained is ∆V = 0.6 mm/s, which is lower than the
uncertainties on the incoming speed given by GMV. As such, the perturbation is considered
as sufficiently low to be ignored.

2.5 Braking maneuver

The escape velocity from Dimorphos is 8.4 cm/s [4], a very low velocity that can be easily
obtained from a bounce on the surface. It is why during the landing, a braking maneuver will
be done in order to reduce the speed of the spacecraft. Previous studies [32] have already shown
the huge importance of this maneuver on the success of the mission with a simpler model for
bounces. According to the informations given by GMV, the time when the maneuver occurs is
known, along with its intensity. Juventas will brake approximately at 180 m from the center
of Dimorphos, by applying a ∆V = 6.44 cm/s. Since the propulsion is not instantaneous, it
would be more accurate to implement it as an acceleration during a certain amount of time
instead of simply change the velocity. The maximum force of propulsion of Juventas is 1
mN and it is assumed that the spacecraft has a mass of roughly 12 kg [35]. The maximum
acceleration is then :

amax =
F

m
=

10−3

12

m
s2

(19)
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where F = 10−3 N the propulsion force of Juventas and m = 12 kg the approximate mass.

This maneuver is applied in the opposite direction of the velocity. Since Juventas keeps
its orientation during the braking in order for the instruments to work properly, the direction
will be fixed during the entire maneuver. If we define v0 the velocity of the spacecraft at
the beginning of the brake and r̈ the acceleration vector from (16), the equations of motions
become simply :

r̈′ = r̈ − amax
v0
|v0|

(20)

To stop the brake when the ∆V is reached, a check between each step of the propagation is
done to ensure that no excessive acceleration is performed.

Note that a way to improve this implementation of the braking maneuver would be to use
the rocket equation. Nonetheless, the above method was preferred to keep the propagation
simpler since the consumption of Juventas and the quantity of fuel still in the tank at the
beginning of the maneuver are not precisly known.
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3 Modeling of Bouncing Motion

This chapter explains how the bounces of the satellite is included in the simulation. First,
the way the collision is detected is described, then the 3D model of Juventas and the physical
interactions are shown. Finally, it explains how the bouncing model is implemented in the
propagator.

3.1 Surface collision

During the propagation, the algorithm has to detect when the cubesat hits the asteroid. To
do so, a mathematical representation of the surface of Dimorphos is used. It is very common
in the simulation of small bodies to use shape model, which are 3D bodies defined by triangles
arranged to define the geometry of the object. Each facet contains a face center and a unitary
normal vector. The figure 11 shows the shape model of Dimorphos used in the thesis [11].
A particularity of the system is the synchronicity between the rotation of Dimorphos and its
orbit. As a consequence, the orientation of the secondary stays the same in the rotational
frame and does not need to be adjusted during the propagation.

Figure 11: Shape model of Dimorphos used in the thesis [11].

In previous studies [32], a very simple model was used, consisting of a point bouncing similarly
as a ball on a flat surface. The satellite was propagated until the distance from the satellite to
the center of any facet is inferior to a certain threshold (usually 15 m). This makes the bounces
very inaccurate since each facet trigger an impact when Juventas approach in a spherical area
around the facet. A lot of issues found by this approximation, especially geometrically. The
satellite tended to bounce far away from the surface, which could lead to a very odd predic-
tion for simulations with very complex shape models (see figure 12). Also, the bounces can be
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Figure 12: Graphs showing the trajectory of the satellite and the triangle considered by the
propagator for the bounding. Left : Trajectory with the surface collision from [32]. Clearly,
the trajectory does not fit to the facets. Right : Trajectory with the new surface collision.
Here the trajectory fits much better to the facets. Also, it induces a totally different trajectory,
showing the importance of the new collision system.

computed on the wrong facets, and produce inaccurate direction after the bounce.

To locate the impacts with accuracy, a new method for collision detection has been imple-
mented. As such, we define S, F and n the satellite position, the face center and the normal
vector respectively (see figure 13). The propagator is set to stop when the following condition
is fulfilled :

FS · n ≤ 0. (21)

Where FS is the vector from the point F to S. This notation will be used during the entire
thesis to describe the vector between 2 points.

Nonetheless, this method requires to choose carefully the landing facet. To do so, the al-
gorithm needs to guess at each step which is the triangle the most susceptible to lie along the
trajectory of the satellite. First, the code looks at the closest face center, but it is not enough
because a collision could occur on a different facet. To increase the accuracy, the algorithm
developed uses a line parallel to the velocity vector and passing through the position of the
satellite, called the detection ray. Let’s call A, B and C the 3 points of the facet. First, the
intersection I between the detection ray and the plane formed by the facets is retrieved (see
figure 13). Now, the alogorithm checks if I is inside the triangle. This can be easily done using
the next condition :

sign
(
n · (AI×AB)

)
= sign

(
n · (BI×BC)

)
= sign

(
n · (CI×CA)

)
(22)

Each term changes its sign depending on which side the point I is from the lines AB, BC and
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CA. When all the values are either 1 or -1, I is inside the triangle. If this condition is fulfilled,
then the algorithm checks the condition 21 using the parameters of the facet. Otherwise, it
looks at the second closest triangle, then the third etc. If the sixth facet is still negative, the
propagation just continues.

The computational time is dependent on the number of facets to retrieve the distance from.
With the shape model in figure 11, the mean time is 3 ms.

This method can fail if the normal is not set on the right direction. Indeed, a normal point
towards the center of the asteroid would lead to a collision without touching the surface. Also,
this method requires the use of a numerical method with variable step to avoid any overshoot
inside the surface and to reduce the number of checks for collisions has to be made.

Figure 13: Left : Scheme of the parameters used for the collision condition. Right : Scheme
of a facet, checking if the point I is inside the triangle.

3.2 Point-Like Bouncing Model

Figure 14: Scheme of the point-like bouncing model [32].

A first bouncing model was considered in the thesis of Guillaume Roisin [32], with a very
simple implementation. The satellite is considered as a point object with a velocity vector v1.
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When a bounce occurs on a facet, the normal vector n is retrieved. The normal velocity v⊥
1

and the tangential velocity v
∥
1 are computed as :

v⊥
1 = (v1 · n)n (23)

v
∥
1 = v1 − v⊥

1 (24)

The bouncing is then defined using 2 constants, the normal coefficient of restitution e and the
tangential coefficient of restitution f . To get the velocity after the bounce, the next formulas
are used :

v⊥
2 = e |v⊥

1 |n (25)

v
∥
2 = f v

∥
1 (26)

This simple bouncing model is easy to implement and has been used to check the validity of
the code.

3.3 3D Bouncing Model

The previous model was very simple and easy to emulate through a simulation. Nonetheless,
it is absolutely not representative of the satellite, since we are considering it as a point for
the bounce. This point-like model has a major issue since it does not account for the rotation
of the satellite. A major improvement of this thesis is a new model, with a 3D shape for
Juventas, and the addition of 3 new degree of freedom for the rotation of the satellite. For
this purpose, we use a toolbox on Matlab named Simscape Multibody [36].

3.3.1 Physics engine

The physics engine of the toolbox is based on the work of Brian Vincent Mirtic, "Impulse
based Dynamic Simulation of Rigid Body System" [27]. Since the design of a physics engine
is a very complex matter and a large domain, only the main features will be explained.

First, the system defines an inertial world frame. Since the impact of the virtual forces on
the rotations of the spacecraft are negligible, they won’t be accounted during the contact. It
also means that the system is no longer in a synodic frame during the simulation inside the
toolbox. Each body in the system is defined by a frame F associated to it, with 4 parameters.
A position vector, velocity vector, a quaternion for the orientation and a rotation vector. We
will denote the parameters of the frame :

XF =


x
v
q
ω

 (27)

25



This frame follows the body during the entire simulation. With a geometry given by a set of n
vectors called vertices ai with i = 1, 2, ..., n. As such, each point of the object can be located
in the world frame using

ri = x+R(q)ai (28)

with ri the position of the vertice in the world frame and R(q) the rotation matrix associated
to the quaternion q.

The motion of the frame is given by the equation :

ẊF =


ẋ
v̇
q̇
ω̇

 =


v

g(x) + Fe/m
1
2q ∗Q(ω)

I−1M + I−1ω × Iω

 (29)

where g(x) the gravity acceleration vector, Fe the external force (except gravity) applied to
the body, m its mass, ∗ the quaternion product, Q(ω) = ωxi+ ωyj + ωzk where i,j and k are
the basis elements of the quaternion space, M the moment of inertia applied to the object and
I its moment of inertia. The dynamics of the rotation vector is given by the Euler equations
and is defined the frame of the body. For more information about quaternions and Euler
equations, the appendix has a section on them (quaternion 8.4, Euler equation 8.4).

3.3.2 Contact Force

Now that we know the equations of motion, we can determine the forces applied to the different
objects. As such, we want to model the contact between a rigid body and a surface. To do
so, Simscape multibody uses a penalty method, based on a damping-spring contact [16]. This
method allows for the different object to penetrate each other a little bit, and apply a force
depending on the penetration depth.
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Figure 15: Scheme of the contact between 2 rigid bodies [16].

The normal force is given by
fn = s(d, l)(k.d+ Γ.d′) (30)

where d the penetration depth, d′ its derivative, k the stiffness constant, Γ the damping coef-
ficient and s(d, l) a smoothing function varying from 0 to 1 when d < 0 and d > l respectively.
l is called the transition region, it assures the continuity between a regime where the force is
null (d < 0) and when it’s maximal (d > l) and avoid abrupt changes. The normal force is
defined as positive, and is always perpendicular to the contact plane.

Nonetheless, the friction between the different bodies has to be modeled. To do so, the
engine uses the stick-slip method considering 2 regimes of friction, a static one and a dynamic
one. Other models were good candidates for the friction ([2][44][29][33]) but this is the only
one implemented in simscape multibody. This one has the advantage to be easily computed
and gives an instantaneous force of friction, as opposite to models based on coefficients of
restitution. It is defined according to the normal force :

ff = µ(v∥, vc, µs, µd)fn (31)

with µ(v∥, vc, µs, µd) a function giving the coefficient of friction according to several parameters.
µs and µd are the coefficient of static friction and dynamic friction respectively, v∥ is the norm
of the velocity of the contact point parallel to the contact plane and vc the critical speed. µ
is defined as 0 in v∥ = 0 and until reaching the critical velocity, which is the speed at which
the coefficient is maximum and reach the static coefficient of friction. When this threshold is
passed, the µ decreases slowly and tends towards the dynamic coefficient of friction µd. The
figure 16 shows the profile of the coefficient of friction.
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Figure 16: Evolution of µ as a function of the tantential velocity [16].

Different parameters are used in this model for the contact force, but some are only present
for numerical purpose. The others have to be carefully to achieve the most realistic simula-
tion possible. The higher k, the less penetration will be allowed at a higher computational
cost. The default value in the literature [25] is 106 N/m. Since Juventas is only of the order
of 10 kg and the gravity of Dimorphos is very weak, this value is kept and gives very low
contact time. On the other hand, l has to be as small as possible to be accurate since the
surface considered are rigid. The default value is 10−4 m. vc = 10−3 m/s was kept for the
same reasons. Of course, to fix correctly these values, an experiment should be done but
it does not enter the scope of the thesis, it is very complex to conduct this kind of test in
laboratory. Even if some works on the subject exist [41], it was never done under such ex-
treme conditions as Dimorphos. As such, the simulation is only valid in the frame of this study.

The only relevant parameters left are Γ, µs and µc. The damping coefficient Γ directly affects
the energy returned by the surface to the satellite, and is probably the major factor charac-
terizing the bounce. As seen on [5], the coefficient of restitution, defined as the ratio between
the speed after and before the bounce, of the asteroid can be high, the value of 0.8 has been
measured for the Hayabusa mission on the asteroid Itokawa [6]. Nonetheless, the link between
the damping coefficient and coefficient of restitution is not clear. An heuristic demonstration
has been made in the appendix (8.4). The 2 coefficients of friction µs and µc on the other
hand will mainly affect the transfer of energy through the rotation of the body. Again, the
link between coefficients of restitution and the coefficient of friction is not straightforward.
An experiment from Stefaan Van wal and Onur Çelik [41] retrieved the coefficients of restitu-
tion and the coefficient of friction according to the Stronge’s model, but the results were very
random and showed no clear dependencies with impact conditions. Considering that most of
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Symbol Parameters
d Computed
d′ Computed
l 10−4 m
k 106 N/m
Γ Chosen from 40 to 4000
µs Chosen from 0.3 to 0.8
µc 0.5×µs

v∥ Computed
vc 10−3 m/s

Table 3: Summary of the different parameters used to compute the contact force.

small bodies are composed of carbon, we will take as a range for µs from 0.3 to 0.8. The choice
of µc is not determined and dependant on the properties of the surface, nonetheless adding a
new variable would increase the computational cost for further analysis. As such, 0.5×µs is
picked.

3.3.3 Geometry

The geometry of the CubeSat is relatively simple, and is decomposed through rigid boxes of
different sizes. The main body has a shape of 100×365.9×226.3 mm [7]. Concerning the solar
panels, as seen on the figure 17, they are in three parts and joined by different hinges. Each
plate will be modeled as a box of 297×10×270 mm placed next to each other. The mechanical
system allows the spacecraft to rotate the solar panels to face the sun. Nonetheless, this study
will only consider fixed position for the solar panels, as represented on the figure 17. Note
that the CubeSat will land on the +Z direction.

Figure 17: Left : Mechanical view of Juventas [7]. Right : Modeling inside Matlab, a solar
panel is highlighted in blue.
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Feature Primary Secondary
Wire diameter 0.51 mm 0.5 mm
Inner diameter 4.45 mm 3.5 mm
Max Torque 21.1 Nmm 19 Nmm

Max Torsion Angle 225.4 ° 294 °
Leg Length 19.05 mm 6.5 mm

Table 4: Characteristics of the hinges given by the manufacturers [39] [1].

3.3.4 Hinges

The primary hinges are composed of Febrotec 0T020-270-093 [39], and the secondary hinges
are Lesjofors 7017: TSR 0,5X3,5X3X12 [1] between each solar panel, as illustrated on the
figure 17. As such the characteristics given by the manufacturers are given in the table 4.

Figure 18: Left : Primary hinge [39]. Right : Secondary hinge [1].

Simscape multibody allows to use different joints to apply forces between bodies. As such, a
revolute joint is used to link each part of the geometry, adding a new constraint on the motion
on the joint and a rotational degree of freedom. The torsion produced by the joint is given by

T = −kT (θ − θ0)− ΓT θ̇ (32)

where kT is the torsional stiffness constant, ΓT the torsional damping constant, θ the angle of
the joint, θ̇ its first derivative and θ0 the equilibrium angle.

30



Figure 19: Schematic view of the joint in the solar panels.

Choosing the different constants is a hard task to assure a good emulation of the hinges. The
literature has already some resources about the flexibility of deployment mechanisms ([20] [45]
[28]). Furthermore, this model is linear and may not be representative of the true behavior of
the spring in the hinges. Indeed, if too much force is applied, the deformation is non-elastic and
the resultant force becomes non-linear. Nonetheless, the mass and the gravity of Dimorphos
are very low, the torque applied to the solar panels should be limited in these conditions. It is
why this approximation is used. To be sure of having contants in an elastic regime, a limite of
180◦ is set for the joints. This gives a constant kT = 21.1/180 = 0.117 Nmm/◦ for the primary
and kT = 0.106Nmm/◦ for the secondary. The ΓT is fixed at 1/10 of the stiffness constant.
Since each spring is present 2 times between the hinges, the final constant values for the joint
are given in the table 5.

Primary joint kT = 0.234 N mm/◦ ΓT = 0.0234 N mms/◦

Secondary joint kT = 0.212 N mm/◦ ΓT = 0.0212 N mms/◦

Table 5: Table of the constant used for the joints.

3.3.5 Stop condition

During the propagation of the bouncing, the condition to stop it has to be set up. 2 cases
have to be taken into account :

• Juventas bounces off Dimorphos or orbits around it

• Juventas bounces until it comes at rest

For the first case, it is relatively hard to deduce. A solution could be to insert an area around
Dimorphos and considering the satellite as lost if it propagates out of it. The issue is to fix the
dimensions of this area. Placing this boundary too close to the surface leads to false bounce
off that could compromise the data. If set too high, the algorithm could run eternally if the
satellite goes into a closed orbit or an escape trajectory. Instead, a time limit is set and the
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propagation stops if the time limit is passed. Again, too low would stop the propagation too
early and too long would induce a high computational cost. After some tests, 12 h appeared
to be a reasonable time to allow even the biggest bounces to touch the ground.

The second case is more tricky. The velocity of the satellite is technically never 0, but a
threshold can be set up to consider the satellite at rest. If the norm of the after bounce ve-
locity vout is less than 0.5 mm/s, the bounce stops and the algorithm considers that Juventas
has landed. A particular case can happen, if the satellite bounces with a relatively high inci-
dence angle, it can slide on the surface. To avoid this phenomenon, another stop condition is
added : vout · n < 0.5 mm/s with n the normal unitary vector of the facet. Doing so, if the
satellite bounces with a relatively high velocity, but a normal component that is too weak, the
propagation is stopped and Juventas is considered as landed.

The satellite can also slide on the surface. To stop the propagation when it occurs, a last
stop condition is set, with |vout| < 1 mm/s. As such, the satellite is allowed to slide on the
surface but will be considered at rest when its velocity is too slow.

3.3.6 Overall implementation

Now that the different elements composing the bounce are well defined, they have to be
assembled accordingly with the propagator to have the most realistic simulation as possible.
Since the only physical contact happens only during the bounce, and for computational time
reason, the physics engine will be used only during the contact between the satellite and
Dimorphos. In fact, the algorithm is composed of 5 phases, illustrated in the Figure 20.

1. The satellite is propagated respectively to the dynamic of the system. At each step, the
code checks if a collision occurs.

2. When a collision occurs, the propagator is stopped and 2 cases are possible. If the stop
condition is fulfilled, the simulation is stopped. Otherwise, the velocity, orientation and
rotational speed of the satellite are collected, along with the parameters of the landing
facet.

3. The collected parameters are transformed in the frame of the facet and put inside the
physics engine. The physics engine runs until the satellite touches the flat ground, but
an extra margin of 50 s is given since the satellite can hit the ground multiple times.
This step usually takes less than 4 seconds.

4. The same data are collected and transformed into the general frame, the propagation
then continues with the new velocity.

5. The code goes back to the phase 1, until the stop condition is fulfilled or if the propagation
lasts for more than 12 hours.
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Figure 20: Scheme of the different phases.

3.3.7 Physics Engine Solver

Simscape multibody is able to use several numerical methods for its simulations. This work
require a good compromise between computational time and accuracy. As such, a variable
step method is used, the Dorman-Prince method [19]. The relative error is set to 10−5 and
the absolute error to 10−6. It reduces the simulation for one bounce to few seconds and allows
a study on a big number of samples.

3.3.8 Free rotation

During the propagation, the satellite continues to rotate. Since using the physics engine re-
quires a time of compilation, it is time consuming to use it for the rotations between bounces.
Furthermore, the propagation can last for hours before it stops. To propagate the position,
but also the orientation, simple dynamic equations are used.

Since the object is not subject to any torque, the Euler equations are simplified and the
equations to solve are :

q̇ =
1

2
q ∗Q(ω) (33)

ω̇ = I−1ω × Iω. (34)

The time between 2 bounces is retrieved from the propagator, then q and ω are computed
numerically. Proceeding like this allows the algorithm to gain much more time and propagating
several satellite landing models.
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4 Numerical Method

The context of the study requires a careful the numerical method for the propagator. The
previous work [32] developed an algorithm using the Runge-Kutta Fehlberg method. Nonethe-
less, it was used for landing analysis and does not account for the bouncing of Juventas. Here
in this chapter, the method will be explained along with the implementation of the bouncing
model to produce an algorithm able to propagate a big number of satellite. The chapter will
conclude with a discussion about the validity and the performances of the algorithm.

4.1 Runge-Kutta Fehlberg

The Runge-Kutta Fehlberg method is a numerical method with a variable step, computed
according to an allowed error. This feature gives 2 main advantages compared to fixed time
step methods:

• There is no need to choose carefully a time step

• The propagator runs faster when the iterations are easy to compute

To compute the error, 2 approximations of order 4 and 5 are compared. The time step is
reduced until the required error is achieved.

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7286/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

Table 6: Butcher tableau.

From the table 6, the different coefficients are defined as :

k1 = f(tn, yn) (35)

k2 = f(tn +
1

4
h, yn +

1

4
k1) (36)

k3 = f(tn +
3

8
h, yn +

3

32
k1 +

9

32
k2) (37)

k4 = f(tn +
12

13
h, yn +

1932

2197
k1 −

7200

2197
k2 +

7286

2197
k3 (38)

k5 = f(tn + h, yn +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4) (39)

k6 = f(tn +
1

2
h, yn − 8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5) (40)
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The 2 approximations for the are defined as :

yn+1 = yn +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6 (41)

y∗n+1 = y∗n +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5 (42)

Then, for the error, the norm between the 2 results is computed :

ϵ = |yn+1 − y∗n+1| (43)

The time step is chosen depending on the error evaluated. A threshold ϵ0 representing the
maximum allowed error is chosen and depending if ϵ is greater or lower to this value, the time
step becomes lower or greater respectively :

h =

{
0.9h( ϵ0ϵ )

1/5 if ϵ ≥ ϵ0

0.84h( ϵ0ϵ )
1/4 if ϵ < ϵ0

(44)

Note that even if ϵ = ϵ0, the time step is reduced to assure that even by using approximations,
the error is lower than the maximum allowed error.

4.2 Time step reduction on the surface

The timestep is computed according to the error ϵ, but is not accounting for the collision of
the surface. As such, the algorithm needs a mechanism to stop the propagation accurately on
the surface. Indeed, a too big time step could bring the particle to stop inside Dimorphos,
and the bouncing trajectory would have odd behavior, or even continuing to bounce inside
the shape model.

To do so, when yj+1 meets a stop condition (as defined in the section 3.3.5), the propaga-
tion is stopped. A new check is done :

n · (rj+1 − F ) ≤ dn (45)

where dn is the maximum penetration depth allowed for the propagation, F the face center
of the bouncing face, n the normal of the facet and rj+1 the position of the spacecraft at the
step j + 1.

If the condition is fulfilled, the value yj+1 is saved and the particle is considered as it has
collided. On the other hand, the condition is not met, the time step is divided by 2 and yj+1

is computed again. The propagation goes on until the stop conditions and (45) are met.

Modifying the time step at proximity of the surface is a good way to stop the propagation on
the surface without adding more complexity to the algorithm.
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Figure 21: Representation of the time step reduction on a surface.

4.3 Vectorization

To improve the efficiency of the algorithm, a vectorization can be applied to the code. Instead
of computing each propagation one by one, they are all computed in parallel.

Let’s define yij the position and velocity vector of the satellite i at the step j. At the be-
ginning of the propagation, the time step hi is computed for the next iteration of yij , as
described previously. Each yij+1 is retrieve and registered in a big matrix of results. Next,
a check up is set to see if a collision occurs (see section 3). If yes, the index corresponding
to the stopped satellite is ignored for the rest of the propagation. It can be achieved easily
using logical arrays in Matlab. As such, an array l is defined, composed with only 1 and 0. It
determines if a satellite is still ongoing or stopped. Then, hi is actualized and another iteration
goes on. This process lasts until the entire array k is equal to 0.

Figure 22: Scheme of the vectorization.

4.4 Implementation of the bouncing motion

Since the vectorization is only used for the propagation of the satellite, the bouncing has to
be include carefully to obtain the most realistic result as possible.

As such, the code begins by a propagation of each satellite. When it is done, the velocity, the
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orientation and the rotational speed are retrieved. Then begins the bouncing computation,
several simulations are done inside simscape multibody to compute the motion of each particle.

Once the simulations are done, a check for the stop conditions is done. Another logical array
k is defined to determine which particle is still bouncing or not. According to the result of the
check, k is actualized.

The different parameters of the satellite after the bounce (velocity, attitude, rotational speed)
are extracted and used to continue the propagation. This process lasts until every particles
have landed.

Figure 23: Representation of the structure of the algorithm.

4.5 Validation

A critical bug was found in the code of Guillaume Roisin [32]. Indeed, during the propagation
of numerous particles, the gravitational acceleration due to Didymos of each sample was com-
puted according to the position of the first one. As such, the validation will be realized again
to assure the proper functioning of the code.

As such, a propagation of 1000 samples on 6 hour has been made, with randomly picked
initial conditions. The maximum absolute error ϵ0 is set at 10−7, and for ode113, the relative
tolerance is 10−16 and an absolute tolerance of 10−17. A normal distribution is used for each
coordinates. The mean and the standard deviation of the distributions are shown on the table
7 :

x [m] y [m] z [m] vx [m/s] vy [m/s] vz [m/s]
Mean 1369 1336 -18 -0.098 -0.126 -0.07

Standard deviation 50 50 50 0.02 0.02 0.02

Table 7: Mean and standard deviation of the initial conditions.

For each propagation, the relative error is computed by looking at the norm of the difference
between the result from ode113 and the algorithm. The figures 24 and 25 shows the maximum
for each sample. The mean of the maximums are shown on the table 8. The errors on the
position and the velocity are mainly of the order of 10−4%, but some propagation can come
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up to 10−3%. It is a completely reasonable error, furthermore, the validation has been made
on 6h but most of the bounces do not last more than 2 hours.

Figure 24: Maximum relative error on po-
sition on 1000 samples.

Figure 25: Maximum relative error on ve-
locity on 1000 samples.

Position Velocity
Maximum of maximum of the relative error (%) 8.1 10−3 9.3 10−3

Mean of maximum of the relative error (%) 1.5 10−4 3.5 10−4

Table 8: Caption

Nonetheless, it should be interesting to look at the propagation of the error on the time. The
figures 26 and 27 show the evolution the the relative error over time with 10 samples. The
errors are very low during the major part of the propagation, far lower than 10−4. But the
error suddenly increase into spikes when the time is > 2 hours. As said previously, the bounce
are relatively short and shouldn’t be affected too much by those peaks.

Figure 26: Relative error on position over
time for 10 samples.

Figure 27: Relative error on velocity over
time for 10 samples.
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As a conclusion, the Runge-Kutta Fehlberg is a reliable method for the physical situation
of the thesis. The method and the algorithm structure allows to propagate and bounce 100
satellites in 89 s, compared to 441s for the ode113 function, so almost 5 times faster. Further-
more, the time gain becomes bigger with the increase of the number of samples. With this
algorithm, a Monte-Carlo analysis could be done to estimate the behavior of Juventas when
bouncing on Dimorphos.
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5 Surface deformation

The shape model given by [11] has a major issue, more than half of its surface is approximated
by a ellipsoid. Indeed, the topography comes from a scan of the surface but 100% of it could
not be covered. Unfortunately, Juventas is landing on a smooth part of the surface (see figure
28). As discussed in the section 1, the surface of Dimorphos is very irregular and composed of
many rocks. It is why this shape model has been transformed in order to simulate as realistic
as possible a surface with rocks.

Figure 28: Side views of the shape model of Dimorphos. Left and right are the views from -Y
and +Y respectively. Juventas will come from the direction +X, towards the L2 Lagrangian
point. As shown, the shape on this side of Dimorphos is close to a smooth ellipsoid. Since the
shape model is defined in a synodic frame, the system of axis does not move.

The transformation can be achieved by 2 ways. One way could be to add facets on the surface
to emulate rocks. As such, the simulation will account new collisions and induce deviations
compared to the original surface. The second way would be to directly modify the vertices
of the original shape model. Since there is no way to estimate which method is the best, the
both cases will be considered.

We can still notice that a way to simulate the presence of rocks on the surface would be
to add randomness on the physics of bounces. Nonetheless, this method is very simple and
would bring different trajectories even with the same initial conditions of position and velocity.
Also, this method doesn’t account for a particular topology on the surface. For example, many
small rocks would have a totally different impact on than a surface with fewer rocks but with
bigger shapes.

5.1 Rocks population

At first, adding directly generate objects on the surface will be considered. To do so, the first
thing is to produce a flat surface with rocks. Then, the rocks have to be fit to the surface of
Dimorphos. An algorithm has to be used to generate the shape of the rocks and arrange them
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in the space. For this purpose, the ROB provided a code made by Stefaan Van wal, which
successfully generate polyhedral rocks dispatched on a square plane.

5.1.1 Rocks placement

The code makes first a strong assumption, the rocks have a shape near to an ellipsoid. This
will drives the placement and the shape generation of the rocks. For the placement, the rocks
will be placed one by one until the surface has the required density.

Initially, a length L is defined which will determine the dimensions of the square where the
rocks are placed. A position and an attitude are randomly picked along with the general
dimension of the first rock expressed as a major axis, a minor axis and a height. Now, an
ellipsoid is defined on the plane, which represent the space that the rock will uses. To place
the second rock, the same process is done but the algorithm checks if the incoming ellipsoid
will overlap the first one. If it does by a too big amount, a new position and attitude are
taken until a right spot is found. This process goes over and over again until the square is
sufficiently full of rocks. The final result is shown on the figure 29, where each ellipsoid is a
rock position.
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Figure 29: Graph showing the ellipsids formed during the rock placement. Thanks to the one
by one placing, the overlaps are limited.

5.1.2 Rock’s shapes definition

Now that all rocks have a position and a general shape, a shape can be attributed to them.
To do so, a polyhedron with 40 vertices is used as a reference. For an initial vertex V, the
new vertex is given by :

V′ = 0.5

(
(a, b, c)VT + σDrrandom

)
(46)

where a,b,c are the major axis, the minor axis and the height of the rock respectively, σ the
chosen uncertainty of the system, D the diameter of the overall rock diameter and rrandom a
random vector of dimension 3 with coordinates picked up from a gaussian N (0, 1). Doing so
transform the initial regular polyhedron to a look like rock object as shown on the figure 30.
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Figure 30: Example of the formation of a rock. Left : initial polyhedron. Right : final shape
of the rock.

When the shape is defined, the rock is placed according to its position and with its attitude
on the square. This process is repeated for each rock. When it is done, a check is done to
assure every normal of the facets are oriented outwards the rocks. The result is shown on the
figure 31. Usually, this shape is extended on a surface of 3 × 3 the initial surface. The final
object exported is a large square of rocks as shown on the figure 32, with the same pattern
repeated 9 times.

Figure 31: Final surface generated. Figure 32: Extension of the rocks by 3×3.

5.1.3 Fit to the surface

Now that the rocks are generated, we have to put them on the surface of Dimorphos. Using
Blender, a first flat square is created where all the rocks are placed and resized in order to fill
the entire plane. Then, the surface deform modifier is used to bind the 2 objects. As such,
the square will serve as a reference for all the modifications that have to be applied to the
rocks. To reduce the computational time, the vertices on the other side of the reference plane
are deleted since during the projection, they will be placed under the surface. It will avoid
an excess use of memory and of computation time since fewer vertices induce less distance
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computation.

To project the reference surface on Dimorphs, another modifier is used, shrinkwarp. Each
point of the square object is projected linearly along the axis until it touch the target surface.
As such, the reference surface fits to the surface of Dimorphos. The binding done just before
will bring also project all the rocks on it. The figure 33 illustrates the binding of the surface
and how the rocks are affected.

Figure 33: Image of the reference square (colored with a gray/white grid) and the rocks bind
to it. On the left, the objects before the projection on Dimorphos, and on the right after the
projection.

Since the propagation refers to the normals of the surface for the collision, a careful attention
need to be paid to the orientation of each faces. Indeed, the algorithm uses the normals of
the facets to detect the collision. A wrong normal would trigger to inaccurate bounces. As
such, a check to the facet needs to be done before the exportation of the final object. Blender
allows a tool to check the orientation of each facet as shown on the figure 34.
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Figure 34: Image of the shape model in blender, with the filter "face orientation". The blue
color shows the face where the normal is. Since the entire surface is blue, it means that the
rocks have been incorporated correctly, and no corrections are needed.

Once all this process is done, the final object is obtained and can be exported. The poly-
hedrons of the rocks are considered by the algorithm as new facets, and the algorithm can
emulate bounces at their surface.

5.1.4 Parameters of rocks

Several parameters are used for the generation of rocks. The next table will show the entire
values used for the shape generated for the thesis.
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Smallest considered rock size 0.5 m
Largest considered rock size 2 m

Power index -2.5
Lower cutoff diameter of model 0.192 m

C parameter 0.1/m2

Disregard rocks of which there are fewer than this limit 0.2/m2

Mean of the horizontal shape distribution 0.7 m
Standard deviation of the horizontal shape distribution 0.1 m

Minimum of the horizontal shape distribution 0.3 m
Maximum of the horizontal shape distribution 1 m

Mean of the vertical shape distribution 0.65 m
Standard deviation of the vertical shape distribution 0 m

Minimum of the vertical shape distribution 0.2 m
Maximum of the vertical shape distribution 0.9 m

Maximum overlap allowed 0.05 m
Standard deviation of each vertex of the rock 0.045 m

Table 9: List of the different parameters of the rocks.

5.2 Shape Model Deformation

Some issues can come from the previous method. Indeed, the shape model is no more closed
since the added rocks are simply added on the surface. The increasing number of vertices has
a huge impact on the computational cost. Furthermore even if rocks are added to the surface,
it does not take into account for large elements of the terrain like small valleys for example.
Also, it requires to use Blender instead of Matlab, which may be an issue if a Monte-Carlo
analysis has to be done on the topology of the surface. It is why another method is added,
which modifies directly the shape model of Dimorphos. To do so, a transformation has to
be made directly to the vertex composing the surface, in a way that the shape stay closed
and don’t have any anomalies. Putting simply a random factor on the different vertex is not
enough, it can lead to very odd surface. A commonly used method for the deformation of
terrain is the Perlin noise [31], and it will be used on the entire surface of Dimorphos. Since it
is a 2D noise, a method will be also used to transfer it in the 3D shape model of Dimorphos,
through a mapping.

5.2.1 Perlin Noise

The Perlin noise is a gradient based noise, meaning that a set of randomly set of vectors are
generated and will lead the general shape of the noise. The problem to solve here will be to
attribute a value of change for each point in a 2D plane.

Let’s imagine a finite plane containing set of N points ai = (ϕi, λi) ∈ R2 for i = 1, 2, ...,N
and where the noise will be applied. First, a grid is defined with R × R squares as such it
covers the entire set of points, where R will be called the resolution. Each intersection of the
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grid will have a normalized vector with a random direction attributed to it. Those vectors
are the gradient of the noise, and will induce the inclination of the terrain. To assure the
continuity, the gradients on the top and bottom border of the grid are the same. The same
thing is done to the gradients on the left and right border.

Each point ai is contained inside a square, with 4 corners that will be noted as ctli ,ctri ,cbli
and cbri the coordinates of the top-left, top-right, bottom-left and bottom-right corner respec-
tively. Then, the next dot products are retrieved :

atli = (ai − ctli ) · gtl
i

atri = (ai − ctri ) · gtr
i

abli = (ai − cbli ) · gbl
i

abri = (ai − cbri ) · gbr
i

(47)

where gtl
i ,gtr

i ,gbl
i and gbr

i are the gradients of the top-left, top-right, bottom-left and bottom-
right corner respectively. Its the dot product of the vector coming from the corner to ai and
the gradient of the corner itself.

Then, a linear interpolation between the 4 dot products is used to get the final value of
the noise. Nonetheless, doing so would induce a sharp surface and discontinuities derivatives
between the squares of the grid. It is why a smooth function is used. Several options are
available for it but in this thesis, it is defined as

fs(x) =


1 if x > 1

0 if x < 1

3x2 − 2x3 otherwise
(48)

Combined with the interpolation, the final result of the noise ni for ai is

nt
i = atli + (atri − atli )fs((ai − cbli )x) (49)

nl
i = abli + (abri − abli )fs((ai − cbli )x) (50)

ni = nl
i + (nt

i − nl
i)fs((ai − cbli )y) (51)

where the operator x and y mean that either the first or the second coordinate is retrieved
respectively.

5.2.2 Mapping

Now that the noise has been defined, let’s suppose that is dispatched on a 2D map of dimension
H×W . Now, how to transpose this noise on a shape model like Dimorhpos ? Since its shape is
essentially ellipsoid, we will decompose each vertex as a longitude and a latitude coordinates,
that will be noted λ and ϕ respectively. For a vertex V = (Vx, Vy, Vz), its decomposition
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becomes :

λ =

arccos
(√

V 2
x + V 2

y /|V|
)

if Vz > 0

arccos
(
−
√

V 2
x + V 2

y /|V|
)

otherwise
(52)

ϕ =

arccos
(
Vx/
√

V 2
x + V 2

y

)
if Vy > 0

arccos
(
− Vx/

√
V 2
x + V 2

y

)
otherwise

(53)

Now that every points are spread on a 2D plane, the Perlin noise is used to attribute a value
to each point (between -1 and 1), according to their coordinates λ and ϕ. Now that each point
has its associated noise, a transposition in the 3D space is needed. As such, we define the new
vertex as it follows :

V’ = (1 + 0.05× n)V (54)

where n is the value of the noise associated to V. The value of 0.05 was chosen accordingly
to the irregularities already present on the surface. It limits the deformation of the original
vertex up to 1/20 of their norm.

The figure 35 illustrate all the process and shows the final result. An important detail is
the deformation on the poles of the ellipsoid, where the shape model seems to be crumpled.
It is due to the longitude and latitude coordinates that are less denser near the poles. Those
effects can be explained thanks to the Gauss’s Theorema Egregium [38]. A consequence of
this theorem is that no isometries can exist between an ellipsoid and a plane. So whatever the
method of mapping chosen, it will always contain some inaccuracies due to the transforma-
tion. Nonetheless, with the actual choice of coordinates, the distortions are mainly affecting
the poles, which are relatively far from the landing site. As such, it is considered as a minor
issue.

5.2.3 Resolution

The main parameter for the noise generation is the resolution R, which determines number
of squares in the grid. More squares means more gradients and so, more irregularities on the
noise. A set of different shapes according to the resolution is shown on the figure 36.

Figure 36: 3 shape models with Perlin noise, but with different parameters R. From left to
right, R = 10, 30, 50.
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Figure 35: The 4 steps in order to produce a noisy shape model. Top-left : Original shape
model. Top-right : Decomposition in longitude and latitude of the vertex. Bottom-left :
Longitude and latitude coordinates with the noise associated to it. The values of the noise are
dimensionless. Bottom-right : Final shape model with the noise.
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6 Monte-Carlo Analysis

To account for the uncertainties of the physical system studied, a Monte-Carlo analysis is
performed in order to consider a large range of variables for this work. First, the preliminaries
of the analysis are set. Then an analysis of the main features like the position and the landing
velocity is made. A careful attention is then delivered to the coefficient of restitution. The
chapter finish on a discussion about the importance of solar panels, and the study of a case
without them.

6.1 Preliminaries

Before making any analysis, the uncertainties for Juventas need to be set up, and determine
how many samples should be run. Due to the high computational cost, the number of samples
need to be as low as possible without sacrificing too much the quality of the Monte-Carlo data
set. Each of these process will be explained.

6.1.1 Uncertainties

For the choice of the position and the velocities, a normal distribution is chosen to generate
the different initial conditions, as shown on the table 10. Thanks to the analysis of GMV,
the trajectory of Juventas and the uncertainties associated are known. The mean position
and velocity are the values just before the braking maneuver, since it is the only maneuver
included in the code. Also, our propagator is very simple and taking the latest values before
the braking maneuver as much as possible the errors brought by ignoring some perturbations
(like the solar radiation pressure for example).

Note that no uncertainties are applied to the maneuver. Indeed, they are already present
on the position and the velocity, adding another variable on the maneuver was considered
superfluous.

x [m] y [m] z [m] vx [m/s] vy [m/s] vz [m/s]
Mean 1358 -28 -22 0.061 -0.04 -0.022

Standard deviation 11.54 9.04 9.25 0.002 0.001 0.002

Table 10: Mean and standard deviation of the initial conditions on the position and the
velocity.

Concerning the attitude of Juventas, the normal distribution will also be used. Nonetheless,
the attitude will be expressed as a quaternion and each term (real and imaginary) are chosen
through a Gaussian distribution. Juventas is supposed to land on the face equipped with the
camera, so on the +Z axis according to the figure 17. To reverse Juventas, the mean attitude
is set to q =

√
2
2 +

√
2
2 i corresponding to a rotation of 180◦ along the Y axis so the CubeSat

has the good orientation (see the appendix 8.4 for information about quaternion) The mean
of the rotation vector ω is set to 0 since Juventas should be stable during the landing. The
standard deviation for each variable are unknown and so, a value of 0.01 has been chosen for
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each dimension. The values for the mean and the standard deviation are shown on the table
11.

q (real) q (i) q (j) q (k) ωx [rad/s] ωy [rad/s] ωz [rad/s]
Mean 0.7071 -0.7071 0 0 0 0 0

Standard deviation 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 11: Mean and standard deviation of the initial attitude of Juventas.

As explained on the section 3.3.2, the only surface properties that will be varied are the static
coefficient of friction and the damping coefficient. The conditions of Dimorphos are unknown,
it is why an uniform distribution will be used for the 2 parameters so a large range of values
are considered. The minimum and maximum are chosen accordingly to measurements of other
asteroids (see section 3.3.2 for detailed explanation). The values for the mean and the standard
deviation are shown on the table 12.

Variable µs Γ [kg/s]
Min 0.3 40
Max 0.8 4000

Table 12: Range of the different variables for the surface properties.

6.1.2 Convergence

Every Monte-Carlo analysis needs a convergence analysis to estimate the number of samples
to run during a simulation. Since the simulations can last several hours, a limit needs to
be set in order to perform several analysis, especially for the section 7 that requires a lot of
simulations.

Here are the parameters considered for the analysis :

• Longitude at landing (at the first impact)

• Latitude at landing

• Longitude at rest

• Latitude at rest

• Duration of bouncing

• Number of bounces

• Landing velocity

A test is performed on 2500 samples and lasted 16h, and the means of every parameter are
shown on the figure 37. The convergence is obtained around 1000 samples for each parameter.
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Figure 37: Convergence for 2500 samples.
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Figure 38: Mean of the landing velocity for 2500 samples.

It is a low amount for a Monte-Carlo analysis but considering the computational time for the
simulation (at least 6h for 1000 samples), the minimum amount has to be chosen in order to
perform enough tests on different surfaces. Nonetheless, we can argue that the most important
parameters is the landing velocity on the figure 38, since it will lead the entire bounce on the
surface. And we see clearly that it converges well before 1000 samples.
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6.2 Landing and bouncing trajectories

The set of data is obtained from 1000 samples performed on the surface of Dimorphos, some
trajectories are shown on the figure 39 with the shape model. The trajectory of Juventas is
expected from a bouncing trajectory. The collision detection appears to be correct, no distant
bounces occur like in the figure 12. Nonetheless, the bounces can be relatively random, espe-
cially on the last ones where the speed is lower. We are very far from "perfect" trajectories
like in the previous thesis [32], and the behavior of the satellite is clearly more complex.

It is hard to check the bounces inside Matlab for each sample. Instead, the first bounce
of a randomly taken sample will be overlooked on the figure 42. The attitude of the spacecraft
is already tilted, essentially because the spacecraft rotated after the braking maneuver during
a long period of time. The CubeSat approaches the surface with a velocity of 6.5 cm/s. During
the impact, the solar panels bend and absorb some of the energy of the impact. After the
bounce, the satellite continues its trajectory to the left. The initial rotation speed of 0.01
rad/s becomes 0.08 rad/s, showing that a part of the energy is also converted in rotational
energy. This kind of behavior is expected from this new model.

The landing trajectories seem to change drastically above Dimorphos. It is simply a com-
bination of the braking maneuver and the choose of frame of reference. Since we are in a
rotating frame, virtual forces act on Juventas along with the acceleration due to the braking
maneuver. It leads to this kind of curved trajectories.
The landing position and resting position can be expressed in term of latitude and longitude
since the surface of Dimorphos is near to an ellipsoid. As such, the distributions are shown on
the figure 41. The mean and the standard deviations of each distributions are shown on the
table 13. Note that the latitude and longitude are set such as the axis +X is at 0◦ for both
coordinates, pointing at the L2 point.

lat landing [°] long landing [°] lat resting [°] long resting [°]
Mean 1.06 -11.18 5.95 4.45

Standard deviation 3.35 5.98 7.63 12.20
Duration [h] Number of bounces Landing velocity [cm/s] Incident angle [◦]

Mean 0.60 4.24 6.00 60.90
Standard deviation 0.30 2.08 0.28 5.55

Table 13: Mean and standard deviation for different parameters.

A first interesting result is the incident angle. Indeed, the mean angle is 60.90◦ with a stan-
dard deviation of 5.55◦, meaning that the spacecraft almost never land vertically to the ground.

For the latitude and the longitude at landing, the distribution is close to a normal distribution
if we look at the figures 40a and 40b, which is expected since the choice for initial conditions
are based on Gaussian distributions. The estimated landing position is then (1.06◦,−11.18◦),
with a relatively large uncertainty. Indeed, the figure 41a shows different error ellipses with
different intervals of confidence. The 95% ellipse is larger than 20◦ on longitude, meaning the
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(a) General view of the trajectories.

(b) View near to the surface.

Figure 39: Samples of 30 trajectories.
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dispersion is very high along the geographical parallel.

Nonetheless, the dispersion is even higher for the position after the bouncing. Indeed, the
standard deviation is more than doubled for each coordinate. It is impressive, since the pre-
vious work [32] had a constant standard deviation between the impact and the position at
rest. It shows that considering the rotations and the 3D shape of Juventas, along with the
new surface properties, adds more randomness to the propagation.

The next part of the thesis will refer to the cardinal points in order to facilitate a simpler
discussion of trajectory directions. So the east and west are the directions towards positive
and negative longitude respectively. The mean position at rest is (5.95◦, 4.45◦), so there is a
clear shift towards the east between the landing and the bounce. It is coherent if we look at
the figure 39, where the trajectories are oblique towards the east. So it is expected to have a
higher longitude after the bouncing. As shown on the figure 41f, the incident angle is relatively
high, and so this behavior is recurrent.

The figure 41c shows a trend. The impact velocity is higher on the east than on the west. It
is mainly due to the incoming trajectory of Juventas. The faster samples tend to go further
and so, land on the eastern part of the landing site.

On the entire data set of 1000 samples, none of them has ever bounced off the surface of
Dimorphos, leading to a success rate of the mission of 100%. Nonetheless, the data set is rela-
tively small and maybe some particular conditions for the bouncing to occur has been missed.
Also, it will be more discussed on the next subsection, but the coefficient of restitution is lower
compared to the first theoretic estimations.

We can note that the landing velocity computed by GMV is 5.98 cm/s, and here the mean
value is 6.00 cm/s. It is a comforting result for the validation of the model.

6.3 Coefficient of restitution

It is common in bounce modeling to introduce a coefficient of restitution. Here, simply tak-
ing the ratio between incoming and outgoing velocity would not account for the rotation of
Juventas. As such, the energetic coefficient of restitution is instead considered as it follows :

Coeff =
mv2i + ωi · Iωi

mv2f + ωf · Iωf

where v and ω are the norm of the velocity and the rotational vector respectively, the indices
i and f indicates if they are before or after the bounce respectively. m and I are the mass and
the inertia matrix taken from mechanical report of Juventas [7].

The coefficient of restitution should be connected with the damping coefficient of the sur-
face. Nonetheless, it is not the case on the figure 43. Indeed, the initial estimations (see
appendix 8.4) overestimate the actual bouncing of the samples. The coefficient tend to be
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(a) Latitude at the first impact. (b) Longitude at the first impact.

(c) Latitude after the bouncing. (d) Longitude after the bouncing.

(e) Duration of the entire bounce. (f) Number of bounces.

Figure 40: Histograms of different parameters for 1000 samples.
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(a) Latitude and longitude of the different
samples at the first impact.

(b) Latitude and longitude of the different
samples at rest.
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Figure 41: Graphs of position at impact and landing, along with information about the landing
velocity or the incident angle.
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higher when the damping coefficient is lower, which was expected. But the vertical spread of
the values is surprising. Since the solar panels were modelled as damped spring, the CubeSat
can absorb and dissipate the through shocks.

In order to see which parameters can affect the coefficient, the figure 44 shows the relation be-
tween the coefficient of restitution and different other parameters. There are no clear relation
on the different graphs. Nonetheless, the coefficient of restitution seems to reduce the incident
angle. It seems the CubeSat is more likely to dissipate energy through friction with high angles.

The coefficient of restitution seems to have no effect on the contact time. Still, when the
contact time is superior to 0.04 second, no samples could have a coefficient superior to 0.4. It
seems that when contact time is high, the damping is very effective.

The graphs with the max acceleration and the initial energy are both clouds of dots, but
no trend can be seen.

Different parameters are varying with the coefficient of restitution, as shown on the figure
45. Indeed, the duration of bounce and the max height are increasing with it, which is ex-
pected. On the other hand, the number of bounces seems unaffected.
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Figure 42: Different frames from the first bounce of Juventas. The first image from the top is
taken before the contact with the ground. The second during the impact and the third just
after. The bending of the solar panels is clearly seen on these 2 figures. The last one is taken
before the simulation stops. The solar panels are still bent and continues to oscillate.
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Figure 43: Computed coefficient of restitution on the 1st bounce with the damping coefficient
of each sample. The estimation is computed in the appendix 8.4.
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(a) Coefficient of restitution along the incident
angle.

(b) Coefficient of restitution along the contact
time with the ground.

(c) Coefficient of restitution along the max ac-
celeration experienced during the bounce.

(d) Coefficient of restitution along initial en-
ergy before the bounce.

Figure 44: Coefficient of restitution along other parameters during the bounce on the smooth
shape model.

62



(a) Duration of bouncing along the coefficient
of restitution.
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Figure 45: Different parameters along the coefficient of restitution computed on the smooth
shape model. The height is evaluated on an ellipsoid of reference of 170× 190× 110m, which
is a good approximation of the surface of Dimorpohos.
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6.4 Solar panels

During the landing, the solar panels, especially the hinges, are exposed to external forces and
deformations. Each joint cannot bend too hard, otherwise permanent deformation could be
done to hinges and it could affect the efficiency of the solar panels. The manufacturer of the
joints indicate a max torque angle up to 294◦[1]. Nonetheless, it does not show when inelastic
deformation will occur. As such, an arbitrary limit is set 90◦ as the limit for inelastic defor-
mations.

The figure 47 shows the distribution of the maximum deflection angle for each joint. For
the disposition of each joint in 3D, see figure 46. The mean of each joint never surpass 20◦,
and even extreme values never surpass 50◦ on each histogram, which is well below the limit
for non-elastic deformation. As such, the landing of Juventas can be considered as safe for the
solar panels according to this model.

Figure 46: Scheme showing the disposition
of each joint.

To understand the evolution of the deflection angle, the figure 48 shows the evolution of the
deflection angle for each joint on the first bounce of a randomly picked sample. Before hitting
the surface, the spacecraft has its solar panels at 0 rad for each joint, as expected. During the
contact, each joint is bent on the same direction. But after leaving the surface, continues to
oscillate. It shows clearly that a part from the incoming energy of the spacecraft is deviated
through the solar panels.
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Figure 47: Distribution of the deflection angle on all the joint of the solar panels.
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Figure 48: This figure shows the evolution of the deflection angle for each joint during the
first bounce of a randomly picked sample. 2 lines indicate when the satellite hits the ground
and when it leaves it.
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6.5 Retraction of solar panels

An interesting study would be to ignore the solar panels, and only consider the main body of
Juventas. To do so, a new matrix of inertia is taken from [7], with the solar panels retracted.
To make a comparative study, the initial conditions and the seed for the random number
generator are the same (see tables 10, 11 and 12). The table 14 shows the new results.

lat landing [°] long landing [°] lat resting [°] long resting [°]
Mean 1.06 -11.18 6.93 7.69

Standard deviation 3.35 5.98 10.08 15.00
Duration [h] Number of bounces Landing velocity [cm/s] Incident angle [◦]

Mean 0.55 8.23 6.00 60.90
Standard deviation 0.37 4.51 0.28 5.55

Table 14: Mean and standard deviation for different parameters without solar panels.

As expected, the values for the landing do not change since the initial conditions are strictly
the same. On the other hand, the result for the bounce are totally different.

A small shift can be seen on the mean, from the coordinates (4.45◦,5.95◦) to (7.69◦,6.93◦).
The bounces propagate further without the solar panels, reinforcing the idea that they dis-
sipate energy through oscillations. But the change is also present for the dispersion, since
the standard deviation of both coordinates increase. Also, the number of bounces increases.
It can be assumed that the solar panels can act as shock absorber during the last bounces.
Nonetheless, an unexpected result is the duration of bounce. Instead of increasing, it slightly
decreases. Even if the difference is small, only 0.05 h, the absence of solar panels as damper
should allow more energy for the aftershock velocity. A histogram for those parameters are
available on the figure 49.
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(a) Longitude at rest distribution. (b) Latitude at rest distribution.

(c) Duration of bounce distribution. (d) Number of bounces distribution.

(e) Latitude and longitude at rest.

Figure 49: Graphs of different parameters from a simulation without solar panels.
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7 Surface variation

This chapter undertakes an examination of the effects of surface deformation. It delves into
the overarching outcomes across various surfaces, thoroughly investigating and analyzing their
implications. The two methods described on the chapter 5 are used and analyzed.

7.1 Perlin noise

The programmed Perlin noise allows to perform easily simulations on different surface. As
such, 5 surface are tested with 1000 samples and progressive factor R. The initial conditions
are the same that on the table 10 and 11. The surface properties are set to µs = 0.5 and
Γ = 1000 kg/s. In order to have the same generated conditions, each simulation have the
same seed for the random number generator. As such, no study will be done on the landing
since it is the same trajectories for each simulation.

The positions after bouncing for each simulation are shown on the figure 50. It is clear
that for lower values of R, the ellipses of error are elongated, similarly to the simulation in
the previous section. On the other hand, the dispersion increases drastically for R > 30. The
uncertainty becomes bigger on the latitude, which leads to more circular ellipses of error.

Different parameters are shown on the figure 52. First, the area of the error ellipses gives
a good indication of the dispersion. The first shows a strong increase when R reaches 30, but
then no further change are seen. On the other hand, the number of bounces and the dura-
tion bouncing increase more linearly, showing the clear impact of the surface on the different
parameters.

7.2 Rock population

The same conditions for the analysis defined on the previous subsection are used. Nonetheless,
the method to form the surface here is by using the code from Stefaan Van wal and integrate
it through blender. Due to the difficulty to form the shape model and due to the huge in-
crease of the computational cost by adding vertex, the simulation was done on only one surface.

According to the previous results with the Perlin noise, an increase in the duration of bouncing
(mean = 0.82 h) can be observed, especially on the number of bounces (mean = 9.46) which
is the highest of all the noisy terrain. Nonetheless, the area of the error ellipse at 50% is
relatively low compared to other tests (area = 407), meaning the dispersion seems to not be
affected by the rocks adding.

Adding those individual rocks on the surface privilege little bounces, which leads to this high
increase in number of bounces. Nonetheless the dispersion does not seem to be very affected.
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Figure 50: Position at rest with the ellipse error for different values for R.
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Figure 51: Different parameters for different shape models.
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(a) Duration of bounces of the shape model
with rocks.

(b) Number of bounces of the shape model
with rocks.

(c) Position at rest of the shape model with
rocks.

Figure 52: Distribution of different parameters for the shape model with rocks.
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8 Conclusions

This work introduces a new model for the bounce motion. It accounts for the 3D shape of the
satellite and its rotation. The consequences of it were studied on different surfaces. As such,
the dependencies between different parameters have been shown.

In this chapter, first the improvements of the model will be explained from the first thesis
to this work. Then, a talk about the implication of the mission is done in order to estimate
the feasibility of the mission, followed by a small discussion on the impact of the terrain
roughness. Finally, an insight on the future improvements that could be done on this work is
made.

8.1 Improvements of the model

During this work, features were added or improved on the model. The main one is of course
the integration of the 3D shape of Juventas, adding 3 degrees of liberty to the system. But
other improves were made, like the detection of collision or the noise applied on the shape
model. Everyone of them are summarized on the table 15.

Features Vanhalst + Hanon [43] Roisin [32] This work
Propagator Classic Vectorized Vectorized

Shape of Dimorphos Ellipsoid Ellipsoid + shape model Shape model
Collision detection Analytical (ellipsoid) Distance to facets Facet collision

Surface noise Fractal Brownian None Perlin noise
Bouncing model Coeff of rest. Coeff of rest. 3D contact force

Juventas modeling Point Point 3D shape
Juventas’ rotation None None Computed inertia

Solar panels None None Rigid panels with hinges

Table 15: Table of all improvements to the model, through the different thesis.

A great advantage of the code is its flexibility. The final algorithm is able to work different
physic system, by changing the propagator. But it can also work on different shape models,
an example is shown with a more complex asteroid on the figure 53.
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Figure 53: Trajectory of 30 smaples on Itokawa.

8.2 Implication for the mission

Two main threats can compromise the mission.

First, if the bouncing on the surface is too strong, Juventas can bounce off and fail to land
on Dimorphos. The simulations didn’t show any case where it happens, leading to a rate of
landing to 100%. We saw that including the 3D shape of Juventas and its rotation leads to
bounces with smaller coefficient of restitution. This induces less risk of bounce off. Includ-
ing the 3D shape of the spacecraft allows multiple micro-bounces and increases the energy
damping. Furthermore, the solar panels can absorb a part of the kinetic energy as oscillations,
which are slowly dissipated.

The second threat would be the bending of the solar panels. A too strong bending would
curve the solar panels and make them nonoperational. Nonetheless, the maximum angle of
deflection stayed well below the limit of 90◦. We can conclude that the bending of the solar
panels won’t be a problem for the mission.

Those results are very optimistic regarding the mission. Still, the Monte-Carlo analysis has
only been made on 1000 samples with no knowledge on the surface properties of Dimorphos.

8.3 Terrain roughness

The noise applied on the surface has a direct impact on different parameters of the bounce,
especially on the dispersion after the bouncing. The roughness is then a very important
characteristic that affects the dynamic of the bouncing of the CubeSat. Affecting also the
duration of obuncing and the number of bounces.
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8.4 Suggestions for Future Work

The work of this thesis could be improved by several ways :

• Use a shape model with non-uniform surface properties. Indeed, we could consider softer
or harder surface on the asteroid to see new behaviors.

• Use a better propagator for the system. This work only accounts for a synchronous orbit
of Dimorphos and no solar radiation pressure. A huge improvement would be to consider
the new behavior of the system and adding orbital perturbations.

• Compare this model to experimental measurements. Testing the bouncing of rigid bodies
at very low gravity is very challenging. Furthermore, the experiments would be able to
fix the different constants to use.

• Considering the solar panels as flexible bodies. Instead of using 3 rigid bodies linked by
torsion springs, the entire solar panel could be bent.

• A better modelization of the hinges. A simple model was used for the hinges, with no
consideration for inelastic deformations. Include these deformations could be a huge
improvement of the model.

• Decrease the RAM consumption. Indeed, the treatment in parallel use a lot of ram and
do not allow to treat too many samples at the same time. Reducing the use of the RAM
would unlock higher scale simulations.

• Accurate computation of the acceleration. The accelerometer inside Juventas should
allow reconstructing the trajectory of the CubeSat. As such, emulate the measured
acceleration are necessary to understand the motion of the bounce.

• Include the rotation of solar panels. The rotation of joints is unidimensional, nonetheless
Juventas can rotate its solar panels in order to capture the sunlight more efficiently.
Accounting for these rotations would add more realism to the model.

75



Appendix

Estimation of the coefficient of normal restitution

Considering a damped oscillator with the equation :

mẍ+ Γẋ+ kx = 0

Considering now ω0 =
√

k/m and ζ = Γ/2
√
km, it becomes :

ẍ+ 2ζω0ẋ+ ω2
0x = 0

A solution for this differential equation is :

x(t) = e−t/τ (C cosωdt+D sinωdt)

with ωd = ω0

√
1− ζ2 and τ = 2m/Γ.

We would like to compute, for an initial speed −v0, how the speed will be restituted. Since
x(0) = 0, C = 0 and since ẋ = −v0, D = −v0/ωd. Now if we compute the acceleration, we
have :

ẍ(t) = − 1

τ2
e−t/τ v0

ωd
sinωdt

+
2

τ
e−t/τv0 cosωdt

+e−t/τv0ωd sinωdt.

Since the force is strictly positive, ẍ > 0, let’s find t′ when ẍ = 0, the equation becomes :(
1

τ2
v0
ωd

− v0ωd

)
sinωdt

′ =
2

τ
v0 cosωdt

′

2/

(
1

τωd
− τωd

)
= tanωdt

′

t′ =

arctan

(
2/

(
1

τωd
− τωd

))
ωd

+ π.

Note that π is necessary on the last equation since we are looking for a solution in the second
quadrant.

Knowing k, m and Γ, we can then obtain α as ẋ(t′) = αv0 :

α =
1

τ
e−t′/τ 1

ωd
sinωdt

′ − e−t′/τ cosωdt
′

With this equation, we obtain for k = 106 N/m, m = 12 kg and Γ = 103 N/m/s the value
α = 0.6597.
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Quaternion

The set of quaternion, noted H, is a set of numbers that extends the real numbers. Similarly
to complex numbers, they are composed of 3 imaginary number, i,j and k linked by the next
relation :

i2 = j2 = k2 = ijk = −1

As such, each quaternion can be written as composition of 4 real numbers:

q = a+ bi+ cj + dk

where a, b, c, d ∈ R. The quaternion multiplication, noted *, is simply

q1 ∗ q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)

= a1a2 − b1b2 − c1c2 − d1d2

+ (a1b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 + c1a2 + d1b2 − b1d2)j

+ (a1d2 + d1a2 + b1c2 − c1b2)k

The inverse of a quaternion is then

q−1 =
1

|q|2
(a− bi− cj − dk)

where |q|2 = qq−1 = a2+ b2+ c2+d2. The true interest of using quaternion is how useful they
are to describe rotations. Let’s imagine a rotation of angle 2θ around an axis r = (rx, ry, rz)
where |s| = 1. The quaternion associated to the rotation is defined as

q(r, θ) = cos θ + sin θ(rxi+ ryj + rzk)

Now, for a second rotation of angle α around the axis 2s = (sx, sy, sz) where |s| = 1, the
compisition of the 2 rotation is expressed as

q′ = q(s, α) ∗ q(r, θ) ∗ q(s, α)−1

This operation can be easily computed with a computed, and has the advantage to every
information on the rotation in a single term. Usually, the quaternion defines the actual ori-
entation of an object compared to a reference position. The rotation matrix is retrieved with
the formula :

R(q) =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2ad+ 2bc a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2ab+ 2cd a2 − b2 − c2 + d2


And for a angular velocity ω = (ωx, ωy, ωz), the derivative of the orientation defined by q is

q̇ =
q

2
∗ (ωxi+ ωyj + ωzk)
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Euler equation

Here is a demonstration of the Euler equation.

For a rigid body with an inerta tensor I ∈ R3×3, its angular momentum in an inertial frame
R is given by

L = Iω

where ω is the angular velocity.

The equation of motion is given by

M =
dL
dt

=
d
dt

(Iω)

where M is the angular momentum applied to the body.

The main issue of this equation is the presence of the inertia tensor, which is not independant
of the time. To resolve this issue, let’s introduce a frame R′ following the rigid body in its ro-
tation, as such the body looks immobile in this frame. with a change of frame, and accounting
for the virtual forces, the equation of motion becomes(

M =
dL
dt

+ ω × L = Iω̇ + ω × L
)

R′(
ω̇ = I−1MI − I−1(ω × L)

)
R′

Which gives the rotation of the rigid body along the time.
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