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Abstract

Studying pulsation spectra through asteroseismology allows probing the inner structure of
stars. Core helium burning stars, specifically subdwarf type B stars, have been observed to
harbour pressure and gravity mode pulsations, allowing respectively to probe the envelope and
core of such stars. In particular, observations show a dichotomy in gravity modes pulsation
spectra, with sometimes structures called trapped modes, which induce variable period spacings
between observed periods, and other times no trapped modes at all, with a rather smooth
pulsation spectra showing more or less constant spacings instead.

In this master thesis, we model subdwarf type B stars with both 4th generation static models
and evolutionary models, using the STELUM and PULSE codes. Through this, we aim to gain
insights on the influence of core helium burning on the pulsation spectra. We highlight as well
the influence of the chemical and thermal structures on the behavior of pulsation spectra, in
particular the mass of the core and envelope, as well as the thermal gradients prescriptions.
A clear distinction is made between evolutionary and static models. The latter are studied
first, and we discuss the origin of trapped modes from chemical transitions and temperature
gradients in such models. In evolutionary models, we focus on the overshooting and semi-
convection phenomena, which are not found in static models, and study their impact on the
chemical and thermal structure of the star, as well as on the pulsation spectra.

This master thesis gives the theoretical basis of pulsation spectra computed from current
available stellar models of subdwarf B stars, now to be compared in detail with observations of
such stars, in particular those observed by the Kepler and TESS satellites.
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Introduction

As our tools to look towards space developed greatly over the years, we have yet to gaze be-
yond the surface of a star. Despite this shortcoming, we have been able to develop a stellar struc-
ture theory, with, as a precursor, Eddington in 1926 with The Internal Constitution of the Stars.
Already then, Eddington realized that even if his theories were to be true, there was no simple
way of confirming them, and for quite some time, the discussion of the internal physics and
structure of the stars remained mainly a theoretical exercise. While we could already get some
constraints on stellar structure using exterior observables such as the effective temperature, or
even in the particular case of eclipsing binaries, masses and radii, the advent of asteroseismology
has opened a way to experimentally verify what was until then, only theories.

Variable objects in the sky have been noticed quite a long time ago, with the first ever
variable star, Algol, an eclipsing binary, already remarked about 3200 years ago in Egypt.
Despite this early discovery, this is only far later that the very concept of variable star has been
introduced, with in the 17th century, the first observation of periodic changes in the luminosity
of stars were made. This leads us to the concept of extrinsic and intrinsic variables, in which
the former’s luminosity varies from external conditions, that is for example, an eclipsing binary
or stellar winds, while the latter finds the origin of its variability through the compression
and dilatation of different parts of the star in precise geometrical patterns, so-called stellar
oscillations or pulsations1. It is precisely in understanding the relation linking on the one hand
the structure and quantities defining what an intrinsic variable star is, and on the other hand
its pulsations’ patterns and frequencies, that motivates asteroseismology.

The origin of asteroseismology is found here, on Earth, through seismology. Is it upon
realizing that the Earth has vibration modes and seismic waves which could be used to probe
its internal structure that we began to apply the same ideology to stars. Following this, the
theory of stellar pulsation was applied to the Sun and succeeded in constraining not only its
interior but even its internal rotation. While asteroseismology began using ground telescopes,
new data from recent spatial missions such as CoRot (2006-2012) and Kepler (2009-2018) are
now allowing us to expand the range of known pulsating stars and to detect new modes of lower
amplitude from stars already known to pulsate.

Despite those upgraded capabilities, stellar interiors and their complex physics remain a
challenge. If the foundations of our numerical models are now anchored and strongly tested,
we can hardly call them complete. Effects such as tidal forces, magnetic fields and convection,
the latter which shall be investigated in this master thesis, are hardly understood in detail with
respect to their influence on pulsations in stars, and are, for now, still evading the grasp of our
knowledge.

We divide this master thesis in five chapters. In chapter 1, we will introduce subdwarf B
stars, a kind of core helium burning stars that will be the topic of our study, before giving the

1“Pulsations” and “oscillations” are equivalent in this master thesis
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usual equations of stellar structure and then delving into adiabatic oscillation theory. We will
then show the properties on both pressure and gravity modes, with a special focus on the latter
as they will occupy the remainder of the master thesis.

In chapter 2, we present the numerical tools which are used for our study, that is the
STELUM code and the PULSE code.

Then, in chapter 3, we show the results found for so-called “static models”, an approxima-
tion of fully evolutionary models, in particular for the pulsation spectra of gravity modes for
subdwarf B stars. We study the influence of a few parameters on those pulsation spectra, and
draw physical conclusions on the different types of pulsations we observe relative to the thermal
and chemical structure of the star.

In chapter 4, we reproduce this study in the case of evolutionary models and highlight
in particular the differences between static and evolutionary models. We focus on the semi-
convection and overshooting phenomena, as those influence strongly the pulsation spectra we
find.

Finally, in chapter 5, we tie our results together to draw conclusions on the limitations of
static models. We underline that some regions of the thermal structure of the core of sdB
stars have considerable uncertainties, and that the thermal structure prescriptions adopted in
such regions have an especially strong influence on the gravity modes pulsation spectra found
afterward.



Chapter 1

Theoretical framework

The pulsations that we observe at the surface of a star are in reality a consequence of its
stellar structure and dynamics. The goal of this chapter is to lay the groundwork required to
understand what stellar pulsations are, where in the star they take place, and how they are
created. To realize this, inspiration was taken from the work of notably Aerts et al. (2010),
Unno et al. (1989), in which many additional mathematical developments are made, and two
PhD thesis which have helped in synthesizing information, from Charpinet (1999) and Van
Grootel (2008).

In order to directly link the theory of stellar oscillations with the particular case of this
master thesis, we will first introduce the concept of Helium burning core stars (CHeBs) with
a particular focus on subdwarf B stars (sdBs). Following this, we will lay the basis of stellar
structure theory, using hydrodynamics and thermodynamics. Then, we will narrow our focus
onto adiabatic oscillations, that is, removing the thermal considerations in order to extract the
dynamical mechanism of pulsations. Finally, we will come back to non-adiabaticity as a mean
to understand part of the origin of stellar oscillations.

1.1 Core He-Burning stars

1.1.1 Generalities on CHeB stars evolution

During their evolution on the main sequence, stars progressively transform the hydrogen in
their core into helium. As the star nears the end of this phase, this process becomes less efficient
and eventually stops when the hydrogen is exhausted in the core. Afterward, the star will climb
the red giant branch (RGB) during which its core will stay inert as the star’s core temperature
is not hot enough to fuse helium, while its hydrogen will burn in a shell surrounding the core.
Because of this hydrogen shell burning, the helium core will progressively gain mass, until the
critical point to fuse helium is reached, and we then stop climbing the red giant branch, instead
beginning the horizontal branch (HB) where core helium burning takes place. While on the
HB, we fuse helium into carbon through the triple-α process, and when there is enough carbon,
we fuse helium with carbon to produce oxygen. For low and intermediate mass stars, which are
the one we are interested in, the lack of mass of this new core made of carbon and oxygen will
not be sufficient to induce carbon fusion reactions. This inert C-O core will then constitute
the core of the white dwarf, the final stage of the star after it has expelled most of its external
envelope.

In this master thesis, we are interested in the HB, which is composed of CHeB stars. The
morphology of the HB requires a helium core of almost fixed mass of about Mcore = 0.47M⊙,
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1.1. CORE HE-BURNING STARS 9

with little variation around that value. This can be understood through the so-called helium
flash phenomenon. During the red giant phase, stars with a mass of less than about 2.2 M⊙
will not be able to reach the critical temperature required to fuse helium in their core, despite
the latter getting denser from the helium produced by hydrogen shell burning. Upon reaching
a high enough core mass, the hydrostatic equilibrium is not sustained anymore, as no fusion
reactions in the core are preventing a gravitational collapse. The star thus starts contracting
and its temperature increases, until the center of the helium core becomes degenerate matter,
at which point the degeneracy pressure will stop the inner part of the core from contracting
further. Matter above this degenerated inner core will continue to contract, and we eventually
reach the fusion temperature for helium. Because we fuse in degenerate matter in which pressure
is weakly reliant on temperature, while the reaction rate of the triple-α process is extremely
sensible to temperature (≈ T 40), we will raise the temperature of the core too fast for the
degeneracy pressure to expand the core as a cooling mechanism. A higher temperature means
more efficient fusion, and as such, we have a runaway reaction which lasts a few seconds and
produces a tremendous amount of energy, until the degeneracy in the core is lifted, and the star
can finally cool down and continue fusing helium. The minimum core mass at which we lose the
hydrostatic equilibrium is in fact the core mass we find for stars on the HB branch. Because
of this nearly fixed core mass, we understand that the parameter which will set the position of
CHeB stars on the HB will be the mass of their envelope Menv, which, contrary to the core’s
mass, is highly variable. This is used to identify the extreme horizontal branch (EHB), where
we find the hottest stars of temperatures Teff > 20 000 K, corresponding to Menv < 0.02M⊙.

The trajectory from a star on the HB to a white dwarf is not straightforward and also
depends on Menv after the helium core has been consumed. As illustrated in Fig. 1.1, a star on
the HB will generally follow the asymptotic giant branch (AGB then P-AGB), during which
helium will be burned in shells, eventually producing a planetary nebula. A star on the EHB
has two possible paths depending on the mass of its envelope. If it is sufficiently massive
(0.01 ≲ Menv ≲ 0.02M⊙), the star will develop a convective envelope and will follow the AGB
for a time, but will leave it before the thermal pulses leading to a planetary nebula. Indeed,
because of hydrogen shell burning at the bottom of the envelope, combined with stellar wind at
its surface, convection will stop early on the AGB and the star will cool towards a white dwarf
following the so-called post-early AGB (P-EAGB). If the EHB star does not have a massive
enough envelope however (Menv ≲ 0.01M⊙), then the latter will not become convective, and
the star will follow a path called AGB-Manqué, in which the star keeps a high temperature,
unlike the AGB and P-EAGB branches, and finally reaches the white dwarf cooling track.

1.1.2 Importance of studying CHeB stars

Transport processes, either microscopic or macroscopic, have a strong influence on the stellar
chemical stratification of CHeB stars during their evolution, hence on the resulting white dwarf.
By performing asteroseismic modeling on CHeB pulsators such as EHB stars, blue HB stars,
or Red Clump stars, one can hope putting constraints on those transport processes and on
the internal structure of these stars. In particular, what happens at the boundary between
convective core and radiative mantle (see next subsection Fig. 1.2 for the location of those
zones), is not well understood and thus modeled approximatively through overshooting and
semi-convection (partial mixing) phenomena, with different recipes from different authors, for
instance in Castellani et al. (1971a) and Constantino et al. (2015) (see also a comparison of
various prescriptions in Blouin et al. 2024). This lack of knowledge leads to some discrepancies
between the pulsation periods of models with different prescriptions. For example, Giammichele
et al. (2022) showed that the main differences we find for gravity mode pulsation periods in
white dwarf stars are due to those core uncertainties in current models. Transport processes
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Fig. 1.1: Representation of post HB and EHB stars evolution, from Dorman et al. (1993)
(Fig. 1)

such as overshooting and semi-convection, strongly influence the chemical composition of the
core of CHeB stars and need to be studied in more details, which we aim to do through this
master thesis.

1.2 Focus on sdB stars

In the context of this work, to study the influence of the chemical structure of CHeB stars
on pulsation spectra, we will focus on hot B subdwarfs (sdBs). These particular stars have been
discovered through spectroscopic observation by Humason and Zwicky (1947), having similar
effective temperatures as OB main sequence stars, but with much lower luminosities in an HR
diagram, hence the “subdwarf” denomination. sdB stars have been identified as HB stars,
meaning core-He burning stars, lying on the blue end of the HB (aka the Extreme Horizontal
Branch), by Heber (1986). Those stars have been theorized to pulsate by a team at Université
de Montréal (Charpinet et al. 1996, 1997), which was coincidentally confirmed by observation
at the same time by a team of astronomers at the South African Astronomical Observatory
(Kilkenny et al. 1997).

A schematic chemical structure of sdB stars is illustrated in Fig. 1.2, in which gray zones
are convective and white zones are radiative (details of the transition at the convective core
boundaries are not represented here). We find first a convective core (I), in which we have
triple-α processes burning the helium into carbon as well as, later, the fusion of carbon and
helium into oxygen. Upon going toward the surface of the star, the temperature drops below
what is needed for helium burning, and we find a radiative core (II) mainly composed of helium,
which is the consequence of the former H-shell burning region during the red giant branch. We
will call this region “radiative mantle” afterward, for a clear distinction between which part
of the core we talk about. Above it, we find the envelope divided in two parts, a first part
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composed of a mix of helium and hydrogen (III), and a second part composed of near pure
hydrogen (IV). The choice of a pure hydrogen layer is motivated by studies of the composition
of the stellar atmosphere of sdBs, which show for the majority a deficiency in helium and heavy
metals, specifically carbon, nitrogen and silicium. In addition, helium will also sink in the star
over time in a radiative envelope due to being heavier than hydrogen and not supported by the
radiative levitation process (which is efficient for some heavier elements, in particular those of
the iron group).

Fig. 1.2: A view of sdB structure from evolutionary models of EHB stars. Inspired from
Charpinet (1999) (Fig. 2.3)

As said previously, most stars lying on the HB and EHB have a constraint on their core
that has a mass around 0.47 M⊙. sdBs follow this, and so will the models we will use later
on. Additionally, the envelope’s mass Menv will be our varying parameter, and will range from
0.02 M⊙ to 0.5 × 10−6 M⊙. It is customary to express the masses by a parameter called the

mass fraction q, as log q = log
(
1− m(r)

M∗

)
, where M∗ is the total mass of the star and m(r) is

the mass contained in a sphere of radius r, both in M⊙. This is the unit used in Fig. 1.2, and
in theory, because of the definition of the mass fraction, we would find log q = 0 at the center
and log q = −∞ at the surface. In practice, we need to bind q in numerical simulations, and we
find in Charpinet (1999) that we can do so and fix our surface with log q ∈ [−16,−14] without
consequences on the pulsation spectrum afterward. We distinguish two types of pulsators for
sdB stars. We first find fast period pulsating sdBs named “V361 Hya”, with pulsation periods
between 80s and 600s discovered by Kilkenny et al. (1997), which will not be the focus of this
master thesis. Instead, we will look at gravity modes with longer pulsation periods of the
so-called “V1093 Her” stars, with observed periods between 3000 to 12000s and first found by
Green et al. (2003).
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1.3 Stellar structure

Now that we know which stars we are working with, we need to lay the groundwork of
stellar pulsation theory. To do so, we will first define the equations of equilibrium structure of
our star, then we will study the stability of perturbations around that equilibrium structure.

1.3.1 Equilibrium structure

We first consider the following equations of hydrodynamics :

∂ρ

∂t
+∇ · (ρv) = 0 (1.1)

∂v

∂t
+ v · ∇v = −∇Φ− ∇P

ρ
(1.2)

ρT

(
∂

∂t
+ v · ∇

)
S = ρϵN −∇ · FR (1.3)

∇2Φ = 4πGρ (1.4)

This system is composed in descending order of the mass, momentum, and energy conservation
equations, as well as the Poisson equation linking the gravitational field Φ to the density. The
symbols are of usual meaning, with ρ the density, P the pressure, S the entropy and T the
temperature.

In those equations, a few assumptions are made. The star is assumed to not be rotating,
thus not accounting for inertial forces, and we do not account for a magnetic field as well.
Note that those effects could be added to our models by considering a small perturbation from
those effects in our equations. Additionally, convection and viscosity effects are not considered.
While it is reasonable to neglect viscosity effects due to the Reynolds number being high in a
star, effects induced by convection such as overshooting, semi-convection, and partial mixing
zones, can have a strong impact and will need further investigation. The energy in the star is
considered to be mainly produced by nuclear reactions, and we note the energy produced by
unit mass from nuclear reactions as ϵN .

Two more equations are needed to close the system, which are the state equation and the
energy transfer one. The former links the pressure, density, and temperature of our gas, and
is seldom found in analytical form for stellar interiors. For the latter however, because the
stellar interior is a relatively opaque medium, we assume to be in the diffusion approximation.
This allows going from a stochastic process, that is, the movement of photons scattered in our
medium, to a diffusion process, and the radiative flux FR is then found as :

FR = −4acT 3

3κρ
∇T

Where c is the speed of light, a is the radiation density constant and κ is the opacity. We will
consider this radiative flux as the only factor in energy transport, as conduction plays only a
minor part and is thus considered negligible.

We find the hydrostatic equilibrium by considering the aforementioned quantities as static
in time as well as having v = 0. Considering spherical symmetry and a system of classical
coordinates (r,θ,ϕ), we have quantities dependent on r only, that is, the length from the center
of the star. From this, we infer the stellar structure equations as :

dP

dr
= −ρg with g =

Gm

r2
(1.5)
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dm

dr
= 4πρr2 (1.6)

dT

dr
= − 3κρL

16πacr2T 3
(1.7)

dLr

dr
= 4πρr2ϵN with Lr = 4πr2Fr (1.8)

In which all quantities are equilibrium quantities, and m is the mass contained in a sphere of
radius r, while Lr is the luminosity through this same sphere. We shall now use this system to
find the unperturbed equilibrium solutions for our star.

1.3.2 Small perturbation theory

Our goal is to study the oscillations of a star, and their stability. In order to do this, we
cannot simply solve the hydrostatic equation system, as it is non-linear. However, since the
amplitudes of the oscillations in a star are of small scale compared to the whole object, we can
use the so-called small perturbation theory. This allows to act as if the deformations of the
star due to oscillations are simply small perturbations around the equilibrium state, and we
can then linearize the set of equations we have, then solving it analytically with a few extra
steps. In order to do this, we consider the Eulerian and Lagrangian descriptions. On the one
hand, an Eulerian description presupposes that we are a static observer, and we describe the
various quantities as dependent on a position r and a given time t. This is a fixed system of
coordinates independent of motion. On the other hand, a Lagrangian description is from the
perspective of a moving observer, which would “sit” on the particle of fluid that is represented.
The particle’s movement is described using its initial position r0 and from it, we get its actual
position r(r0, t). Here, the system of coordinates is thus following the motion. Using those
descriptions, we express the perturbation in two forms, first an Eulerian form as :

X(r, t) = X0(r) +X ′(r, t) (1.9)

Where X ′(r, t) is the Eulerian perturbation from the equilibrium quantity X0(r).
Then, a Lagrangian perturbation described as :

X(r, t) = X0(r0, t) + δX(r, t) (1.10)

Where δX(r, t) is the Lagrangian perturbation which shifted the fluid parcel from r0 to r. As
such, we define the Lagrangian displacement vector δr as : r(r0, t) = r0 + δr(r0, t), which we
use to get the relation between Eulerian and Lagrangian perturbations since :

δX(r, t) = X ′(r, t) + (X0(r)−X0(r0, t)) (1.11)

Using Taylor series to express the parenthesis and keeping only the first order, we have :

δX(r, t) ≃ X ′(r, t) + δr · ∇X0(r, t) (1.12)

And from the stellar structure equations, we derive a system of linearized equations :

∂ρ′

∂t
+∇ · (ρv) = 0 (1.13)

ρ
∂v

∂t
+∇P ′ + ρ∇Φ′ + ρ′∇Φ = 0 (1.14)

ρT
∂

∂t

(
S ′ + δr · ∇S

)
= (ρϵN)

′ −∇ · F′ (1.15)
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∇2Φ′ = 4πGρ′ (1.16)

Where F′ = −K∇T ′ −K ′∇T .
This set of partial differential equations is now linear, and as we know from (1.5)-(1.8), the
equilibrium quantities are functions of r only. This means, with the derivation details in Unno
et al. (1989), that we can separate the time and spatial dependencies, such that we can write
our quantities as what we call a normal mode :

f ′
klm(r, θ, ϕ, t) = f ′

kl(r)Y
m
l (θ, ϕ)eiσklt (1.17)

Where σkl is the oscillation frequency and Y m
l are the normalized spherical harmonics written

as :

Y m
l (θ, ϕ) = (−1)m

[
(2l + 1)(l +m)!

4π(l +m)!

] 1
2

Pm
l (cos(θ))eimϕ (1.18)

Where Pm
l is a Legendre polynomial, l is a positive integer including zero, and m is an integer

between −l and l such that for a given l, there are 2l+1 values of m. We can make a distinction
between non-radial pulsations, which are modes of l > 0, and radial pulsations of l = 0, which
notably have no dependencies on θ and ϕ due to Y 0

0 (θ, ϕ) being a constant. As with all linear
systems of equations, solutions are constructed by linear combinations, hence here of multiple
normal modes. As such, the solution of our system takes the form :

f ′(r, θ, ϕ, t) =
∑
k,l,m

αklmf
′
klm(r, θ, ϕ, t) (1.19)

With αklm an arbitrary coefficient representing the amplitude of the normal mode of indices
k, l,m.

1.3.3 Geometry of stellar oscillations

In order to better our visualization of the solution (1.17), we can view on Fig. 1.3 a geomet-
rical representation of spherical harmonics at the surface of a star. We characterize pulsations
using the indices introduced previously. “k” represents the radial order, which corresponds to
the number of nodes of a given mode between the center of the star and its surface. “l” is
the degree of a mode, and gives the number of surface nodes on the star. Finally, “m” is the
azimuthal order and |m| is the number of surface nodes which are lines of longitudes. We thus
understand that l − |m| is the number of surface nodes that are lines of co-latitude, that is,
lines aligned with the equator of the star, the latter being the line dividing the star in two with
a plane perpendicular to its rotation axis. Additionally, the sign of m gives us which way the
mode propagates. A positive azimuthal order is a prograde mode that travels in the direction
of the rotation of the star, while a negative azimuthal order is a retrograde mode that travels
opposite to the rotation. Note that in this master thesis, we will refer as “nodes” the nodes
associated to the radial order k, in contrast to “surface nodes” associated to l and m. We can
see on (1.17) that neither f ′

kl(r) nor σkl are dependent on m. This is because of our previous
assumption that the problem is of spherical symmetry, which is inducing a 2l + 1 degeneracy
on both quantities. Lifting this degeneracy is equivalent to removing the spherical symmetry,
which supposes that we consider a rotating star and/or magnetic effects, which is not done
during this master thesis.

In practice, observing modes of l ≥ 4 is hardly possible. Since l is giving the number of
surface nodes of a star, the higher the degree of a mode, the more the star is divided into
region of opposite velocities. Because the luminosity we receive is integrated over the surface
of the star we observe, higher order modes features are harder to resolve spatially, and the
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Fig. 1.3: Spherical harmonics for l = 3 order. The rows are in ascending m, from m = 0 at
the top to |m| = 3 at the bottom. Red and blue colors represent a section coming from and
towards us at a given time, while white lines represent the surface nodes.

effect of regions of opposite velocities near one another will tend to cancel out. This effect is
called partial cancellation. Note however that the observability of each mode is also dependent
on their intrinsic amplitude, which makes them more or less observable individually. We can
roughly quantify this effect if we interest ourselves in the normalizing factor of equation (1.18)
for a given l. As displayed in Aerts et al. (2010), for axisymmetric (m = 0) modes, we have the
following :

Y 0
l (θ, 0) =

(
2l + 1

4π

) 1
2

Pl(cos(θ))

Integrating this quantity over the disk of the star facing the observer, that is for θ ∈ [0, π
2
], we

get the partial cancelling factor for axisymmetric modes. The closer to zero this factor is, the
more the mode is affected by partial cancellation, as illustrated on Fig. 1.4.
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Fig. 1.4: Partial cancelling factor for modes of orders l = 0 to l = 8 and m = 0. The first mode
is normalized to 1 as radial modes are not subject to partial cancellation in first approximation.

We first verify on Fig. 1.4 that the higher the degree of a mode, the less observable it is, as
we understood earlier. In addition, we realize that even degree modes are easier to observe than
odd degree modes, which is a direct consequence of the form of Legendre polynomials, except
for l = 1. Indeed, despite the integral of P1 being lower than the P0 one, the normalization
factor is higher for l = 1, and results in l = 1 being overall easier to detect. Additionally, the
sign of the partial cancelling factor for even order modes is coming from the amount of zeros
of the Legendre polynomials over the interval we are considering, which is half of the order of
the polynomial since θ ∈ [0, π

2
]. An even number of zeros will lead to a positive integral, while

an odd number of zeros will lead to a negative integral. It is however important to understand
that it is not the sign that is important here, but the distance from zero of a given value of the
partial cancelling factor. We understand that we will mainly observe modes of l = 1, l = 2 and
even l = 4 for non-radial pulsations in practice, which is verified in the case of sdBs, although
modes of higher degree have been observed occasionally with the Kepler satellite. As a result of
this, we will limit our interest of pulsations up to modes of l = 4 in the models we will use. It is
also important to note that the partial cancelling factor computed here is an approximation in
so far that we do not take in account rotation, limb darkening effects, or the intrinsic amplitude
of a given mode.

1.3.4 Stellar oscillations equations

As we showed earlier, we can express the quantities in the stellar structure equations as
linear combinations of normal modes, composed of spherical integrals. Following this, we now
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express the displacement vector ξ as :

ξ =

[
ξr(r), ξh(r)

∂

∂θ
, ξh(r)

1

sin(θ)

∂

∂ϕ

]
Y m
l (θ, ϕ)eiσt (1.20)

In which the natural frequency of oscillation σkl is noted σ and ξh(r) is given by :

ξh(r) =
1

σ2r

(
P ′

ρ
+ Φ′

)
(1.21)

And assuming that we do have our quantities expressed as normal modes, then we obtain :

1

ρ

dP ′

dr
+

g

ρc2s
P ′ + (N2 − σ2)ξr +

dΦ′

dr
= g∇ad

ρT

P
δS (1.22)

1

r2
d

dr

(
r2ξr

)
+

1

Γ1

d ln ρ

dr
ξr +

(
1− L2

l

σ2

)
P ′

ρc2s
− l(l + 1)

σ2r2
Φ′ = ∇ad

ρT

P
δS (1.23)

1

r2
d

dr

(
r2
dΦ′

dr

)
− l(l + 1)

r2
Φ′ − 4πGρ

(
P ′

ρc2s
+

N2

g
ξr

)
= −4πG∇ad

ρ2T

P
δS (1.24)

K
dT ′

dr
= −F ′

r −K ′dT

dr
(1.25)

iσρTδS = (ρϵN)
′ − 1

r2
d(r2F ′

r)

dr
− l(l + 1)

r2
KT ′ (1.26)

δT

T
= ∇ad

δP

P
+

δS

cp
(1.27)

In which cs is the sound velocity and ∇ad is the adiabatic gradient as :

cs =

(
Γ1P

ρ

) 1
2

and Γ1 =

(
∂ lnP

∂ ln ρ

)
S

(1.28)

∇ad =

(
∂ lnT

∂ lnP

)
S

(1.29)

In addition to those quantities, we identify two frequencies which are of capital importance,
the Lamb frequency Ll and the Brunt-Väisälä frequency N , which are written as :

L2
l =

l(l + 1)c2s
r2

(1.30)

N2 = g

(
1

Γ1

d ln p

dr
− d ln ρ

dr

)
(1.31)

While we will come back to those quantities in section 1.4.2, we can already get a physical
sense of what they represent. The Lamb frequency is the frequency of a horizontal sound wave.
Because the radius r is lower towards the core of the star, and because one can generally link,
through equation of state, the ratio P

ρ
as proportional to T , which is in fact higher in the deep

regions of the star, then we infer that the Lamb frequency will be low in the superficial layers
of the star, and high towards the center of it. The Brunt-Väisälä frequency is notably found
when considering internal gravity waves in a gas layer horizontally stratified under the action of
gravity. In this case, and this is how we shall view this frequency physically, a given perturbed
parcel of fluid will oscillate vertically around its equilibrium position, with a frequency N , given
that the density of our fluid parcel is higher than its surroundings.
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We can express the Brunt-Väisälä frequency in a different form, which will be of much use
later on :

N2 =
g2ρ

P

χT

χρ

(∇ad −∇T +B) (1.32)

In which :

χT =

(
∂ lnP

∂ lnT

)
ρ

, χρ =

(
∂ lnP

∂ ln ρ

)
T

and B = − 1

χT

(
∂ lnP

∂ lnµ

)
ρ,T

d lnµ

d lnP
(1.33)

∇ is the real gradient of temperature while B is the Ledoux term, or the compositional gradient.
A demonstration of the expression of this Ledoux term can notably be found in Brassard et al.
(1991a). This term will be extensively used to understand the models we compute. Indeed,
we can see in particular that between two regions of different compositions, there shall be a
rise in N2, as B will be strong from the chemical gradient in what we call a transition zone.
Because of this, we will have a direct way to probe the chemical composition of our star and
better know the zones of interest to study.

1.4 Adiabatic oscillations

1.4.1 Equations of adiabatic oscillations

In the case of our work, we will study the so-called adiabatic oscillations, meaning that we
neglect the transfer of energy between the kinetic energy of the oscillation and the internal
energy of the gas. While we are not able to derive results on what drives the modes or their
stability in this framework, we can instead focus on the dynamical behavior of oscillations. In
practice, we assume in the system of equations (1.22) - (1.27) that δS = 0, in which case the
perturbation of density and pressure is expressed in a way that allows to find a new set of basic
equations corresponding to adiabatic oscillations :

1

r2
d

dr

(
r2ξr

)
− g

c2s
ξr +

(
1− L2

l

σ2

)
P ′

ρc2s
=

l(l + 1)

σ2r2
Φ′ (1.34)

1

ρ

dP ′

dr
+

g

ρc2s
P ′ + (N2 − σ2)ξr = −dΦ′

dr
(1.35)

1

r2
d

dr

(
r2
dΦ′

dr

)
− l(l + 1)

r2
Φ′ = 4πGρ

(
P ′

ρc2s
+

N2

g
ξr

)
(1.36)

The adiabatic framework is a double-edged sword. On one side, we lose the information as-
sociated with thermodynamic processes, that is, energetic considerations, meaning we cannot
study the stability of the eigenfunctions we find. However, on the other side, the new equations
are reduced in a way that we can understand the mechanisms and driving forces of different
modes. This kind of system needs, for it to be solved, boundary conditions. We will use the
boundary conditions used by Unno et al. (1989), such that as the center of the star :

dΦ′

dr
− lΦ′

r
= 0 and ξr −

l

σ2r

(
P ′

ρ
+ Φ′

)
= 0 (1.37)

And at its surface :
dΦ′

dr
+

(l + 1)

r
Φ′ = 0 and ξr =

P ′

gρ
(1.38)

It is important to realize that the “surface” of a star is ill-defined. Because of the stellar
atmosphere, and more often than not, its non-adiabaticity, we need to be careful to not extend
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our surface too far off, such that we stay within the adiabatic boundaries of the star while
applying this theoretical framework. This incurs again a loss of information and of feedback
onto our modes. In our case, this becomes particularly relevant knowing that defining the
surface point of the star in our models will serve also as a mean to know the extent of the star’s
envelope, which of course, affects mode propagation.

1.4.2 Overview of pressure and gravity modes

The Cowling approximation, that is, to take Φ′ = 0, provides an accurate approximation
for high order modes, meaning modes of high k and l. This approximation, while not taking in
account any real physical considerations, casts a needed light to gain a global understanding of
which kind of modes propagate, and where. However, it will not be used in our models as this
approximation requires high l orders, while we already established that we will look at l ≤ 4.
From Φ′ = 0, only (1.34) and (1.35) remain from our adiabatic oscillations equations, which
take the form :

1

r2
d

dr

(
r2ξr

)
− g

c2s
ξr +

(
1− L2

l

σ2

)
P ′

ρc2s
= 0 (1.39)

1

ρ

dP ′

dr
+

g

ρc2s
P ′ + (N2 − σ2)ξr = 0 (1.40)

We can rewrite those equations using a change of variable, in which the new variables ξ̃ and η̃,
are defined with :

dξ̃

dr
= h(r)

r2

c2s

(
L2
l

σ2
− 1

)
η̃ (1.41)

dη̃

dr
=

1

r2h(r)
(σ2 −N2)ξ̃ (1.42)

(1.43)

In which :

h(r) = exp

ˆ r

0

[
N2

g
− g

c2s
dr

] > 0 (1.44)

Then, by neglecting the radius dependency in the above equations, we find a harmonic oscillator
which is identical for both variables and the dispersion relation associated to it :

d2ξ̃

dr2
+ k2ξ̃ = 0 and k2 =

1

c2sσ
2
(σ2 − L2

l )(σ
2 −N2) (1.45)

The solution of this harmonic oscillator is proportional to exp(ikr). This highlights two cases
: either k is imaginary and the solution is called “evanescent”, in which case the amplitude is
dampened exponentially, or k is real, and the solution is oscillating and propagating radially
instead. Using this, we have k2 > 0 and is real in two cases. First, if L2

l > σ2 and N2 > σ2 then
we have what we call gravity modes, or g-modes, for which the restoring force is the buoyancy.
Then, if L2

l < σ2 and N2 < σ2, we have pressure modes, or p-modes, for which the restoring
force is the pressure. Otherwise, we have that L2

l < σ2 < N2 or N2 < σ2 < L2
l , and in those

cases, we have evanescent waves.

This allows to identify where each wave is propagating in a star, and we can illustrate
this with Fig. 1.5 showing a representative sdB model. We find in log scale the Brunt-Väisälä
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frequency and the Lamb frequency for l = 1, as well as two modes : a pressure mode of
period Pp = 200s and a gravity mode with Pg = 10000s, which are typical values we could
find for either modes. We convert these periods in frequencies with σ2 = 2π

P
, allowing us to

find in log scale both horizontal lines on the figure, with log(σ2
p) ≈ −3 and log(σ2

g) ≈ −6.40.
We have taken here the case of a sdB chemical structure, which informs us on where gravity
and pressure modes are travelling in those stars. In Fig. 1.5, the horizontal lines are in red
if the mode does not propagate, green if it does. Thus, we understand that pressure modes
will propagate in the envelope, while gravity modes will propagate in the core, and also in the
envelope for higher radial orders. It should be noted here as well that the convective core of
our star is considered as formally evanescent and that no modes will propagate in it. Because
a convective zone corresponds to ∇ad ≤ ∇ (Schwarzschild criterion for convective instability),
then, in zones without chemical gradients where B = 0, we have that N2 < 0 and as such that
log(N2) is undefined. We see this clearly on our figure, at the convective core as well as at
log(q) ≈ −9 which correspond to a partial ionization zone of HeII/HeIII.

Propagation cavities are important to keep in mind, as a mode will mainly give information
on the zone it propagates in, as such, it is for example not possible to have direct information
on the core using pressure modes in sdBs. In some stars, notably red giant with burning
helium cores, we also find mixed modes, which exhibit both the properties of p-modes or g-
modes depending on their location in the star. This duality makes knowing where the mode
propagates increasingly complicated. Those modes are however not found for high radial order
modes, as one can demonstrate that g-modes frequencies become smaller with increasing radial
order while p-modes frequencies follow the invert trend, meaning that both type of modes are
fully decoupled at sufficient radial order k. As we interest ourselves mainly in those high radial
orders modes, and because in sdB stars, g and p modes are well decoupled, mixed modes are
not studied further.

An important concept of stellar pulsations which we will extensively study in this master
thesis is mode trapping. As we have just seen, oscillations propagate in given cavities depending
on their frequencies, while outside these cavities, we find evanescent regions where the oscil-
lations are damped exponentially. The path of a given oscillation is not as straightforward as
it may seem. Upon reaching the boundaries of its propagation cavities (there can be multiple
cavities), a mode encounters an evanescent zone. When this happens, the mode is partially
reflected and is thus considered trapped in the propagation cavity it is currently in. Those
partial reflections can also occur at zones of high chemical gradient. Because of its expression,
the Brunt-Väisälä frequency is strongly dependent on whether a region is convective or radia-
tive, whether we have a strong chemical gradient, and where we are in the star because of the
ρg2

P
factor. In practice, we call a mode trapped in a region of a star when it spends most of

its time in said region, and in this case, the region in which the mode is considered trapped
is a subregion of the propagation cavity itself. Such trapping often occurs as a consequence
of sharp transitions coming from chemical gradients, or a sudden transition from radiative to
convective zone. This is verified in the case of sdB stars. Indeed, going back to Fig. 1.5, we
have a strong chemical transition from convective core to radiative mantle at log(q) ≈ −0.25
and from radiative mantle to the envelope at log(q) ≈ −2, both of which can be identified
directly from the sharp local maxima at those positions coming from the Ledoux term in the
Brunt-Väisälä frequency. For g-modes, located in the core, those chemical transitions can and
will be responsible for trapping phenomena, as we will see in chapter 3 and 4 of this work.
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Fig. 1.5: Diagram showing the Brunt-Väisälä and Lamb frequencies in a sdB model. The
horizontal lines are for one p-mode (top line) and one g-mode (bottom line), where the red
zones are evanescent, while the green zones are propagation cavities.

1.5 Stability of oscillations

The adiabatic approximation allowed us to get a relatively accurate view of the dynamics of
an oscillation in a star, by understanding where a given pulsation propagates, and the influence
of the structure of the star on our modes. This approximation has its limits, and in particular,
we cannot know the possible driving mechanisms that allow a pulsation to develop and grow
through the adiabatic equations. A first look at non-adiabatic theory and its consequences is
therefore presented in this section, to get a global idea of how modes occur in a star.

1.5.1 Work integral

To know how a mode could develop in a star, one needs to study its stability, as it is an
unstable solution of the non-adiabatic system (1.22)-(1.27) that will allow a pulsation to grow
and become potentially observable. Equation (1.26) directly induces that the solution of the
non-adiabatic equations are in the complex plane. As such, for a given Lagrangian perturbation,
we find :

δX(r, t) = ℜ
(
δX(r)eiσt

)
(1.46)

Because σ and δX(r) are complex, we can express the perturbation as :

δX(r, t) = |δX(r)| cos(σRt+ φ(r))eηt (1.47)

In which we then have that σ = σr + iσI , and we call η = −σI the growth rate of the
mode considered, while φ(r) is the phase of our quantity. There is then an oscillating and an
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exponential part to our solution, which means for the latter that if η > 0, the mode is unstable,
and stable if η < 0.

This instability is viewed as a thermal instability in addition to having an oscillating part,
and so, one can view those thermal oscillations as a sort of Carnot cycle in thermodynamics.
Indeed, thermal energy is converted into mechanical energy as to produce an oscillation, and
mechanical energy is in turn turned into thermal energy in the cycle. What we need to know,
is if the repetition of such a cycle is potentially exciting our modes, and to compute this, we
define the work integral, as follows :

W =

ˆ M

0

dW

dm
dm (1.48)

In which dW
dm

is the local work from a singular cycle. If the process is supposed reversible and
as coming back to its original state upon each oscillation, then we find (developments can be
found in Unno et al. 1989) :

dW

dm
=

˛
δT

dδS

dt
dt (1.49)

=

˛
δT

T
δ

(
ϵN − 1

ρ
∇ · FR

)
(1.50)

Becoming after the integration :

dW

dm
=

π

σR

ℜ

δT ∗

T

[
δϵN − δ

(
1

ρ
∇ · FR

)] (1.51)

With this last expression, we understand that there should be locally driving zones and locally
dampening zones for the oscillations. If the local work is positive, then the mode will gain
kinetic energy in this local framework, while it will lose some if the local work is negative
instead. Then, by computing W , we get the total contribution of each of those local effects on
our mode. If W > 0, the mode is globally excited, unstable, and can potentially be observed,
while if W < 0, the mode is globally dampened, stable, and will not be observed. It should
be noted that even if we do know that our modes are subject to amplitude changes as they
go through those different zones, we can only make relative comparisons of amplitudes. Linear
theory as we use it does not induce a limit of amplitude on excited modes, however we do know
that those modes do not grow infinitely in amplitude since this is not physical. This allows to
pinpoint a limitation of the linear theory against the reality of the matter at hand.

1.5.2 Driving mechanisms

In the general case, one can split equation (1.51) into three parts, which are associated to
the nuclear energy generation rate, the convective flux, and the radiative flux. In our case
however, we have neglected the convective flux since the beginning, and this is reflected in our
equation as we have FR, the radiative flux, instead of F, the total flux. As a consequence, we
distinguish not three, but two main driving mechanisms in our case. We can write both parts
of our local work as WN and WF :

dWN

dm
=

π

σR

ℜ
(
δT ∗

T
δϵN

)
=

π

σR

ℜ

(
δT ∗

T
ϵN

[
ϵT

δT

T
+ ϵρ

δρ

ρ

])
(1.52)

dWF

dm
=

π

σR

ℜ

(
δ

[
−1

ρ
∇ · FR

])
(1.53)
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In which we have :

ϵT =

(
∂ ln ϵN
∂ lnT

)
ρ

and ϵρ =

(
∂ ln ϵN
∂ ln ρ

)
T

(1.54)

The first mechanism, associated with WN , is called ϵ-mechanism, and is related to the
nuclear energy generation in stars. Since the nuclear reaction rate has a strong tendency to
increase with temperature and density, one can infer that ϵT and ϵρ will be positive quantities,
and as such, we will have a mechanism able to excite our modes. This is true in nuclear burning
regions, for example the core of a star, or regions of shell-burning. While the ϵ-mechanism is
present in the majority of stars, its effects are low and quite negligible for almost all of them,
except potentially for high mass stars. Currently, there is no known class of pulsating stars
that have been shown to rely solely on the ϵ−mechanism as their driving mechanism. However,
works such as Battich et al. (2017, 2018) suggest that it could exist and might be observable.

The other mechanism, is known as the κ-mechanism. The opacity in a star is heavily reliant
on temperature. When matter is compressed, the temperature rises, and the opacity diminishes,
as such, radiative transfer will be more potent, effectively dampening the pulsation. In a partial
ionization zone however, we have an advert effect, indeed, as highlighted in Cox (1980), the
opacity will rise during compression, which means that radiative transfer is impeded, and as
such, energy is gained and trapped locally. This triggers a positive feedback loop which excites
the pulsations, and in particular, an opacity bump at the location of a partial ionization zone
is generally associated with the driving of oscillations propagating in that zone. In sdB stars
in particular, numerical models where we find an opacity bump due to the partial ionization of
elements of the iron group are models which allow for pressure modes to develop (Charpinet
1999). It was shown by Fontaine et al. (2003) that the κ-mechanism associated to elements of
the iron group is also responsible for the g-modes observed in sdB stars.



Chapter 2

Numerical tools and models

Now that we have seen the theoretical framework in which the master thesis takes place,
we can introduce the numerical tools that we will use. In this chapter, we will first present the
STELUM code used to compute the structure of white dwarfs and hot subdwarfs, in our case
sdB stars, and we will distinguish two types of models : the static and evolutionary models.
Then, we will introduce the tools to find the pulsations occuring in such a structure, using the
PULSE code. We will introduce the dimensionless equations which are used in this code, as
well as weight functions which are a powerful tool to distinguish how different regions of the
stellar structure affect a specific mode.

2.1 Stellar structure models : STELUM

In order to model sdBs, we will use the STELUM code, standing for STELlar modeling
from the Université de Montréal. This code was first introduced in Fontaine et al. (2001)
and progressively updated, for example in Quirion et al. (2012) with more detailed diffusion
processes and opacity treatment, and in Van Grootel et al. (2013) which introduce so-called
third generation (3G) static models to allow for the study of g-modes in sdB stars. STELUM
also computes evolutionary models and is fully described in Bédard et al. (2022), which allows
understanding in particular how transport of elements takes place in the code through the
following equation of transport (equation (8) in the paper):

dXi

dt
= Snuc,i −

1

r2ρ

d

dr

(
r2ρ

[
(vi + vwind + vaccXi)−D

dXi

dr

])
(2.1)

Which describe the mass fraction Xi of element i at a given radius r. Snuc,i is the source/sink
term which account for the creation or destruction of the element i by nuclear reactions, vi is the
diffusion coefficient for element i, vwind the stellar wind velocity, vacc the accretion velocity and
D the macroscopic diffusion coefficient. As said in Bédard et al. (2022), the transport equation
under this form highlights the distinction between microscopic and macroscopic transport,
where the effects of atomic diffusion are contained in vi, whereas the effects of large-scale
motions are captured by vwind, vacc, and D. This diffusion coefficient D accounts in particular
for the transport of elements in a convective zone, but also for convective overshooting, semi-
convection and thermohaline convection, and we find the expression of the coefficient for each
effect in Bédard et al. (2022), respectively with equations (14), (15), (16) and (17). In this
master thesis, we will focus in particular on the effects of semi-convection on g-mode spectra
in chapter 4, but we will see that overshooting can also have a strong effect on our modes.
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2.1.1 Static and Evolutionary models

STELUM is designed as an evolutionary code targeting in particular white dwarfs and
subdwarf hot stars, which, from an initial state, computes the evolution of the stellar structure
of a given star through time. This requires a tremendous amount of computational power, and
makes those evolutionary models poorly suited for parametric exploration. Because this is the
case, we understand that evolutionary models are too rigid to use as-if for seismic analysis, that
is, to explore parameters as to reproduce an observed pulsation spectrum, and thus infer the
internal structure of a given pulsating star. To remedy this issue, static models were introduced
in Brassard and Fontaine (1994) as a faster and flexible alternative to evolutionary models. In
sdBs, triple-α processes occur in the convective core and the influence of shell burning hydrogen
on energy generation is negligible, thus, the luminosity is essentially constant above the core
region where nuclear reactions are occurring. Of course, it is important to verify that we
do get similar structures for both static and evolutionnary models in order to justify that
this approximation is applicable in our case, which was done extensively in Charpinet et al.
(2002a). We learn in particular in this paper that static models reproduce quantities such as
the Brunt-Väisälä frequency of evolutionary models with good precision.

Static models have been iteratively upgraded, starting from 1G to 4G models. In 1G models,
we find stellar structure models of sdBs with uniform metallicity, which are found to be stable
against pulsation in Charpinet et al. (1996) for sdB stars of solar metallicity. This induced the
development of 2G models, lifting the uniform metallicity hypothesis. In those, we find that
a κ-mechanism, presented in subsection 1.5.2, can excite p-modes and produce oscillations. In
those 2G models, the stellar structure model of the sdB is not complete in so far that these
suppose a static envelope above a completely inert hard sphere. Since g-modes are sensible
to core conditions, this was inducing a strong discrepancy on the period founds for g-modes
between evolutionary and static models. However, it is notable that 2G models are very good
at computing p-modes which are less sensible to core conditions. This was done for a few stars
such as PG 1336-018 (Charpinet et al. 2008), PG 1219+534 (Charpinet et al. 2005b) and Feige
48 (Charpinet et al. 2005a). Because g-mode pulsators exist for sdB stars, 3G models were
developed as to enable the study of g-modes, and are described in Van Grootel et al. (2013).
This time, we have a complete stellar structure in which the core is represented, and those
models produced encouraging results for the seismic probing of sdB pulsators. Finally, we find
4G models, which, instead of a sharp transition between the He-rich radiative mantle and H-
rich envelope, presents a transition zone of hydrogen and helium, as was presented in Fig. 1.2.
Those 4G models are the ones we will investigate in the chapter 3 of this master thesis. It is
important to note however that they do not include overshooting or semi-convection effects,
and as such, will contrast heavily with the evolutionary models of chapter 4 which do include
them.

2.2 Stellar pulsations code : PULSE

2.2.1 Adiabatic pulsation code equations

In order to study non-radial adiabatic oscillations of white dwarfs, P. Brassard et al. have
published a series of papers, in which is described a numerical way to study the pulsations
in those stars using a finite element code called PULSE (in particular Brassard et al. 1992c).
More recently, this work has been expanded upon in Brassard and Charpinet (2008), in which
the PULSE code is now presented and used for multiple stellar objects, including sdBs. The
PULSE code equations are solved in a dimensionless way where several new variables y1 to y4
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are introduced, and are defined as :

y1 =
ξr(r)

r
and y2 =

1

gr

(
P ′

ρ
+ Φ′

)
= σ2 ξh(r)

g
(2.2)

y3 =
1

gr
Φ′ and y4 =

1

g

dΦ′

dr
(2.3)

As well as dimensionless quantities for the frequencies and the stellar structure variables, in
which M and R shall be the total mass and radius of the star :

ω2 =
σ2R3

GM
; U =

4πr3ρ

m
; V =

ρgr

P
(2.4)

C1 =

(
r

R

)3(
M

m

)
; A = −N2

g
; x = ln

(
r

P

)
(2.5)

Which allows to recast the adiabatic equations set into a dimensionless one, as follows :

(V + 1)
dy1
dx

=

(
V

Γ1

− l − 1

)
y1 +

[
l(l + 1)

C1ω2
− V

Γ1

]
y2 +

V

Γ1

y3 (2.6)

(V + 1)
dy2

dx
= (C1ω

2 + rA)y1 + (3− l − U − rA)y2 + rAy3 (2.7)

(V + 1)
dy3
dx

= (3− l − U)y3 + y4 (2.8)

(V + 1)
dy4
dx

= −rAUy1 +
UV

Γ1

y2 +

[
l(l + 1)− UV

Γ1

]
y3 + (2− U − l)y4 (2.9)

With the boundary conditions at the star’s center :

C1ω
2y1 − ly2 = 0 (2.10)

ly3 − y4 = 0 (2.11)

And at its surface :

(V − 4− C1ω
2)y1 +

[
l(l + 1)

C1ω2
− V

]
y2 + (V − l − 1)y3 = 0 (2.12)

Uy1 + (l + 1)y3 + y4 = 0 (2.13)

Finally, we normalize our eigenfunction as :

y21 + y22 = 1 at the surface of the star (2.14)

Those equations, the boundary conditions, and the normalization, are the basis of the code
with which we shall pulsate our models of stellar structure.

2.2.2 Kinetic energy and weight function

It is shown in Chandrasekhar (1964) that the eigenvalues of the system of adiabatic equations
(1.34)-(1.36) can be found through a variational approach. This can be used notably to find
the modification on frequencies of our modes from effects such as rotation. Here however, the
star is supposed to not be rotating, and the variational approach in this case gives :

σ2 =
D

A
(2.15)
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Where A is directly proportional to the kinetic energy. We can express the latter as :

Ekin =
1

2

ˆ
V

ρv2dV =
σ2

2

ˆ
V

ξ · ξ∗ρdV (2.16)

Using the definition of the displacement vector (1.20), we thus have :

Ekin =
σ2

2

ˆ R

0

[
ξr(r)

2 + l(l + 1)ξh(r)
2
]
ρr2dr (2.17)

We need to be careful as to how we approach the results of this quantity. Indeed, we find here
the same issue as with the amplitude of a given mode, since the eigenfunctions of our problem
are normalized arbitrarily, we can only make relative comparisons of kinetic energy between
different modes. The D term is found in Brassard (1991), and again in Charpinet (1999), as :

D =

ˆ R

0

ξ2rN2 +
(p′)2

pΓ1ρ
+ Φ′

(
p′

Γ1p
+ ξr

N2

g

) ρr2dr (2.18)

In which the integrand acts as a weighting term of the different contribution of the eigenfunc-
tions in the term D, according to where we are in the star from the term ρr2. We can show
using now the dimensionless variables y1 to y4 introduced earlier that we thus have :

σ2 ∝
ˆ R

0

F (y1, y2, y3, y4, r)dr (2.19)

Where F is called weight function. The weight function gives us the contribution of the different
regions of the star on the value of σ2. The higher the weight function is in a given region, the
strongest its weight on the frequency of the mode. We can show how we use this in practice
with Fig. 2.1.

Fig. 2.1: Weight function in log(q) scale and m(r) scale, for g-mode l = 1, k = 40, and for a
representative sdB model of total mass 0.47M⊙. The green vertical line shows the He/He+H
transition from radiative mantle to the hydrogen-rich envelope, here taken log(q) = −2.0. The
red vertical line shows the C-O/He transition from convective core to radiative mantle, here
taken at log(q) = −0.25. The red and green vertical lines in the right part show the same
transitions in m(r) scale.

We show two different scales, the log(q) scale described earlier which allows seeing what
happens in the envelope of the sdB star we are considering, and a scale using m(r), which
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allows seeing what happens in the core of the star, since, as we said earlier, the core of an sdB
represents the majority of its mass. The transition between radiative mantle and envelope is
denoted by the red vertical line, and is helping with the mental representation of what each
scale represents. As we will investigate only g-modes in this master thesis, here is represented
such a mode, for l = 1 and k = 40, with is weight function normalized arbitrarily to unity. We
can clearly see that the mode oscillates in the part highlighted in green as a propagation cavity
in the previous Fig. 1.5, and stops oscillating afterward, when the mode goes beyond Lamb’s
frequency, with a downward trend on the weight function.

In general, the contribution of the core of a given sdB to the frequencies of g-modes is
stronger than the envelope, as the core has a higher density with respect to the envelope. We
also see here that local maxima of the weight function are found exactly where we have a
strong gradient of the chemical composition of the star, that is, when going from mixed core
to radiative mantle (“C-O/He transition”, log(q) = -0.25, m(r) = 0.205 M⊙) and going from
radiative mantle to the envelope (“He/H+He transition”, log(q) = -2, m(r) = 0.465 M⊙).
This highlights an effect we will further develop in chapter 3, concerning the pinching of nodes
around zones of chemical gradient, effectively constraining our modes to certain regions of the
star.

It is also important to understand that the downward trend we see in the evanescent zone
on the weight function is not representative of the fact that the amplitude of the mode is
exponentially decreasing in said zone, in fact, the weight function does not give any information
for the absolute amplitude of a given mode in a given region. It is only possible to say that we
anticipate the amplitude of this g-mode to be higher in the core than in the envelope, given that
the weight function is higher in the core. Additionally, it can also be noted that g-modes are
not propagating in convective zones, as mentioned earlier. It is better seen in Fig. 2.1 (right)
in m(r) scale, where we do not find any oscillations under m(r) ≈ 0.1.



Chapter 3

Static models, a first look into
pulsation spectra

In this chapter, we aim at displaying the results obtained from 4G static models. In partic-
ular, we will focus our efforts on highlighting the differences between the modes appearing for
different parameters of our numerical models. This will be done through a careful analysis of
the radial nodes of those modes, their weight functions, and of course their pulsation spectra.

3.1 Basis for the study of static models

As a mean of introduction for 4G static models, it is important to display the parameters
related to the STELUM and PULSE code, as those will directly influence our pulsation spec-
trum. Rather than looking at the influence of those parameters one by one, which has been
previously done in the master thesis of Sebastien Faes (Uliège, 2019), we isolate the parameters
that have the most important impact on the pulsation spectrum. In addition, we give the basis
as to how we display the data found from both STELUM and PULSE with a model’s pulsation
spectrum and kinetic energy.

3.1.1 Overview of 4G models

In order to find the pulsation spectrum of a given model, we need to specify the parameters
composing our sdB model, and then the parameters of the PULSE code we run on those models.
We show in Fig. 3.1 a sample of the different parameters which we can potentially choose from
in STELUM. Among those parameters, we expand here on those that have the most important
impact on pulsation properties. mass allows us to simply fix the total mass of the star in M⊙,
note that we are around 0.47M⊙, as per the average core mass of stars on the HB. lq env and
lq core allow respectively to fix the He/H+He transition (radiative mantle to envelope) and
C-O/He transition (mixed core to radiative mantle), both in log(q) scale. In our configuration,
models are computed from a helium core abundance ranging from 0.05 to core he = 0.985,
with increments of 0.05 between each model. As such, each time we run this configuration file,
we find 197 static models, each independent of one another. In the future, we will refer as
“core he” the helium core abundance of the current model we are working on. core o gives the
abundances of oxygen in the core, but in our static models, we fix this to zero at all core helium
abundances. Similarly, core z gives the metallicity abundance in the core, and is fixed for all
our model to the value we see in Fig. 3.1. lq diff controls the extent of the H+He transition
zone in the envelope, as such, lq diff < lq env necessarily. To emulate possible pollution in
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Fig. 3.1: List of parameters to specify in STELUM 4G models.

carbon from the helium flash event, we fix a constant abundance of carbon (here 5%) outside
the mixed core of value flash c from lq core to lq env.

Following this, we can now make this 4G model pulsate using PULSE, which of course,
takes another row of parameters which are as displayed on Fig. 3.2. Again, I describe here

Fig. 3.2: List of parameters to specify in PULSE code.

the relevant parameters for our study. We can choose the range of degree l of the modes with
lmin and lmax. In our case, we will always compute all l from l = 1 to l = 4, as we have
seen that above this, modes are harder to observe in practice. Using period scan = yes, we
indicate that we want to only compute modes within a definite period range, the boundaries
of which are defined with pmin and pmax, over which we scan for modes by increments of
dp. We take here the minimum period at p min = 100s, and eliminate afterward pulsations
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corresponding to pressure modes. The maximum period is set at p max = 15500s, however
in all of our figures, we take k max = 70 as the maximum radial order, whatever the actual
maximum period. We recall that g-modes are observed in sdB stars between 3000 and 12000s,
typically. Finally, as we said earlier, since PULSE is a finite element code, we need to fix the
number of elements with nelems, which allows us to get a better precision on the modes we
compute, at the price of higher computation time. Tests at the beginning of the master thesis
have shown that nelems = 7500 is a good compromise.

3.1.2 First look into 4G model quantities

First, in order to represent the parameters of STELUM choosen in Fig. 3.1 visually, we can
take a look at the chemical structure found Fig. 3.3, in which we display the different chemical
transitions at helium core abundance core he = 0.9. The vertical orange dotted line represents
the C-O/He transition from convective core to radiative mantle at lq core = -0.251, the vertical
green dotted line represents the He/H+He transition from radiative mantle to H+He envelope
at lq env = -2 and finally the vertical yellow dotted line shows lq diff = -4.5, which can be
viewed as a near half point of the transition from the H+He mixed envelope to the pure H
envelope. We also show the pollution of carbon due to the helium flash with the horizontal red
dotted line, going from the center of the star to lq env, and having the carbon abundance value
of flash c = 5× 10−2.

Fig. 3.3: Visual representation of the main 4G models parameters in the context of this master
thesis, following the parameters from Fig. 3.1, at core he = 0.05.

In Fig. 3.4 we show that each transition has a different strength in terms of the Ledoux term
B. The Ledoux terms of the He/He+H (radiative mantle to mixed envelope) and He+H/H
(mixed envelope to pure H envelope) transitions, for a given set of STELUM parameters, will

1let us recall that 4G models do not implement semi-convection and overshooting phenomena.
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not change as the chemical conditions of our models are only changing in the core, and thus
the conditions before and after aforementioned transitions are the same at all core helium
abundances. Because the helium abundance in the radiative mantle does not change while
the core helium abundance diminishes, the gradient of helium abundance between convective
core and radiative mantle will increase with diminishing core he, and as such, the C-O/He
transition will gain in strength as the abundance of helium in the convective core diminishes.
The influence of such transitions on the Brunt-Väisälä frequency can also be seen by putting in
parallel Fig. 3.4 with Fig. 3.5, where we find the influence of the trend seen for the Ledoux term
(and so the compositional gradient) in the Brunt-Väisälä frequency. In particular, we see on
Fig. 3.5 that it is precisely the influence of chemical transitions on the Brunt-Väisälä frequency
that will delimit the propagation cavities of our modes, which were viewed in Fig. 1.5. It is clear
that while the He+H/H transition around lq diff at log(q) = −4.5 in the envelope has little
influence on the Brunt-Väisälä frequency due to the low value of its associated Ledoux term,
the convective core to radiative mantle transition C-O/He and the radiative mantle to envelope
transition He/H+He are both clearly visible, and their impact will be further investigated.

Fig. 3.4: Ledoux term for the 4G model shown in Fig. 3.1, at core he = 0.9.
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Fig. 3.5: Brunt-Väisälä frequency for the 4G model shown in Fig. 3.5, at core he = 0.9. We
highlighted in particular the chemical transition associated to this model.

3.1.3 Pulsation spectra and associated kinetic energy

In our study, the PULSE code outputs a file of the type displayed in Fig 3.6. Each lines of
the file is associated to a different mode, of degree l as “L”, radial order k as “K” and azimuthal
order m as “M” in said file. The radial order sign gives us the nature of the mode, which is
either a p-mode with positive k, or a g-mode with negative k. This is not in reality the case, as
we established that all modes have a positive k radial order (a positive number of nodes along
the radial direction), but it helps visibly distinguishing both type of modes in the output file.
The azimuthal order m is always zero, since we do not consider effects lifting the degeneracy in
m of our modes, that is rotation or magnetic effects which would break the spherical symmetry
of our model. We find two columns for the periods of the modes, named “Pad” and “Pnad”, for
respectively adiabatic periods and non-adiabatic periods. In our case, because we only carry
out an adiabatic study, both columns display equal values. Finally, the last column which is
interesting to us is the “Ekin” one, which displays the value of the kinetic energy associated
to each mode, using equation (2.17). While the figure does not show modes above g-modes
k = 15, the full PULSE file contains every degree from l = 1 to l = 4, and up to radial order
k = 70.

In Fig. 3.7, we find a usual representation of a pulsation spectrum, for the PULSE file
parameters displayed in Fig. 3.6. We have an abscissa showing the reduced period, defined for
a given mode of indices l, k as Pl,k = Pk ×

√
l(l + 1). In ordinate, we find the reduced period

spacing, which is composed of the period spacing between two modes of consecutive degree k,
such that ∆P = Pk+1 − Pk, combined with the aforementioned reduced period, and we thus
define the reduced period spacing as ∆P ×

√
l(l + 1). This way of displaying the pulsation

spectra allows to have a superposition between the spectrum of modes of different l, as displayed
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Fig. 3.6: Portion of the output file from the PULSE code associated to parameters on Fig. 3.2,
here at core he = 0.9.

here with in blue modes of l = 1 and in red modes of l = 4. Each dot corresponds to a radial
order, for up to k = 70, increasing with the reduced period. We show in subsection 4.3 that the
reduced period spacing between two modes is, at high k order and with the hypothesis of our
framework (adiabaticity, spherical symmetry), a constant value for any degree l. This however
is only true asymptotically in k order, and a general approximation. The pulsation spectrum
displayed on Fig. 3.7 is indeed not just a simple horizontal line, but rather we have regular
minima of ∆P , which as we will see later, correspond to modes trapped in some regions of the
star.

We display the kinetic energy in Fig. 3.8 associated to the pulsation spectrum presented
in Fig. 3.7. The figure shares the same reduced period abscissa as Fig. 3.7, and the ordinate
shows the value of the kinetic energy for each mode. Here again, we present in blue the kinetic
energy of modes of l = 1, and in red of modes of l = 4, for up to radial order k = 70, increasing
with the reduced period. As showed in equation (2.17), the kinetic energy of a mode directly
depends on its location in the star, due to the ρr2 term. In particular, deep regions of the star
hold more weight in the kinetic energy than superficial regions, that is, the envelope. We focus
on the high radial order here, which presents a slow downward trend on the kinetic energy,
for any l. The downward trend of the kinetic energy is a direct consequence of higher radial
order modes propagating further up in the envelope. Indeed, because the period of a g-mode is
increasing with radial order, which means that the value of their frequency σ2 = 2π

P
diminishes

with radial order, and because the Lamb frequency is higher towards the surface with increasing
frequency (as displayed in Fig. 3.5), a mode of higher radial order has a propagation cavity
which is higher toward the surface. This directly implies that the higher the radial order of a
g-mode, the further up it propagates in the surface, and thus the less its kinetic energy.



3.1. BASIS FOR THE STUDY OF STATIC MODELS 35

Fig. 3.7: Pulsation spectrum representation of the PULSE and STELUM parameters used in
Fig. 3.1 and Fig. 3.2, taken at helium core abundance core he = 0.9.

Fig. 3.8: Kinetic energy representation of the PULSE and STELUM parameters used in Fig. 3.1
and Fig. 3.2, taken at helium core abundance core he = 0.9.
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3.2 Origin of mode trapping from chemical transitions

3.2.1 Normal and trapped modes

The general cavity in which g-modes propagate is bounded by the Brunt-Väisälä and Lamb
frequencies. However, some modes display a trapping phenomenon in a subset region of their
propagation cavities, which alters the way a mode propagates with partial reflections at the
boundaries of said subset. In Fig. 3.9, we give the juxtaposition of both the reduced period
spectrum of Fig 3.7 and the kinetic energy of Fig 3.8, with which we aim to highlight that
trends in the reduced period spectrum can be associated with trends in the kinetic energy. We
zoom on the kinetic energy from Fig 3.8, as it highlights the local maxima of kinetic energy of
high order modes while only loosing information on low order modes.

Fig. 3.9: Subplot of the reduced period spacing spectra and the kinetic energy spectra for modes
of k = 0 to k = 70, mass = 0.47M⊙, lq env = -2, core he = 0.9.

In this master thesis, we will contrast between trapped and normal modes. Distinguishing
one from the other is first done through the properties of the kinectic energy and reduced period
spacing spectrum. As mentioned in the previous subsection, the kinetic energy of a mode is
directly dependent on how a given region of a star acts on the mode, in particular, if the mode is
propagating more in the envelope, its kinetic energy will be lower than if it is propagating in the
deeper regions of the star. Because of this, as shown in Brassard et al. (1992b), a mode trapped
in the envelope, and for which the envelope thus has a strong influence on its frequency, will
have lower kinetic energy the more the trapping phenomenon is effective, which will show as a
local minimum of the kinetic energy spectrum. In our case, we do not find those local minima,
but instead local maxima, which can be well seen on Fig. 3.8 and Fig. 3.9. For trapped modes,
being associated to such local maxima thus means that the deeper regions of the star have a
stronger influence, and that the mode trapping phenomenon occurs in those deeper regions,
instead of the envelope. We will investigate this in more detail and determine the propagation
cavity of these trapped modes in section 3.3.1.

By juxtaposing the reduced period spacing spectrum and the kinetic energy, we see that
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the local minima found in the reduced period spacing spectrum are in fact corresponding to
local maxima of the kinetic energy, as shown for one trapped mode with the black dotted line
in Fig. 3.9 denoted as “trapped”. We thus understand that in the reduced period spacing
spectrum, modes at a local minima are those which are trapped. This behavior contrasts with
the one of what I call in this master thesis “normal modes”. Normal modes are those for which
the trapping phenomenon is not occuring, and as such, they do not correspond to either a
minima or maxima on the kinetic energy spectrum, instead, those modes follow only the slow
downward trend of the kinetic energy evoked earlier. On the reduced period spacing spectrum,
those modes correspond to the dots on the upper part of the “arch-like” structure formed in
between two trapped modes, and an example of which modes those are is displayed using the
black dotted line denoted “normal” in Fig. 3.9.

As we can also tell on Fig. 3.9, some modes are between the trapped and normal modes.
Actually, we have a continuous array of modes which are more or less trapped, with the bounds
of this array being the trapped modes on one side, and normal modes on the other. Those
modes, which can be found neighboring trapped ones, are subject in some respect to a trapping
phenomenon, albeit less strong than trapped modes corresponding to an actual local minimum
of the pulsation spectrum. In fact, this highlights that the trapping phenomenon induces a
“compression” effect on the period of the modes surrounding trapped ones. This in turn results
in the arch-like structures and pits founds in Fig. 3.9, since we alternate modes with close
periods to one another, forming the pits in period spacing, and modes with periods spaced
evenly, forming the top of the arches, that is normal modes.

3.2.2 Chemical transitions influence on node positioning

In subsection 1.4.2, we briefly touched on the fact that mode trapping is a consequence
of a mode being partially reflected in a subset region of their propagation cavities, bounded
by sharp transitions in the Brunt-Väisälä frequency. Such sharp transitions occur either when
transitioning from a chemical composition to another, or when going from a convective region
to a radiative one in the stellar structure. In our case, those sharp transitions are located when
going from the convective core to the radiative mantle with the C-O/He transition, or from
the radiative mantle to the envelope with the He/He+H transition. This subsection aims at
studying the effects of the two aforementioned chemical transitions on the genesis of trapped
modes.

Node pinching

A visualization tool which helps understand the global effects of a given chemical transition
on modes is the so-called “propagation diagram”, which can be found in Fig. 3.10 for a sdB
model using mass = 0.47M⊙, a C-O/He transition at lq core = -0.25, a He/He+H transition
at lq env = -2, and for core helium abundance core he = 0.9.

On a propagation diagram, we represent as red horizontal lines the frequency log(σ2) of
each mode of l = 1 from k = 1 to k = 70, as well as the zeros of the y1 eigenfunction as red
dots. Each dot is thus corresponding to one radial node of the mode we are considering. We
first see that nodes are not evenly spaced, in fact, we find a greater number of nodes in the
radiative mantle right before the He/H+He transition at lq env = -2 than lower in the radiative
mantle. Similarly, we find a low density of nodes after this same transition, in the envelope.
This shows that while g-modes are able to propagate up until the Lamb frequency limit, here
denoted by L1 (Lamb frequency for l = 1), they are rather confined in the radiative mantle of
the star. It is important to keep in mind that the node positioning of a mode directly tells us
where the mode is propagating. Note in particular the complete absence of nodes above the
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Fig. 3.10: Propagation diagram for mass = 0.47M⊙, lq core = -0.25 and lq env = -2, at core he
= 0.9 and modes of l = 1 ranging from order k = 0 to k = 70. Red horizontal lines are the
log(σ2) of each mode and red dots indicate zeros of the y1 eigenfunction.

Lamb frequency showing that the region above this frequency is an evanescent zone, in which
we do not find an oscillating behavior for the modes, corroborating the theory seen in chapter
1.

We can view in more details the He/H+He transition zone using Fig. 3.11, which displays the
same propagation diagram, this time centered and zoomed on said transition at log(q) = −2.
We can clearly see what I will call in this master thesis the “node pinching” phenomenon. This
phenomenon occurs at chemical transitions, and we find that the density of nodes increases in
the vicinity of such transitions, while relaxing away from them. In particular, this effect is at
the origin of g-modes being confined in the radiative mantle of the star.

The downward trend of the kinetic energy at high radial orders (Fig. 3.8, Fig. 3.9) is well
understood through the node pinching phenomenon as well. Indeed, in percentage, on Fig. 3.10
and Fig. 3.11 higher order modes have an increased number of nodes around the He/H+He
transition and in the envelope, thus leading to lower kinetic energy, as those regions have a
lesser density compared to deeper ones. It is shown in Charpinet (1999) that as a general trend,
the nth node of a g-mode of order k is further away from the surface than the (n + 1)th node
of a g-mode of order k + 1. For the static models we are studying, it can be seen on Fig. 3.10
that while this trend is well verified in the envelope above log(q) = −2, the node pinching
occuring around the C-O/He and He/H+He transitions introduce a more chaotic behavior on
the nodes positions in the radiative mantle. It is important to understand that the He/H+He
transition at lq env = -2 acts this way on every high order g-modes we compute, as such, we
understand that this chemical transition is likely to not produce the mode trapping phenomena
we observed in the pulsation spectrum, as we are looking for effects which are different for
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Fig. 3.11: Propagation diagram around He/H+He transition for mass = 0.47M⊙ and lq env =
-2, at core he = 0.9, for modes of l = 1 ranging from order k = 0 to k = 70. Red horizontal
lines are the log(σ2) of each mode and red dots indicate zeros of the y1 eigenfunction.

normal and trapped modes.

We now investigate the C-O/He transition, in Fig. 3.12. In the top left part of this figure,
we use the m(r) scale to show the same propagation diagram as Fig. 3.10. This allows to
highlight the C-O/He transition, located at m(r) = 0.205M⊙, at the bump in the Brunt-Väisälä
frequency. The top right part of the figure shows a zoom on the high radial order modes near
the C-O/He transition. In this zoom, we highlight that the period compression due to the
trapping phenomena is found again in the propagation diagram. We give numbers on the right
of the zoomed part to show the correspondance between this period compression effect and the
trapped mode associated to it, and those same numbers are given on the pulsation spectrum
found at the bottom of Fig. 3.12. Since red lines in the propagation diagram correspond to lines
of log(σ2), when we have a period compression, aka a minimum of ∆P in reduced pulsation
spectra, those lines will be closer to one another locally, which is what we observe.

Let us call n a given node of a radial order k, such that n varies from n = 1, which is the
first node located at the center of star, to n = k, which is the last node toward the surface, and
the nearest to the Lamb frequency. On Fig. 3.12, the propagation diagram shows that between
m(r) ≈ 0.1M⊙ and m(r) ≈ 0.2M⊙, before the C-O/He transition, nodes of a given n follow
each other in continuous lines. For example, the nodes n = 1 which are located at the very left
of the propagation diagram, clearly follow each other across modes of different radial orders k.
However, upon crossing the C-O/He transition, this continuous line is broken and forms a wave
like pattern instead, where we alternate a vertical trend (sharp ascendant diagonal, but we use
“vertical” as a mean of contrast) and a horizontal trend. An example of this is represented in
green on the zoomed part of the propagation diagram (Fig. 3.12, top right), which links nodes
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Fig. 3.12: Propagation diagram around C-O/He transition for mass = 0.47M⊙ and lq env =
-2, at core he = 0.9 and modes of l = 1 ranging from order k = 0 to k = 70. Red horizontal
lines are the log(σ2) of each mode and red dots indicate zeros of the y1 eigenfunction.

n = 5. We first have the aforementioned vertical trend, followed by a near horizontal line, itself
followed by a vertical trend again. The horizontal trend systemically occurs accross the period
compression effect, which means it is associated with trapped modes, while the vertical trend is
then associated with normal modes. The full propagation diagram of Fig. 3.12 also shows that
this wave like pattern induces an offset of the nodes associated with trapped modes toward the
surface, compared to the nodes associated with normal modes.

Figure. 3.13 displays the same type of figure as Fig. 3.12, except at core helium abundance
core he = 0.4 instead of core he = 0.9. This gives a reference of what a model with a less strong
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trapping looks like (as we will see in section 3.3.1). The pulsation spectra of Fig. 3.13 (bottom)
shows that we still find a form of trapping, but a less selective one (the minima are less deep
compared to normal modes) than at core he = 0.9. We still find the wave like pattern from
the C-O/He transition, and an example of it is highlighted in green on the zoomed part of the
propagation diagram. Again, we associate the horizontal trends that we see on these wave like
patterns to the trapped modes on the pulsation spectra of Fig. 3.12 (bottom), with numbers.
Comparing both zoomed parts of Fig. 3.12 and Fig. 3.13, we understand that the less a mode is
trapped (aka, the less deep its minimum is in the pulsation spectrum), the less “horizontal” is
the trend between two vertical trends (normal modes). Because of this effect, the nodes on the
horizontal trends from Fig. 3.13 (core he = 0.4) show less spread, meaning they are closer to
each others than nodes on the horizontal trends from Fig. 3.12 (core he = 0.9). Additionally,
we do not have a visible offset of the nodes from trapped modes compared to normal modes
anymore on Fig 3.13. We conclude from our study of the different propagation diagrams that
the influence of the C-O/He transition is different according to the type of mode (trapped or
normal), and thus that this chemical transition should be further investigated if we want to
better understand mode trapping in the context of 4G models.

Chemical gradient influence

While propagation diagrams are helping to understand the general impact of chemical tran-
sitions on the pulsation spectra, we can visualize this in a more immediate way. To do this, we
pulsate two models, one where we remove the C-O/He transition, and one where we remove
the He/H+He transition, in order to see what impact this can have on our modes, and if mode
trapping is still present after removing one or the other chemical transition. Here, “removing”
a transition means that I force the Ledoux term B to zero in the region where we originally
have a chemical transition. In Fig. 3.14 we show the results of removing those transitions
against the normal spectrum (with both the C-O/He and He/H+He transitions) at core he
= 0.9. B(He/H+He) = 0 means we removed the He/H+He transition at lq env = -2, while
B(C-O/He) = 0 means we removed the C-O/He transition at lq core = -0.25. As anticipated,
the He/H+He transition leaves the trapped modes at high k orders unaffected, and mostly
disturbs low orders modes. At the same time, we also see that removing the C-O/He transition
drastically affects trapped modes, and they completely disappeared from our spectra.

Finally, we show the propagation diagram associated with the removal of the C-O/He tran-
sition in Fig. 3.15. The horizontal trends associated with trapped modes on the propagation
diagram of Fig 3.12 (strongly trapped modes), which were becoming increasingly vertical in
Fig. 3.13 (shallower trapped modes), are now fully vertical, and there is no wave like pat-
tern anymore. This experiment of removing transitions reinforces our first investigation on
the influence of each chemical transition on trapped modes through propagation diagrams,
and reinforces that further studies of trapped modes should be focused around the C-O/He
transition.
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Fig. 3.13: Propagation diagram around C-O/He transition for mass = 0.47M⊙ and lq env =
-2, at core he = 0.4, for modes of l = 1 ranging from order k = 0 to k = 70. Red horizontal
lines are the log(σ2) of each mode and red dots indicate zeros of the y1 eigenfunction.
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Fig. 3.14: Brunt-Väisälä frequencies and their associated reduced period spacing spectra. From
top to bottom, we find : the unmodified model ; a model where the He/H+He transition is
removed ; a model where the C-O/He transition is removed. Parameters are mass = 0.47M⊙,
lq core = -0.25 and lq env = -2, at core he = 0.9.
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Fig. 3.15: Propagation diagram where the effects of the C-O/He transition have been removed.
We use mass = 0.47M⊙, lq core = -0.25 and lq env = -2, at core he = 0.9 and modes of l = 1
ranging from order k = 0 to k = 70. Red horizontal lines are the log(σ2) of each mode and red
dots indicate zeros of the y1 eigenfunction.
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3.3 Evolution of the pulsation spectrum

3.3.1 Influence of the core helium abundance

As we have seen, mode trapping is a direct consequence of the C-O/He transition. In
particular, we could anticipate that the stronger this transition is, then the stronger the trapping
becomes if it is the chemical gradient itself that is producing mode trapping. During the
evolution of the star, helium is fused in the core to produce carbon, as such, in our models, the
lower the helium core abundance core he is, the higher the Ledoux term B(C-O/He) becomes.
We would thus anticipate that lower core he is then equivalent to pulsation spectra with more
strongly trapped modes. While this is the case for evolutionary models as we will see in
chapter 4, for static 4G models, this tendency is not verified. We give in Fig. 3.16 the evolution
of pulsation spectra, from core he = 0.1 to core he = 0.9, and their associated kinetic energy
directly below, for lq env = -2, lq core = -0.25, and mass = 0.47M⊙. This indicates that while
it is now firmly established that mode trapping originates from the C-O/He transition (see
Fig. 3.14), the detailed mechanism is slightly more subtle than the strength of the chemical
transition alone.

While the C-O/He transition becomes stronger, Fig. 3.16 shows that minima of reduced
period ∆P in pulsation spectra are progressively becoming shallower from core he = 0.9 to
core he = 0.4. The aspect of the pulsation spectrum then remains globally the same from
core he = 0.4 to 0.1. This is an indication that the mode trapping phenomena is progressively
weakening with decreasing core helium abundance in 4G models, up until core he = 0.4. In
order to find the explanation to this phenomenon, we need to interest ourselves in the weight
function of trapped modes and normal modes, both at high core he > 0.5 and at lower core he
< 0.5. As explained in the previous chapter, the weight function will allow us to know which
regions are contributing most to the frequency of our modes, and by extension, which zones
have the strongest influence on the period of our modes. Those weight functions are displayed
in Fig. 3.17 at core he = 0.8 and core he = 0.1.

For the two weight functions at core he = 0.8, we directly see the difference between a
trapped and a normal mode. For the trapped mode, there is a zone below the C-O/He transition
that has a strong influence on the frequency of the modes. Keep in mind however that when
discussing weight functions, one can only make relative comparisons, as such, what is actually
important to notice is that the weight function in the zone below the C-O/He transition at
m(r) ≈ 0.2M⊙ has a stronger amplitude than the weight function in the radiative mantle for
the trapped mode, while it is the opposite for the normal mode at core he = 0.8. For core he
= 0.1, we instead find that the amplitude under the C-O/He transition is nearly zero.

The study of the size of the core that is convective as a function of the core helium abundance
reveals that it grows as the core helium abundance diminishes, which is showed on Fig. 3.18.
On this figure, the red horizontal line represents the C-O/He transition at lq core = -0.25, while
the green vertical line indicates when core he = 0.5. When almost no helium has been burned
at core he = 0.985, the convective core ranges from the center of the star at log(q) = 0 to log(q)
≈ -0.12. As the core helium abundance decreases, we observe a slow growth of the convective
core until about core he = 0.5, where we observe a jump in convective core size from log(q) ≈
-0.16 to log(q) ≈ -0.25. The blue dots in the figure each represent a given model, ranging from
core he = 0.985 to core he = 0.05, with decrements of 0.05, as such the jump in convective core
size occurs over a single model. This jump has seemingly no influence on the pulsation spectra
we observe, since the trapped modes are already well dampened when this jump occurs. While
the convective core grows, the C-O/He transition remains fixed at lq core = -0.25 in static
models, and does not follow this growth. Because this is the case, we understand that the
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Fig. 3.16: Pulsation spectra and associated kinetic energy for different core he, indicated on
the figure.

radiative zone under lq core, which is the main contributor to the frequencies of our trapped
modes, is progressively replaced by the convective core, in which no modes can propagate (see
theory of oscillations in chapter 1). The vanishing of strongly trapped modes (as opposed to
the weaker trapping at low core helium abundance) is thus entirely due to the disappearence
of the radiative zone under the C-O/He transition.

We noted earlier that we can still observe a weak form of trapping from the C-O/He tran-
sition for low core he. We can indeed pinpoint that this weak form of trapping is still from
the C-O/He transition, as the pulsation spectra at low core he found in Fig. 3.16 present this
weak form of trapping, while those displayed when the C-O/He transition is removed (with
the Ledoux term B(C-O/He) = 0) in Fig. 3.14, do not. This weak trapping, with respect
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Fig. 3.17: Weight function of modes. Top left : a trapped mode at core he = 0.1 ; top right
: a normal mode at core he = 0.1 ; bottom left : a trapped mode at core he = 0.8 ; bottom
right : a normal mode at core he = 0.8. Model parameters : mass = 0.47, lq env = -2, lq core
= -0.25.

to the usual trapped modes at high core he, might be due to the C-O/He transition increas-
ing in strength the lower the core helium abundance is, although this calls for another set of
experiences out of the scope of this master thesis.

It is notable that the intensity of the local maxima of the kinetic energy spectra for core he
≥ 0.6 shown in Fig. 3.16 are a direct consequence of our trapped modes having a strong weight
function in the small radiative region very deep in the star, just below lq core = -0.25. Indeed,
while all g-modes of our pulsation spectrum are confined in the radiative mantle, only the
trapped modes for such core helium abundances have a non-negligible amplitude of the weight
function in the small radiative region below the C-O/He transition. Because it is in the deeper
regions of the star, we thus have trapped modes of higher kinetic energy than normal ones.
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Fig. 3.18: Upper limit of the convective core in function of core he. The green dashed line
represents when core he = 0.5, while the red dash line represents the C-O/He transition at
lq core = -0.25. We show in blue the growth of the convective core, and the blue dots are each
representative of a single model.

3.3.2 Influence of the main parameters on pulsation spectra

In this subsection, we explore the influence of the three main parameters of the static models,
the mass of the star, of the envelope (aka the lq env parameter), and of the core region (aka the
lq core parameter), on the resulting pulsation spectra, and on the presence of trapped modes
in particular.

Mass of the star

In Fig. 3.19, we give the pulsation spectra of different mass parameters with mass = 0.40,
0.47 and 0.50 M⊙, for a fixed He/H+He transition at lq env = -2, and for two different core
helium abundances, core he = 0.9 and core he = 0.1. Changing the mass of our models does
not fundamentally change the overall aspect of the pulsation spectra we observe, and has no
influence on the presence of trapped modes. Instead, the pulsation spectra translates upwards
and to the right with increasing mass. It is expected that our pulsations remain of the same
nature since we do not affect the chemical transitions positions by changing the mass of the star.
An upwards translation means here that the period spacing between our modes is increasing
with mass, while the translation to the right indicates that our modes have higher periods with
increasing mass.

This is well explained when considering what increasing the mass of the star actually means

in the context of our static models. In our graphs, we often use the log(q) = log
(
1− m(r)

M∗

)
scale, which is unable to tell us the actual size of the different zones we look at. In Fig. 3.20,
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Fig. 3.19: Influence of the mass parameter on pulsation spectra, shown for three different
masses, in green 0.50M⊙, in red 0.47M⊙ and in blue 0.40M⊙ (all models have lq env = -2 and
lq core = -0.25). We show in the left colum core he = 0.9, and in the right column core he =
0.1.

we show the impact of increasing the mass on the actual size of the zones we are considering,
for lq env = -2 and at core he = 0.9. What actually happens when the mass is increasing, is
that we mainly grow the size of the radiative mantle and the envelope. Because our modes
propagate until Lamb’s frequency, this rise in size will directly mean that our modes will have
to travel a longer distance, causing them to have a longer period in average. As for the increase
in reduced period spacing, we will view in subsection 4.3 that the period spacing of our modes
directly depends on the size of the region they propagate in, and a region of higher size will
indeed result in a higher period spacing.

Fig. 3.20: Impact of changing the mass on the radius of the different regions of the star.
Parameters : core he = 0.9, lq env = -2 ; lq core = -0.25.
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Mass of the envelope

The influence of the mass of the envelope, that is, of the parameter lq env, is different in
so far that it seems to clearly modify the behavior of our modes. In Fig. 3.21, we represent
the difference between the modes from changing the position of the He/H+He transition lq env
while keeping the total mass constant. Compared to the lq env = -2 pulsation spectra analysed
until now, the lq env = -4 spectra seems more “chaotic”, in the sense that we see variations of
period spacing ∆P from modes to modes (i.e, between adjacent modes), while the general trend,
and in particular the presence of minima of trapped modes at core he = 0.9, are conserved.

Fig. 3.21: Influence of the envelope’s mass on different pulsation spectra, with in red lq env =
-2 and in blue lq env = -4. Left column is for core he = 0.9, right column for core he = 0.1.
Parameters of the model : mass = 0.47M⊙ ; lq core = -0.25.

A first insight into why this is the case is gained by looking at the kinetic energy of those
modes. In Fig. 3.22, we display a pulsation spectrum of lq env = -4 at core he = 0.9 with its
associated kinetic energy, as well as the propagation diagram corresponding to this model. It
is directly noticable that instead of a near constant kinetic energy with local maxima at high k
order (as was the case for lq env = -2, see Fig. 3.16), we now find a kinetic energy which follows
the oscillations of the reduced period spectrum. The kinetic energy now presents local minima
which correspond to local minima of the pulsation spectrum, and now display an oscillating
pattern. We anticipate the envelope to have a stronger influence at lq env = -4 than before at
lq env = -2 from this change in behavior. On Fig. 3.22, the propagation diagram clearly shows
that we still have a node-pinching around the He/H+He transition at lq env = -4, although less
strong than for lq env = -2, and that most nodes are still contained in the radiative mantle.
Even though the Lamb frequency is shifted toward the surface due to lq env being higher, the
number of nodes above the radiative mantle cannot justify the seemingly stronger impact the
envelope would have on our modes.

The expression of the weight function, as well as the expression of the kinetic energy, are
dependent on ρr2, as was seen in equations (2.17) and (2.18). In Fig. 3.23, we give this term’s
value for both lq env = -2 and -4. It is directly seen that term is very similar for both lq env.
As expected, the C-O/He transition at lq core is the point of strongest ρr2, which supports
that the local maxima in kinetic energy associated to modes trapped in the small region under
lq core, are indeed directly related to those particular modes propagating in the radiative region
of high density located under lq core. For any model, we find a node-pinching phenomenon
around the He/H+He transition at lq env, and the proportion of nodes above and under this
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Fig. 3.22: Left : propagation diagram of a lq env = -4 model. Right : Subplot of the reduced
period spacing spectra and kinetic energy associated to the same model. Parameters : mass =
0.47 M⊙, lq env = -4, core he = 0.9, lq core = 0.9.

transition is the same across all of our different lq env values. However, this means that for
lq env = -2, most nodes of high order k modes are in regions of higher ρr2 compared to the
case of lq env = -4. In this latter case, in proportion, a higher part of the number of nodes of
a mode lies in a region of lower ρr2, giving rise to a lower kinetic energy modes.

Fig. 3.23: ρr2 term in function of log(q), for lq env = -2 and -4. We display vertical lines for
the C-O/He transition and He/H+He transition of a lq env = -2 model.

The oscillating pattern seen in pulsation spectra could be an indication of a form of weak
trapping from the He/H+He transition, as the influence of this chemical transition on our
modes is stronger from the fact that more nodes are now located in regions of lower den-
sity. We proceed with an experiment and remove the He/H+He transition (that is taking the
Ledoux term B(He/H+He) to zero) to confirm this. The result of this experiment is shown in
Fig. 3.24 (middle panel), where indeed, removing the He/H+He transition strongly dampens
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the oscillating pattern we observe for the unmodified model (top panel).

However, some residual oscillations are still observable (albeit at a much lower level). We
extend the experiment to remove the upper chemical transition from He+H envelope to pure
H envelope (controlled by the lq diff parameter, here called H+He/H transition), which could
have an influence on the residual oscillating pattern. The result of this experiment is shown in
the bottom panel of Fig. 3.24, and shows that this higher transition zone has no impact on the
pulsation spectrum.

Fig. 3.24: Brunt-Väisälä frequencies and their associated reduced period spacing spectra. From
top to bottom, we find : the unmodified model ; a model where the He/H+He transition
is removed ; a model where the He/H+He transition and the He+H/H transition are both
removed. Parameters are mass = 0.47M⊙, lq core = -0.25 and lq env = -4, at core he = 0.9.
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Mass of the core

In this master thesis, so far, the C-O/He transition was always fixed at lq core = -0.25. In
this subsection, we aim to vary this parameter in order to see its influence on pulsation spectra.
We show the results for the C-O/He transition lq core = -0.10, -0.25, -0.40 in Fig. 3.25, and
in this figure, the left column corresponds to core helium abundance core he = 0.9 while the
right column to core he = 0.1. Then, in descending order, we find the pulsation spectra and
associated kinetic energies for C-O/He transitions at lq core = -0.40, -0.25 and -0.10. In all of
these models, the He/H+He transition is fixed at lq env = -2. Note that in this master thesis,
we will use “high” or “low” lq core in view of its absolute value, hence, lq core = -0.40 is high
while lq core = -0.10 is low. This is to be aligned with the associated mass of the core, since
then a high lq core corresponds to a high core mass with respect to a low lq core, which then
corresponds to a low core mass. The same ideology is applied to the mass of the envelope given
by lq env.

Let us first consider the lq core = -0.10 spectra (bottom panels of Fig. 3.25). As we pre-
viously saw, the convective core for lq core = -0.25 progressively grows in size when the core
helium abundance decreases, until it reaches the C-O/He transition at about core he = 0.5,
at which point we have a completely convective zone under the C-O/He transition. In the
case of lq core = -0.10, the convective core does not need to grow, as it already reaches the
C-O/He transition right from the very beginning, that is at core he = 0.985. As a consequence,
the pulsation spectra we anticipate to observe are ones which ressemble low core he at lq core
= -0.25. For easier comparison, a pulsation spectra at lq core = -0.25 and core he = 0.1 is
given in the middle right panel of Fig. 3.25. At high core he for lq core = 0.10, we observe
weak trapping of isolated modes, which is is in direct contrast with what is found for high
core he at lq core = -0.25. This is expected, as for lq core = -0.10, the radiative zone under
the C-O/He transition which is at the origin of the mode trapping for lq core = -0.25 with high
core helium abundance, does not exist, and thus no modes can be trapped in it. At low core
helium abundance core he, the same behavior is found for both lq core, however for lq core =
-0.10, the spectrum shows modes trapped slightly more deeply. The weight functions of two
trapped modes, at lq core = -0.10, for both core he = 0.1 and 0.9, are displayed in Fig. 3.26.
Comparing those weight functions to the ones of trapped modes at lq core = -0.25 and core he
= 0.1 in Fig. 3.17, we understand that the trapped modes found for lq core = -0.10 at low or
high core he are actually of the same nature as trapped modes found for lq core = -0.25 and
low core he. Finally, for lq core = -0.10, finding deeper minima at low core helium abundance
than at high core helium abundance corroborates the role of the C-O/He transition in mode
trapping, as we have established earlier that this chemical transition becomes stronger as core
helium abundance decreases in the convective core, thus providing stronger trapping.

We now consider the lq core = -0.40 spectra (top panels of Fig. 3.25). First, we compare
the lq core = -0.40 and lq core = -0.25 spectra at core he = 0.9. In those spectra, we have not
only a lot more trapped modes for lq core = -0.40, but they are also deeper, which is expected.
Indeed, at this stage of core helium abundance, both models have a radiative zone under the
C-O/He transition, which we demonstrated was the culprit for mode trapping at those high
core he, and for lq core = -0.40, the size of this radiative zone is bigger than for smaller cores.
In Fig 3.27, with the comparison of the propagation diagrams for both lq core, we show, in m(r)
scale, the increased size (understand mass fraction of the total star) of the radiative zone under
the C-O/He transition (which happens at m(r) ≈ 0.2M⊙ at lq core = -0.25 and m(r) ≈ 0.28M⊙
at lq core = -0.40). In the same figure, we see that modes have a greater amount of nodes below
the C-O/He transition for lq core = -0.40, which directly implies that those modes are trapped
deeper due to the modes having more nodes in regions of higher density. Now looking at the
lq core = -0.40 and core he = 0.1 spectrum, we find strongly trapped modes, in opposition to
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Fig. 3.25: Period spacing spectrum and associated kinetic energies. From top to bottom, we find
lq core = -0.10, -0.25 and -0.40. From left to right, we find core he = 0.9 and 0.1. Parameters
are mass = 0.47M⊙ and lq env = -4

spectra for other core masses at this low core helium abundance. This behavior is understood
by looking at the Brunt-Väisälä frequency, which is given in Fig. 3.28, for lq core = -0.25 with
core he = 0.6 on the left, and lq core = -0.40 with core he = 0.40 on the right. We see what I
call a “radiative arch” under the C-O/He transition, and separated from said transition by a
convective zone. This radiative arch is only temporary for models of lq core = -0.25 (it persists
from core he = 0.6 to core he = 0.5), and in fact causes the jump we saw in convective core
size for those models due to its sudden disappearence (in practice, it srinks from core he = 0.6
to core he = 0.5, then disappears once sufficiently small). However, for models of lq core =
-0.40, the arch persists from core he = 0.4 to core he = 0.05 included. By studying the weight
function of a trapped mode from lq core = -0.40 with core he = 0.4, we find in Fig. 3.29 that
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Fig. 3.26: Weight functions of trapped modes at lq core = -0.10. The left figure shows a trapped
mode for high core he = 0.9 and the right figure for a low core he = 0.1. Parameters are mass
= 0.47M⊙ and lq env = -2.

those modes are trapped in this radiative arch.

Fig. 3.27: Propagation diagrams for different lq core, with on the left lq core = -0.25 and on
the right lq core = -0.4. Parameters are mass = 0.47M⊙, lq env = -2, at core he = 0.9.
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Fig. 3.28: A display of the “radiative arch” appearing at low core he. We find two propagation
diagrams, on the left a model using lq core = -0.25 and core he = 0.6, on the right a model
using lq core = -0.4 and core he = 0.4. Parameters are mass = 0.47M⊙ and lq env = -2.

Fig. 3.29: Weight function of a mode trapped in the radiative arch region. Parameters are mass
= 0.47M⊙, lq core = -0.4 and lq env = -2, at core he = 0.40.
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The apparition of the radiative arch, as well as the convective zone right under lq core
with it, is a direct consequence of the prescription taken for the real temperature gradient ∇T

in 4G static models. Fig 3.30 shows the radiative temperature gradient ∇rad with the green
dashed line, the adiabatic temperature gradient ∇ad with the light blue dashed line, and the
real temperature gradient ∇T in the full blue line. The real temperature gradient is determined
by the constitutive physics of the models (opacities, equation of state). So far, we have talked
about radiative and convective zones often using the Brunt-Väisälä frequency, however, in a
code such as STELUM, one needs a criterion to know where a zone is convective, and where it is
radiative, that is, defining the thermal structure of the star. In stellar structure litterature, we
find two criteria. The Schwarzschild criterion gives that a convective zone is when ∇ad ≤ ∇rad.
The Ledoux criterion ∇rad > ∇ad +

ϕ
δ
∇µ corresponds to a convective zone, where ϕ = ∂ ln ρ

∂ lnT |P,µ,

δ = ∂ ln ρ
∂ lnT |P,T and ∇µ = d lnµ

d lnP
. We find in fact ∇µ in the expression of B (equation 1.33), and in

zones where we have no chemical gradients, we find back the Schwarzschild criterion from the
Ledoux criterion.

In static models, below the C-O/He transition at lq core, the temperature gradient simply
follow the Schwarzschild criterion : ∇T = ∇ad where ∇rad ≥ ∇ad (convective zones), and
∇T = ∇rad where ∇rad < ∇ad. As is well known for CHeB stars, issues can arise due to
the dependency of the radiative gradient ∇rad with the opacity of the star. Indeed, one can
find that ∇rad ∝ κ, with κ the opacity, and because the opacity of elements such as carbon
and oxygen is higher than the opacity of helium, ∇rad lowers as more helium is burned in the
core. Due to the shape of the radiative gradient under lq core, notably because of its local
minimum, this leads to ∇rad > ∇ad just under lq core, which creates a convective zone. This
is precisely this phenomenon which is shown in Fig 3.30. From the center of the star and
towards the surface, we first find a convective zone with ∇rad > ∇ad, then a radiative zone
which corresponds to the radiative arch where ∇rad < ∇ad, and then a small convective zone
again with ∇rad > ∇ad. This second convective zone might not be physical, because it could
lead (if powerful enough) to the injection of fresh helium in the core. As a consequence, the
trapped modes we have found at high core size (section 3.3.2) might be non-physical. This is a
limitation that should be kept in mind when modeling observed stars with 4G models. Other
prescription for the actual temperature gradient could be implemented in 4G models, such as
forcing a fully convective core below the C-O/He transition (by ∇T = ∇ad below lq core).
The issue of defining convective and radiative zones, and more generally on the usage of the
Schwarzschild and Ledoux criteria, is an old and well-known problem. We will discuss this in
more details in chapter 5.
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Fig. 3.30: Gradients associated to a Brunt-Väisälä frequency displaying a radiative arch. Pa-
rameters are mass = 0.47M⊙, lq core = -0.4 and lq env = -2, at core he = 0.05.



Chapter 4

Evolutionary models and
semi-convection

Evolutionary models are in essence distinct from the static models we just studied on chapter
3. By definition, a given evolutionary model is dependent on previous ones, making the thermal
(gradients) and chemical structures co-dependent. Additional convective phenomena such as
overshooting and semi-convection are now taken in account (through diffusion coefficients, see
section 2.1), and will be studied further. Studying the behavior of pulsation spectra in the
context of evolutionary models allows unveiling general trends associated to them, and then to
compare those trends to observationnal data, inferring on the physical relevance of our models.
Furthermore, comparing evolutionary and static models pulsation spectra, which is an aim of
this chapter, leads to the development of more accurate static models, in turn resulting in
better and more flexible seismic probing of observed stars.

Because of the computing time of an evolutionary sequence1, we directly used models that
were computed by Stephane Charpinet prior to this master thesis. We have in total 6 different
evolutionary tracks with similar total mass at about 0.47M⊙. Actually, the only difference in
the evolutionary models we study is the position of the He/H+He transition lq env, which takes
the values lq env = -2, -2.5, -3, -4, -4.5 and -5 in log(q) scale.

In this chapter, we highlight first the differences found in stellar structure between evolu-
tionary and 4G models, in particular in the description of the core of the star, and the presence
of overshooting and semi-convection zones in evolutionary models. In addition, we will pinpoint
when the onset of semi-convection occurs, and its influence on the stellar structure of the star,
as well as the thermal prescriptions associated to such a phenomenon. Then, we will study our
pulsation spectra and their dependencies with respect to core helium abundance (core he) and
the position of the He/H+He transition (lq env). Finally, we will compute the asymptotic pe-
riod spacings obtained from the asymptotic theory of Tassoul (1980), and show they correspond
well to the observed period spacings in evolutionary models.

4.1 Stellar structure

4.1.1 Overshooting and semi-convection

In static models, the thermal and chemical structure are not correlated. As we consider
the core to be fully mixed before the C-O/He transition, we do not need to introduce an

11-3 months for an evolutionary sequence up to white dwarfs.
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overshooting phenomenon, instead fixing the thermal and chemical structures directly. This is
not the case in evolutionary models, for which the small convective zone before the C-O/He
transition seen in Fig. 3.30 is then an issue, which is adressed by adding both the overshooting
and semi-convection phenomena. Figure 4.1 shows two different chemical structures for an
evolutionary model with the He/H+He transition at lq env = -2, at core helium abundances
core he = 0.8 (top panels) and core he = 0.2 (bottom panels), in log(q) (right panels, showing
the envelope structure) and m(r) scales (left panels, showing the core structure).

Fig. 4.1: Chemical abundances for a model without semi-convection on the top row (core he
= 0.8), and with semi-convection on the bottom row (core he = 0.2). We give on the right
column the log(q) scale, and on the left the m(r) scale. Parameters are lq env = -2.

On the top part of the figure at high core he, that is at the start of the evolution of our
star, we find a chemical structure which is similar to 4G static models. The convective core
is now containing oxygen in addition to carbon and helium (in static models, only carbon
and helium), and we do not find the helium flash pollution after the C-O/He transition from
convective core to radiative mantle, the latter located around log(q) ≈ −0.20 for core he = 0.8.
In evolutionary models, there is no fixed position for the C-O/He transition, as this transition
actually shifts during the evolution of an evolutionary model with core he, which is shown in
the next subsection. In m(r) scale, the behavior of chemical abundances near the C-O/He
transition appears to be completely different between high and low core he. What we see
here at core he = 0.2 is a consequence of the management of the semi-convection problem in
evolutionary models, which is treated through a zone of partial mixing of elements.

As indicated at the end of the last chapter, the radiative gradient lowers in value as the
star core helium abundance diminishes. Initially, in static models, we had a convective core
with a radiatve zone followed by the C-O/He transition. Due to the evolution and shape of the
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radiative gradient with core he, the thermal structure eventually becomes a convective core,
a radiative zone, and another non-physical convective zone before the C-O/He transition (see
Fig. 3.30). In evolutionary models (STELUM and others such as CLES), there is an explicit
treatment of this problem, called the “semi-convection treatement”, for which various ad-hoc
prescriptions exists. STELUM implements convection/diffusion interactions, through diffusion
coefficients mentionned in section 2.1. The temperature gradients are not fixed or prescribed,
and convective zones are defined according to the Schwarzschild criterion. This treatment
allows finding a partial mixing zone which is akin to regular semi-convection treatments, albeit
strongly dynamic and slightly varying between one model and the next. The semi-convection
zone is visible in Fig. 4.1 (bottom left) as the zone of slowly varying chemical gradient from
m(r) ≈ 0.18 to m(r) ≈ 0.26M⊙. Some “micro-structures” can be seen, as a consequence of this
interactive treatment.

Figure 4.2 shows on the left the gradients in m(r) scale associated with a low core he
model, and on the right, a zoom on those gradients in the semi-convection zone. We highlight
three different zones. First, we find on the right and left figures the convective core, where
∇rad > ∇ad, and ∇T = ∇ad. Then, on the right figure, we find the overshooting zone from
m(r) ≈ 0.13 tom(r) ≈ 0.17M⊙, where∇rad < ∇ad, and with∇T = ∇rad. Finally, above it from
m(r) ≈ 0.17 to m(r) ≈ 0.26M⊙, we have the semi-convection zone itself where gradients adopt
a much more complicated behavior, with sometimes radiative zones and sometimes convective
zones, according to the Schwarzschild criterion. This “chaotic” behavior of gradients in the
semi-convection zone is directly due to the implementation of convection/diffusion interactions
to address the semi-convection problem.

Fig. 4.2: Radiative, adiabatic and real gradients for a model with semi-convection. On the left
are the gradients over the whole m(r) scale, on the right zoomed on the semi-convection and
overshooting zones. Parameters are lq env = -2, core he = 0.2.

4.1.2 Onset of semi-convection

The semi-convection phenomenon is not always present in evolutionary models, in particular,
it appears only once the core helium abundance is low enough. In this subsection, we investigate
the size of the convective core, overshooting zone, and semi-convection zone, as a function of
the core helium abundance. As this information is not readily available in STELUM output



62 CHAPTER 4. EVOLUTIONARY MODELS AND SEMI-CONVECTION

files, I apply the Schwarzschild criterion such that the first layer for which ∇rad < ∇ad is the
upper limit of the convective core, while the lower boundary of it is at the center of the star.
However, due to the behavior of the gradients, the Schwarzschild criterion is not suited to find
the boundaries of the semi-convection zone. For the lower boundary of the semi-convection zone,
I use the chemical gradient of carbon abundance. If the difference of carbon abunbance between
two consecutive layers is high enough, I consider the lower boundary of the partial mixing zone
found (see Fig. 4.1 bottom left, slowly decreasing carbon abundance), and so is the lower
boundary of the semi-convection zone. I then take the top boundary of the semi-convection
zone when the carbon abundance is almost null (since it is the case in the radiative mantle,
after the C-O/He transition). Because the overshooting zone is bounded by the convective core
and the semi-convection regions, its lower boundary is the upper boundary of the convective
core, while its upper boundary is the lower boundary of the semi-convection zone. In Fig 4.3, a
representation of the different boundaries found with the aforementioned critera is given, and
we follow in good approximation the visible boundaries of each zone. Do note that the carbon
criterion used to find the start of the semi-convection zone is ill-suited for high core he values,
before the onset of semi-convection. In these cases, the size of the semi-convection zone found
just corresponds to the (small) size of the C-O/He transition (see later Fig. 4.4).

Fig. 4.3: Criteria used to find the size of the convective core, overshooting, and semi-convection
zones. In green is the abundance of carbon, in red the carbon criterion defining the bottom of
the semi-convective zone (“SC”), in blue the Schwarzschild criterion defining the bottom of the
overshooting zone, and in black the top of the semi-convection zone, using a carbon abundance
criterion. Parameters are lq env = -2, core he = 0.2.

In Fig. 4.4 the masses ∆m(r) contained within the convective core, the overshooting zone,
and the semi-convection zone, are given as a function of the core helium abundance core he.
We show these core regions masses for the 6 evolutionary sequences, which vary only from the
mass contained in their envelope. First, we note that the general trends for any of the curves
are the same for all evolutionary sequences we consider, no matter the mass of the H-rich
envelope (lq env parameter). The convective core follows the same behavior as static models
: it steadily grows with diminishing core helium abundance. However, this behavior only lasts
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until core he ≈ 0.7, as the onset of semi-convection occurs and halts the convective core growth.
The semi-convection zone then grows steadily with diminishing core helium abundance, while
the convective core shows a small decrease in mass. The overshooting zone is of relatively
constant size throughout the different evolutionary sequences, showing only a slowly decreasing
mass until the onset of semi-convection, at which point the overshooting zone stays of near
constant mass for the remaining values of core he.

Fig. 4.4: Mass contained in the convective core, semi-convection zone, and overshooting zone
for lq env = -5, -4.5, -4.0, -3.0, -2.5 and -1.

4.2 Pulsation spectrum

In this section, we aim to study the behavior of pulsation spectra in evolutionary sequences
in function of their main parameters, as we previously did for 4G models. In the case of
evolutionary models however, since the different parameters cannot be changed directly, we
only study the dependency of pulsation spectra against the helium core abundance and the
mass of the envelope. This section highlights the discrepancies and similarities found between
pulsation spectra of evolutionary and static models.

4.2.1 Mass of the envelope

We start by analysing the impact of changing the He/H+He transition lq env in our models,
that is, the mass of the envelope. Fig. 4.5 shows pulsation spectra found at core he ≈ 0.8 and
core he ≈ 0.2. The top figures contain every lq env tested, while the bottom figures only display
the extremes lq env = -2 and -5, for clarity. We do not give the kinetic energies associated
for each lq env for readability and because we will view those, as well as the thorough study
of the modes themselves, in the next subsection. Trapped modes and normal modes for both
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core helium abundances are clearly present with the arch-like patterns at low core he, and
weak trapped modes as minima of the pulsation spectra at high core he. It is readily apparent
that for both core he pulsation spectra, changing the mass of the envelope does not impact
the behavior of high order modes, contrary to what we observed for static models (Fig. 3.21).
Similarly to 4G models, low order modes are strongly affected by changes in lq env, and their
behavior stays chaotic from the nature of their node positionning, which are not confined in
the radiative mantle due to not being as impacted by the node pinching phenomenon around
the He/H+He transition, unlike high order modes (let us recall that observed g-modes in sdB
stars correspond to high order modes).

Fig. 4.5: Left to right : core he = 0.2 ; core he = 0.8. Top : pulsation spectra for every lq env.
Bottom : pulsation spectra for both extreme lq env, for clarity.

4.2.2 Core helium abundance

We now investigate the different pulsation spectra during the evolution of the star, that is as
a function of core helium abundance. We will use, as we did for 4G models, the He/H+He tran-
sition at lq env = -2 as our reference point for the study of the influence of core he. Figure. 4.6
shows pulsation spectra and their associated kinetic energy at core he = 0.9, 0.8, 0.7, 0.6, 0.4,
and 0.2, so that it is readily comparable with the study done for 4G models, in particular the
pulsation spectra found in Fig. 3.16 which features the same core helium abundances2.

We proceed in order of the evolution of the star, and start by studying high core he pulsation
spectra, before the onset of semi-convection. For both core he = 0.9 and 0.8, we find a few
weakly trapped modes at high order. The weight function of one weakly trapped mode as well

2Except for core he = 0.1 as the evolutionary model for lq env = -2 stops at core he = 0.16.
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Fig. 4.6: Pulsation spectra for different core he, indicated on the figure. Parameters : lq env
= -2.

as a normal mode at core he = 0.9 is displayed in Fig. 4.7. The weight functions are maximal
at the C-O/He transition, both for trapped and normal modes. The difference between both
modes is the same as in static models : for a trapped mode, we find a stronger weight function
in amplitude below the C-O/He transition compared to after it, and the opposite for a normal
mode. As for static models, trapped modes in high core he pulsation spectra of evolutionary
models are trapped in a radiative region below the C-O/He transition, however in this case, the
radiative region is the overshooting zone showed previously on Fig. 4.2. While both the radiative
region of static models and the overshooting zone here are alike, in evolutionary models, the
modes trapped in the overshooting region are weakly trapped, while in static models, the
modes were more strongly trapped. This is a direct consequence of the size of both zones :
the overshooting region is small (∆m(r) ≈ 0.03M⊙, meaning ∆ log(q) = log

(
1− 0.03

0.47

)
= 0.028,

Fig. 4.4) and contains at most two nodes for a given mode, while the radiative region of static
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models is larger (∆ log(q) ≈ 0.1 (low core he) to 0.3 (high core he), infered from Fig. 3.18), and
contains 6 to 8 nodes, thus having a greater influence on the modes. Note that we cannot find
any static model which has a radiative zone as small as the evolutionary models overshooting
zone, which would allow to compare both. Indeed, the radiative zone of static models becomes
smaller as long as the core he diminishes, however, a radiative arch (Fig. 3.28) appears before
the radiative zone could potentially become comparable in size to the overshooting one. This
is a first limitation of static models : because of their prescription on gradients and their fixed
C-O/He transition, they cannot properly reproduce the overshooting phenomenon found in
evolutionary models.

Fig. 4.7: Weight function for a trapped mode (left), and a normal mode (right), for an evolutive
model at core he = 0.9. Parameters : lq env = -2.

Let us now analyse pulsation spectra after the onset of semi-convection, that is from core he
= 0.7. Strongly trapped modes are directly apparent, and each trapped modes we see here,
would they be rather weakly trapped as on the right of the pulsation spectrum at core he =
0.6, or more strongly trapped, as the modes for core he = 0.2 and 0.4, are modes trapped in
the semi-convection zone. In Fig. 4.8, we show the weight function of such a trapped mode,
against a normal mode. We find that trapped modes have a strong weight function amplitude
in the semi-convection zone, compared the radiative mantle and envelope, and the opposite for
the normal mode. It is now readily apparent that as a general trend, every trapped modes, for
static or evolutionary models, are characterized by weight functions of high amplitude in their
trapping regions compared to outside of it, providing another reliable way to distinguish those
modes from others (in addition of pulsation spectra and their kinetic energy).

An insight on why we find trapped modes in the semi-convective zone is given by the
propagation diagram on Fig. 4.9. We directly see that the wave like pattern of the nodes we
once saw only near the C-O/He transition in static models (Fig. 3.12 and Fig. 3.13), and that
was associated with mode trapping, is now present at multiple positions in the semi-convection
zone. This provides not only modes which are strongly trapped, but also a greater number of
them in general. The effects on the Brunt-Väisälä frequency of the semi-convection treatment
by diffusion coefficients is also clearly seen as the “noisy” part betweenm(r) ≈ 0.17 and 0.25M⊙.
While the overshooting zone did have an effect for high core he modes by providing a form of
weak trapping (Fig. 4.7), it seems to be completely overpowered once semi-convection starts.
In particular, we cannot find modes which are trapped in the overshooting zone while not being
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Fig. 4.8: Weight function for a trapped mode (left), and a normal mode (right), for an evolutive
model at core he = 0.2 and lq env = -2.

trapped in the semi-convection zone. Note that pulsation spectra dominated by trapping in
the semi-convection zone for evolutionary models are actually quite close to pulsation spectra
at high lq core with low core he for 4G models (Fig. 3.25), that is, pulsation spectra associated
with the radiative arch seen on Fig. 3.28 appearing at those low core he. We will discuss this
further in the next chapter, and for now leave it as a noticable feature.

Fig. 4.9: Propagation diagram for an evolutionary model in m(r) scale, for core he = 0.2 and
lq env = -2.
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4.3 Asymptotic period spacing

M. Tassoul developed an asymptotic theory for non-radial adiabatic pulsations of high order
in the context of the Cowling approximation, that is, from the system (1.39) - (1.40), in Tassoul
(1980). Following this work, in Brassard et al. (1992b), the theory is expended upon to take
in account the discontinuities of the Brunt-Väisälä frequency due to chemical transitions for a
white dwarf, and also valid in a stratified star such as an sdB. The asymptotic theory allows
predicting the mean period spacing between two consecutive modes of radial indices k and k+1
:

Pk+1 − Pk = Π0,l (4.1)

with : Π0,l =
2π2√
l(l + 1)

(ˆ R

rc

|N |
r

dr

)−1

(4.2)

The integration in equation (4.2) occurs from rc, which is the convective core upper boundary,
to R, the surface of the star, and gives the theoretical mean period spacing between two
consecutives modes, as we integrate over the whole propagation region of any g-modes. In
the same way, we can find the theoretical period spacing between two trapped modes in the
semi-convection region ΠT,l by integrating over the boundaries of the semi-convection zone. We
will then compare those two theoretical spacings to observed ones from the pulsation spectra
of our evolutionary models. With this experiment, we not only validate the asymptotic theory
against our models, but also further ensure that it is indeed the semi-convection zone that has
a strong influence on our trapped modes. The integral is computed using a classic trapezoidal
numerical integration scheme, and we limit ourselves to core he = 0.2 for the minimal amount
of core helium abundance. Below this core helium abundance, we find a phenomenon called
“breathing pulses” which brings back helium into the core, as well as changing the pulsation
spectra heavily. This phenomenon is not yet well understood, and since it is unsure if it is
physical, we consider its study outside the scope of this master thesis.

In Fig. 4.10 we give the theoretical mean reduced period spacing for all lq env, Π0,l

√
l(l + 1),

as a function of the core helium abundance core he. The difference in behavior observed after
the onset of semi-convection, around core he = 0.7, is directly due to the variations in the
Brunt-Väisälä frequency associated with semi-convection treatment (Fig. 4.9). This is found
for all lq env, in alignement with the non-dependency of pulsation spectra with lq env shown
in Fig. 4.5. The theoretical mean period spacing steadily increases with core he diminishing,
and shows a maximum around core he = 0.4, decreasing afterward.

Figure 4.11 shows the theoretical reduced period spacing between two modes trapped in
the semi-convection zone ΠT,l

√
l(l + 1), the behavior of which is also independent on lq env.

The onset of semi-convection is clear, with a sharp rise around core he = 0.7, and actually
the part before this onset should be discarded during the comparison between theoretical and
observed spacings. Indeed, there can be no mode trapped in the semi-convection zone if it
has not appeared yet, and the value we find below core he = 0.7 is only a consequence of the
criterion used to define the semi-convection zone in section 4.1.2, which gives a non-zero semi-
convection zone size for high core he, as seen on Fig 4.4. The downward trend of ΠT,l

√
l(l + 1)

after the onset of semi-convection is explained directly from the size of the semi-convection zone
increasing with diminishing core helium abundances, as seen Fig 4.4. This size growth widens
the integration boundaries, increasing the value of the integral as a consequence, and thus
decreasing the value of ΠT,l

√
l(l + 1) due to the negative exponent on the integral in equation

(4.2).

Since the trends we find for the two theoretical period spacings are the same for any lq env,
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Fig. 4.10: Mean reduced period spacing between two consecutive modes of order k and k + 1,
for each lq env in function of core he.

Fig. 4.11: Mean reduced period spacing between two trapped modes in the semi-convective
zone, for each lq env in function of core he.

we now focus on the lq env = -2 model. We limit our study of the mean period spacing in those
models at low enough core he so that we have not only the presence of the semi-convection
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zone, but also at least two trapped modes, since it is not possible to compute a mean period
spacing for consecutively trapped modes otherwise. In Fig. 4.12 we give on the top panel the
theoretical mean period spacing in blue, and in red the observed period spacing. We observe
a very good agreement between model and theory, and the relative difference (bottom panel)
between the two is of the order of 1%, and always less than 2%.

Fig. 4.12: On top : mean reduced period spacing between two consecutive modes of order k
and k + 1, in blue the theoretical value, in red the model computed value, for lq env = -2. On
the bottom : relative difference between the theoretical value and model computed one, in %.

In Fig. 4.13 we give on the top panel, the theoretical and observed mean period spac-
ings between two trapped modes in a semi-convection zone, as a function of the core helium
abundance. The observed value is in red, and we compute the theoretical value with integral
boundaries over only the semi-convection zone in blue, and over both the overshooting and
semi-convection zone in green. It is direct that taking in account only the semi-convection zone
gives a better agreement between period spacings from model and theory. The impact of the
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semi-convection zone compared to the overshooting zone increases with diminishing core he, as
the semi-convection zone grows in size, and thus we see that the theoretical spacing counting
both zones (green) converges to the one counting only semi-convection (blue) with decreasing
core he. This further highlights the low influence of the overshooting region on the trapped
modes at low core helium abundances. On the bottom panel of Fig. 4.13, the relative difference
between the theoretical spacing ΠT,l

√
l(l + 1) counting only the semi-convection zone, and the

observed spacing, is between 5 and 10%, and never more than 16%. The relative difference
between spacings decreases with core he since we find an increased number of trapped modes
at low core he, as seen on Fig. 4.6, which increases the accuracy of the observed spacing as we
take a mean of all observed spacings between consecutive trapped modes in our computations,
for each core he. Additionally, the number of layers in our models associated with the semi-
convection zone is initially low, reflecting its small size in log(q) scale, and this number of layers
increases as the semi-convection zone grows. Each of those layers represents a value point for
the physical quantities of our models, and a higher number of points, which then increases with
diminishing core he, is associated with a more accurate numerical integration.
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Fig. 4.13: On the top : mean reduced period spacing between two consecutive trapped modes
in the semi-convection zone, in blue the theoretical value with no overshooting zone, in green
the theoretical value including the overshooting zone, and in red the model computed value,
for lq env = -2. On the bottom : relative difference between the theoretical value and model
computed one, in %.



Chapter 5

Conclusion and Perspectives

In this chapter, I summarize the results found in this master thesis, and I discuss their
implications. First, we have observed notable differences for the evolution of the pulsation
spectra as long as core helium is burnt in the core between static and evolutionary models.
For static models, high core helium abundance core he spectra show numerous trapped modes
(Fig. 3.16, top panels) in a radiative region below the C-O/He transition (Fig. 3.17). The
transition’s position in log(q) scale lq core determines the behavior of the pulsation spectra at
low core he. If lq core is low (lower than ≈ −0.20), the region below the C-O/He transition
is fully convective at low core he, and we find weakly trapped modes (Fig. 3.16, for core he ≤
0.4, Fig. 3.25, bottom and middle panels). If lq core is high enough (greater than ≈ −0.20),
the convective core, which grows with decreasing core helium abundance (Fig. 3.18), is unable
to reach the C-O/He transition at low core he, and we find strongly trapped modes (Fig. 3.25,
top right panel), which are trapped in a radiative arch below the C-O/He transition (Fig. 3.28,
Fig.3.29). Concerning the evolutionary models, pulsation spectra evolution is linked to the
onset of semi-convection (Fig. 4.4). Before the onset of semi-convection, at high core helium
abundance (core he≳ 0.7), we find weakly trapped modes, which are trapped in an overshooting
region below the C-O/He transition (Fig. 4.6 top panels and Fig. 4.7). After the onset (core he
≲ 0.7), we find strongly trapped modes in the semi-convection zone instead (Fig. 4.6 bottom
panels and Fig. 4.8). Both static and evolutionary models highlight the importance of the
presence of a radiative zone under the C-O/He transition, as it is the main actor of mode
trapping for high core helium abundance in both cases.

The 4G static models do not appear to be able to correctly represent observed trapped
modes found in KIC 10553698A (Østensen et al. 2014), KIC 10001893 (Uzundag et al. 2017)
and EPIC 211779126 (Baran et al. 2017). On the other hand, not all sdB stars present such
trapped modes, showing on the contrary a more or less constant period spacing for high order
modes. It should be noted that the only way for 4G static models to reproduce a pulsation
spectrum akin to those of the aforementioned stars, is through modes trapped in the radiative
arch for high lq core and low core he, however, it is unsure if this radiative arch is physical
or not as of now. Seimic probing using static models has been done for (but not only) KPD
1943+4058 (Van Grootel et al. 2010a), KPD 0629-0016 (Van Grootel et al. 2010b) and EC
21494-7018 (Charpinet et al. 2019), giving respectively lq core = -0.37 ± 0.01, -0.27 ± 0.01 and
-0.295 ± 0.013 at core he = 0.739 ± 0.008, 0.59 ± 0.01 and 0.575+0.063

−0.027. It is noticable that in
these three stars, the C-O/He transition position lq core is found to be systematically higher
than predicted from evolutionary models, while the he core abundance is found to be relatively
high.

I wish also to highlight the differences in thermal structures of static and evolutionary
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models, in particular in the core, with different prescriptions for the temperature gradients. In
static models, the Schwarzschild criterion is used to define convective zones with∇ad ≤ ∇rad and
∇T = ∇ad fixed, and radiative zones with ∇ad > ∇rad, in those fixing ∇T = ∇rad instead. This
prescription leads to the so called “semi-convection problem” (Fig. 3.30), where a convective
zone appears right under the C-O/He transition, which might be non-physical. In STELUM
evolutionary models, this problem is addressed with a semi-convection zone obtained through
diffusion/convection interactions, leading to a convective core followed by an overshooting zone,
itself followed by the semi-convection zone (Fig. 4.2, right panel). Actually, we do not know the
behavior of the temperature gradient in actual stars. In a very recent development, Blouin et al.
(2024) found that, from 3D hydrodynamical simulations, a semi-convection zone might not be
able to last for long below the C-O/He transition. Instead, simulations show that the zone
below this transition becomes rapidly fully mixed thanks to efficient internal gravity waves
transport, implying that CHeB stars do not harbour a semi-convection zone. If this result
holds true, evolutionary models implementing semi-convection (whatever the prescription) do
not provide a better representation of the reality than 4G static models.

In that case, static models with a fully mixed (that is already the case) and convective core
(by imposing ∇T = ∇ad) might be a better description than evolutionary models with a semi-
convection zone. Note that an ongoing development of static models (called the 5th generation)
do allow for a partial mixing zone above the convective core and below the C-O/He transition.
This is at the price of several more parameters. It remains to be seen if these 5G models
could be used in practice to model observed g-modes in sdB stars. For evolutionary models,
a fully mixed core up to the C-O/He transition could also be implemented, by controlling the
overshooting parameter to allow the temperature gradient to be equal to the adiabatic gradient.

To conclude, our study shows that static and evolutionary models need to be used in con-
junction to infer if a semi-convection zone might or not be located in the core of CHeB stars. It
is only by comparing the result of both model types with observed pulsation spectra that this
uncertainty will be lifted, leading to an accurate description of thermal and chemical structures
of core-helium burning stars on the horizontal and extreme horizontal branches.
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tion. 1991a. ApJ, Vol. 367, 601. doi: 10.1086/169655.

P. Brassard, G. Fontaine, F. Wesemael, and C. J. Hansen. Adiabatic Properties of Pulsating
DA White Dwarfs. II. Mode Trapping in Compositionally Stratified Models. 1992b. ApJS,
Vol. 80, 369. doi: 10.1086/191668.

P. Brassard, C. Pelletier, G. Fontaine, and F. Wesemael. Adiabatic Properties of Pulsating DA
White Dwarfs. III. A Finite-Element Code for Solving Nonradial Pulsation Equations. 1992c.
ApJS, Vol. 80, 725. doi: 10.1086/191679.

A. Bédard, P. Brassard, P. Bergeron, and S. Blouin. On the Spectral Evolution of Hot White
Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs
with STELUM. 2022. ApJ, Vol. 927 (N°1), 128. doi: 10.3847/1538-4357/ac4497.

75



76 BIBLIOGRAPHY

V. Castellani, Giannone, P., and Renzini, A. Overshooting of convective cores in helium-burning
horizontal-branch stars. 1971a. Astrophysics and Space Science, Vol. 10 (N°2), 340–349. doi:
10.1007/BF00704092.

S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild
Limit in General Relativity. 1964. ApJ, Vol. 140, 417. doi: 10.1086/147938.
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2008. PhD thesis, Université Paul Sabatier.
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Appendix A

Codes

In this appendix, I present the codes I developed to produce the different graphs of this
master thesis. To interpret evolutionary and static models files, I created a local package in
python called Asteroseismology for STELUM and PULSE (ASP). This package is composed
of three main types of programs. The interpreters are charged of extracting data from various
files and computing values from them, the plotters produce graphs from those data, and the
main programs make the link between plotters and interpreters program files. There exists
three interpreters, one for STELUM stellar structure data, another for PULSE files which
notably gathers the period and kinetic energy of the modes, and a last one which gathers the
weight functions and eigenfunctions of our modes from so called “EIG files” (files with the .eig
extension). Each of those interpreters is associated with a plotter respectively, which are given
later on. Additionally, we find a few special plotter programs which compute the cancelling
factor for Fig. 1.4, the propagation diagrams, and the spherical harmonics on Fig. 1.3. Finally,
we find a standalone file in charge of computing and plotting (for evolutive models only) the size
of the convective core, overshooting zone, and semi-convection zone, as well as the theoretical
and experimental period spacings for all modes (mean period spacing), and for modes trapped
in the semi-convective region.

This package was designed by necessity of automating effectively the obtention of several
graphs to do systematic studies of parameters in our models. Special attention was given to
having adaptable functions for both static and evolutionary models in order to gain clarity
as well as computing efficiency. In total, I computed 63 static models with various parame-
ters in this master thesis, associated with close to 90000 graphs. I was also given 6 different
evolutionary models, for which I computed around 16000 graphs.

A.1 Interpreters

The stelum interpreter first extracts the data from a typical STELUM stellar structure
file. In this master thesis, we work with the so-called “5m format”, which means that we
are given 5 lines of different data for each layers of our stellar structure (generally, we have
4800 layers for a given core helium abundance). We give a more detailed description of what
each line is composed of below, with the functions line zero() to line four(). Those where
implemented in the code for readability.

1 def line_zero():

2

3 """
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4 n - layer number

5 r - radius

6 mr - mass inside a radius r

7 rho - density

8 p - pressure

9 t - temperature

10 chir - partial ln P / partial ln rho |T

11 chit - partial ln P / partial ln T |rho

12 del - gradient

13 delad - adiabatic gradient

14 y - Helium mass fraction

15 b - Ledoux term

16 lq - loq(1-mr/Mtot)

17 mode - 1:Y=0,2:Y is rising,3:Y=1,4:Y is diminishing,5:Y=0

18 fl - 0:radiative, 1:convective

19 fx - 0:liquid, 1:solid"""

1 def line_one():

2

3 """

4 lum - luminosity

5 eta - d ln L / d ln r

6 etar - d ln L_rad / d ln r

7 kappa - rosseland opacity

8 kappar - partial ln k / partial ln rho |T

9 kappat - partial ln k / partial ln T |rho

10 delra - radiative gradient

11 zeta - d ln delad / d ln r

12 eps - nuclear epsilon & epsilon neutrino

13 epsr - partial ln eps / partial ln rho |T

14 epst - partial ln eps / partial ln T |rho"""

1 def line_two():

2

3 """

4 tau - log(optical depth)

5 w - delrad/delrad_diffusion

6 wg - d ln W / d ln g |Teff,tau

7 wtef - d ln W / d ln Teff |g,tau

8 wtau - d ln W / d ln tau |g,Teff

9 delp - partial ln del / partial ln P

10 delt - partial ln del / ln T

11 deltau - partial ln del / ln tau

12 delg - partial ln del / ln g

13 delgb - partial ln del / partial ln g_ (?)

14 deltf - partial ln del / ln Teff

15 deldel - partial ln del / partial ln delrad

16 deladp - partial ln delad / ln P |T

17 deladt - partial ln delad / partial ln T |P

18 dadmd - delad-del"""

19

1 def line_three():

2

3 """
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4 u - internal energy

5 dudt - partial ln U / partial ln T |rho,X_i

6 dudrho - partial ln U / partial ln rho |T,X_i

7 cp - specific heat at constant pressure

8 cv - specific heat at constant density

9 eta_e - degeneracy parameter

10 z - average ionization state

11 gamma - ionic correlation parameter"""

1 def line_four():

2

3 """

4 h - hydrogen mass fraction

5 he - helium mass fraction

6 c - carbon mass fraction

7 o - oxygen mass fraction"""

8

We extract those lines and associated data with the extracting() function below. Since
the static and evolutionary models come with the same stellar structure format, we can use this
function for both without issues. Inputing a given stellar structure file, we gather afterward
the data in a three dimentionnal array, which contains the five lines of data for each layers of
the file.

1 def extracting(file):

2

3 """Extracts data from format 5m stelum files, format is as follows :

4

5 Extracted data is in an array read as [layer,line,data_index]

6 Below is "line" - "data_index":"data"

7 {xx} is log10 value of xx

8

9 0 - 0:<n>,1:r,2:mr,3:rho,4:p,5:t,6:chir,7:chit,8:grad,9:delad,10:Y,11:b,12:lq,13:<mod ⌋
e>,14:<fl>,15:<fx>↪→

10 1 - 0:<lum>,1:eta,2:etar,3:kappa,4:kappar,5:kappat,6:delrad,7:zeta,8:eps,9:epsr,10:ep ⌋
st↪→

11 2 - 0:{tau},1:w,2:wtau,3:delr,4:delp,5:deltau,6:dellum,7:dp,8:dt,9:dadmd

12 3 - 0:<ui>,1:duidp,2:cp,3:cv,4:eta_e,5:zmoy,6:gamma

13 4 - 0:<H>,1:He,2:C,3:O,4:pg

14

15 Additional information can be found with help(line_number)

16 For example help(line_zero) gives the zero line quantity details."""

17

18 if file[-3:] == ".gz":

19 f = opening_gz(file)

20 else:

21 f = opening_non_gz(file)

22

23 main_count = 0 #counts the line we are at in the file

24 secondary_count = 0

25 #stelum data comes in periods of 5 lines for a given layer

26 #we thus use a secondary count which will inform us

27 #on which of the five lines we are.

28

29 for line in f:

30
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31 splitted = np.array(line.split()).astype(str)

32

33 if not line:

34 # just checks if we are at the end of the file

35 break

36

37 if main_count == 1:

38

39 # init stelum data set

40 n_couches = int(splitted[0])

41 n_lines = 5 #this is the 5 lines mentionned earlier (called 5m format)

42 n_rows_max = 16 #max number of datas in a given row in 5m format (some may

have less)↪→

43

44 stelum_data = np.zeros(n_couches*n_lines*n_rows_max).reshape(n_couches,n_line ⌋
s,n_rows_max)↪→

45 #init of the array containing all stelum files data

46

47 elif main_count > 1:

48

49 l_splitted = splitted.shape[0]

50 n_layer = (main_count-2)//5 #finding the layer we are currently in

51

52 stelum_data[n_layer,secondary_count,:l_splitted] =

np.array(line.split()).astype(float)↪→

53 #gathering the data !

54

55 secondary_count += 1

56 if secondary_count == 5:

57 secondary_count = 0#changing the line we're at and resetting to zero if we

went above 5↪→

58

59 main_count += 1

60

61 return(stelum_data)

We then can use those data to compute the Brunt-Väisälä and Lamb frequencies with the
following function compute bv lamb().

1 def compute_bv_lamb(stelum_data,lamb):

2

3 """Computes Brunt-Vaisala and Lamb frequencies

4

5 Takes [stelum_data] and [lamb] = np.array([1,2,3,4..])

6

7 Returns : b_v for log(N^2), lamb_l[l] for log10(L_l**2)

8 lq, mr

9 """

10

11 grav_constant = grav_const = 6.6743e-8 #cgs units

12

13 r = stelum_data[:,0,1] #radius

14 mr = stelum_data[:,0,2] #mass contained in said radius

15 rho = stelum_data[:,0,3] #density

16 p = stelum_data[:,0,4] #pressure

17 chir,chit = stelum_data[:,0,6],stelum_data[:,0,7] #see "line zero()"

18 grad,grad_ad,b = stelum_data[:,0,8],stelum_data[:,0,9],stelum_data[:,0,11]

19 #real gradient, adiabatic gradient, ledoux compositionnal gradient
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20

21 lq = stelum_data[:,0,12] #log(q)

22

23

24 #below, we compute all terms needed for the Brunt Vaisala frequency

25 #and Lamb frequency

26 g = grav_const*mr/(r**2)

27 cs_2 = chir*p/rho

28 b_v = np.log10((g**2)*(rho/p)*(chit/chir)*(grad_ad - grad + b))

29

30 #iteration over degree "l" for the Lamb frequency

31 lamb_l = np.zeros(lamb.shape[0]*r.shape[0]).reshape(lamb.shape[0],r.shape[0])

32 for i,l in enumerate(lamb):

33 lamb_l[i] = np.log10(l*(l+1)*cs_2/(r**2))

34

35 mr_to_msun = mr/(1.9884e+33)

36 #converting the mass radius in msuns, for plots

37

38 return(b_v,lamb_l,lq,mr_to_msun)

The PULSE file interpreter works in the same way, except that evolutionary and static pulse
files do not have the same amounts of data. Thus, in the following function extracting(),
we must know which one we are working with, which is done with the extension of the files.
Static pulse files have a ”.gz” extension, while evolutionary pulse files do not, which we use to
identify which is which. Note that the extracting() function in this case does not gather
information, it simply distinguishes betwen different models and calls the functions which will
then extract data.

1 def extracting(file: str,l_max = 4,k_max = 70,mode_spacing=False):

2

3 """

4 Input :

5 -- file_path:str

6 -- l_max:int default = 4

7 -- k_max:int default = 70

8 -- mode_spacing:bool default = False ; if True, returns period spacing aswell

9

10 Returns :

11 -- pulse_data:array[l,k,data]

12 if Static : data: 0:ModeID,1:L,2:K,3:M,4:Pad,5:Pnad,6:Sigma,7:log

Ekin,8:Ckl,9:Kp,10:Kg,11:Kp+Kg↪→

13 if Evol : data: 0:L,1:K,2:Per,3:Var,4:Log(Ene),5;C,6:Kp,7:Kg,8:Kp+Kg,9:Ko

14 -- period_spacing:array[l,spacing for mode index+2-index+1] ; period spacing of

the modes↪→

15 """

16

17 if file[-3:] == ".gz":

18 #.gz files are always static files in our case

19 #we use this to our advantage !

20 opened_file = opening_gz(file)

21 static = True

22 pulse_data,adaptive_counter = data_extraction(opened_file,l_max,k_max,static)

23

24 else:

25 #if the file isn't .gz, it is thus an evolutive model

26 opened_file = opening_non_gz(file)

27 static = False
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28 pulse_data,adaptive_counter = data_extraction(opened_file,l_max,k_max,static)

29

30 for i in range(adaptive_counter.shape[0]):

31 #this makes sure we're not having zeros for modes that are just not there

32 #at the same time, it ensures we do not count the anormal value in period spacing

33 pulse_data[i,adaptive_counter[i]-1:,:] = np.nan

34

35 if mode_spacing == True:

36 #computing takes time, we use argument such mode_spacing = True

37 #to choose what we want, and when we want it, avoiding useless computing

38 period_spacing = period_spacing_computing(pulse_data,static,adaptive_counter)

39 return(pulse_data,period_spacing)

40

41 return(pulse_data)

The extracting() function calls data extraction(), which is the one extracting data
from the PULSE files. In particular, it identifies g-modes, their degree and radial order, as well
as their period and kinetic energy.

1 def data_extraction(f,l_max,k_max,static):

2

3 """Extracts the data from .pulse files"""

4

5 main_count = 0 #count the line we are at in the file

6 start = 1e3 #to define the start of datas (avoiding non-data lines)

7

8 adaptive_counter = np.zeros(l_max,dtype=int)

9 #each modes of degree l do not have the same amount of radial orders computed

(sometimes)↪→

10 #this makes sure we track the correct number of radial orders for each

11

12 for line in f:

13

14 main_count +=1

15

16 #here, part for the "é" accents in evolutive files...

17 try:

18 splitted = np.array(line.split()).astype(str)

19 except UnicodeDecodeError:

20 #spots the "é" accent and skips the data line

21 splitted = []

22

23 if "K" in splitted and "L" in splitted:

24 #for pulse files, data gathering starts 2 lines after the "K" and "L" letter

line↪→

25 start = main_count + 2

26

27 if start == main_count:

28 #we initialize the array for data gathering here

29 #this cannot be done before as we use an adaptive number of data

30 #this is to account for both static and evolutives pulse files, which are

different↪→

31 data_number = splitted.shape[0]

32 pulse_data =

np.zeros(l_max*k_max*data_number).reshape(l_max,k_max,data_number)↪→

33

34 if start <= main_count:

35 splitted = splitted.astype(float)
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36 if static == True:

37 #gathering l and k values for static models

38 l,k = int(splitted[1]),int(splitted[2])

39 else:

40 #gathering l and k values for evolutive models

41 l,k = int(splitted[0]),int(splitted[1])

42 l = l-1 #for l to follow python indexing...

43 if k < 0 and adaptive_counter[l] < k_max:

44 #and here we iterate on the adaptive counter

45 #we'll use this counter later on

46 pulse_data[l,adaptive_counter[l],:] = np.array(line.split()).astype(float)

47 adaptive_counter[l] += 1

48

49 return(pulse_data,adaptive_counter)

If we wish to compute the period spacing between modes as well, then we use mode spacing
= True in the extracting() function, which calls period spacing computing :

1 def period_spacing_computing(pulse_data,static,adaptive_counter):

2

3 """

4 Computes the period spacing for each modes"""

5

6 if static == True:

7 index = 4

8 else:

9 index = 2

10 #above, we simply account for periods not being at the same location

11 #in evolutive and static models

12

13 periods = pulse_data[:,:,index]

14 rolled_periods = np.roll(periods,axis=1,shift=-1)

15 period_spacing = rolled_periods - periods

16 #2-1,3-2....,70-69,1-70

17 #we compute the period spacing above

18

19 return(period_spacing)

Finally, for the interpreters, we find the EIG file interpreter. EIG files are large data files
containing in particular the weight function and the y1 and y2 eigenfunctions values. Those files
contain, for each, a mode of single degree l (they can have multiple degrees, but then become
extremely heavy), but multiple radial orders. In our case, generally, the EIG files then contain
l = 1 modes with up to 70 radial orders. We use a function called extracting(), to extract
those radial orders as well as the associated weight function, and the eigenfunctions y1 and y2.

1 def extracting(file,k_max=70,data_number=12,average_n = 16000):

2

3 """Extracts data from format eig files

4

5 Returns : eig_data[k,line(n),data]

6

7 data : 0:xi,1:y1,2:y2,3:y3,4:y4,5:ri/rt,6:xir/rt,7:xih/rt,8:dT/T,9:wfi/wfmax,10:lqi,1 ⌋
1:rki/rkmax"""↪→

8

9 main_count = 0 #counts which line we are at in the file

10 mode_count = 1e3 #needed to skip non-data lines
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11 k_finder = 1e3 #needed to skip non-data lines

12 real_k = 0 #needed against ill-counted modes

13 k = 0

14

15 eig_data = np.zeros(k_max*data_number*average_n).reshape(k_max,average_n,data_number)

16

17 with open(file,'r') as f:

18 for line in f:

19

20 main_count += 1

21

22 splitted = np.array(line.split()).astype(str)[1:] #array of data

23 #[-1:] to account for the first collum which put some random "****" after n =

9999.↪→

24

25 if "K" in splitted: #spots the starts of mode of radial order k

26 mode_count = main_count + 5 #accounts for non data lines

27 k_finder = main_count + 1 #accounts for non data lines

28 if k_finder == main_count: #indicates we can start gathering data

29 k = int(splitted[0]) #retains the radial order of the mode

30 if k < 0 and mode_count <= main_count and real_k < k_max:

31 #k < 0 to account for g-modes only

32 #real_k < k_max to avoid overflow from badly numeroted modes

33 try:

34 eig_data[real_k,main_count - mode_count,:] = splitted #actually

gathers data↪→

35 except ValueError:

36 real_k += 1 #counts the "real k", which can be different from the k

given in the file↪→

37 n = main_count - mode_count #find the real "n" (finds the last line of

data for a given mode k)↪→

38

39 eig_data = eig_data[:,:n,:] #slicing at the real "n"

40 x = int(np.sum(eig_data[:,-1,5])) #finds the real number of modes < k_max

41 eig_data = eig_data[:x,:,:] #slice at the real number of modes

42

43 return(eig_data)

In order to draw propagation diagrams, we also need the zeros of y1 (and y2 if we wish to
see them). To find them, we use the zero finder() function given below :

1 def zero_finder(eig_data):

2

3 """

4 Returns : zeros[y_{index+1},k,zeros]

5 Modes with anormal zeros are a line of full np.nan."""

6

7 k_max = eig_data.shape[0] #find the k_max to define the size of next arrays

8

9 zeros = np.zeros(k_max**2).reshape(k_max,k_max)

10 zeros = np.array([zeros,zeros])

11 #this array contains the zeros of the y1 and y2 eigenfunctions for each k

12

13 y = np.array([eig_data[:,:,1],eig_data[:,:,2]]) #array containing y1 and y2 values

14

15 for i in range(y.shape[0]):

16 for k in range(k_max):

17 before_zeros = np.where(np.diff(np.sign(y[i,k,:])))[0]
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18 #we find the index at which we switch sign

19 #we gather both the index before and after that sign switch

20 after_zeros = before_zeros + 1

21 try:

22 zeros[i,k,:k+1] = ((eig_data[k,before_zeros,10] +

eig_data[k,after_zeros,10])/2)↪→

23 #find the half index (for more precision)

24 except ValueError as error:

25 continue

26 zeros[zeros == 0] = np.nan #to not have issues in plots

27 return(zeros)

A.2 Plotters

The plotters are used to “plot” (understand display) the graphs we have seen in this master
thesis. We first find three main plotters associated to the three interpreters. The STELUM
plotter provides a way to plot the Brunt-Väisälä frequency with plot bv lamb(), the chem-
ical abundances with plot chemical fractions(), the different gradients (∇T , ∇ad, ∇rad)
with plot gradients() and the ledoux term B with plot ledoux term(). We give those
function in that same order below.

1 def plot_BV_Lamb(stelum_data,image_path,file_name,l=np.array([1,4]),mr_axes =

False,set_xlim=["min","max"],set_ylim=["min","max"]):↪→

2

3 """Plotting of the Brunt-Vaisala and Lamb frequency"""

4

5 b_v,lamb_l,lq,mr = stelum.compute_bv_lamb(stelum_data,l)

6 #Gathers the Brunt-Vaisala frequency, the Lamb frequency, the log(q) and m(r) scales

7

8 colors = cm.rainbow(np.linspace(0, 1, 1 + l.shape[0])) #color scheme

9

10 fig,ax = plt.subplots()

11

12 if mr_axes == True:

13 #here, if we want axes in m(r) scale

14 lq = mr

15 ax.set_xlabel(r"m(r)")

16 ax.set_ylim(-15,0)

17 ax.set_xlim(xmin = np.nanmax(lq),xmax = np.nanmin(lq))

18 else:

19 #and here if we want axes in log(q) scale

20 ax.set_xlabel(r"log(q)")

21 ax.set_ylim(-5,0)

22 ax.set_xlim(np.nanmin(lq),np.nanmax(lq))

23

24 if set_ylim != ["min","max"]:

25 ax.set_ylim(ymin=set_ylim[0],ymax=set_ylim[1])

26

27 if mr_axes == False and set_xlim != ["min","max"]:

28 #m(r) scale axes are from 0 to positive value

29 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

30 elif mr_axes == True and set_xlim != ["min","max"]:

31 #log(q) scale axes are from 0 to negative value

32 ax.set_xlim(xmin=set_xlim[1],xmax=set_xlim[0])

33

34
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35 ax.plot(lq,b_v,color = colors[0],label = r"$N^2$",linewidth = 1)

36 #plots the Brunt-Vaisala frequency

37

38 for i,l in enumerate(l):

39 #plots the Lamb frequency for each degree "l" we want

40 ax.plot(lq,lamb_l[i],color = colors[i+1], label =

r"$L_{{{}}}$".format(l),linewidth = 1)↪→

41

42 ax.invert_xaxis()

43 ax.set_ylabel(r"$log(N^{2})$")

44 ax.legend()

45 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

46 plt.close()

1 def plot_chemical_fractions(stelum_data,image_path,file_name,mr_axes =

False,set_xlim=["min","max"]):↪→

2

3 """Plotting of the chemical abundances"""

4

5 h,he,c,o = stelum_data[:,4,0],stelum_data[:,4,1],stelum_data[:,4,2],stelum_data[:,4,3]

6 #gathers the hydrogen, helium, carbon, oxygen abundances

7 lq,mr = stelum_data[:,0,12],stelum_data[:,0,2]/(1.9884e+33) #converting to Msuns

8 #gathers the log(q) and m(r) scales, changes the m(r) scale to Msun units

9

10 colors = cm.rainbow(np.linspace(0, 1, 4)) #colors scheme

11

12 #colors = cm.rainbow(np.linspace(0, 1, 4+4)) #color scheme Fig.~3.3

13

14 fig,ax = plt.subplots()

15

16 if mr_axes == True:

17 #here if we want m(r) axes

18 lq = mr

19 ax.set_xlabel(r"m(r)")

20 ax.set_xlim(xmin = np.nanmax(lq),xmax = np.nanmin(lq))

21 else:

22 #here if we want log(q) axes

23 ax.set_xlabel(r"log(q)")

24 ax.set_xlim(np.nanmin(lq),np.nanmax(lq))

25

26 if mr_axes == False and set_xlim != ["min","max"]:

27 #m(r) scale axes are from 0 to positive value

28 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

29 elif mr_axes == True and set_xlim != ["min","max"]:

30 #log(q) scale axes are from 0 to negative value

31 ax.set_xlim(xmin=set_xlim[1],xmax=set_xlim[0])

32 chem_fractions = np.array([h,he,c,o])

33 labels = ["H","He","C","O"]

34

35 for i,chem in enumerate(chem_fractions):

36 #plots each chemical abundances

37 ax.plot(lq,chem,color = colors[i],label = labels[i],linewidth = 1)

38

39 #below are special Fig.~3.3 plots

40 #ax.axvline(x = -2,color = colors[4],linewidth = 1,label =

"lq_env",linestyle="dashed")↪→

41 #ax.axvline(x = -4.5,color = colors[5],linewidth = 1,linestyle="dashed",label =

"lq_diff")↪→
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42 #ax.axvline(x = -0.25,color = colors[6],linewidth =

1,linestyle="dashed",label="lq_core")↪→

43 #ax.hlines(y = 0.05,xmin = 0, xmax= -0.23 , color = colors[7],linewidth =

1,linestyle="dashed",label="flash_c")↪→

44

45 ax.set_ylim(0,1)

46 ax.set_ylabel("mass fraction")

47 ax.invert_xaxis()

48 ax.legend()

49 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

50 plt.close()

1 def plot_gradients(stelum_data,image_path,file_name,lq_env = -2, lq_core = -0.25,mtot =

0.47,mr_axes = False,set_xlim=["min","max"],set_ylim=["min","max"],static = True):↪→

2

3 """Plotting of the real, adiabatic and radiative gradients"""

4

5 grad_T = stelum_data[:,0,8] #real gradient

6 grad_ad = stelum_data[:,0,9] #adiabatic gradient

7 grad_rad = stelum_data[:,1,6] #radiative gradient

8 lq,mr = stelum_data[:,0,12],stelum_data[:,0,2]/(1.9884e+33)

9 #gathering log(q) and m(r) scales, converting m(r) scale in Msun

10

11 colors = cm.rainbow(np.linspace(0, 1, 5)) #color scheme

12

13 fig,ax = plt.subplots()

14

15 if mr_axes == True:

16 #here if we want m(r) axes

17 lq = mr

18 ax.set_xlabel(r"m(r)")

19 ax.set_xlim(xmin = np.nanmax(lq),xmax = np.nanmin(lq))

20 lq_env = (1-10**(lq_env))*mtot

21 lq_core = (1-10**(lq_core))*mtot

22 #converting transitions lq_env and lq_core log(q) values in m(r) ones

23 else:

24 #here if we want log(q) axes

25 ax.set_xlabel(r"log(q)")

26 ax.set_xlim(np.nanmin(lq),np.nanmax(lq))

27

28 if mr_axes == False and set_xlim != ["min","max"]:

29 #m(r) scale axes are from 0 to positive value

30 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

31 elif mr_axes == True and set_xlim != ["min","max"]:

32 #log(q) scale axes are from 0 to negative value

33 ax.set_xlim(xmin=set_xlim[1],xmax=set_xlim[0])

34

35 if set_ylim != ["min","max"]:

36 ax.set_ylim(ymin=set_ylim[0],ymax=set_ylim[1])

37

38 #we plot all three gradients below

39 ax.plot(lq,grad_T,color = colors[0],label = r"$\nabla_T$",linewidth = 1)

40 ax.plot(lq,grad_ad,color = colors[1],label = r"$\nabla_{ad}$",linewidth = 1,linestyle

= "dashed")↪→

41 ax.plot(lq,grad_rad,color = colors[2],label = r"$\nabla_{rad}$",linewidth =

1,linestyle = "dashed")↪→

42
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43 #we plot lq_env and lq_core transitions below

44 ax.axvline(x = lq_env,color = colors[3],linewidth = 1,label = "lq_env")

45 if static == True:

46 ax.axvline(x = lq_core,color = colors[4],linewidth = 1,label = "lq_core")

47

48 ax.set_ylabel("gradients")

49 ax.invert_xaxis()

50 ax.legend()

51 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

52 plt.close()

1 def plot_ledoux_term(stelum_data,image_path,file_name,mr_axes =

False,set_xlim=["min","max"],set_ylim=["min","max"]):↪→

2

3 """Ledoux term plotting"""

4

5 b = stelum_data[:,0,11] #gathering the Ledoux term

6 lq,mr = stelum_data[:,0,12],stelum_data[:,0,2]/(1.9884e+33)

7 #gathers log(q) and m(r) scale, converting m(r) scale to Msun

8

9 colors = cm.rainbow(np.linspace(0, 1, 1)) #4 as in 4 chem_fractions to look at here

10

11 fig,ax = plt.subplots()

12

13 if mr_axes == True:

14 #if we want m(r) scale

15 lq = mr

16 ax.set_xlabel(r"m(r)")

17 ax.set_xlim(xmin = np.nanmax(lq),xmax = np.nanmin(lq))

18 else:

19 #if we want log(q) scale

20 ax.set_xlabel(r"log(q)")

21 ax.set_xlim(np.nanmin(lq),np.nanmax(lq))

22

23

24 if mr_axes == False and set_xlim != ["min","max"]:

25 #m(r) scale axes are from 0 to positive value

26 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

27 elif mr_axes == True and set_xlim != ["min","max"]:

28 #log(q) scale axes are from 0 to negative value

29 ax.set_xlim(xmin=set_xlim[1],xmax=set_xlim[0])

30

31 if set_ylim != ["min","max"]:

32 ax.set_ylim(ymin=set_ylim[0],ymax=set_ylim[1])

33

34 ax.plot(lq,b,color = colors,label = "B",linewidth = 1)

35 #plots the Ledoux term

36

37 ax.set_ylabel("mass fraction")

38 ax.invert_xaxis()

39 ax.legend()

40 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

41 plt.close()

The PULSE plotter allows plotting pulsation spectra with plot deltap() and the kinetic
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energy with plot ecin(). We can merge those two graphs with subplot deltap ecin (ac-
tually, we do not really “merge” the graphs, rather, we compute them again, but to form a
subplot). Those functions are given below in order.

1 def plot_deltaP(pulse_data,mode_spacing,image_path,file_name,l=np.array([1,4])):

2

3 """Plotting of the reduced period spacing pulsation spectra"""

4

5

6 colors = cm.rainbow(np.linspace(0, 1, l.shape[0])) #color scheme

7

8 fig,ax = plt.subplots()

9

10 for i,l in enumerate(l):

11 #iterates on "l", would we want multiple degrees to show

12

13 if pulse_data[l-1,0,:].shape[0] == 12:

14 #static models pulse data arrays have a given number of datas

15 #we use this to find if we plot a static or evolutive model

16 reduced_periods = pulse_data[l-1,:,4]*np.sqrt(l*(l+1))

17 reduced_period_spacing = mode_spacing[l-1,:]*np.sqrt(l*(l+1))

18 #we also compute reduced periods and period spacing at the same time

19

20 else:

21 reduced_periods = pulse_data[l-1,:,2]*np.sqrt(l*(l+1))

22 reduced_period_spacing = mode_spacing[l-1,:]*np.sqrt(l*(l+1))

23 #computes reduced periods and period spacing

24

25 ax.plot(reduced_periods,reduced_period_spacing,color=colors[i],label = "l =

{}".format(l), linewidth = 1)↪→

26 #plots the reduced periods spacing pulsation spectra

27 ax.scatter(reduced_periods,reduced_period_spacing,color=colors[i], s = 3)

28 #plots a dot for each radial order

29

30 ax.set_ylabel(r"$\Delta P\times\sqrt{l(l+1)}$")

31 ax.set_xlabel(r"$P\times\sqrt{l(l+1)}$")

32

33 ax.legend()

34 ax.set_ylim(50,500)

35 ax.set_xlim(0,25000)

36

37 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

38 plt.close()

1 def plot_Ecin(pulse_data,image_path,file_name,l=np.array([1,4]),set_ylim=np.array([40.5,4 ⌋
9])):↪→

2

3 """Plotting of the kinetic energy"""

4

5 colors = cm.rainbow(np.linspace(0, 1, l.shape[0]))

6

7 fig,ax = plt.subplots()

8

9 for i,l in enumerate(l):

10

11 if pulse_data[l-1,0,:].shape[0] == 12:

12 #static models pulse data arrays have a given number of datas
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13 #we use this to find if we plot a static or evolutive model

14 reduced_periods = pulse_data[l-1,:,4]*np.sqrt(l*(l+1))

15 reduced_periods[reduced_periods==0] = np.nan

16 Ecin = pulse_data[l-1,:,7]

17 #Computes the reduced periods and gather Ecin data

18 else:

19 #Computes the reduced periods and gather Ecin data

20 reduced_periods = pulse_data[l-1,:,2]*np.sqrt(l*(l+1))

21 reduced_periods[reduced_periods==0] = np.nan

22 Ecin = pulse_data[l-1,:,4]

23

24

25 ax.plot(reduced_periods,Ecin,color=colors[i],label = "l = {}".format(l), linewidth

= 1)↪→

26 #plots the kinetic energy against the reduced periods

27 ax.scatter(reduced_periods,Ecin,color=colors[i], s = 3)

28 #plots a dot for each radial order

29

30 ax.set_xlabel(r"$P\times\sqrt{l(l+1)}$")

31 ax.set_ylabel(r"E$_{kin}$")

32

33 ax.legend()

34 ax.set_xlim(0,25000)

35 ax.set_ylim(set_ylim[0],set_ylim[1])

36

37 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

38 plt.close()

1 def subplot_deltaP_Ecin(pulse_data,mode_spacing,image_path,file_name,l=np.array([1,4]),se ⌋
t_ylim_ekin=np.array([40.5,49])):↪→

2

3 """Plotting of a double plot of pulsation spectra and kinetic energy"""

4

5 fig,ax = plt.subplots(2,1,sharex=True)

6 fig.subplots_adjust(hspace=0)

7

8 colors = cm.rainbow(np.linspace(0, 1, l.shape[0])) #color scheme

9

10

11 for i,l in enumerate(l):

12

13 if pulse_data[l-1,0,:].shape[0] == 12:

14 #static models pulse data arrays have a given number of datas

15 #we use this to find if we plot a static or evolutive model

16 reduced_periods = pulse_data[l-1,:,4]*np.sqrt(l*(l+1))

17 reduced_period_spacing = mode_spacing[l-1,:]*np.sqrt(l*(l+1))

18 reduced_periods[reduced_periods==0] = np.nan

19 Ecin = pulse_data[l-1,:,7]

20 #Computes the reduced periods, reduced period spacings and gather Ecin data

21 else:

22 #Computes the reduced periods, reduced period spacings and gather Ecin data

23 reduced_periods = pulse_data[l-1,:,2]*np.sqrt(l*(l+1))

24 reduced_periods[reduced_periods==0] = np.nan

25 Ecin = pulse_data[l-1,:,4]

26 reduced_period_spacing = mode_spacing[l-1,:]*np.sqrt(l*(l+1))

27

28 ax[0].plot(reduced_periods,reduced_period_spacing,color=colors[i], linewidth = 1)
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29 #plots the pulsation spectra on the top part

30 ax[0].scatter(reduced_periods,reduced_period_spacing,color=colors[i], s = 3)

31 #plots a dot for each radial order

32

33 ax[1].plot(reduced_periods,Ecin,color=colors[i],label = "l = {}".format(l),

linewidth = 1)↪→

34 #plots the kinetic energy on the bottom part

35 ax[1].scatter(reduced_periods,Ecin,color=colors[i], s = 3)

36 #plots a dot for each radial order

37

38 ax[0].set_ylabel(r"$\Delta P\times\sqrt{l(l+1)}$")

39 ax[1].set_ylabel(r"E$_{kin}$")

40

41 ax[1].set_xlabel(r"$P\times\sqrt{l(l+1)}$")

42

43 ax[1].legend()

44 ax[0].set_ylim(50,500)

45 ax[1].set_ylim(set_ylim_ekin[0],set_ylim_ekin[1])

46

47 ax[1].set_xlim(0,25000)

48

49 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

50 plt.close()

The last of the main plotters is the EIG plotter, which can plot the weight function with
plot wfi().

1 def plot_wfi(eig_data,image_path,file_name,k,mr_axes = False,lq_env = -2,lq_core =

-0.25,mtot = 0.47,set_xlim=["min","max"], static = False):↪→

2

3 wfi = eig_data[k-1,:,9] #weight functions

4 lq = eig_data[k-1,:,10] #log(q) scale

5

6 colors = cm.rainbow(np.linspace(0, 1, 3)) #color scheme

7

8 fig,ax = plt.subplots()

9

10 if mr_axes == True:

11 #here, if we want axes in m(r) scale

12 lq = (1-10**(lq))*mtot #changes the lq data to m(r) scale

13 lq_env = (1-10**(lq_env))*mtot #for the transition lq_env aswell

14 plt.axvline(x = lq_env,color = colors[1],linewidth = 1,label = "lq_env",zorder =

5)↪→

15 #plots lq_env line

16 if static == True:

17 #below, same for lq_core

18 lq_core = (1-10**(lq_core))*mtot

19 plt.axvline(x = lq_core,color = colors[2],linewidth = 1,label =

"lq_core",zorder = 10)↪→

20 ax.set_xlabel(r"$m(r)$")

21 else:

22 #here if we want axes in log(q)

23 plt.axvline(x = lq_env,color = colors[1],linewidth = 1,label = "lq_env",zorder =

5)↪→

24 if static == True:

25 plt.axvline(x = lq_core,color = colors[2],linewidth = 1,label =

"lq_core",zorder = 10)↪→
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26 ax.set_xlabel(r"$log(q)$")

27 ax.invert_xaxis()

28

29 if mr_axes == False and set_xlim != ["min","max"]:

30 #m(r) scale axes are from 0 to positive value

31 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

32 ax.invert_xaxis()

33 elif mr_axes == True and set_xlim != ["min","max"]:

34 #log(q) scale axes are from 0 to negative value

35 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

36

37 ax.plot(lq,wfi,color = colors[0],linewidth = 1,zorder = 0)

38 #weight function against m(r) or log(q) axes

39

40 ax.set_ylabel(r"wfi")

41 ax.legend()

42 ax.set_ylim(0,1)

43 plt.savefig(image_path + file_name + ".png", dpi = 500, format =

"png",bbox_inches='tight')↪→

44 plt.close()

We then find the plotter for the propagation diagrams, which is composed of a single function
plot propagation diagram(), which using, EIG, PULSE and STELUM file data at the
same time, which is why it is apart from other three more “classic” plotters.

1 def plot_propagation_diagram(eig_data,stelum_data,pulse_data,image_path,file_name,l=np.ar ⌋
ray([1]),mr_axes=False,set_xlim=["min","max"],y=[1]):↪→

2

3 b_v,lamb_l,lq,mr = stelum.compute_bv_lamb(stelum_data,l)

4 #gathers the brunt vaisala frequency, lamb frequency, log(q) scale, m(r) scale

5

6 colors = cm.rainbow(np.linspace(0, 1, 1 + l.shape[0] + len(y))) #color scheme

7

8 fig,ax = plt.subplots()

9

10 if mr_axes == True:

11 #if we want m(r) axes, we convert log(q) values in m(r) ones below

12 lq = mr

13 ax.set_xlabel(r"m(r)")

14 ax.set_ylim(-15,0)

15 ax.set_xlim(xmin = np.nanmax(lq),xmax = np.nanmin(lq))

16 else:

17 #else, we keep it the way it is

18 ax.set_xlabel(r"log(q)")

19 ax.set_ylim(-5,0)

20 ax.set_xlim(np.nanmin(lq),np.nanmax(lq))

21

22 if mr_axes == False and set_xlim != ["min","max"]:

23 #m(r) scale axes are from 0 to positive value

24 ax.set_xlim(xmin=set_xlim[0],xmax=set_xlim[1])

25 elif mr_axes == True and set_xlim != ["min","max"]:

26 #log(q) scale axes are from 0 to negative value

27 ax.set_xlim(xmin=set_xlim[1],xmax=set_xlim[0])

28

29 ax.invert_xaxis()

30 ax.set_ylabel("log" + r'$(N^{2})$')

31

32 ax.plot(lq,b_v,color = colors[0],label = r"$N^2$",linewidth = 1) #plots brunt vaisala

frequency↪→
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33

34 for i,l in enumerate(l):

35 #plots each Lamb frequency (those we want)

36 ax.plot(lq,lamb_l[i],color = colors[i+1], label =

r"$L_{{{}}}$".format(l),linewidth = 1)↪→

37

38 if pulse_data[l-1,0,:].shape[0] == 12:

39 #static models pulse data arrays have a given number of datas

40 #we use this to find if we plot a static or evolutive model

41 periods = pulse_data[l-1,:,4]

42 else:

43 periods = pulse_data[l-1,:,2]

44

45 zeros = eig.zero_finder(eig_data) #finds the zero for y1, y2 eigenfunctions

46 sigmas = np.log10((2*np.pi/periods)**2) #finds the log(sigma^2) horizontal lines for

each modes↪→

47

48 colors = ["red","green","black","blue"] #for y1,y2,y3,y4 if ever needed, because color

scheme is not nice for y2 otherwise↪→

49

50 if mr_axes == True:

51 #need to displace each zeros if we don't take the log(q) scale

52 #because .eig files give log(q) scale data

53 zeros = (1-10**(zeros))*mr[-1]

54

55 for j in range(len(y)):

56 for k in range(zeros.shape[1]):

57 plt.axhline(sigmas[k],linewidth = 0.3,alpha = 0.3, color = "red") #plots each

log(sigma^2)↪→

58 ax.scatter(zeros[j,k,:],np.array([sigmas[k]]*(zeros.shape[1])),alpha = 1,color

= colors[j],s=0.25)↪→

59 #plots each red dots for the zeros of y1 or y2 or both (as we want)

60

61 ax.set_ylim(np.nanmin(sigmas) - 0.05,0)

62 #off set the bottom limit of the graph otherwise we do not see nicely k = 65-70 modes

63 ax.legend()

64

65 plt.savefig(image_path + file_name + ".png", format="png", dpi = 1000,

bbox_inches='tight')↪→

Finally, two isolated plotting programs compute and plot the cancelling factor and spherical
harmonics. We give the cancelling factor program first :

1 import matplotlib.pyplot as plt

2 from matplotlib import cm, colors

3 from mpl_toolkits.mplot3d import Axes3D

4 from scipy.special import legendre

5 import numpy as np

6

7 l = np.array([0,1,2,3,4,5,6,7,8,9,10])

8 #defining the degree "l" over which we want the cancelling factor

9

10 theta = np.linspace(0, np.pi/2, 200)#defines the theta in spherical symmetry

11 c_l0 = np.sqrt((2*l + 1)/(4*np.pi)) #normalisation factor

12

13 integral = np.zeros(l.shape[0]) #init array containing the integrals

14

15 for i in range(l.shape[0]):



A.2. PLOTTERS 95

16

17 poly = legendre(l[i])

18 #array containing legendre polynomials of degree "l"

19 for j in range(theta.shape[0]-1):

20

21 #computing spherical harmonics

22 f_a = poly(np.cos(theta[j]))*np.sin(theta[j])*np.cos(theta[j])

23 f_b = poly(np.cos(theta[j+1]))*np.sin(theta[j+1])*np.cos(theta[j+1])

24

25 dr = theta[j+1] - theta[j] #definining the minimal displacement (\pi/400)

26

27 integral[i] += (1/2)*(f_a + f_b)*dr #trapezoidal integral

28

29 integral[i] = integral[i]*c_l0[i] #accounts the normalizing factor in

30

31

32 fig, ax = plt.subplots()

33 ax.plot(l,7.0875*integral, linewidth=1)

34 ax.set_xlim(0,8)

35 ax.axhline(y=0,linewidth = 1)

36 ax.set_xlabel("azimuthal order")

37 ax.set_ylabel("partial cancelling")

38 plt.savefig("C:/Master_Thesis/Articles_and_Books/Notes_Draft/Images_overleaf/cancelling.p ⌋
ng", dpi = 500, format =

"png",bbox_inches='tight')

↪→

↪→

And then the speriical harmonics one :

1 import matplotlib.pyplot as plt

2 from matplotlib import cm, colors

3 from mpl_toolkits.mplot3d import Axes3D

4 import numpy as np

5 from scipy.special import sph_harm

6

7

8 def set_axes_equal(ax: plt.Axes):

9

10 """Credits : https://stackoverflow.com/questions/13685386/how-to-set-the-equal-aspect ⌋
-ratio-for-all-axes-x-y-z↪→

11 Answer of : AndrewCox and edited by Trenton McKinney

12

13 Set 3D plot axes to equal scale.

14 This is needed since

15

16 Make axes of 3D plot have equal scale so that spheres appear as

17 spheres and cubes as cubes. Required since `ax.axis('equal')`

18 and `ax.set_aspect('equal')` don't work on 3D.

19 """

20

21 limits = np.array([

22 ax.get_xlim3d(),

23 ax.get_ylim3d(),

24 ax.get_zlim3d(),

25 ])

26 origin = np.mean(limits, axis=1)

27 radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))

28 _set_axes_radius(ax, origin, radius)

29



96 APPENDIX A. CODES

30 def _set_axes_radius(ax, origin, radius):

31

32 """Credits : https://stackoverflow.com/questions/13685386/how-to-set-the-equal-aspect ⌋
-ratio-for-all-axes-x-y-z↪→

33 Answer of : AndrewCox and edited by Trenton McKinney

34

35 Called in the previous function"""

36

37 x, y, z = origin

38 ax.set_xlim3d([x - radius, x + radius])

39 ax.set_ylim3d([y - radius, y + radius])

40 ax.set_zlim3d([z - radius, z + radius])

41

42 #below, we define spherical coordinates phi and theta

43 phi = np.linspace(0, np.pi, 200)

44 theta = np.linspace(0, 2*np.pi, 200)

45 phi, theta = np.meshgrid(phi, theta)

46

47 #we gather the points located on a sphere

48 x = np.sin(phi) * np.cos(theta)

49 y = np.sin(phi) * np.sin(theta)

50 z = np.cos(phi)

51

52 m, l = 2,3 #azimuthal order and degree

53

54 #normalized spherical harmonics are computed below

55 coloring = sph_harm(m, l, theta, phi).real

56 max, min = coloring.max(), coloring.min()

57 coloring = (coloring - min)/(max - min)

58

59 fig = plt.figure(figsize=(6,6))

60 ax = fig.add_subplot(111, aspect='auto', projection='3d')

61 ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=cm.seismic(coloring))

62 #plotting of the spherical harmonics on the sphere

63 ax.view_init(elev=0, azim=180)

64 ax.set_axis_off()

65 ax.set_box_aspect([1,1,1])

66 set_axes_equal(ax)

67 plt.savefig("D:/Master_Thesis/Articles_and_Books/Notes_Draft/Images_overleaf/spherical_ha ⌋
rmonic_save/Y_3_2_test.png", dpi = 500, format =

"png",bbox_inches='tight')

↪→

↪→

68 plt.close()

A.3 Mains

The main programs link the plotters and interpreters together. Those main programs
should be looked at adapative ones, where we choose which graphs we want to compute, or not
compute. We give first the main program for static models, which loops on a static model to
get the graphs for each different core helium abundances organized into a same folder.

1 import numpy as np

2 import re

3 import os

4 import matplotlib

5 from matplotlib import pyplot as plt

6 import math
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7 from matplotlib import cm

8

9 matplotlib.use("Agg")

10

11 from interpreters import eig_interp as eig

12 from interpreters import pulse_interp as pulse

13 from interpreters import stelum_interp as stelum

14

15 from plotters import eig_plots as eig_plt

16 from plotters import pulse_plots as pulse_plt

17 from plotters import stelum_plots as stelum_plt

18 from plotters import propagation_diagram_plot as propadiag_plt

19

20 def main_plotting():

21

22 if os.path.isdir(image_pulse_main) == False:

23 os.mkdir(image_pulse_main)

24

25 if os.path.isdir(image_stelum_main) == False:

26 os.mkdir(image_stelum_main)

27

28 if os.path.isdir(image_eig_main) == False:

29 os.mkdir(image_eig_main)

30

31 Files_pulse = os.listdir(main_pulse_string)

32

33 for i,file in enumerate(Files_pulse):

34

35 print(run, file)

36

37 file_pulse = Files_pulse[i]

38 image_main = "_" + "md" + str(i+1).zfill(4)

39 file_stelum = "model" + Files_pulse[i][5:]

40 file_eig = run + "_" + str(i+1) + ".eig"

41

42

43 pulse_data,mode_spacing = pulse.extracting(main_pulse_string +

file_pulse,mode_spacing=True)↪→

44 stelum_data = stelum.extracting(main_stelum_string + file_stelum)

45

46 He_core = stelum_data[0,4,1]

47

48 file_name_main = "md" + str(i+1).zfill(4) + "-{}".format(He_core)

49

50 pulse_image = image_pulse_main + file_name_main + "/"

51 if os.path.isdir(pulse_image) == False:

52 os.mkdir(pulse_image)

53

54 stelum_image = image_stelum_main + file_name_main + "/"

55 if os.path.isdir(stelum_image) == False:

56 os.mkdir(stelum_image)

57

58 if no_eig == False:

59 try:

60 eig_data = eig.extracting(main_eig_string + file_eig)

61 image_eig = image_eig_main + file_name_main + "/"

62 if os.path.isdir(image_eig) == False:

63 os.mkdir(image_eig)

64 for k in range(eig_data.shape[0]):

65 mode_path = image_eig + str(k+1) + "/"
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66 if os.path.isdir(mode_path) == False:

67 os.mkdir(mode_path)

68 wfi_name = "wfi_logq_" + str(k+1) + image_main

69 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

lq_env,lq_core = lq_core,static=True)↪→

70 wfi_name = "wfi_mr_" + str(k+1) + image_main

71 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

lq_env,lq_core = lq_core,mr_axes=True,static=True)↪→

72 wfi_name = "wfi_logq_h_he" + str(k+1) + image_main

73 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

lq_env,lq_core = lq_core,set_xlim=[lq_env-1,lq_env+1],static=True)↪→

74

75 propagation_path = image_eig + "propagation_diagram/"

76 if os.path.isdir(propagation_path) == False:

77 os.mkdir(propagation_path)

78 propa_name = "propagation_diagram_logq" + image_main

79 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,pr ⌋
opagation_path,propa_name)↪→

80 propa_name = "propagation_diagram_mr" + image_main

81 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,pr ⌋
opagation_path,propa_name,mr_axes=True)↪→

82 propa_name = "propagation_diagram_logq_h_he" + image_main

83 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,pr ⌋
opagation_path,propa_name,set_xlim=[lq_env-1,lq_env+1])↪→

84

85 except:

86 excepted = True

87

88 if no_pulse == False:

89 deltaP_name = "deltaP" + image_main

90 pulse_plt.plot_deltaP(pulse_data,mode_spacing,pulse_image,deltaP_name,l=larra ⌋
y)↪→

91 Ekin = "Ekin" + image_main

92 pulse_plt.plot_Ecin(pulse_data,pulse_image,Ekin,l=larray)

93 Ekin = "Ekin_zoomed" + image_main

94 pulse_plt.plot_Ecin(pulse_data,pulse_image,Ekin,l=larray,set_ylim=np.array([4 ⌋
2,45]))↪→

95 subplot = "subplot_deltaP_Ekin" + image_main

96 pulse_plt.subplot_deltaP_Ecin(pulse_data,mode_spacing,pulse_image,subplot,l=l ⌋
array)↪→

97 subplot = "subplot_deltaP_Ekin_zoom" + image_main

98 pulse_plt.subplot_deltaP_Ecin(pulse_data,mode_spacing,pulse_image,subplot,l=l ⌋
array,set_ylim_ekin=np.array([42,45]))↪→

99

100 if no_stelum == False:

101 bv = "brunt_vaisala_lamb_logq" + image_main

102 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv)

103 bv = "brunt_vaisala_lamb_mr" + image_main

104 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv,mr_axes=True)

105 bv = "brunt_vaisala_lamb_logq_h_he" + image_main

106 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv,set_xlim=[lq_env-1,lq_env ⌋
+1])↪→

107

108 chem = "chemical_fraction_logq" + image_main

109 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem)

110 chem = "chemical_fraction_mr" + image_main

111 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem,mr_axes=True)

112 chem = "chemical_fraction_logq_h_he" + image_main

113 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem,set_xlim=[lq ⌋
_env-1,lq_env+1])↪→
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114

115 ledoux = "ledoux_term_logq" + image_main

116 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux)

117 ledoux = "ledoux_term_mr" + image_main

118 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux,mr_axes=True)

119 ledoux = "ledoux_term_logq_h_he" + image_main

120 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux,set_xlim=[lq_env- ⌋
1,lq_env+1])↪→

121

122 gradient = "gradient_term_logq" + image_main

123 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_core=lq_core)

124 gradient = "gradient_term_mr" + image_main

125 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_core=lq_core,m ⌋
r_axes=True)↪→

126 gradient = "gradient_term_logq_h_he" + image_main

127 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_core=lq_core,s ⌋
et_xlim=[lq_env-1,lq_env+1])↪→

128

129 run_array = ["R0005_lqcore_010"]

130 ref_run = ["R0005"]

131 end_sequence = ["L1_ONLY_lqcore__010"]

132 lq_env_array = [-2]

133 lq_core_array = [-0.10]

134

135 for i,run in enumerate(run_array):

136

137 main_pulse_string = "C:/Master_Thesis/Data/Runs/" + run + "/PULSE-R51-SDB/"

138 main_stelum_string = "C:/Master_Thesis/Data/Runs/" + run + "/STELUM_R51_SDB_EVO/"

139 main_eig_string = "C:/Master_Thesis/Data/Runs/" + run + "/EIG/"

140

141 no_stelum = True

142 no_pulse = False

143 no_eig = True

144

145 larray = l=np.array([1])

146

147 if os.path.isdir("C:/Master_Thesis/Data/Image_new/Static/" + ref_run[i] + "/") ==

False:↪→

148 os.mkdir("C:/Master_Thesis/Data/Image_new/Static/" + ref_run[i] + "/")

149

150 image_new = "C:/Master_Thesis/Data/Image_new/Static/" + ref_run[i] + "/" +

end_sequence[i] + "/"↪→

151

152 if os.path.isdir(image_new) == False:

153 os.mkdir(image_new)

154

155 image_pulse_main = image_new + "PULSE/"

156 image_stelum_main= image_new + "STELUM/"

157 image_eig_main = image_new + "EIG/"

158

159 lq_env = lq_env_array[i]

160 lq_core = lq_core_array[i]

161

162 main_plotting()

Similarly, the main program for evolutionary models :
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1 import numpy as np

2 import re

3 import os

4 import matplotlib

5 from matplotlib import pyplot as plt

6 import math

7 from matplotlib import cm

8

9 matplotlib.use("Agg")

10

11 from interpreters import eig_interp as eig

12 from interpreters import pulse_interp as pulse

13 from interpreters import stelum_interp as stelum

14

15 from plotters import eig_plots as eig_plt

16 from plotters import pulse_plots as pulse_plt

17 from plotters import stelum_plots as stelum_plt

18 from plotters import propagation_diagram_plot as propadiag_plt

19

20 def main_plotting():

21

22 if os.path.isdir(image_pulse_main) == False:

23 os.mkdir(image_pulse_main)

24

25 if os.path.isdir(image_stelum_main) == False:

26 os.mkdir(image_stelum_main)

27

28 if os.path.isdir(image_eig_main) == False:

29 os.mkdir(image_eig_main)

30

31 Files_pulse = os.listdir(main_pulse_string)

32

33 for i,file in enumerate(Files_pulse):

34

35 print(dh,file)

36

37 file_pulse = Files_pulse[i]

38 image_main = "_" + Files_pulse[i][:6]

39 file_stelum = Files_pulse[i][:6] + "_modified.txt"

40 file_eig = Files_pulse[i][:6] + ".eig"

41

42 pulse_data,mode_spacing = pulse.extracting(main_pulse_string +

file_pulse,mode_spacing=True)↪→

43 stelum_data = stelum.extracting(main_stelum_string + file_stelum)

44

45 He_core = stelum_data[0,4,1]

46

47 file_name_main = "md" + str(i+1).zfill(4) + "-{}".format(He_core)

48

49 pulse_image = image_pulse_main + file_name_main + "/"

50 if os.path.isdir(pulse_image) == False:

51 os.mkdir(pulse_image)

52

53 stelum_image = image_stelum_main + file_name_main + "/"

54 if os.path.isdir(stelum_image) == False:

55 os.mkdir(stelum_image)

56

57 if no_eig == False:

58 eig_data = eig.extracting(main_eig_string + file_eig)

59 image_eig = image_eig_main + file_name_main + "/"
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60 if os.path.isdir(image_eig) == False:

61 os.mkdir(image_eig)

62 for k in range(eig_data.shape[0]):

63 mode_path = image_eig + str(k+1) + "/"

64 if os.path.isdir(mode_path) == False:

65 os.mkdir(mode_path)

66 wfi_name = "wfi_logq_" + str(k+1) + image_main

67 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

(-int(dh)*(1e-2)))↪→

68 wfi_name = "wfi_mr_" + str(k+1) + image_main

69 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

(-int(dh)*(1e-2)),mr_axes=True)↪→

70 wfi_name = "wfi_mr_sc_" + str(k+1) + image_main

71 eig_plt.plot_wfi(eig_data,mode_path,wfi_name,k=k+1,lq_env =

(-int(dh)*(1e-2)),mr_axes=True,set_xlim=[0.10,0.30])↪→

72

73 propagation_path = image_eig + "propagation_diagram/"

74 if os.path.isdir(propagation_path) == False:

75 os.mkdir(propagation_path)

76 propa_name = "propagation_diagram_logq" + image_main

77 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,propag ⌋
ation_path,propa_name)↪→

78 propa_name = "propagation_diagram_mr" + image_main

79 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,propag ⌋
ation_path,propa_name,mr_axes=True)↪→

80 propa_name = "propagation_diagram_mr_sc" + image_main

81 propadiag_plt.plot_propagation_diagram(eig_data,stelum_data,pulse_data,propag ⌋
ation_path,propa_name,mr_axes=True,set_xlim=[0.10,0.30])↪→

82

83

84 if no_pulse == False:

85 deltaP_name = "deltaP" + image_main

86 pulse_plt.plot_deltaP(pulse_data,mode_spacing,pulse_image,deltaP_name)

87 Ekin = "Ekin" + image_main

88 pulse_plt.plot_Ecin(pulse_data,pulse_image,Ekin)

89 subplot = "subplot_deltaP_Ekin" + image_main

90 pulse_plt.subplot_deltaP_Ecin(pulse_data,mode_spacing,pulse_image,subplot)

91

92 if no_stelum == False:

93 bv = "brunt_vaisala_lamb_logq" + image_main

94 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv)

95 bv = "brunt_vaisala_lamb_mr" + image_main

96 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv,mr_axes=True)

97 bv = "brunt_vaisala_lamb_mr_sc" + image_main

98 stelum_plt.plot_BV_Lamb(stelum_data,stelum_image,bv,mr_axes=True,set_xlim=[0. ⌋
10,0.30])↪→

99

100 chem = "chemical_fraction_logq" + image_main

101 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem)

102 chem = "chemical_fraction_mr" + image_main

103 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem,mr_axes=True)

104 chem = "chemical_fraction_mr_sc" + image_main

105 stelum_plt.plot_chemical_fractions(stelum_data,stelum_image,chem,mr_axes=True ⌋
,set_xlim=[0.10,0.30])↪→

106

107 ledoux = "ledoux_term_logq" + image_main

108 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux)

109 ledoux = "ledoux_term_mr" + image_main

110 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux,mr_axes=True)

111 ledoux = "ledoux_term_mr_sc" + image_main
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112 stelum_plt.plot_ledoux_term(stelum_data,stelum_image,ledoux,set_xlim=[0.10,0. ⌋
30],mr_axes =

True)

↪→

↪→

113

114 gradient = "gradient_term_logq" + image_main

115 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_env =

(-int(dh)*(1e-2)),static = False)↪→

116 gradient = "gradient_term_mr" + image_main

117 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_env =

(-int(dh)*(1e-2)),mr_axes=True,static = False)↪→

118 gradient = "gradient_term_mr_sc" + image_main

119 stelum_plt.plot_gradients(stelum_data,stelum_image,gradient,lq_env =

(-int(dh)*(1e-2)),set_xlim=[0.10,0.30],set_ylim=[0.375,0.4],mr_axes =

True,static = False)

↪→

↪→

120

121 dh = ["200"]

122

123 for i,dh in enumerate(dh):

124

125 main_pulse_string =

"C:/Master_Thesis/Data/Runs/Evol_models_pulseR51/SDB-ZVAR-M04699530-DH"+ dh

+"-C3600/PULSE/"

↪→

↪→

126 main_stelum_string = "C:/Master_Thesis/Data/Runs/Evol_models/Evol_models_modified/SDB ⌋
-ZVAR-M04699530-DH"+ dh

+"-C3600/"

↪→

↪→

127 main_eig_string =

"C:/Master_Thesis/Data/Runs/Evol_models_pulseR51/SDB-ZVAR-M04699530-DH"+ dh

+"-C3600/EIG/"

↪→

↪→

128

129 no_stelum = False

130 no_pulse = True

131 no_eig = True

132

133 if os.path.isdir("C:/Master_Thesis/Data/Image_new/Evol/DH" + dh + "/") == False:

134 os.mkdir("C:/Master_Thesis/Data/Image_new/Evol/DH" + dh + "/")

135

136 image_new = "C:/Master_Thesis/Data/Image_new/Evol/DH" + dh + "/" + "Pure/"

137

138 if os.path.isdir(image_new) == False:

139 os.mkdir(image_new)

140

141 image_pulse_main = image_new + "PULSE/"

142 image_stelum_main= image_new + "STELUM/"

143 image_eig_main = image_new + "EIG/"

144

145

146 main_plotting()

A.4 Asymptotic computations

Finally, we find a program to compute the asymtotical period spacings, both in our mod-
els and in theory, as well as the size of the convective core, the overshooting zone and the
semi-convective zone. This program is only used for static models, and we separate it in
three different parts. First, we find the function which is used to compute the size of our
zones, region sizes(). It uses the indexes which delimit the different regions, found with
search index().
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1 def search_index(stelum_data):

2

3 """Finds the bottom and top of :

4

5 - convective core

6 - overshooting zone

7 - semi-convective zone"""

8

9 #Init conditions to stop searching given indexes

10 carbon = stelum_data[:,4,2]

11 sch = stelum_data[:,0,14]

12

13 indexes = np.zeros(3*2).reshape(2,3)

14

15 for i in range(carbon.shape[0]):

16

17 if sch[i] == 0 and indexes[1,0] == 0:

18 indexes[0,0],indexes[1,0] = i,1

19 #top of convective core

20 if np.absolute(carbon[i] - carbon[i+1]) > 1e-4 and indexes[1,1] == 0:

21 indexes[0,1],indexes[1,1] = i,1

22 #top of overshooting zone

23 if carbon[i] < 1e-8 and indexes[1,2] == 0:

24 indexes[0,2],indexes[1,2] = i,1

25 #top of semi-convective zone

26 if np.sum(indexes[1,:]) == 3:

27 return(indexes[0,:])

1 def region_sizes(stelum_data,indexes):

2

3 indexes = indexes.astype(int)

4

5 mr = stelum_data[:,0,2]/(1.9884e+33)

6 #m(r) in Msun

7

8 #we find convective core size, overshooting size, SC zone size

9 convective_core_size = mr[indexes[0]] - mr[0]

10 overshooting_size = mr[indexes[1]] - mr[indexes[0]]

11 SC_size = mr[indexes[2]] - mr[indexes[1]]

12

13 sizes = np.array([convective_core_size,overshooting_size,SC_size])

14

15 return(sizes)

We then plot those using plot sizes().

1 def plot_sizes(sizes,he_core,img_string,list):

2

3 ### for different zone sizes ###

4

5 colors = cm.rainbow(np.linspace(0, 1, len(list)))

6

7 fig,ax = plt.subplots()

8 for i,dh in enumerate(list):

9 lq_env = (-int(dh)*(1e-2))

10 ax.plot(he_core[i,:],sizes[i,:,0], label = "lq_env = {}".format(lq_env), color =

colors[i], linewidth = 1)↪→
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11 ax.plot(he_core[i,:],sizes[i,:,1], color = colors[i], linewidth = 1)

12 ax.plot(he_core[i,:],sizes[i,:,2], color = colors[i], linewidth = 1)

13

14 ax.set_xlabel("core_he")

15 ax.set_ylabel(r"$\Delta m(r)$ in $ M_{sun}$")

16 ax.set_xlim(0,1)

17 ax.invert_xaxis()

18 ax.legend(fontsize = "xx-small")

19 plt.savefig(img_string + "sizes.png", dpi = 500, format = "png",bbox_inches = 'tight')

20 plt.close()

We can also compute the theoretical asymptotic spacings (for modes trapped in a given
zone, and the mean asymptotic spacing), with theoretical period spacings() which uses
trapezoidal integral() to do the integrals necessary for the theoretical period spacing
computations.

1 def trapezoidal_integral(f,bottom,top,variable):

2

3 integral = 0

4

5 for i in range(bottom,top):

6

7 if (math.isnan(f[i]) == False) and (math.isnan(f[i+1]) == False):

8 #this notably prevents issues with

9 #the partial ionization zone of HeII/HeIII at log(q) = -10ish

10

11 f_a,f_b = f[i],f[i+1] #trapezoidal integral

12 dr = variable[i+1] - variable[i]

13

14 integral += (1/2)*(f_a + f_b)*dr

15

16 return(integral)

1 def theoretical_period_spacings(stelum_data,indexes):

2

3 """Computes the theoretical reduced period spacings"""

4

5 indexes = indexes.astype(int)

6 reduced = 2*(np.pi)**2

7

8 log10N2, lamb, lq, mr = stelum.compute_bv_lamb(stelum_data,lamb=np.array([1]))

9 #getting the Brunt Vaisala frequency

10 r = stelum_data[:,0,1]

11

12 abs_N = np.absolute(np.sqrt(10**(log10N2)))

13 #getting |N|

14 f = abs_N/r #this is the term in the integral

15

16 surface_index = r.shape[0]-1 #not taking the surface point, otherwise index error

17

18 trapped_sc_carbon = trapezoidal_integral(f,indexes[1],indexes[2],r)

19 #spacing trapped in semi-convective zone

20 trapped_sc_sch = trapezoidal_integral(f,indexes[0],indexes[2],r)

21 #spacing trapped in semi-convective + overshooting zone

22 asympt_spacing = trapezoidal_integral(f,indexes[0],surface_index,r)

23 #mean spacing (global)
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24

25 trapped_sc_carbon = reduced/(trapped_sc_carbon)

26 trapped_sc_sch = reduced/(trapped_sc_sch)

27 asympt_spacing = reduced/(asympt_spacing)

28 #to get the *actual* spacing

29

30 integrals = np.array([trapped_sc_sch,trapped_sc_carbon,asympt_spacing])

31

32 return(integrals)

Which we plot using plot integrals() :

1 def plot_integrals(integrals,he_core,img_string):

2

3 fig,ax = plt.subplots()

4 ### trapped modes integrals ###

5 ax.plot(he_core,integrals[:,0], label = "overshooting + SC", color = "blue", linewidth

= 1)↪→

6 ax.plot(he_core,integrals[:,1], label = "SC", color = "red", linewidth = 1)

7

8 ax.set_xlabel("core_he")

9 ax.set_ylabel(r"$\Pi_{T,l}\sqrt{l(l+1)}$")

10 ax.set_xlim(0,1)

11 ax.invert_xaxis()

12 ax.legend(fontsize = "x-small")

13 plt.savefig(img_string + "reduced_DP_trapped.png", dpi = 500, format =

"png",bbox_inches = 'tight')↪→

14 plt.close()

15

16 fig,ax = plt.subplots()

17 ### mean spacing ###

18 ax.plot(he_core,integrals[:,2], color = "blue", linewidth = 1)

19

20 ax.set_xlabel("core_he")

21 ax.set_ylabel(r"$\Pi_{0,l}\sqrt{l(l+1)}$")

22 ax.set_xlim(0,1)

23 ax.invert_xaxis()

24 ax.legend(fontsize = "x-small")

25 plt.savefig(img_string + "reduced_DP.png", dpi = 500, format = "png",bbox_inches =

'tight')↪→

26 plt.close()

Finally, we can compute the observed trapped mode spacings (that is, the experimental
ones, as opposed to theoretical). We use trapped mode finder() and ekin trapped() to
compute the mean asymptotic period spacing and the trapped mode period spacing at the same
time.

1 def trapped_mode_finder(pulse_data,mode_spacing):

2

3 no_nan_spacing = mode_spacing[np.isnan(mode_spacing) == False]*np.sqrt(2)

4 full_spacing = np.sum(no_nan_spacing)/no_nan_spacing.shape[0]

5 #computes the observed mean spacing

6

7 mode_spacing = mode_spacing[20:]*np.sqrt(2) #we skip the low order modes

8 periods = pulse_data[20:,2]*np.sqrt(2) #same thing here

9 ekin = pulse_data[20:,4]
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10

11 length = mode_spacing.shape[0]

12 trapped_mode = np.array([])

13

14 average_spacing = np.nansum(mode_spacing)/length

15 #above this average : automatically a normal mode

16 #below : could be a trapped mode (giving if condition after)

17

18 for i in range(2,length-1):

19 if (mode_spacing[i] < average_spacing): #this condition there

20 if (mode_spacing[i]) == min(mode_spacing[i-2:i+3]):

21 #finds that there is a trapped mode in a range

22 #one center mode + 2 nearest neighbours

23 index = ekin_trapped(ekin,i)#finds which is actually trapped

24 trapped_mode = np.append(trapped_mode,index)

25

26

27 trapped_mode = trapped_mode.astype(int)

28 periods = np.diff(periods[trapped_mode])

29

30 periods = periods[periods < 5000] #accounts for occasional too little counts

31 periods = periods[periods > 1500] #accounts for occasional too much counts

32

33 if periods.size == 0:

34 periods = np.array([np.nan])

35 #in case we do not find 2 or more trapped modes (for plotting)

36

37 trapped_spacing = np.sum(periods)/periods.shape[0]

38 #and here is the spacing for trapped modes in SC zone

39

40 obs_spacings = np.array([trapped_spacing,full_spacing])

41 print(obs_spacings)

42 return(obs_spacings)

1 def ekin_trapped(ekin,i):

2

3 #finds the "real" index of our trapped mode

4 maximum = max(ekin[i-1:i+2])

5 index = np.where(ekin == maximum)

6 return(index[0])

We plot against observed versus theoretical spacings in plot th obs(), a function that
also plot the associated relative spacing between experimentation and theory.

1 def plot_th_obs(obs_spacings,th_spacings,he_core,img_string):

2

3 fig,ax = plt.subplots()

4 ### trapped spacing ###

5 ax.plot(he_core,obs_spacings[:,0],label = "Model", color = "red", linewidth = 1)

6 ax.plot(he_core,th_spacings[:,0],label = "Theory, overshooting added", color =

"green", linewidth = 1)↪→

7 ax.plot(he_core,th_spacings[:,1],label = "Theory, no overshooting", color = "blue",

linewidth = 1)↪→

8

9 ax.set_xlabel("core_he")

10 ax.set_ylabel(r"$\Pi_{T,l}\sqrt{l(l+1)}$")
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11 ax.set_xlim(0.2,0.6)

12 ax.set_ylim(2000,6000)

13 ax.invert_xaxis()

14 ax.legend(fontsize = "x-small")

15 plt.savefig(img_string + "obs_th_trapped.png", dpi = 500, format = "png",bbox_inches =

'tight')↪→

16 plt.close()

17

18 fig,ax = plt.subplots()

19 ### classic spacing ###

20 ax.plot(he_core,th_spacings[:,2], color = "blue", label= "Theory", linewidth = 1)

21 ax.plot(he_core,obs_spacings[:,1], color = "red", label = "Model", linewidth = 1)

22

23 ax.set_xlabel("core_he")

24 ax.set_ylabel(r"$\Pi_{0,l}\sqrt{l(l+1)}$")

25 ax.set_xlim(0.2,0.6)

26 ax.set_ylim(330,350)

27 ax.invert_xaxis()

28 ax.legend(fontsize = "x-small")

29 plt.savefig(img_string + "obs_th.png", dpi = 500, format = "png",bbox_inches =

'tight')↪→

30 plt.close()

31

32 fig,ax = plt.subplots()

33 ### trapped spacing relative spacing ###

34 error_trapped = (np.absolute(obs_spacings[:,0] -

th_spacings[:,1])/obs_spacings[:,0])*100↪→

35 ax.plot(he_core,error_trapped, color = "blue", linewidth = 1)

36 ax.set_xlabel("core_he")

37 ax.set_ylabel(r"$\Pi_{T,l}\sqrt{l(l+1)}$" + " relative spacing")

38 ax.set_xlim(0.2,0.6)

39 ax.set_ylim(0,25)

40 ax.invert_xaxis()

41 plt.savefig(img_string + "error_trapped.png", dpi = 500, format = "png",bbox_inches =

'tight')↪→

42 plt.close()

43

44 fig,ax = plt.subplots()

45 ### mean spacing relative spacing ###

46 error_mean = (np.absolute(obs_spacings[:,1] - th_spacings[:,2])/obs_spacings[:,1])*100

47 ax.plot(he_core,error_mean, color = "blue", linewidth = 1)

48 ax.set_xlabel("core_he")

49 ax.set_ylabel(r"$\Pi_{0,l}\sqrt{l(l+1)}$" + " relative spacing")

50 ax.set_xlim(0.2,0.6)

51 ax.invert_xaxis()

52 plt.savefig(img_string + "error_mean.png", dpi = 500, format = "png",bbox_inches =

'tight')↪→

53 plt.close()


