

Étude de la réponse écophysiologique du froment d'hiver et de ses besoins azotés au changement climatique

GRYMONPREZ Lukas

TRAVAIL DE FIN D'ETUDES PRESENTE EN VUE DE L'OBTENTION DU DIPLOME DE MASTER BIOINGENIEUR EN SCIENCES AGRONOMIQUES

ANNÉE ACADÉMIQUE 2023 - 2024

PROMOTEUR : Pr.BENJAMIN DUMONT

© Toute reproduction du présent document, par quelque procédé que ce soit, ne peut être réalisée qu'avec l'autorisation de l'auteur et de l'autorité académique¹ de Gembloux Agro-Bio Tech.

Le présent document n'engage que son auteur.

^{1.} Dans ce cas, l'autorité académique est représentée par le(s) promoteur(s) membre du personnel(s) enseignant de GxABT.

Étude de la réponse écophysiologique du froment d'hiver et de ses besoins azotés au changement climatique

GRYMONPREZ Lukas

TRAVAIL DE FIN D'ETUDES PRESENTE EN VUE DE L'OBTENTION DU DIPLOME DE MASTER BIOINGENIEUR EN SCIENCES AGRONOMIQUES

ANNÉE ACADÉMIQUE 2023 - 2024

PROMOTEUR : Pr.BENJAMIN DUMONT

Remerciements

Tout d'abord, j'aimerais remercier le Pr. Dumont pour m'avoir permis de réaliser ce TFE qui était une opportunité de sortir de ma zone de confort et d'apprendre à utiliser des outils que je ne maîtrisais pas. Merci d'avoir pris du temps et d'avoir toujours été à l'écoute que cela soit par rapport au sujet de ce travail mais également par rapport aux doutes et interrogations tout au long de ce dernier.

J'aimerais également remercier toutes les personnes qui ont rendu ma vie étudiante plus agréable à vivre et d'avoir participé à des moments que je n'oublierai jamais. Je pense notamment à la fine équipe du Home et nos soupers très gastronomiques. Le Néon's et ses habitants tous autant bizarres les uns que les autres que cela soit pour nos nombreuses victoires de belote ou notre bar clandestin. Sans oublier bien évidement l'ABI avec nos nombreuses bêtises folkloriques en tout genre et ces moments incroyables passés ensemble qui font de vous des êtres chers à mes yeux! L'ABI ne perira pas!

Je remercie tout particulièrement mon acolyte Colleen sans qui ce travail n'aurait jamais vu le jour. Merci pour toute l'aide et le soutien que tu m'as fournis. Merci d'être là et de faire tout ce que tu fais, je suis plus qu'heureux de pouvoir finir ces études à tes cotés !

Enfin, le plus grand remerciement va à ma maman dont le soutien et l'écoute n'a jamais failli à travers les années. Merci à toi de m'avoir permis de faire ces études et d'avoir pu les vivre ainsi. Merci à toi d'avoir toujours été là pour moi!

Cet travail de fin d'étude est dédié à ma grand-mère qui m'a beaucoup inspiré dans la vie et qui a toujours été un exemple pour moi. J'aimerais tellement pouvoir vivre ces moments à venir avec toi et te montrer tout le chemin parcouru.

Abstract

Climate change is represented by an increase in the concentration in CO_2 , an increase in the average temperature at the surface of the globe and an increased variability in climatic conditions. In this situation, it is important to know how the phenology of field crops will be impacted and how farmers will be able to adapt.

Therefore, the nitrogen requirement of plants will evolve according to the climatic conditions. The aim of this study is to evaluate how it evolves in its presence in the Hesbaye region, Belgium.

Climate change is represented by the association of 3 representative profiles of the evolution of concentrations (RCP) and 3 time horizons (HT). In order to be representative of the chosen region and to bring variability, 10 soils were selected. In order to see the evolution of plant development in response to nitrogen fertilization, 10 contribution modalities were tested.

The results were expressed via variables derived from agronomic variables in order to express the value of aozte input by the plant. This expression of the plant is equivalent to measuring the satisfaction of the nitrogen requirement of the plant. Overall, the results express a more efficient photosynthesis thanks to the fertilizing effect CO_2 which allows to conserve more water in the soil. Thus the stresses due to water deficits disappear and the limiting stress is linked to nitrogen deficiencies. With the evolution of climate change, the nitrogen requirement of winter wheat is moving towards higher fertilization values.

Keywords : Climate change - $Triticum\ aestivum$ - Modelisation - Nutrient Use Efficiency - Climate scenarios

Résumé

Le changement climatique est représenté par une augmentation de la concentration en CO_2 , une augmentation de la température moyenne à la surface du globe ainsi qu'une variabilité accrue des conditions climatiques. Dans cette situation, il est important de savoir comment la phénologie des plantes de grandes cultures va être impactée et comment les agriculteurs vont pouvoir s'adapter.

De ce fait, le besoin azoté des plantes va évoluer en fonction des conditions climatiques en présence. Le but de cette étude est d'évaluer comment il évolue en sa présence dans la région de Hesbaye.

Le changement climatique est représenté par l'association de 3 profils représentatifs de l'évolution des concentrations (RCP) et 3 horizons temporels (HT). Afin d'être représentatif de la région choisie et d'amener de la variabilité, 10 sols ont été sélectionnées. Afin de voir l'évolution du dévelopement de la plante en réponse à la fertilisation azotée, 10 modalités d'apport ont été testées.

Les résultats ont été exprimés via des variables dérivées de variables agronomiques afin d'exprimer la valorisation de l'apport d'aozte par la plante. Cette expression de la plante revient à mesurer la satisfaction du besoin azotée de la plante. Globalement, les résultats expriment une photosynthèse plus performante grâce à l'effet fertilisant CO_2 ce qui permet de conserver plus d'eau dans le sols. Ainsi les stress dûs aux déficits hydriques disparaissent et le stress limitant est liée aux carences en azotes. Avec l'évolution du changement climatique, le besoin azotée du froment d'hiver se dirige vers des valeurs de fertilisation plus élevées.

Mots clés : Changement climatique - *Triticum aestivum* - Modélisation - Efficience d'Utilisation des nutriments - Scénarios climatiques

Table des matières

Ta	able o	des figu	ires	
Li	ste d	les tabl	eaux	
G	lossa	ire		
Ι	Intr	oducti	on	1
II	Rev	ue bib	liographique	2
	1	Chang	ement climatique	2
		i	Les scénarios d'émission	2
		ii	Les impacts du changement climatique sur les grandes cultures en région	
			tempérée	3
	2	La pho	ptosynthèse	4
		i	Généralités	4
		ii	Les métabolismes C3 et C4	4
	3	Le fror	nent d'hiver	4
		i	Description	4
		ii	Production	5
		iii	Notion de phénologie	5
	4	La mo	délisation	5
		i	Généralités	5
		ii	Intérêt des modèles écophysiologiques	6
	5	Fertilis	ation azotée	7
		i	Recommandations	7
		ii	Efficience d'utilisation des nutriments	8
		iii	Coefficient apparent d'utilisation	8
				-
II	I Mat	tériel e	t méthode	9
	1	Le mo	dèle STICS	9
		i	Présentation du modèle	9
		ii	Principe de fonctionnement	9
		iii	Les modules	10
		iv	Développement de la plante	11
		v	Croissance de la plante	13
		vi	Besoins en eau de la plante	14
		vii	Formation du rendement	16
	2	Les do	nnées de référence	17
		i	Données météorologiques	17
		ii	Données pédologiques	17

		iii	Données d'itinéraire technique	17
		iv	Cultivar de référence	18
	3	Param	étrisation du modèle	18
		i	Fichiers météorologiques	18
		ii	Fichiers pédologiques	19
		iii	Sélection des variables pertinentes	23
		iv	Traitement statistique des données	26
IV	$^{\prime}\mathrm{Res}$	ultats	et discussions	26
	1	Analys	se statistique des variables de sortie	27
		i	Date de floraison et de maturité	27
		ii	Étude des stress	30
		iii	Biomasse aérienne à floraison et à maturité	32
		iv	Quantité d'azote absorbé par la plante à floraison et maturité	35
		v	Nombre de grains	37
		vi	Rendement	40
	2	Analys	se statistique des variables dérivées	42
		i	Efficience agronomique d'utilisation des nutriments	42
		ii	Efficience physiologique d'utilisation des nutriments	44
		iii	Coefficient apparent d'utilisation	46
	3	Analys	se en composantes principales	47
v	Dise	cussion	générale et conclusion	53
	1	Discus	sion générale et conclusion	53
	2	Perspe	ectives	54
\mathbf{V}	[Con	ntributi	ion personnelle	55
Aj	ppen	dices		64
		А	Résultats de l'analyse de la variance et du test SNK de la date de floraison	64
		В	Résultats de l'analyse de la variance et du test SNK de la date de maturité	65
		\mathbf{C}	Résultats de l'analyse de la variance et du test SNK de SWFAC.veg1	66
		D	Résultats de l'analyse de la variance et du test SNK de SWFAC.veg2	68
		Ε	Résultats de l'analyse de la variance et du test SNK de SWFAC.rep	70
		F	Résultats de l'analyse de la variance et du test SNK de EWFAC.veg1	73
		G	Résultats de l'analyse de la variance et du test SNK de EWFAC.veg2	77
		Н	Résultats de l'analyse de la variance et du test SNK de TPFAC.veg1	77
		Ι	Résultats de l'analyse de la variance et du test SNK de TPFAC.veg2	78

Ν	Résultats de l'analyse de la variance et du test SNK de la biomasse aé-	
	rienne à maturité	;9
0	Résultats de l'analyse de la variance et du test SNK de la quantité d'azote	
	absorbé par la plante à floraison	2
Р	Résultats de l'analyse de la variance et du test SNK de la quantité d'azote	
	absorbé par la plante à maturité	5
Q	Résultats de l'analyse de la variance et du test SNK du nombre de grains 9	8
R	Résultats de l'analyse de la variance et du test SNK du rendement 10	2
S	Résultats de l'analyse de la variance et du test SNK de l'efficience agro-	
	nomique d'utilisation des nutriments	15
Т	Résultats de l'analyse de la variance et du test SNK de l'efficience phy-	
	siologique d'utilisation des nutriments	18
U	Résultats de l'analyse de la variance et du test SNK du coefficient appa-	
	rent d'utilisation	1

Table des figures

1	Emissions annuelles de CO_2 pour les différents RCPs jusqu'en 2100 $\ldots \ldots \ldots \ldots$	2
2	Principe de fonctionnement STICS. Sources : INRA, 2019	0
3	Modules de STICS. Sources : ARTRU, 2007	1
4	Différents stades culture froment d'hiver. Sources : Brisson et al., 2008 12	2
5	Calcul de l'effet du CO_2 (FCO2) pour une espèce en fonction de son métabolisme	
	C3/C4 : exemple du blé (C3) et du maïs (C4). Sources : N. N. BRISSON et al.	
	$(2009). \ldots \ldots$	4
6	Dessin du diagramme résistif appliqué au système sol-culture. Sources : Brisson	
	et al., $2008 \ldots $	5
7	Influence de l'espèce sur la résistance stomatique. Sources : Brisson et al., 2008 . 10	6
8	Triangle textural. Sources : Zribi, 2016	0
9	Méthode de calcul de l'intensité des stress	5
10	Boxplots des date de (a) floraison et (b) maturité par scénario climatique sous	
	les différents sols et fertilisations confondues	8
11	Boxplots des date de (a) floraison et (b) maturité par fertilisation sous les diffé-	
	rents sols et scénarios climatiques confondus 29	9
12	Evolution de l'intensité du stress en fonction de la gestion azotée	1
13	Boxplots de la biomasse aérienne à floraison par fertilisation et scénario clima-	
	tique pour tous les différents sols confondus	3
14	Boxplots de la biomasse maturité à floraison par fertilisation et scénario clima-	
	tique pour tous les différents sols confondus	4
15	Boxplots de la quantité d'azote absorbé par la plante à floraison par fertilisation	
	et scénario climatique pour tous les différents sols confondus	6
16	Boxplots de la quantité d'azote absorbé par la plante à maturité par fertilisation	
	et scénario climatique pour tous les différents sols confondus	6
17	Boxplots du nombre de grain par fertilisation et scénario climatique pour tous	
	les différents sols confondus 39	9
18	Boxplots du rendement par fertilisation et scénario climatique pour tous les dif-	
	férents sols confondus	1
19	Boxplots de la $NUE_{\rm ag}$ par fertilisation et scénario climatique pour tous les dif-	
	férents sols confondus	3
20	Boxplots de la NUE_{ag} par fertilisation et scénario climatique pour tous les dif-	
	férents sols confondus	5
21	Boxplots de la CAU par fertilisation et scénario climatique pour tous les différents	
	sols confondus	7
22	Pourcentage de la variance expliquée en fonction du nombre de composantes 48	8
23	Analyse en composantes principales selon les 2 premiers axes	9
24	Analyse en composantes principales selon les 2 premiers axes et regroupement	
	par scénario climatique	0

25	Analyse en composantes principales selon les 2 premiers axes et regroupement	
	par fertilisation azotée	51

Liste des tableaux

1	Scénarios et horizons temporels étudiés	18
2	Format des données météorologiques selon le formalisme de STICS	19
3	Format des données disponibles dans la base de données Aardewerk	19
4	Proportion des types de sols présents	21
5	Sols séléctionnés	21
6	Modalités de fertilisation azotée étudiées	22
7	Variable de sorties de STICS étudiées	23
8	Indices de stress étudiés	24
9	Etablissement des méthodes de calcul des variables dérivées	25
10	Valeurs moyennes des différents stress par scénario climatique pour toutes les	
	fertilisations et sols confondus	31
11	Valeurs moyennes de la biomasse aérienne à floraison par scénario climatique et	
	fertilisation pour tous les sols confondus	34
12	Valeurs moyennes de la biomasse aérienne à maturité par scénario climatique et	
	fertilisation pour tous les sols confondus	34
13	Valeurs moyennes de la quantité d'azote absorbé par la plante à floraison par	
	scénario climatique et fertilisation pour tous les sols confondus $\ldots \ldots \ldots \ldots$	37
14	Valeurs moyennes de la quantité d'azote absorbé par la plante à maturité par	
	scénario climatique et fertilisation pour tous les sols confondus $\ldots \ldots \ldots \ldots$	37
15	Valeurs du nombre de grain moyen et les groupes associés pour tous les sols et	
	scénarios climatiques confondus	38
16	Valeurs moyennes du nombre de grain par scénario climatique et fertilisation	
	pour tous les sols confondus	39
17	Valeurs de rendement moyen et les groupes associés pour tous les sols et scénarios	
	climatiques confondus	40
18	Valeurs moyennes du rendement par scénario climatique et fertilisation pour tous	
	les sols confondus	41
19	Groupes de l'efficience agronomique par scénario climatique et fertilisation pour	
	tous les sols confondus	42
20	Groupes de l'efficience physiologique par scénario climatique et fertilisation pour	
	tous les sols confondus	45
21	Groupes du coefficient apparent par scénario climatique et fertilisation pour tous	
	les sols confondus	46

Acronymes

ACP Analyse en composantes principales.

ANOVA Analyse de la variance (analysis of variance).

AOV Analyse de la variance (analysis of variance).

ATP Adénose triphophaste.

 ${\bf CAU}\,$ Coefficient d'utilisation apparent.

 \mathbf{CO}_2 Dioxyde de carbone.

EWFAC Indice de captage d'eau actif sur la RUE et la transpiration.

GES Gaz à effet de serre.

GIEC Groupe d'experts intergouvernemental sur l'évolution du climat.

HT Horizon temporelle.

INNFAC Indice de stress azoté actif sur la croissance en biomasse.

INRA Institut national de la recherche agronomique.

NFRAC Fraction azotée.

 \mathbf{NUE}_{ag} Efficience agronomique d'utilisation des nutriments.

NUE_{phys} Efficience physiologique d'utilisation des nutriments.

 \mathbf{O}_2 Dioxygène.

RCP Profils représentatifs d'évolution de concentration.

RCP_HT Scénario climatique.

RUE Radiation use efficiency.

SAU Surface agricole utile.

SNK Student-Newman-Keuls.

STICS Simulateur mulTIdisciplinaire pour les Cultures Standard.

SWFAC Indice de stress hydrique stomatique.

TPFAC Facteur de réduction de l'efficacité d'utilisation du rayonnement liée à la température.

I Introduction

Le changement climatique représente un défi majeur pour l'agriculture mondiale (LESK et al., 2016). Depuis les années 1950, des changements considérables ont été observés, tels que le réchauffement des océans, la fonte des glaces et une élévation du niveau des mers. Les prévisions indiquent une accentuation des risques climatiques avec notamment l'augmentation de l'occurrence et l'intensité des événements extrêmes. Mais également des changements liés à la température et aux précipitations qui menacent la production alimentaire, ce qui souligne l'importance de comprendre l'impact de l'augmentation de CO_2 sur les rendements agricoles (GIEC, 2014).

La consommation mondiale de blé devrait augmenter de manière importante d'ici 2026, il s'agit d'un aliment de base pour une grand partie de la société. En outre, la population mondiale, qui a plus que doublé depuis les années 1960, continuera de s'élever pour atteindre 9 milliards d'habitants d'ici 2050 (GODFRAY et al., 2010). Le défi pour l'agriculture consiste à répondre à ces besoins alimentaires croissants tout en minimisant l'impact sur le changement climatique.

L'optimisation de la productivité des cultures, notamment par une meilleure gestion de l'azote, est cruciale étant donné que la superficie des terres arables diminue. Les rendements des cultures dépendent de divers facteurs, dont certains peuvent être limitants comme l'eau et les nutriments, tandis que d'autres, comme la fertilisation azotée, ont un impact notable sur les rendements. Les études sur les céréales, comme le froment d'hiver, visent à accroître ces rendements via des pratiques culturales adaptées, telles que la gestion azotée (van ITTERSUM et al., 2013). Une meilleure compréhension de l'impact du changement climatique est une priorité de recherche (HERTEL et al., 2010).

Des modèles de culture sont développés pour évaluer l'impact des pratiques agricoles et conseiller les agriculteurs sur l'utilisation optimale des engrais azotés. Ces outils offrent la possibilité d'atteindre des rendements optimaux tout en réduisant l'impact environnemental de l'agriculture.

II Revue bibliographique

1 Changement climatique

i Les scénarios d'émission

CO2 Emissions from Fossil Fuels and Industry: RCP Scenarios vs. Historical

FIGURE 1 – Emissions annuelles de CO_2 pour les différents RCPs jusqu'en 2100

Quatre schémas distincts appelés "profils représentatifs d'évolution de concentration" (RCP) ont été définis par le GIEC. Ils représentent l'évolution de l'occupation des sols, de la concentration des gaz à effet de serre d'origine anthropique dont le CO_2 , des polluants atmosphérique (GIEC, 2014). Les dynamiques d'émission de CO_2 sont catégorisées selon leur profil respectif (RCP) sur base des valeurs trouvées dans la littérature scientifique (Figure 1).

Ces différents niveaux d'émission sont caractérisés par des valeurs différentes de forçage radiatif liées à la concentration en gaz à effet de serre. Ainsi, le RCP2,6 est associé à la valeur de 2,6 W/m², le RCP4,5 à 4,5 W/m², le RCP6,0 à 6,0 W/m² et le RCP8,5 à 8,5 W/m² (RIAHI et al., 2011). Le forçage radiatif est une mesure qui décrit la perturbation de l'équilibre énergique de la Terre en recevant plus de rayonnement qu'elle en émet. Cet outil permet de quantifier l'augmentation de température à la surface du globe (ANDREWS et al., 2010).

De ce fait, le RCP2,6 est le schéma qui possède la gamme de température la plus basse avec une concentration de CO_2 de 475 ppm tandis que le RCP8,5 contient la gamme la plus haute avec 775ppm de CO_2 . Les RCP intermédiaires que sont RCP4,5 et RCP6,0 possèdent respectivement des concentrations en CO_2 de 525 et 575 ppm (Figure 1).

ii Les impacts du changement climatique sur les grandes cultures en région tempérée

Effet de l'augmentation de la température

L'émission de GES due aux activités anthropiques engendre une augmentation de la température atmosphérique et impacte significativement les agro-écosystèmes (HOSSAIN et al., 2021). Selon l'estimation du GIEC, l'augmentation de la température par rapport aux années 1850-1900 sera de minimum 0,9°C et maximum de 5,4°C (figure 1) (GIEC, 2014). Si les activités anthropiques continuent de suivre la tendance actuelle, il est possible que l'augmentation globale de la température terrestre soit de 6,4°C (HOSSAIN et al., 2021; SOLOMON et al., 2007). La réponse à l'augmentation des températures est variable en fonction des espèces de plante et du territoire. En Europe, les augmentations de température liées aux différents scénarios climatiques sont valables pour toutes les saisons et ont tendance à augmenter les productions céréales dans les zones au climat tempéré (LONG et al., 2005). Ces augmentations favorisent les processus physiologiques et engendrent un raccourcissement des saisons de croissance, ce qui réduit le temps de mise en place de l'appareil foliaire (BASSO et al., 2018; SEGUIN, 2010). Chaque espèce de plante possède une gamme de valeur de température qu'est l'optimum thermique, afin d'augmenter leur rendement les valeurs de températures ne doivent pas être inférieures ou supérieures (HURKMAN et al., 2003).

Les résultats de cette étude suggèrent qu'une variabilité croissante de la température produit un rendement moyen plus faible lorsque les températures de la saison de croissance se situent en dehors de la plage optimale pour la photosynthèse ou la croissance. D'autres études ont fait état d'une diminution du rendement avec l'augmentation de la variabilité de la température (RIHA et al., 1996).

Effet de l'augmentation de la concentration en CO_2 de l'atmosphère

Le dioxyde de carbone joue un rôle majeur dans les processus physiologiques de la plante via la photosynthèse. L'augmentation de concentration de CO_2 permet une meilleure production de sucre pour la croissance de la plante, ce qui stimule significativement le rendement. En effet, ayant une concentration relativement faible et stable dans l'atmosphère, le CO_2 est actuellement le facteur limitant de la photosynthèse. Cela permet également de diminuer l'évapotranspiration des plantes via une teneur intracellulaire plus élevée (ASSENG et al., 2009; LONG et al., 2005).

En ce qui concerne les cultures en C3, elles bénéficieront également d'une diminution de la photorespiration (LONG et al., 2005). Les plantes en C3 sont limitées dans leur croissance par la concentration en CO_2 à l'inverse des plantes en C4 qui sont capables de concentrer le CO_2 dans leurs cellules. De ce fait, l'évolution de la concentration en CO_2 montre une réponse d'augmentation de production de biomasse plus élevée pour les plantes en C3 (SEGUIN, 2010).

2 La photosynthèse

i Généralités

La photosynthèse consiste en la conversion du dioxyde de carbone et de l'eau en oxygène et hydrates de carbone qu'est le glucose grâce à la présence d'énergie solaire. Il s'agit d'un processus de transformation de l'énergie solaire en énergie chimique par la plante. Autrement dit, les composés pauvres en énergie que sont le CO_2 et l'eau sont transformés en composés riches en énergie que sont les hydrates de carbone et le dioxygène (O_2) via l'intervention de l'énergie solaire. La photosynthèse se déroule majoritairement dans les feuilles qui sont les organes récepteurs de la lumière dû à leur disposition et la présence de composés photosynthétiques dont la chlorophylle (HALL & RAO, 1999).

Ce processus se déroule en 2 phases dont la première est photo-dépendante et qui convertit l'énergie lumineuse en énergie chimique (ATP) via des réactions d'oxydoréduction des protons de l'eau. La phase suivante n'est pas photo-dépendante, elle permet d'incorporer le carbone atmosphérique dans la matière organique de la plante via l'énergie produit lors de la première étape. Ainsi, la plante produit du glucose utile au développement de la plante.

ii Les métabolismes C3 et C4

Chez les plantes, il existe plusieurs manière de réaliser la photosynthèse selon leur manière de fixer le carbone sur l'enzyme Rubisco, dit en C3 ou en C4 en fonction de leur type de métabolisme. La majorité des plantes sont de type C3. Elles possèdent un seul type de chloroplaste dont elles sont dépendantes pour la conversion de l'énergie lumineuse en énergie chimique utilisée pour fixer le CO_2 et synthétiser les hydrates de carbone. Les plantes de type C4 comportent un métabolisme qui est une adaptation complexe de la voie C3 qui permet la réduction de la photorespiration. En effet, les plantes C4 ont supprimé efficacement la photorespiration en favorisant la fixation du CO_2 à l'aide d'une pompe biochimique. Ces plantes disposent également d'un compartimentage cellulaire ayant pour effet de diminuer les pertes en CO_2 et en eau (FURBANK & TAYLOR, 1995).

3 Le froment d'hiver

i Description

Le froment d'hiver (*Triticum aestivum* L.), également appelé blé tendre d'hiver, est une espèce monocotylédone annuelle appartenant à la famille des Poaceae. Cette famille correspond aux graminées, groupe botanique contenant la majorité des céréales. Le froment est une céréale dont les grains sont principalement utilisés pour l'alimentation animale, la production de biocarburants ainsi que l'alimentation humaine et l'export dans une moindre mesure (DELCOUR et al., 2014; STUDNICKI et al., 2016). La culture de froment d'hiver correspond à la deuxième production céréalière mondiale avec 779,3 millions de tonnes (BURNY, 2010;

FAO, 2022).

La période de développement du froment d'hiver s'étend de l'automne d'une année et à la mi-été de l'année suivante. La date idéale de semis correspond à la période entre le 15 octobre et le début du mois de novembre (TAULEMESSE, 2015). De ce fait, la culture subit les faibles températures de l'hiver, ce qui est une étape importante de sa croissance. En effet, le froment a besoin d'une période où plusieurs jours froids et courts se succèdent. Cela permet le développement des organes reproducteurs lors du retour des températures plus élevées, ce processus est appelé la vernalisation (BLOOMFIELD et al., 2023).

ii Production

A l'échelle de la Wallonie, la surface agricole utile (SAU) pour le froment d'hiver est de 123 905 hectares, ce qui équivaut à 67% des 185 413 hectares de cultures de froment belge pour une production de 1 136 124 tonnes soit 9,17 T/ha (STATBEL, 2023). Au niveau national, il s'agit donc de la première culture céréalière avec 57,4% de la SAU destinée aux céréales et 11% de la SAU totale pour une production de 1 521 593 tonnes soit 9,27 T/ha pour le rendement moyen (STATBEL, 2023). Ces valeurs de rendements varient selon la météo, la gestion, les stress de croissance et la génétique (BATCHELOR et al., 2002; MIRSCHEL et al., 2014).

iii Notion de phénologie

Les différents facteurs cités ci-dessus ont un impact sur la phénologie de la culture qui correspond à : "La phénologie, dérivée du mot grec *phaino* qui signifie montrer ou apparaître, est l'étude des stades récurrents du cycle de vie des plantes et des animaux, en particulier leur calendrier et leurs relations avec le temps et le climat" (de BEURS et al., 2013).

Cette description du développement végétal est indispensable dans la gestion d'une culture au niveau des opérations culturales comme la fertilisation. Il existe donc des échelles phénologiques qui décrivent les stades de développement sur base des observations de la plante. Notamment l'échelle Zadok qui est une référence internationale pour le froment d'hiver (ZADOKS et al., 1974). Elle se base sur des nombres à deux chiffres correspondant aux stades principaux de croissance (premier chiffre) segmentée en stades intermédiaires (deuxième chiffre) (LARSEN et al., s. d.). L'échelle utilisée dans ce travail, est l'échelle BBCH qui provient de celle de Zadok (LANCASHIRE et al., 1991).

4 La modélisation

i Généralités

La modélisation est actuellement un outil important dans la compréhension et la conception de systèmes de cultures. Les modèles de cultures utilisés sont qualifiées de modèle écophysiologique. Ils prennent en compte de nombreux paramètres et mesures qui constituent l'ensemble sol-plante-climat via des équations et expriment ainsi la réponse de la culture.

L'agriculture a fortement évolué grâce à l'utilisation de modèles notamment la création de différents outils d'analyse et d'aide à la décision (DUMONT et al., 2012; JONES et al., 2017). La réalisation de simulations multiples peut ainsi permettre d'évaluer les besoins de la plante en fonction des scénarios impliqués tout en intégrant des critères agronomiques tels que la variation de la fertilisation azotée (DUMONT et al., 2018).

Un modèle est une représentation simplifiée de la réalité des processus de croissance d'une culture et des échanges avec l'environnement via l'application de concepts théoriques afin de fournir une approximation des résultats attendus expérimentalement (VARELLA et al., 2010). Le modèle est composé d'équations mathématiques qui reproduisent les conditions de sol, les conditions météorologiques et la gestion agricole (HOOGENBOOM et al., 2012).

Il existe deux types de modèle. D'un côté, les modèles statistiques considérés comme plus simples. Ils se basent sur des équations empiriques à partir d'informations statistiques comme les rendements précédents ou les données météorologiques. Ils ont été utilisés pour prédire à grande échelle le rendement des cultures (BREGAGLIO et al., 2015; JAME & CUTFORTH, 1996; LOBELL & BURKE, 2010). De l'autre côté, les modèles mécanistiques considérés comme plus complexes. Ils expliquent la croissance selon la mesure de taux instantanés des processus physiologiques en lieu avec leur environnement (BREGAGLIO et al., 2015; JAME & CUTFORTH, 1996; LOBELL & BURKE, 2010). Cependant, beaucoup de modèles sont constitués de parties empiriques et mécanistes (JAME & CUTFORTH, 1996).

Il existe de nombreux modèles de cultures qui sont capables de simuler différentes cutures comme SALUS (DZOTSI et al., 2015), CERES-Wheat (RITCHIE & OTTER, 1985), DAISY (ABRAHAMSEN & HANSEN, 2000) ou STICS (N. N. BRISSON et al., 2009) utilisé dans cette étude. STICS est un modèle mécanistique qui prend en compte certaines restrictions de culture (disponibilité en eau, nutriments) tout en mettant en place les pratiques agricoles (N. BRISSON et al., 2003).

ii Intérêt des modèles écophysiologiques

Ces aspects de la modélisation permettent un avantage important en sciences agronomique. Ils donnent une approximation théorique sans nécessiter le passage à l'expérimentation tout en restant modifiable à chaque instant. Ce qui est particulièrement intéressant quand le développement de la plante se déroule sur plusieurs années (TARDIEU, 2003).

De manière générale, les modèles apportent un certain nombre d'avantages par rapport aux expérimentations en champ. Notamment vis-à-vis de l'aspect de contrôle des conditions qui sont stables, de répétabilité des simulations (FRY et al., 2017), du temps court de réalisation et du faible prix (SEMENOV et al., 2007). Ils permettent également d'estimer certaines variables non mesurables en champ et de mieux quantifier qu'en expérimentation la variabilité de données agronomiques (ASSENG & TURNER, 2007). De manière générale, l'utilisation de modèles favorise la compréhension des interactions de la culture et de son environnement (MIRSCHEL et al., 2014; SEXTON et al., 2016). Pour toutes ces raisons, cela démontre le potentiel d'utilisation des modèles écophysiologiques pour la comparaison des pratiques de gestion et leur variation au changement climatique (RODRÍGUEZ et al., 2019).

5 Fertilisation azotée

i Recommandations

Selon SUI et al. (2013), de nombreux exploitants agricoles appliquent actuellement une quantité trop élevée d'azote par rapport aux besoins azotés de la plante afin d'atteindre un rendement maximal. Cependant, la fertilisation azotée doit être raisonnée car un apport excédentaire ne contribue plus à l'augmentation des rendements et peut nuire à l'environnement (BASSO & RITCHIE, 2005; CASSMAN et al., 2002). L'azote excédentaire peut alors : polluer l'atmosphère via l'émission d'oxyde nitreux et l'eau souterraine par la lixiviation dans les sols, acidifier les sols, etc. (BASSO & RITCHIE, 2005; CHEN et al., 2008; OEHLER et al., 2007).

Dès lors, la fertilisation azotée doit être réfléchie afin d'être valorisée au mieux par la plante. Une des démarches possibles est de prendre en compte les reliquats des précédents culturaux afin d'être conscient de l'état azoté du sol. Cela permet de s'adapter au mieux pour la saison culturale à venir (JÉGO et al., 2012). Une autre application, cumulable avec la première, est de considérer la minéralisation de la matière organique comme source d'une partie des besoins azotés.

Malgré cela, la fertilisation aux stades de croissance appropriés reste indispensable. Les dates d'applications d'azote varient selon le schéma de fractionnement. Les schémas fractionnés en 3 apports se déroulent aux stades du tallage (BBCH 23), du redressement ou élongation des tiges (BBCH 30) et de la dernière feuille (BBCH 39). Ils ont respectivement pour but de fournir les nutriments nécessaires, de faciliter la montée des talles en épis et de maximiser le nombre de grains par épis. Quant à elle, la gestion azotée en 2 apports se réalisent aux stades du tallage-redressement (BBCH 29) et de la dernière feuille ou feuille étendard (BBCH 39) (LE SOUDER, 2023).

Au-delà de la date d'application, la quantité apportée est également importante. Selon YANG et al. (2017), un fractionnement optimal dans un climat tempéré océanique correspond à une dose totale de 182kg N/h. Tandis qu'en Belgique, la fertilisation optimale conseillée aux agriculteurs est de 185kg N/ha en 3 fractions de 60, 60 et 65kgN/ha. Pour la modalité en 2 fractions, la dose recommandée est de 170kg N/ha avec 95kg/ha et 75kgN/ha pour la première et deuxième application (DUMONT & PIERREUX, 2022). Cependant, des modifications intra-saisonnières peuvent avoir lieu afin de s'adapter aux stress climatiques spécifiques de la saison culturale. De cette manière, dans le schéma typique en 3 apports, la 3ème application d'azote pourrait fréquemment être réduite pour maximiser les rendements agronomiques et économiques (DUMONT et al., 2016). Globalement, les besoins de la plante varient au

cours de son développement et de la saison culturale, ils sont faibles en début de saison puis augmentent à partir de l'allongement des tiges (BBCH30) (BODSON & FALISSE, 1996). Il est donc important de pouvoir caractériser l'évolution du besoin avec l'augmentation de la variabilité du climat lié au changement climatique.

ii Efficience d'utilisation des nutriments

L'efficience d'utilisation des nutriments (NUE) est un critère agro-environnemental qui peut être utilisé pour la comparaison entre différentes cultures et pays pour mesurer l'efficience des itinéraires techniques appliqués dont la fertilisation azotée (MOHAMMED et al., 2018). Il en existe des multiples formes en fonction des objectifs des travaux de recherche. Ces indicateurs permettent de mesurer la valorisation des nutriments apportés pour des finalités économiques, agronomiques, physiologiques et environnementales (RAUN & SCHEPERS, 2008). De manière générale, la gestion de l'azote et les conditions météos sont les principales raisons de variation de la NUE(SEMENOV et al., 2007). Deux formes sont utilisées dans ce travail, l'efficience d'utilisation agronomique (NUE_{ag}) et l'efficience d'utilisation physiologique (NUE_{phys}). La première forme est un indicateur fréquemment utilisé afin d'estimer les doses recommandées d'engrais (CHUAN et al., 2013). Tandis que la NUE_{phys} est un indicateur plus complexe qui dépend du stade de développement de la plante, de l'activité photosynthétique et de la capacité à répondre aux stress.

iii Coefficient apparent d'utilisation

Le coefficient apparent d'utilisation est un indicateur qui permet de mesurer l'efficacité d'un apport de fertilisation azotée en calculant la part qui a été valorisée par la plante. Le CAU à l'instar de la NUE_{ag} est également utilisé pour identifier les doses d'engrais recommandés (LIMAUX, 1994).

III Matériel et méthode

1 Le modèle STICS

i Présentation du modèle

STICS est un modèle développé par l'INRA en 1996 par Dominique Ripoche et Nadine Brisson, il est considéré comme un modèle robuste, dynamique et générique. STICS a été assemblé sur base de plusieurs modèles existants : BYM (eau), LIXIM (azote) et GOA (plante). A l'origine, ce modèle n'était capable que de simuler deux plantes, le maïs et le froment (« INRA », 2017).

Par la suite, STICS a été amélioré afin de considérer d'autres grandes cultures via l'ajout progressif de modules lors de son développement et de ses différentes versions. Depuis 2014, une équipe multidisciplinaire ainsi qu'un réseau scientifique se coordonnent pour son amélioration continue. A l'heure actuelle, STICS est en mesure de reproduire une ving-taine de cultures qu'elles soient annuelles ou pérennes, herbacées ou ligneuses (« INRA », 2017).

La version 8.50 de STICS a été adoptée et utilisée dans le cadre de ce travail.

ii Principe de fonctionnement

STICS est capable de simuler les impacts du climat, de la gestion des sols et des cultures pour prédire la production végétale et son environnement, de manière quantitative et qualitative. Son fonctionnement est compris entre l'atmosphère (limite supérieure) et la jonction sol/sous-sol (limite inférieure). La borne inférieure est divisée en différentes couches horizontales constituées par leur propre teneur en azote organique, minérale et en eau. Dés lors, le sol au sein de STICS comprend 5 horizons différents modélisés individuellement par des couches de 1 cm. Au sein du profil de sol, on retrouve son interaction avec la plante via les racines et leur distribution (N. N. BRISSON et al., 2009).

Le fonctionnement de STICS se base sur un schéma dynamique de croissance du couvert végétal selon un pas de temps journalier. La répartition de la biomasse et des photos-assimilâts est basée sur les relations d'équilibre entre les organes dits "sources" et "puits" (DIDIER, 2013). L'ensemble des variables végétales sont dues aux modules de STICS, ils structurent le modèle et sont responsables de différentes parties physiologiques des grandes cultures comme : le bilan hydrique, la construction du rendement, les transferts de nitrates, les stress (climatiques, carences), etc. Le module "développement phénologique" est un module majeur durant l'ensemble du cycle de vie de la plante. Il dirige le développement de la culture via la manipulation de la force et de l'accès des sources et puits. La croissance est également conditionnée par les sources qui nécessitent l'établissement des organes photosynthétiques. Tandis que les ressources produites seront ensuite remobilisées dans des organes de réserve ou

allouées à des fonctions physiologiques dont l'organisme a besoin (DIDIER, 2013).

STICS a besoin de données d'entrée pour réaliser la modélisation. Le système a besoin de données d'initialisation au niveau du sol pour représenter ses caractéristiques intrinsèques telles que la teneur en eau et en nutriments. De la même manière, des propriétés spécifiques relatives à la plante sont nécessaires (photopériode, variété, dormance, vernalisation). Des données climatiques doivent également être fournies afin de mesurer les valeurs de précipitation, de température et de rayonnement. Il faut munir le modèle d'un recensement de l'itinéraire technique appliqué (fertilisation, travail du sol, semis, etc.) (DIDIER, 2013) (Figure 2).

Après modélisation, STICS fournit des variables d'intérêts agronomiques (rendement, contenu en protéine) ainsi que des variables utiles pour établir un bilan environnemental de la culture (lixiviation des nitrates, émissions GES) (DIDIER, 2013).

STICS functioning principles (2)

FIGURE 2 – Principe de fonctionnement STICS. Sources : INRA, 2019.

iii Les modules

Les modules essentiels de STICS sont représentés à la figure 3. Ils sont divisés en deux parties en fonction de leur objectif, de part et d'autre du sol, correspondants aux parties aériennes et souterraines (plante + sol) (ARTRU, 2017).

Les modules particulièrement intéressants dans le cadre de ce travail sont décrits cidessous.

FIGURE 3 – Modules de STICS. Sources : ARTRU, 2007.

iv Développement de la plante

Au sein de STICS, il se trouve deux échelles indépendantes qui décrivent différemment les stades de développement de la plante. Il s'agit de l'échelle végétative et reproductive, qui prennent en charge réciproquement, les stades phénologiques et les stades d'organes récoltés. Ces dernières se succèdent ou s'opèrent simultanément, du moins en partie, en fonction des cultures. Le modèle a la capacité de distinguer deux types de plantes selon leur croissance, dite déterminée et indéterminée. En ce qui concerne les graminées comme le froment, elles possèdent une culture déterminée à l'inverse des betteraves sucrières ou des vignes. Pour ce type de plante, il est question de l'enchainement des croissances végétative et reproductive (N. N. BRISSON et al., 2009).

Les différents stades réels de la culture du froment d'hiver sont repris à la figure 4 sous forme de paramètres de STICS. Ils sont définis par l'utilisation selon la calibration et le paramétrage des sommes de degrés-jours ou de l'itinéraire technique cultural. Au sein de ce travail, les facteurs ont été calculés selon l'accumulation de degré-jour.

- IPLT : Jour de semis (itinéraire technique);
- IGER : Jour de germination du semis;
- ILVE : Jour d'émergence ;
- IAMF : Jour de fin de la phase juvénile;
- ILAT : Jour du début de la phase critique de l'apparition du nombre de grains ;
- ILAX : Jour de fin de croissance foliaire;
- IDRP : Jour du début de remplissage des organes de récolte, en froment, ce stade est confondu avec iflo qui est le jour de floraison;
- IMAT : Jour de maturité physiologique;
- IREC : Jour de récolte.

IPLT IGER ILEV	IAMF	ILAT ILAX	IDRP	IMAT = IDEBDES	IREC
Wheat	I			I	

FIGURE 4 – Différents stades culture froment d'hiver. Sources : Brisson et al., 2008

L'évolution de la phénologie de la plante du semis à la maturité physiologique est conditionnée par un facteur majeur qu'est la température. En effet, la plante accumule les degrés jours quotidiennement en fonction des données météorologiques. Les degrés jours sont calculés par la différence entre la température de l'air et le température de base de la culture. Le modèle va procéder à l'accumulation quotidienne, un jour donné est représenté par la notation I, afin de calculer chaque unité de développement quotidien (UPVT) (équation 1) (N. N. BRISSON et al., 2009). Lorsque que la somme des UPVT est égale ou supérieure à la valeur déterminée du stade spécifique, la plante aura atteint ce stade. Ce fonctionnement se répétera ainsi pour l'ensemble des stades établis. Il existe également, des oppositions au développement que sont les stress hydrique et azoté, la photopériode et la vernalisation.

$$UPVT(I) = UDVECULT(I) \cdot RFPI(I) \cdot RFVI(I)$$
$$\cdot [STRESSDEVP \cdot \min(TURFAC(I), INNLAI(I)) + 1 - STRESSDEV]$$
(1)

- UPVT : Unité de développement quotidien [degrés-jours];
- UDEVCULT : Température effective pour le développement de la plante [degrésjours];
- RFPI : Effet ralentissant de la photopériode sur le développement de la plante [/];
- RFVI : Effet ralentissant de la vernalisation sur le développement de la plante [/] ;
- STRESSDEV : Délai phasique maximum autorisé en raison du stress [/];
- TURFAC : Indice de stress hydrique en turgescence [/];
- INNLAI : Indice de stress azoté actif sur la croissance des feuilles.

v Croissance de la plante

Le développement de la plante signifie également la croissance de chaque partie de la plante et la production de biomasse. Cette croissance est simulée et divisée en 2 parties distinctes, la fraction aérienne et racinaire.

En ce qui concerne la partie racinaire, elle est calculée en termes de longueur et non de biomasse au sein de STICS. Les racines sont définies par la densité racinaire au sein du sol. Leur évolution est propre à chaque espèce en fonction de la teneur en eau et de la température du sol (N. N. BRISSON et al., 2009).

Au niveau de la partie aérienne, on peut différencier la croissance en biomasse de la croissance des feuilles. De la même manière que le développement de la plante, la production de biomasse se calcule de manière journalière (équation 2). Cette variable se base sur le principe de captage du rayonnement et donc sur la RUE qui est propre à chaque espèce. D'autres facteurs présents agissent en tant que stress pour prendre en considération les impacts sur la respiration et la photosynthèse (N. N. BRISSON et al., 2009).

 $DLTAMS(I) = [EBMAX(I) \cdot RAINT(I) - COEFBG \cdot RAINT(I)^{2}] \cdot FTEMP(I)$ $\cdot SWFAC(I-1) \cdot INNS(I-1) \cdot EXOBIOM(I-1) \cdot FCO2 + DLTAREMOBIL(I-1)$ (2)

- DLTAMS : Taux de croissance de la plante [t/ha];
- EBMAX : Valeur maximale de l'efficacité d'utilisation du rayonnement (RUE) [g.MJ-1];
- RAINT : Rayonnement photosynthétiquement actif intercepté par la canopée [MJ.m-²];
- COEFB : Paramètre définissant l'effet du rayonnement sur l'efficacité de la conversion
 [/];
- FTEMP : Facteur de réduction de l'efficacité d'utilisation du rayonnement liée à la température [/];
- TCULT : Température de surface de la culture (moyenne journalière) [C°] ;
- SWFAC : Indice de stress hydrique stomatique [/];
- INNS : Indice de stress azoté actif sur la croissance en biomasse [/];
- EXOBIOM : Indice de captage d'eau actif sur la RUE et la transpiration [/];
- FCO2 : Effet du CO_2 sur la RUE (propre à chaque espèce) [/];
- DLTAREMOBIL : Quantité de la réserve remobilisée [g.m-3.jour-1].

Comme expliqué précédemment, les prévisions du GIEC mentionnent une possible augmentation de la concentration en CO_2 à une valeur supérieure à celle actuelle, 350 ppm. Le formalisme utilisé dans STICS (équation 3) exprime une relation exponentielle de l'effet de la quantité de CO_2 dans l'atmosphère sur la RUE.

$$FCO2 = 2 - \exp\left[\log\left(2 - ALPHACO2_P\right) \cdot \frac{(CO2_C - 350)}{(600 - 350)}\right]$$
(3)

- ALPHACO2 : Coefficient permettant de modifier la RUE en cas d'augmentation de CO_2 atmosphérique [/];
- CO2c : Teneur en CO_2 atmosphérique [ppm];
- FCO2 : Effet du CO_2 sur la RUE propre à chaque espèce [/].

Le calcul du paramètre se fait de façon à ce que la courbe passe par le point (600, ALPHACO2) (Figure 5). Les valeurs du paramètre ALPHACO2 se situent autour de 1,1 pour les plantes en C4 et 1,2 pour les plantes en C3 (PEART et al., 1989; RUGET et al., 1996; STOCKLE et al., 1992).

La valeur du coefficient ALPHACO2 se trouvent dans les alentours de 1,2 pour les plantes en C3 comme le froment d'hiver (PEART et al., 1989; RUGET et al., 1996; STOCKLE et al., 1992). De ce fait, une augmentation de la concentration en CO_2 aura tendance à augmenter la valeur de FCO2 (figure 5). Les rendements des cultures de froment devrait donc augmenter comme on peut l'observer sur la relation à l'équation 2.

FIGURE 5 – Calcul de l'effet du CO_2 (FCO2) pour une espèce en fonction de son métabolisme C3/C4 : exemple du blé (C3) et du maïs (C4). Sources : N. N. BRISSON et al. (2009).

vi Besoins en eau de la plante

L'évaporation potentielle en eau liée au couvert végétal se calcule de deux manières équivalentes au sein de STICS. Notamment une qui se base sur le couvert végétal fractionné selon une approche fondée sur le bilan énergétique des canopées. Les calculs se basent sur l'utilisation de paramètres de résistances empiriques appropriés permettant de mesurer quatre flux d'évaporation d'eau (figure 6). Les résistances sont catégorisées en deux types. D'un côté, celles qui mesurent les flux entre le niveau de référence et le sol avec comme séparation intermédiaire la canopée. De l'autre côté, celles qui mesurent les flux de la couche limite et de surface de la canopée. La résistance de surface de la canopée se calcule selon l'équation 4 qui est notamment influencée par une variable dépendante de la concentration en CO_2 (figure 7) (équation 4) (N. N. BRISSON et al., 2009).

FIGURE 6 – Dessin du diagramme résistif appliqué au système sol-culture. Sources : Brisson et al., 2008

[H]

$$RC(I) = RSMIN_P\left(\frac{(0.5LAI_5I + 1)}{LAI(I)}\right)(0.039DSAT + 0.45)\left(\frac{28}{2.5 + TRG(I)}\right)FCO2S \quad (4)$$

— FCO2S : Effet du CO_2 sur la résistance stomatique, propre à chaque espèce [/];

— FCO2 : Effet du CO_2 sur la RUE, propre à chaque espèce [/];

— CO2c : Teneur en CO_2 atmosphérique [ppm].

FIGURE 7 – Influence de l'espèce sur la résistance stomatique. Sources : Brisson et al., 2008

vii Formation du rendement

Un des objectifs essentiels de la modélisation est sa capacité à prédire le rendement d'une culture en fonction de l'ensemble des données d'entrée et des potentiels stress présents. Au sein de STICS, le rendement en grain est exprimé en t/ha. Il est en fonction de deux composantes : le nombre de grain/m² défini au stade de la floraison (équation 5) et la masse du grain. Au sein de l'équation, le paramètre NBGRMAX est défini par la génétique de la plante tandis que la variable CGRAIN est dépendante de l'espèce (N. N. BRISSON et al., 2009).

$$NBGRAINS(IDRP) = CGRAIN_P \cdot VITMOY(IDRP) \cdot NBGRMAX_V$$
(5)

- NBGRAINS : Nombre de grains [grains/m²];
- VITMOY : Taux de croissance moyen pendant la période de latence (ILAT-IDRP) $[g/m^2];$
- CGRAIN : Pente de la relation entre le nombre de grains et le taux de croissance pendant la période de latence (ILAT-IDRP) $[m^2/g]$;
- NBGRMAX : Nombre de grains maximum [grains/m²].

Dans le cadre de la modélisation, une autre variable agronomique est le rendement en matière sèche des organes récoltés (équation 6).

$$MAFRUIT(I) = \sum_{J=IDRP}^{I} \left(DLTAGS(J) - \frac{PGRAINGEL(I)}{100} \right)$$
(6)

- MAFRUIT : Matière sèche des organes récoltés [t/ha];
- DLTAGS : Le remplissage quotidien des grains [t/ha*jour];
- PGRAINGEL : Le poids des grains gelés [g/m²].

2 Les données de référence

i Données météorologiques

L'ensemble des données météorologiques utilisées pour simuler les conditions composant les scénarios climatiques historiques et futurs, proviennent du modèle ALARO-0 de l'IRM (« IRM », s. d.).

Ce modèle vient à l'origine de la fusion de deux modèles qui travaillent à des échelles différentes. D'un côté, le modèle de circulation générale ARPEGE qui travaille à une échelle territoriale plus importante. De l'autre, le modèle de zone limitée ALADIN. Le modèle ALARAO-0 permet donc de réaliser des simulations climatiques à l'échelle européenne (GIOT et al., 2016). Dès lors, les projections climatiques à l'échelle européenne sont réduites d'échelles et validées par comparaison avec des observations réelles. Dans un premier temps, elles le sont pour la Belgique, dans un deuxième temps à l'échelle régionale belge. Ces données ont été autant validées sur l'aspect spatial que temporel car il y a confirmation de la capacité du modèle à reproduire des conditions climatiques passées et à projet des climats futurs jusqu'en 2100 (« IRM », s. d.).

ii Données pédologiques

La base de données Aardewerk a été exploitée afin d'extraire les caractéristiques de l'ensemble des sols. Ils ont été ensuite sélectionnés afin d'être les plus caractéristiques de la région de Hesbaye. Les sols utilisés sont donc considérés comme représentatifs de la région. L'objectif de la sélection de plusieurs sols représentatifs étaient d'amener de la variabilité dans la réponse du modèle tout en simulant le développement d'une culture dans le cadre d'une région fortement agricole.

iii Données d'itinéraire technique

L'itinéraire technique appliqué au sein de la modélisation suit une gestion agricole classique de la culture de froment d'hiver dans la région de Hesbaye. Les opérations décrites au sein de ce paragraphe seront identiques pour l'ensemble des années modélisées à l'exception de la fertilisation azotée (voir section?). Le travail du sol consiste en un labour profond de 25 centimètres à 10 jours avant le semis et une reprise de labour à 10 cm dans le sol la veille du semis, le 14 octobre. Quant à lui, le semis se réalise à une profondeur de 3 centimètres selon une densité de 250 grains/m² et un inter-rang de 14,6 cm.

iv Cultivar de référence

VERLINDEN (2022) ont procédé à un processus de calibration et de validation du modèle sur un mélange de variétés comportant des différences phénologiques importantes afin de créer une variété moyenne théorique de froment d'hiver. Ce cultivar de référence est utilisé dans ce travail et se base sur les variétés Julius, Barok et Edgar.

3 Paramétrisation du modèle

i Fichiers météorologiques

Le changement climatique est présenté dans cette étude via la mise en place de 5 scénarios climatiques différents caractérisés chacun par une concentration atmosphérique en CO_2 spécifique. Ces derniers sont composés de 2 profils représentatifs d'évolution de concentration (RCP) et de deux horizons temporels différents identifiés par leurs années médianes (Table 1). Le scénario historique RCP00_HT00 sert de point de référence.

Scénario climatique (RCP_HT)	RCP	Horizon temporel	Concentration de CO2 [ppm]
RCP00_HT00	RCP 0,0	1980-2010 (00)	385
RCP45_HT55	RCP 4,5	2040-2070 (55)	475
RCP45_HT85	RCP 4,5	2070-2100 (85)	525
RCP85_HT55	RCP 8,5	2040-2070 (55)	575
RCP85_HT85	RCP 8,5	2070-2100 (85)	775

TABLE 1 – Scénarios et horizons temporels étudiés.

Les fichiers climatiques générés par le modèle ALARO-0 contiennent différentes valeurs essentielles telles que le rayonnement solaire, les précipitations, la concentration en CO_2 , etc. (Table 2). Un fichier correspond à la représentation d'une année spécifique au sein d'un seul et unique scénario climatique. En ce qui concerne l'évapotranspiration de la plante, les valeurs n'étaient pas disponibles. Les valeurs sont par défaut de -999.99 afin d'indiquer au modèle qu'aucune valeur n'est présente pour cette variable.

Nom	Unité
Identifiant	[/]
Date	[aaaa-mm-jj]
Jour julien	[jjj]
Température minimale	[jjj]
Température maximale	$[^{\circ}C]$
Radiation solaire	[MJ m2 j1]
Evapotranspiration de la plante selon Penman	[mm j-1]
Somme de pluviométrie	[mm j-1]
Vitesse moyenne du vent	[m s-1]
Pression de vapeur	[mbars]
Concentration en CO_2	[ppm]

TABLE 2 – Format des données météorologiques selon le formalisme de STICS

Le modèle STICS a besoin également d'un fichier météo servant de référence pour mettre en évidence les caractéristiques de la station météorologique. Il correspond à celui de la station située à Ernage. Différents formalismes lié à STICS ont été sélectionnés pour ce fichier de station météo afin de réaliser la modélisation. De ce fait, la température de la culture est évalué via le formalisme "bilan énergétique". L'équation de "Shuttlewort et Wallace" est utilisée pour calculer le potentiel d'évapotranspiration (PET) et l'équation de Brutsaert est employé pour approximer le rayonnement net atmosphérique. Le formalisme "climate change" a été également activé au sein de ce fichier.

ii Fichiers pédologiques

Traitement des données

Dans un premier temps, les données pédologiques se structurent de façon à ce qu'un sol donné soit divisé en ses différents horizons selon échantillons réalisés. Les fichiers utilisés s'articulent de la même façon que dans le tableau 3.

Nom	Unité
Limite supérieure de l'horizon	[cm]
Limite inférieure de l'horizon	[cm]
Argile	[%]
Limon	[%]
Sable	[%]
pH KCl	[/]
pH H_2O	[/]
Carbone organique total	[%]

TABLE 3 – Format des données disponibles dans la base de données Aardewerk

FIGURE 8 - Triangle textural. Sources : Zribi, 2016

La méthodologie VERLINDEN (2022) ainsi que ses données ont été utilisés dans le cadre de ce travail. De ce fait, le tri de sols selon leur occupation a sélectionné tous ceux ayant un potentiel agricole ou déjà utilisé dans le secteur agricole. Un traitement des données a également été opéré afin d'éviter les sols peu ou trop profonds ainsi que ceux ne disposant pas de valeur pour des variables précises. Certains paramètres nécessaires au fonctionnement de STICS ont été calculés selon des fonctions de pédotransfert tels que la densité apparente, l'albédo, la teneur en eau au point de flétrissement, la capacité au champ, etc. Un regroupement du nombre d'horizons a été réalisé afin de correspondre au formalisme de STICS. Le but est de garder le plus possible d'horizons de surface impactant de manière importante la croissance tout en pondérant leur profondeur pour rester représentatif par rapport au sol de départ. Une répartition texturale des sols a été procédée selon le système de classification de la FAO basé sur le triangle textural (Figure 8) (VERLINDEN, 2022).

Sélection des sols

Une présélection des sols a été réalisée afin de ne contenir que les sols présents se trouvant dans un carré de 25 km de côté dont le centre est l'unité de Phytotechnie végétale de la faculté de Gembloux Agro-Bio Tech. Dès lors, des statistiques descriptives ont été réalisées

Texture	Pourcentage [%]
Argile limoneuse	$0,\!26$
Limon	$1,\!82$
Limon argileux fin	$1,\!04$
Limon fin	$63,\!54$
Limon sableux	$1,\!04$
Limon très fin	$31,\!51$
Sable limoneux	$0,\!52$
Sableux	$0,\!26$

afin d'identifier les catégories texturales les plus présentes pour cette aire géographique (table 4).

TABLE 4 – Proportion des types de sols présents

Ces résultats montrent la domination spatiale des sols limoneux fins et très fins dans la région de Hesbaye. Dès lors pour être le plus représentatif possible de la région, il a été décidé de sélectionner les sols parmi ces catégories texturales qui sont le plus proches du point de référence étant l'unité de Phytotechnie végétale. Un calcul de distance euclidienne (équation 7) entre les coordonnées géographiques du point de référence et des sols a alors été opéré.

DIST =
$$\sqrt{(X_s - X_0)^2 + (Y_s - Y_0)^2}$$
 (7)

— DIST : La distance euclidienne entre le sol et le point de référence;

 $-X_s$ et Y_s : Les coordonnées du sol en Lambert 72;

 $-X_0$ et Y_0 : Les coordonnées du point de référence en Lambert 72.

L'objectif parallèle étant de créer de la variabilité, le choix a été de sélectionner 10 sols au sein des 2 types texturals les plus représentés. L'association de la distance euclidienne et de ce critère ont permis de distinguer 10 sols (tableau 5).

Identifiant du sol sélectionné	Texture
130EP001	Limon fin
130EP003	Limon fin
130 EP032	Limon fin
130 EP 039	Limon fin
130 EP038	Limon fin
130EP002	Limon très fin
130EP030	Limon très fin
130EP031	Limon très fin
130EP043	Limon très fin
130EP040	Limon très fin

TABLE 5 – Sols séléctionnés

Fichiers itinéraires techniques

Ces fichiers contiennent toutes les informations relatives à la gestion de la culture comme la fertilisation, le travail du sol, l'irrigation, le semis avec leur lot de paramètres spécifiques comme les dates d'application, la profondeur de travail, la quantité d'eau, la densité de semis, etc. Dans cette étude, aucun apport de matière organique n'a été appliqué pour que l'entièreté de l'azote disponible pour la plante vienne de la fertilisation minérale et de l'azote déjà présent dans le sol grâce aux reliquats et à la minéralisation.

L'objectif de cette étude est d'évaluer comment le besoin azoté évolue avec le changement climatique. Dans ce cadre, 10 modalités de gestion azotée en 3 trois fractions ont été appliquées afin d'obtenir une fertilisation azotée variable. Un pas de 10kgN/ha par fraction a été choisi pour différencier les modalités (table 6). Ainsi cela permet d'avoir des quantités d'azotes inférieures et supérieures à la dose recommandée de 180kgN /ha. Les différentes fractions doivent être appliquées aux stades où la plante en a le plus besoin. Dès lors, au lieu d'appliquer la fertilisation à date fixe, elle sera réalisée en fonction de la somme des degrés-jours accumulés par la plante. Cela permet ainsi d'éviter les problèmes liés à la variabilité du climat dans un contexte de changement climatique. Les stades les plus nécessitants sont les stades BBCH 23, 30 et 39 qui correspondent réciproquement aux stades de tallage, redressement et dernière feuille. Les sommes de degrés-jours associées à ces stades sont de 110, 260 et 535 degrés-jours. La récolte se réalise systématiquement à la maturité physiologique si elle a été atteinte. Sinon la date permanente du 28 août a été fixée pour la récolte.

Modalité	1ère fraction [kgN/ha]	2ème fraction [kgN/ha]	3ème fraction [kgN/ha]	Azote total appliqué [kgN/ha]
N_000	0	0	0	0
N_030	10	10	10	30
N_060	20	20	20	60
N_090	30	30	30	90
N_120	40	40	40	120
N_150	50	50	50	150
N_180	60	60	60	180
N_210	70	70	70	210
N_240	80	80	80	240
N_270	90	90	90	270

TABLE 6 – Modalités de fertilisation azotée étudiées

Fichier d'initialisation azotée

Afin d'assurer une bonne simulation de développement de la culture, le modèle STICS doit prendre en compte l'état azoté du sol. Cela se réalise via l'introduction d'un fichier d'initialisation azoté qui reprend les valeurs de concentration de nitrates par horizon. Celui utilisé dans cette étude est un fichier générique pour la région autour de Gembloux et est commun à toutes les années simulées.

Création des unités de simulation

La modélisation dans STICS nécessite ce que l'on appelle des unités de simulations (USM). Une unité consiste en l'association des informations d'intérêt : l'initialisation du sol, les sols concernés, la station météorologique, la culture, l'itinéraire technique et le scénario climatique. La modélisation dans STICS requiert également une certaine méthodologie quant à la création des noms des USM pour leur identification au sein du logiciel. Le nom de chaque USM est alors créé selon les facteurs variables de cette étude dont voilà un exemple : "mod_bUSM_rcp85_ht55_130EP002_N150_2066".

- **rcp85_ht_55** : Scénario climatique concerné (RCP 8,5 et HT55, 2040-2070);
- **130EP002** : Identifiant du sol concerné (130EP002 sol limoneux très fin);
- N150 : Modalité de fertilisation azotée concernée (application de 150 kgN/ha);
- 2066 : Année du début de la culture (2067 est l'année de récolte car le développement du froment s'étale sur deux années).

iii Sélection des variables pertinentes

Suite à la modélisation, STICS génère un fichier de résultats par USM donné contenant une multitude de variables quelles soit phénologiques, agricoles ou environnementales. L'ensemble des variables n'a pas été pris en compte dans cette étude afin de sélectionner uniquement celles intéressantes pour répondre à l'objectif. L'ensemble des mesures considérées comme intéressantes sont reprises dans les différentes parties ci-dessous.

Variables de sorties de STICS

Les premières variables sélectionnées sont de caractère phénologique, elles concernent la date de floraison et de maturité de la culture et se mesurent en jours (Tableau 7).

Les variables suivantes traitent de l'aspect agronomiques de la culture, elles indiquent des mesures de croissance et de production (Tableau 7). Dès lors, la biomasse aérienne de la plante est évaluée aux deux stades de développement que sont la floraison et la maturité physiologique, elle se quantifie en t/ha. La quantité d'azote absorbé par la plante est également mesurée de la même manière et son unité est en kgN/ha. Les dernières variables agronomiques concernent une composante du rendement qu'est le nombre de grains mesuré en grains/m² et le rendement lui-même en t/ha.

Variable sélectionnée	Unité
Date de floraison et de maturité	[jours]
Biomasse aérienne à floraison et à maturité	[t/ha]
Quantité d'azote absorbé par la plante à floraison et à maturité	[kgN/ha]
Nombre de grains	$[\text{grains}/\text{m}^2]$
Rendement en grain	[t/ha]

TABLE 7 – Variable de sorties de STICS étudiées

Indicateurs de stress

La deuxième catégorie de variables sélectionnées correspond aux différents stress (tableau 8). Ils sont d'origine hydrique pour certains comme SWFAC et EWFAC ou proviennent de carence comme INNFAC mais également d'origine climatique comme TPFAC. Les valeurs des indices de stress varient de 0 à 1 avec la valeur unitaire qui équivaut à une absence de stress.

Variable sélectionnée	Notation	Unité
Indice de stress hydrique stomatique	SWFAC	[0-1]
Indice de stress azoté actif sur la croissance en biomasse	INNFAC	[0-1]
Indice de captage d'eau actif sur la RUE et la transpiration	EWFAC	[0-1]
Facteur de réduction de l'efficacité d'utilisation du rayonnement liée à la température	TPFAC	[0-1]

TABLE 8 – Indices de stress étudiés

La méthode de calcul des stress a été remaniée afin de mieux percevoir l'intensité et le caractère ponctuel des stress. La valeur du stress final équivaut à la somme quotidienne (un jour=I) tout au long d'une année simulée de la différence entre valeur correspondant à l'absence de stress (1) et la valeur simulée quotidiennement du stress (équation 8).

$$\mathrm{STRESS}_f = \sum_{I=240}^{625} (1 - \mathrm{STRESS}(I)) \tag{8}$$

 $-STRESS_f$: valeur du stress final;

-STRESS(I): valeur simulée quotidienne du stress en question.

Il s'agit en fait de l'aire sous la droite unitaire de l'intensité du stress en fonction de l'évolution phénologique de la plante comme démontré sur la figure 9. Ces stress pouvant apparaitre aux différents stades de développement de la plante, il est essentiel d'opérer à des mesures du stress pour chaque phase. La phase juvénile ne sera pas présente au vu du peu de réponse observée lors de la modélisation. Afin de renforcer la capacité des variables à démontrer une réponse ponctuelle et d'identifier au mieux la temporalité des stress, la phase végétative a été scindée en deux. La phase végétative qui s'étend de la fin du stade juvénile (AMF) au début du stade floraison (FLO), est alors divisée en 2 par le stade de fin de croissance foliaire (ILAX). La période précédent ce stade sera alors qualifiée par le suffixe veg1 tandis que la période suivant ce stade aura le suffixe veg2.

Chaque facteur de stress sera alors décliné selon les différentes variables suivantes :

- SWFAC.veg1, SWFAC.veg2, SWFAC.rep
- EWFAC.veg1, EWFAC.veg2, EWFAC.rep
- INNFAC.veg1, INNFAC.veg2, INNFAC.rep
- TPFAC.veg1, TPFAC.veg2, TPFAC.rep

Variables dérivées

Le dernier type de variable sélectionnée correspond aux variables dérivées dont le calcul se base sur des mesures agronomiques tels que le rendement, la quantité d'azote absorbé par

FIGURE 9 – Méthode de calcul de l'intensité des stress

la plante et la quantité d'azote appliqué (Tableau 9).

Variable	Méthode de calcul	Unité
Efficience agronomique d'utilisation	$MUF - Y_{F-} \cdot Y_0$	[0%]
des nutriments (NUE_{ag})	$F \cup L_{ag} = -F$	[70]
Efficience physiologique d'utilisation	$MUF - Y_F - Y_0$	[07]
des nutriments (NUE_{phys})	$IV U L_{\rm phys} - \overline{U_F - U_0}$	
Coefficient d'utilisation	$CAU = U_{F-} \cdot U_0$	[0, 1]
apparent (CAU)	$CAU = \overline{F}$	[0-1]

TABLE 9 – Etablissement des méthodes de calcul des variables dérivées

- $-Y_F$: Rendement simulé pour un apport d'azote donné;
- $-Y_0$: Rendement simulé pour la modalité témoin (aucune fertilisation);
- F: Quantité d'azote appliquée correspondante;
- U_F : Quantité d'azote absorbé par la plante simulée pour un apport d'azote donné;
- U_0 : Quantité d'azote absorbé par la plante simulée pour la modalité témoin (aucune fertilisation).

La CAU permet de mesurer la proportion de l'azote utilisé par la fertilisation qui se retrouve dans la partie aérienne de la plante. La NUE_{phys} permet de mesure la performance de la plante dans toute sa globalité. La NUE_{ag} permet de mesurer la valorisation de la valeur ajoutée qu'est l'apport d'azote. Les trois variables sont ainsi reliées par le calcul simple suivant :

$$NUE_{aq} = CAU \cdot NUE_{phys} \tag{9}$$

iv Traitement statistique des données

L'ensemble des analyses statistiques a été réalisé via le logiciel Rstudio. Le package *"agricolae"* a été utilisé pour l'exécution des analyses de variance ainsi que des tests de Student-Newman-Keuls de structuration des moyennes. L'analyse en composantes principales a été réalisé via le package *"stats"*.

IV Resultats et discussions

Cette section est dédiée à la présentation des résultats obtenus suite à la modélisation dans STICS et à leur analyse via différents tests statistiques. La première partie traite des variables de sortie liées à la phénologie telles que la date de floraison et de maturité. Ensuite, la seconde section étudie les stress présents considérés comme intéressants. Les différents stress seront traités par compartiment en fonction de leur réponse aux facteurs. Le troisième segment concerne l'analyse de variables agronomiques telles que la quantité d'azote absorbé par la plante à floraison et maturité, le nombre de grains et le rendement. Une autre partie présente les résultats de variables dérivées sur base de variables de sortie telles que la NUE_{ag} , NUE_{phys} et la CAU. La dernière partie traite de l'analyse en composantes principales.

L'analyse statistique sur chaque variable s'est opérée via une analyse de la variance à trois facteurs fixes : NFrac (10 modalités), RCP_HT (5 modalités) et Soil (10 modalités). Cette dernière a été réalisée sur RStudio avec la commande AOV.

Aucune interaction triple n'a été recensée au sein des résultats de l'Analyse de la Variance (AOV) 3. Si cette dernière présentait des interactions significatives (p-value < 0,05) à deux facteurs, une décomposition en AOV 2 a été réalisée pour chaque modalité du facteur RCP_HT. Décomposition considérée comme pertinente étant donné que l'objectif de ce travail est d'identifier comment le besoin azoté évolue-t-il à l'avenir avec le changement climatique. Un test post hoc (SNK) de comparaison multiple a été appliqué afin d'évaluer les moyennes des facteurs pour chaque modalité du facteur RCP_HT.

Si aucune interaction n'a été observée dans les résultats de l'AOV 3, aucune opération supplémentaire n'a été effectuée et un test SNK a été utilisé pour comparer les moyennes des modalités de chaque facteur.

Les résultats liés au facteur "Soil" ne sont présentés car il sert à apporter de la variabilité. D'ailleurs, aucune tendance n'est identifiable quant au type de sol présent.

En ce qui concerne les conditions d'application de l'Analyse de la Variance (ANOVA), ces dernières n'ont pas été respectées pour la totalité des variables. Cependant, le test d'analyse de variances a quand même été effectué au vu du très grand nombre de p-valeurs très hautement significatives (p-value < 0,001) au sein du test.

Finalement, une analyse multivariée en composantes principales a été réalisée afin d'évaluer quelles variables expliquent le mieux l'évolution et la variabilité générale des résultats.

1 Analyse statistique des variables de sortie

i Date de floraison et de maturité

En ce qui concerne les variables liées à la phénologie que sont la date de floraison et de maturité, l'analyse de la variance à 3 facteurs n'a révélé aucune interaction double (Annexe A - B). Cependant, les résultats affichent des différences très hautement significatives (p-value < 0,001) entre les moyennes des 2 variables vis-à-vis des facteurs "NFrac" et "Soil" (Annexe A - B).

Le test SNK (Annexe A - B) démontre la présence de 4 groupes pour la variable "date de maturité" et 5 groupes pour la variable "date de floraison". Les valeurs moyennes maximales pour les 2 variables se trouvent au niveau du scénario climatique historique. Les valeurs moyennes, réciproquement pour la floraison et la maturité, sont de 532 et 580 jours juliens. Inversement, la modalité RCP8_HT85 contient les valeurs minimales moyennes qui sont, réciproquement pour la floraison et la maturité, 508 et 555 jours juliens.

A la floraison on retrouve 3 groupes intermédiaires selon l'ordre décroissant de RCP45_HT55, RCP85_HT55, RCP45_HT85 ayant pour date moyenne de 524, 521 et 520 jours juliens. Quant à la maturité, seulement 2 groupes sont distingués (Annexe A - B). Un groupe pour la modalité RCP45_HT55 qui a comme valeur moyenne 570 jours juliens et le dernier groupe attribué aux modalités RCP45_HT85 et RCP85_HT55 avec 568 jours juliens.

Les résultats du test SNK portant sur le facteur NFrac montrent des valeurs moyennes rassemblées dans 9 groupes pour la floraison et 10 groupes pour la maturité. Les modalités de "NFrac" successives sont toujours statistiquement équivalentes à la dose précédente. Chaque dose de fertilisation est considérée comme non significativement différente de la dose précédente à l'exception de la première dose " N000". Ces valeurs moyennes diminuent avec l'augmentation de la fertilisation azotée.

Discussion des résultats

Les résultats indiquent qu'au plus un scénario climatique possède des valeurs élevées de concentration en CO_2 , au plus sa phénologie sera avancée. Cela confirme que l'effet fertilisant CO_2 réduit le temps nécessaire pour atteindre autant pour la date de floraison que de maturité (EITZINGER et al., 2003). C'est la raison pour laquelle il y a un tel écart entre le dernier scénario climatique et le reste car ce dernier contient une concentration de CO_2 bien plus élevée. D'ailleurs, les scénarios climatiques regroupés pour la date de maturité se situent à des concentrations assez semblables en CO_2 .

FIGURE 10 - Boxplots des date de (a) floraison et (b) maturité par scénario climatique sous les différents sols et fertilisations confondues

 $\label{eq:FIGURE11-Boxplots} Figure 11-Boxplots des date de (a) floraison et (b) maturité par fertilisation sous les différents sols et scénarios climatiques confondus$

L'augmentation de la fertilisation azotée produit également une avancée au niveau de la phénologie de la plante. Cependant, l'effet lié à la gestion azotée est moindre comparé à celui du scénario climatique. Il provient d'un rétro-effet dans le formalisme de calcul de STICS. Dès lors, il est considéré que globalement la phénologie n'est pas impactée par la fertilisation azotée.

ii Étude des stress

Une analyse de la variance a été appliquée sur l'ensemble des stress. Les stress présents ont réagi différemment à l'analyse de la variance à 3 facteurs. L'AOV3 des variables "SWFAC.veg2" et "INNFAC.veg1" a recensé 3 interactions doubles significatives entre les 3 facteurs (Annexe D - K). Tandis que pour les variables "EWFAC.veg1", "INNFAC.veg2", "SWFAC.rep" et "SWFAC.veg1" l'analyse de la variance indique 2 interactions doubles avec un élément commun qu'est le facteur "RCP_HT" (Annexe F - L - E - C). Une analyse de la variance à deux facteurs décomposée par modalité de "RCP_HT" a été réalisée pour les variétés citées ci-dessus. L'AOV 3 des variables "EWFAC.veg2", "TPFAC.veg1", "TPFAC.veg2" et "TPFAC.rep", n'a montré aucune interaction entre les trois facteurs (Annexe G - H - I - J). Ci-dessous, les variables de stress vont être examinées séparément selon l'impact sur leur réponse des facteurs.

La première analyse consiste à examiner l'impact du changement climatique sur les stress. Les variables présentes dans cette partie sont celles dont les moyennes sont considérées comme significativement différentes ou dont l'ANOVA a subi une décomposition par scénario climatique. En conditions historiques, les stress importants dont les valeurs sont les plus élevées correspondent aux variables "SWFAC.rep", "TPFAC.veg1", "INNFAC.veg1" et "INNFAC.veg2" (Table 10). Avec l'évolution des scénarios climatiques, les stress liés à la variable SWFAC diminuent fortement voir disparaissent avec l'évolution des scénarios climatiques. En ce qui concerne les stress liés à "EWFAC", ils augmentent avec le changement climatique par rapport aux conditions historiques. Cependant, les valeurs liées à la variable "EWFAC.veg2" augmentent de manière assez hétérogène en fonction du "RCP HT" et restent faibles quel que soit le scénario futur. Le tableau? permet de remarquer que les stress liés à "TPFAC" augmentent avec le changement climatique par rapport au scénario historique. Les valeurs restent tout de même assez minimes à l'exception de la variable "TPFAC.veg1" qui contient des observations assez élevées. Les variables relatives au stress azoté nommées "INNFAC" augmentent dans des proportions différentes avec l'évolution des scénarios climatiques. La variable "INNFAC.veg1" augmente très légèrement et exprime les valeurs les plus hautes de tous les stress. Tandis que la variable "INNFAC.veg2" augmente de manière plus importante mais expose des valeurs moins élevées mais tout de même importantes.

FIGURE 12 – Evolution de l'intensité du stress en fonction de la gestion azotée

	SWFAC.veg1	SWFAC.veg2	SWFAC.rep	EWFAC.veg1	EWFAC.veg2
rcp_00_ht_00	0,0000157	0,27	11,53	0,10	0,34
rcp_45_ht_55	/	0,14	8,93	0,98	0,45
rcp_45_ht_85	/	0,06	6,46	2,81	0,30
rcp_85_ht_55	/	0,02	5,30	1,16	0,16
rcp_85_ht_85	/	/	2,11	3,25	0,52
	TPFAC.veg1	TPFAC.veg2	TPFAC.rep	INNFAC.veg1	INNFAC.veg2
rcp_00_ht_00	3,13	0,16	0,47	10,47	5,43
rcp_45_ht_55	4,65	0,31	0,71	10,91	5,99
rcp_45_ht_85	5.23	0.33	0.57	11.06	6.49
-	3,23	0,00	-)	,	-) -
rcp_85_ht_55	4,23	0,34	0,59	10,69	6,84

TABLE 10 – Valeurs moyennes des différents stress par scénario climatique pour toutes les fertilisations et sols confondus $% \mathcal{A} = \mathcal{A} = \mathcal{A}$

Vis-à-vis de la fertilisation azotée, seulement 2 variables semblent subir une modification de leur réponse avec l'augmentation de l'apport d'azote(Figure 12). Les variables "INNFAC.veg1" et "INNFAC.veg2" diminuent très fortement au fur et à mesure de l'augmentation du facteur "NFrac". Cependant, ces variables restent à des valeurs très élevées.

Discussion des résultats

Les résultats montrent une diminution très importante pour les variables liées au stress par déficit d'eau, ce stress est levé quel que soit le type de sol. Cela est dû à l'effet fertilisation CO_2 qui permet une meilleure photosynthèse(ROSENBERG et al., 1990). Cela induit une réduction du besoin de transpiration de la plante et permet une meilleure conservation de l'eau dans les sols. A l'inverse, le phénomène d'anoxie va augmenter avec l'évolution des scénarios climatiques. Notamment durant la première phase végétative dû aux précipitations hivernales abondantes et de la meilleure conservation de l'eau dans le sol.

En ce qui concerne les stress thermiques liés à la variable "TPFAC", malgré leur augmentation légère, ils sont considérés comme non impactant. En effet, le changement climatique induira des coups de chaud ponctuels. Cependant, en moyenne dans nos latitudes, les températures ne sont pas assez élevées pour le froment d'hiver et ne génèrent pas de stress suffisant pour impacter la croissance de la plante.

L'analyse des résultats indiquent que les stress azotés seront les stress les plus importants à l'avenir. Notamment la carence azotée en deuxième phase végétative qui augmente significativement avec l'évolution des scénarios climatiques par rapport à la première phase végétative. L'augmentation de ce stress azoté est dû potentiellement à la création de biomasse qui se réalise principalement durant la phase végétative. En effet, l'accroissement de production de biomasse avec les scénarios de changement climatique (voir section suivante) a nécessité une meilleure absorption de l'azote du sol (ROUDIER et al., 2011). De ce fait, l'azote devient un facteur limitant pour la croissance de la plante qui peut être pallié car les variables assimilées aux carences azotées, "INNFAC", diminuent logiquement de manière importante avec l'augmentation de l'azote.

iii Biomasse aérienne à floraison et à maturité

A propos de la biomasse aérienne à floraison et à maturité, l'analyse de la variance à 3 facteurs a indiqué 3 interactions doubles (Annexe M - N). Les AOV 2 par modalité du facteur "RCP_HT" sur les deux variables dévoilent des différences très hautement significatives (p-value < 0,001) des moyennes des deux facteurs que sont "Soil" et "NFrac" (Annexe M - N).

Le test SNK (Annexe M - N) démontre la présence d'un groupe de moyennes par modalité de "NFrac", au sein des modalités décomposées "RCP_HT" pour les deux 2 variables de biomasse aérienne (Figure 13 - 14). Dès lors, on peut observer que chaque modalité de "NFrac" présente une biomasse moyenne significativement différente pour tous les scénarios climatiques.

Il y a une seule exception où deux modalités de fertilisation appartiennent au même groupe. Elles concernent la variable de biomasse aérienne à maturité et se trouvent au niveau des modalités N240 et N270 pour le scénario climatique historique (Figure 14). Ces moyennes valent réciproquement 18,54 et 18,96 t/ha et appartiennent au groupe qui a la

 $\label{eq:FIGURE 13-Boxplots} FIGURE \ 13-Boxplots \ de la biomasse a$ érienne à floraison par fertilisation et scénario climatique pour tous les différents sols confondus

biomasse aérienne moyenne à maturité la plus faible de "RCP00_HT00" (Table 12). Les valeurs moyennes des groupes des deux variables évoluent de manière croissante avec l'augmentation de la fertilisation au sein des différentes modalités du facteur "RCP_HT" (Figure 13 - 14).

En ce qui concerne l'évolution entre les différentes modalités des "RCP_HT", on peut remarquer que les biomasses aériennes à floraison et maturité pour les scénarios futurs sont supérieures au scénario historique et évoluent différemment selon les variables.

Vis-à-vis de la variable de biomasse aérienne à floraison les valeurs maximales et minimales se trouvent réciproquement aux modalités "RCP85_HT55" et "RCP45_HT55". Tandis que les valeurs intermédiaires se trouvent, selon un ordre décroissant, sous les scénarios "RCP85_HT85" et "RCP45_HT85".

 $\label{eq:FIGURE14-Boxplots} \ensuremath{\operatorname{FIGURE}\xspace{14-Boxplots}\xspace{14-Box$

Scénario climatique		Biomasse aérienne moyenne à floraison [t/ha]										
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	8,20	8,89	9,53	10,13	10,68	11,18	11,61	11,99	12,30	12,56	10,71	
rcp_45_ht_55	8,45	9,22	9,95	10,64	11,25	11,80	12,28	12,70	13,08	13,42	11,28	
rcp_45_ht_85	8,41	9,18	9,90	10,59	11,20	11,80	12,34	12,82	13,28	13,66	11,32	
rcp_85_ht_55	8,86	9,70	10,53	11,32	12,06	12,71	13,31	13,84	14,30	14,69	12,13	
rcp_85_ht_85	8,86	9,62	10,39	11,14	11,86	12,54	13,16	13,73	14,24	14,68	12,02	

TABLE 11 – Valeurs moyennes de la biomasse aérienne à floraison par scénario climatique et fertilisation pour tous les sols confondus

Scénario climatique		Biomasse aérienne moyenne à maturité [t/ha]										
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	12,03	13,09	14,13	15,06	15,93	16,71	17,40	18,04	18,54	18,96	15,99	
rcp_45_ht_55	12,36	13,62	14,87	16,02	17,05	17,98	18,82	19,60	20,35	20,98	17,16	
rcp_45_ht_85	11,92	$13,\!05$	14,20	15,33	16,38	17,44	18,42	19,31	20,16	20,92	16,71	
rcp_85_ht_55	12,68	13,96	15,27	$16,\!56$	17,78	18,91	19,94	20,92	21,81	22,58	18,04	
rcp_85_ht_85	12,50	13,66	14,90	16,20	17,52	18,83	20,11	21,37	22,57	23,69	18,14	

TABLE 12 – Valeurs moyennes de la biomasse aérienne à maturité par scénario climatique et fertilisation pour tous les sols confondus $% \mathcal{A}$

L'ordre des scénarios climatiques futurs associés aux valeurs moyennes pour la variable biomasse aérienne à maturité suit l'ordre croissant suivant : "RCP45_HT85", "RCP45_HT55", "RCP85_HT55" et "RCP85_HT85".

Discussion des résultats

La différence entre la biomasse aérienne à floraison et à maturité permet de nous dire que la majorité de la biomasse est produite durant la phase végétative. De plus, ces résultats confirment que l'augmentation de concentration en CO_2 sous différents scénarios climatiques permet d'améliorer la production de biomasse aérienne à floraison et à maturité (ACOCK & ACOCK, 1993). En effet, étant donné que les stress hydriques et ceux liés à la température sont levés, cela permet une accroissement de biomasse (voir section précédente).

Pour ce qui est de l'impact de la fertilisation azotée, il semble qu'il y a très peu d'équivalence statistique, ce qui signifie qu'il y a des gains significatifs dès qu'il y a augmentation de la fertilisation appliquée. Le stress présent majoritaire étant celui lié à la fertilisation azotée, des quantités plus importantes d'azote permettent donc de maximiser la production biomasse à floraison et à maturité.

iv Quantité d'azote absorbé par la plante à floraison et maturité

En ce qui concerne la quantité d'azote absorbé par la plante à floraison et à maturité, l'analyse de la variance à 3 facteurs a indiqué 2 interactions doubles avec pour facteur commun "RCP_HT" (Annexe O - P). Des AOV 2 par modalité du facteur "RCP_HT" ont été réalisées sur les deux variables. Elles indiquent des différences très hautement significatives (p-value < 0,001) de la quantité moyenne d'azote absorbé par la plante par rapport aux deux facteurs que sont "Soil" et "NFrac" (Annexe O - P).

Le test SNK (Annexe O - P) révèle que chaque groupe de moyennes ne contient à chaque fois qu'une seule modalité de "NFrac". Dès lors, il existe 10 groupes de moyennes par modalité décomposée de "RCP_HT" pour les deux 2 variables de quantité d'azote absorbée par la plante (Figure 15-16). Chaque modalité de fertilisation admet une valeur moyenne significativement différente des autres quel que soit le scénario climatique.

Les valeurs moyennes des deux variables, au sein des différentes modalités du facteur "RCP_HT", augmentent avec des quantités plus importantes de fertilisation (Figure 15 - 16).

A propos de l'évolution des différentes scénarios climatiques, la quantité d'azote absorbé par la plante à floraison et maturité augmente par rapport au scénario de référence quel que soit le scénario futur (Table 13 - 14). Les valeurs maximales, pour les deux variables, se trouvent sous le "RCP85_HT55" puis diminuent en passant par le "RCP85_HT85" puis par "RCP45_HT55" pour arriver à la valeur minimale pour la modalité "RCP45_HT85".

 ${\tt FIGURE}$ 15 – Boxplots de la quantité d'azote absorbé par la plante à floraison par fertilisation et scénario climatique pour tous les différents sols confondus

Scénario climatique		Quantité d'azote absorbé par la plante à floraison [kgN/ha]										
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	112,25	125,69	138,74	151,45	164,12	176,59	188,77	200,85	212,34	223,34	169,41	
rcp_45_ht_55	110,85	125,39	139,69	153,76	$167,\!53$	181,18	194,51	207,42	220,26	232,50	173,31	
rcp_45_ht_85	107,94	122,49	136,96	151,52	165,71	180,05	194,16	208,00	221,80	235,10	172,37	
rcp_85_ht_55	113,14	127,99	142,69	157,55	172,36	186,94	201,79	216,63	231,20	245,42	179,57	
rcp_85_ht_85	111,61	126,41	141,09	155,77	170,59	185,33	200,05	214,79	229,32	243,56	177,85	

TABLE 13 – Valeurs moyennes de la quantité d'azote absorbé par la plante à floraison par scénario climatique et fertilisation pour tous les sols confondus $% \mathcal{A}$

Scénario climatique		Quantité d'azote absorbé par la plante à maturité [kgN/ha]										
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	126,99	141,44	155,59	169,14	182,50	195,55	208,35	221,03	233,00	244,50	187,81	
rcp_45_ht_55	125,69	141,53	157,25	172,63	187,57	202,31	216,71	230,65	244,52	257,68	193,65	
rcp_45_ht_85	120,74	136,23	151,89	167,67	183,16	198,80	214,28	229,43	244,46	259,01	190,57	
rcp_85_ht_55	127,24	143,16	159,12	175,30	$191,\!35$	207,27	223,21	239,24	254,91	270, 15	199,10	
rcp_85_ht_85	125,60	141,44	157,33	173,53	190,03	206,53	223,15	239,84	256,37	272,61	198,64	

 $\label{eq:table_$

Discussion des résultats

Lorsque qu'il y a soustraction entre les valeurs d'azote absorbé par la plante à maturité et à floraison, les résultats indiquent que la majorité de l'azote absorbé se réalise durant la phase végétative.

Les scénarios climatiques futurs contenant des concentrations supérieures en CO_2 permettent à la plante d'absorber plus d'azote. En effet, les résultats démontrent que l'effet fertilisant CO_2 permet à la plante de laisser plus d'eau dans les sols via la réduction de l'évapotranspiration. Dés lors, cette eau présente dans les sols rend l'azote du sol mobilisable pour la plante. Cet effet combiné à la réduction des stress liés à la température et à l'eau explique la meilleure absorption d'azote par la plante.

En ce qui concerne la fertilisation azotée, les résultats expriment des gains significatifs par apport d'azote. Le peu d'équivalence statistique semble logique étant donné que si la disponibilité en azote pour la plante est élevée, la plante peut donc absorber plus d'azote que cela soit au stade floraison et maturité.

Au stade floraison : établissement déjà de 80% des réserves et on voit que la plante y est déjà. Un froment exporte (QNPlant.mat) environ 360 kg dont 180 kg viennent du sol et 180 kg viennent de la fertilisation.

v Nombre de grains

L'AOV 3 a révélé 3 interactions doubles (Annexe Q). Une AOV 2 a donc été réalisée sur les facteurs "NFrac" et "Soil" par modalité du facteur "RCP_HT". Elle montre des différences

très hautement significatives (p-value < 0,001) entre le nombre de grains moyen pour les deux facteurs utilisés, sous chacun des scénarios climatiques "RCP_HT" (Annexe Q).

Les résultats du test SNK (Annexe Q) ont révélé que chaque fertilisation était détenue dans un seul groupe au sein de chaque modalité du facteur "RCP_HT" (Figure 17). De ce fait, à chaque modalité de la fertilisation azotée est associée un nombre de grains significativement différent des autres pour l'ensemble des scénarios climatiques.

Une exception est recensée au niveau du scénario climatique historique. La modalité "RCP00_HT00" ne contient que 9 groupes (Table 15). La modalité N240 obtient un score équivalent aux deux groupes dont le nombre de grains moyen est maximal au sein de ce scénario climatique, a et b. Sa valeur de 21 371 grains/m² a été estimée par le test SNK comme non significativement différente des moyennes de N210 et N270. Ces dernières sont réciproquement de 20 863 et 21 752 grains/m².

NFrac	Moyenne du nombre de grains [grains/m ²]	groups
N_270	21751,66	a
N_240	21370,97	ab
N_210	20862,5	b
N_180	20203,43	с
N_150	19394,88	d
N_120	18544,24	е
N_090	17600,34	f
N_060	16676,36	g
N_030	15654,97	h
N_000	14615,14	i

 $\label{eq:table 15-Valeurs du nombre de grain moyen et les groupes associés pour tous les sols et scénarios climatiques confondus$

Toutes les valeurs moyennes augmentent avec la hausse de la fertilisation au sein des différentes modalités du facteur "RCP_HT" (Figure 17). Les résultats indiquent un déplacement des valeurs comprises dans les quartiles 2 et 3 qui se décalent vers une valeur maximum commune aux différentes modalités de gestion azotée.

L'analyse de l'évolution du nombre de grains en fonction des "RCP_HT" montre différentes réponses selon le scénario climatique malgré qu'ils soient tous plus élevés que le scénario de référence. La valeur maximale se trouve sous le "RCP85_HT55" puis les valeurs diminuent en passant par le "RCP85_HT85" puis par "RCP45_HT55" pour arriver à la valeur minimale pour la modalité "RCP45_HT85".

FIGURE 17 – Boxplots du nombre de grain par fertilisation et scénario climatique pour tous les différents sols confondus

Scénario climatique	Nombre de grains [grains/m ²]											
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	14615,14	15654,97	16676,36	17600,34	$18544,\!24$	19394,88	20203,43	20862,5	21370,97	21751,66	18667, 45	
rcp_45_ht_55	15284,19	$16510,\!23$	17731,86	18831,93	19813,41	20645,29	21403,62	22116,62	22773,66	23384,1	19849,49	
rcp_45_ht_85	14534,82	15677,46	16867,56	18042,47	19100,54	20020,33	20942,52	21820,98	22619,14	23371,85	19299,77	
rcp_85_ht_55	15232,08	16459, 49	17742,28	18989,35	20201,39	21276,81	22301,9	23226,05	23965,22	24616,98	20401,16	
rcp_85_ht_85	14885,14	15913,38	17053,34	18256,5	19472,09	20667,92	21824,63	22901,08	23900,63	24746,7	19962,14	

TABLE 16 – Valeurs moyennes du nombre de grain par scénario climatique et fertilisation pour tous les sols confondus

Discussion des résultats

Les résultats montrent que le nombre de grains est impacté positivement par le changement climatique. Le nombre de grains est une composante déterminée durant la phase végétative de la plante et est associée aux stress en phase de pré-floraison. L'avancement de la physiologie de la plante et l'augmentation de certains stress en phase végétative ne semblent pas impacter négativement le nombre de grains produits. Cela est probablement compensé par l'impact plus important de l'effet fertilisation CO_2 . La présence d'une plus grande biomasse au stade de floraison indique qu'il est logique d'avoir un nombre de grains plus grand avec l'évolution des scénarios climatiques.

L'apport d'azote permet également d'augmenter significativement le nombre de grains moyen. Les quantités les plus importantes d'azote permettent de maximiser le nombre moyen de grains pour les modalités testées. Les résultats montrent qu'avec l'augmentation de la fertilisation azotée, le nombre de grains produits par la plante se rapproche d'une valeur maximum. Dès lors, les conditions de croissance ont permis d'atteindre la limite génétique du froment d'hiver, défini par la calibration du modèle. On voit que cette borne génétique est également atteinte de manière plus rapide et proche avec le changement climatique par rapport au scénario historique.

vi Rendement

L'analyse de la variance à 3 facteurs n'a recensé aucune interaction triple pour la variable rendement mais a mis en évidence trois interactions doubles hautement significatives (p-value < 0,001) entre les facteurs (Annexe R). Une AOV 2 par modalité de "RCP_HT" a été ensuite réalisée. Elle indique des différences très hautement significatives (p-value < 0,001) des valeurs moyennes du rendement sous chacun des scénarios climatiques (Annexe R) pour les deux facteurs "NFrac" et "Soil".

Les test SNK révèlent qu'au sein de chaque modalité du facteur "RCP_HT", on retrouve 10 groupes (Annexe R). Il s'agit d'un groupe par modalité de "NFrac", on retrouve alors un rendement moyen significativement différent par modalité de fractionnement (Figure 18).

Il existe une exception pour ce qui est du scénario de référence qui recense 9 groupes. En effet, la modalités N240 appartient aux deux groupes avec les valeurs les plus élevées, a et b (Table 17). Sa valeur moyenne de rendement de 9,52 t/ha a été considérée comme non significativement différente des valeurs de 9,70 t/ha pour la modalité N270 et 9,29 t/ha pour la modalité N210.

	Moyenne de rendement [t/ha]	groups
N_270	9,707085	a
N_240	9,518374	ab
N_210	9,287106	b
N_180	9,009824	с
N_150	8,666253	d
N_120	8,299982	е
N_090	7,885461	f
N_060	7,483687	g
N_030	7,039256	h
N_000	6,575414	i

TABLE 17 – Valeurs de rendement moyen et les groupes associés pour tous les sols et scénarios climatiques confondus $% \mathcal{A}$

Les rendements moyens évoluent à la hausse avec l'augmentation d'apport d'azote au

 $\label{eq:FIGURE-18-Boxplots-box} {\rm Figure-18-Boxplots-du-rendement-par-fertilisation-et-scénario-climatique-pour-tous-les-différents-sols-confondus}$

sein des différentes modalités du facteur "RCP_HT" (Figure 18).

La réponse du rendement varie selon les scénarios climatiques mais cette réponse reste supérieure au scénario de référence pour l'ensemble des "RCP_HT" liés à des horizons temporels futurs (Table 18). La valeur minimale se trouve sous le "RCP45_HT85" puis les valeurs croissent via le "RCP45_HT55" puis par "RCP85_HT85" et afin la valeur maximale sous "RCP85_HT55".

Scénario climatique		Rendement [t/ha]										
	N000	N030	N060	N090	N120	N150	N180	N210	N240	N270	Moyenne	
rcp_00_ht_00	6,58	7,04	7,48	7,89	8,30	8,67	9,01	9,29	9,52	9,71	8,35	
rcp_45_ht_55	6,82	7,38	7,92	8,40	8,81	9,17	9,50	9,83	10,14	10,42	8,84	
rcp_45_ht_85	6,47	7,02	7,58	8,11	8,58	8,99	9,40	9,78	10,13	10,47	8,65	
rcp_85_ht_55	6,83	7,38	7,94	8,50	9,02	9,49	9,94	10,36	10,71	11,01	9,12	
rcp_85_ht_85	6,62	7,12	7,65	8,20	8,75	9,29	9,82	10,31	10,77	11,17	8,97	

TABLE 18 – Valeurs moyennes du rendement par scénario climatique et fertilisation pour tous les sols confondus

Discussion des résultats

Un gain de rendement est observé avec l'évolution de la concentration en CO_2 de l'atmosphère. Les hausses de rendement proviennent de l'effet fertilisation CO_2 . Ces aug-

mentations peuvent venir également des rayonnements interceptés par la plante qui sont en augmentation sous les différents scénarios climatiques futurs.

Au sein de chaque scénario climatique, le rendement maximum correspond aux modalités ayant les plus grandes quantités d'azote. De manière générale, une dose d'azote supérieure permet d'améliorer de manière significative le rendement. Ces résultats liés au rendement confirment ce qui avait été vu pour la variable du nombre de grains. Le nombre de grains faisant partie des composantes du rendement, il semble normal que la réponse soit similaire. De ce fait, il est constaté que les conditions de croissance ont permis d'atteindre également la limite génétique pour le rendement.

2 Analyse statistique des variables dérivées

i Efficience agronomique d'utilisation des nutriments

L'AOV 3 a recensé deux interactions doubles hautement significatives (p-value < 0,001) avec comme facteur commun "RCP_HT" (Annexe S). Une analyse de la variance à deux facteurs par modalité de "RCP_HT" a été exécutée. Elle a affiché des différences très hautement significatives (p-value < 0,001) des moyennes de la NUE_{ag} pour les facteurs "Soil" et "NFrac" de chacun des scénarios climatiques. A l'exception de la modalité "RCP85_HT85" qui possède des moyennes significativement différentes (p-value < 0,05) avec une p-valeur de 0,0234 pour le facteur "NFrac" (Annexe S).

Le test SNK indique la présence d'un nombre différent de groupes pour chacun des scénarios climatiques (Table 19)(Annexe S). Ainsi les modalités "RCP00_HT00" et "RCP85_HT55" contiennent 4 groupes de moyennes significativement différentes. Tandis que la modalité "RCP45_HT55" contient 6 groupes et celle liée au scénario climatique "RCP45_HT85" en contient 5. Le scénario "RCP85_HT85" ne contient que des groupes dont les moyennes sont non significativement différentes. Le test SNK révèle qu'avec l'évolution des scénarios climatiques, de plus en plus de fertilisations appartiennent au groupe avec la moyenne la plus haute, le groupe a. A tel point que toutes les fertilisations appartiennent au même groupe de moyennes et ne sont pas significativement différentes pour le "RCP85_HT85".

Scénario climatique	Eff	Efficience agronomique d'utilisation des nutriments									
	N030	N060	N090	N120	N150	N180	N210	N240	N270		
rcp_00_ht_00	a	a	ab	ab	abc	abc	bcd	cd	d		
rcp_45_ht_55	a	a	ab	bc	cd	de	ef	ef	f		
rcp_45_ht_85	a	a	a	ab	bc	cd	cde	de	е		
rcp_85_ht_55	a	a	a	a	ab	ab	bc	cd	d		
rcp_85_ht_85	a	a	a	a	a	a	a	a	a		

TABLE 19 - Groupes de l'efficience agronomique par scénario climatique et fertilisation pour tous les sols confondus

FIGURE 19 – Boxplots de la NUE_{ag} par fertilisation et scénario climatique pour tous les différents sols confondus

L'efficience agronomique moyenne évolue à la baisse avec l'augmentation d'apport d'azote au sein des différentes modalités du facteur "RCP_HT" (Figure 19).

Discussion des résultats

Globalement, les résultats montrent qu'il y a moins de groupes significativement différents pour cette variable que pour toutes les variables vues précédemment. Il est considéré que la globalité des données appartient à la loi des grands nombres au vu de la quantité de données et des réponses très linéaires des variables. L'observation de groupes statistiques différents pour chaque niveau de fertilisation pour les autres variables indique qu'il y a tellement de points que les statistiques classiques telles que l'analyse de la variance et le test SNK ne sont pas adaptés pour avoir des équivalences statistiques.

Dès lors, l'analyse via des variables agronomiques dérivées permet de mettre en évidence des équivalences statistiques à l'inverse des variables absolues. Étant donné que le calcul de cette variable se fait en relatif avec des valeurs à fertilisation 0, cela permet d'avoir des réponses dans une gamme qui permet de travailler avec ces statistiques. En effet, le calcul de la NUE_{ag} revient à calculer la pente entre une fertilisation donnée et la fertilisation 0 pour le rendement.

Quel que soit le scénario climatique, il semble que l'efficience agronomique diminue avec

l'augmentation d'apport d'azote. Cela signifie que la quantité de rendement par kilo d'azote apporté diminue avec l'augmentation de la fertilisation azotée. A valeur de fertilisation faible la pente est forte mais au plus il y a de l'azote au moins la plante est efficiente car la pente s'aplatit. La valorisation de l'azote est un indicateur équivalent à la mesure du besoin azotée. Dès lors, à partir du moment où l'augmentation devient marginale, lorsqu'un plateau est atteint, cela indique que la plante valorise proportionnellement moins l'azote apporté. Autrement dit, on se rapproche du point où la plante a satisfait son besoin azoté.

Le test SNK (Table 19) révèle une augmentation des équivalences statistiques des doses de fertilisation avec l'évolution des scénarios climatiques. Afin d'identifier quand le besoin azoté est satisfait, les deux derniers groupes statistiques de chaque modalité de "RCP_HT" seront spécifiquement analysés. Il s'agit des deux derniers groupes de chaque modalité car on ne connait pas l'évolution de la NUE_{ag} au delà de "N270". De plus, la fertilisation "N180" sur le scénario historique, fertilisation de référence pour le froment d'hiver, appartient au groupe c (Table 19). Ce qui justifie l'intérêt agronomique de considérer ces deux groupes. Les résultats (Table 19) indiquent un étagement en escalier de ces deux derniers groupes avec l'évolution des scénarios climatiques, cela prouve une évolution du besoin azoté lié à l'effet fertilisation CO_2 .

Autrement dit, le besoin en azote pour que la plante maintienne sa capacité à produire évolue avec le changement climatique, l'optimum se décale à des valeurs de fertilisation plus élevées.

ii Efficience physiologique d'utilisation des nutriments

L'AOV 3 signale deux interactions doubles hautement significatives (p-value < 0,001) avec "RCP_HT" comme facteur commun (Annexe T) pour la variable d'efficience physiologique d'utilisation des nutriments (NUE_{phys}). Une AOV 2 par modalité de "RCP_HT" a été réalisée. Elle a indiqué des différences très hautement significatives (p-value < 0,001) de la NUE_{ag} pour l'ensemble des scénarios climatiques vis-à-vis des deux facteurs. A l'exception de la modalité "RCP85_HT85" dont les moyennes pour le facteur "NFrac" ne sont pas considérées comme significativement différences (Annexe T).

Le test SNK révèle qu'avec l'évolution des scénarios climatiques (Annexe T), les deux derniers groupes contenant les moyennes considérées comme les plus faibles se structurent en escalier par rapport aux valeurs de fertilisation (Table 20). A tel point que toutes les fertilisations appartiennent au même groupe de moyennes et ne sont pas significativement différentes pour le "RCP85_HT85".

FIGURE 20 – Boxplots de la NUE_{ag} par fertilisation et scénario climatique pour tous les différents sols confondus

Scénario climatique	Eff	Efficience physiologique d'utilisation des nutriments										
	N030	N060	N090	N120	N150	N180	N210	N240	N270			
rcp_00_ht_00	a	a	а	a	ab	ab	abc	bc	с			
rcp_45_ht_55	a	a	ab	bc	cd	de	ef	ef	f			
rcp_45_ht_85	a	a	а	ab	bc	cd	cde	de	е			
rcp_85_ht_55	a	a	а	ab	abc	bc	cd	de	е			
rcp_85_ht_85	a	a	a	a	a	a	a	a	a			

L'efficience physiologique moyenne évolue à la baisse avec l'augmentation d'apport d'azote au sein des différentes modalités du facteur "RCP_HT" (Figure 20).

Discussion des résultats

En ce qui concerne l'efficience physiologique des nutriments, sa réponse au changement climatique et à la fertilisation azotée est similaire à celle de la NUE_{ag} . Malgré tout, elle ne représente pas le même aspect de la physiologie et du développement de la plante. Elle exprime le gain de rendement produit par rapport à l'azote absorbé. En d'autres termes elle représente la partie qui a pu être allouée dans le grain par rapport à l'azote prélevé par l'ensemble de la plante.

De la même façon que pour la NUE_{ag} , on voit que l'effet fertilisation CO_2 a un impact sur le besoin azoté. L'optimum de fertilisation azotée, afin de combler le besoin azoté, de la plante se trouve à des valeurs de fertilisation plus élevées que la dose actuellement recommandée de 180 kgN/ha.

iii Coefficient apparent d'utilisation

L'AOV 3 pour la variable qu'est le coefficient d'utilisation de l'azote (CAU) indique deux interactions doubles dont une très hautement significative (p-value < 0,001) entre les facteurs "RCP_HT" et "Soil" (Annexe U). L'autre quant à elle est hautement significative et concerne l'interaction "NFrac" et "RCP_HT". Dès lors, une AOV 2 par modalité de "RCP_HT" a été appliquée. Cette dernière montre que les moyennes sont très hautement significatives (p-value < 0,001) vis-à-vis du facteur "Soil" pour l'ensemble des modalités de "RCP_HT". En ce qui concerne le facteur "NFrac", on retrouve des différences, entre les moyennes, très hautement significatives (p-value < 0,05) pour le "RCP00_HT00". L'AOV 2 indique que la p-valeur du "RCP85_HT85" pour le facteur "NFrac" est très proche de la valeur seuil de 0,05 (Annexe U).

Le test SNK (Table 21) ne détecte aucune moyenne significativement différente pour le "RCP00_HT00" malgré le résultat de l'AOV (Annexe U). Le test SNK ne montre pas de différence quant à l'évolution des scénarios climatiques.

Scénario climatique	Coefficient apparent d'utilisation										
	N030	N060	N090	N120	N150	N180	N210	N240	N270		
rcp_00_ht_00	a	a	а	a	a	а	а	a	a		
rcp_45_ht_55	a	a	ab	abc	abc	abc	abc	bc	с		
rcp_45_ht_85	a	a	a	a	a	a	a	a	a		
rcp_85_ht_55	a	a	a	a	a	a	a	a	a		
rcp_85_ht_85	a	a	a	a	a	a	a	a	a		

TABLE 21 – Groupes du coefficient apparent par scénario climatique et fertilisation pour tous les sols confondus

L'efficience physiologique n'évolue pas avec l'apport d'azote au sein des différentes modalités du facteur "RCP_HT" (Figure 21).

Discussion des résultats

Le coefficient apparent d'utilisation est également une variable dérivée. De la même façon que la NUE_{ag} et NUE_{phys} , elle permet de créer un gradient normalisé par l'apport en fertilisation, ce qui revient à calculer des pentes. Elle représente le taux d'exportation de ce qui a été fertilisé entre l'azote absorbé par la plante fertilisée et la plante sans apport extérieur dont l'azote provient de la minéralisation. Globalement le coefficient est assez stable que cela soit par rapport à l'évolution de la fertilisation et des scénarios climatiques.

FIGURE 21 – Boxplots de la CAU par fertilisation et scénario climatique pour tous les différents sols confondus

Globalement, le modèle répond en moyenne comme il faut à la fertilisation pour le changement climatique et la fertilisation par rapport de la CAU. En effet, les valeurs de CAU de 60% semblent correctes car les valeurs de référence semblent aller de 40% à 100%. Cependant, les valeurs de cette variable ne sont pas réellement stables. Elles le sont dû à la quantité importante de données présentes. Le fait que cet indice ne soit pas calculé sur une période assez courte de temps (stade phénologique) comme il l'est souvent a également peut-être un impact.

3 Analyse en composantes principales

Les résultats montrent une chute brutale de la proportion de variance expliquée au niveau de la deuxième composante principale (Figure 22). La variance expliquée semble décroître de manière assez constante pour les composantes principales restantes.

Les données se structurent principalement selon la première composante principale. L'ACP indique plusieurs regroupements de variables fortement corrélées entre elles (Figure 23).

En ce qui concerne l'évolution des ellipses du facteur "RCP_HT", les résultats indiquent une structuration dans la deuxième dimension (Figure 24).

L'analyse en composantes principales montre que la fertilisation azotée dirige 34% des données

FIGURE 22 – Pourcentage de la variance expliquée en fonction du nombre de composantes

FIGURE 23 – Analyse en composantes principales selon les 2 premiers axes

 $\ensuremath{\mathsf{FIGURE}}$ 24 – Analyse en composantes principales selon les 2 premiers axes et regroupement par scénario climatique

FIGURE 25 – Analyse en composantes principales selon les 2 premiers axes et regroupement par fertilisation azotée

(Figure 25). On observe un écart assez important entre l'ellipse "N_000" et "N_030" puis cet écart diminue pour le reste des modalités.

Discussion des résultats

L'ACP permet de traiter de grandes quantités de données quantitatives à analyser et est particulièrement utile lorsque les données sont fortement corrélées. Étant donné que STICS est un modèle mécanistique, les résultats montrent un certain nombre de variables corrélées entre elles. Cependant, le contraste présent avec la variabilité de sols et des autres facteurs permet de dire qu'il ne s'agit pas de l'étude d'une seule variable déterministe.

Globalement, les résultats montrent que seules la première et deuxième composantes sont intéressantes à analyser. La première composante explique la majorité de la variabilité présente au sein du jeu de données. Cette première composante est fortement reliée au facteur de fertilisation azotée. Cela permet d'affirmer que la gestion de l'azote va dominer l'explication de la variabilité du changement climatique. Cela s'observe notamment grâce aux forts contrastes présents en ce qui concerne le facteur "NFrac" pour les différentes variables. Moins de modalité de la gestion azotée aurait amené à une affirmation inverse.

V Discussion générale et conclusion

1 Discussion générale et conclusion

L'objectif de ce travail était d'identifier l'évolution du besoin azoté du froment d'hiver en Hesbaye suite à son développement sous différents scénarios représentant le changement climatique en Hesbaye.

Les résultats identifient un impact du changement climatique sur le besoin azoté du froment d'hiver. En effet, l'augmentation de la concentration en CO_2 , associée aux RCP4,5 et 8,5 pour les horizons temporels 2040-2070 et 2070-2100, induit des réponses physiologiques différentes qui ont pour conséquence de modifier le besoin azoté de la plante. De manière générale, la période de croissance du froment d'hiver est écourtée dû à l'effet fertilisation CO_2 qui permet aux plantes de procéder à une photosynthèse plus performante. Cela implique alors la création plus importante de sucres disponibles pour la plante afin de produire de la biomasse. Les mêmes tendances sont observées en ce qui concerne les variables de la quantité d'azote absorbé, du nombre de grains et du rendement malgré une période de développement plus courte. L'augmentation d'efficacité de la photosynthèse induit également une réduction du besoin de transpiration de la plante ce qui permet de mieux conserver l'eau dans les sols. La quantité plus importante d'azote absorbé par la plante. Dès lors, il est logique de dire que l'effet fertilisant CO_2 impacte positivement les variables physiologiques et agronomiques de cette étude.

Toutes les valeurs de ces variables agronomiques sont également augmentées dû à la réponse globale des stress au changement climatique. De manière générale, lorsqu'on prend l'ensemble des stress en considération, leur valeur totale diminue avec le changement climatique. Le stress lié au déficit d'eau disparait presque grâce à l'effet fertilisation CO_2 qui induit plus d'eau dans les sols. A l'inverse, le stress lié à l'anoxie augmente légèrement mais reste léger à cause des pluies hivernales intenses et du contenu en eau des sols plus élevée. La même tendance est recensée pour les stress thermiques car malgré l'occurrence plus élevée des phénomènes de températures extrêmes, les moyennes restent tolérables pour le froment d'hiver. Le stress de carences azotées quant à lui augmente fortement en deuxième phase végétative et devient le facteur limitant de développement des plantes étant donné que les autres stress semblent être levés.

Étant donné que les carences azotées semblent être le facteur de réduction du potentiel de développement du froment d'hiver sous des scénarios climatiques représentant le changement climatique, il est pertinent de s'intéresser à l'évolution du besoin azoté. Les résultats indiquent une augmentation de valeurs significatives dès qu'il y a un apport d'azote en quantité supérieure pour l'ensemble des variables agronomiques à quelques exceptions près. Dès lors, chaque scénario climatique contient 10 réponses significativement différentes de la variable concernée selon l'apport de fertilisation azotée. Il semble donc qu'avec le changement climatique, les quantités maximales d'azote apportées sont à privilégier pour satisfaire le besoin azoté du froment d'hiver.

Cependant, au vu du nombre de données prises en considération notamment à cause des sols, il y a beaucoup de contraste dans la base de données. Les données sont considérées comme appartenant à la loi des grands nombres au vu de leur quantité et des réponses très linéaires des variables. Il y a tellement de points que toutes les moyennes de chaque variable sont significativement différentes. Dans ce cadre, les tests SNK et de l'analyse de la variance ne sont pas adaptés pour observer des équivalences statistiques.

L'utilisation de variables dérivées permet de palier au problème des variables absolues étant donné qu'elles sont calculées en relatif par rapport à la modalité sans fertilisation. Ces valeurs permettent ainsi de quantifier la valorisation de l'azote fournit, ce qui revient à mesurer le besoin azoté. En ce qui concerne les variables d'efficience d'utilisation des nutriments, NUE_{ag} et NUE_{phys} , le groupe contenant les valeurs maximales moyennes a tendance à se décaler vers des valeurs de fertilisation azoté plus élevées avec l'évolution des scénarios climatique. Autrement dit, le besoin azoté sera satisfait à des valeurs de fertilisation plus élevée avec l'augmentation de la concentration atmosphérique en CO_2 . A tel point, que le scénario climatique contenant le plus de CO_2 pour l'horizon temporel 2070-2100 ne montre plus de différences significatives entre les modalités de fertilisation azotée. Vis-à-vis du coefficient apparent d'utilisation (CAU), les résultats indiquent une réponse stable que cela soit par rapport à la fertilisation azotée ou à l'évolution des scénarios climatiques. Cela vient probablement du fait que cet indicateur a été calculer sur une période longue de temps car sa réponse moyenne semble cohérente.

En conclusion, il est possible d'affirmer que la fertilisation azotée domine l'explication de la variabilité de la réponse du froment d'hiver par rapport au changement climatique en tant que stress limitant. Et que le besoin azotée du froment d'hiver en réponse au changement climatique se dirige vers des valeurs de fertilisation plus élevées.

2 Perspectives

Cette étude a permis de mettre en évidence l'évolution du besoin azoté du froment d'hiver sous différents scénarios de changement climatique en Hesbaye.

En ce qui concerne les sols, on a créé de la variabilité pour capter une réponse plus forte de la plante. Une autre perspective serait de réaliser cette méthode à l'échelle de champ ou de sous régions agricoles. La création d'un outil d'automatisation sur base de cette méthode pourrait également être utilisé pour analyser le besoin azoté à l'échelle de champs. Une autre approche serait d'appliquer cette méthode par type de sol afin de mettre en évidence les différentes réponses du sol et ainsi imaginer des stratégies d'adaptation spécifique pour les exploitants. Afin d'être plus représentatif de la réalité, cette méthode pourrait être modifiée pour intégrer des apports de matière organique et ainsi mettre en évidence les différences de réponses du froment d'hiver entre les deux méthodes.

Une autre approche serait d'appliquer cette méthode en vue d'une transition agro-écologique via la modélisation d'une culture de froment-pois. Étant donné que le facteur limitant est la carence azotée, l'association du froment avec une légumineuse permettrait de voir une dynamique différente du besoin azoté pour une futur culture potentielle.

Au vu des résultats obtenus comme le nombre de grains qui a atteint le plafond génétique, des modélisations pourraient être réalisées afin de créer des idéotypes. L'objectif serait de créer un cultivar virtuel pour éviter les plafonds obtenus et ainsi créer des ébauches de variétés adaptées au changement climatique.

VI Contribution personnelle

Lors de la réalisation de ce travail de fin d'études, j'ai compris l'intérêt des outils technologiques dans le monde de la recherche et plus particulièrement sur la thématique du changement climatique. Dans un premier temps, je devais réaliser ce travail sur un autre sujet mais cela a été changé. J'ai donc du apprendre à m'adapter, ce qui m'a permis d'acquérir des capacités d'autonomie et d'organisation. Cette autonomie associée à mon manque de pratique sur les logiciels informatiques ont vraiment été un défi éprouvant mais cela m'a poussé à m'impliquer à fond.
Références

- ABRAHAMSEN, P., & HANSEN, S. (2000). Daisy : an open soil-crop-atmosphere system model. Environmental Modelling & Software, 15(3), 313-330. https://doi.org/10.1016/S1364-8152(00)00003-7
- ACOCK, B., & ACOCK, M. C. (1993). Modeling approaches for predicting crop ecosystem responses to climate change [Section : 38 __eprint : https ://onlinelibrary.wiley.com/doi/pdf/10.2135/1993.internationalcropscience.c45]. In International crop science i (p. 299-306). John Wiley & Sons, Ltd. https://doi.org/10.2135/1993. internationalcropscience.c45
- ANDREWS, T., FORSTER, P. M., BOUCHER, O., BELLOUIN, N., & JONES, A. (2010). Precipitation, radiative forcing and global temperature change [_eprint : https ://onlinelibrary.wiley.com/doi/pdf/10.1029/2010GL043991]. Geophysical Research Letters, 37(14). https://doi.org/10.1029/2010GL043991
- ARTRU, S. (2017, juin 6). Impact of spatio-temporal shade on crop growth and productivity, perspectives for temperate agroforestry [thèse de doct., ULiège - Université de Liège] [Publisher : ULiège - Université de Liège]. Récupérée janvier 3, 2024, à partir de https: //orbi.uliege.be/handle/2268/211276
- ASSENG, S., & TURNER, N. C. (2007). Modelling genotype ã— environment ã— management interactions to improve yield, water use efficiency and grain protein in wheat. Scale and Complexity in Plant Systems Research : Gene-Plant-Crop Relations, 21, 91-102. Récupérée août 9, 2023, à partir de https://library.wur.nl/ojs/index.php/frontis/ article/view/1298
- ASSENG, S., CAO, W., ZHANG, W., & LUDWIG, F. (2009, avril 15). Crop Physiology, Modelling and Climate Change : Impact and Adaptation Strategies. In *Crop Physiology* (p. 511-543). https://doi.org/10.1016/B978-0-12-374431-9.00020-7
- BASSO, B., DUMONT, B., MAESTRINI, B., SHCHERBAK, I., ROBERTSON, G. P., PORTER, J. R., SMITH, P., PAUSTIAN, K., GRACE, P. R., ASSENG, S., BASSU, S., BIERNATH, C., BOOTE, K. J., CAMMARANO, D., SANCTIS, G. D., DURAND, J.-L., EWERT, F., GAYLER, S., HYNDMAN, D. W., ... ROSENZWEIG, C. (2018). Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change [Publisher : Crop Science Society of America, United States]. Agricultural and Environmental Letters, 3 :180026. https://doi.org/10.2134/ael2018.05.0026
- BASSO, B., & RITCHIE, J. T. (2005). Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in michigan. Agriculture, Ecosystems & Environment, 108(4), 329-341. https://doi.org/10.1016/j.agee.2005.01. 011
- BATCHELOR, W. D., BASSO, B., & PAZ, J. O. (2002). Examples of strategies to analyze spatial and temporal yield variability using crop models. *European Journal of Agronomy*, 18(1), 141-158. https://doi.org/10.1016/S1161-0301(02)00101-6
- BLOOMFIELD, M. T., CELESTINA, C., HUNT, J. R., HUTH, N., ZHENG, B., BROWN, H., ZHAO, Z., WANG, E., STEFANOVA, K., HYLES, J., RATHJEN, T., & TREVASKIS, B. (2023).

Vernalisation and photoperiod responses of diverse wheat genotypes [Publisher : CSIRO PUBLISHING]. Crop and Pasture Science, 74(5), 405-422. https://doi.org/10.1071/CP22213

- BODSON, B., & FALISSE, A. (1996). Ecophysiologie de la production végétale : l'exemple du blé [Publisher : Probio, Belgium]. Probio-Revue, 19(1). Récupérée janvier 1, 2024, à partir de https://orbi.uliege.be/handle/2268/72319
- BREGAGLIO, S., FRASSO, N., PAGANI, V., STELLA, T., FRANCONE, C., CAPPELLI, G., ACUTIS, M., BALAGHI, R., OUABBOU, H., PALEARI, L., & CONFALONIERI, R. (2015). New multimodel approach gives good estimations of wheat yield under semi-arid climate in morocco. Agronomy for Sustainable Development, 35(1), 157-167. https://doi.org/10.1007/ s13593-014-0225-6
- BRISSON, N., GARY, C., JUSTES, E., ROCHE, R., MARY, B., RIPOCHE, D., ZIMMER, D., SIERRA, J., BERTUZZI, P., BURGER, P., BUSSIÈRE, F., CABIDOCHE, Y. M., CELLIER, P., DEBAEKE, P., GAUDILLÈRE, J. P., HÉNAULT, C., MARAUX, F., SEGUIN, B., & SINOQUET, H. (2003). An overview of the crop model stics. *European Journal of Agronomy*, 18(3), 309-332. https://doi.org/10.1016/S1161-0301(02)00110-7
- BRISSON, N. N., LAUNAY, M., MARY, B. B., & BEAUDOIN, N. N. (2009). Conceptual basis, formalisations and parameterization of the STICS crop model. Editions Quae. Récupérée janvier 2, 2024, à partir de https://belinra.inrae.fr/doc_num.php?explnum_id=3396
- BURNY, P. (2010, février). 10. Production et échanges mondiaux de céréales en 2009-2010 et production communautaire en 2009. In *Libre Blanc Céréales - Edition 2010*. Récupérée novembre 9, 2023, à partir de https://www.gembloux.ulg.ac.be/phytotechnie-temperee/ LIVREBLANC/LBfev2010/pb/10.%20Economie.pdf
- CASSMAN, K. G., DOBERMANN, A., & WALTERS, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management [Publisher : Royal Swedish Academy of Sciences]. AMBIO : A Journal of the Human Environment, 31(2), 132-140. https://doi.org/10. 1579/0044-7447-31.2.132
- CHEN, D., LI, Y., GRACE, P., & MOSIER, A. R. (2008). N20 emissions from agricultural lands : a synthesis of simulation approaches. *Plant and Soil*, 309(1), 169-189. https://doi.org/10.1007/s11104-008-9634-0
- CHUAN, L., HE, P., PAMPOLINO, M. F., JOHNSTON, A. M., JIN, J., XU, X., ZHAO, S., QIU, S., & ZHOU, W. (2013). Establishing a scientific basis for fertilizer recommendations for wheat in China : Yield response and agronomic efficiency. *Field Crops Research*, 140, 1-8. https://doi.org/10.1016/j.fcr.2012.09.020
- de BEURS, K. M., COOK, R. B., MAZER, S., HAGGERTY, B., HOVE, A., HENEBRY, G. M., BARNETT, L., THOMAS, C. L., & POHLAD, B. R. (2013). Phenology in higher education : ground-based and spatial analysis tools. In M. D. SCHWARTZ (Éd.), *Phenology : an integrative environmental science* (p. 585-602). Springer Netherlands. https://doi.org/ 10.1007/978-94-007-6925-0_31
- DELCOUR, A., VAN STAPPEN, F., GHEYSENS, S., DECRUYENAERE, V., STILMANT, D., BURNY, P., RABIER, F., LOUPPE, H., & GOFFART, J.-P. (2014). État des lieux des flux céréaliers en Wallonie selon différentes filières d'utilisation [Publisher : Presses Agronomiques de

Gembloux, Gembloux, Belgium]. Biotechnologie, Agronomie, Société et Environnement, 18(2), 181-192. Récupérée août 10, 2023, à partir de https://orbi.uliege.be/handle/2268/171015

- DIDIER, A. (2013, juin 4). Modélisation de la croissance, des relations sources-puits et du rendement en sucre de la betterave sucrière (Beta vulgaris L.) sous des régimes contrastés de nutrition azotée [thèse de doct., AgroParisTech]. Récupérée janvier 3, 2024, à partir de https://pastel.hal.science/pastel-00949047
- DUMONT, B., & PIERREUX. (2022, septembre). Livre Blanc Céréales Septembre 2022. CENTRE WALLON DE RECHERCHES AGRONOMIQUES (CRA-W) GEMBLOUX. Récupérée novembre 9, 2023, à partir de https://www.livre-blanc-cereales.be/wpcontent/uploads/2023/04/2022-09-LivreBlanc.pdf
- DUMONT, B., BASSO, B., DESTAIN, J.-P., MEZA MORALES, W., & BODSON, B. (2018). Développement d'un système d'aide à la décision multicritère pour l'optimisation de la fertilisation azotée. Récupérée avril 24, 2023, à partir de https://orbi.uliege.be/handle/2268/220356
- DUMONT, B., BASSO, B., SHCHERBAK, I., PAUSTIAN, K., NENDEL, C., GRACE, P., THORBURN, P., CAMMARANO, D., ASSENG, S., BIERNATH, C., BOOTE, K. J., SANCTIS, G. D., DURAND, J.-L., GRANT, R., GAYLER, S., KENT, J., PRIESACK, E., RIPOCHE, D., RUANE, A. C., ... ROSENZWEIG. (2016). Crop yields, soil organic carbon and soil nitrogen content change under climate change. Récupérée août 9, 2023, à partir de https://orbi.uliege.be/handle/2268/202318
- DUMONT, B., VANCUTSEM, F., SEUTIN, B., BODSON, B., DESTAIN, J.-P., & DESTAIN, M.-F. (2012). Simulation de la croissance du blé à l'aide de modèles écophysiologiques : Synthèse bibliographique des méthodes, potentialités et limitations. [Publisher : Presses Agronomiques de Gembloux, Gembloux, Belgium]. Biotechnologie, Agronomie, Société et Environnement, 16(3). Récupérée août 11, 2023, à partir de https://orbi.uliege.be/ handle/2268/129589
- DZOTSI, K. A., BASSO, B., & JONES, J. W. (2015). Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model. Agricultural Systems, 135, 31-47. https://doi.org/10.1016/j.agsy.2014.12.003
- EITZINGER, J., ŠTASTNÁ, M., ŽALUD, Z., & DUBROVSKÝ, M. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. *Agricultural Water Management*, 61(3), 195-217. https://doi.org/10.1016/S0378-3774(03)00024-6
- FAO. (2022, novembre). Perspectives de l'alimentation (Publication semestrielle). Division du commerce et des marché. Rome, Italie. Récupérée octobre 14, 2023, à partir de https: //www.fao.org/3/cc3762fr/cc3762fr.pdf
- FRY, J., GUBER, A. K., LADONI, M., MUNOZ, J. D., & KRAVCHENKO, A. N. (2017). The effect of up-scaling soil properties and model parameters on predictive accuracy of DSSAT crop simulation model under variable weather conditions. *Geoderma*, 287, 105-115. https: //doi.org/10.1016/j.geoderma.2016.08.012

- FURBANK, R., & TAYLOR, W. (1995). Regulation of Photosynthesis in C3 and C4 Plants : A Molecular Approach. The Plant Cell, 7(7), 797-807. Récupérée janvier 3, 2024, à partir de https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160868/
- GIEC. (2014). Changements climatiques 2014 : Rapport de synthèse (Contribution des Groupes de travail I, II et III au cinquième Rapport d'évaluation du Groupe d'experts intergouvernemental sur l'évolution du climat [Sous la direction de l'équipe de rédaction principale, R.K. Pachauri et L.A. Meyer]) (Contribution des Groupes de travail I, II et III au cinquième Rapport d'évaluation du Groupe d'experts intergouvernemental sur l'évolution du climat [Sous la direction de l'équipe de rédaction principale, R.K. Pachauri et L.A. Meyer]). GIEC. Genève, Suisse. https://www.ipcc.ch/site/assets/uploads/2018/02/ SYR_AR5_FINAL_full_fr.pdf
- GIOT, O., TERMONIA, P., DEGRAUWE, D., DE TROCH, R., CALUWAERTS, S., SMET, G., BERCKMANS, J., DECKMYN, A., DE CRUZ, L., DE MEUTTER, P., DUERINCKX, A., GERARD, L., HAMDI, R., VAN DEN BERGH, J., VAN GINDERACHTER, M., & VAN SCHAEYBROECK, B. (2016). Validation of the ALARO-0 model within the EURO-CORDEX framework [Publisher : Copernicus GmbH]. Geoscientific Model Development, 9(3), 1143-1152. https://doi.org/10.5194/gmd-9-1143-2016
- GODFRAY, H. C. J., BEDDINGTON, J. R., CRUTE, I. R., HADDAD, L., LAWRENCE, D., MUIR, J. F., PRETTY, J., ROBINSON, S., THOMAS, S. M., & TOULMIN, C. (2010). Food security : the challenge of feeding 9 billion people. *Science (New York, N.Y.)*, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
- HALL, D. O., & RAO, K. K. (1999). *Photosynthesis* / (6ème édition) [Place : London : Publisher : Arnold,]. CAMBRIDGE UNIVERSITY PRESS.
- HERTEL, T., BURKE, M., & LOBELL, D. (2010). The poverty implications of climate-induced crop yield changes by 2030. *Global Environmental Change*, 20(4), 577-585. https://doi. org/10.1016/j.gloenvcha.2010.07.001
- HOOGENBOOM, G., JONES, J. W., TRAORE, P. C. S., & BOOTE, K. J. (2012). Experiments and data for model evaluation and application. In J. KIHARA, D. FATONDJI, J. W. JONES, G. HOOGENBOOM, R. TABO & A. BATIONO (Éd.), Improving soil fertility recommendations in africa using the decision support system for agrotechnology transfer (DSSAT) (p. 9-18). Springer Netherlands. https://doi.org/10.1007/978-94-007-2960-5_2
- HOSSAIN, A., SKALICKY, M., BRESTIC, M., MAITRA, S., ASHRAFUL ALAM, M., SYED, M. A., HOSSAIN, J., SARKAR, S., SAHA, S., BHADRA, P., SHANKAR, T., BHATT, R., KUMAR CHAKI, A., EL SABAGH, A., & ISLAM, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (triticum aestivum l.) under the changing climate [Number : 2 Publisher : Multidisciplinary Digital Publishing Institute]. Agronomy, 11(2), 241. https://doi.org/10.3390/agronomy11020241
- HURKMAN, W. J., MCCUE, K. F., ALTENBACH, S. B., KORN, A., TANAKA, C. K., KOTHARI, K. M., JOHNSON, E. L., BECHTEL, D. B., WILSON, J. D., ANDERSON, O. D., & DUPONT, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. *Plant Science*, 164(5), 873-881. https://doi.org/10.1016/S0168-9452(03)00076-1

- INRA [INRAE STICS]. (2017). Récupérée octobre 22, 2023, à partir de https://stics.paca. hub.inrae.fr/
- IRM [KMI]. (s. d.). Récupérée octobre 15, 2023, à partir de https://www.meteo.be/fr/infos/ newsletter/articles-2020
- JAME, Y., & CUTFORTH, H. (1996). Crop growth models for decision support systems. Canadian Journal of Plant Science, 76(1). https://doi.org/10.4141/cjps96-003
- JÉGO, G., SÁNCHEZ-PÉREZ, J. M., & JUSTES, E. (2012). Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields. Agricultural Water Management, 107, 54-65. https://doi.org/10.1016/j. agwat.2012.01.007
- JONES, J. W., ANTLE, J. M., BASSO, B., BOOTE, K. J., CONANT, R. T., FOSTER, I., GODFRAY, H. C. J., HERRERO, M., HOWITT, R. E., JANSSEN, S., KEATING, B. A., MUNOZ-CARPENA, R., PORTER, C. H., ROSENZWEIG, C., & WHEELER, T. R. (2017). Brief history of agricultural systems modeling. *Agricultural Systems*, 155, 240-254. https: //doi.org/10.1016/j.agsy.2016.05.014
- LANCASHIRE, P. D., BLEIHOLDER, H., BOOM, T. V. D., LANGELÜDDEKE, P., STAUSS, R., WEBER, E., & WITZENBERGER, A. (1991). A uniform decimal code for growth stages of crops and weeds [_eprint : https ://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1744-7348.1991.tb04895.x]. Annals of Applied Biology, 119(3), 561-601. https://doi.org/10. 1111/j.1744-7348.1991.tb04895.x
- LARSEN, J., SMITH, P., COWBROUGH, M., FALK, D., QUESNEL, G., BAUTE, T., TENUTA, A., & JOHNSON, P. (s. d.). Un guide de champ sur les stades de croissances des céréales (Guide N° 6250F-0108). Université de Guelph. Récupérée octobre 8, 2023, à partir de https://www.cropscience.bayer.ca/-/media/Bayer-CropScience/Country-Canada - Internet / Growers - Tools / Resources - and - Guides / French / un - guide - le champ - sur - les - stades - de - croissance - des - cereales . ashx ? la = fr - CA & hash = 507E716B181F3B482FD58ED3617AE40CE76AA30F
- LE SOUDER, C. (2023, janvier 12). Fertilisation du blé tendre : fractionner l'azote en trois apports [ARVALIS]. Récupérée janvier 2, 2024, à partir de https://www.arvalis.fr/infostechniques/fractionner-lazote-en-trois-apports
- LESK, C., ROWHANI, P., & RAMANKUTTY, N. (2016). Influence of extreme weather disasters on global crop production [Number : 7584 Publisher : Nature Publishing Group]. Nature, 529(7584), 84-87. https://doi.org/10.1038/nature16467
- LIMAUX, F. (1994, février 4). Facteurs de variation du coefficient apparent d'utilisation de l'azote de l'engrais : conséquences pour la conduite de la fertilisation azotée du blé d'hiver en Lorraine [thèse de doct., Institut National Polytechnique de Lorraine]. Récupérée janvier 4, 2024, à partir de https://hal.univ-lorraine.fr/tel-01776570
- LOBELL, D. B., & BURKE, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. *Agricultural and Forest Meteorology*, 150(11), 1443-1452. https://doi.org/10.1016/j.agrformet.2010.07.008
- LONG, S. P., AINSWORTH, E. A., LEAKEY, A. D. B., & MORGAN, P. B. (2005). Global food insecurity. treatment of major food crops with elevated carbon dioxide or ozone un-

der large-scale fully open-air conditions suggests recent models may have overestimated future yields. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 360(1463), 2011-2020. https://doi.org/10.1098/rstb.2005.1749

- MIRSCHEL, W., WIELAND, R., WENKEL, K.-O., NENDEL, C., & GUDDAT, C. (2014). YIELD-STAT – a spatial yield model for agricultural crops. *European Journal of Agronomy*, 52, 33-46. https://doi.org/10.1016/j.eja.2013.09.015
- MOHAMMED, A., YUSUF, M., DECHASA, N., & ABDUSELAM, F. (2018). Effects of Integrated Nutrient Management on Potato (Solanum tuberosum L.) Growth, Yield and Yield Components at Haramaya Watershed, Eastern Ethiopia. Open Access Library Journal, 5, 3974. https://doi.org/10.4236/oalib.1103974
- OEHLER, F., BORDENAVE, P., & DURAND, P. (2007). Variations of denitrification in a farming catchment area. Agriculture, Ecosystems & Environment, 120(2), 313-324. https://doi. org/10.1016/j.agee.2006.10.007
- PEART, R. M., J. W., J., CURRY, R. B., BOOTE, K., & HARTWELL ALLEN, L. (1989). In In the potential effects of global change on the united states, vol 1. U.S. Environmental Protection Agency.
- RAUN, W. R., & SCHEPERS, J. S. (2008).Nitrogen management for imuse efficiency [Section 17://onlineliproved : eprint https : brary.wiley.com/doi/pdf/10.2134/agronmonogr49.c17]. In Nitrogen in agricultural sustems (p. 675-693). John Wiley & Sons, Ltd. https://doi.org/10.2134/agronmonogr49.c17
- RIAHI, K., RAO, S., KREY, V., CHO, C., CHIRKOV, V., FISCHER, G., KINDERMANN, G., NAKICENOVIC, N., & RAFAJ, P. (2011). RCP 8.5—a scenario of comparatively high greenhouse gas emissions. *Climatic Change*, 109(1), 33. https://doi.org/10.1007/s10584-011-0149-y
- RIHA, S. J., WILKS, D. S., & SIMOENS, P. (1996). Impact of temperature and precipitation variability on crop model predictions. *Climatic Change*, 32(3), 293-311. https://doi.org/ 10.1007/BF00142466
- RITCHIE, J., & OTTER, S. (1985). Description and performance of CERES-Wheat : A useroriented wheat yield model [Citation de l'article : Ritchie, J.T. and Otter, S. (1985) Description and Performance of CERES-Wheat : A User-Oriented Wheat Yield Model. In : ARS Wheat Yield Project. ARS-38. Natl Tech Info Serv, Spring-Field, Missouri, 159-175.]. USDA-ARS, ARS-38, 38.
- RODRÍGUEZ, A., RUIZ-RAMOS, M., PALOSUO, T., CARTER, T. R., FRONZEK, S., LORITE, I. J., FERRISE, R., PIRTTIOJA, N., BINDI, M., BARANOWSKI, P., BUIS, S., CAMMARANO, D., CHEN, Y., DUMONT, B., EWERT, F., GAISER, T., HLAVINKA, P., HOFFMANN, H., HÖHN, J. G., ... RÖTTER, R. P. (2019). Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. *Agricultural and Forest Meteorology*, 264, 351-362. https://doi.org/10.1016/j.agrformet. 2018.09.018
- ROSENBERG, N. J., KIMBALL, B. A., MARTIN, P., & COOPER, C. F. (1990). From climate and CO2 enrichment to evapotranspiration. [Publisher : John Wiley and Sons Inc.].

Climate change and US water resources., 151-175. Récupérée janvier 4, 2024, à partir de https://www.cabdirect.org/cabdirect/abstract/19911959038

- ROUDIER, P., SULTAN, B., QUIRION, P., & BERG, A. (2011). The impact of future climate change on West African crop yields : What does the recent literature say? *Global Envi*ronmental Change, 21(3), 1073-1083. https://doi.org/10.1016/j.gloenvcha.2011.04.007
- RUGET, F., BETHENOD, O., & COMBE, L. (1996). Repercussions of increased atmospheric CO2 on maize morphogenesis and growth for various temperature and radiation levels. *Maydica*, (41), 181. Récupérée janvier 3, 2024, à partir de https://hal.inrae.fr/hal-02687835
- SEGUIN, B. (2010). Le changement climatique : conséquences pour les végétaux [Place : Paris Publisher : Éditions de la Maison des sciences de l'homme]. Quaderni, 71(1), 27-40. https://doi.org/10.4000/quaderni.525
- SEMENOV, M. A., JAMIESON, P. D., & MARTRE, P. (2007). Deconvoluting nitrogen use efficiency in wheat : a simulation study. *European Journal of Agronomy*, 26(3), 283-294. https://doi.org/10.1016/j.eja.2006.10.009
- SEXTON, J., EVERINGHAM, Y., & INMAN-BAMBER, G. (2016). A theoretical and real world evaluation of two bayesian techniques for the calibration of variety parameters in a sugarcane crop model. *Environmental Modelling & Software*, 83, 126-142. https://doi. org/10.1016/j.envsoft.2016.05.014
- SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K., TIGNOR, M., & MILLER, H. (2007). GIEC. summary for policymakers. Cambridge University Press. Cambridge, UK. https://www.mdpi.com/2073-4395/11/2/241
- STATBEL. (2023). Exploitations agricoles et horticoles [Statbel]. Récupérée janvier 1, 2024, à partir de https://statbel.fgov.be/fr/themes/agriculture-peche/exploitations-agricoles-et-horticoles#figures
- STOCKLE, C. O., WILLIAMS, J. R., ROSENBERG, N. J., & JONES, C. A. (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops : Part I—Modification of the EPIC model for climate change analysis. *Agricultural Systems*, 38(3), 225-238. https://doi.org/10.1016/0308-521X(92)90067-X
- STUDNICKI, M., WIJATA, M., SOBCZYŃSKI, G., SAMBORSKI, S., GOZDOWSKI, D., & ROZBICKI, J. (2016). Effect of genotype, environment and crop management on yield and quality traits in spring wheat. *Journal of Cereal Science*, 72, 30-37. https://doi.org/10.1016/j. jcs.2016.09.012
- SUI, B., FENG, X., TIAN, G., HU, X., SHEN, Q., & GUO, S. (2013). Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors. *Field Crops Research*, 150, 99-107. https://doi.org/10.1016/j.fcr.2013.06.012
- TARDIEU, F. (2003). Virtual plants : modelling as a tool for the genomics of tolerance to water deficit. Trends in Plant Science, 8(1), 9-14. https://doi.org/10.1016/S1360-1385(02)00008-0
- TAULEMESSE, F. (2015, juin 16). Analyse écophysiologique et génétique de l'absorption d'azote post-floraison chez le blé tendre (Triticum aestivum L.) en relation avec la concentration

en protéines des grains [thèse de doct., Université Blaise Pascal - Clermont-Ferrand II]. Récupérée août 10, 2023, à partir de https://theses.hal.science/tel-01229768

- van ITTERSUM, M. K., CASSMAN, K. G., GRASSINI, P., WOLF, J., TITTONELL, P., & HOCHMAN, Z. (2013). Yield gap analysis with local to global relevance—A review. *Field Crops Research*, 143, 4-17. https://doi.org/10.1016/j.fcr.2012.09.009
- VARELLA, H., GUÉRIF, M., & BUIS, S. (2010). Global sensitivity analysis measures the quality of parameter estimation : the case of soil parameters and a crop model. *Environmental Modelling & Software*, 25(3), 310-319. https://doi.org/10.1016/j.envsoft.2009.09.012
- VERLINDEN, A. (2022). Evaluation du potentiel d'optimisation des schémas de fertilisation azotée du froment d'hiver, sur base d'une approche modélisation, à l'échelle wallonne [Accepted : 2022-03-25T12 :29 :43Z Publisher : Université de Liège, Liège, Belgique Section : Université de Liège]. Récupérée août 9, 2023, à partir de https://matheo. uliege.be/handle/2268.2/13878
- YANG, X., LU, Y., DING, Y., YIN, X., RAZA, S., & TONG, Y. (2017). Optimising nitrogen fertilisation : a key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Research, 206, 1-10. https://doi.org/10.1016/j.fcr.2017.02.016
- ZADOKS, J. C., CHANG, T. T., & KONZAK, C. F. (1974). A decimal code for the growth stages of cereals [_eprint : https ://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-3180.1974.tb01084.x]. Weed Research, 14(6), 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

A Résultats de l'analyse de la variance et du test SNK de la date de floraison

[1] "===Date de floraison==="

Df Sum Sq Mean Sq F value Pr(>F) data\$NFrac 29992 3332 61.014 < 2e-16 *** 9 data\$RCP HT 4 864198 216049 3955.725 < 2e-16 *** data\$Soil 9 3580 398 7.283 1.2e-10 *** data\$NFrac:data\$RCP HT 36 103 3 0.053 1 data\$NFrac:data\$Soil 81 113 1 0.025 1 data\$RCP HT:data\$Soil 1 36 128 4 0.065 data\$NFrac:data\$RCP_HT:data\$Soil 324 0.004 75 0 1 Residuals 14000 764637 55 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Date de floraison===" Df Sum Sq Mean Sq F value Pr(>F) data\$NFrac 29992 3332 63.059 < 2e-16 *** 9 data\$RCP HT 4 864198 216049 4088.263 < 2e-16 *** data\$Soil 9 3580 398 7.527 4.48e-11 *** Residuals 14477 765056 53 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Date de floraison===" [1] "- SNK by NFrac -" data[, ii] groups N_{000} 523.3179 а N 030 522.9207 ab N 060 522.4517 bc N 090 521.9517 С N_120 521.4207 d N_150 520.8993 de N_180 520.3738 ef N 210 519.8572 fg N 240 519.3821 gh N 270 518.9193 h

```
[1] "- SNK by RCP_HT -"
             data[, ii] groups
rcp_00_ht_00
               532.3810
                              а
               524.1228
rcp_45_ht_55
                              b
rcp_85_ht_55
               520.6776
                              С
rcp_45_ht_85
               520.1348
                              d
rcp_85_ht_85
               508.4310
                              е
```

B Résultats de l'analyse de la variance et du test SNK de la date de maturité

```
[1] "===Date de maturité==="
                               Df Sum Sq Mean Sq F value Pr(>F)
data$NFrac
                                  19965
                                           2218
                                                 42.636 < 2e-16 ***
                                9
                                4 927950 231988 4458.848 < 2e-16 ***
data$RCP HT
data$Soil
                                           285
                                                  5.478 1.5e-07 ***
                                9
                                    2565
data$NFrac:data$RCP_HT
                                     78
                                             2
                                                            1
                               36
                                                  0.042
                                             1
data$NFrac:data$Soil
                                     105
                                                  0.025
                                                            1
                               81
data$RCP HT:data$Soil
                                             1
                                                            1
                               36
                                     50
                                                  0.027
data$NFrac:data$RCP_HT:data$Soil
                                                  0.004
                              324
                                     61
                                             0
                                                            1
Residuals
                             14000 728400
                                            52
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Date de maturité==="
Df Sum Sq Mean Sq F value
                                     Pr(>F)
data$NFrac
             9
                19965
                        2218
                              44.071 < 2e-16 ***
data$RCP HT
              4 927950 231988 4608.906 < 2e-16 ***
data$Soil
                               5.663 7.33e-08 ***
              9
                 2565
                         285
Residuals
          14477 728694
                          50
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Date de maturité==="
[1] "- SNK by NFrac -"
     data[, ii] groups
N_{000}
      570.0034
                   а
N 030
      569.7159
                  ab
```

N_060	569.3	566	bc	
N_090	568.9	648	cd	
N_120	568.5	455	de	
N_150	568.1	159	ef	
N_180	567.6	641	fg	
N_210	567.2	207	gh	
N_240	566.8	241	hi	
N_270	566.4	386	i	
[1] "-	SNK by	RCP_H	IT -"	
		data[,	ii]	groups
rcp_00_	ht_00	580.	4976	a
rcp_45_	ht_55	570.	1766	b
rcp_85_	ht_55	567.	7755	с
rcp_45_	ht_85	567.	5945	С
rcp_85_	ht_85	555.	3807	d

C Résultats de l'analyse de la variance et du test SNK de SWFAC.veg1

[1] "===SWFAC.veg1==="

```
Df
                                               Mean Sq F value Pr(>F)
                                       Sum Sq
data$NFrac
                                  9 0.000008 8.572e-08
                                                         0.938 0.4901
data$RCP HT
                                  4 0.0000006 1.421e-07
                                                         1.555 0.1833
data$Soil
                                  9 0.0000013 1.421e-07
                                                        1.555 0.1225
data$NFrac:data$RCP HT
                                 36 0.0000031 8.572e-08
                                                        0.938 0.5747
data$NFrac:data$Soil
                                 81 0.0000069 8.572e-08
                                                         0.938 0.6360
data$RCP_HT:data$Soil
                                 36 0.0000051 1.421e-07
                                                         1.555 0.0181 *
data$NFrac:data$RCP_HT:data$Soil
                                 324 0.0000278 8.572e-08
                                                         0.938 0.7787
Residuals
                               14000 0.0012790 9.135e-08
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
______
[1] "===SWFAC.veg1==="
[1] "--- rcp 00 ht 00---"
                   Df
                         Sum Sq
                                 Mean Sq F value Pr(>F)
tmp$NFrac
                    9 0.0000039 4.286e-07
                                           0.938 0.490
tmp$Soil
                    9 0.0000064 7.104e-07
                                           1.555
                                                 0.123
tmp$NFrac:tmp$Soil
                   81 0.0000347 4.286e-07
                                           0.938
                                                 0.635
                 2800 0.0012790 4.568e-07
Residuals
[1] " "
```

[1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 0 0 NaN NaN 9 tmp\$Soil 0 0 NaN NaN tmp\$NFrac:tmp\$Soil 81 0 0 NaN NaN 0 0 Residuals 2800 [1] " " [1] "--- rcp_45_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 0 0 NaN NaN tmp\$Soil 9 0 0 NaN NaN tmp\$NFrac:tmp\$Soil 0 0 NaN 81 NaN Residuals 2800 0 0 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 0 0 NaN NaN 9 0 tmp\$Soil 0 NaN NaN tmp\$NFrac:tmp\$Soil 81 0 0 NaN NaN Residuals 2800 0 0 [1] " " [1] "--- rcp 85 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 0 0 NaN NaN tmp\$Soil 9 0 0 NaN NaN tmp\$NFrac:tmp\$Soil 81 0 0 NaN NaN Residuals 2800 0 0 [1] " " [1] "===SWFAC.veg1===" -----" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 1.201034e-04 а N_240 3.641379e-05 а N 000 0.00000e+00 а N_030 0.00000e+00 а N_060 0.00000e+00 а N_090 0.00000e+00 а N 120 0.00000e+00 а N 150 0.00000e+00 а

N_180 0.000000e+00 a N_210 0.000000e+00 a

> D Résultats de l'analyse de la variance et du test SNK de SWFAC.veg2

```
[1] "===SWFAC.veg2==="
```

```
Df Sum Sq Mean Sq F value Pr(>F)
                                             5.94 39.094 <2e-16 ***
data$NFrac
                                  9
                                      53.5
                                     139.8
                                            34.94 229.890 <2e-16 ***
data$RCP HT
                                  4
data$Soil
                                      84.6
                                            9.40 61.863 <2e-16 ***
                                  9
data$NFrac:data$RCP HT
                                 36
                                      52.4
                                            1.45 9.573 <2e-16 ***
data$NFrac:data$Soil
                                 81
                                      15.7
                                            0.19 1.274 0.0494 *
                                    102.7
data$RCP_HT:data$Soil
                                             2.85 18.768 <2e-16 ***
                                 36
                                                   0.384 1.0000
data$NFrac:data$RCP_HT:data$Soil
                                324
                                      18.9
                                             0.06
Residuals
                               14000 2127.8
                                             0.15
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===SWFAC.veg2==="
[1] "--- rcp 00 ht 00---"
                   Df Sum Sq Mean Sq F value Pr(>F)
                              8.679 18.128 <2e-16 ***
tmp$NFrac
                    9
                        78.1
                      135.2 15.018 31.369 <2e-16 ***
tmp$Soil
                    9
tmp$NFrac:tmp$Soil
                              0.245
                                      0.511
                   81
                        19.8
                                                1
Residuals
                 2800 1340.5
                              0.479
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 55---"
                   Df Sum Sq Mean Sq F value Pr(>F)
tmp$NFrac
                    9
                        23.6
                              2.622 14.247 <2e-16 ***
                        42.3
                              4.705 25.562 <2e-16 ***
tmp$Soil
                    9
tmp$NFrac:tmp$Soil
                   81
                      11.0
                              0.136
                                    0.738 0.961
Residuals
                 2800 515.4
                              0.184
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp_45_ht_85---"
                   Df Sum Sq Mean Sq F value
                                             Pr(>F)
```

tmp\$NFrac 9 3.51 0.3901 4.705 3.18e-06 *** 7.62 0.8470 10.216 1.24e-15 *** tmp\$Soil 9 tmp\$NFrac:tmp\$Soil 81 2.52 0.0311 0.375 1 Residuals 2800 232.14 0.0829 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 0.63 0.07028 4.941 1.31e-06 *** tmp\$Soil 9 2.19 0.24286 17.072 < 2e-16 *** 1.091 0.273 tmp\$NFrac:tmp\$Soil 81 1.26 0.01552 Residuals 2800 39.83 0.01423 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 85 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) 9 0 0 tmp\$NFrac NaN NaN 9 0 NaN NaN tmp\$Soil 0 tmp\$NFrac:tmp\$Soil 81 0 0 NaN NaN 2800 0 0 Residuals [1] " " [1] "===SWFAC.veg2===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 0.53113852 а N 240 0.48106703 ab N_210 0.41578155 abc N_180 0.35297610 bcd N_150 0.29142979 cde N 120 0.22783417 def efg N_090 0.16460983 N 060 0.10826979 fg N_030 0.07347293 g N_000 0.04561769 g [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups

N_270	0.28164872	a
N_240	0.25057190	ab
N_210	0.21688003	abc
N_180	0.18286448	bcd
N_{150}	0.14865990	cde
N_120	0.10727869	def
N_090	0.07746900	ef
N_060	0.04724834	f
N_030	0.02951410	f
N_000	0.01486141	f
[1] "-	rcp_45_ht_3	85"
[1] "-	- SNK by NFra	c -"
	tmp[, ii] g	roups
N_270	0.10421824	a
N_240	0.09878117	a
N_210	0.08935348	ab
N_180	0.07794514	abc
N_150	0.06542962	abcd
N_120	0.04965031	abcd
N_090	0.03702024	abcd
N_060	0.02209669	bcd
N_030	0.01011472	cd
N_{000}	0.00488731	d
[1] "-	rcp_85_ht_	55"
[1] "-	- SNK by NFra	c -"
	<pre>tmp[, ii]</pre>	groups
N_270	4.493221e-02	a
N_240	3.886317e-02	ab
N_210	3.201824e-02	abc
N_180	2.718303e-02	abcd
N_{150}	2.116379e-02	abcd
N_120	1.548997e-02	bcd
N_090	1.054321e-02	cd
N_060	6.271897e-03	cd
N_030	2.348655e-03	d
N_000	8.251724e-05	d

E Résultats de l'analyse de la variance et du test SNK de SW-FAC.rep

```
[1] "===SWFAC.rep==="
```

Df Sum Sq Mean Sq F value Pr(>F)

data\$NFrac 60505 6723 327.152 <2e-16 *** 9 37128 1806.771 <2e-16 *** data\$RCP_HT 4 148512 data\$Soil 9 37797 4200 204.369 <2e-16 *** data\$NFrac:data\$RCP HT 170 8.296 <2e-16 *** 36 6137 data\$NFrac:data\$Soil 81 672 8 0.404 1 4.804 <2e-16 *** data\$RCP HT:data\$Soil 36 3554 99 data\$NFrac:data\$RCP_HT:data\$Soil 3 0.128 324 855 1 Residuals 14000 287692 21 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===SWFAC.rep===" [1] "--- rcp 00 ht 00---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 21533 2392.5 76.963 <2e-16 *** 1617.6 52.037 <2e-16 *** tmp\$Soil 9 14559 8.2 tmp\$NFrac:tmp\$Soil 81 666 0.264 1 Residuals 2800 87042 31.1 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 18372 2041.4 69.523 <2e-16 *** 1152.6 tmp\$Soil 9 10373 39.253 <2e-16 *** tmp\$NFrac:tmp\$Soil 81 412 5.1 0.173 1 Residuals 82214 29.4 2800 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 13705 1522.7 59.751 <2e-16 *** tmp\$NFrac 9 tmp\$Soil 9 8211 912.4 35.801 <2e-16 *** 0.076 1 tmp\$NFrac:tmp\$Soil 156 1.9 81 Residuals 2800 71358 25.5 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 85 ht 55---"

```
Df Sum Sq Mean Sq F value Pr(>F)
                              1148.3 78.565 <2e-16 ***
tmp$NFrac
                     9
                       10335
tmp$Soil
                     9
                         5931
                               659.0
                                      45.084 <2e-16 ***
                                 1.7
                                       0.117
                                                  1
tmp$NFrac:tmp$Soil
                    81
                          139
Residuals
                  2800
                        40925
                                14.6
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp_85_ht_85---"
                    Df Sum Sq Mean Sq F value Pr(>F)
tmp$NFrac
                     9
                         2698
                               299.7 136.384 <2e-16 ***
tmp$Soil
                     9
                               253.0 115.112 <2e-16 ***
                         2277
                                       0.865 0.798
tmp$NFrac:tmp$Soil
                         154
                                 1.9
                    81
Residuals
                  2800
                         6154
                                 2.2
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===SWFAC.rep==="
[1] "---rcp 00 ht 00---"
[1] "- SNK by NFrac -"
     tmp[, ii] groups
N 270 14.946529
                    а
N 240 14.490618
                    а
N_210 13.988944
                   ab
N_180 13.328527
                   bc
N 150 12.548296
                   cd
N 120 11.654868
                    d
N_090 10.518910
                    е
N 060 9.268721
                    f
N_030 7.923743
                    g
N 000 6.596619
                    h
[1] "---rcp_45_ht_55---"
[1] "- SNK by NFrac -"
     tmp[, ii] groups
N 270 12.357982
                    а
N_240 11.821640
                   ab
N_210 11.177627
                   bc
N_180 10.450061
                   cd
N 150 9.704557
                   de
N 120 8.866694
                    е
```

N_090	7.879761	f
N_060	6.812046	g
N_030	5.635064	h
N_000	4.590865	i
[1] "-	rcp_45_h	nt_85"
[1] "-	- SNK by NH	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_270	9.731858	a
N_240	9.100572	ab
N_210	8.405820	bc
N_180	7.680115	cd
N_150	6.970540	d
N_120	6.102874	е
N_090	5.307584	ef
N_060	4.506635	fg
N_030	3.759869	gh
N_000	3.071416	h
[1] "-	rcp_85_h	nt_85"
[1] "-	- SNK by NH	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_270	3.8412047	a
N_240	3.4034184	b
N_210	2.8944636	С
N_180	2.4867986	d
N_150	2.0507871	е
N_120	1.7241416	f
N_090	1.4729358	g
N_060	1.2702424	gh
N_030	1.0768300	hi
N_000	0.8673527	i

F Résultats de l'analyse de la variance et du test SNK de EW-FAC.veg1

[1] "===EWFAC.veg1==="

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
data\$NFrac	9	27	3	0.154	0.998	
data\$RCP_HT	4	20245	5061	257.625	<2e-16	***
data\$Soil	9	7668	852	43.367	<2e-16	***
data\$NFrac:data\$RCP_HT	36	19	1	0.027	1.000	

data\$NFrac:data\$Soil 13 0.008 1.000 81 0 data\$RCP_HT:data\$Soil 36 5005 139 7.077 <2e-16 *** data\$NFrac:data\$RCP_HT:data\$Soil 324 12 0 0.002 1.000 14000 275041 20 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===EWFAC.veg1===" [1] "--- rcp_00_ht_00---" Df Sum Sq Mean Sq F value Pr(>F) 9 0.51 0.0568 0.543 0.844 tmp\$NFrac 16.45 1.8275 17.483 <2e-16 *** tmp\$Soil 9 tmp\$NFrac:tmp\$Soil 0.50 0.0062 0.059 1.000 81 Residuals 2800 292.68 0.1045 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 2 0.26 tmp\$NFrac 9 0.040 1 9 877 97.40 15.352 <2e-16 *** tmp\$Soil tmp\$NFrac:tmp\$Soil 3 0.04 0.006 1 81 6.34 Residuals 2800 17764 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 45 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) 9 34 3.8 0.070 tmp\$NFrac 1 586.2 tmp\$Soil 9 5275 10.793 <2e-16 *** tmp\$NFrac:tmp\$Soil 81 19 0.2 0.004 1 Residuals 2800 152061 54.3 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 9 tmp\$NFrac 1 0.06 0.005 1 tmp\$Soil 9 1197 132.99 11.016 <2e-16 *** 1 tmp\$NFrac:tmp\$Soil 81 0 0.01 0.000

Residuals 2800 33803 12.07 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 1.0 tmp\$NFrac 9 0.038 1 tmp\$Soil 9 5307 589.7 23.217 <2e-16 *** tmp\$NFrac:tmp\$Soil 2 0.0 0.001 1 81 Residuals 2800 71121 25.4 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===EWFAC.veg1===" [1] "---rcp 00 ht 00---" [1] "- SNK by Soil -" tmp[, ii] groups sol_130EP043 0.21610503 а sol 130EP001 0.20717490 а sol 130EP032 0.17905107 ab sol 130EP003 0.13585269 b sol 130EP038 0.05549703 С sol 130EP039 0.05480162 С sol_130EP031 0.03137310 С sol_130EP040 0.02942086 С sol_130EP030 0.02902659 С sol 130EP002 0.02519262 С [1] "---rcp_45_ht_55---" [1] "- SNK by Soil -" tmp[, ii] groups sol_130EP043 1.7429718 а sol_130EP032 1.7002062 а sol 130EP001 1.6025200 а sol_130EP003 1.4654453 а sol 130EP039 0.7857532 b sol_130EP038 0.7663078 b sol_130EP040 0.5484417 b sol_130EP030 0.5447106 b sol 130EP031 0.4798529 b sol 130EP002 0.2121390 b

```
[1] "---rcp_45_ht_85---"
[1] "- SNK by Soil -"
             tmp[, ii] groups
sol 130EP043 4.6730546
                             а
sol_130EP032 4.6392247
                             а
sol_130EP001 4.2170014
                             а
sol_130EP003 3.9580526
                             а
sol_130EP039 2.0957184
                             b
sol 130EP038 2.0753557
                             b
sol 130EP031 2.0081657
                             b
sol_130EP040 1.8998076
                             b
sol 130EP030 1.8599594
                             b
sol_130EP002 0.6530317
                             b
[1] "---rcp_85_ht_55---"
[1] "- SNK by Soil -"
             tmp[, ii] groups
sol 130EP003 2.8421866
                             а
sol_130EP043 1.4445910
                             b
sol 130EP032 1.4094267
                             b
sol_130EP001 1.2891946
                             b
sol_130EP040 0.9250050
                            bc
sol 130EP031 0.9080714
                            bc
sol 130EP030 0.8788715
                            bc
sol_130EP038 0.8015031
                            bc
sol_130EP039 0.7946240
                            bc
sol_130EP002 0.3366270
                             С
[1] "---rcp_85_ht_85---"
[1] "- SNK by Soil -"
             tmp[, ii] groups
sol_130EP003 6.678807
                             а
sol_130EP043
              3.943300
                            b
sol_130EP032
              3.838725
                           bc
sol_130EP001
              3.395921
                          bcd
sol_130EP031
              3.077514
                         bcde
sol 130EP030
              2.862140
                         bcde
sol_130EP040
              2.725928
                          cde
sol 130EP039
              2.434983
                          def
sol_130EP038
              1.958282
                            ef
sol_130EP002
              1.544462
                             f
```

G Résultats de l'analyse de la variance et du test SNK de EWFAC.veg2

[1] "===EWFAC.veg2==="

```
Df Sum Sq Mean Sq F value
                                                       Pr(>F)
                                          1.76
                                                0.798
data$NFrac
                                9
                                     16
                                                        0.618
data$RCP HT
                                4
                                    223
                                         55.78 25.336 < 2e-16 ***
data$Soil
                               9
                                    150
                                         16.71 7.589 3.51e-11 ***
data$NFrac:data$RCP HT
                               36
                                     7
                                          0.19 0.088
                                                        1.000
data$NFrac:data$Soil
                                      2
                                          0.03 0.012
                               81
                                                        1.000
data$RCP HT:data$Soil
                                          1.26
                                               0.573
                               36
                                     45
                                                        0.981
data$NFrac:data$RCP_HT:data$Soil
                                          0.01
                                               0.006
                              324
                                      4
                                                        1.000
Residuals
                                          2.20
                            14000
                                  30822
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===EWFAC.veg2==="
Df Sum Sq Mean Sq F value
                                     Pr(>F)
data$NFrac
             9
                   16
                        1.76 0.823
                                      0.595
data$RCP HT
                  223
                       55.78 26.149 < 2e-16 ***
             4
data$Soil
             9
                  150
                       16.71
                             7.832 1.31e-11 ***
Residuals
          14477 30881
                        2.13
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===EWFAC.veg2==="
[1] "- SNK by RCP HT -"
           data[, ii] groups
rcp_85_ht_85 0.5178777
                         а
rcp 45 ht 55 0.4519760
                         а
rcp_00_ht_00 0.3396078
                        b
rcp 45 ht 85 0.2992891
                        b
rcp_85_ht_55 0.1609206
                         с
```

H Résultats de l'analyse de la variance et du test SNK de TPFAC.veg1

```
[1] "===TPFAC.veg1==="
```

Df Sum Sq Mean Sq F value Pr(>F) 1.3 0.161 0.998 data\$NFrac 9 12 data\$RCP HT 4 6856 1714.1 209.513 <2e-16 *** data\$Soil 1.1 0.135 0.999 9 10 2 data\$NFrac:data\$RCP HT 36 0.1 0.007 1.000 data\$NFrac:data\$Soil 3 0.0 0.004 1.000 81 data\$RCP_HT:data\$Soil 0.2 36 9 0.030 1.000 data\$NFrac:data\$RCP HT:data\$Soil 324 0.0 0.000 1.000 1 Residuals 14000 114540 8.2 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===TPFAC.veg1===" Df Sum Sq Mean Sq F value Pr(>F) data\$NFrac 9 12 1.3 0.166 0.997 data\$RCP HT 6856 1714.1 216.623 <2e-16 *** 4 data\$Soil 0.140 0.999 9 10 1.1 Residuals 14477 114555 7.9 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===TPFAC.veg1===" [1] "- SNK by RCP HT -" data[, ii] groups 5.231169 rcp_45_ht_85 а rcp_45_ht_55 4.648474 b rcp_85_ht_85 4.255843 С rcp_85_ht_55 4.234874 с rcp_00_ht_00 3.129699 d

I Résultats de l'analyse de la variance et du test SNK de TP-FAC.veg2

[1] "===TPFAC.veg2==="

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
data\$NFrac	9	2.1	0.230	2.170	0.0211	*
data\$RCP_HT	4	68.4	17.095	161.079	<2e-16	***
data\$Soil	9	0.6	0.066	0.624	0.7775	

```
data$NFrac:data$RCP_HT
                                        0.004
                                              0.040 1.0000
                              36
                                   0.2
                                        0.000
data$NFrac:data$Soil
                              81
                                   0.0
                                              0.004 1.0000
data$RCP HT:data$Soil
                              36
                                   0.5
                                        0.014
                                               0.128 1.0000
data$NFrac:data$RCP HT:data$Soil
                                   0.2
                                        0.001
                                               0.006 1.0000
                             324
Residuals
                            14000 1485.8
                                        0.106
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===TPFAC.veg2==="
Df Sum Sq Mean Sq F value Pr(>F)
data$NFrac
             9
                      0.230 2.242 0.0169 *
                 2.1
data$RCP HT
                68.4 17.095 166.467 <2e-16 ***
             4
data$Soil
             9
                 0.6
                      0.066
                             0.645 0.7592
Residuals 14477 1486.7
                      0.103
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===TPFAC.veg2==="
[1] "- SNK by RCP_HT -"
          data[, ii] groups
rcp_85_ht_55 0.3441247
                        а
rcp_45_ht_85 0.3252902
                        b
rcp_85_ht_85 0.3146806
                        b
rcp_45_ht_55 0.3141147
                        b
rcp 00 ht 00 0.1550333
                        с
```

J Résultats de l'analyse de la variance et du test SNK de TP-FAC.rep

```
[1] "===TPFAC.rep==="
                                   Df Sum Sq Mean Sq F value Pr(>F)
data$NFrac
                                    9
                                         6.0
                                               0.664
                                                       3.453 0.000291 ***
                                        83.9 20.964 109.081 < 2e-16 ***
data$RCP HT
                                    4
data$Soil
                                    9
                                               0.071 0.368 0.950415
                                         0.6
data$NFrac:data$RCP_HT
                                               0.016 0.085 1.000000
                                   36
                                         0.6
data$NFrac:data$Soil
                                   81
                                         0.2
                                               0.002 0.012 1.000000
data$RCP_HT:data$Soil
                                         0.3
                                               0.009 0.046 1.000000
                                   36
data$NFrac:data$RCP HT:data$Soil
                                         0.2
                                               0.001 0.003 1.000000
                                  324
```

```
Residuals
                         14000 2690.6 0.192
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===TPFAC.rep==="
Df Sum Sq Mean Sq F value Pr(>F)
                6.0
                    0.664 3.569 0.000192 ***
data$NFrac
           9
data$RCP HT
           4 83.9 20.964 112.744 < 2e-16 ***
data$Soil
            9
                0.6 0.071 0.381 0.944897
Residuals 14477 2691.9 0.186
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===TPFAC.rep==="
[1] "- SNK by RCP HT -"
          data[, ii] groups
rcp_45_ht_55 0.7051024
                      а
rcp 85 ht 85 0.6186500
                      b
rcp 85 ht 55 0.5908088
                      С
rcp_45_ht_85 0.5720970
                      С
rcp_00_ht_00 0.4694497
                      d
```

K Résultats de l'analyse de la variance et du test SNK de INNFAC.veg1

[1] "===INNFAC.veg1==="

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
data\$NFrac	9	189846	21094	2165.667	< 2e-16 ***
data\$RCP_HT	4	622	156	15.966	4.78e-13 ***
data\$Soil	9	48839	5427	557.127	< 2e-16 ***
data\$NFrac:data\$RCP_HT	36	1003	28	2.859	2.50e-08 ***
data\$NFrac:data\$Soil	81	2338	29	2.963	< 2e-16 ***
data\$RCP_HT:data\$Soil	36	1761	49	5.023	< 2e-16 ***
data\$NFrac:data\$RCP_HT:data\$Soil	324	180	1	0.057	1
Residuals	14000	136363	10		
Signif. codes: 0 '***' 0.001 '** [1] " "	k' 0.01	1'*'0	.05'.'().1''1	

[1] "===INNFAC.veg1===" [1] "--- rcp_00_ht_00---" Df Sum Sq Mean Sq F value Pr(>F) 28834 3204 267.901 <2e-16 *** tmp\$NFrac 9 627 52.406 <2e-16 *** tmp\$Soil 9 5641 tmp\$NFrac:tmp\$Soil 257 3 0.265 1 81 Residuals 2800 33485 12 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 36774 4086 472.225 <2e-16 *** 1075 124.234 <2e-16 *** tmp\$Soil 9 9675 tmp\$NFrac:tmp\$Soil 81 474 6 0.677 0.988 2800 24228 9 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 45 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 39750 4417 342.69 <2e-16 *** 12051 103.89 <2e-16 *** tmp\$Soil 9 1339 tmp\$NFrac:tmp\$Soil 81 679 8 0.65 0.993 Residuals 2800 36088 13 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 4906 521.487 <2e-16 *** tmp\$NFrac 9 44153 8758 973 103.445 <2e-16 *** tmp\$Soil 9 534 7 0.701 0.98 tmp\$NFrac:tmp\$Soil 81 Residuals 2800 26341 9 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 41337 4593 792.802 <2e-16 *** tmp\$NFrac

tmp\$Soil 14475 1608 277.622 <2e-16 *** 9 7 1.221 0.0898 . tmp\$NFrac:tmp\$Soil 81 573 Residuals 2800 16221 6 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===INNFAC.veg1===" [1] "---rcp 00 ht 00---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 15.879504 а N_030 14.543310 b N_060 13.199009 с N_090 11.861583 d N 120 10.606241 е f N 150 9.482787 N 180 8.471281 g N 210 7.607354 h i N 240 6.853991 N 270 6.235344 j [1] "---rcp 45 ht 55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 17.125318 а N_030 15.489585 b N_060 13.891183 С N 090 12.379320 d N_120 11.033368 е N 150 9.791367 f N_180 8.700712 g N 210 7.740157 h N_240 6.855405 i N 270 6.059880 j [1] "---rcp_45_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 17.448186 а N_030 15.756862 b N_060 14.164013 С N 090 12.682158 d

N_120 11.318209 е N_150 9.997754 f N_180 8.809074 g N 210 7.739741 h i N_240 6.773800 N_270 5.933848 j [1] "---rcp_85_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 17.405102 а N_030 15.688612 b N_060 14.004253 с N_090 12.381404 d N_120 10.876733 е N_150 9.502898 f N_180 8.278670 g N 210 7.171728 h i N_240 6.196532 N_270 5.351600 i [1] "---rcp_85_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N 000 17.047654 а N_030 15.422572 b N_060 13.828859 С N_090 12.339876 d N_120 10.925432 е f N_150 9.644308 N 180 8.405787 g N_210 7.266275 h N_240 6.224283 i N_270 5.291497 j

L Résultats de l'analyse de la variance et du test SNK de INN-FAC.veg2

[1] "===INNFAC.veg2==="

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
data\$NFrac	9	31125	3458	567.041	< 2e-16	***
data\$RCP_HT	4	5152	1288	211.177	< 2e-16	***
data\$Soil	9	5727	636	104.329	< 2e-16	***
data\$NFrac:data\$RCP_HT	36	427	12	1.946	0.000593	***

data\$NFrac:data\$Soil 63 0.129 1.000000 81 1 3.770 2.08e-13 *** data\$RCP_HT:data\$Soil 36 828 23 data\$NFrac:data\$RCP_HT:data\$Soil 0.033 1.000000 324 66 0 6 Residuals 14000 85384 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===INNFAC.veg2===" Df Sum Sq Mean Sq F value Pr(>F) data\$NFrac 9 31125 3458 567.041 < 2e-16 *** data\$RCP HT 4 5152 1288 211.177 < 2e-16 *** data\$Soil 9 5727 636 104.329 < 2e-16 *** data\$NFrac:data\$RCP_HT 36 427 12 1.946 0.000593 *** data\$NFrac:data\$Soil 63 1 0.129 1.000000 81 data\$RCP_HT:data\$Soil 36 828 23 3.770 2.08e-13 *** data\$NFrac:data\$RCP HT:data\$Soil 0.033 1.000000 324 66 0 Residuals 14000 85384 6 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] "===INNFAC.veg2===" [1] "---rcp 00 ht 00---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 7.423291 а N 030 6.951719 b N 060 6.479144 С N 090 6.055689 d N 120 5.612803 е N 150 5.185396 f N_180 4.747246 g N 210 4.291523 h N_240 3.945085 hi N 270 3.633582 i [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_000 8.136935 а N_030 7.672416 b N 060 7.186539 С N 090 6.717626 d

N_12	20	6.19	831	8	е	
N_15	50	5.71	051	8	f	
N_18	80	5.23	607	3	g	
N_21	.0	4.78	456	5	gh	
N_24	10	4.34	252	8	hi	
N_27	0	3.95	710	0	i	
[1]	"	-rcp	_45	_ht	_85"	
[1]	"_	SNK	by	NFra	ac -"	
	t	mp[,	ii] g1	roups	
N_OC	00	8.96	012	4	а	
N_03	30	8.41	741	9	b	
N_06	50	7.84	357	7	С	
N_09	90	7.28	529	9	d	
N_12	20	6.71	420	1	е	
N_15	50	6.19	972	8	f	
N_18	30	5.67	075	9	g	
N_21	.0	5.13	702	4	h	
N_24	0	4.61	222	8	i	
N_27	0	4.09	074	8	j	
[1]	"	-rcp	_85	_ht	_55"	
[1]	"_	SNK	by	NFra	ac -"	
	t	mp[,	ii] gi	roups	
N_OC	00	8.97	344	8	а	
N_03	30	8.62	733	8	ab	
N_06	50	8.22	224	8	b	
N_OS	90	7.73	351	9	С	
N_12	20	7.21	747	4	d	
N_15	50	6.68	312	2	е	
N_18	30	6.09	358	7	f	
N_21	.0	5.49	823	6	g	
N_24	0	4.93	133	6	h	
N_27	0	4.42	478	9	i	
[1]	"	-rcp	_85	ht		
[1]			_		_05	
	"-	SNK	- by	 NFra	_05*	
	"- t:	SNK mp[,	by ii	– - NFra] gi	_oo===" ac =" roups	
N_OC	"- t:)0	SNK mp[, 9.59	- by ii 758	 NFra] gi 7	_oo ac -" roups a	
N_OC N_O3	"- t: 00 30	SNK mp[, 9.59 9.12	- by ii 758 334	 NFra] gı 7 3	_oo ac -" roups a b	
N_OC N_O3 N_O6	"- t: 00 30 30	SNK mp[, 9.59 9.12 8.62	- by ii 758 334 396	– – NFra] g1 7 3 4	_oo ac -" roups a b c	
N_OC N_O3 N_O6 N_O9	"- t 30 30 30 30	SNK mp[, 9.59 9.12 8.62 8.04	- by 11 758 334 396 905	 NFra] gi 7 3 4 0	_oo ac -" roups a b c d	
N_00 N_03 N_06 N_09 N_12	"- t: 30 30 30 30 20	SNK mp[, 9.59 9.12 8.62 8.04 7.47	by ii 758 334 396 905 145	– – NFra] gj 7 3 4 0 4	_oo ac -" roups a b c d e	
N_OC N_O3 N_O6 N_O9 N_12 N_15	"- t: 30 30 30 30 20 30	SNK mp[, 9.59 9.12 8.62 8.04 7.47 6.84	- by 11 758 334 396 905 145 746	– – NFra] gi 7 3 4 0 4 7	_oo ac -" roups a b c d e f	

N_210	5.610480	h
N_240	4.986388	i
N_270	4.360590	j

M Résultats de l'analyse de la variance et du test SNK de la biomasse aérienne à floraison

[1] "===Biomasse aérienne à floraison==="

```
Df Sum Sq Mean Sq F value
                                                              Pr(>F)
data$NFrac
                                               4630 1660.866 < 2e-16 ***
                                   9
                                      41671
data$RCP HT
                                   4
                                       4015
                                               1004 360.015 < 2e-16 ***
data$Soil
                                                952 341.435 < 2e-16 ***
                                   9
                                       8567
data$NFrac:data$RCP HT
                                  36
                                        500
                                                 14
                                                       4.986 < 2e-16 ***
                                                  7
data$NFrac:data$Soil
                                        545
                                                       2.416 2.25e-11 ***
                                  81
                                                      10.057 < 2e-16 ***
data$RCP HT:data$Soil
                                  36
                                       1009
                                                 28
data$NFrac:data$RCP_HT:data$Soil
                                 324
                                                  0
                                                       0.023
                                                                   1
                                         21
                                                  3
Residuals
                                14000
                                      39029
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Biomasse aérienne à floraison==="
[1] "--- rcp_00_ht_00---"
                    Df Sum Sq Mean Sq F value Pr(>F)
                     9
                         5787
                                643.1 277.09 <2e-16 ***
tmp$NFrac
tmp$Soil
                     9
                          842
                                93.6
                                       40.32 <2e-16 ***
tmp$NFrac:tmp$Soil
                                        0.40
                           75
                                 0.9
                                                  1
                    81
Residuals
                  2800
                         6498
                                 2.3
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 55---"
                    Df Sum Sq Mean Sq F value Pr(>F)
                         7410
tmp$NFrac
                     9
                               823.3 403.567 <2e-16 ***
tmp$Soil
                     9
                         1348
                               149.8 73.434 <2e-16 ***
                                       0.642 0.995
tmp$NFrac:tmp$Soil
                          106
                                 1.3
                    81
Residuals
                         5712
                                 2.0
                  2800
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 85---"
```

Df Sum Sq Mean Sq F value Pr(>F) 916.4 235.901 <2e-16 *** tmp\$NFrac 9 8248 tmp\$Soil 9 1692 188.0 48.398 <2e-16 *** 1.5 0.376 1 tmp\$NFrac:tmp\$Soil 81 118 Residuals 2800 10877 3.9 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 10372 1152.5 512.485 <2e-16 *** 9 1887 209.6 93.219 <2e-16 *** tmp\$Soil 0.776 0.93 tmp\$NFrac:tmp\$Soil 81 141 1.7 Residuals 2800 6297 2.2 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 85 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) 10354 1150.5 334.003 <2e-16 *** tmp\$NFrac 9 3807 423.0 122.796 <2e-16 *** tmp\$Soil 9 1.5 0.449 tmp\$NFrac:tmp\$Soil 125 1 81 Residuals 2800 9645 3.4 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Biomasse aérienne à floraison===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 12.563947 а N_240 12.299542 b N 210 11.985255 С N_180 11.605143 d N 150 11.176666 е N_120 10.680929 f N_090 10.125198 g N_060 9.534937 h N 030 8.890632 i N 000 8.197212 j

[1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 13.418884 а N_240 13.084711 b N_210 12.696654 С N_180 12.278629 d N_150 11.800835 е N_120 11.254710 f N 090 10.640763 g N_060 9.949428 h N 030 9.216058 i N_000 8.450971 j [1] "---rcp_45_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 13.659084 a N_240 13.275766 b N_210 12.824751 С N_180 12.341077 d N_150 11.799982 е N 120 11.203328 f N 090 10.589672 g N 060 9.898807 h N 030 9.175940 i N_000 8.414354 j [1] "---rcp_85_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 14.693220 а N_240 14.302657 b N_210 13.839894 С N_180 13.308156 d N_150 12.711054 е N 120 12.058631 f N_090 11.317531 g N_060 10.528014 h N_030 9.704485 i N_000 8.857111 j [1] "---rcp_85_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups

N_270	14.681912	а
N_240	14.236239	b
N_210	13.730221	c
N_180	13.164017	d
N_150	12.537792	e
N_120	11.864825	f
N_090	11.138888	g
N_060	10.389558	h
N_030	9.620771	i
N_000	8.859259	j

N Résultats de l'analyse de la variance et du test SNK de la biomasse aérienne à maturité

[1] "===Biomasse aérienne à maturité==="

```
Df Sum Sq Mean Sq F value Pr(>F)
                                  9 125923
                                             13991 1740.163 < 2e-16 ***
data$NFrac
                                              2383 296.336 < 2e-16 ***
data$RCP HT
                                  4
                                      9531
data$Soil
                                              2969 369.272 < 2e-16 ***
                                  9
                                     26721
data$NFrac:data$RCP_HT
                                  36
                                      3334
                                                93
                                                    11.517 < 2e-16 ***
data$NFrac:data$Soil
                                                14
                                                     1.703 8.85e-05 ***
                                 81
                                      1109
data$RCP_HT:data$Soil
                                  36
                                      4717
                                               131
                                                    16.297 < 2e-16 ***
data$NFrac:data$RCP HT:data$Soil
                                 324
                                                 1
                                                     0.103
                                                                  1
                                       269
Residuals
                               14000 112564
                                                 8
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Biomasse aérienne à maturité==="
[1] "--- rcp_00_ht_00---"
                   Df Sum Sq Mean Sq F value Pr(>F)
                    9
                       14615 1623.9 184.866 <2e-16 ***
tmp$NFrac
tmp$Soil
                    9
                        1709
                               189.8 21.612 <2e-16 ***
                                 2.9
                                      0.332
                                                 1
tmp$NFrac:tmp$Soil
                         236
                   81
Residuals
                 2800
                       24595
                                 8.8
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp_45_ht_55---"
                   Df Sum Sq Mean Sq F value Pr(>F)
                    9 22126 2458.5 318.516 <2e-16 ***
tmp$NFrac
```

tmp\$Soil 3910 434.4 56.286 <2e-16 *** 9 0.497 tmp\$NFrac:tmp\$Soil 311 3.8 1 81 Residuals 2800 21612 7.7 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 2720.9 312.23 <2e-16 *** tmp\$NFrac 9 24488 tmp\$Soil 9 4868 540.9 62.07 <2e-16 *** tmp\$NFrac:tmp\$Soil 311 3.8 0.44 1 81 Residuals 24400 8.7 2800 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 29807 3312 469.914 <2e-16 *** 9 94.624 <2e-16 *** tmp\$Soil 6002 667 294 4 0.515 tmp\$NFrac:tmp\$Soil 81 1 Residuals 7 2800 19734 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 4247 535.067 <2e-16 *** tmp\$NFrac 9 38220 1661 209.292 <2e-16 *** tmp\$Soil 9 14950 3 0.352 1 tmp\$NFrac:tmp\$Soil 81 227 Residuals 2800 22223 8 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Biomasse aérienne à maturité===" [1] "---rcp 00 ht 00---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 18.96076 а N 240 18.53677 а N 210 18.03553 b

N_180	17.40468	С
N_150	16.70810	d
N_120	15.93355	е
N_090	15.06013	f
N_060	14.13416	g
N_030	13.08989	h
N_000	12.03261	i
[1] "-	rcp_45_h	nt_55"
[1] "-	- SNK by NH	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_270	20.98136	a
N_240	20.35011	b
N_210	19.60266	С
N_180	18.81931	d
N_150	17.97732	е
N_120	17.04729	f
N_090	16.02293	g
N_060	14.86514	h
N_030	13.61716	i
N_000	12.36357	j
[1] "·	rcp_45_h	nt_85"
[1] "·	- SNK by NH	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_270	20.92431	a
N_240	20.15818	b
N_210	19.30813	С
N_180	18.41748	d
N_150	17.44034	е
N_120	16.38326	f
N_090	15.32986	g
N_060	14.20152	h
N_030	13.05050	i
N_030 N_000	13.05050 11.92496	i j
N_030 N_000 [1] "-	13.05050 11.92496 rcp_85_1	i j nt_55"
N_030 N_000 [1] "- [1] "-	13.05050 11.92496 rcp_85_1 - SNK by NH	i j nt_55" Frac -"
N_030 N_000 [1] "- [1] "-	13.05050 11.92496 rcp_85_f - SNK by NF tmp[, ii]	i j nt_55" Frac -" groups
N_030 N_000 [1] "- [1] "- N_270	13.05050 11.92496 rcp_85_h - SNK by NH tmp[, ii] 22.58183	i j nt_55" Frac -" groups a
N_030 N_000 [1] "- [1] "- N_270 N_240	13.05050 11.92496 rcp_85_P - SNK by NH tmp[, ii] 22.58183 21.80746	i j nt_55" Frac -" groups a b
N_030 N_000 [1] "- [1] "- N_270 N_240 N_210	13.05050 11.92496 rcp_85_H - SNK by NH tmp[, ii] 22.58183 21.80746 20.92192	i j nt_55" Frac -" groups a b c
N_030 N_000 [1] "- [1] "- N_270 N_240 N_240 N_210 N_180	13.05050 11.92496 rcp_85_h - SNK by NH tmp[, ii] 22.58183 21.80746 20.92192 19.94458	i j nt_55" Frac -" groups a b c d
N_030 N_000 [1] "- [1] "- N_270 N_240 N_210 N_180 N_150	13.05050 11.92496 rcp_85_P - SNK by NH tmp[, ii] 22.58183 21.80746 20.92192 19.94458 18.90587	i j nt_55" Frac -" groups a b c d e
N_090	16.55798	g
--------	-----------	---------
N_060	15.26718	h
N_030	13.96447	i
N_000	12.68123	j
[1] "	rcp_85_h	t_85"
[1] "-	SNK by NF	'rac -"
-	tmp[, ii]	groups
N_270	23.69131	a
N_240	22.57452	b
N_210	21.37062	С
N_180	20.11279	d
N_150	18.82787	е
N_120	17.52462	f
N_090	16.19515	g
N_060	14.90045	h
N_030	13.66444	i
N_000	12.49875	j

O Résultats de l'analyse de la variance et du test SNK de la quantité d'azote absorbé par la plante à floraison

[1] "===Quantité d'azote absorbé par la plante à floraison==="

```
Sum Sq Mean Sq F value Pr(>F)
                                 Df
data$NFrac
                                  9 23109600 2567733 3071.439 < 2e-16 ***
data$RCP HT
                                  4
                                      199329
                                              49832
                                                      59.608 < 2e-16 ***
data$Soil
                                  9
                                     3925594
                                             436177 521.741 < 2e-16 ***
data$NFrac:data$RCP_HT
                                 36
                                       94094
                                               2614
                                                       3.126 9.2e-10 ***
data$NFrac:data$Soil
                                 81
                                       76810
                                                948
                                                       1.134
                                                              0.193
data$RCP_HT:data$Soil
                                 36
                                      305269
                                               8480
                                                      10.143 < 2e-16 ***
data$NFrac:data$RCP HT:data$Soil
                                        6615
                                                 20
                                                       0.024
                                                              1.000
                                324
Residuals
                                                836
                               14000 11704048
____
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
[1] " "
[1] "===Quantité d'azote absorbé par la plante à floraison==="
[1] "--- rcp 00 ht 00---"
                       Sum Sq Mean Sq F value Pr(>F)
                   Df
                    9 3664039 407115 366.098 <2e-16 ***
tmp$NFrac
tmp$Soil
                    9
                               49454 44.472 <2e-16 ***
                      445090
tmp$NFrac:tmp$Soil
                                 132
                                       0.119
                                                 1
                   81
                        10706
```

Residuals 2800 3113711 1112 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 9 4386429 487381 684.00 <2e-16 *** tmp\$NFrac tmp\$Soil 9 657142 73016 102.47 <2e-16 *** 0.29 tmp\$NFrac:tmp\$Soil 81 16740 207 1 Residuals 2800 1995119 713 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 4800373 533375 765.758 <2e-16 *** tmp\$NFrac tmp\$Soil 9 753481 83720 120.196 <2e-16 *** tmp\$NFrac:tmp\$Soil 19689 243 0.349 1 81 697 Residuals 2800 1950288 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 85 ht 55---" Df Sum Sq Mean Sq F value Pr(>F) 576577 670.04 <2e-16 *** tmp\$NFrac 9 5189191 tmp\$Soil 9 829195 92133 107.07 <2e-16 *** 0.29 tmp\$NFrac:tmp\$Soil 81 20197 249 1 Residuals 2800 2409446 861 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 5163661 573740 718.624 <2e-16 *** tmp\$NFrac 9 1545955 171773 215.150 <2e-16 *** tmp\$Soil tmp\$NFrac:tmp\$Soil 81 16093 199 0.249 1 Residuals 2800 2235484 798 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Quantité d'azote absorbé par la plante à floraison==="

[1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 223.3365 а N_240 212.3363 b N_210 200.8544 С N_{180} 188.7671 d N_{150} 176.5852 е N 120 164.1233 f N_090 151.4495 g N_060 138.7409 h N_030 125.6947 i N_000 112.2540 j [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 232.5015 а N_240 220.2555 b N_210 207.4214 С N_180 194.5134 d N_150 181.1803 е N 120 167.5263 f N_090 153.7627 g N_060 139.6944 h N_030 125.3935 i N_000 110.8484 j [1] "---rcp_45_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 235.0973 а N_240 221.8029 b N_210 208.0025 С 194.1583 N_180 d N 150 180.0518 е N_120 165.7149 f N_090 151.5187 g N_060 136.9609 h N_030 122.4938 i N_000 107.9437 j [1] "---rcp_85_ht_55---" [1] "- SNK by NFrac -"

	tmp[, ii]	groups
N_270	245.4247	а
N_240	231.1950	b
N_210	216.6254	С
N_180	201.7901	d
N_150	186.9420	е
N_120	172.3570	f
N_090	157.5487	g
N_060	142.6923	h
N_030	127.9893	i
N_000	113.1388	j
[1] "-	rcp_85_h	nt_85"
ГАЛ 11		
[1] "-	- SNK by NI	frac -"
[1] "-	- SNK by NI tmp[, ii]	Frac -" groups
N_270	- SNK by N tmp[, ii] 243.5556	frac -" groups a
N_270 N_240	- SNK by N tmp[, ii] 243.5556 229.3213	Frac -" groups a b
N_270 N_240 N_210	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881	Frac -" groups a b c
N_270 N_240 N_210 N_180	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881 200.0529	Frac -" groups a b c d
N_270 N_240 N_210 N_180 N_150	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881 200.0529 185.3258	Frac -" groups a b c d e
N_270 N_240 N_210 N_180 N_150 N_120	- SNK by NF tmp[, ii] 243.5556 229.3213 214.7881 200.0529 185.3258 170.5869	frac -" groups a b c d e f
N_270 N_240 N_210 N_180 N_150 N_120 N_090	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881 200.0529 185.3258 170.5869 155.7698	Frac -" groups a b c d e f g
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_060	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881 200.0529 185.3258 170.5869 155.7698 141.0879	Frac -" groups a b c d e f f g h
N_270 N_240 N_210 N_180 N_150 N_150 N_120 N_090 N_060 N_030	- SNK by N tmp[, ii] 243.5556 229.3213 214.7881 200.0529 185.3258 170.5869 155.7698 141.0879 126.4069	frac -" groups a b c d e f f g h i

P Résultats de l'analyse de la variance et du test SNK de la quantité d'azote absorbé par la plante à maturité

[1] "===Quantité d'azote absorbé par la plante à maturité==="

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
data\$NFrac	9	27284670	3031630	3028.553	<2e-16	***
data\$RCP_HT	4	283474	70869	70.797	<2e-16	***
data\$Soil	9	4786681	531853	531.314	<2e-16	***
data\$NFrac:data\$RCP_HT	36	167231	4645	4.641	<2e-16	***
data\$NFrac:data\$Soil	81	92865	1146	1.145	0.176	
data\$RCP_HT:data\$Soil	36	428147	11893	11.881	<2e-16	***
data\$NFrac:data\$RCP_HT:data\$Soil	324	12178	38	0.038	1.000	
Residuals	14000	14014224	1001			
Signif. codes: 0 '***' 0.001 '**	, 0.01	·*' 0.05	5'.'0.1	. ' ' 1		
[1] " "						
[1] "====================================	==="					

[1] "===Quantité d'azote absorbé par la plante à maturité===" [1] "--- rcp_00_ht_00---" Sum Sq Mean Sq F value Pr(>F) Df tmp\$NFrac 9 4090416 454491 317.768 <2e-16 *** tmp\$Soil 9 489121 54347 37.998 <2e-16 *** 0.124 tmp\$NFrac:tmp\$Soil 81 14395 178 1 Residuals 2800 4004730 1430 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 9 5162624 573625 606.263 <2e-16 *** tmp\$NFrac tmp\$Soil 9 778893 86544 91.468 <2e-16 *** 0.302 tmp\$NFrac:tmp\$Soil 23169 286 1 81 Residuals 2800 2649262 946 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 45 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) 9 5693100 632567 799.431 <2e-16 *** tmp\$NFrac tmp\$Soil 9 910078 101120 127.794 <2e-16 *** 294 0.372 tmp\$NFrac:tmp\$Soil 81 23831 1 Residuals 2800 2215558 791 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp 85 ht 55---" Df Sum Sq Mean Sq F value Pr(>F) 9 6072806 674756 698.505 <2e-16 *** tmp\$NFrac 113270 117.257 <2e-16 *** tmp\$Soil 9 1019430 302 0.313 1 tmp\$NFrac:tmp\$Soil 81 24485 2800 2704800 966 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 9 6432955 714773 820.274 <2e-16 *** 9 2017306 224145 257.229 <2e-16 *** tmp\$Soil

tmp\$NFrac:tmp\$Soil 81 19164 237 0.272 1 Residuals 2800 2439873 871 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Quantité d'azote absorbé par la plante à maturité===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 244.4955 а N_240 233.0026 b N_210 221.0336 С N_180 208.3483 d N 150 195.5545 е N 120 182.4968 f N 090 169.1366 g N 060 155.5925 h N_030 141.4428 i N 000 126.9918 j [1] "---rcp 45 ht 55---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 257.6773 а N_240 244.5247 b N 210 230.6482 с N 180 216.7065 d N 150 202.3062 е f N 120 187.5680 N 090 172.6307 g N_060 157.2548 h N 030 141.5286 i N_000 125.6870 j [1] "---rcp 45 ht 85---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 259.0101 а N_240 244.4580 b N_210 229.4280 С N 180 214.2760 d N 150 198.8017 е

N_{120}	183.1569	f
N_090	167.6736	g
N_060	151.8927	h
N_030	136.2293	i
N_000	120.7439	j
[1] "·	rcp_85_h	t_55"
[1] "·	- SNK by NF	'rac -"
	<pre>tmp[, ii]</pre>	groups
N_270	270.1527	a
N_240	254.9148	b
N_210	239.2392	С
N_180	223.2137	d
N_150	207.2651	е
N_120	191.3508	f
N_090	175.2981	g
N_060	159.1221	h
N_030	143.1649	i
N_000	127.2384	j
[1] "·	rcp_85_h	t_85"
[1] "·	- SNK by NF	'rac -"
	<pre>tmp[, ii]</pre>	groups
N_270	272.6079	a
N_240	256.3707	b
N_210	239.8447	с
N_180	223.1508	d
N_150	206.5341	е
N_120	190.0290	f
N_090	173.5265	g
N_060	157.3311	h
N_030	141.4388	i
N_000	125.6033	j

Q Résultats de l'analyse de la variance et du test SNK du nombre de grains

```
[1] "===Nombre de grain==="
                                   Df
                                         Sum Sq
                                                 Mean Sq F value Pr(>F)
data$NFrac
                                    9 1.147e+11 1.275e+10 1514.835 < 2e-16 ***
                                    4 5.187e+09 1.297e+09 154.087 < 2e-16 ***
data RCP_HT
                                    9 1.993e+10 2.214e+09
data$Soil
                                                           263.112 < 2e-16 ***
data$NFrac:data$RCP_HT
                                   36 1.677e+09 4.658e+07
                                                             5.535 < 2e-16 ***
data$NFrac:data$Soil
                                   81 1.335e+09 1.648e+07
                                                             1.958 6.52e-07 ***
```

```
36 2.628e+09 7.301e+07
data$RCP_HT:data$Soil
                                                             8.676 < 2e-16 ***
data$NFrac:data$RCP_HT:data$Soil
                                  324 1.704e+08 5.260e+05
                                                             0.063
                                                                          1
Residuals
                                14000 1.178e+11 8.415e+06
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Nombre de grain==="
[1] "--- rcp 00 ht 00---"
                                   Mean Sq F value Pr(>F)
                    Df
                          Sum Sq
                     9 1.599e+10 1.777e+09 145.111 <2e-16 ***
tmp$NFrac
                     9 1.601e+09 1.779e+08 14.528 <2e-16 ***
tmp$Soil
                    81 2.756e+08 3.402e+06
                                             0.278
tmp$NFrac:tmp$Soil
                                                        1
Residuals
                  2800 3.428e+10 1.224e+07
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 55---"
                                   Mean Sq F value Pr(>F)
                    Df
                          Sum Sq
                     9 1.936e+10 2.151e+09 256.837 <2e-16 ***
tmp$NFrac
                     9 2.818e+09 3.131e+08 37.386 <2e-16 ***
tmp$Soil
                    81 3.381e+08 4.174e+06
                                             0.498
                                                        1
tmp$NFrac:tmp$Soil
Residuals
                  2800 2.345e+10 8.374e+06
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp_45_ht_85---"
                    Df
                          Sum Sq
                                   Mean Sq F value Pr(>F)
                     9 2.336e+10 2.595e+09 323.753 <2e-16 ***
tmp$NFrac
                     9 4.392e+09 4.880e+08 60.885 <2e-16 ***
tmp$Soil
tmp$NFrac:tmp$Soil
                    81 2.636e+08 3.254e+06
                                             0.406
                                                        1
Residuals
                  2800 2.244e+10 8.016e+06
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 85 ht 55---"
                                   Mean Sq F value Pr(>F)
                    Df
                          Sum Sq
                     9 2.732e+10 3.035e+09 439.319 <2e-16 ***
tmp$NFrac
tmp$Soil
                     9 4.397e+09 4.885e+08 70.715 <2e-16 ***
tmp$NFrac:tmp$Soil
                    81 3.473e+08 4.288e+06
                                             0.621 0.997
Residuals
                  2800 1.934e+10 6.909e+06
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 3.039e+10 3.376e+09 516.75 <2e-16 *** tmp\$NFrac 9 9.348e+09 1.039e+09 158.97 <2e-16 *** tmp\$Soil tmp\$NFrac:tmp\$Soil 81 2.803e+08 3.461e+06 0.53 1 Residuals 2800 1.830e+10 6.534e+06 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Nombre de grain===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 21751.66 а N_240 21370.97 ab N 210 20862.50 b N 180 20203.43 С N 150 19394.88 d N 120 18544.24 е N 090 17600.34 f N_060 16676.36 g N_030 15654.97 h N 000 14615.14 i [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_270 23384.10 а N 240 22773.66 b N_210 22116.62 С N 180 21403.62 d N_150 20645.29 е N 120 19813.41 f N_090 18831.93 g N_060 17731.86 h N_030 16510.23 i N_000 15284.19 j [1] "---rcp_45_ht_85---"

[1]	"_	SNK	by	NF	rac	-"	
	t	mp[, ii	i]	grou	ıps	
N_27	70	233	71.8	35		а	
N_24	40	226	19.1	14		b	
N_23	10	2182	20.9	98		С	
N_18	30	2094	42.5	52		d	
N_1	50	2002	20.3	33		е	
N_12	20	1910	20.5	54		f	
N_09	90	1804	42.4	17		g	
N_06	30	1686	67.5	56		h	
N_03	30	156	77.4	16		i	
N_00	00	1453	34.8	32		j	
[1]	"	-rc]	p_85	5_h	t_55	5	. "
[1]	"-	SNK	by	NF	'rac	-"	
	t	mp[, ii	i]	grou	ıps	
N_27	70	246	16.9	98		a	
N_24	40	2390	65.2	22		b	
N_2:	10	2322	26.0)5		С	
N_18	30	2230	01.9	90		d	
N_1	50	212	76.8	31		е	
N_12	20	2020	01.3	39		f	
N_09	90	1898	39.3	35		g	
N_06	30	1774	42.2	28		h	
N_03	30	164	59.4	19		i	
N_O	00	1523	32.0)8		j	
[1]	"	-rc]	p_85	5_h	t_85	5	. "
[1]	"_	SNK	by	NF	'rac	_"	
	t	mp[, ii	[]	grou	ıps	
N_2	70	2474	46.7	70		а	
N_24	10	2390	00.6	53		b	
N_23	10	2290	01.0)8		С	
N_18	30	218	24.6	53		d	
N_1	50	206	67.9	92		е	
N_12	20	194	72.0)9		f	
N_09	ЭО	182	56.5	50		g	
N_06	30	170	53.3	34		h	
N_03	30	159	13.3	38		i	
N_O	00	1488	35.1	14		j	

R Résultats de l'analyse de la variance et du test SNK du rendement

[1] "===Rendement==="

```
Df Sum Sq Mean Sq F value Pr(>F)
                                      22875 2541.6 1486.460 < 2e-16 ***
data$NFrac
                                   9
data$RCP HT
                                   4
                                       1034
                                              258.4 151.120 < 2e-16 ***
data$Soil
                                   9
                                       4606
                                              511.8 299.328 < 2e-16 ***
data$NFrac:data$RCP_HT
                                  36
                                        416
                                              11.5
                                                      6.753 < 2e-16 ***
data$NFrac:data$Soil
                                                3.5
                                  81
                                        280
                                                       2.022 1.69e-07 ***
data$RCP HT:data$Soil
                                               18.5 10.815 < 2e-16 ***
                                  36
                                        666
data$NFrac:data$RCP_HT:data$Soil
                                 324
                                                0.1
                                                      0.063
                                         35
                                                                   1
Residuals
                                                1.7
                                14000
                                      23938
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "===Rendement==="
[1] "--- rcp_00_ht_00---"
                    Df Sum Sq Mean Sq F value Pr(>F)
tmp$NFrac
                     9
                         3032
                               336.9 146.597 <2e-16 ***
tmp$Soil
                     9
                          345
                                38.4 16.693 <2e-16 ***
tmp$NFrac:tmp$Soil
                    81
                           58
                                 0.7
                                       0.311
                                                  1
Residuals
                  2800
                         6435
                                 2.3
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 55---"
                    Df Sum Sq Mean Sq F value Pr(>F)
                     9
                         3762
                               418.0 290.745 <2e-16 ***
tmp$NFrac
                     9
                                75.0 52.152 <2e-16 ***
tmp$Soil
                          675
tmp$NFrac:tmp$Soil
                    81
                                 0.9
                                       0.593 0.999
                           69
Residuals
                  2800
                         4025
                                 1.4
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
[1] " "
[1] "--- rcp 45 ht 85---"
                    Df Sum Sq Mean Sq F value Pr(>F)
                               526.1 273.15 <2e-16 ***
tmp$NFrac
                     9
                         4735
                                       54.36 <2e-16 ***
tmp$Soil
                     9
                          942
                               104.7
tmp$NFrac:tmp$Soil
                                        0.40
                                                  1
                    81
                           62
                                 0.8
```

Residuals 2800 5393 1.9 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 9 595.9 419.880 <2e-16 *** tmp\$NFrac 5364 tmp\$Soil 9 1042 115.8 81.566 <2e-16 *** tmp\$NFrac:tmp\$Soil 73 0.9 0.635 0.995 81 Residuals 2800 3974 1.4 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 9 6398 tmp\$NFrac 710.9 484.219 <2e-16 *** tmp\$Soil 9 2268 252.0 171.626 <2e-16 *** tmp\$NFrac:tmp\$Soil 53 0.6 0.442 1 81 Residuals 2800 4111 1.5 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 [1] " " [1] "===Rendement===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 9.707085 а N 240 9.518374 ab N 210 9.287106 b N_180 9.009824 С N 150 8.666253 d N_120 8.299982 е N 090 7.885461 f N 060 7.483687 g N 030 7.039256 h N_000 6.575414 i [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N 270 10.424825 а

	10.13/964	D
N_210	9.829139	с
N_180	9.502633	d
N_{150}	9.170431	е
N_120	8.811751	f
N_090	8.396539	g
N_060	7.916881	h
N_030	7.380525	i
N_000	6.823015	j
[1] "-	rcp_45_1	nt_85"
[1] "-	- SNK by NI	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_270	10.465721	а
N_240	10.129851	b
N_210	9.779350	С
N_180	9.403338	d
N_150	8.993664	е
N_120	8.578630	f
N_090	8.109160	g
N_060	7.578325	h
N_030	7.017312	i
N_000	6.466528	j
[1] "-	rcp_85_1	nt_55"
[1] "-	- SNK by NI	Frac -"
	<pre>tmp[, ii]</pre>	groups
		2
N_270	11.007076	a
N_270 N_240	11.007076 10.705016	b
N_270 N_240 N_210	11.007076 10.705016 10.357280	b c
N_270 N_240 N_210 N_180	11.007076 10.705016 10.357280 9.940063	b c d
N_270 N_240 N_210 N_180 N_150	11.007076 10.705016 10.357280 9.940063 9.489862	b c d e
N_270 N_240 N_210 N_180 N_150 N_120	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633	b c d e f
N_270 N_240 N_210 N_180 N_150 N_150 N_120 N_090	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784	b c d f g
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_060	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262	b c d f g h
N_270 N_240 N_210 N_180 N_150 N_150 N_120 N_090 N_060 N_030	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583	b c d f g h i
N_270 N_240 N_210 N_180 N_150 N_150 N_120 N_090 N_060 N_060 N_030 N_000	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853	b c d f g h i j
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_090 N_030 N_030 N_000 [1] "-	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1	b c d f f h i j nt_85"
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_090 N_060 N_030 N_000 [1] "-	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1 - SNK by NI	b c d f f h i j nt_85"
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_060 N_060 N_030 N_000 [1] "-	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1 - SNK by NI tmp[, ii]	b c d f f h i j ft_85" Frac -" groups
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_090 N_060 N_030 N_030 N_030 [1] "- [1] "-	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1 - SNK by NI tmp[, ii] 11.170429	b c d f f h i j ht_85" Frac -" groups a
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_060 N_060 N_030 N_000 [1] "- [1] "- N_270 N_240	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1 - SNK by NI tmp[, ii] 11.170429 10.774411	b c d f f h i j nt_85" Frac -" groups a b
N_270 N_240 N_210 N_180 N_150 N_120 N_090 N_090 N_090 N_030 N_0210 N_0210 N_030 N_0210 N_0210 N_0200 N_030 N_0210 N_0210 N_0200 N_0210 N_0200 N_0210 N_0200 N_0200 N_0200 N_0210 N_02000 N_0200 N_0000 N_0000000000	11.007076 10.705016 10.357280 9.940063 9.489862 9.018633 8.495784 7.943262 7.375583 6.827853 rcp_85_1 - SNK by NI tmp[, ii] 11.170429 10.774411 10.313392	b c d f f j h : j f Tac -" groups a b c

N_150	9.293609	е
N_120	8.751585	f
N_090	8.200976	g
N_060	7.648839	h
N_030	7.116089	i
N_000	6.621871	j

S Résultats de l'analyse de la variance et du test SNK de l'efficience agronomique d'utilisation des nutriments

```
[1] "===NUEag==="
```

```
Df Sum Sq Mean Sq F value
                                                             Pr(>F)
data$NFrac
                                   8
                                      14823
                                               1853 47.587
                                                            < 2e-16 ***
data$RCP_HT
                                   4
                                      24617
                                               6154 158.060
                                                            < 2e-16 ***
data$Soil
                                   9
                                      25948
                                               2883 74.048 < 2e-16 ***
                                                     4.614 < 2e-16 ***
data$NFrac:data$RCP_HT
                                  32
                                       5748
                                                180
data$NFrac:data$Soil
                                  72
                                                     0.550
                                       1542
                                                 21
                                                              0.999
data$RCP HT:data$Soil
                                  36
                                       4714
                                                131
                                                     3.363 4.55e-11 ***
data$NFrac:data$RCP HT:data$Soil
                                 288
                                                 6
                                                     0.147
                                                              1.000
                                       1647
Residuals
                               12600 490590
                                                 39
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1450 observations effacées parce que manquantes
[1] " "
[1] "===NUEag==="
[1] "--- rcp_00_ht_00---"
                    Df Sum Sq Mean Sq F value
                                               Pr(>F)
tmp$NFrac
                     8
                         3921
                               490.1
                                       7.073 2.79e-09 ***
                                       6.416 4.68e-09 ***
                     9
tmp$Soil
                         4001
                               444.6
tmp$NFrac:tmp$Soil
                    72
                          435
                                 6.0
                                       0.087
                                                    1
Residuals
                  2520 174598
                                69.3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
290 observations effacées parce que manquantes
[1] " "
[1] "--- rcp 45 ht 55---"
                    Df Sum Sq Mean Sq F value Pr(>F)
                              1091.3 31.727 <2e-16 ***
tmp$NFrac
                     8
                         8730
tmp$Soil
                     9
                               1095.5
                                      31.850 <2e-16 ***
                         9860
tmp$NFrac:tmp$Soil
                                 4.7
                                       0.137
                                                  1
                    72
                          340
```

Residuals 2520 86680 34.4 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp 45 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) 8 4564 570.5 17.660 <2e-16 *** tmp\$NFrac 877.2 27.153 <2e-16 *** tmp\$Soil 9 7894 tmp\$NFrac:tmp\$Soil 72 445 6.2 0.191 1 Residuals 2520 81406 32.3 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F)357.6 11.609 2.52e-16 *** 8 2861 tmp\$NFrac tmp\$Soil 9 3892 432.5 14.039 < 2e-16 *** 14.3 tmp\$NFrac:tmp\$Soil 72 1027 0.463 1 2520 Residuals 77628 30.8 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 61.9 tmp\$NFrac 8 495 2.220 0.0234 * 9 557.1 19.978 <2e-16 *** tmp\$Soil 5014 tmp\$NFrac:tmp\$Soil 0.469 1.0000 72 942 13.1 Residuals 2520 70277 27.9 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "===NUEag===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 030 15.46141 а

N_060	15.13789	a
N_090	14.55608	ab
N_120	14.37141	ab
N_150	13.93893	abc
N_180	13.52450	abc
N_210	12.91282	bcd
N_240	12.26233	cd
N_270	11.59878	d
[1] "-	rcp_45_1	ht_55"
[1] "-	- SNK by NI	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_030	18.58366	a
N_060	18.23109	а
N_090	17.48360	ab
N_120	16.57280	bc
N_150	15.64944	cd
N_180	14.88677	de
N_210	14.31488	ef
N_240	13.81229	ef
N_270	13.34004	f
[1] "-	rcp_45_1	nt_85"
[1] "-	- SNK by NI	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_060	18.52994	a
N_030	18.35945	a
N_090	18.25146	a
N_120	17.60084	ab
N_150	16.84757	bc
N_180	16.31561	cd
N_210	15.77534	cde
N_240	15.26385	de
N_270	14.81182	е
[1] "-	rcp_85_1	nt_55"
[1] "-	- SNK by NI	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_060		
	18.59016	а
N_090	18.59016 18.53257	a
N_090 N_030	18.59016 18.53257 18.25767	a a a
N_090 N_030 N_120	18.59016 18.53257 18.25767 18.25650	a a a a
N_090 N_030 N_120 N_150	18.59016 18.53257 18.25767 18.25650 17.74673	a a a a ab
N_090 N_030 N_120 N_150 N_180	18.59016 18.53257 18.25767 18.25650 17.74673 17.29006	a a a ab ab

N_240	16.15485	cd
N_270	15.47861	d
[1] "·	rcp_85_	ht_85"
[1] "·	- SNK by N	Frac -"
	<pre>tmp[, ii]</pre>	groups
N_150	17.81158	а
N_180	17.76036	a
N_120	17.74761	a
N_210	17.57867	a
N_090	17.54561	a
N_240	17.30225	a
N_060	17.11612	a
N_270	16.84651	a
N_030	16.47392	a

T Résultats de l'analyse de la variance et du test SNK de l'efficience physiologique d'utilisation des nutriments

[1] "===NUEphys==="

```
Df
                                      Sum Sq Mean Sq F value
                                                              Pr(>F)
data$NFrac
                                   8
                                       39669
                                               4959 45.458 < 2e-16 ***
data$RCP_HT
                                   4
                                       19214
                                               4804
                                                    44.037 < 2e-16 ***
data$Soil
                                   9
                                       32711
                                               3635 33.320 < 2e-16 ***
data$NFrac:data$RCP_HT
                                  32
                                       10476
                                                327
                                                      3.001 2.78e-08 ***
data$NFrac:data$Soil
                                  72
                                       4071
                                                      0.518
                                                 57
                                                                   1
data$RCP_HT:data$Soil
                                       10343
                                                287
                                                      2.634 3.69e-07 ***
                                  36
data$NFrac:data$RCP_HT:data$Soil
                                 288
                                        5844
                                                 20
                                                      0.186
                                                                  1
Residuals
                               12600 1374418
                                                109
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1450 observations effacées parce que manquantes
[1] " "
_____"
[1] "===NUEphys==="
[1] "--- rcp 00 ht 00---"
                    Df Sum Sq Mean Sq F value
                                              Pr(>F)
tmp$NFrac
                     8
                        7101
                               887.6
                                      5.069 2.85e-06 ***
tmp$Soil
                     9
                        8015
                               890.6
                                       5.086 7.71e-07 ***
                                29.7
                                      0.170
tmp$NFrac:tmp$Soil
                    72
                        2137
                                                   1
Residuals
                  2520 441307
                               175.1
___
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 19747 2468.3 26.890 <2e-16 *** tmp\$NFrac 8 tmp\$Soil 9 14761 1640.1 17.868 <2e-16 *** tmp\$NFrac:tmp\$Soil 72 14.1 0.154 1 1018 Residuals 2520 231315 91.8 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_45_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) 1647.1 18.958 <2e-16 *** tmp\$NFrac 8 13177 tmp\$Soil 9 11148 1238.7 14.258 <2e-16 *** tmp\$NFrac:tmp\$Soil 14.5 0.167 72 1044 1 Residuals 2520 218935 86.9 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 8 8957 1119.7 13.208 < 2e-16 *** 4.773 2.49e-06 *** 9 3642 404.6 tmp\$Soil tmp\$NFrac:tmp\$Soil 72 2915 40.5 0.478 1 2520 213629 84.8 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_85_ht_85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 8 1164 145.5 1.362 0.208 9 5488 609.7 5.707 7.24e-08 *** tmp\$Soil tmp\$NFrac:tmp\$Soil 72 2801 38.9 0.364 1.000 2520 269232 106.8 Residuals ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes

[1] " " [1] "===NUEphys===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N_060 31.63714 а N_030 31.57869 а N 090 30.94258 а N_120 30.77961 а N_{150} 30.19129 ab N_{180} 29.63771 ab N_210 28.59395 abc N_240 27.64130 bc N_270 26.73200 С [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N_030 34.97566 а N_060 34.61101 а N_090 33.60653 ab 32.27253 N 120 bc N_{150} 30.80749 cd N_{180} 29.58948 de N_210 28.73811 ef N_240 27.93762 ef N_270 27.20870 f [1] "---rcp_45_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N_060 35.59019 а N_030 35.36155 а N_090 34.88337 а N 120 33.76610 ab 32.39116 N_{150} bc N_180 31.56838 cd N_210 30.74525 cde N_240 29.94119 de 29.33167 N_270 е [1] "---rcp_85_ht_55---" [1] "- SNK by NFrac -"

	tmp[, i	ii]	grou	ps	
N_060	34.932	248		a	
N_090	34.749	969		a	
N_030	34.550)56		a	
N_120	34.266	514	i	ab	
N_150	33.393	374	al	bc	
N_180	32.558	339	ا	bc	
N_210	31.689	913		cd	
N_240	30.572	264	(de	
N_270	29.508	346		е	
[1] "-	rcp_8	35_ł	nt_85		"
[1] "-	- SNK by	7 NH	Frac	_ ''	
	tmp[, i	ii]	grou	ps	
N_120	33.383	325		а	
N_150	33.331	L68		a	
N_090	33.268	337		a	
N_180	33.105	549		a	
N_060	32.681	L85		a	
N_210	32.672	213		a	
N_240	32.156	519		a	
N_030	31.875	575		а	
N 070	04 00/				

U Résultats de l'analyse de la variance et du test SNK du coefficient apparent d'utilisation

```
[1] "===CAU==="
```

```
Df Sum Sq Mean Sq F value
                                                           Pr(>F)
data$NFrac
                                  8
                                     0.30 0.0379
                                                    2.617
                                                          0.00734 **
                                    10.51 2.6280 181.645
data$RCP HT
                                  4
                                                          < 2e-16 ***
data$Soil
                                  9
                                     8.51 0.9457 65.366
                                                          < 2e-16 ***
data$NFrac:data$RCP HT
                                     0.85 0.0264
                                 32
                                                   1.826
                                                          0.00297 **
data$NFrac:data$Soil
                                 72
                                     0.17 0.0023 0.159
                                                          1.00000
data$RCP HT:data$Soil
                                 36
                                      1.44 0.0400
                                                   2.766 7.71e-08 ***
                                     0.11 0.0004
data$NFrac:data$RCP HT:data$Soil
                                288
                                                   0.027 1.00000
                              12600 182.30 0.0145
Residuals
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1450 observations effacées parce que manquantes
[1] " "
[1] "===CAU==="
```

[1] "--- rcp_00_ht_00---" Df Sum Sq Mean Sq F value Pr(>F) 0.57 0.07115 2.158 tmp\$NFrac 8 0.0279 * tmp\$Soil 9 1.63 0.18072 5.481 1.72e-07 *** 72 0.03 0.00035 0.011 1.0000 tmp\$NFrac:tmp\$Soil 2520 83.09 0.03297 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_45_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 0.45 0.05594 4.024 9.23e-05 *** tmp\$NFrac 8 tmp\$Soil 9 2.42 0.26942 19.380 < 2e-16 *** tmp\$NFrac:tmp\$Soil 72 0.03 0.00047 0.034 1 Residuals 2520 35.03 0.01390 ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp 45 ht 85---" Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 8 0.020 0.00256 0.259 0.979 9 1.950 0.21661 21.880 <2e-16 *** tmp\$Soil 72 0.085 0.00118 tmp\$NFrac:tmp\$Soil 0.119 1.000 Residuals 2520 24.949 0.00990 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp_85_ht_55---" Df Sum Sq Mean Sq F value Pr(>F) 8 0.006 0.00079 0.092 0.999 tmp\$NFrac 9 2.017 0.22411 26.069 <2e-16 *** tmp\$Soil tmp\$NFrac:tmp\$Soil 72 0.068 0.00094 0.110 1.000 2520 21.664 0.00860 Residuals ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "--- rcp 85 ht 85---"

Df Sum Sq Mean Sq F value Pr(>F) tmp\$NFrac 8 0.105 0.01313 1.883 0.0584 . tmp\$Soil 1.935 0.21495 30.842 <2e-16 *** 9 72 0.069 0.00096 0.137 1.0000 tmp\$NFrac:tmp\$Soil Residuals 2520 17.563 0.00697 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 290 observations effacées parce que manquantes [1] " " [1] "===CAU===" [1] "---rcp_00_ht_00---" [1] "- SNK by NFrac -" tmp[, ii] groups N 030 0.4817014 а N 060 0.4766782 а N 090 0.4682758 а N_120 0.4625420 а N_150 0.4570847 а N_180 0.4519807 а N 210 0.4478179 а N 240 0.4417117 а N 270 0.4351989 а [1] "---rcp_45_ht_55---" [1] "- SNK by NFrac -" tmp[, ii] groups N 030 0.5280519 а N 060 0.5261303 а N_090 0.5215968 ab N_120 0.5156752 abc N_150 0.5107947 abc N_180 0.5056639 abc N_210 0.4998152 abc bc N 240 0.4951569 N_270 0.4888531 С [1] "---rcp_45_ht_85---" [1] "- SNK by NFrac -" tmp[, ii] groups N_090 0.5214415 а N_150 0.5203856 а N 120 0.5201088 а

N_{180}	0.5196233	a
N_060	0.5191477	a
N_210	0.5175436	a
N_030	0.5161817	a
N_240	0.5154754	a
N_270	0.5120973	a
[1] "-	rcp_85_ht_55-	"
[1] "-	- SNK by NFrac -	_ ''
	<pre>tmp[, ii] group</pre>	os
N_120	0.5342703	a
N_090	0.5339969	a
N_150	0.5335114	a
N_210	0.5333372	a
N_180	0.5331962	a
N_240	0.5319850	a
N_060	0.5313951	a
N_030	0.5308851	a
N_270	0.5293124	a
[1] "-	rcp_85_ht_85-	"
[1] "-	- SNK by NFrac -	."
	<pre>tmp[, ii] group</pre>	S
N_240	0.5448642	a
N_270	0.5444612	a
N_210	0.5440063	a
N_180	0.5419301	a
N_{150}	0.5395386	a
N_120	0.5368803	a
N_090	0.5324791	a
N_060	0.5287956	a
N_030	0.5278486	a