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Abstract

The high-contrast imaging tool known as Spectro-Polarimetric High-
contrast Exoplanet REsearch (SPHERE) represents a second-generation
instrument specifically engineered for detecting exoplanets. It has been
operational at the Very Large Telescope since 2014.

To harness the extensive dataset generated by SPHERE, enhance
future observation scheduling, and further instrument development, it is
imperative to gain a comprehensive understanding of how instrumental
performance relates to various environmental factors.

This project’s principal goal is to use machine learning and deep
learning approaches to forecast detection limits in terms of contrast
between exoplanets and their host stars. This endeavor will involve the
creation of two distinct model types: random forest models and multilayer
perceptron models. The ultimate aim is to enhance our comprehension of
the connection between input parameters and detection limits, ultimately
yielding deeper insights and knowledge within this field.

Furthermore, uncertainties associated with the input features will be
captured using a neural network, with the aim of providing confidence
intervals in the predictions.
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Chapter 1

Introduction

Exoplanets, or planets outside our solar system, were only hypothetical for
centuries, appearing exclusively in works of science fiction. The detection
of these faraway planets, located light-years away, seems incredibly
difficult due to their small size, as they would appear billions of times
dimmer than their parent stars. The first definitive confirmation of an
exoplanet detection took place in 1992. Exoplanet discoveries cleared
the way for an emerging field of astronomy, resulting in a multitude of
subsequent detections in the years that followed. The Radial Velocities (RV)
approach was crucial in these discoveries at the time.

During the 2000s, further techniques were developed and employed
for exoplanet detection. These included the successful transit method, mi-
crolensing, and High Contrast Imaging (HCI). These additional techniques
expanded the range of methods available for studying and identifying exo-
planets. Furthermore, as a result of these developments in the field, the rate
of exoplanet discovery has increased rapidly.

According to the National Aeronautics and Space Administration
(NASA) there have been 5,506 confirmed exoplanet detections in 4,065
planetary systems as of September 2023 [34]. Among these systems, 878
have multiple planets orbiting their host star [40].
The goal of exoplanet research is not solely to create a catalog of known
worlds, but rather to assess their physical properties, and eventually
determine whether life can exist elsewhere in the universe.

Detecting exoplanets using direct imaging methods poses significant
challenges due to the small angular separation between the planet and
its host star and the high contrast between them. These reasons explain
why, despite technological advances, only massive planets at large angular
separation have been identified so far. Ground-based telescopes use
adaptive optics and coronagraphic devices as the primary technique to
obtain both high contrast and high angular resolution.

1



The Very Large Telescope (VLT) is a facility managed by the European
Southern Observatory and situated on Cerro Paranal in the Atacama Desert
of northern Chile. It comprises four separate telescopes, each featuring a
primary mirror with a diameter of 8.2 meters.

The high-contrast imaging instrument Spectro-Polarimetric High-
contrast Exoplanet REsearch (SPHERE) is representative of a second
generation of instruments designed for exoplanets detection and has
been installed at the VLT since 2014. It combines adaptive optics and
coronagraphic techniques and allows for direct imaging, spectroscopic
analysis, and polarimetric characterization of exoplanet systems. This
instrument, which operates in the visible and near infrared ranges,
provides higher image quality and contrast for bright targets, although
within a limited field of view.

The mission of the High Contrast Data Center is to process raw data on
demand and handle public availability of all data gathered by the SPHERE
instrument over the last nine years.

To fully exploit the vast SPHERE database, optimize future observa-
tion scheduling, and advance instrument development, it is crucial to thor-
oughly comprehend the relationship between instrumental performance
and various environmental parameters. These parameters include atmo-
spheric turbulence intensity, wind velocity, observation duration, pointing
direction among others. Understanding these dependencies would allow
us to optimize the potential of SPHERE’s capabilities.

This project’s principal goal is to use machine learning and deep
learning approaches to forecast detection limits in terms of contrast
between exoplanets and their host stars.
Two types of models will be created to achieve this goal: random forest
models and multilayer perceptron models. The goal is to create a greater
understanding of the relationship between input attributes and detection
limits, resulting in better insights and knowledge in this domain.

Chapter 2 furnishes readers with a background in astronomy, specific-
ally delving into the sub-field of exoplanet detection.

Chapter 3 is dedicated to providing readers with a comprehensive
understanding of key machine learning concepts. This understanding is
essential for comprehending the methodology employed in this thesis to
construct the models.

In Chapter 4, readers can discover the objectives of this research, along
with a review of the existing literature and results in the field.

Chapter 5 details the data collection process and the creation of the
dataset used as input for the machine learning models.
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Chapter 6 elucidates the methodology employed to construct consist-
ent and smoothly operating models.

Chapter 7 presents the results of this work, accompanied by a
discussion of their implications.

The concluding remarks can be found in Chapter 8.

3



Chapter 2

Astronomical background

Astronomy is the study of celestial objects and events via the use
of mathematics, physics, and chemistry to explain their origins and
changes. It includes visible-to-the-naked-eye objects such as the Sun,
Moon, planets, and stars. It also includes objects that must be observed
with telescopes or other devices, such as distant galaxies and microscopic
particles. Furthermore, astronomy investigates unseen substances such
as dark matter and dark energy, which cannot be directly witnessed.
Essentially, astronomy studies everything outside Earth’s atmosphere,
whereas cosmology studies the entire cosmos.

Throughout history various civilizations have made systematic obser-
vations of the night sky. In the past, astronomy encompassed diverse areas
such as celestial navigation, observational astronomy, and calendar cre-
ation.

Professional astronomy nowadays is separated into two main
branches: observational and theoretical. Observational astronomy is the
collection of data from observations of celestial objects, which is then ana-
lyzed using fundamental physics concepts. Theoretical astronomy, on the
other hand, is concerned with constructing computer or analytical models
to explain and characterize celestial objects and phenomena. These two
branches work together in a complementary fashion, as theoretical astro-
nomy seeks to account for observational findings, while observations val-
idate theoretical predictions.

2.1 Exoplanet

A spectacle arises in the night sky as thousands of stars sparkle brightly
and appear visible to the naked eye. There are billions more stars beyond
this stunning display, their dim brightness escaping our direct awareness.
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The sky appears to be a vast expanse abounding with celestial bodies, a
magnificent tapestry of light.

Naturally, a series of profound questions emerge: Could these stars
host planets in their orbits? Is it possible that among them, some might
resemble our own Earth?

For hundreds of years, humanity has been investigating these enig-
mas, hoping for answers. Today, we are on the edge of discovering the
truth, armed with knowledge and technology. And the overwhelming an-
swer is a resounding "yes."

2.1.1 Definition

An exoplanet, by definition, refers to a planet that exists outside of our
Solar System. To establish a comprehensive understanding, it is essential
to define what constitutes a planet.

The term "planet" comes from the Ancient Greek word "planetes,"
which means "wanderer." In antiquity, any celestial body that moved across
the night sky was considered a planet, even our own Moon.
During those times, the understanding of celestial objects and their
behavior was limited, and the distinction between planets and other
luminous entities was not clearly defined. Observers assigned the
word "planet" to any celestial wanderer that moved around the heavens,
frequently recognizing their movements against a backdrop of fixed stars.

The International Astronomical Union (IAU), in its 2006 definition,
established a set of criteria that a celestial body must meet to be classified
as a planet. This definition, however, is limited to the Solar System, making
it inapplicable to exoplanets located outside of our celestial neighborhood.
These criteria are as follows:

• Orbiting a Star: A planet should orbit a star, meaning it must revolve
around a star as part of its regular motion.

• Spherical Shape: A planet should possess enough mass to generate
sufficient self-gravity, allowing it to reach a nearly spherical shape.
This condition arises due to the balance between the planet’s gravity
and the forces acting upon it.

• Clearing its Orbit: A planet must possess enough mass to clear its
orbital neighborhood of significant debris or other celestial objects.
This means that as a planet orbits its star, it has the gravitational
influence to attract or deflect smaller objects in its vicinity and
establish a relatively clear orbital path.
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The IAU’s definition of a planet focuses on smaller planets and
excludes the region of transition between giant planets and brown dwarfs.
An IAU working group addressed this distinction between exoplanets
and brown dwarfs in 2007 by establishing an extra mass-based criteria, as
proposed by Boss et al. 2005 [3].

• Objects with true masses below the limiting mass for thermonuclear
fusion of deuterium (currently calculated to be 13 Jupiter masses for
objects of solar metallicity) that orbit stars or stellar remnants are
"planets" (no matter how they formed). The minimum mass/size
required for an extrasolar object to be considered a planet should be
the same as that used in the Solar System.

However, in August 2018, the IAU’s Commission F2: Exoplanets
and the Solar System made amendments to this working definition. The
updated official definition of an exoplanet is now as follows:

• Objects below the deuterium fusion limit, orbiting stars, brown
dwarfs, or stellar remnants, and having a mass ratio with the central
object below a specific threshold known as the L4/L5 instability
criterion (M/Mcentral < 2/(25 +

√
621)) are classified as "planets,"

regardless of their formation mechanism.

• The minimum mass/size required for an extrasolar object to be
considered a planet should align with the criteria used within our
Solar System.

It is worth noting that the IAU acknowledged that this definition is
subject to evolution as scientific knowledge advances and improves.

2.2 Indirect detection methods

With so many stars in the sky, it’s becoming increasingly difficult to believe
that our Sun is the solitary designer of planetary systems. Astronomers
have been perplexed by this puzzle for a long time, yet the search for such
planets is fraught with difficulties.

The most difficult challenge is the elusive character of these planets.
They are usually far away from us and dimmed by the brilliance of their
parent stars. Seeing such planets through a telescope is like trying to find
a firefly located next to a blazing searchlight. Their faintness and close
proximity to their host stars make the task even more difficult. Indeed, a
natural thought arises: if direct observation of such planets proves difficult,
perhaps an indirect approach can reveal their presence ?
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2.2.1 Pulsar timing

The first widely accepted detection of extrasolar planets was made by
Wolszczan in 1992 [51]. Earth-mass and even smaller planets orbiting
a pulsar were detected by measuring the periodic variation in the pulse
arrival time. Indeed, this method uses a frequency analysis of the time-
periodic pulses released by the pulsar’s magnetic poles to detect minor
perturbations caused by the presence of a planet.

The planets detected are orbiting a pulsar, a "dead" star, rather than
a dwarf (main-sequence) star. What is heartening about the detection is
that the planets were probably formed after the supernova that resulted
in the pulsar thereby demonstrating that planet formation is probably a
common rather than a rare phenomena. However, no information about
the observed exoplanet’s origin can be gathered, thus the discovery does
not reveal much information on planet formation processes.

2.2.2 Radial velocities

A planet orbiting a star has gravity as well, thus it has an influence on the
star, causing it to rotate around the system’s center of mass. An illustration
of this phenomenon is depicted in Figure 2.1.

Figure 2.1: Reflexive motion [47]

Although it appears to be a promising idea, astronomers had long
been studying this phenomenon in nearby stars. At that time, with the
equipment available, the effect proved to be too challenging to be seen.
The back-and-forth motion was indeed too subtle to be measured, but this
does not imply that the effect was imperceptible.
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When an exoplanet is big and/or close enough to its parent star, the
center of mass shift becomes large enough to allow Doppler spectroscopy
to detect the main star’s periodic radial motion as shown in Figure 2.2. It is
worth noting that this method also provides a lower bound on the mass of
the planet since the orientation of the orbital plane is unknown.

Figure 2.2: Radial Velocity [48]

This technique tends to detect massive planets close to their host star
such as hot Jupiters since they induce a larger spectral shift.

It is also worth pointing out that the first exoplanet orbiting a main-
sequence star, 51 Pegasi b, has been discovered using this indirect strategy
[32].

2.2.3 Transit photometry

Transit photometry is a successful approach for detecting exoplanets that
includes tracking the brightness of a star over time. As seen in Figure 2.3,
when an exoplanet passes in front of its host star in the observer’s line of
sight, it temporarily blocks a portion of the star’s light, causing a transient
decrease in brightness.

Figure 2.3: Light curve of a planet transiting its star [25]
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Astronomers can deduce the presence of an exoplanet, establish its
size, and even learn about its orbital period and direction relative to the sky
plane by properly detecting these periodic dips, which are proportional to
the star-planet surface ratio. Transit photometry has been used to identify
thousands of exoplanets, and it is especially successful at spotting planets
that are very close to their stars and have orbits that are lined with our
line of sight. In fact, the fundamental limitation of the transit approach is
the required tilt to observe the eclipse, with the likelihood of aligning with
Earth’s line of sight reducing as the separation grows.

2.2.4 Astrometry

Astrometry is the exact measuring of an object’s location relative to
reference background stars. In the case at hand, since the equipment
available is becoming more and more sophisticated, the goal is to measure
(precisely) the center of mass shift as seen in figure 2.1. The method
offers information about some orbital properties of the exoplanet, such as
inclination, and can thus be used in conjunction with Radial Velocities (RV)
to precisely determine the companion mass. Moreover, similarly to RV,
massive exoplanets orbiting low-mass stars are favoured.

Figure 2.4: Oscillations of the star induced by an orbiting planet over time
[11]

The precision required to detect a planet orbiting a star using this
technique is exceedingly difficult to obtain and as a result, only one planet
has been identified using this method. Nevertheless astrometry has been
used to do follow-up studies for planets spotted using other methods.

The GAIA space-telescope, which was launched in 2013 and which
is dedicated to astrometry, should drastically increase the number of
exoplanets discovered using this method in the years to come.

9



2.2.5 Gravitational microlensing

While both the radial velocity and transit strategies rely on detecting
fluctuations in starlight, a distinct approach incorporates the effect of
gravity on light. Gravitational microlensing, which Albert Einstein first
proposed in his general theory of relativity, is based on the notion that
heavy objects can bend the course of light. When the stars are properly
aligned, light traveling from a distant star to an observer can be twisted
around an intermediate star, thus acting as a magnifying lens. This causes
the background star’s light to be amplified, and if a planet circles the
lensing star, it causes a visible variation in what would otherwise be a
continuous light curve. Figure 2.5 provides a graphical representation of
this notion.

Figure 2.5: Exoplanet detection using microlensing [12]

Nonetheless, due to the rarity of such alignments, only a few dozens
of exoplanet detections using this strategy have been made since the first
identification in 2000 [2].

2.3 Direct imaging

Despite the fact that indirect detection methods have ruled exoplanet
science for decades, recent experimental breakthroughs and novel data
processing techniques have contributed to the rapid growth of direct
imaging as a viable complementary detection method. Indeed since the
method depends on receiving photons emitted by the exoplanet, a wider
range of astrophysical parameters can be retrieved thus putting new
constraints on planet formation models.
The figure in Figure 2.6 displays the proportion of exoplanets discovered
through various methods.
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Figure 2.6: Planets detected using the different methods [34]

When compared to stars, planets are extremely dim, and the tiny light
they emit is frequently overpowered by the brilliance of their parent stars.
As a result, it is often difficult to directly see and distinguish planets from
their home stars. As previously stated, direct imaging seeks to identify
photons emitted (mostly in the infrared) or reflected (primarily in the
visible) by the exoplanet itself.
The amount of visible light reflected by the exoplanet from the host star is
determined by the planet’s albedo1, which is governed by the composition
of its surface and atmosphere. When planets orbit at a great distance from
their stars and reflect very little starlight, their detection is mostly based
on their surface heat radiation which is affected by both the planet age and
mass.

Images become more feasible when the star system is close to the
Sun and the planet is noticeably massive, located far from its parent
star, and has a high temperature, resulting in the emission of intense
infrared radiation. The planet’s brightness in this spectral range exceeds
its visibility in visible wavelengths, hence infrared imaging is used.
Actually planetary evolution models can be used to provide a more
accurate characterisation of the region within which astronomers perform
their search. During their first phases, the planets’ thermal emission peaks
in the near-to-mid-infrared wavelength region, and as they mature, it shifts
to the mid-infrared range. In High Contrast Imaging (HCI) near-infrared
emissions are used as it provides a good trade-off between the noisy (due
to the Earth’s atmosphere temperature) mid-infrared bands and the visible
regime which is more turbulent.

1Albedo is the fraction of starlight that is diffusely reflected by an object. It is quantified
on a scale ranging from 0, representing a black body that absorbs all incoming radiation, to
1 which represents an object that reflects all incoming radiation.
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Figure 2.7: The semi-major axes and masses of the detected exoplanets [20]

As depicted in Figure 2.7, direct imaging allows for the finding of
young and large exoplanets at separations that indirect approaches do not
cover yet.
Actually the first ever planet detected via direct imaging was a giant planet
situated near a low temperature brown dwarf [7]. Moreover the two
celestial objects were separated by a relatively large angular separation, as
shown in Figure 2.8, thus allowing the contrast between the two to be quite
small.

Figure 2.8: In comparison to the color of the brown dwarf 2M1207, the
exoplanet is easily recognizable [7]

However, it’s important to note that this object does not meet the mass
criterion illustrated in Figure 2.7. The mass ratio with respect to Jupiter is
approximately 5, whereas a mass ratio of 25 would be required to meet this
criterion.
Actually, HR 8799 is recognized as the first main-sequence star where
exoplanets orbiting it were directly imaged and identified [29].
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2.3.1 Confronting Key Challenges in High-Contrast Imaging

Despite significant technological improvement over the last decade, only
massive planets orbiting at great angular separation have been discovered
so far. It comes from the fact that directly observing exoplanets is a
tremendously challenging task to say the least. On the one hand the planet
and its parent star are separated by a very small angular distance, typically
ranging from 0.1 to a few arcseconds. On the other hand the contrast
between them is quite high, it can goes from 10−3 for young massive
planets emitting in the infrared to 10−10 for Earth-like exoplanets reflecting
the light of their star.
In order to achieve both high contrast and high angular resolution,
Adaptive Optics (AO) in conjunction with coronagraphic equipments have
been used in ground-based telescopes.

Adaptive optics and angular resolution

Images acquired at world-class astronomical observatories such as Paranal,
Chile, where ESO’s VLT is located, are distorted by atmospheric turbu-
lence. This turbulence causes stars to twinkle, which poets enjoy but an-
noys astronomers since it blurs cosmic details.

For a given wavelength, the resolution of a telescope is theoretically in-
versely proportional to the diameter of its primary aperture. When distant
point-like sources, such as stars, are observed, they produce a diffraction
pattern known as the Point Spread Function (PSF), which is characterized
by a center peak surrounded by several lobes for a circular aperture, as spe-
cified by the Airy function 2. In ideal conditions, the resolving power of a
telescope is determined by the Rayleigh criterion, which sets a minimum
separation between two resolved objects at 1.22 times the wavelength di-
vided by the diameter of the telescope’s primary mirror.
However, atmospheric turbulence affects ground-based telescopes, creat-
ing fluctuating phase shifts in the wavefront and affecting the sharpness of
the PSF. This turbulence blurs the PSF core, lowering the angular resolu-
tion limit. The angular resolution in the presence of air turbulence is given
by 0.98 times the wavelength divided by the Fried parameter r0, which de-
pends solely on the strength of atmospheric turbulence, and represents an
equivalent telescope diameter for obtaining angular resolution. Because
the Fried parameter scales with the wavelength as λ6/5, the effect of atmo-
spheric turbulence on angular resolution in the near-infrared is less pro-
nounced than in the visible spectrum [9].

2Airy was the first to investigate the diffraction theory of point spread functions in the
nineteenth century. He devised an equation for the amplitude and intensity of a perfect,
aberration-free instrument’s point spread function, the so-called Airy disc. The Airy disk
and Airy pattern are descriptions of the best-focused spot of light that can be created by a
perfect lens with a circular aperture. This spot is limited by the diffraction of light.
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As a result, when atmospheric turbulence is taken into account, the
angular resolution limit becomes independent of the aperture size which
can severely limit the resolving capability of 8-meter class telescopes. While
observing from space can solve this problem, the cost of running space
telescopes limits the size and power of telescopes we can place beyond
Earth’s atmosphere.

To tackle this problem, astronomers have used a technique known
as adaptive optics [37]. Sophisticated, deformable mirrors controlled by
computers can adjust for turbulence in the Earth’s atmosphere in real-time,
resulting in images nearly as crisp as those gathered in space.

Figure 2.9: Principle of adaptive optics [35]

Figure 2.9 illustrates the main principles of adaptive optics. The
deformable mirror, wavefront sensor, and control system, which includes a
wavefront reconstructor, are the key adaptive optics components. A beam
splitter directs a tiny portion of the light to the wavefront sensor while
directing the majority of the light to the science instrument(s).

The VLT/SPHERE instrument, which uses extreme adaptive optics
techniques to improve the Strehl Ratio (SR), a measure of optical system
performance, representing the ratio of the actual peak intensity of an ab-
errated image to the maximum intensity achievable in an ideal diffraction-
limited system, is the primary data source for this thesis [1]. It accomplishes
this by focusing on a small region of the sky, using deformable mirrors with
great density, and utilizing quick real-time processing.
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In Figure 2.10, a long-exposure image in the H-band was captured by
VLT/SPHERE during the assembly, integration, and testing phase under
typical conditions of guide star brightness and atmospheric turbulence.
The SR is provided at a wavelength of 1.6µm. The left image was taken
in seeing-limited mode without AO correction while the right image
was obtained with full AO correction under normal turbulence seeing
conditions.

Figure 2.10: Long-exposure image in the H-band with and without AO
correction [39]

Coronagraphy and contrast

The second challenge concerns the brightness difference between the planet
and its parent star. In order to remedy this issue, a coronagraph is
introduced. A coronagraph is an optical device inserted into the telescope
(or one of its back-end instruments) that is specifically designed to suppress
or obscure the direct light generated by a star or other bright object.
This reduction of strong light allows astronomers to examine and analyze
adjacent objects that would otherwise be hidden by the central source’s
overwhelming glare.

In essence, regardless of how advanced and faultless a telescope is,
diffraction changes what was once a tiny point of light in space into a
circular shape encircled by concentric rings (PSF). Faint planets can be
hidden within these rings. To solve this, a coronagraph is introduced to
aid in the direct imaging of these dim planets by performing three major
duties.

To begin, the coronagraph uses a mask with a dark core area to block
the majority of incoming starlight. This mask is precisely engineered
to direct the starlight that it does not block toward the beam’s outer
regions. Then, the coronagraph eliminates diffraction effects. Inserting a
undersized stop (referred to as Lyot stop) in a pupil plane downstream of
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the focal-plane occulting mask reduces significantly the brightness of the
Airy pattern rings, causing the rings to vanish. As a result, the majority of
the starlight is eliminated, allowing the sight of objects that are millions of
times fainter than the star.
Finally, the light emitted by the companion(s) is not blurred because the
telescope is precisely pointed at the star, causing the planet’s light to
approach at an angle that bypasses the mask and passes through the center
of the Lyot stop. Figure 2.11 illustrates this whole process.

Instruments intended for high-contrast imaging usually contain a
variety of coronagraphic instruments and several masks to cover a
wide range of observational needs and wavelengths. Furthermore,
these coronagraphic tools are often equipped with a tip-tilt sensor to
precisely position the target and eliminate the possibility of instrument
misalignment.
In addition to a differential tip-tilt sensor, the VLT/SPHERE instrument
includes a typical Lyot coronagraph [26], a four-quadrant phase mask, and
an apodized pupil Lyot coronagraph [31].

Figure 2.11: The SPHERE Apodized Lyot Coronagraph operates through
a sequence of components: entrance pupil (a), apodizer (b), point spread
function (c), Lyot occulting coronagraphic mask (d), initial pupil image
(e), Lyot stop (f), pupil image with the stop (g), and the enhanced final
coronagraphic PSF (h). This system effectively reduces starlight to unveil
neighboring objects [19]
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Speckle noise

Interference between wavefronts in coherent imaging systems produces the
granular noise texture known as speckle, speckle pattern, or speckle noise.
Despite the AO and the coronagraph some star light always makes
its way to the detector, due in part to residual aberrations caused by
uncorrected atmospheric turbulences or instrumental aberrations caused
by the telescope and back-end instrument optical train. It is not possible
to remove all of these aberrations, especially those that are not seen
by the adaptive optics wavefront sensor referred to as Non-Common
Path Aberrations (NCPA). Some of these NCPA are time dependent as a
result of mechanical stress evolution, heat fluctuations during observation,
unfiltered vibrations, or flaws in the instrument’s moving parts. Since
the variation of those instrumental mechanical characteristics is slow, the
speckles induced by these types of aberrations can be viewed as quasi-static
and they are not easy to remove.
To address this problem, astronomers rely on different observing strategies
and post-processing techniques.

2.4 Observing strategies

The purpose of this section is to describe how the data is collected by the
telescope, "Differential imaging" refers to taking multiple pictures of a same
target in order to create a model of the speckle field.

Angular differential imaging

A timelapse view of the night sky illustrates that stars seem to be rotating
around the (north or south) celestial pole as well as rise and set. In contrast,
the field of view of a modern telescope, which tracks stars across the sky by
spinning around two axes, remains parallel to the horizon, if not corrected
by a specific optical device called a derotator. As a result, the images
captured by the telescope appear to rotate while the quasi-static speckles,
originating in the telescope and instrument optics (fixed with respect to the
detector), maintain their places in the image. Thus if several pictures of a
star and its companion are taken, the planet appears to rotate around its
parent star.
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Using the obtained data and angular diversity, it is feasible to develop
a model of the speckle field, generally referred to as the reference PSF
or simply background. This reference PSF is then subtracted from
the collection of Angular Differential Imaging (ADI) [28] pictures. The
remaining frames are then meticulously derotated and added toghether
in order to find potential signals from exoplanets or disks. These signals
should ideally be unaffected by the reference PSF subtraction, while any
residual noise tends to average out incoherently.

Spectral differential imaging

Spectral Differential Imaging (SDI) takes advantage of the fact that light
from stars and planets can have different spectral properties [42]. Stars
have a relatively smooth and continuous spectrum of light while planets
frequently have various spectral properties due to their composition and
atmosphere. In addition, it is important to note that speckles exhibit linear
wavelength-dependent stretching, whereas the image of an exoplanet
remains stationary within the field of view across different wavelengths.
SDI primarily uses this characteristic to identify and detect the faint light
from exoplanets.
This enables for good speckle noise suppression while avoiding self-
cancellation of the planetary signal during subtraction.

Reference-star differential imaging

Reference-star Differential Imaging (RDI) relies on observations of different
stars to model the speckle field, whose brightness is then adapted and
removed from the image.
RDI attempts to address one of the major limitations of both ADI and
SDI observation methodologies, namely the over-subtraction observed,
particularly at short separation (due to lower Parallactic Angle (PA)
rotation for ADI and less effective rescaling for SDI) [52].

2.5 Data processing

Data processing is an important part of high-contrast exoplanet imaging.
Its importance is almost equal to that of selecting a coronagraph or a
wavefront control system, and it is linked with the observing technique.

As seen in Figure 2.12 a lot of steps are involved in order to process the
data, from a raw FITS file given by the telescope to the residual image. The
pipeline can be separated into two main steps: pre-processing and post-
processing of the data.
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Figure 2.12: Typical differential imaging pipeline, from unprocessed
images from the telescope through the development of a residual flux
image [17]

The pre-processing steps regroup the calibration of the images, the
dark current subtraction, the flat field correction, the thermal background
(from the sky) subtraction and the bad pixel correction. Subsequently,
poorly captured images resulting from star or coronagraph misalignment,
unfavorable observation conditions, or errors in AO correction are iden-
tified using image correlation analysis or pixel statistics analysis within a
specific portion of the field of view. After that, these undesirable frames
are eliminated from the dataset. Finally, the images are recentered in order
not to encounter problems when trying to model the reference PSF in the
post-processing steps.

The main goal of the post-processing is to maximize the signal to
noise ratio of the exoplanet. The later is achieved by tackling the noise
introduced by AO correction errors, residuals light from the coronagraph
or non-common path aberrations. The post-processing techniques can be
divided into three main types :

• Maximum likelihood techniques : ANDROMEDA [6], PACO [15],
TRAP [38], ...

• PSF subtraction techniques : Median subtraction [28], LOCI [24],
PCA [43], Non-negative matrix factorization, ...

• Supervised machine learning techniques : SODINN [18], ...
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Chapter 3

Machine Learning Background

Given the interdisciplinary character of this study, the goal of this part is
to provide the reader with critical information for understanding the mod-
eling process. However, it is critical to avoid viewing machine learning as
a collection of magical algorithms capable of simply acquiring information
from any input. Attempting machine learning without a thorough under-
standing of its principles and methodology can result in worthless results,
misinterpretation of outcomes, and even unexpected consequences, high-
lighting the significance of acquiring a solid understanding of the area be-
fore embarking on these types of projects.

3.1 Definition

Machine Learning is a branch of artificial intelligence that focuses on the
development of algorithms and models that allow computer systems to
improve their performance at some tasks by learning from data rather than
through explicit programming. Furthermore, machine learning approaches
are frequently classified into three types based on the type of signal or
feedback accessible to the learning system.

In the case at hand and probably the most well-known type of machine
learning is called supervised learning. Supervised learning methods create
a mathematical representation of a dataset that contains both the input data
and the desired outputs. This dataset, which consists of a collection of
training cases, is referred to as the training data. Each training instance
has one or more inputs as well as the desired output, often known as a
supervisory signal. Each training instance is represented as an array or
vector within the mathematical model, sometimes referred to as a feature
vector, while the training data is described as a matrix.
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Supervised learning algorithms acquire knowledge by iteratively
optimizing an objective function in order to construct a function capable
of predicting the outcomes associated with a given set of inputs.

In opposition to supervised learning, unsupervised learning al-
gorithms operate on datasets that are entirely made up of input data, look-
ing for patterns or structures within the data, such as data point group-
ing or clustering. These algorithms learn from test data that has not been
labeled, classified, or categorized. Unsupervised learning algorithms re-
cognize similarities or shared qualities in data and change their responses
based on the presence or absence of these shared features in each new data
point, rather than relying on explicit feedback.

Finally, the third category of machine learning sub-field is referred
as reinforcement learning. Reinforcement learning consists in a computer
program, or agent, who has an objective within a dynamical environment
(e.g. drive a car or operating a robot). While exploring its problem space,
the program receives input in the form of a reward signal, which it tries to
maximize.

3.2 Principles of (supervised) Machine Learning

This section will revisit key principles of statistical learning, specifically
the concepts of empirical risk minimization and the distinction between
underfitting and overfitting. These principles serve as the guiding
principles that enable algorithms to learn, adapt, and make informed
predictions from (labeled) data.

3.2.1 Empirical risk minimization

In the context where data samples are independently and identically drawn
from an unknown joint probability distribution, denoted as (xi, yi) ∼ pX,Y,
with xi ∈ X , yi ∈ Y , and i = 1, ..., N, the primary concern is to estimate the
conditional probability p(Y = y|X = x).

A learning algorithm typically generates a function represented as f :
X → Y . To assess how closely the predictions made by this function align
with the original data, a loss function can be defined as l : Y × Y → R, for
example, the Mean Squared Error (MSE).
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When the hypothesis space, or the set of functions that can be
generated by the selected learning algorithm, is represented as F , and the
expected risk is expressed as:

R( f ) = E(x,y)∼pX,Y
[l(y, f (X))]

The ultimate objective is to discover a function f ∗ ∈ F that minimizes
the expected risk, formulated as:

f ∗ = argmin f∈F R( f )

However, pX,Y is unknown thus the expected risk cannot be evaluated
and the optimal model cannot be determined. Nevertheless, the training
data d = {(xi, yi)|i = 1, ..., N} is i.i.d. thus it is possible to compute an
unbiased estimator of the expected risk called the empirical risk.

R̂( f , d) =
1
N ∑

(xi ,yi)∈d
l(yi, f (xi))

In this context, f d
∗ = argmin f∈F R̂( f , d) and, under regularity

assumptions, limN→∞ f d
∗ = f ∗.

3.2.2 Under-fitting and over-fitting

The Bayes risk, denoted as RB, is defined as the minimum expected risk
over all possible functions within the hypothesis space:

RB = min
f∈YX

R( f )

Here, YX represents the set of all functions f : X → Y .

The Bayes model, which minimizes the Bayes risk, is typically denoted
as fB, and it’s evident that no other model can achieve a lower risk. In
essence, the Bayes model represents the best achievable performance given
the specific problem and data distribution, making it an essential reference
point for evaluating the effectiveness of other models.

The capacity of a hypothesis space induced by a learning algorithm
intuitively reflects its ability to find an appropriate model, represented
by a function f ∈ F , for any underlying function, regardless of its
complexity. In essence, it measures the flexibility and expressive power
of the hypothesis space, indicating whether it can effectively capture and
represent a wide range of functions.
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If the capacity of the hypothesis space F is too low, it means that
the Bayes model fB may not be within F , and the difference between the
expected risk R( f ) and the Bayes risk RB tends to be large for any f in F ,
including f ∗ and f d

∗ . In this context, models f are considered to underfit
the data. Under-fitting occurs when the hypothesis space is not expressive
enough to capture the complexity of the true underlying function, leading
to poor generalization performance and high training error.

When the capacity of the hypothesis space F is excessively high, it’s
possible that fB is within F or the difference between the expected risk
R( f ∗) and the Bayes risk RB is small. However, due to the high capacity of
the hypothesis space, the empirical risk minimizer f d

∗ could fit the training
data exceptionally well, to the point that:

R( f d
∗ ) ≥ RB ≥ R̂( f d

∗ , d) ≥ 0 (3.1)

In this scenario, f d
∗ becomes overly specialized with respect to the true data

generating process, and a significant reduction in the empirical risk often
comes at the cost of an increase in the expected risk of the empirical risk
minimizer, R( f d

∗ ). In such cases, f d
∗ is said to overfit the data. Overfitting

occurs when a model captures noise and idiosyncrasies in the training data,
resulting in poor generalization to new, unseen data.

A schematic representation of these two phenomenons is depicted in
figure 3.1.

Figure 3.1: Under-fitting and over-fitting [21]

When over-fitting, as seen in equation 3.1, R̂( f d
∗ , d) becomes a poor

estimator of the expected risk R( f d
∗ ). Nevertheless, an unbiased estimate

of the expected risk can be obtained by assessing the performance of f d
∗

on a separate set of data, denoted as dtest, which is independent from the
training samples in d. This evaluation on a different dataset helps provide
an estimate of how well the model generalizes to new, unseen data and can
give a more accurate indication of its true performance.
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This process helps mitigate the risk of over-fitting by assessing the
model’s ability to make predictions on data it hasn’t been explicitly trained
on.

In practical machine learning applications, it is common to partition
the dataset into three distinct subsets: the training, the validation, and the
testing sets. The first one is employed to train the machine learning model,
allowing it to learn patterns and relationships within the data. The second
set serves as a crucial component for assessing the model’s generalization
performance. It helps in preventing underfitting or overfitting of the model
and can also be used for tuning hyperparameters. Finally, the testing
set is exclusively reserved for the final evaluation of the trained model’s
performance. It provides an independent measure of how well the model
is expected to perform on new, unseen data.

This three-set division ensures a systematic and rigorous approach
to model development and evaluation in machine learning and a proper
protocol is presented in figure 3.2.

Figure 3.2: Proper protocol to build a machine learning model [13]

3.3 Models

Models play an important role in assisting intelligent decision-making
and prediction in the field of machine learning. This section goes into
two popular models: Random Forests [5], which are known for their
ensemble capabilities, and Neural Networks [23], which are inspired by the
complexities of the human brain. Although widely applied across diverse
domains, the emphasis here is on their utilization within the framework of
supervised machine learning.

3.3.1 Random Forest

A random forest is a machine learning ensemble method used for both
classification and regression tasks, it combines the predictions of multiple
decision trees to produce a more accurate and robust result.
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A decision tree is a hierarchical structure in which each interior node
tests an attribute or feature, with each branch corresponding to an attribute
value, and each leaf either labeled with a class in the context of classification
or a value in the context of regression. An illustrative example of a decision
tree is presented in Figure 3.3. In this example, the features are numerical,
necessitating the selection of a value to split each node effectively. To
achieve the optimal split, the algorithm must identify the best feature
and value combination for the split, aiming to maximize the purity of the
subsequent nodes or, in other words, minimize the impurity measure. For a
given impurity measure (e.g. Shannon entropy), the best splitting attribute
is the one which maximizes the expected reduction of impurity.

The primary advantage of decision trees is their ease of use and
interpretability. However, they are not robust estimators, making them
susceptible to overfitting, and they tend to perform less effectively on
average compared to more complex models when applied to similar data.

Random forests address these issues by improving robustness and
reducing overfitting. However, to achieve these benefits, they sacrifice the
inherent interpretability that decision trees offer. Nevertheless, it is worth
noting that random forests can be used to naturally order the relevance of
variables in a regression or classification problem [5].

X1 ≥ 0

X3 < 4.2

X2 ≤ 7.4

2.1 X4 > 0

4.3 -1.2

5

X4 ≤ 2.1

X3 ≥ 0

3.5 0

X2 < 5.2

X3 < −4

-4.4 3.1

2

True False

Figure 3.3: Example of a regression tree

3.3.2 Artificial Neural Network

The primary intuition behind artificial neural networks is the idea that,
since biological brains can learn and adapt, an algorithm inspired by the
functioning of the brain should be able to do the same.
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Artificial neural networks attempt to simulate the connections
between neurons by assigning varying strengths or weights to these con-
nections, allowing them to become more or less influential in processing
information and making predictions. This concept is the foundation for the
learning and adaptation capabilities of neural networks.

An artificial neuron is a mathematical function designed to model
and simulate the behavior of biological neurons. The first mathematical
model of a neuron in history is known as the Threshold Logic Unit, as
documented in McCulloch’s work in 1943 [30]. Essentially, this function
produces an output of one when the weighted sum of its Boolean inputs
exceeds zero, and it yields zero otherwise. A more generalized version of
this function, which can handle real-number inputs, is called a perceptron,
introduced by Rosenblatt in 1957 [36]. The perceptron’s classification rule
can be expressed as:

f (x) = σ(∑
i

wixi + b)

Here, σ represents a non-linear activation function, such as the sign
function or the sigmoid function. The perceptron unit serves as the
fundamental building block for all neural networks, and a schematic
representation of this unit can be found in Figure 3.4.

X1

X2

XN

∑

b

σ ŷ...

w1

w2

wN

Figure 3.4: Graphical representation of a perceptron

Single neuron models do not offer greater expressiveness compared to
linear models. However, they can be interconnected to create a potentially
intricate non-linear parametric model known as a Multi-Layer Perceptron
(MLP). A basic MLP is illustrated in Figure 3.5, where neurons are
organized in layers that are interconnected.
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The configuration of the layers, the number of units in each layer, and
the number of outputs are specific to the problem at hand and are referred
to as hyperparameters.

Figure 3.5: Graphical representation of an artificial neural network [4]

The loss function serves as a mathematical tool for quantifying and
measuring the discrepancy between the predictions generated by the
neural network during the forward pass, denoted as ŷ, and the true target
values, represented as y.
In regression problems, the typical assumption is that the conditional
distribution of the target variable y given the input x follows a normal
distribution p(y|x) = N (y; µ = f (x, θ), σ2 = 1). In this equation, f is
parameterized by a neural network, and it’s important to note that the last
layer of this neural network does not contain a final activation function.
Using maximum likelihood, it comes :

argmaxθ p(d|θ) = argmaxθ ∏xi,yi∈d p(yi|xi, θ)

= argminθ ∑xi,yi∈d(yi − f (x, θ))2 (3.2)

The common mean-squared error l(y, ŷ) = (y − ŷ)2 is recovered.

Generally, these loss functions cannot be minimized analytically in
a closed form. Nevertheless, numerical minimization methods, such as
gradient descent, can be employed to find an optimal solution. Gradient
descent works by iteratively adjusting the model’s parameters. It starts
with an initial parameter set called θ0 ∈ Rd and creates an approximation
of the loss function near this point.

L̂(ϵ, θ0) = L(θ0) + ϵT∇θL(θ0) +
1

2γ
||ϵ||2
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This approximation is a quadratic equation. The key to updating the
parameters effectively is to calculate the gradient of this approximation.

∇ϵL̂(ϵ, θ0) = ∇θL(θ0) +
1
γ

ϵ = 0

The best step for improvement is found to be ϵ = −γ∇θL(θ0) where γ is
the learning rate.

θt+1 = θt − γ∇θL(θt−1)

This step is applied repeatedly to update the model’s parameters. The
choice of the initial parameter set (θ0) and the learning rate (γ) is crucial
for the convergence of the optimization process.

Given that a neural network is a composition of differentiable
functions, it becomes possible to compute the total derivatives of the
loss by working backward through the network. This process involves
recursively applying the chain rule across its computational graph. The
specific implementation of this procedure is commonly referred to as
reverse automatic differentiation or backpropagation.

Finally, an epoch refers to one complete pass through the entire
training dataset during the training phase of a model. During each epoch,
the model is exposed to every example in the training dataset exactly once,
and it updates its parameters (weights and biases) based on the observed
errors or loss on those observations.

3.4 Uncertainty

Uncertainty refers to situations in which there is a lack of complete know-
ledge or certainty due to poor or partial information. This notion applies
to a variety of situations, including future event forecasts, measurements
of physical quantities with intrinsic variability, and regions where informa-
tion is unclear or not fully understood. Uncertainty can develop in partially
observable situations or in systems influenced by stochastic processes. Fur-
thermore, it can be caused by a combination of factors such as as ignorance,
where relevant information is unknown, and laziness, where one does not
make the effort to adequately obtain or analyze accessible information.

Uncertainty can be categorized into two main types: aleatoric and
epistemic.

Epistemic uncertainty accounts for uncertainty related to the model
itself or its parameters. It arises from our lack of knowledge or under-
standing about which model can best explain the collected data. Epistemic
uncertainty can be reduced or explained away with more data or better
model refinement. Essentially, it reflects the uncertainty that can be ad-
dressed through improved modeling or increased knowledge.
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Aleatoric uncertainty, on the other hand, captures inherent noise in
the observations or data. This noise can stem from various sources, such
as sensor inaccuracies, measurement errors, or stochastic processes. Unlike
epistemic uncertainty, aleatoric uncertainty cannot be reduced by gathering
more data. However, it could potentially be reduced by improving the
quality of measurements or reducing the sources of noise.

Understanding and distinguishing between these two types of uncer-
tainty is crucial in various fields, including statistics, machine learning, and
scientific research, as they have different implications for decision-making
and model improvement.

In this context, it’s crucial to emphasize that when addressing
uncertainty in this work, the specific focus will be on aleatoric uncertainty,
as this is the type of uncertainty being targeted for modeling. Furthermore,
aleatoric uncertainty can be further categorized into two sub-types:
homoscedastic uncertainty, which remains constant for all inputs, and
heteroscedastic uncertainty, which depends on the inputs of the model. In
the current case, it is important to note that the type of aleatoric uncertainty
being dealt with is heteroscedastic, meaning that it varies depending on the
specific inputs to the model.

Instead of producing point estimates ŷ = f (x), the goal is to model
the full conditionnal density p(y|x). Assuming that the distribution is
Gaussian it comes :

p(y|x) = N (y; µ(x), σ2(x))

where µ(x) and σ2(x) are two parametric functions to be learned (by a
neural network for instance).
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Figure 3.6: Modeling of the heteroscedastic aleatoric uncertainty using a
neural network [21]

In order to be trained, this neural network needs an appropriate loss
function that can be derived using maximum likelihood. If the training
data is denoted by d and the parameters of the neural networks are denoted
by θ, then it comes

argmaxθ p(d|θ) = argmaxθ ∏xi,yi∈d p(yi|xi, θ)

= argminθ ∑xi,yi∈d
(yi−µ(xi))

2

2σ2(xi)
+ log(σ(xi)) + C

(3.3)

It’s worth noting how the term (yi − µ(xi))
2 has been reintroduced,

it represents the squared difference between the actual value yi and the
predicted mean µ(xi), into the classic Mean Squared Error (MSE). In this
modified form, the MSE is embellished with additional terms that depend
on the standard deviation, providing a more comprehensive representation
of the error or uncertainty in the prediction.
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Chapter 4

Scope of this work

The primary objectives of this chapter are twofold. Firstly, it aims to
provide a concise overview of the key purposes of the research conducted
in this thesis. Secondly, it seeks to present the existing work and research
findings within the relevant field.

4.1 Problem statement

In the early third millennium, the Very Large Telescope is the showpiece of
European astronomical equipment. It is the world’s most advanced visible-
light viewing facility. The VLT consists of four Unit Telescopes, each with
a primary mirror 8.2 meters in diameter, and four Auxiliary Telescopes,
each with a 1.8 meter mirror. All of these telescopes can work together to
form a massive interferometer known as the VLTI, allowing astronomers
to distinguish features with up to 25 times the precision of utilizing the
telescopes individually [49].

The current operation method of this facility is suboptimal. A des-
ignated astronomer is required to stay awake throughout the night, over-
seeing the handling of observation requests. These requests, which often
necessitate specific atmospheric conditions, are managed through an ob-
servation queue, which is manually administered, based on the sugges-
tions from automatic tools that identify relevant observing programs for
the current observing conditions. Typically, these observations span ap-
proximately one hour each. Furthermore, the quality of the observation
can only be assessed once the observation is completed, and in some cases,
insufficient data may result in a significant waste of observation time.

Despite the less-than-optimal nature of this observation scheduling
approach, it is functional for the VLT, primarily because of the availability
of multiple mirrors and other telescopes.
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For the Extremely Large Telescope (ELT), it’s evident that the current
observation scheduling method needs improvement, primarily because
there will only be one telescope of this caliber worldwide. Moreover, the
estimated cost of a 10-hour observing night is several hundred thousand
euros, making it financially significant to ensure a reliable and effective
outcome.

Within the European Southern Observatory, a working group has been
established to enhance the management of telescope usage and to predict
the potential outcomes of observations (in particular for high-contrast
imaging programs, for which sensitivity limits are notoriously difficult
to predict accurately). To achieve this, the group aims to gain a deeper
understanding of the factors that impact observation quality. These factors
encompass atmospheric conditions, equipment used, and data processing
procedures. In essence, if there exists any bottleneck or limiting factor at
any stage of the observation process, the working group intends to identify
it.

In this specific context, the objectives of this work are defined.
Machine learning techniques will be employed to improve the prediction of
detection limits in terms of the contrast between an exoplanet and its parent
star. Additionally, the work seeks to better comprehend the parameters that
can influence these detection limits.

4.2 State of the art

A similar research effort was conducted by Xuan et al. in 2018, as
documented in their paper [53]. The objective of their study was to
assess the performance of the vortex coronagraph installed on NIRC2, an
instrument mounted on Keck II. This instrument is specifically designed
for direct imaging of exoplanets and circumstellar disks in the near- to mid-
infrared regime, including L′ and Ms.

Their dataset comprises a total of 359 observations, covering 304
distinct targets that were observed between December 26, 2015, and
January 5, 2018. This dataset consists of images obtained in both the L′ and
Ms bandpasses. However, for the purposes of their paper, they have chosen
to focus solely on the targets observed in the L′ band, which constitutes
more than 98% of the data. Notably, approximately two-thirds of their
sample consists of stars from surveys that were specifically designed for
use with Reference-star Differential Imaging and have limited Parallactic
Angle rotation (as it can be seen in figure 4.1).

A list of the explanatory variables for the contrast response is provided
in Table 4.1.

32



Figure 4.1: Distributions of the amount of PA and total integration time [53]

Variable Source
Observing conditions

τ0 AO Telemetry
Seeing AO Telemetry
WFS Frame Rate AO Telemetry
Airmass Fits Header
Primary Mirror Temperature Keck II sensors
AO Optical Bench Temperature Keck II sensors
AO Acquisition Camera Enclosure Temperature Keck II sensors
Dome Temperature Keck II sensors
Dome Humidity Keck II sensors
Wind Speed Keck II sensors
Pressure Keck Weather Station

Observation Parameters
PA Rotation Fits Header
PSF x FWHM Pipeline Product
PSF y FWHM Pipeline Product
Total Science Integration Time Fits Header
RDI Reference Library Size Pipeline Product

Stellar Magnitudes
R magnitude UCAC4
W1 magnitude WISE All-Sky and AllWISE

Table 4.1: Explanatory variables [53]

An important result in this paper is the differentiation between two
contrast regimes: background noise-limited and speckle noise-limited. The
boundary at which a target transitions into the background-limited regime
depends on the total integration time and the magnitude of the target,
resulting in variations among different targets (brighter targets have a
larger separation before reaching the background limit).

In the speckle noise-limited regime, the performance is constrained
by speckle noise originating from the residual PSF of the star. In contrast
to the background noise limit, the speckle noise limit is anticipated to be
influenced by a broader array of factors. In other words, the impact of
explanatory variables on performance will be minimal in the case of the
background noise-limited regime.

33



They used random forests to try and predict the contrast values using
as input features the explanatory variables listed in Table 4.1. They found
that the ADI models (0.2′′ to 1.0′′) reach R2 values between 69.9% and
82.3%, with RMSE values between 0.25 and 0.37 dex. It is worth pointing
out that the researchers noticed a growing challenge in predicting ADI
contrasts at larger separations. This result was attributed to the influence of
the background limit. At a separation of 1 arcsecond, approximately 93% of
ADI contrasts are constrained by the background limit. They hypothesized
that background-limited contrasts are heavily impacted by the dynamic
extended structures present in the thermal background, a characteristic
that is not captured or measured by the explanatory variables used in
their analysis. This suggests that the limitations in predicting contrasts
at larger separations are related to factors beyond the scope of the chosen
explanatory variables.

An example of the predictions achieved by their model can be found
in figure 4.2.

Figure 4.2: Predicted contrast curves and measured contrast curves for
three targets [53]
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Another interesting result can be found in Dahlqvist et al. 2022 [8].
The aim of his study is to detect and characterize potential exoplanets and
brown dwarfs within debris disks. This is accomplished while taking into
account a diverse population of stars, including variations in stellar age and
spectral type. He presents the analysis of a set of H-band images captured
by the VLT/SPHERE instrument as part of the SHARDDS survey. This
survey gathers 55 main-sequence stars within 100 parsec, known to host a
high-infrared-excess debris disk. This approach potentially offers a better
understanding of the intricate interactions between substellar companions
and disks.

In this paper, Dahlqvist also investigates the impact of observing con-
ditions and the characteristics of the observing sequence on performance,
which is measured in terms of contrast and a summary of his results is
depicted in Figure 4.3.

Figure 4.3: Pearson correlations between the median values of the contrast
curves and the parameters characterizing the ADI sequences [8]

Finally, the primary distinction between the work of Xuan and
this thesis lies in the choice of the instrument used for performance
characterization. Indeed in Xuan’s work, a different instrument was
employed. In contrast, this thesis focuses on the Spectro-Polarimetric High-
contrast Exoplanet REsearch instrument, which primarily operates within
the speckle noise regime thus being more representative of what is expected
to be mounted on the Extremely Large Telescope. The overarching goal is
to develop more powerful predictive models.
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Chapter 5

Dataset creation

The telescope takes a sequence of pictures during an observational session.
As shown in the figure 2.12, these separate snapshots are then assembled
into a consolidated master cube, which serves as a store for the raw astro-
nomical images coming from the same observation.
Those data-cubes, accessible through the SPHERE Data Center [44], un-
dergo a series of processing steps. This involves the correction of faulty
pixels and the subtraction of the background noise. Afterward, the im-
ages are realigned with the center of the star, and the stellar speckle field is
calculated using one of the post-processing methods detailed in the pre-
vious section before being subsequently removed. The data being pro-
cessed through this reduction pipeline is consistently accessible through
the SPHERE DC at each stage of the reduction process.

5.1 Contrast curves

In this section contrast curves, which will be used as objectives for the
models, will be delved into, especially in terms of how they are obtained
and the processing applied to the set of contrast curves used in this project.

5.1.1 Definition

A contrast curve is an essential element of characterizing exoplanets and
detecting faint companions around a target star. To generate these curves,
it is necessary to calculate the sensitivity to off-axis companions in terms
of contrast at different angular separations. Contrast is defined as the ratio
of the flux in specific regions of the observation to the flux from the central
star. To obtain sensitivity limits at different angular separations, circular
apertures at various radial distances from the central star are selected.
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The Signal-to-Noise Ratio (SNR) can then be calculated as the ratio
between the flux in the selected aperture and the estimated standard
deviation of the flux from other apertures at the same angular separation,
providing an estimate of the background noise.

However, an essential element is missing in this explanation, which is
how the flux of an off-axis companion translates into the final image after
post-processing. To address this, fake companions are injected into the
raw data to determine what fraction of the initially injected flux appears
in the final image. This allows for the calculation of the algorithm’s
throughput, denoted as Tr, which represents the signal attenuation as
a function of angular separation. Throughput is empirically calculated
using the formula Tr = Fr/Fin, where Fr is the recovered flux of a fake
companion after post-processing, and Fin is the initially injected flux of the
fake companion.

Thus, the contrast curve, denoted as Cr, is defined as follows:

Cr =
k × σr

(Tr × F∗)

where k is a correction factor (usually set to five for obtaining the five-sigma
contrast curve), and F∗ represents the flux of the parent star. This definition
takes into account the algorithm’s throughput, which is crucial for accurate
characterization of exoplanets and faint stellar companions [17].

The contrast curves are directly obtained from the SPHERE client. For
this project, all of them originate from the SPHERE IRDIS instrument, using
the H2H3 bands and the cADI reduction algorithm, an example of such a
curve is depicted in figure 5.1.

Figure 5.1: Contrast Curve
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Each observation is associated with its own curve and these curves
serve as the objective functions. Since many factors may affect the contrast
achieved from an instrument on a given observing night, different curves
can be obtained for a same target.

The contrast obtained can be divided into two regimes: background
noise-limited and speckle noise-limited. The distance beyond which a
target hits the background limit is determined by the total integration time
and the magnitude of the target, and hence varies between targets (greater
separation for brighter targets). The performance in the speckle noise-
restricted domain is limited by speckle noise from the residual PSF of the
star. The speckle noise limit is expected to be controlled by a wider range
of factors than the background noise limit [53].

5.1.2 Processing

As mentioned in the previous subsection, the speckle noise limit is expected
to be influenced by a broader range of factors compared to the background
noise limit. Thus, to place greater emphasis on the speckle-noise limited
regime, the maximum separation value has been uniformly set to 3
arcseconds for all the curves.

Furthermore, given that the precise type of ML model had not yet
been determined at this stage, a consistent separation discretization has
been applied to all the curves. To prevent extrapolation, the minimum
separation has been selected as the maximum value among all the
minimums observed in the curves. Additionally, the number of data points
has been set to the median number of points observed in the curves and a
logarithmic spacing has been used to prioritize small separation values.
Finally, interpolating the curves with the new separation values results in
the ones that will be used throughout the rest of this dissertation.

(a) With outliers (b) Without outliers

Figure 5.2: Contrast curves summary with and without outliers
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As depicted in Figure 5.2a, several curves show contrast values that
significantly deviate from the typical range one would expect thus causing
the mean of the contrast values to be way higher than expected. These
curves pose a problem as they likely result from errors in the observations,
therefore, they should be removed from the dataset.
To eliminate these problematic curves, the mean log-deviation from the
median curve is computed and an histogram of those values can be found
in Figure 5.3. After that, an arbitrary threshold above which the curves will
be removed is selected (1 in this case).

Figure 5.3: Deviations from the median curve

5.2 Features

The goal here is to gather a bunch of features that will help constrain the
contrast and thus will serve as inputs to the ML model. In other words
variables which might have an impact on the contrast value are sought.

In fact, many factors can influence the contrast achieved by an
instrument on a given observing night. Some of these elements are
environmental, such as atmospheric properties and optical temperature.
Other considerations include the observed target and timing, which
determine the airmass during the observation, the amount of time per
target, and the degree of Parallactic Angle (PA) rotation. The detection
limits are also influenced by the magnitude of the target star and the post-
processing algorithm used [53].
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5.2.1 FITS file

The Flexible Image Transport System (FITS) is a widely used open standard
that defines a digital file format for storing, transmitting, and manipulating
data. This format can store data in a variety of formats, including multi-
dimensional arrays like a 2D image and tables. In the realm of astronomy,
FITS stands as the most widespread digital file format. It was intentionally
developed for astronomical data, giving capabilities like the description of
photometric and spatial calibration data, as well as metadata that offers
information about the provenance of the image [14].

The contrast curves discussed in the previous section are all provided
in FITS files. In these files, a distinction can be made between the data,
represented as a numpy record, and the headers, encoded as a dictionary.
It is important to note that the headers can be customized according to
the user’s preferences when creating the file. Consequently, a significant
amount of information is appended during the reduction pipeline from the
SPHERE DC.

As previously mentioned, a great number of header keywords have
been made accessible by the SPHERE DC. From this extensive set of
keywords, a specific subset has been chosen for the purpose of creating
the dataset. Table 5.1 provides a concise description of these selected
keywords, as provided by the data center.

Because the reduction algorithms are periodically updated, some
keywords are only accessible in specific versions of the data products.
Consequently, there may be instances of missing data (as seen in table
5.1). While missing information about the effective number of frames or
exposure used in the reduction can be handled by simply omitting that
data, it is considerably more problematic when essential details such as
the observation start and end dates are missing. Indeed, the start and end
times of a telescope observation are crucial pieces of information. Without
these timestamps it becomes impossible to obtain other vital variables, such
as the seeing or the coherence time, during the course of the observation.
These time-related details are essential for a comprehensive understanding
and analysis of the data.

A substantial effort has been dedicated in order to resolve the issue
of missing dates. Given that the contrast curve files are the outcome of
a reduction pipeline, it suggests that a parent process utilizing the data
cubes from the observation sequence might have access to the timestamps
of these images.
However, it appears that the current implementation of the pipeline lacks a
mechanism to directly link a specific contrast curve to its corresponding
timestamp file using an identifier or a similar method. While the
relationship between the processes involved is known, there is no clear way
to establish the direct relationship between the outputs of those processes.
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Header name Description
Missing
percentage
(%)

ESO OBS ID Observation ID 0.00
DATE-OBS Average date of full observa-

tion
0.00

OBJECT Original target 0.00
ESO TEL AIRM MEAN Average airmass during the

observation
78.04

EFF_NFRA Effective number of frames
used in reduction

76.74

EFF_ETIM Effective exposure time used
in reduction

76.74

SR_AVG SPARTA average STREHL 39.20
ESO INS4 FILT3 NAME Wavefront sensor spectral fil-

ter
0.00

ESO INS4 OPTI22 NAME Wavefront sensor spatial fil-
ter

0.00

ESO AOS VISWFS MODE SPARTA Visible wavefront
sensor detection

0.00

ESO TEL AMBI WINDSP Observatory ambient wind
speed

0.00

SCFOVROT Total field of view rotation 0.00
SC MODE Reduction algorithm 0.00
ESO TEL AMBI RHUM Observatory ambient relative

humidity
0.00

HIERARCH ESO INS4
TEMP422 VAL

Temperature sensor on
HODM case

1.53

HIERARCH ESO TEL TH M1
TEMP

M1 superficial temperature 0.00

HIERARCH ESO TEL AMBI
TEMP

Observatory ambient tem-
perature

0.00

OBS_STA Starting date of observation 78.04
OBS_END End date of observation 78.04
ESO DET NDIT Number of Sub-Integrations 0.00
ESO DET SEQ1 DIT Integration time 0.00

Table 5.1: Header keywords along with their description

In the absence of a direct identifier, a clever solution has been derived to
link the contrast curves to the timestamp files. This approach utilizes a
combination of three criteria: the target name, the night of observation,
and a header keyword (’UTC’ or ’LST’) that is present throughout the
entire reduction pipeline, with a value that is often unique. By employing
these three verification criteria, the likelihood of linking files from different
observations is greatly minimized thus providing a robust method for
pairing contrast curves with their respective timestamp files.
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Figure 5.4: Histogram of the differences between the target and recovered
time intervals

To assess the effectiveness of this method in estimating the starting and
ending times, data from the 21.96% of observations where this information
is available has been used. Figure 5.4 illustrates the difference between
the two time intervals: the first one being the original data that needs to
be recovered, while the second one is the recovered version. This analysis
provides insights into the accuracy of the time interval recovery process.

The slight mismatch between the recovered version of the time of
observation and the target time is attributed to the fact that not all the
images within the data cubes from the parent process are used, as explained
in the previous chapter. Some images are exclusively used for telescope
calibration or are of poor quality, leading to their removal from the data
cubes during the pipeline’s pre-processing steps.
However, these estimated intervals are considered satisfactory as they only
deviate from the original ones by a few minutes at most. Such a small time
difference is unlikely to result in significant variations in factors like seeing
or coherence time during the observation.

5.2.2 Simbad

The Set of Identifications, Measurements, and Bibliography for Astronom-
ical Data (SIMBAD) is an astronomical database that catalogs objects bey-
ond the Solar System, and it is managed by the Centre de Données astro-
nomiques de Strasbourg (CDS). To retrieve the flux of the star in the G and
H bands (which are respectively representative of the filters used for the
SPHERE adaptive optics system and its IRDIS camera), a query is conduc-
ted using the time of observation, along with the name and coordinates of
the target, as provided in the keywords. This query is executed using Julien
Milli’s GitHub repository as a resource [22].
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The missing data percentages are 1.18% for the G band flux and 4.25% for
the H band flux.

5.2.3 Paranal Astronomical Site Monitoring

The Paranal Astronomical Site Monitoring (ASM) is a database maintained
by the ESO. Its primary objective is to monitor weather conditions during
observations at the Paranal Observatory. To achieve this, sensors are
strategically placed near the VLT. Notably, a significant update took place
in April 2016. Prior to 2016, data on observation conditions such as seeing
or coherence time were collected using the Differential Image Moption
Monitor (DIMM). However, in 2016, the Multi-Aperture Scintillation
Sensor (MASS) replaced the DIMM, offering more precise measurements
of these observation conditions. Additionally, other devices like the
SLOpe Detection And Ranging (SLODAR) and the Low Humidity And
Temperature PROfiling microwave radiometer (LHATPRO) have also been
installed, providing a broader range of observational data.

Using Julien Milli’s GitHub repository, a query is conducted on the
database to obtain the values of seeing and coherence time. It’s important
to note that these values can fluctuate during the observation sequence. As
a result, statistical estimators such as the median and standard deviation
will be employed to characterize these variable features. Additionally, the
choice of whether to query DIMM or MASS depends on the observation
date. Queries will be directed to the DIMM for observations made before
April 2016 and to the MASS for those made after April 2016.

Another challenge arises from the inconsistent time-step used by the
ASM to compute these values. This inconsistency makes it uncertain
how many data points the database will return for a given time interval.
Therefore, handling this variability in time step-size will be an important
aspect of the data analysis.

To address the issue caused by the inconsistent time step-size in the
ASM database, the following strategy is employed :

• Temporal Extension: An additional 15-minute period is appended to
both ends of the time interval designated for the query. This temporal
extension ensures that sufficient data is obtained, especially in cases
where the observation duration is shorter than the irregular time-step
in the database.

• Interpolation : The retrieved values are interpolated, and a uniform
time step of 1 minute is applied for this process.
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• Estimator Calculation: Within this extended time interval, the values
of seeing and coherence time are collected. Since these values
typically do not change significantly over a 15-minute interval,
they can be used to calculate the median and standard deviation
estimators for the interval.

In practical applications, such as predicting expected contrast values,
the actual seeing during the observation is unknown. Therefore, only the
seeing value observed just before the start of the observation is used as
an estimate for the seeing conditions during the observation period. This
approach accounts for the fact that the real-time seeing values are not
available during the observation itself.

In conclusion, it’s worth noting that a considerable number of missing
values are encountered, particularly with regard to the estimators for
seeing and coherence time. These estimators are absent in approximately
11.57% of the observations

5.2.4 Processing

Now that all the data is gathered, the subsequent phase involves pre-
processing before feeding it into the machine learning models. Table 5.2
provides a summary of the input features.

First and foremost, the dataset is divided into three distinct subsets:
the training set, the validation set, and the test set. The training set serves
as the data used to train the machine learning model. The validation
set plays a crucial role in assessing the model’s performance, helping to
identify whether it is overfitting or underfitting and determining when
training should stop. Finally, the test set is reserved solely for evaluating
the model’s performance. It can be viewed as new data that the model
has never encountered before, and it is used to assess how well the model
generalizes to unseen examples.

Secondly, it’s important to note that most machine learning algorithms,
including neural networks, require input data in numerical form. However,
real-world datasets often contain categorical features, such as colors,
categories, or labels, which are not inherently numerical. To ensure that all
data is in numerical form, a transformation is applied to convert categorical
values into numerical equivalents.

Another crucial aspect of data preprocessing is dealing with missing
values. Missing data can significantly impact the performance of machine
learning models. To address this issue, the K-Nearest Neighbors (KNN)
algorithm is employed.
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Feature Description Type
ESO INS4 FILT3 NAME Wavefront sensor spec-

tral filter
Categorical

ESO INS4 OPTI22 NAME Wavefront sensor spa-
tial filter

Categorical

ESO AOS VISWFS MODE Visible wavefront
sensor detection

Categorical

ESO TEL AMBI WINDSP Observatory ambient
windspeed

Numerical

ESO TEL AMBI RHUM Observattory ambient
relative humidity

Numerical

HIERARCH ESO INS4 TEMP422 VAL Deformable mirror
temperature

Numerical

HIERARCH ESO TEL TH M1 TEMP Primary mirror temper-
ature

Numerical

HIERARCH ESO TEL AMBI TEMP Ambient air temperat-
ure

Numerical

ESO DET NDIT Number of sub-
integrations

Numerical

ESO DET SEQ1 DIT Integration time Numerical
SIMBAD_FLUX_G Host star magnitude (G

band)
Numerical

SIMBAD_FLUX_H Host star magnitude (H
band)

Numerical

SEEING_MEDIAN Median seeing during
the observation se-
quence

Numerical

SEEING_STD Standard deviation of
the seeing during the
observation sequence

Numerical

COHERENCE_TIME_MEDIAN Median coherence time
during the observation
sequence

Numerical

COHERENCE_TIME_STD Standard deviation of
the coherence time dur-
ing the observation se-
quence

Numerical

SCFOVROT Amount of PA Numerical
SEPARATION Separation between the

exoplanet and its host
star

Numerical

Table 5.2: Input features

The KNN algorithm replaces missing values by computing the mean
value of their k closest neighbors (k = 5 in the case of contrast predictions
and k = 3 in the case of uncertainty modelling).
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This approach is feature-wise, meaning that for each feature with
missing values, the nearest neighbors for that specific feature is found and
the mean value is calculated. By doing this, the imputed values are more
representative of the data distribution and are not simply replaced with
arbitrary values.

Furthermore, in the context of neural network applications, such as
deep learning, there are additional considerations for data preprocessing.
One crucial concern is feature normalization. Normalization is recommen-
ded to avoid potential issues such as vanishing or exploding gradients dur-
ing the training of deep neural networks.

To achieve this, both imputation and normalization parameters are
calculated based on the training set. Subsequently, these parameters are
utilized to both impute missing values and normalize the features in all
three data subsets. This separation is crucial for maintaining the integrity
of the model evaluation process. Indeed, it is imperative to follow this
approach to prevent the model from being influenced by sets that are
exclusively meant for testing purposes.

In summary, proper data preprocessing, including the transformation
of categorical values into numerical form, addressing missing values with
the KNN algorithm, and performing feature normalization, is essential for
preparing the dataset for machine learning or neural network applications.
These steps not only improve model performance but also ensure that the
model is trained and evaluated with rigor and accuracy.
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Chapter 6

Methodology

The goal of this chapter is to present the methodology used for building,
training, and selecting the models. It is important to note that, in order to
achieve this, a bottom-up approach has been taken. Indeed, in machine
learning, there are instances where everything appears to be running
smoothly without displaying any errors, but in reality, there might be issues
in the code that prevent the model from learning, for example.

To address these types of problems, it is advisable to begin with a
small-scale approach. For instance, to ensure that the model is indeed
learning, one can start by deliberately overfitting it to a small training
batch. Afterward, gradually advance the complexity of the steps while
diligently monitoring for smooth operation and proper learning by the
model.

Secondly, a building pipeline has been defined, and all the models
implemented in this work will adhere to the same pipeline. The pipeline
consists of the following steps:

1. Data preparation

2. Model instantiation

3. Model training and validation

4. Model testing

6.1 Two different types of datasets

If the dataset used as input for the models is denoted as X and has
dimensions (m × n), then m represents the number of observations or, in
this context, the number of telescope observations (m = 843).
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Each observation results in one contrast curve, so there are m contrast
curves. On the other hand, n stands for the number of features, where
the separation is excluded (n = 17). In other words, it’s the number of
characteristics or variables used to describe each contrast curve, but it does
not include the feature related to separation.

As mentioned in the chapter discussing the creation of the dataset, the
objective is to perform one regression per observation, or in other words,
predict the expected detection limit in terms of contrast (contrast curve)
between an exoplanet and its host star. Consequently, all the contrast
curves share the same separation vectors or x vectors. Therefore, the
resulting contrast vectors or y values have the same dimension, which is
N = 124 in this specific context. A representation of this dataset can be
found in Table 6.1.

Observation ID X y
1 x1

1 ... x1
n [y1

1, y1
2, ..., y1

N ]
2 x2

1 ... x2
n [y2

1, y2
2, ..., y2

N ]
... ... ...
m xm

1 ... xm
n [ym

1 , ym
2 , ..., ym

N ]

Table 6.1: Vector contrast prediction

In the specific context of Table 6.1, the exclusion of separation vectors
from the dataset serves two primary purposes. The first reason is that
these separation vectors do not vary between observations, meaning they
do not provide discriminatory information between different observations.
Additionally, since the models output one contrast vector per observation,
adding the separation vectors to the dataset X would require adding one
separation vector per row. This is often not feasible with libraries like
pytorch.

One potential solution would be to incorporate the separation values
as features, making s1, . . . , sN new features in the dataset X. However,
since N is significantly larger than n, including these separation values as
features could potentially confuse the model without providing substantial
additional information. Therefore, in this context, the decision was made
to exclude separation values from this first type of dataset.

The main drawback of this data representation is that the models are
trained to predict contrast values based on the same fixed discretization of
separation values. Consequently, it becomes challenging to directly query
the model for the contrast value at a specific separation si that falls outside
of the usual discrete separation steps.
One possible solution to address this issue could involve predicting the
entire contrast vector and then simply use linear interpolation to estimate
the contrast value for the desired separation si.
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This approach, while requiring some computation, would provide a
reasonable estimation of the contrast value at arbitrary separation points
and could be a practical workaround for the limitations of the fixed
discretization during model inference.

In that regard, another representation of the dataset will be derived.
In this new representation of X, the objective is to predict a single contrast
value for each data point, so the separation values will be included in the
input dataset X. For a given observation, the input features (excluding
separation) will be replicated N times. A visual representation of this
updated dataset is provided in Table 6.2.

Observation ID X y
1 x1

1 ... x1
n s1 y1

1
1 x1

1 ... x1
n s2 y1

2
1 x1

1 ... x1
n ... ...

1 x1
1 ... x1

n sN y1
N

2 x2
1 ... x2

n s1 y2
1

2 x2
1 ... x2

n s2 y2
2

2 x2
1 ... x2

n ... ...
2 x2

1 ... x2
n sN y2

N
... ... ... ...
m xm

1 ... xm
n s1 ym

1
m xm

1 ... xm
n s2 ym

2
m xm

1 ... xm
n ... ...

m xm
1 ... xm

n sN ym
N

Table 6.2: Single value contrast prediction

Finally, in the context of implementing multiple models, maintaining
consistency in the division of data into training, validation, and testing sets
is absolutely essential. This consistency is crucial for meaningful model
comparisons, ensuring that all models are evaluated on the same testing
set and trained on the same training set.

In this specific context, the data must be divided by observations,
which gives rise to two important rules. Firstly, a given observation
denoted as i must belong to one and only one subset (training, validation,
or testing) for all models. This ensures that each observation is consistently
used for training, validation, and testing across different models.
Secondly, in cases where the data is represented as shown in Table 6.2,
the entire observation, including all data points originating from the same
telescope-observation, must remain together in the same subset. Data
points from the same telescope-observation should not be split across
different subsets. This rule preserves the integrity of the observations
during the division process.

49



Adhering to these rules will enable fair and accurate comparisons
between different models while maintaining the integrity and consistency
of the dataset.

6.2 Models

The initial model represents a basic implementation of a random forest,
where its primary objective is to predict a single contrast value. It utilizes
a feature vector as input, which includes the separation value, and uses
standard practices for random forest modeling, including the number of
trees and the maximal number of feature used.

The second model, which takes the form of a MLP, shares the same
input features as the first model and generates similar types of outputs.
Parameters like the number of hidden layers and units per layer are
configurable and will be delved into in the following chapter. The
activation function used between the hidden layers is the Rectified Linear
Unit (ReLU).

The third model is again a MLP which adopts a data representation as
depicted in Table 6.1, and otherwise closely resembles the second model.

Lastly, the final MLP model, while sharing input features with both
the random forest and the initial neural network (as shown in Table 6.2),
embarks on a more advanced task. Instead of predicting the contrast value,
it focuses on estimating the mean and logarithmic standard deviation
of a distribution to capture uncertainty. The loss function is derived
straightforwardly from performing maximum-likelihood estimation on the
probability distribution function of the chosen distribution type.

6.3 Training

Regarding the random forest model, training is accomplished simply by
utilizing the implemented fit() function from the scikit-learn library
[41].

For the neural networks, the training pipeline is consistent across all
models and follows a standard procedure. Firstly, a maximum number of
epochs is established. Next, the observations are shuffled at the beginning
of each new epoch. In the case of the vector output model, shuffling is done
without specifying any particular sequence. However, for the single output
models, there is an option to specify the size of the sequence or the number
of data points by which the shuffle should be performed.
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After completing the shuffling step, the dataset is partitioned into
small batches of data points. It is crucial to ensure that the total number of
data points is evenly divisible by the batch size. This configuration ensures
that during each epoch, every data point is processed exactly once, and the
impact of each batch on updating the model parameters remains consistent
across all batches.

A single forward-pass is performed for a batch, followed by the
evaluation of a criterion. The criterion corresponds to the mean squared
error when predicting contrast or the expression derived in equation 3.3
when calculating uncertainty is desired. Subsequently, a backward-pass is
executed for that batch, leading to an update of the model’s parameters.
This entire process is repeated for all batches, and when all batches have
been processed, one epoch is completed. The loss for a single epoch is
essentially the average of the losses calculated across all the batches.

Ultimately, two types of schedulers have been incorporated for
managing the learning rate. A scheduler’s primary function is to gradually
reduce the learning rate after a certain number of epochs. The underlying
idea is that initially employing a higher learning rate accelerates the
model’s convergence, but it must subsequently be reduced to facilitate
convergence towards a local minimum, preventing excessive leaps within
the loss landscape.
The first scheduler is a continuous and gradual one, defined by the
following expression:

lrt =
1

1 + decay rate × epocht
× lr0 (6.1)

The second scheduler is a step-based approach, characterized by the
following expression:

lrt = lr0 × decay rateepocht//step size (6.2)

Here, // represents integer division, ensuring that the learning rate is
adjusted at specific intervals defined by the step size.

6.4 Validation

In the context of neural networks, the validation set is employed once at the
end of each epoch to gauge the model’s performance on examples it hasn’t
been exposed to during training. This usage of the validation set helps in
monitoring whether the model is suffering from underfitting or overfitting.
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In this neural network context, a stopping criterion is established.
When the validation score reaches a new minimum, the model that
achieved this minimum is saved. Subsequently, if the validation score
starts to rise, it may indicate that the model is becoming too specialized for
the training data, potentially leading to overfitting. Therefore, a threshold
on the number of epochs is set, and if the model fails to improve its
validation score within this predefined number of epochs, the training
process is stopped. This strategy ensures that the model generalizes well
and prevents it from memorizing the training data excessively.

The second purpose of the validation set is to fine-tune the models,
which includes both random forests and neural networks. Various
hyperparameter values will be tested for each model, and the set of
hyperparameters retained will be the one that enables the model to attain
the lowest validation loss.

6.5 Hyper-tuning

In the case of the random forest, the only hyperparameter that was tested
was the number of features used to split a node. The value that yielded the
best validation loss was selected and retained.

On the other hand, the training and validation of the neural network
models were executed on the Montefiore Alan Clusters [33], and the
progress was monitored using Weights and Biases [50]. To streamline the
process of altering key parameters for various runs while ensuring clear
differentiation between them, a systematic approach was devised.

A powerful feature available on the Weights and Biases website is
known as "sweep." This feature enables users to specify multiple hyper-
parameter values, either as vectors of hyperparameters or as distributions.
These specified parameters are then aggregated into a nested dictionary,
which serves as a configuration object. Subsequently, multiple models
can be trained using various combinations of these hyperparameter val-
ues. The primary objective, typically the minimization of the validation
loss, is tracked for each specific set of parameter values. This functionality
empowers users to fine-tune their models effectively by identifying the op-
timal hyperparameter settings.
To accomplish this, a method for selecting hyperparameter combinations
had to be chosen among the three available methods illustrated in Figure
6.1.
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The first is called grid search, which systematically iterates over every
possible combination of hyperparameter values, making it computation-
ally expensive. The second method is called random search, which ran-
domly selects hyperparameter values on each iteration based on provided
distributions. Lastly, the third method, known as Bayesian search, builds
a probabilistic model of a metric score as a function of hyperparameters
and selects parameters with a high probability of improving the metric.
Bayesian hyperparameter search employs a Gaussian Process to model
the relationship between parameters and the model metric, optimizing the
probability of improvement. However, this approach requires the specific-
ation of the metrickey and works well for a small number of continuous
parameters but does not scale well for larger parameter spaces.

Figure 6.1: Three different methods for hyper-parameters search available
on Weights and Biases [46]

The chosen approach involves initially using random search to explore
the hyperparameter values and the corresponding performance trends.
Once a rough understanding of these values and their impact is obtained,
the next step focuses on fine-tuning the neural network. This involves
narrowing down the hyperparameter values to the ones that yielded the
best results in the random search. If the number of potential combinations
is manageable, grid search can be an option. However, in cases where the
number of different parameters is not excessive, and the distributions of
these parameters are predominantly continuous, the Bayesian approach
can be a suitable choice. On the other hand, when the hyperparameters are
numerous and don’t have continuous distributions, constraining the values
and then conducting a combination of random search and grid search can
yield effective results.

A helpful feature within the sweep window is the Parameters Import-
ance and Correlation Assessment tool [45]. Correlation measures the lin-
ear relationship between a hyperparameter and the selected metric. In
other words, a high correlation implies that when the hyperparameter has
a higher value, the metric also tends to have higher values, and vice versa.
Correlation is a valuable metric to examine, but it may not capture second-
order interactions between inputs, and it can be challenging to compare
inputs with vastly different ranges.
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To address these limitations, an importance metric is also calculated.
This involves training a random forest with hyperparameters as inputs and
the metric as the target output. Subsequently, feature importance values for
the random forest are reported.

This tool was used to conduct another round of random search,
considering the correlation between hyperparameters and cross-validation
loss, with the hope of finding a slightly better-tuned model.

For those who require more advanced fine-tuning, it’s possible to
repeat this strategy until a well-constrained range for hyperparameters is
found and then perform Bayesian or grid search. However, this approach
was not pursued here, as it would entail a significant computational load
for potentially marginal gains, and the already obtained results were quite
satisfactory.

Finally, it is worth mentioning that when saving a trained neural
network, it is the state dictionary that is stored. To successfully load this
state dictionary into a model, the model must be instantiated with the
correct architecture, including the appropriate number of hidden layers
and units per layer. To achieve this, a consistent naming convention,
incorporating information from the configuration object, was devised for
saving the models.

6.6 Testing

The exclusive purpose of the testing set is to offer a thorough evaluation of
the model’s performance, as illustrated in Figure 3.2.

The models generate predictions for the test telescope observations,
and for each observation, two metrics are computed: the mean absolute
error and the mean squared error. To obtain an overall assessment for the
entire dataset, all the MSE and MAE values are averaged to calculate their
mean, and the median value is also retained.
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Chapter 7

Results

In this chapter, the results obtained at the conclusion of this work will be
presented and discussed. It’s essential to recall that there are a total of 843
observations, or contrast curves, and within each contrast curve, there are
124 data points. These points represent the separation (x) and the detection
limit (y) between an exoplanet and its host star in terms of contrast. These
observations have been divided into training, validation, and testing sets,
with sizes of 672, 85, and 86, respectively.

7.1 Model Selection

First and foremost, to achieve the best possible results, one must select the
models that appear to perform optimally on the validation set, as discussed
in the previous chapter on methodology.

7.1.1 Contrast Prediction

In this section, both the random forest and neural network models, which
predict the contrast, will be trained and fine-tuned. The models that
achieve the best validation loss will be retained.

Random Forests

In the case of random forests, having more estimators or trees generally
leads to better performance. However, this improvement comes at the
expense of increased computational resources as depicted1 in Figure 7.1.

1Note that at the end of the validation, the trained random forest is saved as a pth file
which can take quite some time as the number of estimators increases.

55



Therefore, it is essential to strike a good balance between precision and the
computational load required.

(a) Validation MSE (b) Training and validation time

Figure 7.1: Validation loss and execution time as a function of the number
of trees in the forest

Once the number of trees is established (in this case, n = 500), the next
step is to determine the maximum number of features used to split a node.
The errors achieved by different models (one for each maximum features
value) on the validation set are reported in Table 7.1.

Max. features 0.1 0.3 0.5 0.7 0.9 1
Validation MSE 0.1972 0.2067 0.2076 0.2114 0.2402 0.2839

Table 7.1: MSE on the validation set as a function of the maximal amount
of features used to split a node

In this case, it is evident that the clear winner is the random forest
model that utilizes 10 percent of the total number of features.

MLP Predicting a single contrast value

Figure 7.2 illustrates the trends in the hyper-parameters of the model,
which produces a single contrast value.

The batch size must be a multiple of the separation size; for instance,
124 corresponds to a single observation in the batch, and so on.

The decay rate and step-size parameters correspond to the values from
Equation 6.2, which is the step-sized approach to schedule the learning rate.
The learning rate value corresponds to lr0 in the same equation.

The shuffle sequence parameter determines the size of the sequence by
which the data points will be shuffled at the start of each epoch before they
are processed in batches.

56



Figure 7.2: Hyper-parameters trends for predicting a single contrast value

Figure 7.3 displays the importance of parameters and their correlation
with the validation loss. In this visualization, a red color indicates
a negative correlation, meaning that an increase in the value of the
hyperparameter corresponds to a decrease in the objective (validation loss).
Conversely, a green color signifies the opposite relationship.

Figure 7.3: Parameters importance and correlation with the validation loss

With the information at hand, the parameter ranges are updated
accordingly, and another random search is conducted to discover a slightly
improved model.

The best-performing model is a Neural Network with 28 hidden
layers, each containing 512 hidden units. The batches correspond to
a single observation, meaning 124 data points. The initial learning
rate value is relatively high at 0.0106, and the corresponding scheduler
involves reducing the learning rate by a factor of 0.7556 every 24 epochs.
Additionally, the sequences are shuffled with a size of 1, indicating that
they are shuffled per data-points.

The reduction in losses during the training of this best-performing
model is visualized in Figure 7.4. Training is halted when there has been
no improvement in the validation loss for 25 epochs. The model retained is
the one that achieved the best validation loss, which is 0.2352.
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(a) Training Loss (b) Validation Loss

Figure 7.4: Training and Validation Losses (MSE) of the best performing
model (single)

MLP Predicting the whole contrast vector

Figure 7.5 depicts the trends in hyper-parameter values. These parameters
are the same as those found in Figure 7.2, with the only difference being that
here, a single data point in the batch corresponds to a single observation
since the objective of the network is to predict the entire vector of contrast
directly.

Figure 7.5: Hyper-parameters trends for predicting the whole contrast
vector

Once more, the information regarding the importance of each para-
meter and its correlation with the validation loss, as shown in Figure 7.6,
is leveraged to conduct another round of parameter random search. This
aims to refine and fine-tune the model.

The best-performing model is a Neural Network with 11 hidden
layers, each containing 256 hidden units. Two observations are included
in each batch. The initial learning rate value is relatively high at 0.0131,
and the corresponding scheduler involves reducing the learning rate by a
factor of 0.8804 every 12 epochs.
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Figure 7.6: Parameters importance and correlation with the validation loss

(a) Training Loss (b) Validation Loss

Figure 7.7: Training and Validation Losses (MSE) of the best performing
model (vector)

The reduction in losses during the training of the best-performing
model is displayed in Figure 7.7. The model retained is the one that
achieved the best validation loss, which is 0.2445.

7.1.2 Capturing Uncertainty

The approach used here is identical to the one employed for tuning the
neural networks that predict the contrast. The primary difference lies in
the loss function used to train and validate the model, which is not Mean
Squared Error but instead the expression found in Equation 3.3.

This expression of the loss function is based on the assumption that
p(y|x) follows a normal distribution. While this is a strong assumption
that can be challenging to verify, it’s important to note that the distributions
shown in Figure 7.13 should not be confused with p(y|x). In this context,
only the separation feature is fixed, so the histograms in the figure can be
considered as some form of marginal distributions of the contrast given a
separation value. From a code perspective, changing the assumption about
the distribution would not require extensive modifications, making the
normal assumption a reasonable starting point for considering uncertainty.
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Figure 7.8 presents the trends in the hyperparameters during the
second random search2 and Figure 7.9 shows the parameters influence on
the validation score.

Figure 7.8: Hyper-parameters trends for capturing the uncertainty

Figure 7.9: Parameters importance and correlation with the validation loss

The best overall model is a neural network with 25 hidden layers, each
containing 128 hidden units. The initial learning rate is set to 0.0146, and it
is multiplied by the decay rate of 0.979 every 25 epochs. Both the batch size
and shuffle sequence size are set to 124 data points, which corresponds to
one observation. The training and validation losses are displayed in Figure
7.10, and the best validation score (at which training is stopped) is 0.7573.

2Note that the first random search contained some failed runs due to a KNN fitting error,
hence the display of the results from the second random search.

3Please note that this result is not directly comparable to the ones found in the contrast
prediction section, as the expressions of the losses used in the two sections differ.
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(a) Training Loss (b) Validation Loss

Figure 7.10: Training and Validation Losses of the best performing model
(uncertainty)

7.2 Results and Discussion

After selecting the optimal models of each type, it is time to present the
results they can achieve on the testing set.

7.2.1 Contrast Prediction

First, the results achieved by the different models can be found in Table 7.2.

Model MSE MAE
Random Forest (single) 0.1848 0.2540
Neural Network (single) 0.2632 0.3040
Neural Network (vector) 0.2446 0.3264

Table 7.2: Results of the models predicting the contrast on the test set

As anticipated from the validation scores, the random forest outper-
forms both neural networks on the test set. Interestingly, the neural net-
work that predicts a single contrast value has a higher Mean Squared Error
loss value on the test set, suggesting it may be less precise than the neural
network that outputs a vector. However, when examining the Mean Ab-
solute Error, it becomes evident that the single-output neural network per-
forms better on average than the one outputting a vector. This is because,
on average, the predictions from the single-output network are closer to the
actual values. The higher Mean Squared Error results from the penalization
of significant errors.

It seems that, given the 18 input features, restricting the random forest
to split nodes using only a subset of the features (one feature in this case)
is a robust approach for achieving good results. As observed in Table 7.1,
when all features are used, the random forest model performs worse than
the neural networks. If feature selection had been carried out in the context
of the neural networks, it’s possible that the results of those models would
have been better.
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Additionally, as indicated in Equation 3.2, the use of Mean Squared
Error as the loss function for regression assumes that p(y|x) follows a
normal distribution. However, if this assumption does not hold, a more
appropriate expression of the loss could lead to better results.

Lastly, it’s important to note that the models were trained and selected
on CPUs due to the limitations of the computing node4. This significantly
slowed down the process, particularly in hyper-tuning the models, which
is computationally intensive.

Feature Importance

Random forests offer a practical capability to assess the importance of
features in relation to their impact on the model’s output. When each node
is split using all the features to prevent bias, the feature importance ranking
is visualized in Figure 7.11. This ranking provides valuable insights into
how different input variables influence the model’s predictions.

Figure 7.11: Feature importance

Predictions examples

Figure 7.12 displays random examples of predictions made by the predict-
ive models.

4For reasons that were not identified, GPUs were unavailable on the cluster node that
was utilized.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Predictions of the different models (test set)

In some observations, the predicted contrast curves closely resemble
the actual ones. This can be attributed to the fact that, in some instances,
the same target star appears in both the training and testing datasets. It’s
important to clarify that this is intentional. The aim is to gain a deeper
understanding of the impact of various input features on the contrast value,
such as atmospheric conditions and observing strategies. Therefore, in this
context, the same target may be observed at different times and under
different observing conditions, rendering the observations independent
even for the same targets. Nevertheless, in some cases, the conditions are so
similar that distinguishing between two contrast curves can be challenging.
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Predictions at given separation values

In this section, three separation values of interest will be considered: the
first one is 0.25 arcsec, corresponding to the first typical spike in the contrast
curves. The second separation of interest is 0.8 arcsec, which is sometimes
associated with another small bump in the curve. Finally, the third
separation value is 2 arcsec, which usually lies close to the background
noise-limited regime of the curve.

(a) Separation 0.246 arcesec (b) Separation 0.799 arcesec

(c) Separation 2.006 arcesec

Figure 7.13: Histograms of the (log) contrast values at different separations

In the context of these analyses, Figure 7.13 illustrates the marginal dis-
tributions of the contrast at those specific separation values. Furthermore,
Figures 7.14, 7.15, and 7.16 depict the predicted contrast values against the
actual contrast values at those separations for the random forest, the neural
network (single), and the neural network (vector), respectively.

A point is positioned above the identity line when the predicted value
exceeds the actual one, and below the line when it’s the opposite. Points
in the lower left corner represent small contrast values, while those in the
upper-right corner denote high contrast values.
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(a) Separation 0.246 arcesec (b) Separation 0.799 arcesec

(c) Separation 2.006 arcesec

Figure 7.14: Contrast actual vs predicted values (Random Forest)

Regarding the random forest (Figure 7.14), for typical contrast values
at a separation of 0.25 arcsec, the predictions often exceed the actual values,
except when the actual values are unusually high, resulting in a spike. At
a separation of 0.8 arcsec, the relationship between actual and predicted
contrast values is more linear, which is desirable, but the random forest’s
predictions still tend to be higher than the actual values on average. At a
separation of 2 arcsec, the same behavior as at 0.8 arcsec is observed, with
the only difference being that the typical contrast values at this separation
are smaller.

In general, one limitation of the model is its inability to effectively
identify outliers. When the actual contrast values are unusually high for
a given prediction, the model often fails to predict a high enough contrast
value.

Concerning the neural network that predicts only a single contrast
value (Figure 7.15), the points are generally closer to the identity line in
all three separation cases. This suggests that this model is less biased at
predicting smaller or larger contrast values than the actual ones. However,
the points appear to be somewhat more dispersed compared to the random
forest, indicating that the predictions of this model are, on average, less
precise. This observation aligns with the loss values presented in Table 7.2.
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(a) Separation 0.246 arcesec (b) Separation 0.799 arcesec

(c) Separation 2.006 arcesec

Figure 7.15: Contrast actual vs predicted values (MLP single)

Finally, the behavior of the neural network predicting a vector of
contrast (Figure 7.16) closely resembles the behavior of the one that predicts
single contrast values (Figure 7.15).

7.2.2 Capturing Uncertainty

Figures 7.17 show the predictions made by the model capturing the
uncertainty. The red curve represents the mean of the distribution, which
can be identified as the prediction of the model, while the blue area around
it represents the interval [µ − σ; µ + σ]. In general, the actual value of the
contrast is well captured by this interval, but in cases where the contrast
curves are unusual, it may not always be the case (as shown in Figure
7.17c). It’s worth mentioning that modeling uncertainty is a challenging
subfield of machine learning that goes beyond simple value prediction
(ŷ = f (x)).

Having more observations and conducting comprehensive feature
selection could likely lead to better results because it would make the
distribution p(y|x) easier to model with more accurate feature information.
Additionally, exploring different modeling choices beyond the normal
assumption might yield better results.
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(a) Separation 0.246 arcesec (b) Separation 0.799 arcesec

(c) Separation 2.006 arcesec

Figure 7.16: Contrast actual vs predicted values (MLP vector)

However, the results obtained here serve as a valuable starting point
for capturing the uncertainty in contrast, which was the primary goal of
this work given the time constraints.

Carl Sagan’s quote beautifully emphasizes the importance of studying
the uncertainty : "Every time a scientific paper presents a bit of data,
it’s accompanied by an error bar – a quiet but insistent reminder that no
knowledge is complete or perfect. It’s a calibration of how much we trust
what we think we know."
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(a) (b)

(c) (d)

(e) (f)

Figure 7.17: Predictions of the model capturing uncertainty (test set)
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Chapter 8

Conclusion and Future Work

The first phase of this thesis involved acquiring familiarity with the
field of astronomy, which was entirely new and exciting. An internship
was conducted at the Laboratoire d’Astrophysique de Marseille with the
objectives of gaining an understanding of the fundamental concepts of
High Contrast Imaging and establishing connections with experts in this
field. Additionally, the internship aimed to collect a substantial amount of
data that could be used to build machine learning models.

To gather the necessary data, numerous meetings were arranged to
become familiar with the SPHERE client. In the context of this thesis,
access to data not yet available to the public was granted. However, upon
closer examination of the obtained data, several issues were identified.
Some of these issues were relatively minor and could be resolved easily,
while others proved more challenging and time-consuming. The primary
issue encountered, as previously mentioned, was the lack of starting and
ending times for observing sequences. Addressing these problems required
significant effort and consumed several months, leading to project delays.
Nonetheless, these challenges were expected when attempting to construct
a dataset from scratch.

Once the data issues were resolved, the next step was the development
of machine learning models to predict contrast curves. Random forests
were initially used to gain insights into feature importance and establish a
baseline for comparison with neural networks.

Following the use of random forests, neural networks were created to
predict contrast. Due to data limitations, a relatively simple Multi-Layer
Perceptron architecture was adopted. The first neural network outputted a
vector, showing promising results. However, after discussions with project
supervisors, it became evident that this model lacked flexibility as it did
not consider separation values. Consequently, the single-output network
was developed. Tuning this network, especially without using advanced
tools like Sweep, proved to be more challenging.
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The final results of this work are somewhat disappointing, as random
forests appear to offer slightly better precision compared to neural
networks. Nevertheless, the results are very similar and exhibit different
behaviors. Failures in some cases of one model do not necessarily imply
similar failures in the other.

Given that predicting contrast was not the sole objective of this project,
a decision was made to focus on capturing uncertainty, especially in the
case of neural networks. The results obtained for this type of neural
network are encouraging, and further research in this direction could be
fruitful.

In conclusion, it is important to acknowledge that better results might
have been attainable with more rigorous data preprocessing, advanced
modeling techniques, and extensive fine-tuning. However, due to time
constraints, trade-offs had to be made, and it was not possible to
maximize all aspects. In the future, this work could serve as a solid
foundation for researchers looking to avoid redundant efforts and make
incremental improvements. Specifically, for uncertainty prediction, more
advanced approaches could be explored, such as outputting a prediction
vector comprising the mean and a covariance matrix to capture deeper
relationships within the data.

70



Bibliography

[1] J. -L. Beuzit et al. ‘SPHERE: the exoplanet imager for the Very Large
Telescope’. In: 631, A155 (Nov. 2019), A155. DOI: 10.1051/0004-6361/
201935251. arXiv: 1902.04080 [astro-ph.IM].

[2] IA Bond et al. ‘Real-time difference imaging analysis of MOA
Galactic bulge observations during 2000’. In: Monthly Notices of the
Royal Astronomical Society 327.3 (2001), pp. 868–880.

[3] Alan Boss et al. ‘Working Group on Extrasolar Planets’. In: Proceed-
ings of the International Astronomical Union 1 (Dec. 2005). DOI: 10.1017/
S1743921306004509.

[4] Facundo Bre, Juan Gimenez and Víctor Fachinotti. ‘Prediction of
wind pressure coefficients on building surfaces using Artificial
Neural Networks’. In: Energy and Buildings 158 (Nov. 2017). DOI: 10.
1016/j.enbuild.2017.11.045.

[5] Leo Breiman. ‘Random forests’. In: Machine learning 45 (2001), pp. 5–
32.

[6] F Cantalloube et al. ‘Direct exoplanet detection and characterization
using the ANDROMEDA method: Performance on VLT/NaCo data’.
In: Astronomy & Astrophysics 582 (2015), A89.

[7] Chauvin, G. et al. ‘A giant planet candidate near a young brown
dwarf* - Direct VLT/NACO observations using IR wavefront sens-
ing’. In: A&A 425.2 (2004), pp. L29–L32. DOI: 10 . 1051/0004 - 6361 :
200400056. URL: https://doi.org/10.1051/0004-6361:200400056.

[8] C-H Dahlqvist et al. ‘The SHARDDS survey: limits on planet
occurrence rates based on point sources analysis via the Auto-RSM
framework’. In: Astronomy & Astrophysics 666 (2022), A33.

[9] Carl-Henrik Dahlqvist. ‘Advanced Data Processing Techniques for
Exoplanet Detection in High Contrast Images’. Anglais. PhD thesis.
ULiège - Université de Liège [Faculté des Sciences], Liège, Belgium,
7September 2022.

[10] Ph Delorme et al. ‘The SPHERE Data Center: a reference for high
contrast imaging processing’. In: arXiv preprint arXiv:1712.06948
(2017).

71

https://doi.org/10.1051/0004-6361/201935251
https://doi.org/10.1051/0004-6361/201935251
https://arxiv.org/abs/1902.04080
https://doi.org/10.1017/S1743921306004509
https://doi.org/10.1017/S1743921306004509
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1051/0004-6361:200400056
https://doi.org/10.1051/0004-6361:200400056
https://doi.org/10.1051/0004-6361:200400056


[11] Detecting exoplanets with astrometry. 2019. URL: https://www.esa.int/
ESA _ Multimedia / Videos / 2019 / 12 / Detecting _ exoplanets _ with _
astrometry (visited on 12/09/2023).

[12] Detecting exoplanets with microlensing. 2019. URL: https : //www.esa .
int/ESA_Multimedia/Images/2019/02/Detecting_exoplanets_with_
microlensing (visited on 12/09/2023).

[13] EE559 - Deep Learning. 2023. URL: https://fleuret.org/dlc/ (visited on
12/09/2023).

[14] FITS file RFC. (Visited on 12/09/2023).

[15] Olivier Flasseur et al. ‘Exoplanet detection in angular differen-
tial imaging by statistical learning of the nonstationary patch
covariances-The PACO algorithm’. In: Astronomy & Astrophysics 618
(2018), A138.

[16] R Galicher et al. ‘Astrometric and photometric accuracies in high
contrast imaging: The SPHERE speckle calibration tool (SpeCal)’. In:
Astronomy & Astrophysics 615 (2018), A92.

[17] Carlos Gómez González. ‘Advanced data processing for high-
contrast imaging-Pushing exoplanet direct detection limits with ma-
chine learning’. In: (2017).

[18] CA Gomez Gonzalez, Olivier Absil and Marc Van Droogenbroeck.
‘Supervised detection of exoplanets in high-contrast imaging se-
quences’. In: Astronomy & Astrophysics 613 (2018), A71.

[19] Géraldine Guerri et al. ‘Apodized Lyot coronagraph for SPHERE/VLT:
II. Laboratory tests and performance’. In: Experimental Astronomy 30.1
(2011), pp. 59–81.

[20] Ping-hui Huang and Jiang-hui Ji. ‘Analogue Simulation and Orbit
Solution Algorithm of Astrometric Exoplanet Detection’. In: Chinese
Astronomy and Astrophysics 41.3 (2017), pp. 399–418. ISSN: 0275-1062.
DOI: https://doi .org/10.1016/j.chinastron.2017.08.008. URL: https:
//www.sciencedirect.com/science/article/pii/S0275106217301017.

[21] INFO8010 - Deep Learning. 2023. URL: https://github.com/glouppe/
info8010-deep-learning (visited on 12/09/2023).

[22] Julien Milli’s github. URL: https://github.com/jmilou/sparta (visited on
12/09/2023).

[23] Anders Krogh. ‘What are artificial neural networks?’ In: Nature
biotechnology 26.2 (2008), pp. 195–197.

[24] David Lafrenière et al. ‘HST/NICMOS Detection of HR 8799 b in
1998’. In: The Astrophysical Journal 694.2 (2009), p. L148.

[25] Light Curve of a Planet Transiting Its Star. URL: https://exoplanets.nasa.
gov/resources/280/light-curve-of-a-planet-transiting- its-star/ (visited
on 12/09/2023).

[26] Bernard Lyot. ‘The study of the solar corona and prominences
without eclipses (George Darwin Lecture, 1939)’. In: Monthly Notices
of the Royal Astronomical Society, Vol. 99, p. 580 99 (1939), p. 580.

72

https://www.esa.int/ESA_Multimedia/Videos/2019/12/Detecting_exoplanets_with_astrometry
https://www.esa.int/ESA_Multimedia/Videos/2019/12/Detecting_exoplanets_with_astrometry
https://www.esa.int/ESA_Multimedia/Videos/2019/12/Detecting_exoplanets_with_astrometry
https://www.esa.int/ESA_Multimedia/Images/2019/02/Detecting_exoplanets_with_microlensing
https://www.esa.int/ESA_Multimedia/Images/2019/02/Detecting_exoplanets_with_microlensing
https://www.esa.int/ESA_Multimedia/Images/2019/02/Detecting_exoplanets_with_microlensing
https://fleuret.org/dlc/
https://doi.org/https://doi.org/10.1016/j.chinastron.2017.08.008
https://www.sciencedirect.com/science/article/pii/S0275106217301017
https://www.sciencedirect.com/science/article/pii/S0275106217301017
https://github.com/glouppe/info8010-deep-learning
https://github.com/glouppe/info8010-deep-learning
https://github.com/jmilou/sparta
https://exoplanets.nasa.gov/resources/280/light-curve-of-a-planet-transiting-its-star/
https://exoplanets.nasa.gov/resources/280/light-curve-of-a-planet-transiting-its-star/


[27] Anne-Lise Maire et al. ‘SPHERE IRDIS and IFS astrometric strategy
and calibration’. In: Ground-based and Airborne Instrumentation for
Astronomy VI. Vol. 9908. SPIE. 2016, pp. 975–986.

[28] Christian Marois et al. ‘Angular Differential Imaging: A Powerful
High-Contrast Imaging Technique’. In: The Astrophysical Journal 641.1
(Apr. 2006), pp. 556–564. DOI: 10.1086/500401. URL: https://doi.org/
10.1086%2F500401.

[29] Christian Marois et al. ‘Direct imaging of multiple planets orbiting
the star HR 8799’. In: science 322.5906 (2008), pp. 1348–1352.

[30] Warren S McCulloch and Walter Pitts. ‘A logical calculus of the
ideas immanent in nervous activity’. In: The bulletin of mathematical
biophysics 5 (1943), pp. 115–133.

[31] Ian S McLean, Suzanne K Ramsay and Hideki Takami. ‘Ground-
based and Airborne Instrumentation for Astronomy IV’. In: Ground-
based and Airborne Instrumentation for Astronomy IV 8446 (2012).

[32] Didier Queloz Michel Mayor. ‘A Jupiter-mass companion to a solar-
type star’. In: Nature (1995). DOI: 10.1038/378355a0.

[33] Montefiore Alan GPU cluster. URL: https : / / github . com/montefiore -
ai/alan-cluster (visited on 12/09/2023).

[34] NASA. 2023. URL: https : / / exoplanets . nasa . gov (visited on
01/09/2023).

[35] Thomas Rimmele and Jose Marino. ‘Solar Adaptive Optics’. In: Living
Reviews in Solar Physics 8 (May 2011), p. 2. DOI: 10.12942/lrsp-2011-2.

[36] Frank Rosenblatt. The perceptron, a perceiving and recognizing auto-
maton Project Para. Cornell Aeronautical Laboratory, 1957.

[37] G Rousset et al. ‘First diffraction-limited astronomical images with
adaptive optics’. In: Astronomy and Astrophysics (ISSN 0004-6361), vol.
230, no. 2, April 1990, p. L29-L32. Research supported by the European
Southern Observatory, Ministere de la Recherche et de la Technologie,
Ministere de l’Education Nationale, INSU, DRET, and Ministere de la
Defense. 230 (1990), pp. L29–L32.

[38] Matthias Samland et al. ‘TRAP: A temporal systematics model for im-
proved direct detection of exoplanets at small angular separations’.
In: Astronomy & Astrophysics 646 (2021), A24.

[39] Jean-Francois Sauvage et al. ‘SAXO: The extreme adaptive optics
system of SPHERE (I) system overview and global laboratory
performance’. In: Journal of Astronomical Telescopes, Instruments, and
Systems 2 (May 2016), p. 025003. DOI: 10.1117/1.JATIS.2.2.025003.

[40] J. Schneider. 2023. URL: http : / / exoplanet . eu / catalog/ (visited on
01/09/2023).

[41] Scikit Learn Random Forest Regressor. URL: https : / / scikit - learn . org /
stable /modules / generated / sklearn . ensemble .RandomForestRegressor .
html (visited on 12/09/2023).

73

https://doi.org/10.1086/500401
https://doi.org/10.1086%2F500401
https://doi.org/10.1086%2F500401
https://doi.org/10.1038/378355a0
https://github.com/montefiore-ai/alan-cluster
https://github.com/montefiore-ai/alan-cluster
https://exoplanets.nasa.gov
https://doi.org/10.12942/lrsp-2011-2
https://doi.org/10.1117/1.JATIS.2.2.025003
http://exoplanet.eu/catalog/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


[42] William Smith. ‘Spectral differential imaging detection of planets
about nearby stars’. In: Publications of the Astronomical Society of the
Pacific 99 (Jan. 1988). DOI: 10.1086/132124.

[43] Rémi Soummer, Laurent Pueyo and James Larkin. ‘Detection and
characterization of exoplanets and disks using projections on
Karhunen–Loève eigenimages’. In: The Astrophysical Journal Letters
755.2 (2012), p. L28.

[44] SPHERE Data Center. URL: https : / / sphere . osug . fr / spip . php ?
rubrique16&lang=en (visited on 12/09/2023).

[45] Sweep : Parameter Importance. URL: https://docs.wandb.ai/guides/app/
features/panels/parameter-importance (visited on 12/09/2023).

[46] Sweep tutorial from Samuel Cortinhas. URL: https://www.kaggle.com/
code/samuelcortinhas/advanced-wandb-hyper-parameter-tuning-sweeps
(visited on 12/09/2023).

[47] The open university : An introduction to exoplanets. URL: https://www.
open.edu/openlearn/mod/oucontent/view.php? id=87798&section=
_unit4.3.1 (visited on 12/09/2023).

[48] The radial velocity method (artist’s impression). 2007. URL: https : / /
www.eso .org/public/belgium- fr/ images/eso0722e/?lang (visited on
12/09/2023).

[49] Very Large Telescope. URL: https://www.eso.org/public/belgium-fr/teles-
instr/paranal-observatory/vlt/ (visited on 12/09/2023).

[50] Weights and Biases. URL: https://wandb.ai/site (visited on 12/09/2023).

[51] Aleksander Wolszczan and Dail A Frail. ‘A planetary system around
the millisecond pulsar PSR1257+ 12’. In: Nature 355.6356 (1992),
pp. 145–147.

[52] Chen Xie et al. ‘Reference-star differential imaging on SPHERE/IRDIS’.
In: arXiv preprint arXiv:2208.07915 (2022).

[53] W Jerry Xuan et al. ‘Characterizing the performance of the NIRC2
vortex coronagraph at WM Keck Observatory’. In: The Astronomical
Journal 156.4 (2018), p. 156.

74

https://doi.org/10.1086/132124
https://sphere.osug.fr/spip.php?rubrique16&lang=en
https://sphere.osug.fr/spip.php?rubrique16&lang=en
https://docs.wandb.ai/guides/app/features/panels/parameter-importance
https://docs.wandb.ai/guides/app/features/panels/parameter-importance
https://www.kaggle.com/code/samuelcortinhas/advanced-wandb-hyper-parameter-tuning-sweeps
https://www.kaggle.com/code/samuelcortinhas/advanced-wandb-hyper-parameter-tuning-sweeps
https://www.open.edu/openlearn/mod/oucontent/view.php?id=87798&section=_unit4.3.1
https://www.open.edu/openlearn/mod/oucontent/view.php?id=87798&section=_unit4.3.1
https://www.open.edu/openlearn/mod/oucontent/view.php?id=87798&section=_unit4.3.1
https://www.eso.org/public/belgium-fr/images/eso0722e/?lang
https://www.eso.org/public/belgium-fr/images/eso0722e/?lang
https://www.eso.org/public/belgium-fr/teles-instr/paranal-observatory/vlt/
https://www.eso.org/public/belgium-fr/teles-instr/paranal-observatory/vlt/
https://wandb.ai/site

