
https://lib.uliege.be https://matheo.uliege.be

Master thesis : Development of a Flutter module for ATHLETin

Auteur : Bulut, Stephan

Promoteur(s) : Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "computer systems security"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/19541

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Development of a Flutter module
for ATHLETin

Thesis realized with the aim of obtaining the Master’s degree of
Computer Science Engineering

STEPHAN BULUT

Supervisor :

LAURENT MATHY

UNIVERSITY OF LIÈGE
FACULTY OF APPLIED SCIENCE

Academic year 2023-2024

Abstract

In the sphere of sports and athlete management, injuries often arise due to inadequate informa-
tion and communication channels. ATHLETin presents itself as an innovative solution designed to
tackle this challenge. The project originated from the mind of Julien Paulus, who believes that a
better communication results in fewer injuries. In a nutshell, ATHLETin is a versatile mobile and
web-based application that modernizes athlete management for trainers and health specialists.

ATHLETin is divided into several modules, each contributing a part of the solution : a calendar
module for scheduling athlete-specific events, a training module for organizing training session,
a medical module for handling athletes’ health tracking, and an administration module for al-
lowing authorized members to access and manage pertinent data (including athlete lists and their
responses to questionnaires). Furthermore, a communication module is available to allow mem-
bers to communicate with each other. This thesis focuses the development of a system for Roles,
Affiliations, and Groups to complement the administration module.

The Role system, Affiliation system, and Group system are imperative to enable members to
create and access only the data they are authorized to manage. Consequently, the implementation
of the administration module must provide excellent performance while being easy to integrate
into the current project. To achieve this goal, the implementation takes three key approaches.
Firstly, the implementation minimizes requests through an efficient implementation design of the
administration platform. Secondly, we reduce the backend workload by implementing efficient
queries and minimizing the number of tables involved on the server and database sides. Lastly,
the implementation leverages Flutter technologies efficiently by managing component states to
target only essential rebuilds and thus avoid unnecessary reconstruction.

Regarding the components of the high-level architecture, the project is composed of a mo-
bile application and a web application developed using the Dart language within the Flutter
framework, which forms the frontend of this project. Additionally, it includes a REST server im-
plemented in the Go language, along with a PostgreSQL database, which forms the backend of
this project.

This work constitutes an integral component of the larger ATHLETin project initiated by Pro-
fessor Laurent Mathy and his team. Consequently, these modules may see additional enhance-
ments in the future. The principal objective was to offer an efficient solution that aligns perfectly
with the ongoing project, facilitating future integration.

Acknowledgement

I would like to begin by expressing my sincere gratitude to my family and friends for supporting
me on this journey. I extend my special thanks to my mother, who has been by my side throughout
my entire academic journey and has never stopped believing in me to this day.

Next, I would like to express my gratitude to Professor Laurent Mathy and Gaulthier Gain for
not only allowing me to immerse myself in a captivating project in the field of Computer Science
but also for being patient and understanding, especially in the initial stages. I am thankful for
your guidance, which was conveyed through detailed feedback and transparent communication. I
genuinely believe that this project has contributed significantly to my personal growth.

It is also essential to acknowledge that this thesis would not have been possible without the
valuable teachings of the faculty members in the Faculty of Applied Sciences. I express my deep
gratitude to the professors and teaching assistants I have encountered during my academic career.

Finally, I would like to dedicate a special thank you to my three fellow engineering comrades
Maxime, Cédric and Jean-David, who have supported and assisted me more than anyone else by
sharing a part of this journey with me. They have given me courage and support through their
presence, jokes, and shared struggles. None of this would have been possible without them.

Contents

I Introduction 1

1 Introduction 2
1.1 Origin story of ATHLETin . 2
1.2 Functionalities . 3

1.2.1 Calendar Module . 3
1.2.2 Training Module . 3
1.2.3 Medical Module . 3
1.2.4 Administration Module . 3
1.2.5 Communication Module . 4

1.3 Challenges to overcome . 4

II Technical Background 5

2 Backend 6
2.1 PostgreSQL . 6
2.2 Go . 7
2.3 GORM . 7
2.4 REST API . 8
2.5 Postman . 10

3 Frontend 11
3.1 Dart . 11

3.1.1 Type safety . 11
3.1.2 Null safety . 12
3.1.3 Garbage Collection . 13
3.1.4 Asynchronous programming . 13
3.1.5 Platforms . 15
3.1.6 Libraries . 16

3.2 Flutter . 16
3.2.1 Architectural overview . 17
3.2.2 Flutter web support . 18
3.2.3 Widgets . 19
3.2.4 State management . 22

3

3.2.5 Rendering and layout . 25
3.2.6 Hot reload & Hot restart . 27
3.2.7 Navigation . 27

III Module Implementation 29

4 Requirements 30
4.1 Role system requirements . 30
4.2 Affiliation system requirements . 31
4.3 Group system requirements . 31
4.4 Platform requirements . 33

5 High-Level Architecture 34

6 The Database 36

7 The REST Server 41
7.1 Architecture . 41

7.1.1 Controller-Model pattern . 41
7.1.2 Files organization . 42

7.2 Authentication & Role Checking . 43
7.3 Roles, Affiliations & Groups implementation 45
7.4 Swagger for documentation . 47
7.5 Postman as a testing platform . 47

8 Administration platform 48
8.1 Architecture . 48

8.1.1 Controller-Model pattern . 48
8.1.2 Files organization . 48
8.1.3 Services . 49

8.2 Role pages . 51
8.3 Affiliation pages . 54
8.4 Group pages . 57

9 Testing & Performance tools 63
9.1 Unit Tests . 63
9.2 Widget Tests . 63
9.3 Integration Tests . 63
9.4 Manual Tests . 64
9.5 Performance Tools . 64

10 Deployment 66
10.1 Docker to encapsulate the modules . 66
10.2 Nginx as a reverse proxy . 67

4

IV Conclusion 68

11 Conclusion 69

12 Future work 71
12.1 Responses to questionnaires in athlete page 71
12.2 More languages . 71
12.3 Instant messaging . 71
12.4 Question creation . 72
12.5 Event visualization . 72
12.6 Improve responsiveness . 72

A Backend Appendix 73

B Modules screenshots 76

Part I

Introduction

1

Chapter 1

Introduction

The introduction provides the history of ATHLETin from the inception to its current form.
Indeed, before delving into this thesis, it is important to establish the general context
of the ATHLETin project to fully understand its objectives and constraints. This will be
followed by a presentation of the key modules and the challenges encountered.

1.1 Origin story of ATHLETin

While ATHLETin was officially created in 2020, its origins trace back a decade earlier.
Its creator, Julien Paulus, was at the time the physical trainer at the rugby training center
in the Sart-Tilman. He was responsible for the physical training of several young athletes
and had to regularly prepare training sessions. However, these athletes trained not only
at the Sart-Tilman rugby center but also in their respective teams. Additionally, some of
them might have had training sessions with the national team. Considering these factors,
it was often challenging to provide training sessions that met the different athletes’ expec-
tations. The problem was clear: how to manage and follow these various athletes in the
best possible way ?

In order to respond to this challenge, an initial solution was developed. A co-worker
of Julien Paulus created a web application called MyLBFR, designed to facilitate com-
munication between coaches and athletes. Unfortunately, the MyLBFR project was later
abandoned due to a lack of funding.

However, despite this first setback, Julien Paulus, convinced of the great potential of
his idea, persisted. The initial solution met the demand for smoother communication and
athlete management. This was enough to convince Mr. Paulus to continue the project.
With the assistance of Xavier Picard, a specialist in sports organization management and

2

Chapter 1 – Introduction Functionalities

marketing, he entered into a collaborative agreement with Professor Laurent Mathy and
his team for the development of ATHLETin at the University of Liège. Currently, ATH-
LETin is being developed by Laurent Mathy, his team, and a few students, including
myself.

1.2 Functionalities
The primary goal of ATHLETin is the comprehensive management of athletes by coaches
and healthcare professionals. To achieve this, the application is divided into several mod-
ules, each of which partially contributes to addressing the central challenge.

1.2.1 Calendar Module
The calendar module, or agenda module, simply provides an interconnected agenda for
coaches and healthcare professionals with athletes. It enables athletes and managers to
handle events. In this way, athletes can view events scheduled specifically for them and
notify about potential absences. On the other hand, managers can create events, resched-
ule them, add athletes, and track scheduled events for a particular athlete.

1.2.2 Training Module
The training module is highly significant within the application. It allows athletes to
provide feedback after each training session by responding to dedicated questionnaires.
This module also facilitates the display and analysis of questionnaire results based on the
collected data. These data are processed through semi-automatic algorithms that analyze
the results and provide a detailed view of athletes’ performance.

1.2.3 Medical Module
As mentioned earlier, a fundamental principle behind ATHLETin is that increased com-
munication leads to fewer injuries. The medical module handles athletes’ health tracking,
enabling players to precisely describe their injuries when they are injured, with the aim
of quickly obtaining the best possible diagnosis. This module allows for quick access to
the context and dates of injuries sustained by athletes. It also informs which events will
be missed by the injured athlete. In addition to effectively diagnosing injuries, healthcare
personnel responsible for athletes can communicate this information directly to coaches
through the application. Finally, the application will enable healthcare professionals to
schedule medical appointments with the injured athletes [1].

1.2.4 Administration Module
The administration module essentially allows administrators to perform all the tasks men-
tioned earlier. By administrators, we mean coaches and healthcare professionals respon-
sible for athletes. Administrators can:

• View and manage calendars

3

Chapter 1 – Introduction Challenges to overcome

• Manage training sessions and attendance records

• Manage and communicate with athletes and members

• Export data in formats like PDF, Excel, or CSV [2]

Furthermore, the administration module provides members with the ability to admin-
ister different permissions and access based on their roles. This is the Role system, which
offers complete flexibility in representing the hierarchy within a sports organization. For
example, a healthcare staff member of a club could have different permissions than a sec-
ondary coach or an assistant.

The application also features an Affiliation and Group system, allowing administrators
and athletes to be grouped according to the team or group they belong to. This affiliation
and group system is essential for maintaining data privacy within ATHLETin. This mod-
ule is the one implemented for this thesis.

1.2.5 Communication Module
Simply allows members to communicate with each other through a traditional messaging
service.

1.3 Challenges to overcome
As the application needs to be user-friendly and ergonomic, it requires an efficient imple-
mentation design. Since the project was initiated by Professor Laurent MATHY and his
team, I needed to reuse the technologies chosen at the beginning of the project to facil-
itate future integration. Consequently, the application is implemented in Dart using the
Flutter framework. The team also opted for a REST server implemented in Go and a
PostgreSQL database to ensure quality maintenance in the future.

On the administrator’s side, web platforms were developed for each module. A mobile
application was also created for athletes to access their calendars and respond to ques-
tionnaires. During the development process, certain choices made at the project’s outset
had to be revisited to achieve better scalability and compatibility. One of the challenges
addressed in this thesis is the reimplementation of the administrator module to accommo-
date various changes, including the addition of Role, Affiliation and Group systems. This
module has the particularity of encompassing all other modules of the admin platform,
and therefore had to be developed very conscientiously. It was also essential to maintain
this implementation’s flexibility for future changes.

—

This introduction provides an overview of the ATHLETin project’s context and its
objectives. Part two will delve into the details of the technologies used for the backend
and frontend.

4

Part II

Technical Background

5

Chapter 2

Backend

The backend refers to the behind-the-scenes components of code that are not accessible
to the end-user of an application or software, but which enables its functionality. In other
words, the backend represents all the parts that the user does not see but serves to execute
actions on a computer system or application. In the case of this project, it corresponds
to the database and the REST API. This chapter outlines the various technologies used for
the backend of the ATHLETin project.

2.1 PostgreSQL
PostgreSQL [3] is a powerful open-source relational database management system (RDBMS)
used for organizing, storing, and managing structured data. Its origins date back to 1986
as part of the POSTGRES project at the University of California, Berkeley, with over 35
years of active development on the main platform.

The main features of PostgreSQL are:

• Free & open-source : allows many businesses and organizations to use it without
licensing costs, which can help reduce support and maintenance expenses

• Robust security : has high reliability with data integrity assurance allowing to handle
sensitive data

• Strong performance & scaling : allows to handle complex workloads and advanced
queries and handle index management and replication

• SQL standards compliance : simplifies application development and database man-
agement while providing a recognized and accepted framework within the industry

• Highly extensible : allows to customize and extend the database to meet the specific
needs of the application without fundamentally altering it

PostgreSQL is widely used across various applications, including mobile apps, web-
sites, and enterprise management systems, especially for data analysis. PostgreSQL was

6

Chapter 2 – Backend Go

therefore chosen for ATHLETin due to its perfect alignment with the project’s require-
ments.

2.2 Go
The Go language [4], also known as Golang, is an open-source programming language
developed by Google. Its origins date back to 2007 when three engineers, Rob Pike,
Robert Griesemer, and Ken Thompson, frustrated by the complexity of C++ and the lack
of a simple language that allowed efficient compilation and execution, started to design
a new language. Go addresses several needs, such as simplicity, concurrency, and per-
formance for network application development, system programming, and the creation of
highly concurrent software.

The main features of Go are:

• Simple & readable syntax: contributes to making the programming language more
user-friendly, efficient, and conducive to creating high-quality software

• Native concurrency management (Goroutines): simplifies concurrent program-
ming and allows for better resource utilization

• High performance: enables efficient handling of large volumes of data and traffic

• Garbage Collector (GC): reduces memory-related errors and improves security

• Static typing system: helps developers detect and prevent errors at an early stage
while improving code readability

• Module system for dependency management: assists developers in efficiently man-
aging dependencies and enhancing version control

• Rich standard library: enables Go developers to enhance their productivity

Go is also known for its fast compilation, making it a popular choice for high-performance
application development. Additionally, another driving factor for using Go is the GORM
framework, which simplifies interactions with databases. For all these reasons, Go was
chosen to implement the REST server for the ATHLETin project.

2.3 GORM
GORM [5] is an Object-Relational Mapping (ORM) framework for the Go programming
language. It allows interaction with relational databases in a high-level, object-oriented
manner. An ORM is designed to simplify database operations, enabling developers to
work with databases without writing complex SQL queries and handling low-level inter-
actions with the database.

7

Chapter 2 – Backend REST API

Figure 2.1: Object-Relational Mapping (ORM) [6]

The main features of GORM are:

• Modeling: allows to define Go structure types that represent database tables (these
structure types can include fields corresponding to columns in the database)

• Abstraction: provides methods for creating, reading, updating, and deleting records
in the database without the need to write raw SQL queries

• Complex query building: enables the construction of complex database queries us-
ing a chainable API

• Auto-Migration: greatly simplifies the process of updating the database schema as
your application evolves

• Open-source & active: open-source and the libraries are continually improved, with
bugs being addressed promptly and effectively

• Pluggable dialects: can work with various relational databases such as PostgreSQL,
MySQL, SQLite, and others

Overall, GORM simplifies the process of working with databases in Go applications,
making it a popular choice for developers looking to build database-based applications
with Go. It’s for these reasons that the GORM framework was chosen for the ATHLETin
project.

2.4 REST API
First, it’s necessary to define what an API is. An Application Programming Interface
(API) is a set of definitions and protocols that serve as a facade through which software
provides services to other software. It can be considered as a contract between an infor-
mation provider and a user, defining the content requested by the consumer (the request)
and the content provided by the producer (the response).

8

Chapter 2 – Backend REST API

A REST API is an Application Programming Interface that adheres to the constraints
of the RESTful architectural style [7]. In other words, it’s an API based on the Representa-
tional State Transfer (REST) architectural model, which emphasizes simplicity, scalability,
and performance of web services.

The key constraints defined by a REST API are:

– Uniform interface: resources are identified by Uniform Resource Identifiers (URIs),
and standard methods (GET, POST, PUT, DELETE) are used to interact with these
resources

– Client-server architecture: maintains a clear separation between the client and the
server, allowing them to evolve independently

– Stateless communication: the server does not retain information about the client’s
state between requests, improving reliability and scalability

– Cacheable: responses indicate whether they can be cached by the client, improving
performance by reducing the server’s load

– Layered system: A REST API may consist of multiple layers (e.g. proxies or fire-
walls) between the client and the server. Each layer only needs to know about its
adjacent layers, enhancing system flexibility and extensibility.

– Representation: resources can have different representations (e.g., XML or JSON),
and clients can negotiate the representation they prefer

Figure 2.2: RESTful API [8]

These constraints help in designing simple, scalable web APIs suitable for various use
cases. In summary, a REST API simplifies communication between clients and servers,
exposing resources via URLs and standardizing operations through HTTP methods.

9

Chapter 2 – Backend Postman

2.5 Postman
In addition to everything mentioned above, we will also be using Postman. Postman [9]
is a tool used for API development and web service testing. Essentially, it allows devel-
opers to create, test, document, and share APIs in an efficient and clear manner.

—

This chapter has thoroughly reviewed the tools used for the backend of the ATH-
LETin project. The choice of the Go language, along with the GORM framework, and a
PostgreSQL database was made with the goal of maintaining a performant and reliable
REST server.

The next section will delve into the details of the technologies used to implement the
application’s frontend.

10

Chapter 3

Frontend

The frontend is the part of a software or an application that the end-user directly interacts
with. It is composed of the user interface, design, and user experience elements that en-
able users to interact with the system. In simple terms, the frontend is what the user sees
and interacts with when using an application.

For the ATHLETin project, the frontend includes the user interface components, such
as the calendar, training module, medical module, administration module and messaging
system. This chapter will delve into the details of the technologies and design considera-
tions used in implementing the frontend of the ATHLETin project.

3.1 Dart

Dart [10] is a programming language created by Google in 2011. It is an open-source
language primarily used for mobile and web application development. Dart is a versa-
tile programming language known for its readable syntax, active community, good per-
formance, and close association with the Flutter framework for cross-platform mobile
application development. Dart can be summarized as a client-optimized language for fast
apps on any platform. Let’s now explore the specifics of this language.

3.1.1 Type safety
In a programming language, type safety is an essential concept aimed at ensuring that data
types are used correctly and consistently. Type safety in Dart means that the language is
designed to detect type errors at compile time, catching potential issues even before the
program is executed.

While Dart does offer dynamic typing features for situations where flexibility is needed,
it is primarily a statically typed language. This means that the type of each variable is

11

Chapter 3 – Frontend Dart

determined at compile time, enabling the detection of type inconsistencies during the de-
velopment phase, before the code is executed.

Furthermore, Dart allows developers to use type inference, allowing the compiler to
deduce a variable’s type from its value. This makes the syntax more concise while still
maintaining type safety.

Lastly, Dart performs type verification to ensure that operations on variables conform
to the defined typing rules. If an operation violates these rules, a compilation error is
generated.

In summary, Dart’s type safety helps reduce type-related programming errors, making
development more reliable and facilitating code maintenance. It enables developers to
catch typing issues early in the development process, which is particularly important for
building robust applications like ATHLETin.

3.1.2 Null safety
Null safety is another important concept in programming which purpose is to avoid errors
related to null values in the code. In fact, null values often lead to exceptions and bugs in
many programming languages.

In Dart, null safety involves explicitly declaring whether a variable can hold a null
value or not [11]. Two types of variables exist in this context: Non-nullable and nullable.
Non-nullable variables cannot hold null values. Developers must assign a value to them
at the time of variable declaration, and the variable cannot hold a null value after this as-
signment. On the other hand, nullable variables can contain null values and are declared
with a "?" after the variable’s type.

Null safety in Dart offers several advantages:

• Error reduction: explicitly handling null values eliminates many errors related to
accessing null values during the development phase

• Improved performance: knowing that certain variables will never be null, Dart can
optimize the code for better performance

• Readable code: null safety improves code readability by clearly expressing the de-
veloper’s intentions regarding null value handling

• Enhanced documentation: indicating which variables can be null and which cannot
enhances code documentation

12

Chapter 3 – Frontend Dart

In summary, null safety is a significant concept in Dart that aims to enhance code
reliability, performance, readability, and documentation by ensuring that null values are
explicitly managed. Null safety helps reduce bugs related to null values and improves
code quality by preventing errors that result from unintentional access of variables set to
null.

3.1.3 Garbage Collection
Garbage Collection (GC) is a form of automatic memory management that is essential in
programming languages.

In Dart, Garbage Collection [12] is used to automatically free memory and manage
objects that are no longer in use. It reclaims memory that was allocated by the program
but is no longer referenced (such memory is called garbage).

Here are the key points about garbage collection in Dart:

1. First, garbage collection identifies and collects unused memory within the program.
It is responsible for releasing memory occupied by objects that are no longer acces-
sible within the program. This mechanism prevents memory leaks, where memory
would gradually be consumed by unused objects.

2. In Dart, developers typically don’t need to worry about memory release because
memory management is automatic. Garbage collection automatically identifies and
cleans up unused objects.

3. Garbage collection significantly improves performance and reduces programming
errors related to incorrect memory management. In addition to being user-friendly,
automatic memory management enhances performance by maintaining efficient mem-
ory utilization.

In summary, garbage collection in Dart is a crucial mechanism for memory manage-
ment that allows developers to create without the need for manual memory management.
It enhances the safety, reliability, and efficiency of Dart applications by eliminating po-
tential memory leaks. It is also compatible with null safety, meaning it correctly manages
null objects.

3.1.4 Asynchronous programming
A synchronous operation blocks other operations from executing until it completes. In
contrast, asynchronous operations allow a program to continue its work while waiting for
another operation to complete.

13

Chapter 3 – Frontend Dart

In Dart, asynchronous operations enable tasks to be performed in parallel without
blocking the execution of the main program [13]. This is crucial for applications that
need to carry out long-duration operations, such as fetching data from a network, reading
a file or writing to a database.

Dart’s asynchronous mechanism relies on three key elements: futures and async/await.

A Future is an object that represents a value that may not yet be available. A Future
allows the program to proceed with its execution without waiting for the operation to fin-
ish. When an asynchronous function is called, it usually immediately returns a Future
and then continues its execution in the background.

The await keyword is used to await the completion of a Future. When an asyn-
chronous function employs the await keyword, it means that the function suspends its
execution until the Future is complete. However, during this time, the main thread can
continue to execute other tasks. The async keyword is used to indicate that the function
is asynchronous, containing asynchronous code.

Here’s a simple example:

Figure 3.1: Dart asynchronous operations example

In this example, the fetchMemberData() function is defined as asynchronous using
the async keyword and returns a Future. The function makes a GET request using the
NetworkService library to obtain data for the given member. Once the response is avail-
able, the code checks the response status code. If the response is successful (status code
200), it can then manipulate the member’s data. Otherwise, it throws an exception.

In summary, asynchronous operations are essential for maintaining efficient perfor-
mance in Dart applications, especially web and mobile applications. They allow tasks
to be carried out in the background, ensuring that the user interface remains responsive,
without blocking the main program’s execution.

14

Chapter 3 – Frontend Dart

3.1.5 Platforms
Dart’s compiler capabilities [14] offer different ways to run code :

1. Native Platform: When developing applications for mobile and desktop plat-
forms, Dart provides a combination of a Dart VM featuring just-in-time (JIT) com-
pilation and an ahead-of-time (AOT) compiler to generate machine code.

2. Web Platform: In the context of web applications, Dart allows compilation for
both development and production needs. The web compiler within Dart translates
Dart code into JavaScript.

Figure 3.2: Dart Platforms [14]

Regarding Dart Native, a fast development cycle for iteration is crucial during de-
velopment. The Dart VM offers a just-in-time compiler (JIT) with incremental recom-
pilation (enabling hot reload), full debugging support, and real-time metrics collection
(powering DevTools).

When applications are ready to be deployed in production, Dart’s ahead-of-time (AOT)
compiler can compile to native ARM or x64 machine code, allowing the application to
launch with a consistently short startup time.

Dart Web enables the execution of Dart code on web platforms powered by JavaScript.
With Dart Web, Dart code is compiled into JavaScript, which then runs in a web browser.

Dart Web offers two compilation modes:

- An incremental development compiler that provides a quick development cycle.

15

Chapter 3 – Frontend Flutter

- An optimizing production compiler that compiles Dart code into fast, compact, de-
ployable JavaScript.

Regardless of the platform or the compile method used, code execution requires a
Dart runtime. This runtime is responsible the following critical tasks:

- Memory management: Dart uses a managed memory model where unused memory
is reclaimed by a garbage collector (GC).

- Enforcement of the Dart type system: While most type checks in Dart are static (at
compile time), some type checks are dynamic (at runtime).

- Isolate management: The Dart runtime controls the main isolate (where code
usually runs) and any other isolates created by the application.

3.1.6 Libraries
Dart offers a rich collection of core libraries [15] that serve as building blocks for a
wide range of everyday programming activities such as performing mathematical com-
putations (dart:math), encoding/decoding data (dart:convert), managing collections
(dart:core) or asynchronous programming (dart:async).

3.2 Flutter

Flutter [16] is an open-source framework created by Google in 2017 with the aim of
simplifying the process of developing cross-platform applications. Flutter enables devel-
opers to create high-performance applications with attractive user interfaces, ensuring a
smooth user experience on various operating systems, including iOS and Android, as well
as desktop, web, and embedded devices. This framework aims to enhance developer pro-
ductivity, application consistency, code quality, and reduce development complexity in a
modern way. Furthermore, Google provides active support and regular updates. For these
reasons, Flutter has become increasingly popular, with many companies and developers
adopting Flutter to create applications for mobile, web, and other platforms.

16

Chapter 3 – Frontend Flutter

3.2.1 Architectural overview
Flutter is designed as a layered system [17], represented as a series of independent li-
braries, with each layer depending on the one beneath it. The architecture of Flutter
consists of three key components: the Dart framework, the Flutter engine, and platform-
specific embedders. No layer has privileged access to the layer below, and every part of
the framework level is designed to be optional and replaceable. Here’s how these different
layers interact to create a Flutter application.

Figure 3.3: Flutter - Architecture overview [17]

Dart Framework

The Dart framework is the top layer of Flutter, allowing UI creation by providing a set
of widgets, classes, and libraries. It includes pre-designed widgets for creating custom and
responsive user interfaces, along with libraries for navigation, gesture management, state
management, and many other features. The primary development of Flutter applications
is done using the Dart framework, which is written in the Dart programming language.

Engine

17

Chapter 3 – Frontend Flutter

The engine serves as the intermediate layer of Flutter, acting as a bridge between the
Dart framework and the underlying operating systems (such as iOS, Android, macOS,
Windows, Linux). It is primarily written in C++ and provides the foundation for ren-
dering, application state management, input handling, and other essential functionalities.
The Flutter engine is responsible for rasterizing user interface elements into pixels and
displaying them on the screen. It manages the rendering process of Dart widgets using
rendering engines like Skia and Impeller. It acts as an interface between the Dart code
written in Flutter and the native services provided by platform-specific embedders.

Platform-specific Embedders

Platform-specific embedders are components specific to each platform (e.g., Android,
iOS, macOS, Windows, Linux) that integrate the Flutter engine into the native environ-
ment of the platform. They provide an entry point for launching Flutter applications on
a specific platform. For example, the Android embedder is written in C++ or Java and
handles interactions between the Flutter application and the Android system. Embedders
facilitate and streamline communication between the Flutter engine and the underlying
operating system. They also handle window creation, input event management, access to
native features, and more. Embedders are responsible for running Flutter applications on
the target platform, both in development and production modes.

To sum up, the Dart framework enables application logic and UI development, the
Flutter engine represents an intermediary for rendering and system interaction, and platform-
specific embedders enable the execution of Flutter applications on different target plat-
forms, integrating the engine into the native environment. This architecture allows Flutter
to offer high performance and a consistent user experience across various operating sys-
tems.

3.2.2 Flutter web support
Regarding Flutter for the web, there are some unique characteristics in its architecture that
are worth highlighting.

Dart compiles to JavaScript with a toolchain optimized for both development and pro-
duction purposes. As a result, the Flutter framework, being written in Dart, was relatively
straightforward to compile to JavaScript.

However, the Flutter engine, written in C++, isn’t designed to interact with a web
browser but rather with the underlying operating system. A different approach is required
for the web. That’s why on the web, Flutter offers a reimplementation of the engine using
standard browser APIs. Currently, there are two options available for rendering Flutter
content on the web: HTML mode and WebGL [18].

In HTML mode, Flutter uses HTML, CSS, SVG, and Canvas. In WebGL mode, Flut-
ter uses a version of Skia compiled into WebAssembly called CanvasKit. The latter mode

18

Chapter 3 – Frontend Flutter

Figure 3.4: Flutter - Web architecture overview [17]

offers the fastest path to the browser’s graphics stack and slightly higher graphical fidelity,
while HTML mode provides the best code size characteristics.

For Flutter web, unlike other platforms on which Flutter runs, there is no need for Flut-
ter to provide a Dart runtime. Instead, the Flutter framework is compiled to JavaScript.

During development, Flutter web uses dartdevc, a compiler that supports incremen-
tal compilation and allows hot restart for apps. On the other hand, when creating a produc-
tion app for the web, dart2js, Dart’s highly-optimized production JavaScript compiler,
is used. It compiles the framework, the core of Flutter, and the application into a minified
source file that can be deployed on any web server.

3.2.3 Widgets
A fundamental concept to grasp when learning Flutter is the idea of a building block
called a "Widget". Widgets are the essential elements of constructing a Flutter app. They
are the basic building blocks of a Flutter application’s user interface, with each widget
immutably representing a part of that user interface. Widgets define both the structure
and appearance of user interface elements, such as buttons, text fields, images, and more.

These widgets are organized hierarchically in a tree-like structure, where a parent wid-
get can hold child widgets. Each child widget is nested within its parent and can inherit
the context of its parent. This hierarchical structure propagates all the way up to the root
widget, where the root acts as the container that hosts the Flutter application. This root
widget is typically either MaterialApp [19] or CupertinoApp [20].

The widget tree enables the creation of complex and modern user interfaces by com-
posing simpler widgets within one another, like building blocks, to form the complete

19

Chapter 3 – Frontend Flutter

user interface. This composition and hierarchy of widgets are fundamental to building
Flutter applications.

Building widgets

Widgets are typically composed of many small, single-purpose widgets that combine
to produce more powerful and complex effects. Constructing a widget involves overriding
its build() function to return a new tree of elements. The build() function represents
the declaration of what a widget is made of, and the widget should return a new tree of
widgets every time the function is called, regardless of what it returned previously.

During each rendered frame, Flutter recreates only the parts of the user interface
where the state has changed by invoking the build() method of the relevant widget.
This automated comparison process is highly efficient and enables the creation of high-
performance, interactive applications. This design simplifies your code by focusing on
declaring what a widget is composed of, rather than the complexities of updating the user
interface from one state to another.

Stateless and stateful widget

There are two main types of widgets in Flutter: stateless widgets and stateful widgets.

Stateless widgets are immutable, meaning they do not change over time once they
are created. Their content and appearance are determined solely by their own properties.
Therefore, they are typically used for static elements of the user interface, such as icons,
and can be easily reused in larger constructions.

Stateful widgets are considered mutable because they can change over time in re-
sponse to user interactions or other factors. They maintain an internal state that can be
modified. State is information that can be read synchronously when the widget is built
and may change during the widget’s lifetime. To update the state of a stateful widget and
trigger a rebuild of the modified part of the user interface, the setState() method is
used. This method takes an anonymous function that specifies the changes to be made to
the state. After setState() is called, Flutter recalls the build() method of the widget
to rebuild only that part of the user interface. Stateful widgets are essential when the part
of the user interface being described can change dynamically.

Lifecycle

The lifecycle of a widget describes how a widget is constructed, updated, and de-
stroyed over time. It is crucial to understand this lifecycle to properly manage a widget’s
state and optimize an application’s performance. The key stages of a stateful widget’s
lifecycle in Flutter consist of the following points.

20

Chapter 3 – Frontend Flutter

Figure 3.5: Flutter - Lifecycle of a stateful widget

1. createState(): The createState method creates a state object associated with
the widget.

2. initState(): The initState method is typically used for initializations that re-
quire access to the context (such as fetching data from an external source) and is
called after createState.

3. didChangeDependencies(): The didChangeDependenciesmethod is called when
dependency of the State object changes via InheritedWidget.

4. build(): The build method is the most crucial part of a widget’s lifecycle. It is
called whenever the widget needs to rebuild the associated part of the user interface.

5. setState(): The setState method is called whenever the widget’s state has
changed, triggering the widget to rebuild via the build method.

6. didUpdateWidget(): The didUpdateWidget method is called if the parent widget

21

Chapter 3 – Frontend Flutter

of a stateful widget changes (for example, if new properties are passed). This allows
the widget to adapt to these changes and update its state if necessary.

7. deactivate(): The deactivate method is called when the widget is no longer
active. This typically occurs when the application is paused or when the widget is
removed from the widget hierarchy.

8. dispose(): The dispose method is called when the widget is permanently re-
moved from the widget hierarchy.

On the other hand, the lifecycle of a stateless widget in Flutter is relatively simple because
these widgets do not have internal state that changes over time. It mainly involves build-
ing the UI using the build method during the initial creation and when reconstruction is
needed due to changes in the application or the widget’s parent widgets.

3.2.4 State management
After observing the existence of widgets with state, it’s time to understand how to man-
age them. Indeed, there are various possible approaches [21] to share the application state
between screens, throughout an application. However, before delving into state manage-
ment, here are some details about the state in Flutter. There are in fact two conceptual
types of state in any Flutter application [22].

Ephemeral vs App state

Figure 3.6: Flutter Ephemeral vs App state [22]

Ephemeral State (sometimes called local state) is the state that can be neatly con-
tained within a single widget (for example, the current page in a PageView). Other parts
of the widget tree rarely need to access this type of state. Since ephemeral state doesn’t
change in complex ways, there’s no need to use state management techniques for this kind
of state. Ephemeral state can be implemented within a stateful widget using State and
setState(), and is often local to a single widget.

22

Chapter 3 – Frontend Flutter

App State is the state that isn’t ephemeral. It’s shared between many parts of the ap-
plication and is preserved between user sessions. For example, application state includes
user preferences and login information. The choice of how to manage app state depends
on the complexity and nature of the application. Now, let’s explore some techniques for
managing state in Flutter.

setState method

The setState method [23] in Flutter is a crucial method used to manage state in state-
ful widgets. A call to setState notifies the framework that the internal state of this object
has changed. This then triggers the reconstruction of the widget via its build method, up-
dating the user interface based on the new state. It is very useful for managing ephemeral
states on a specific widget and is therefore better suited for managing ephemeral states
rather than app states.

InheritedWidget

InheritedWidget [24] is a fundamental widget in Flutter used to propagate data
through the widget tree to its descendants. It is a crucial tool for managing and shar-
ing state in a Flutter application for several reasons. Firstly, it enables a clean and ef-
ficient propagation of state. InheritedWidget allows sharing data (state) with many
descendant widgets without the need to pass them explicitly through constructors, keep-
ing the codebase clean. Moreover, it offers automatic widget rebuilding. When data
within an InheritedWidget changes, it automatically triggers the rebuilding of all de-
scendant widgets that depend on this data. This ensures the user interface stays syn-
chronized with the current data, guaranteeing a responsive user experience. Additionally,
InheritedWidget provides flexible control over state management. It allows creating
a "context" for specific parts of the widget tree that need access to specific data. Lastly,
InheritedWidget is designed to be performant, avoiding unnecessary rebuilds and per-
formance overhead.

In summary, InheritedWidget is a valuable tool for state management in a Flutter
application as it simplifies and provides flexibility in transmitting data through the widget
tree without the need for excessive repetitive code.

Provider

Provider [25] is a Flutter package that simplifies state management in a Flutter appli-
cation. It acts as a wrapper for InheritedWidget, making its implementation easier and
more reusable. It enables efficient state sharing and management among different wid-
gets, streamlining the development process. Specifically, it allows data to be shared with
a descendant widget without the need to pass it through intermediate widget constructors
each time. Three key components make this possible.

23

Chapter 3 – Frontend Flutter

Figure 3.7: Flutter Provider tree

First, the Flutter ChangeNotifier class provides access to the notifyListeners()
method, which is used to notify listening widgets to rebuild when the state changes. Sec-
ond, the Consumer class enables the selective rebuilding of child widgets without affect-
ing other widgets in the widget tree. Third, the Provider.of method allows descendant
widgets to access the state object of the nearest Provider in their widget tree.

In summary, Provider is valuable for state management in a Flutter application be-
cause it simplifies state management by centralizing it, enhances the responsiveness of
the user interface by creating reactive widgets that automatically update when the state
changes, and promotes good development practices.

24

Chapter 3 – Frontend Flutter

3.2.5 Rendering and layout
Now, let’s delve into the rendering pipeline [17], which is the sequence of steps followed
by Flutter to turn a hierarchy of widgets into actual pixels painted on a screen. Flutter has
a fast and straightforward pipeline for how data flows to the system, as depicted in the
following sequencing diagram :

Figure 3.8: Flutter Render pipeline [17]

Let’s dive into more detail on some of these steps.

Build: from Widget to Element

Consider, for example, a blue Container widget with a Row child containing an
Image and a Text. When Flutter needs to render this fragment, it calls the build()
method, which returns a subtree of widgets and generates the user interface. However,
the build() method can introduce new widgets during this process if necessary. For in-
stance, if a Container has a color property, it inserts a ColoredBox representing the
color into the widget hierarchy, which is the case in this example. Therefore, the final
widget hierarchy is often deeper than what the initial code represents.

During the build phase, Flutter translates the widgets expressed in the code into a cor-
responding element tree, with one element for every widget. Each element represents a
specific instance of a widget at a given location. There are two basic types of elements:

1. ComponentElement: a host for other elements

2. RenderObjectElement: an element that participates in the layout or paint phases,
intermediate between their widget analog and the underlying RenderObject

25

Chapter 3 – Frontend Flutter

Figure 3.9: Flutter Rendering trees [17]

The element associated with any widget can be referenced using its BuildContext,
which acts as a handle to the widget’s location in the tree. This context is what you find in
function calls like Theme.of(context), and it’s provided as a parameter to the build()
method.

The element tree persists from frame to frame, playing a critical role in performance.
Flutter can treat the widget hierarchy as disposable while caching its underlying represen-
tation. By only walking through the widgets that have changed, Flutter can rebuild only
the parts of the element tree that require reconfiguration.

Every node in the render tree is of the base class RenderObject, which defines an
abstract model for layout and painting. Each RenderObject knows its parent but knows
little about its children, except how to visit them and what constraints they have. This
model is highly general to provide RenderObject with sufficient abstraction to handle
a variety of use cases. During the build phase, Flutter creates or updates an object that
inherits from RenderObject for each RenderObjectElement in the element tree. This
enables efficient layout and painting of widgets in the Flutter framework.

Figure 3.10: Flutter - Constraints and size propagation in the widget tree [17]

26

Chapter 3 – Frontend Flutter

Now, to perform the layout, Flutter traverses the render tree in a depth-first manner
and passes size constraints from parent to child. The child must adhere to the size con-
straints imposed by its parent while determining its size. Children respond by returning a
size to their parent object within the constraints established by the parent.

A single traversal of the tree is sufficient for every object to have a defined size within
its parent’s constraints and be ready to be painted by calling the paint() method. The
box constraint model is very powerful for efficiently laying out objects in linear time O(n).

3.2.6 Hot reload & Hot restart
One of Flutter’s key features is Hot Reload. It allows developers to instantly see the
changes made to their source code in the running application without needing to restart
it [26]. Hot Reload is extremely fast, speeding up the development process. Indeed, it
works by compiling just the altered code and promptly inserting it into the active Dart
Virtual Machine (VM). It also preserves the current state of the application, unlike a com-
plete restart. Hot Reload can be used with other debugging tools like the Flutter debugger
to quickly spot and fix errors.

However, it’s important to note that Hot Reload might not be suitable for all situa-
tions, especially for significant changes in the application’s architecture. In such cases,
a full Hot Restart might be necessary to properly reflect the modifications. Hot Restart
completely restarts the running Flutter application, resetting it to its initial state.

3.2.7 Navigation
Flutter also provides a complete system for screen navigation and app traversal. For
smaller applications without complex links, it’s preferable to use the Navigator [27],
while more complex apps can also make use of the Router to manage navigation cor-
rectly. Proper handling of deep links on iOS and Android, as well as staying in sync with
the address bar for a web application, is crucial.

Figure 3.11: Flutter - Example using Navigator [27]

The Navigator widget manages and displays screens in a stack-like fashion. To nav-
igate to a new screen, the Navigator obtained via the BuildContext of the current route

27

Chapter 3 – Frontend Flutter

can use imperative methods like push() or pop().

Figure 3.12: Flutter - Example using named routes [27]

As mentioned earlier, named routes can be used in a Flutter app, and they need to be
defined in the main.dart file of the application. The MaterialApp widget provides a
routes parameter for this purpose.

—

This chapter has provided a detailed overview of the technologies used for the entire
frontend of the ATHLETin project. The choice of technologies, namely the Dart language
and the Flutter framework, was made with the goal of offering a highly performant and
modern solution.

With all the necessary tools for the reader’s comprehension now provided, the next
section will delve into the details of the module implemented in this thesis, beginning
with an introduction to the project’s architectural overview.

28

Part III

Module Implementation

29

Chapter 4

Requirements

Before delving into the details of implementing the solution, it is important to elucidate
the requirements that will guide its development. Therefore, the purpose of this chapter is
to describe the objectives and requirements of the three new systems implemented within
the administration module.

4.1 Role system requirements
The role system aims to provide members of an affiliation the ability to organize their per-
sonnel in a fully flexible and dynamic hierarchy. This should be achieved thanks to roles.
A role should be composed of a label, a group of members, and a list of permissions.
The permission list of a role explicitly outlines what actions the members associated with
that role are authorized to perform within the affiliation. There should be five permissions:

1. Manage studies: allows members to create, modify, or delete studies

2. View questionnaire results: enables members to see a summary of questionnaire
results

3. Manage athletes: allows members to create, modify, or delete athletes

4. Manage members: permits members to create, modify, or delete members

5. Manage roles: enables members to create new roles and modify or delete existing
roles except the administrator role

A member without the permission to manage athletes should not be able to create an
athlete within the affiliation, for instance. This member should not see the athlete creation
form on the athletes’ page within the administrative platform, and should not be autho-
rized to submit the athlete creation request on the server side.

30

Chapter 4 – Requirements Affiliation system requirements

Regarding the administrator role, it should be automatically generated upon the cre-
ation of an affiliation and logically possesses all permissions. It cannot be altered, not
even by administrators, except for its member list, which can be expanded or reduced.

4.2 Affiliation system requirements
The affiliation system aims to group members and athletes of an institution. It is crucial
to enable members to access only the data of athletes they genuinely have permission to
view. In the absence of an affiliation, a member from one team would potentially have
access to the data of an athlete belonging to another team, which is not desirable. In other
words, affiliation is the essential entity under which the different institutions using ATH-
LETin organize themselves.

Every member should be able to create a new affiliation or join an existing one, pro-
vided they have received an invitation link. If a member creates a new affiliation, it
should happen as follows: once created, the new affiliation should consist solely of the
creator, automatically designated as an administrator. The creator should be assigned the
administrator role and can then add other members and athletes, initiating the ATHLETin
experience. If a member joins an existing affiliation, they should be simply added to that
affiliation as a member and should not possess any role by default.

More generally, affiliation should enable the user to access all ATHLETin modules
such as the calendar module, the medical module, etc., as it encompasses them.

4.3 Group system requirements
The group system allows to group and organize affiliations with a dynamic level of ab-
straction. A group should enable a member to group their sub-groups and sub-affiliations
for clearer organization. It should also allow members of this group to search among all
members and athletes within the sub-groups and sub-affiliations included in this group.
A relevant comparison would be the following: a group can be seen as a folder, and an
affiliation as a file.

31

Chapter 4 – Requirements Group system requirements

Figure 4.1: Group folder comparison

In the example above, the parent group is the Club de Rugby du Sart-Tilman and con-
sists of two sub-groups, namely, the Sart-Tilman Masculin and Sart-Tilman Féminin. The
Sart-Tilman Masculin sub-group further comprises three affiliations representing the U19,
U20, and U21 teams, respectively.

Every member should be able to create a group or join an existing (sub)group provided
they have received an invitation. Similar to affiliations, once the group is created, the cre-
ator becomes the group’s administrator. Similarly, when a member joins a (sub)group,
they are simply added to the group as a member. They are also added to all sub-groups
and sub-affiliations of the group they just joined.

The administrator of a group should be able to create sub-groups and sub-affiliations.
They can also remove members from the group, unlike a regular member who can only
use the search function.

32

Chapter 4 – Requirements Platform requirements

4.4 Platform requirements
As mentioned in the introduction, the three systems — Role, Affiliation, and Group —
must be integrated into the administration module conscientiously. They encompass the
entirety of the other modules and therefore need to be developed efficiently and compat-
ibly. The frontend, designed by Mr. Mathy and his team, is being developed in Dart and
Flutter, so the new code must function in the latest stable versions of Dart and Flutter.
Furthermore, the solution must be developed and integrated to be compatible with mobile
devices and the null safety mechanism.

On the backend side, the solution needs to be integrated into a database already de-
signed by Mr. Mathy and his team. On one hand, the new requests should be implemented
to leverage the maximum potential of the existing content while optimizing wherever
possible. On the other hand, the authentication based on the member’s role must be im-
plemented on top of everything else to prevent unauthorized requests. Additionally, the
solution should be implemented in a way that facilitates future integration and improve-
ments.

—

In this chapter, we’ve explored the various requirements for the three systems as well
as for the platform. Now, let’s delve into a description of the overall project architecture.
La figure

33

Chapter 5

High-Level Architecture

Let’s now take a look at the high-level architecture of the project. Understanding the dif-
ferent components and their interactions is crucial. Therefore, the purpose of this chapter
is to provide an overview of the project’s architecture to fully comprehend the solution im-
plemented later on. The figure 5.1 represents the different components of the architecture
and the interactions that are established between them.

Figure 5.1: Interactions between the different components of the IT architecture

1. The REST Server in Go is the only entity that can interact directly with the database.
It allows other components to retrieve information stored in the database through

34

Chapter 5 – High-Level Architecture High-Level Architecture

a REST API [2.4]. To achieve this, it generates SQL queries to the database via
GORM [2.3]. This approach significantly enhances security by centralizing database
communications through a single trusted entity.

2. The PostgreSQL database stores information for both the web server and the mo-
bile application.

3. The Web server is responsible for the web pages accessed by the trainers and can
only communicate with the REST server. It is achieved through HTTP requests.
It uses JSON to perform HTTP requests to retrieve and send data from/to the REST
server. The Web server is composed of all the web modules described in section
1.2 and is implemented in Flutter.

4. The Mobile application is used by athletes and can only communicate with the
REST server. This component is outside the scope of this thesis.

—

Now, we will delve deeply into the organization of the various components of the ar-
chitecture and their behavior. This will be further explored in the following chapter.

35

Chapter 6

The Database

A database aims to efficiently and securely store information while ensuring quick and
precise accessibility. For this purpose, a PostgreSQL database has been configured within
a Docker [28] container. This database stores personal information of members and ath-
letes, along with other module-related data such as studies and questionnaires. To main-
tain an organized and optimized database, specific tables have been designed to perform
certain tasks.

In the context of this thesis, organizing the new tables was far from being trivial.
Indeed, an efficient database design involves careful consideration of optimal data orga-
nization within tables, determining suitable fields to represent data and defining relevant
table relationships. As a result, three sets of new tables were designed to meet the require-
ments of the three new systems — Role, Affiliation, and Group systems. The goal of this
modularity among these different sets of tables is to simplify module comprehension and
allow for easy integration. Fourteen new tables were created, bringing the total database
tables to 49.

For the sake of development simplicity, the initial set of tables added to the database
were those dedicated to the Role system. Subsequently, the table sets for the Affiliation
and Group Systems were added on top, as they encompass the entirety of the experience.
Tables were thoughtfully designed to minimize their number and interactions during user
experience. For tables requiring unique identifiers, the generation of UUIDs [29] was uti-
lized.

The figures 6.1, 6.2, and 6.3 respectively represent the sets of tables designed to meet
the requirements of the Role, Affiliation, and Group systems. Additionally, tables 6.1,
6.2, and 6.3 provide more detailed descriptions of the database tables. Primary keys are
colored in yellow and Foreign keys in blue. The complete structure of the database can
be found in Appendix A.1.

36

Chapter 6 – The Database The Database

Figure 6.1: Internal structure of the database - Role system part

Table Name Description

roles Represents a role within an affiliation (e.g., coach or as-
sistant) that provides the ability to assign different permis-
sions to members of an affiliation. The id_affiliation
field contains the identifier of the affiliation in which the
role was created.

roles_members Contains the mapping between role(s) and member(s).
This table allows knowing which member possesses which
role.

roles_permissions Contains the mapping between role(s) and permissions.
This table allows understanding which permissions are as-
sociated with each role.

permissions Represents a permission (e.g., view results or manage stud-
ies). This table stores a list of predefined permissions and
its content is meant to be read-only. Currently, the database
holds 5 permissions on the administration website (4.1).
The solution has been designed efficiently to allow the ad-
dition of future permissions without any issues.

37

Chapter 6 – The Database The Database

permissions_routes Contains the mapping between permission(s) and route(s).
This table associates permissions with routes and therefore
with requests made to the server. Its usage will be detailed
in section 7.2.

members Represents a member (e.g a coach or a healthcare profes-
sional) who can access the administration website. The
table contains all the important information about a mem-
ber, such as their name and email address. Additionally,
the id_role field stores the identifier of the selected role
if the member was assigned a role upon creation. The
id_permissions field communicates the list of permis-
sions that the member has within a given affiliation.

Table 6.1: Database architecture - Role system tables

Figure 6.2: Internal structure of the database - Affiliation system part

Table Name Description

affiliations Represents an affiliation. The id_parent_group field
(which can be null) aims to store the identifier of the parent
group (if any) in which the affiliation was created. In the
case where the affiliation does not have a parent group, it
is a root affiliation.

38

Chapter 6 – The Database The Database

affiliations_members Contains the mapping between member(s) and affilia-
tion(s). This table indicates which member belongs to
which affiliation.

affiliations_admins Contains the mapping between administrator member(s)
and affiliation(s). This table shows which member is an
administrator of which affiliation.

affiliations_users Contains the mapping between user(s) and affiliation(s).
This table indicates which athlete belongs to which affil-
iation.

affiliations_role_admins Contains the mapping between administrator role and af-
filiation. Indeed, upon the creation of an affiliation, an ad-
ministrator role associated with that new affiliation is also
created.

Table 6.2: Database architecture - Affiliation system tables

Figure 6.3: Internal structure of the database - Group system part

39

Chapter 6 – The Database The Database

Table Name Description

groups Represents a group. A group can be composed of sub-
groups as well as sub-affiliations. The id_parent_group
field designates the potential parent of a subgroup. If the
field is null, then the group is not a subgroup and will be
referred to as a root group.

groups_members Contains the mapping between member(s) and group(s).
This table indicates which member belongs to which
group.

groups_admins Contains the mapping between administrator member(s)
and group(s). This table shows which member is an ad-
ministrator of which group.

groups_affiliations Contains the mapping between affiliation(s) and group(s).
This table indicates which affiliation originates from which
group.

Table 6.3: Database architecture - Group system tables

40

Chapter 7

The REST Server

The REST server is the sole intermediary between users/members and the database. Its
purpose is to facilitate access and manipulation of resources on the server through HTTP
requests. In this section, we’ll explore the various details of the REST Server implemen-
tation.

7.1 Architecture
7.1.1 Controller-Model pattern
The REST Server has its components organized according to a specific architectural pat-
tern: the Controller-Model pattern. It draws significant inspiration from the Model-View-
Controller pattern [30]. Let’s delve into its specifics.

• The controller part aims to perform high-level procedures upon receiving a request.
These procedures include tasks like path parameter parsing, JSON decoding, or UUID
checking. Once these procedures are executed, the controller delegates the remain-
ing tasks to the model part. This Controller-Model pattern efficiently coordinates
the flow of tasks and interactions.

• The model part handles the representation and management of data. That is where
the SQL tables are represented, defined using Go structures with JSON annotations.
Besides table definitions, the model part contains all the necessary logic to interact
with the database tables, with interactions executed through GORM.

41

Chapter 7 – The REST Server Architecture

Figure 7.1: REST Server operation

Here’s what happens when the server receives a request:

1. The member/user sends an HTTP request to the server via the web modules.

2. The server directs the request through an authentication & role checking phase. It
verifies the token’s validity and ensures that the member has the authorization to
perform this request (via their role and permissions). The authentication & role
checking phase is elaborated further in section 7.2.

3. The Controller part decodes the JSON file and parses the different parameters. If
there are no errors, the data request is passed to the Model part.

4. The Model part uses the parameters to generate requests to the database and re-
trieves/manipulates the requested data using GORM.

5. The Model part returns the response to the Controller.

6. The REST server sends the HTTP response to the client.

7.1.2 Files organization
In addition to the Controller-Model architectural pattern, the server files are organized
into different folders. This organizational system categorizes services based on similar-
ities between different tasks, ensuring good modularity. The table 7.1 lists the folders
composing the server.

Package Name Description

auth Contains the authentication components of the REST server. See
section 7.2 for further details

controllers Contains the high-level procedures (e.g. JSON decoding, UUID
checking...).

docs Contains the REST API documentation automatically generated
by Swaggo. See section 7.4 for more details.

html Contains the HTML code sent by email to a newly registered mem-
ber.

42

Chapter 7 – The REST Server Authentication & Role Checking

models Contains the representations of the SQL tables and interacts with
the database using GORM.

res Contains sample data that is used to populate the database in de-
bug mode.

routes Contains the list of routes exposed by the server.

swaggo Defines additional structures only used for the API documenta-
tion.

tests Contains unit, integration, and performance tests.

utils Contains utility functions used in the project (e.g UUID checking).

Table 7.1: Files organization of the REST server

7.2 Authentication & Role Checking

Authentication

The server uses JWT tokens as an authentication mechanism. JWT (JSON Web Token)
is an open standard (RFC 7519) utilized for authentication and authorization in web sys-
tems and APIs. It secures communication through a digital signature, ensuring the token’s
authenticity and integrity [31]. Once a member successfully logs in, they receive a dedi-
cated token enabling identification in subsequent requests to access routes, services, and
resources. Presently, each request includes a ’bearer authentication’ in the header. The
token comprises a member/user ID representing the logged-in user and a sessionID that
corresponds to the current user session. The sessionID is used by the mobile application
and is beyond the scope of this thesis.

Role Checking

After verifying the token’s validity, the server initiates the member’s role checking
phase based on the received request. The principle is as follows: the server retrieves
the member’s role(s) within the current affiliation and verifies whether their permissions
allow them to execute this request. The aim is to prevent unnecessary workload on the
server and the database by directly identifying if the member is authorized to execute this
request based on their permissions. To achieve this, several new Go structures have been
defined within the server, with the main ones being role and permission. Let’s now see
how this works.

43

Chapter 7 – The REST Server Authentication & Role Checking

Figure 7.2: REST Server – Role Checking Steps

1. The request is first replaced by its regular expression [32]. This allows for subse-
quent comparison without worrying about potential UUIDs present in the request.

2. Checks if the request is a route that requires permission. To achieve this, the request
transformed into its regular expression is compared to the list of routes requiring
permission stored in the permissions_routes table. If there’s a match, the route
requires specific permission. Otherwise, if there’s no match, the request doesn’t re-
quire any permission and is directly transferred to the Controller part for processing
(such as POST /api/members/login, for instance).

3. If the route requires permission, the roles and permissions of the member sending
the request are retrieved. Roles are retrieved in plural because a member with multi-
ple roles in an affiliation has the combined permissions of those roles. If the member
has the permission required for the request among their permissions, it proceeds to
the Controller part. Otherwise, an error message is returned.

This solution has been implemented to allow easy and flexible integration of future per-
missions and routes requiring authorization. Currently, there are 54 routes that require
authorization on the server. All these routes can be found in appendix A.2. Each of these
routes corresponds to one of the 5 permissions (as seen earlier in section 4.1). Addi-
tionally, the solution also flexibly manages different members having distinct permissions
across various affiliations without any complications.

44

Chapter 7 – The REST Server Roles, Affiliations & Groups implementation

7.3 Roles, Affiliations & Groups implementation

Roles implementation within the server

The goal here is to provide a member within an affiliation the ability to create roles
with a specific name, selected members, and their chosen permissions. The member
should also have the ability to update them. After several days of consideration, I opted
for a solution that offered complete flexibility while minimizing the number of interac-
tions and tables.

When a member creates a role with a label, members, and permissions on the web
platform, three requests are sent to the server. The first request creates the role in the
database directly in the roles table, recording its label. The second request registers
the members associated with the roles by adding their IDs with the created role ID in the
roles_members table. The third request saves the associated permissions by writing their
ID with the created role ID in the roles_permissions table. Similarly, to modify a role,
each parameter can be updated via a dedicated request.

Affiliations implementation within the server

The affiliation is the central entity of the ATHLETin experience, offering access to all
application modules. Its implementation must thus be efficient and high-performing. A
member should be able to create or join an affiliation, while an administrator (or a mem-
ber with the necessary authorization) should have the ability to add/delete members and
athletes to it.

When a member creates an affiliation, multiple requests are sent to the server. The first
involves creating the affiliation in the affiliations table. The second is the automatic
creation of an administrator role in the roles table and registering its connection to this
affiliation in the affiliations_role_admins table. Subsequently, the creator is added
to the affiliation and assigned to the administrator role in the affiliations_members
(as a member), affiliations_admins (as an admin), and roles_members tables (for
the admin role). The creator can then add/retire members and athletes to the affiliation
via the affiliations_members and affiliations_users tables. They also have the

45

Chapter 7 – The REST Server Roles, Affiliations & Groups implementation

ability to upgrade a member to an admin role, as well as update all affiliation parameters.

When a member joins an existing affiliation, they are simply added to the dedicated
affiliations_members table of that affiliation, becoming a regular member. For sim-
plicity, the current invitation link for an affiliation is its ID.

In addition to that, there’s another noteworthy aspect to mention. Indeed, a member
has the ability to create an affiliation (thus becoming its administrator) and later leave it.
In such a scenario, an affiliation without an administrator, referred to as a ’ghost’ affilia-
tion, would persist in the database unnecessarily consuming space. Hence, when a request
is made to remove an administrator or a member, the server checks if the affiliation ends
up without any administrators or members. If this condition is met, the affiliation is con-
sequently deleted following that request.

Groups implementation within the server

The group organizes members into subgroups and sub-affiliations for better organiza-
tion. A member should be able to create a group or join an existing (sub)group. A group
administrator can create/delete subgroups and sub-affiliations, as well as remove/upgrade
other members to administrators.

When a member creates a group on the web platform, three requests are sent to the
server. The first request creates the group in the database by writing it into the groups ta-
ble. The second and third requests register the creating member in the groups_members
and groups_admins tables. If an admin member decides to create a subgroup or sub-
affiliation, the process remains the same as above, except that the id_parent_group
field will contain the ID of the parent group.

When a member joins an existing group, they are simply added to the groups_members
table of that group, as well as to all subgroups within that group. They are also added to
the affiliations_members table if there are sub-affiliations within the topology. For
simplicity, the current invitation link for a group is its ID.

Another aspect worth mentioning is the deletion of a group. An administrator holds
the authority to delete a group, and consequently, the entire hierarchy it encompasses,
including sub-groups and sub-affiliations. The implemented solution draws significant
inspiration from Preorder Traversal [33]. Visualized as a tree, the group hierarchy is tra-
versed during deletion, descending the tree until reaching a leaf node (a sub-group without
sub-groups or a sub-affiliation), which is deleted before moving back up the nodes. It’s
implemented by recursively exploring sub-groups until reaching one without any child
groups (i.e., there are no groups in the groups table with its ID as an id_parent_group).
This method has also been used for establishing the hierarchy while searching a mem-

46

Chapter 7 – The REST Server Swagger for documentation

ber/athlete within a group tree. The diagram 7.3 illustrates the chronological sequence of
the Standard de Liège group deletion process.

Figure 7.3: Chronological sequence of a group deletion process

7.4 Swagger for documentation
Documentation is a critical part of programming, aiding developers in understanding and
correctly utilizing code while reducing potential future errors. The REST server employs
Swaggo [34], a package based on Swagger [35], to provide clear and effective documen-
tation. Swagger automatically generates API documentation by adding comments to the
code. It’s excellent for maintaining consistent naming conventions, adhering to best prac-
tices, and saving coding time on the client side. All the methods exposed in the API
(methods in the controller folder) are described using Swaggo syntax, allowing for
the visualization of the entire API documentation in a web browser. Additionally, it is
possible to extract a JSON collection from Swagger documentation to create a Postman
collection, facilitating testing for each API entry point.

7.5 Postman as a testing platform
Another tool that significantly accelerated the development phase is Postman [9]. It’s
straightforward and efficient for creating, testing, and debugging APIs. It offers a user-
friendly interface to construct HTTP requests and visualize API responses. At the begin-
ning of this project, a dedicated environment and collection were provided via Postman
to better understand the API. Personally, I extensively used it when testing a newly imple-
mented method on the REST server. It saved considerable time by allowing me to verify
functionality without launching the frontend each time. Additionally, it facilitated clear
transmission of the collection containing newly implemented requests to future develop-
ers.

47

Chapter 8

Administration platform

The administration platform is the web server with which members interact during the
ATHLETin experience. It serves as the project’s facade and, therefore, must be perfor-
mant, intuitive, and clear. In this chapter, we will explore how the project’s frontend is
designed, along with its new features.

8.1 Architecture
8.1.1 Controller-Model pattern
Similarly to the REST server (7.1.1), the web server is organized following the Controller-
Model architectural pattern. Here, the controller part interacts with the REST server to
retrieve the requested data and translates the received JSON data into formats that can be
manipulated by Flutter structures. On the other hand, the model part defines these Flutter
structures and the requests used to interact with the REST server.

8.1.2 Files organization
The administration platform’s files are organized into different folders. This facilitates
clear categorization and good modularity, which are essential in a project of this scale.
Table 8.1 lists the folders that make up the web server.

Package Name Description

controllers Contains procedures for managing interactions with the REST
server and translating received JSON data.

models Contains Flutter representations of the structures to manipulate,
as well as the implementation of requests to the REST API.

pages Contains the implementation of all the pages of the administration
platform.

48

Chapter 8 – Administration platform Architecture

services Contains the services used to interact with the REST API, along
with the necessary singleton [36] implementations. Further de-
tails will be provided in the following subsection.

utils Contains utility functions often used in the project (e.g E-mail
validating).

test Contains the unit tests.

Table 8.1: Files organization of the administration platform

8.1.3 Services
In addition to the already implemented services interacting with the REST API in the
services folder, I needed to define singletons to manage the currently chosen role, af-
filiation, and group most effectively. The singleton pattern [36] is used in object-oriented
programming to ensure that a class has only one instance and provides a global point of
access to it. That’s why it was used to represent the following classes.

PermissionsDictionnary

The PermissionsDictionary class aims to store and recognize ATHLETin permis-
sions regardless of their ID. It represents a dictionary mapping the permission’s ID (which
can change) to a literal identifier (which does not change). Indeed, a permission’s ID
might change from one execution to another if desired by the developer, while the literal
identifier does not (’handleStudies’ for example). This way, the web server receiving
the set of permissions upon a member’s connection can subsequently manage permis-
sions, knowing what to display without relying on hard-coded parts.

As a matter of fact, it’s impossible to determine whether the admin platform should
display the ’Results’ section without a fixed permission identification system (that re-
mains unchanged over time). My initial approach relied on permission IDs, but that would
imply that permission IDs cannot change, which isn’t the case. Instead, the permission
dictionary enables the code to cleanly identify whether a member should see this sec-
tion/widget or not. Here’s how it’s implemented.

Figure 8.1: PermissionsDictionnary utility example

49

Chapter 8 – Administration platform Architecture

ChosenAffiliation

The ChosenAffiliation class simply aims to represent the currently selected affil-
iation. It provides a global access point to the affiliation (ID, label, members, admins,
and role_admin) throughout the code.

ChosenGroup

In the same way, the ChosenGroup class aims to represent the currently selected
group. It provides a global access point to the group (ID, label, members, admins,
and id_parent_group). However, as a group can potentially contain subgroups, the
logged-in member has the ability to explore as deep as the topology permits. That’s why
the ChosenGroup class is, in reality, a stack structure [37] used to represent the current
state concerning the group(s). Initially, when the member is on the main selection menu,
the stack is empty. Once the member selects a group, that group is added to the stack
via a push operation. If the member decides to return to the selection menu, the group
is removed from the stack using a pop operation. Here’s an illustrative example of the
ChosenGroup’s groupstack.

Figure 8.2: ChosenGroup stack example

50

Chapter 8 – Administration platform Role pages

8.2 Role pages
The Role pages serves as the primary interface for implementing the role system. It en-
ables authorized members to create new roles and modify existing ones. A NavigationDrawer
[38] facilitates access to various sections, initially highlighting the role creation option.

Role creation page

Figure 8.3: Role creation page

The role creation page allows members to create a role with a label, selected members,
and their desired permissions. The only constraint is that the role label should neither be
empty nor exceed 64 characters. It’s entirely possible to create a role without any mem-
bers or permissions initially, with the intention of modifying it later.

The text field for the label is subject to a validator, ensuring that the label is neither
empty nor exceeds 64 characters in length.

To add members, the role creator can either directly choose them from the dropdown
list or select them via search. The member search functionality is an AlertDialog [39]

51

Chapter 8 – Administration platform Role pages

(also known as a basic dialog) that appears upon clicking ’Search for Members’. This
pop-up enables users to search for members based on their names, and the member list
automatically filters with each character entered.

Figure 8.4: Add member dialog filtering

To add permissions to the new role, a CheckboxListTile [40] is available. Each
selected permission will affect the experience for members assigned to this role. The fol-
lowing figure illustrates the current list of ATHLETin permissions and their impact on the
user experience.

Figure 8.5: Permissions list & their impact on the user experience

52

Chapter 8 – Administration platform Role pages

Role modification page

Figure 8.6: Role modification page

The role modification page fundamentally follows the same structure as the creation
page. Here, the label, selected members, and chosen permissions are initially pre-filled
with corresponding data. The initial state of the role (label, members, and permissions) is
stored to detect any changes in the role and enable the ’Save Changes’ button. The aim is
to offer the ability to send an update request to the server only when a modification has
been made. It’s also possible to delete the role.

Administrator role page

The admin role modification page allows only viewing its members and adding new
members if the logged-in member is an admin of the affiliation. It’s not possible to re-
move members, modify the role name, alter its permissions (all), or delete the role.

Implementation details

In order to minimize interactions with the REST server, caching was implemented.
Requests for necessary data for the page are made only once, prior to any other actions.

53

Chapter 8 – Administration platform Affiliation pages

Consequently, the lists of roles, members, and permissions are retrieved from the start.
This methodology enhances the page’s responsiveness, albeit at the cost of a slightly
longer initial loading time, which we consider an acceptable trade-off.

8.3 Affiliation pages
The Affiliation pages essentially consist of a main menu page for the ATHLETin appli-
cation, a page providing an overview of the affiliation, and a page to add an affiliation
from the selection menu (create or join). The main menu of an affiliation displays all
the application modules as sections, with the affiliation overview being one of them. The
affiliation overview page enables members to review affiliation information and adminis-
trators to manage it. Specifically, an administrator can upgrade a member to an adminis-
trator, remove a member or an athlete from the affiliation, modify the affiliation’s name,
or delete it.

Affiliation main menu page

Figure 8.7: Affiliation main menu page

The main menu page of an affiliation is simply a classic home menu displaying the
current affiliation’s name and all ATHLETin modules as sections. All these sections are

54

Chapter 8 – Administration platform Affiliation pages

also accessible via the application bar. Screenshots of the sections that are not covered
here can be found in the appendix B.

Affiliation overview page

Figure 8.8: Affiliation overview page

The affiliation overview page allows the viewing member to perform various actions.
The member can exit the affiliation using the ’more’ button in the top left corner. If the
member is an administrator, they can modify the affiliation’s name or delete it. They can
also upgrade a regular member to an administrator or remove them from the affiliation.
Similarly, they can also remove an athlete from the affiliation.

55

Chapter 8 – Administration platform Affiliation pages

Add an affiliation page

Figure 8.9: Add affiliation page

The Add affiliation page allows members to create a new affiliation or join an existing
one. Members access this page when they select the ’Add an affiliation’ option from the
affiliation/group selection page (the starting page). If a member creates a new affiliation,
the request is processed when they press the creation button. Similar to roles, the affilia-
tion name cannot be empty or exceed 64 characters, ensured beforehand by a validator.

If a member decides to join an existing affiliation by submitting an invitation link (the
ID) of the affiliation, a request to join the affiliation is sent to the server. The REST server
receives the request and successfully attempts to process it. However, if no affiliation with
that ID is found, it returns an error message to the web server, which is then displayed on
the screen via a validator.

If the invitation link is valid, the member becomes a member without default permis-
sions and is directed to the main menu page of the affiliation. Therefore, they won’t see
the ’Results’ and ’Roles’ sections on the main menu and in the application bar. They
also won’t have the option to modify/delete the affiliation on the overview as they are not
an administrator. Both pages from the perspective of a member without permissions are
illustrated below.

56

Chapter 8 – Administration platform Group pages

Figure 8.10: Affiliation main menu & overview page as a member with no permission

Implementation details

In order to minimize interactions with the REST server, caching was implemented.
Requests for necessary data for the pages are made only once, prior to any other actions.
Consequently, the lists of administrators, members, and athletes are retrieved from the
start.

The use of ChangeNotifierProvider and Consumer has also been extensively em-
ployed to minimize and target widget rebuilds when necessary. When a request modifying
the affiliation has been successfully executed, the method notifyListeners() enables
the reconstruction of only those parts dependent on this change. Hence, if there’s a mod-
ification in the affiliation’s name, the consumers of the AffiliationChangesNotifier
are notified (which includes all widgets displaying the affiliation’s label).
MembersChangesNotifier and UsersChangesNotifier are used similarly.

8.4 Group pages
The group pages allow members to organize and navigate through a completely dynamic
and flexible topology. They consist of a selection page, a group menu page, a group
overview page, and two pages summarizing the activity of a sought member or athlete
within the topology.

57

Chapter 8 – Administration platform Group pages

Selection page

Figure 8.11: Selection page

The selection page is the first page a member lands on just after logging in. It presents
the member with their ’root’ groups and affiliations, as well as a button to add a group
or an affiliation. A ’root’ group simply means it is the highest group in the topology to
which the member belongs. It is possible to select a group to explore its topology or an
affiliation to directly access the main menu of that affiliation. Additionally, one can leave
the group/affiliation via the ’more’ button below the entity’s name.

The group/affiliation addition button brings up a dialog that allows the member to
choose whether to add a group or an affiliation. Both the group and affiliation addition
pages are essentially the same, offering the option to create or join using an invitation
link.

58

Chapter 8 – Administration platform Group pages

Group menu page

Figure 8.12: Group menu page

The group menu page is where a member lands when choosing a group from the se-
lection page or a subgroup from the group menu page. It enables the member to see the
subgroups and sub-affiliations within the selected group. It also provides access to the
overview of the currently selected subgroup via the ’more’ button at the top right. The
page also features a search bar, further explained below. If the member is an administra-
tor, it’s also possible to add a subgroup/sub-affiliation via the ’+’ button. An important
point to note here is that the administrator member can only create subgroups/affiliations
and cannot join them via an invitation link inside a group.

The search bar allows the logged-in member to search for other members or athletes
throughout the entire topology (starting from the currently selected group). It provides
a filterable list based on whether one is searching for a member or an athlete. It also
automatically filters with each keyboard input. Once a member or athlete is selected, the
logged-in member lands on the dedicated member/athlete page.

59

Chapter 8 – Administration platform Group pages

Figure 8.13: Group search bar

Group overview page

Figure 8.14: Group overview page

Fundamentally similar to the affiliation overview page, the group overview page al-
lows members to view the group’s information. If the member is an administrator, they
can edit the name, remove or upgrade a member to an administrator. They can also delete
the group.

60

Chapter 8 – Administration platform Group pages

Member page

Figure 8.15: Member page

The member page allows the connected member to view various pieces of information
about a member within the topology. They can see the list of questionnaires created by
that member along with their creation dates. Additionally, they can view the groups and
affiliations to which this member belongs. If the connected member is a group admin-
istrator, there is a ’+’ button available that allows them to add groups/affiliations to this
member via their ID. If the connected member is not an administrator, they can only view
those information.

61

Chapter 8 – Administration platform Group pages

Athlete page

Figure 8.16: User page

The athlete page is essentially the same as the member page. There is the list of stud-
ies in which the athlete is registered. There is no list of groups since an athlete can only
belong to affiliations and not groups.

Implementation details

In order to minimize interactions with the REST server, caching was implemented.
Requests for necessary data for the pages are made only once, prior to any other actions.
Consequently, the lists of subgroups, sub-affiliations, members, and athletes are retrieved
from the start.

The use of ChangeNotifierProvider and Consumer has also been extensively em-
ployed to minimize and target widget rebuilds when necessary. Hence, if there’s a modi-
fication in the group’s name, the consumers of the GroupChangesNotifier are notified
(which includes all widgets displaying the group’s label).
SearchChangesNotifier, MembersChangesNotifier and UsersChangesNotifier are
used similarly.

62

Chapter 9

Testing & Performance tools

In this chapter, we will explore the testing tools used to verify the correctness of imple-
mented functionalities. Testing is a crucial phase in software development as it ensures
the quality and reliability of applications. This chapter covers the different types of tests
applied to the project.

9.1 Unit Tests
Unit tests are designed to independently test small units of code to ensure that each el-
ement performs its intended function. These small units can be functions, classes, or
isolated methods. This type of testing is well-suited for testing REST API methods. Re-
garding the web server, it is also well-suited for testing business logic, algorithms, and
data processing operations. Because they operate on small portions of code, they are
straightforward to implement and run efficiently.

9.2 Widget Tests
Widget tests in Flutter are designed to test the behavior and appearance of individual wid-
gets within the application. They focus on testing user interface components, allowing
developers to simulate user interactions. This involves testing widgets, their interactions,
and the overall responsiveness of the interface. Widget tests ensure that interface compo-
nents render correctly and maintain the expected state throughout the application’s lifecy-
cle. In summary, they ensure a smooth and reliable user experience in Flutter applications.

9.3 Integration Tests
Integration tests assess how different parts of the application interact and come together.
They’re the most complete type of automated tests, aiming to verify smooth collaboration

63

Chapter 9 – Testing & Performance tools Manual Tests

among various widgets, modules, or features of the application. Specifically, an inte-
gration test checks communication between components, data consistency, and respon-
siveness to application interactions. In practice, they validate data flow, navigation, API
integration, and the overall application behavior. Integration tests contribute to ensuring
the robustness and overall performance of the Flutter application. However, due to their
complexity, they are slow to execute.

9.4 Manual Tests
During this thesis, a complete set of automated tests unfortunately was not implemented.
Instead, emphasis was placed on manual testing for quick and targeted verifications at
the expense of comprehensive case coverage. This approach allowed successful testing
of all actions achievable on the web application. Additional tests from a more malicious
perspective were also conducted to verify that a logged-in member only has access to
resources granted by their permissions. Access to unauthorized pages and unauthorized
requests were tested and covered successfully. As the application includes many recurring
code structures (e.g., member lists or group widget implementations), some manual tests
could be performed once to validate multiple parts of the module.

Figure 9.1: Test types relationships [41]

9.5 Performance Tools
Regarding the backend part, query performance is enhanced through indexes in tables.
They expedite the search and retrieval of records. Specifically, indexes optimize searches
by rapidly locating records that meet specific search criteria, reducing the time required to
execute SELECT queries. Indexes also ensure the uniqueness of values in a column or set
of columns and are often used for primary keys or unique constraints. They additionally
speed up joins between multiple tables and data filtering. Indexes have been defined for
all new implemented tables, which can be found in Appendix A.1.

64

Chapter 9 – Testing & Performance tools Performance Tools

Regarding the frontend part, Dart and Flutter provide tools allowing to get better
insights on the way the app is run. The Dart DevTools [42] is a list of features that allows
for profiling and debugging Dart and Flutter applications. Within the tools accessible for
web application, the following are included:

• The Flutter Inspector helps visualize and explore Flutter widget trees, aiding in
understanding existing layouts and diagnosing layout issues [43].

• The Flutter Debugger allows pausing the application at breakpoints, executing the
app step by step, and inspecting variables [44].

Other features were implemented by Flutter, such as the CPU and Network profiler, but
they were not available for web applications in profile mode.

Browser tools

For deeper insights into the app’s performance, the browser can be utilized to directly
scrutinize the module’s behavior. Chrome DevTools [45] were employed while examin-
ing the app for CPU profiling, network profiling, and frame rate analysis. For an overall
assessment of the website, Lighthouse [46] was employed. This open-source tool, initi-
ated by Google, aids developers in optimizing their websites. It provides a rating ranging
from 1 to 100 across various aspects of the website, including:

1. Performance: Measures factors influencing loading speed, such as interactivity and
time to load. It was not able to score the module because the performance should be
handled internally by Flutter during compilation to JavaScript code.

2. Accessibility: Checks for elements that affect how easily users with disabilities can
navigate and understand the content.

3. Best Practices: Assesses adherence to web development best practices, including
secure browsing, use of modern technology, and avoiding deprecated practices.

4. SEO (Search Engine Optimization): Evaluates how well the website can be discov-
ered by search engines, assessing metadata, keywords, and other factors.

Figure 9.2: Lighthouse score for the Select Page

65

Chapter 10

Deployment

After completing the app development, the next phase involves deployment. This chapter
will outline ATHLETin’s module structure and detail the method employed to consolidate
all modules, aiming to streamline the user experience.

10.1 Docker to encapsulate the modules
The various components of the ATHLETin project, such as the medical and calendar mod-
ules, were enclosed within containers to manage their respective dependencies. Each
module is encapsulated separately, allowing for independent dependency management.
Docker [28] was utilized to create these containers. The module separation achieved
enables running them on distinct dependency versions aligned with their development re-
quirements. Ultimately, Docker’s usage in encapsulating these modules facilitates faster
and simpler deployment procedures.

Docker serves as a widely-used containerization tool, enabling developers to package
applications along with their dependencies into self-contained containers. In the context
of this app, Docker simplifies containerization. Once the dependencies are accurately
listed in the Dockerfile, building the Docker image becomes straightforward. This re-
sulting image can be executed on any environment equipped with Docker.
The image generation process involved two main steps:

1. Setting up the environment: Starting with a Debian [47] image, it configures and
installs the essential dependencies required for running Flutter.

2. Generating the runtime image: The compiled web application is then transferred
into an Nginx container (further details below).

66

Chapter 10 – Deployment Nginx as a reverse proxy

10.2 Nginx as a reverse proxy
ATHLETin consists of multiple standalone modules, each needing access within a unified
web server. Nginx [48] was employed to create this server, configured as a reverse proxy
to distribute users across the different modules depending on the URI they send. It routes
users to the appropriate module based on their request. These modules are differentiated
by their unique port numbers while sharing the same domain.

67

Part IV

Conclusion

68

Chapter 11

Conclusion

Throughout this thesis, we’ve detailed our implementation of a REST server, a database,
and an administrative web module for ATHLETin. The administrative module comprises
a role system for flexible permission granting, an affiliation system to group and manage
members and athletes, and a group system to organize sports organizations into teams.
The aim of this module is to provide coaches and health specialists with a flexible, user-
friendly platform for managing their athletes. This thesis builds upon a project initiated
by Professor Laurent Mathy and his team, motivating the decision to develop modular
components to ease future integration.

Before delving into project implementation, it was crucial to analyze the current sys-
tem specifications, particularly the technologies employed and architectural decisions.
The backend of the existing system consisted of a REST server in Go coupled with a
PostgreSQL database. This server communicated with the database using GORM, an ORM
specifically tailored for Go. Regarding the frontend, Dart language and the Flutter frame-
work were chosen. Flutter, being a cross-platform SDK, enables ’write once, deploy ev-
erywhere’ functionality. This property might prove beneficial in the future if Professor
Mathy intends to repurpose parts of the web module for other application projects.

The development of the solution was divided into 3 phases. Firstly, the role system
was designed and implemented. Secondly, the affiliation system was implemented, con-
sequently completing the role system. Thirdly, the grouping system was implemented
on top of the other two. This approach allowed the creation of modular components that
align with an already existing and advanced project.

This thesis focused on achieving high performance while ensuring user-friendly in-
teractions, which posed a considerable challenge. It was necessary to devise the most
optimal way to implement the three systems on top of an already ongoing project. To en-
hance the efficiency of the REST server, we optimized the database tables by minimizing
the number of tables to only the essential ones and incorporating indexes. These indexes
play a vital role in maintaining reasonable response times, especially as the database
scales. We also optimized the REST server by implementing requests to minimize the
database workload. In addressing web performance issues, unnecessary page rebuilding
has been identified as a significant challenge. To tackle this, we adopted the provider
state management pattern. This pattern facilitates selective component rebuilding based

69

Chapter 11 – Conclusion Conclusion

on user interactions, preventing unnecessary rebuilding of unchanged parts. Moreover,
the web platform also minimizes interactions with the REST server through its caching
mechanisms.

Throughout the development of the administration module, various types of tests
were created to verify the entirety of the implemented functionalities. Once the devel-
opment phase concluded, the subsequent steps involved deployment. Generalities about
the project were introduced, along with specific details regarding its case.

In conclusion, the objective of this thesis was to create a solution for ATHLETin’s
issues. After multiple design and implementation phases, the result meets the clients’
requirements successfully. The enhanced administrative module comprising role, affilia-
tion, and group systems empowers coaches and healthcare professionals to flexibly and
effectively manage a sports organization according to their preferences. Regarding the
backend and frontend implementation, the components were designed in a modular man-
ner to facilitate integration within Professor Mathy’s architecture. Finally, the solution
includes documentation to ease future reuse.

70

Chapter 12

Future work

To conclude this thesis, this final chapter below lists possible new features that could be
added to enhance the current system capabilities and user experience.

12.1 Responses to questionnaires in athlete page
Alongside personal information, studies and affiliations, it would be relevant to showcase
an athlete’s questionnaire responses when a member views their researched athlete page
(see 8.16). This could provide an accessible summary of a athlete’s responses within a
single view.

12.2 More languages
The modules currently offer a French interface. Incorporating additional languages could
not only broaden the app’s audience but also assist non-French-speaking athletes using
the app when answering questions. Expanding the range of supported languages could
make the ATHLETin solution accessible to a larger user base.

12.3 Instant messaging
In Section 1.2.5, we highlighted the need for a communication feature enabling members
to exchange messages in an instant messaging format similar to Messenger or WhatsApp.
Although this functionality hasn’t been implemented at present, as a recommendation for
future project handling, it could be realized using web sockets.

71

Chapter 12 – Future work Question creation

12.4 Question creation
While studies and questionnaires can be generated, the feature for creating questions has
not been implemented. Although a simple menu could suffice, considering that questions
will occupy a significant portion of the database, efficiency in their creation becomes cru-
cial. Efficiency, in this context, aims to prevent generating numerous similar questions
that might result in redundant duplicates in the database. Utilizing existing features like
keywords could help by initially searching if a question already exists before its creation.

12.5 Event visualization
Each questionnaire is active based on its event’s time period. Implementing a visualiza-
tion feature would aid management by providing a clear view of the number of active
questionnaires during specific time periods. This can prevent the setup of an excessive
number of questionnaires simultaneously, preventing athletes from being overloaded with
an excessive amount of questions to answer.

12.6 Improve responsiveness
The application currently has limited responsiveness features since its original design tar-
geted computer usage exclusively. While certain Flutter widgets adjust their display when
screen size changes, enhancements are needed to enhance the platform’s usability across
various devices.

72

Appendix A

Backend Appendix

73

Figure A.1: Complete structure of the database

747474

Chapter A – Backend Appendix Backend Appendix

Figure A.2: permissions_routes – All 54 routes that requires authorization

75

Appendix B

Modules screenshots

Figure B.1: Login page

76

Chapter B – Modules screenshots Modules screenshots

Figure B.2: Selection page

Figure B.3: Group menu page

77

Chapter B – Modules screenshots Modules screenshots

Figure B.4: Group overview page

Figure B.5: Member page

78

Chapter B – Modules screenshots Modules screenshots

Figure B.6: User page

Figure B.7: Affiliation main menu page

79

Chapter B – Modules screenshots Modules screenshots

Figure B.8: Affiliation overview page

Figure B.9: Role creation page

80

Chapter B – Modules screenshots Modules screenshots

Figure B.10: Members page 1/2

Figure B.11: Members page 2/2

81

Chapter B – Modules screenshots Modules screenshots

Figure B.12: Athletes page 1/2

Figure B.13: Athletes page 2/2

82

Chapter B – Modules screenshots Modules screenshots

Figure B.14: Profile page

Figure B.15: Results page

83

Chapter B – Modules screenshots Modules screenshots

Figure B.16: Studies page

Figure B.17: Studies questionnaires page

84

Chapter B – Modules screenshots Modules screenshots

Figure B.18: Studies athletes page

Figure B.19: Questionnaires athletes page

85

Bibliography

[1] Lodrini Guillaume. Master thesis : ATHLETin: Web module for the management of athletes’
training calendar and medical appointments.

[2] Alakhir Ahmed. Master thesis : ATHLETin: Development of Administration module for
ATHLETin.

[3] PostgreSQL database management system. URL: https://www.postgresql.org/docs/
current/.

[4] Go Programming Language. URL: https://go.dev/.

[5] GORM - The fantastic ORM library for Golang. URL: https://gorm.io/index.html.

[6] Object Relational Mapping. URL: https://medium.com/@emccul13/object-relational-
mapping-9d84807f5536.

[7] What is REST. URL: https://restfulapi.net/.

[8] Getting Started With Rest API Testing. URL: https://testsigma.com/blog/rest-api-
testing/.

[9] What is Postman. URL: https://www.postman.com/.

[10] Dart programming language. URL: https://dart.dev/.

[11] Dart : Sound null safety. URL: https://dart.dev/null-safety.

[12] Matt Sullivan. Flutter: Don’t Fear the Garbage Collector. URL: https://medium.com/
flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30.

[13] Dart : Asynchronous programming: futures, async, await. URL: https://dart.dev/
codelabs/async-await.

[14] Dart overview | Dart. URL: https://dart.dev/overview.

[15] Core libraries | Dart. URL: https://dart.dev/guides/libraries.

[16] Flutter - Build apps for any screen. URL: https://flutter.dev/.

[17] Flutter architectural overview. URL: https://docs.flutter.dev/resources/architectural-
overview.

[18] Web renderers | Flutter. URL: https://docs.flutter.dev/platform-integration/
web/renderers.

[19] Material Components widgets | Flutter. URL: https://docs.flutter.dev/ui/widgets/
material.

[20] Cupertino (iOS-style) widgets | Flutter. URL: https://docs.flutter.dev/ui/widgets/
cupertino.

86

https://www.postgresql.org/docs/current/
https://www.postgresql.org/docs/current/
https://go.dev/
https://gorm.io/index.html
https://medium.com/@emccul13/object-relational-mapping-9d84807f5536
https://medium.com/@emccul13/object-relational-mapping-9d84807f5536
https://restfulapi.net/
https://testsigma.com/blog/rest-api-testing/
https://testsigma.com/blog/rest-api-testing/
https://www.postman.com/
https://dart.dev/
https://dart.dev/null-safety
https://medium.com/flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30
https://medium.com/flutter/flutter-dont-fear-the-garbage-collector-d69b3ff1ca30
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://dart.dev/overview
https://dart.dev/guides/libraries
https://flutter.dev/
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/platform-integration/web/renderers
https://docs.flutter.dev/platform-integration/web/renderers
https://docs.flutter.dev/ui/widgets/material
https://docs.flutter.dev/ui/widgets/material
https://docs.flutter.dev/ui/widgets/cupertino
https://docs.flutter.dev/ui/widgets/cupertino

Chapter B – BIBLIOGRAPHY Bibliography

[21] Flutter - List of state management approaches. URL: https://docs.flutter.dev/
data-and-backend/state-mgmt/options.

[22] Flutter - Differentiate between ephemeral state and app state. URL: https : / / docs .
flutter.dev/data-and-backend/state-mgmt/ephemeral-vs-app.

[23] Flutter - setState method. URL: https://api.flutter.dev/flutter/widgets/State/
setState.html.

[24] Flutter - InheritedWidget class. URL: https://api.flutter.dev/flutter/widgets/
InheritedWidget-class.html.

[25] Daniel Herrera Sánchez. Flutter Provider: What is it, what is it for, and how to use it? URL:
https://medium.com/bancolombia-tech/flutter-provider-what-is-it-what-
is-it-for-and-how-to-use-it-47d6941860d7.

[26] Hot reload | Flutter. URL: https://docs.flutter.dev/tools/hot-reload.

[27] Navigation and routing | Flutter. URL: https://docs.flutter.dev/ui/navigation.

[28] Docker overview. URL: https://docs.docker.com/get-started/overview/.

[29] What is UUID? URL: https://www.techtarget.com/searchapparchitecture/
definition/UUID-Universal-Unique-Identifier#:~:text=A%20UUID%20(Universal%
20Unique%20Identifier,UUID%20generated%20until%20A.D.%203400..

[30] MVC Design Pattern. URL: https://www.geeksforgeeks.org/mvc-design-pattern/.

[31] JSON Web Tokens. URL: https://auth0.com/docs/secure/tokens/json- web-
tokens.

[32] Go by Example: Regular Expressions. URL: https://gobyexample.com/regular-
expressions.

[33] Preorder Traversal of Binary Tree. URL: https://www.geeksforgeeks.org/preorder-
traversal-of-binary-tree/.

[34] Swaggo. URL: https://github.com/swaggo/swag.

[35] Swagger. URL: https://swagger.io/.

[36] Singletons | Flutter by Example. URL: https : / / flutterbyexample . com / lesson /
singletons.

[37] Stack Data Structure: Practical Applications Operations. URL: https://medium.com/
swlh/stack-data-structure-practical-applications-operations-e4e308008752.

[38] Navigation drawer. URL: https : / / m2 . material . io / components / navigation -
drawer/flutter.

[39] AlertDialog class. URL: https://api.flutter.dev/flutter/material/AlertDialog-
class.html.

[40] CheckboxListTile class. URL: https : / / api . flutter . dev / flutter / material /
CheckboxListTile-class.html.

[41] Testing In Flutter. URL: https://medium.flutterdevs.com/testing-in-flutter-
fd0f82ecddc7.

[42] DevTools | Flutter. URL: https://docs.flutter.dev/tools/devtools/overview.

[43] Using the Flutter Inspector. URL: https://docs.flutter.dev/tools/devtools/
inspector.

87

https://docs.flutter.dev/data-and-backend/state-mgmt/options
https://docs.flutter.dev/data-and-backend/state-mgmt/options
https://docs.flutter.dev/data-and-backend/state-mgmt/ephemeral-vs-app
https://docs.flutter.dev/data-and-backend/state-mgmt/ephemeral-vs-app
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html
https://medium.com/bancolombia-tech/flutter-provider-what-is-it-what-is-it-for-and-how-to-use-it-47d6941860d7
https://medium.com/bancolombia-tech/flutter-provider-what-is-it-what-is-it-for-and-how-to-use-it-47d6941860d7
https://docs.flutter.dev/tools/hot-reload
https://docs.flutter.dev/ui/navigation
https://docs.docker.com/get-started/overview/
https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-Identifier#:~:text=A%20UUID%20(Universal%20Unique%20Identifier,UUID%20generated%20until%20A.D.%203400.
https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-Identifier#:~:text=A%20UUID%20(Universal%20Unique%20Identifier,UUID%20generated%20until%20A.D.%203400.
https://www.techtarget.com/searchapparchitecture/definition/UUID-Universal-Unique-Identifier#:~:text=A%20UUID%20(Universal%20Unique%20Identifier,UUID%20generated%20until%20A.D.%203400.
https://www.geeksforgeeks.org/mvc-design-pattern/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://auth0.com/docs/secure/tokens/json-web-tokens
https://gobyexample.com/regular-expressions
https://gobyexample.com/regular-expressions
https://www.geeksforgeeks.org/preorder-traversal-of-binary-tree/
https://www.geeksforgeeks.org/preorder-traversal-of-binary-tree/
https://github.com/swaggo/swag
https://swagger.io/
https://flutterbyexample.com/lesson/singletons
https://flutterbyexample.com/lesson/singletons
https://medium.com/swlh/stack-data-structure-practical-applications-operations-e4e308008752
https://medium.com/swlh/stack-data-structure-practical-applications-operations-e4e308008752
https://m2.material.io/components/navigation-drawer/flutter
https://m2.material.io/components/navigation-drawer/flutter
https://api.flutter.dev/flutter/material/AlertDialog-class.html
https://api.flutter.dev/flutter/material/AlertDialog-class.html
https://api.flutter.dev/flutter/material/CheckboxListTile-class.html
https://api.flutter.dev/flutter/material/CheckboxListTile-class.html
https://medium.flutterdevs.com/testing-in-flutter-fd0f82ecddc7
https://medium.flutterdevs.com/testing-in-flutter-fd0f82ecddc7
https://docs.flutter.dev/tools/devtools/overview
https://docs.flutter.dev/tools/devtools/inspector
https://docs.flutter.dev/tools/devtools/inspector

Chapter B – BIBLIOGRAPHY Bibliography

[44] Using the debugger. URL: https://docs.flutter.dev/tools/devtools/debugger.

[45] Devtools Presentation | Chrome. URL: https : / / developer . chrome . com / docs /
devtools/overview?hl=fr.

[46] Google Lighthouse. URL: https://www.semrush.com/blog/google-lighthouse/.

[47] Debian. URL: https://www.debian.org/index.en.html.

[48] Ngynx. URL: https://www.nginx.com/.

88

https://docs.flutter.dev/tools/devtools/debugger
https://developer.chrome.com/docs/devtools/overview?hl=fr
https://developer.chrome.com/docs/devtools/overview?hl=fr
https://www.semrush.com/blog/google-lighthouse/
https://www.debian.org/index.en.html
https://www.nginx.com/

