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Abstract

Liège University: Faculty of Applied Science

Dissecting Dual-Stack Website Content
Submitted by Florian Dekinder

Supervised by Pr. Benoit Donnet and Mr. Eric Vyncke
Academic Year 2023-2024

The ongoing shift from IPv4 to IPv6 is crucial for the evolving Internet landscape.
However, the prevalence of dual-stacked environments requires a deeper understanding of
how web content is distributed across both protocols, especially given the varied nature of
websites configurations. While prior studies have focused on IPv6 adoption and performance
metrics, limited research explores dual-stacked servers’ impact on the application layer
where user experience is directly affected.

To address this gap, we developed NetQuartz, a tool designed to assess the perfor-
mance and the content delivery of websites across dual-stack servers. We have deployed
NetQuartz over several vantage points and collected data for more than 200,000 websites,
revealing patterns by classifying them into three classes based on server configurations: (i)
Fully IPv4 websites, where all resources are loaded from IPv4-only servers; (ii) Fully
Dual-Stacked websites, which load all their resources from servers supporting both IPv4
and IPv6; (iii) Mixed websites, which retrieve resources from a combination of both server
types. Script and Image were identified as the two most dominant categories in terms of
content, regardless of the website’s class. Fully IPv4 websites generally contained fewer
resources, leading to smaller page sizes and faster load times. Fully Dual-Stacked and
Mixed configuration websites showed better performance under IPv6-preferenced loading,
despite Mixed websites tending to load more resources over IPv4.

The thesis is organized as follows: (i) we start by introducing the context and moti-
vations behind this work; (ii) we position our work with respect to the state of the art;
(iii) we then provide a detailed explanation of NetQuartz and its implementation; (iv)
we discuss the data collection methodology, explaining the setup and execution of our
measurement environment; (v) we present our results, first exploring the delivery of web
content across websites, we also examine the specific dual-stack content distribution of
Mixed websites, then assessing broader performance measures within the three website
classes and we finally discuss a few topics related to the user experience when browsing a
website; (vi) finally, this thesis is concluded by summarising its main achievements and
suggesting areas for future researches.
Keywords: dual-stack; IPv6; performance; content; NetQuartz.
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Chapter 1

Introduction

1.1 Context

Since the early 80’s, the Internet Protocol version 4 (IPv4) [19] has been the main
protocol supporting packet switching networks and internetworking technology. However,
the exponential deployment of the Internet, since the mid-90’s, has led to an exhaustion of
IPv4 addresses [41], requiring a transition towards its successor, Internet Protocol version
6 (IPv6) [21]. Since then, IPv6 has been more and more adopted [38, 17, 18, 23]. If IPv6
allows for dealing with IPv4 address exhaustion [41], it also comes with an additional
feature, called Extension Header [22, 13], that leads to more flexibility and innovation.
Examples of innovations can be found in observability [10] or forwarding [34].

A smooth transition from IPv4 to IPv6 has been made possible thanks to dual-stack
devices, i.e., devices with network interfaces that can originate and understand both IPv4
and IPv6 packets [47], avoiding so a complete shift from one protocol version to the
other. Up to now, studies primarily focus on the adoption and basic performance of IPv6
metrics, such as addressing and routing [53, 17, 18, 23]. However, few researches focused on
dual-stack aspects. For instance, Bajpai et al. [5, 30, 4] provide valuable insights into server
performance and transport-layer metrics but do not extend their analysis to the application
layer where user experience directly takes place. This is crucial as a significant portion of
websites includes content fetched from multiple, distinct servers [11], possibly over different
versions of the Internet Protocol, introducing so additional delay. Huston [42, 43] used
Google ads to measure the latency of client connections to APNIC servers and found
that IPv6 was faster than IPv4 half the time, but experimented with a higher failure rate.
Further, Bajpai et al. [38], show a significant reduction in latency for both IPv4 and IPv6
for Alexa top 10K websites. They also report a reduction in IPv6 connection failures and
find that the main contributors to these failures are Image, Stylesheet , Script categories.
Also, Dhamdhere et al. [23] evaluated these load times on the Alexa list and found that
IPv6 performance can be much worse than IPv4 if the AS paths are different, otherwise,
they are similar. However, it is unclear which amount of content (e.g., Image, Stylesheet ,
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CHAPTER 1. INTRODUCTION

Script , etc.) is delivered through which version of the Internet Protocol.

1.2 Contributions

We make the following contributions: first, we introduce NetQuartz, our tool designed
to assess and compare the content delivery capabilities and performance of websites across
dual-stack servers. For each website, NetQuartz maintains two loading sessions: (i) a
full-IPv4 loading, always preferring IPv4 connections, and (ii) an IPv6-preferenced loading,
prioritizing IPv6 connections where available, and defaulting to IPv4 otherwise. This thesis
will carefully explain how NetQuartz has been built to reach those goals.

Second, we have deployed NetQuartz over several vantage points and collected data
from more than 200,000 analyzable websites extracted and filtered from DomCop list [26].

Third, we propose to classify websites based on their server configurations into three
classes: (i) Fully IPv4 websites, where all resources are loaded from IPv4-only servers;
(ii) Fully Dual-Stacked websites, which load all their resources from servers supporting
both IPv4 and IPv6; (iii) Mixed websites, which retrieve resources from a combination of
both server types. All three classes are initially accessed with full-IPv4 loading, using only
IPv4 connections. Separately, Mixed and Fully Dual-Stacked websites are also accessed
with an IPv6-preferenced loading, which prioritizes IPv6 connections where possible. For
Fully Dual-Stacked websites, IPv6-preferenced is equivalent to full-IPv6 loading, as all
resources are available on dual-stack servers.

Fourth, whatever the website class, content-related analysis revealed that Image and
Script were the predominant categories, both in terms of the size and the number of resources
queried over HTTP/S. The analysis also showed that Fully IPv4 websites typically load
fewer resources, resulting in faster loading times. For Fully Dual-Stacked and Mixed
websites, the performance under IPv6-preferenced loading consistently outperforms that of
IPv4. We observed that Mixed websites load 20% faster at the median and 11% faster at
their 95th percentile when using IPv6-preferenced loading, Fully Dual-Stacked websites
load 16% faster in median and 24% faster in the 95th percentile. The observation is
particularly interesting with Mixed websites, for which we found that 64% of these websites
were loading more HTTP/S resources over IPv4 than IPv6, yet the overall performance in
IPv6-preferenced sessions remains more efficient.

A reduced version of this thesis has also been submitted to the ACM Internet Mea-
surement Conference (IMC) 2024, which is documented in the Appendix.

1.3 Organisation

The remainder of this paper is organized as follows: Chatper 2 positions our work with
respect to the state of the art; Chatper 3 provides a detailed explanation of NetQuartz
and its methodology; Chatper 4 discusses the data collection methodology, explaining the

2



CHAPTER 1. INTRODUCTION

setup and execution of our measurement environment; Chatper 5 presents our results, first
exploring the delivery of web content across websites, then examining the specific dual-stack
distribution of Mixed websites, and finally assessing broader performance measures; finally,
Chatper 6 concludes this paper by summarising its main achievements and suggesting
areas for future research. The appendices contain details of technical implementations
of NetQuartz, as well as a copy of a paper on our work submitted to the Internet
Measurement Conference (IMC) 2024.

1.4 Software artifacts

The various resources of our work are open source.
Python NetQuartz code, the generated dataset, and data analysis scripts are avail-

able and documented within this gitlab directory: https://gitlab.uliege.be/Florian.
Dekinder/dissecting-dual-stack-web-content.

3
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Chapter 2

Related works

In this chapter, we position our work with respect to the state of the art, analyzing
related works and highlighting points of inspiration/divergence relative to our study
and the implication on our data collection tool’s design: NetQuartz–the latter will
be introduced in Chapter 3, we will not go into any more detail here than we did in
Section 1.1.

2.1 IPv6 adoption

Early studies on IPv6 primarily focused on assessing its adoption, with a focus on addressing
and routing aspects [23], with the aim of evaluating the transit technologies used to integrate
IPv6 [62, 40] and providing critical insights into the complex dynamics of global IPv6
adoption [53]. More recently, Huston’s work (2015) [42, 43], demonstrated through a
longitudinal analysis the ineffectiveness of 6-to-4 and Teredo technologies, which have since
given way to mainly native IPv6 support. We have reported in Figure 2.1 Google’s IPv6
deployment statistics (2024) [38], the figure highlights that 6-to-4 and teredo tunneling
technologies have largely disappeared (0.0% remaining), leaving a native IPv6 global
adoption at 44.45%. The highest adoption rates are seen in Europe and America, with
Oceania, Asia, and Africa following. Recent work [35] (2023) highlights that despite
significant progress in IPv6 adoption, with advances in native IPv6 support and a growing
number of IPv6-enabled users, heterogeneous adoption rates across industries are still an
obstacle to a smoother transition.

2.2 Servers’ performance over IPv4 vs. IPv6

Recent research on IPv6 performance typically focuses on transport-layer metrics such
as TCP connection time or end-to-end latency. Most studies provide a snapshot of IPv6
performance; longitudinal evaluations of IPv6 performance have been conducted by Huston
and Bajpai et al.. Huston [42, 43] used Google ads to measure the latency of client

4



CHAPTER 2. RELATED WORKS

(a) General IPv6 adoption.

(b) Per-country IPv6 adoption.

Figure 2.1: Google’s IPv6 adoption statistics [38].

connections to APNIC servers and found that IPv6 was faster than IPv4 half the time,
but experimented with a higher failure rate. The most recent longitudinal study to focus
on web server measurement is the one performed by Bajpai et al. [7] (2019), which focuses
mainly on transport layer metrics. Their results show a significant reduction in latency for
both IPv4 and IPv6 within Alexa top 10,000 websites. They also report a reduction in
IPv6 connection failures and find that the main contributors to these failures (2019) are
Image, CSS , Script resources. Older work includes more application-level metrics such
as web page load times, Dhamdhere et al. [23] (2012) evaluated these load times on the
Alexa list and found that IPv6 performance can be much worse than IPv4 if the AS paths
are different, otherwise they are similar. Although delay is a sufficient metric to assess
performance for smaller web pages, the varying complexity of web services requires an
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Figure 2.2: Happy eyeballs in action, taken from [67]. The dual-stack client first obtains A and
AAAA DNS records, it then starts simultaneously (timer set to 0 ms in this case) one connection
over IPv6 and one over IPv4. IPv6 connectivity appears broken but thanks to the IPv4 response,
the problem will not be felt by the user.

extension analysis at the application level by refreshing previous measurements. Our work
aims to provide this extension.

Research on Internet path-length aspects between IPv4 and IPv6 has also been
performed [37]. It showed that IPv6 and IPv4 paths share similar path lengths, implying
that, despite IPv6 ’s less stable paths and higher dynamics, the fundamental infrastructure
(in terms of distance data travels) is comparable to IPv4.

NetQuartz’s design was deliberately inspired by metrics explored in all these studies,
such as the logging of IPv4 and IPv6 failure rates, but also IPv4 and IPv6 RTT estimation
times (but only towards a specific website server, for reasons of time complexity). For the
path-length aspect, NetQuartz logged each IP address to perform a post-processing
geophysical mapping and a rough estimate of the distances covered during full-IPv4 and
IPv6-preferenced loading. traceroute analysis could arguably be more reliable at this
level, but is more complicated to implement due to the number of servers on which the
traceroute needs to be performed.

It should also be noted that the longitudinal aspect of certain studies (e.g. Huston’s [42])
could, in the future, enable NetQuartz to sketch the evolution of our measurements
over months/years. That said, due to the time constraints of this work, we have not yet
been able to carry out more than one or two measurement campaigns.

2.3 Happy eyeballs

Happy eyeballs is an algorithm used in dual-stack networks to improve connectivity by
reducing delays associated with address family selection (IPv4 vs. IPv6). The algorithm
first attempts a connection on IPv6 and if it is not completed within a certain timer range

6
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(typically 300 ms but this may vary depending on the browser implementing it), it launches
a competition between IPv6 and IPv4, with the winner establishing which protocol is
selected [67, 58]. An example of happy eyeballs in action is shown in Figure 2.2.

Recent research (2016–2019) has evaluated the impact of happy eyeballs on performance,
showing that the default 300 ms timer was not always leading to the best outcome [6, 7].
Piraux et al. [55] recently provided a DNS extension as an adaptative address family
selection algorithm able to dynamically select, according to end-to-end latency measures,
the best address family for establishing the connection.

Happy eyeballs has greatly contributed to the reduction of protocol selection times, but
it will not have a significant impact on the design of NetQuartz for two reasons: (i) the
happy eyeballs algorithm is complicated to implement in practice (in its optimality), (ii)
we seek to compare IPv4 and IPv6 in a straightforward way and not the efficient selection
of one of the protocols.

2.4 Web content delivery

Web content has also been examined. Butkiewicz et al. [11] found that a significant portion
of web pages includes content fetched from multiple, distinct servers, introducing additional
delay. They highlight that it is not just the total size of the page that affects load times
but, more significantly, the number of individual objects requested. Advertising content
was also captured: Yutian et al. recently (2023) developed AdHere for this purpose, an
automated technique to detect and repair intrusive ads [68]. Other works [45, 11] show that
images and JavaScript are among the prominent content types, with JavaScript objects, in
particular, contributing substantially to the total page size. Most of the studies were only
focused on the root home page of the service.

On the contrary, Lookyloo [6] – a networking tool web interface – focuses on the
classification of all the resources linked to the home page along with their category but, to
our best knowledge, no paper has been published on it. Bajpai et al. [30, 3] give insights at
the content level of dual-stack web servers, their focus was mainly on the failure rate and
the performance of content delivery over IPv4 and IPv6. Our work seeks to complement
theirs by delving into application-level metrics and evaluating how much of the content is
distributed over IPv4 and IPv6.

When discussing web performance, user experience is a crucial factor. Sengupta et
al. [60] conducted a study using Google’s Chrome User Experience Report (CrUX), which
focused specifically on user experience and user-related metrics, particularly those associated
with web page rendering. Although this research is orthogonal to our work, it underscores
disparities in these metrics across devices and geographic regions, revealing that desktops
generally outperform mobile devices. Furthermore, it highlights that certain countries
benefit from superior network performance, leading to a better overall user experience.
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CHAPTER 2. RELATED WORKS

2.5 Website content extraction

This section is mainly dedicated to a single study: Web Data Extraction, Applications and
Techniques: A Survey by Ferrara et al. [31] (2014).

This study presents the different approaches to consider when capturing web content
and, in particular, allowed us to select the best capture method for our needs. These
techniques include: (i) the use of regular expressions on simple HTML documents; (ii)
natural language processing techniques (NLP) combined with information extraction (IE)
principles; (iii) browser simulation techniques combined with HTTP/S request listening.
There are many other techniques of varying complexity presented in the study, but this
last one is particularly interesting and is the one we will be applying to our work using
Selenium technology (introduced later in Chapter 3). In fact, the most effective way to
simulate a web environment is to simulate a browser by itself, because that is where all
the complexity lies. The browser mainly takes care of parsing the HTML document and
identifying the resources to be queried, then we only need to listen and log all the HTTP/S
requests generated by the browser. Within Google Chrome browser, this listening is made
possible by the Chrome Performance Tool (or DevTools) [16], which we will briefly introduce
in Section 3.1.

2.6 What we bring to the table

In conclusion, all the related work shows a gap in the literature when it comes to dual-stack
content distribution. In other words, many studies remain fixed at the level of a single
server, at the transport layer. To the best of our knowledge, no studies delve into the
complexity of the IP configuration of the servers that make up a website. The latter is
a major failing because it somewhat distorts the real purpose of a website, which is to
download content from a multitude of different origins. An important piece of information
is missing: which fraction of content is delivered under which protocol, and which content
category (Document , Image, Script , etc.). This is the first gap our study aims to fill.

Secondly, IPv4 vs. IPv6 performance studies (still limited to the scale of a single
server) are starting to look dated. Our work will not only bring these statistics back into
the picture, but will also consider them in the more complex context of websites, hiding a
multitude of web servers, and attempt to explain these statistics.

We will see later in Chapter 5 that this opens the door to a new way of looking at
websites, by classifying them according to the nature of the servers that make them up:
Fully IPv4, Fully Dual-Stacked, and Mixed websites. In particular, we have identified
patterns within these classes: websites made up of IPv4-only servers seem faster at first
sight, but they are also smaller in size. IPv4 is not the reason for their speed; this new
consideration allows us to capture the web in its entirety while avoiding hasty conclusions
about the network layer.
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Chapter 3

NetQuartz: the Data Collection Tool

3.1 NetQuartz: a network analyzer providing trans-
parent results

This chapter presents NetQuartz, a Python network analyzer software, designed to
give a transparent view of the web’s underlying infrastructure connections, by providing
an analysis of both IPv4 and IPv6 protocol used while loading websites. NetQuartz
is adopted in this study because of the need to evaluate and compare data contents
and delivery performance over the dual-stack servers. The later section will describe the
comprehensive approach that the tool used which involves data collection, processing,
and analysis which together will highlight the understanding of content delivery across
the different web categories (Image, Script , etc.), as well as the experience of the user.
We will first look at some of the technical challenges posed by the underlying nature
of NetQuartz (Section 3.2), then present its general working overview (Section 3.3).
Section 3.4 will also describe the NetQuartz hyperaprameters, the output format
((Section 3.5)) will also be highlighted. We will finally showcase some practical details of
NetQuartz implementation (Section 3.6).

3.2 Technical challenges

3.2.1 Capturing resources

Capturing the entire spectrum of web resources is a significant technical challenge due to
how modern websites operate. The traditional method of HTML parsing [64], the standard
technique for the identification of web resources, is limited for modern websites. That is
because the HTML parser retrieves only the standard elements of a webpage and will not
work for any dynamically loaded content. Modern websites heavily employ dynamically
loaded content that is fetched using JavaScript in the background. This content is not
loaded when parsing the webpage with the standard HTML parser, making it challenging
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Figure 3.1: Chrome network performance tool output on google.com

to collect the information. To solve this problem, NetQuartz includes an automated
browser, which uses Selenium [59] with a Chrome driver [25]. NetQuartz interacts
with the webpage as any human user (through a browser) would, allowing the survey of
all elements of the webpage, including asynchronous requests. Selenium is a powerful
automation browser framework that imitates a user, allowing a bot to gather information
concerning every resource rendered throughout a browsing session. We will use the Chrome
network performance tool [16], through Selenium, to capture resource categories such
as Image, Script , Media, Document , Font , Stylesheet , and resources dynamically loaded
through the Fetch & XHR API. Figure 3.1 highlights the output of the Chrome performance
tool, through the network window, while loading the Google web page. We can see that we
have access not only to resource categories but also to timing and HTTP metrics, typically

• The URL
• HTTP response/request header
• HTTP status code
• DNS time spent for the resource
• SSL time spent for the resource in case the resource has been loaded over HTTPS
• The Time-To-First byte sent by the server (TTFB)
• The total time needed to download the resource
• The category of the resource (Image, Script , etc.)

However, as we will see in the next section, we will not be using these metrics to compare
IPv4 and IPv6 website loading. We will only keep the type/category (Image, Script , etc.)
along with the URL.

10
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3.2.2 Comparing IPv4 and IPv6 protcols

This challenge can be divided into several sub-challenges.

• First of all, why not keep selenium and the Chrome performance tool to compare
IPv4 and IPv6 performance metrics? Because it is complicated in practice, pro-
grammatically, to force a browser to use IPv4 or IPv6. This would also include a
double Selenium session per website, with a lot of unnecessary processing (website
rendering, etc.). We therefore opted for Python’s requests library [9], well known for
its implementation of the HTTP/1.1 protocol, and support for TCP session persistence.

• An effective analysis of how modern websites operate requires the development of a
download protocol that adapts to the complexity and size of a website. While prior
studies have operated on a (dual-stack) server scale, doing this when the website
fetches its resources from a wide range of servers creates another level of complexity.
For this reason, we introduce IPv6-preferenced loading. IPv6-preferenced loading is
such that all the resources on dual-stack servers should be accessed using IPv6 and
the resources hosted on IPv4-only server should be accessed using an IPv4 connection.
This approach enables NetQuartz to compare the two major IP families when
operating on a website scale.

• We must then opt for an efficient selection of performance metrics, considering that
the initial objective is to compare IPv4 and IPv6, and not only performance but
also content delivery. We will need to include the size (in bytes) of each resource,
the loading time (from request initiation to complete download), RTT estimates (on
well-defined servers such as the main HTML hosting server), and the ability to log
resource failure rates over both IPv4 and IPv6-preferenced sessions. We should also
note that to capture the protocol’s contribution to the website loading, we have to
log the IP addresses used to establish the connection towards each resource.

3.3 NetQuartz, a general overview

We will now describe the practical development of NetQuartz, carefully designed taking
into account the various challenges introduced in Section 3.2.

NetQuartz, our tool for measuring content delivery and performance of websites,
works in three steps as illustrated in Figure 3.2:

• Main service domain processing (Section 3.3.1). It collects information such as the
certificate being served by the domain and the number of A and AAAA DNS records
associated with the main service;

• Main HTML domain processing (Section 3.3.2). It performs a DNS lookup for the
domain and logs the number of A and AAAA DNS records associated with this server,
it also sends ping towards the server hosting the main HTML of the website;

• Resources collection (Section 3.3.3). It collects (through a headless browser tech-
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nology) and logs all the resources and their categories (Image, Script , etc) that are
loaded along with the main HTML document;

• Website loading comparison protocol (Section 3.3.3). It loads the full website both
in a full-IPv4 and an IPv6-preferenced loading and collects metrics from the loading
of each resource.

3.3.1 Step 1: Main service domain processing

As depicted in Figure 3.2a, NetQuartz begins by accepting a list of domains along with
the URLs of a web home page that can be queried on that domain and the HTTP status
code returned while fetching the home page. The domain of these URLs points to the server
that hosts the main HTML document of the website. Only entries with a successful status
code (200) are considered for processing.

For each service domain in the list, NetQuartz starts by querying the DNS for
retrieving associated A and AAAA records. In addition, NetQuartz fetches the certificate
associated with the domain. The certificate will be used to determine how many of these
websites are still delivering an expired certificate and try to correlate this breach to
potential defects in terms of loading times.

3.3.2 Step 2: Main HTML domain processing

After extracting information from the main domain, we will now focus on the domain
referencing the server hosting the main HTML of the website because the two are often
different and the main domain may not be sufficient to capture the entire spectrum of
the website. Figure 3.2b shows that metrics extraction from this step includes similar DNS
record counts (A and AAAA), and then NetQuartz perform ping in IPv4 (and IPv6
if the server has been identified as dual-stack) on the first record returned by the DNS.
NetQuartz logs the average time and standard deviation associated with these pings,
sending a predefined number of ICMP packets to each home page’s hosting server. The goal
is to have an estimation of the RTT (in both IPv4 and IPv6 when available) towards this
main server, it will thus be possible to determine at a later stage whether this metric is a
sufficient indicator of website performance.

3.3.3 Step 3: Resources collection

Most websites not only load the main HTML for the home page but will also parse it [64]
to load additional resources (Image, Script , etc) so that they can ensure the website’s
complete rendering. NetQuartz relies on Selenium [59], a headless browser technology,
for facilitating the collection of these resources. Figure 3.2b illustrates this step: we use a
Chrome browser through a dedicated executable driver [25], allowing script-driven browser
interactions. The communication between Selenium and the chromedriver is handled
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Figure 3.2: NetQuartz general overview.
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through the WebDriver protocol, an HTTP-based protocol that uses JSON objects to instruct
the browser what actions to perform [61]. The different resource categories that have been
captured are: Image, Script , Media, Document , Font , Stylesheet , and resources loaded
through the Fetch & XHR API. The cookie mechanism used by websites is a constraint on
our resource collection because as long as cookies have not been accepted, not all resources
will be captured. To remedy this, we are taking advantage of the simulated Chrome browser
to add a dedicated Chrome extension: I still don’t care about cookies [63]. All captured
resources are kept in memory for further analysis.

3.3.4 Step 4: Website Loading Comparison Protocol

Before establishing the methodology for comparing websites, it is worth looking at the
generic behavior of a dual-stack user when loading a website from a set of servers. The
browser first performs a DNS lookup on the domain hosting the main HTML document,
the latter is then retrieved via an HTTP/S request. As soon as the main HTML is available,
the browser parses it to identify all the resources needed to render the web page, which
may come from servers different than the one hosting the main HTML. When resources are
available in both IPv4 and IPv6, the default behavior of most browsers is often to prefer
IPv6 [62]. This can be problematic if the IPv6 connectivity is broken. It is for this reason
that most browsers now implement the Happy Eyeballs algorithm, which recommends
selecting one address family to establish the connection, as a result of a competition
started after a specific timer (typical value is 300 ms for Chrome and Firefox) [67, 58]. For
practical reasons and to focus only on the comparison between IPv4 and IPv6 and not on
an efficient selection of the protocol, the Happy Eyeballs algorithm is not included in our
protocol.

Figure 3.2c catalogs our protocol for comparing website loading times, highlighting the
complexity of web resource downloads, which often originate from servers distinct from the
origin domain. The protocol takes as input the list of resources collected with Selenium
during step 2 (Section 3.3.2) and mimics as much as possible a user browsing behavior,
adhering to the HTTP standard [32, 33] and connection persistence (for practical reasons,
a single TCP connection is persisted). Sequential requests through session management
showcase sessions with full-IPv4 loading or an IPv6-preferenced loading, illustrating that
prioritizing IPv6 does not guarantee exclusive IPv6 resource loading, as depicted in the
figure. To mitigate biases between the two loading strategies, a DNS query precedes each
HTTP/S GET, ensuring domain name server caching before the loading times measurements.

During each HTTP/S GET request, additional metrics are collected, such as the resource
URL and the content-type HTTP header. For both full-IPv4 and IPv6-preferenced loadings,
we measure the load time of each resource, we also collect the byte size of the HTTP/S
response, the status code of the response, and information about any resource download
errors. All the data is logged into a json file and kept for further postprocessing. The
total website loading time is computed by summing the loading times of all successfully
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loaded resources within both IPv4 and IPv6-preferenced loadings, ensuring neither loading
strategy is unfairly penalized for experiencing more failures or timeouts. To preserve data
integrity at this level, failure reasons are logged for later comparison, aiming to analyze the
failure rate (and reasons) of web resources within full-IPv4 loading versus IPv6-preferenced
loading.

NetQuartz proactively identifies and handles specialized URLs [65], such as data
URL that encodes data directly within the URL itself [51], these resources do not involve
traditional network loading over IPv4 or IPv6. They are still logged for postprocessing
(Section 3.3.4), including the assessment of the size and category of data encapsulated
within data URL resources.

3.4 NetQuartz hyperparameters

The first hyperparameter–related to main HTML domain processing (Section 3.3.2)–involves
the count of IPv4 (and IPv6 if applicable) pings performed without compromising the
tool’s performance. The value chosen for this parameter will be discussed later in Section 4.3.

The majority of websites dynamically load a significant portion of their content via
the Fetch API and/or the XMLHttpRequest (XHR) API [45]. This introduces a degree
of ambiguity to the concept of a website’s loading process, theoretically allowing it to
extend indefinitely. To detect full initial loading, Selenium uses the browser’s "load" event–
a pivotal moment in a webpage’s lifecycle signaling the full loading and parsing of the
page [48]. This will not take into account content dynamically loaded post-initial "load"
event via asynchronous calls.

That brings us to our second hyperparameter: we have implemented a timer
"selenium_timeout " for the web loading process conducted by Selenium (Section 3.3.3).
Similarly, another timer "resource_timeout " is used within the fourth NetQuartz
step (Section 3.3.4), applying to the loading time of each resource so that we prevent
resources from loading indefinitely or in case the targeted web server is not even responding.
Upon expiration, this timer exposes the timeout’s cause and context: a "connect timeout"
denotes a failed server connection attempt, whereas a "read timeout" occurs upon a failed
read attempt from an already established connection.

Another critical parameter is the data write rate to disk, introducing a protective layer
for the tool by logging data at a specific frequency. The last parameter relates to a more
global timeout "processing_timeout " that limits the total NetQuartz processing
time for each domain. This is intended to prevent excessive time spent on sites with an
abundance of resources that exceed a predefined threshold. If the total time exceeds the
set limit, domain processing stops, but data collected is kept, ensuring usability while
acknowledging the incomplete analysis of all site resources. The values chosen for these
parameters will be discussed later in Section 4.3.
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3.5 NetQuartz output format

Each instance of NetQuartz will eventually generate a json file summarizing all the
information it has extracted for all the domains given as input. Figure 3.3 shows an
example of an output format for the facebook.com domain, including in particular

• main_page: the URL pointing towards the main HTML Document resource.
• selenium_load_time: the Selenium load time, which corresponds to the time spent

in the third’s NetQuartz step (see Section 3.3.3)
• status indicating how the NetQuartz processing took place: (i) 200 means all

went well; (ii) -1 means a selenium_timeout has occurred; (iii) -2 codes mean there
was a network error during processing; (iv) -3 means the processing_timeout has
occurred, such that the processing of this domain has been manually stopped, but
with a fair amount of resource between full-IPv4 and IPv6-preferenced sessions; (v)
-4 codes are intended for very unusual cases where a popup on the website cannot be
closed, leading to a Selenium crash.

• a_service, aaaa_service, a_mainPage, aaaa_mainPage are respectively fields indi-
cating the number of A and AAAA records associated to: (i) the main service domain
(facebook.com in our case); (ii) the domain pointing towards the main HTML’s hosting
server (www.facebook.com in our case).

• ping_avg_v4 , ping_avg_v6, std_ping_v4, std_ping_v6 are the average RTT estima-
tions and the standard deviations, over both IPv4 (and IPv6 if applicable) pings
performed on: (i) the main service domain (facebook.com in our case); (ii) the
domain pointing towards the main HTML’s hosting server (www.facebook.com in our
case).

• cert_info is a dictionary including certificate validity interval limits of the main
service domain (facebook.com in our case) and a Python timestamp representing the
precise moment when the certificate was fetched.

• time_taken is simply the total NetQuartz processing time spent on that whole
domain.

• resources is an array of all the resources of the website, it includes metrics over both
full-IPv4 and IPv6-preferenced session, we use "v4_Sess" and "v6_Sess" suffixes to
identify them respectively. We therefore have the following session-dependent metrics
for each resource:: the HTTP status code, the IP address used during connection
establishment, the load time, the size (in Bytes), info_vxSess contains resource
failure reasons: connection or reading timeouts. We should note that ip_v6Sess
can be an IPv4 address if the targeted server is IPv4-only (see IPv6-preferenced
loading in Section 3.2.2). Some session-independent fields are also included such as:
(i) the URL of the resource (collected with Selenium) (ii) uri_info which contains
the MIME type if the resource is following the data URL encoding scheme; (iii) the
HTTP content-type header; (iv) the type of resources inferred by Selenium (through
Chrome performance tool).
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Figure 3.3: NetQuartz json output format

3.6 Implementation notes

3.6.1 Patching for address family selection and connection details

Two significant patches were applied to the Python standard socket [56] library and the
urllib3 [50] library. These modifications were crucial for forcing the use of IPv4 and for
capturing the IP addresses used during the connection establishment because they are not
supported by default by these libraries, even though they are low-level. See Appendix A
for detailed implementation.
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3.6.2 Timing network requests

The standard HTTP GET timeout in the requests library is designed to trigger based on
each response from the server. While this is useful for assessing server responsiveness, it
does not account for the total time required to download the entire response. The problem
is that the timer resets itself and then applies to each TCP exchange involved within the
fetching. Let us look at an example to clarify this: if this timer is set to 2 seconds, and the
server begins responding before this limit and then transmits one byte of data every 1.999
seconds, the timer will never be triggered and the download can take a relatively long time
(even infinite, we have observed such resources that never finish downloading and "refresh"
at a certain frequency). This is a problem because NetQuartz is designed to always
complete its processing in a non-infinite time.

To address this, we implemented a custom timing mechanism using Python’s sys.settrace [57]
function to monitor and enforce a timeout based on total download time, not just the initial
response. This method involves setting a trace that periodically checks the elapsed time
during the download process against our resource_timeout. For a detailed implementation
please refer to Appendix A.

The trace function in Python, used to implement the custom timer, executes a check
only at each line of execution within the HTTP GET function. Given that the network
request function spends most of its execution time waiting for I/O operations, the relative
CPU time used by the trace function is negligible (and the same goes for the overhead
introduced). See Appendix A for detailed implementation.
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Chapter 4

Data Collection Methodology

Figure 4.1 provides an overview of the methodology followed when running NetQuartz
for collecting data. As illustrated, a four-steps methodology is applied, each of those steps
being described in the following sections.

4.1 Step 1: Domains List Collection

Due to the discontinuation of the Alexa list, we rely on DomCop [26] which lists domain
services (e.g., google.com). The list contains 10 million entries but we limit ourselves to the
first 300,000 websites for the processing and analysis (list obtained on February 19th, 2024).
As explained in Section 3.3.1, NetQuartz needs as input not only the main service
domain but also the web home page URL for that service, along with the HTTP status code
fetched. These pieces of information are not included by default in the DomCop file, thus
requiring a preprocessing stage (Section 4.2).

4.2 Step 2: Preprocessing Step

An initial HTTPS connection attempt to each website is made, following HTTP redirection
codes (range 300 to 399) until a successful 200 status code is obtained. This redirection strat-
egy is commonly employed by web services to guide users directly to the service’s web home
page (e.g., navigating to google.com in a browser redirects to https://www.google.com/). If
the HTTPS attempt fails, a subsequent attempt over HTTP is made. This process allows us to
determine the applicable application layer protocol, the URL for accessing the service’s home
page (e.g., https://www.google.com/), and its status; all such information is appended
to the original csv file.

The preprocessing phase results are summarized in Table 4.1: 73% of input websites
yielded a home page with a 200 (OK, request succeeded) status code, 21% responded with
error status codes, while 6% did not respond to connection requests. Despite a preference
for HTTPS connections, 5% of the websites are still exclusively accepting HTTP connections.
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Figure 4.1: Data collection methodology overview.
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Category Total HTTP HTTPS
Raw Prop. Raw Prop. Raw Prop.

All Websites 300,000 1.0 16,398 0.054 283,602 0.946
200 (Success) Status Code 217,973 0.727 9,264 0.031 208,709 0.696
Status Code ̸= 200 63,322 0.211 6,012 0.02 57,310 0.191
No Response 18,705 0.062 / / / /

Table 4.1: Summary of the preprocessing step (total: 300,000 websites).

4.3 Step 3: NetQuartz Execution

We deployed NetQuartz on three vantage points (VP) that are hosted by different cloud
service providers across three regions, one in North America hosted by Digital Ocean [24],
one in Europe hosted by OVH [54], and one in Asia hosted by Vultr [66]. Each VP was
tasked with allocated portions of the csv resulting from previous steps: North America
and Asia (both got 1 CPU and 0.8 GB of RAM) dealt each one with 25,000 randomly selected
items from the csv, while the European VP (8 CPUs and 32 GB of RAM) run through 250,000
websites randomly picked up from the csv. The measurement campaign was launched on
March 2nd, 2024, and concluded on March 25th, 2024.

The values of each NetQuartz’s hyperparameter (Section 3.4) were fixed based on
the observation of Cumulative Distribution Functions detailed in Figure 4.2. The tuning is
based on 100 websites randomly sampled from the top 300,000 websites in DomCop’s list.
selenium_timeout (with x-axis being the time spent loading the website with selenium)
is fixed to 40 seconds, to capture 95% of the websites from the tested sample. Similarly,
processing_timeout (with x-axis being the total time spent by NetQuartz to process
the website) is fixed to 70 seconds. resource_timeout (with x-axis being the time spent
loading the web resource) is intentionally set to 2 seconds to capture 100% of resources, the
goal is to prevent resources from loading indefinitely, we still want to capture a maximum
amount of them. The number of IPv4– and IPv6 when applicable – pings is set to 5.
Figure 4.2b shows that with 5 pings, we still get a reliable snapshot of the network’s
conditions without significantly increasing the overall processing time per domain, ensuring
that NetQuartz remains efficient in processing the top300,000 websites from DomCop.

Fixing the number of NetQuartz parallel instances to run is highly dependent on
the measurement probe, we recommend performing an analysis of website load times to
ensure that no bias is introduced. Figure 4.2c shows the results of tests carried out from
OVH European machine and focusing on the first 20 websites of DomCop’s list. Loading
time stability seems assured up to 8 instances; to lighten the VM, we deliberately allocate
half of them to the OVH vantage point. North America and Asia, less powerful, both ran
1 instance of NetQuartz.
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Processing Completed selenium_timeout processing_timeout Internet Errors Unclosable Popups
Raw Prop. Raw Prop. Raw Prop. Raw Prop. Raw Prop.
202,845 0.932 3,302 0.015 11,395 0.053 0 0.0 431 0.0

Table 4.2: Summary of the NetQuartz execution step (total: 217,973 websites).
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Figure 4.2: NetQuartz hyperparameter tuning.

NetQuartz execution summary is reported in Table 4.2 which indicates that of the
217,973 websites accepted by the preprocessing stage, 93.2% encountered no errors, 1.5%
triggered the selenium_timeout, and 5.3% had their processing manually halted upon
exceeding the processing_timeout though these sites remain analyzable (see Section 3.4),
with an equitable assessment of their resources between full-IPv4 and IPv6-preferenced
sessions.
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4.4 Step 4: NetQuartz Output Postprocessing

When NetQuartz processing is done on each VP, json outputs are merged, parsed,
and flattened into a final csv file. During this postprocessing stage, we apply a content
reclassification heuristic to fill a gap in the classification of the Chrome performance tool
(Section 4.4.1). In addition, we take advantage of this postprocessing step to push content
classification, trying to derive a lower bound on the ads employed by the website and
their content categories (methodology described later in Section 4.4.2). NetQuartz has
not been programmatically designed for total ad capture–as this would require, among
other things, simulating a user scroll down on Selenium. This stage is also responsible for
processing data URL resources logged by NetQuartz (Section 3.3.3) to infer their types
and sizes.

4.4.1 Reclassifying Resources Loaded Through Fetch & XHR API

While straightforward HTML document parsing techniques might suffice when classifying
static content, they fall short in capturing the full spectrum of dynamic web content [31].
Selenium makes us able to operate the Chrome’s network performance tool, accessible
through the Chrome driver interface, to infer the following categories: Document , Image,
Media, Fetch, XHR, Font , Stylesheet , Script , and Other . That last category is a kind of
tie-break, for resources that do not fall within one well-known category.

Chrome’s network performance tool does not explicitly reveal resource categories for
Fetch & XHR, they represent more a classification of requests within the dynamic context of
a site. This categorization gap comes from the Chrome performance tool’s dual consideration
of content type and loading context, with dynamic loading contexts (Fetch & XHR) taking
precedence over content-based categories.

Addressing this, we use the content-type header collected by NetQuartz (Sec-
tion 3.3.3) to build a heuristic able to reclassify the Fetch & XHR context-related categories
into the content-related ones. The content-type HTTP Header reliability is not without its
challenges; services might declare a content type that diverges from the actual content,
a practice countered by browsers through MIME (Multipurpose Internet Mail Extensions)
type sniffing [27]. This involves payload inspection – following well-defined standards [1]
– to derive the true content type, potentially influenced by the resource’s file extension.
Ethically, our developed heuristics refrain from inspecting payload content.

The basis of the heuristic is keyword detection within the content-type header encoding
the resource MIME type, described by type, subtype, and parameters:

type/subtype;parameter=value

Keyword detection focuses on the type and subtype fields, the process is summarized in
Figure 4.3.
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Type
True Positive False Positive True Negative False Negative Accuracy Recall f1-score

Raw Prop. Raw Prop. Raw Prop. Raw Prop.
Document 31,623 0.033 16,290 0.017 888,298 0.947 960 0.001 0.66 0.97 0.785
Image 367,260 0.391 1,970 0.002 540,339 0.576 27,602 0.029 0.994 0.93 0.961
Media 2,799 0.002 47 0.000 933,813 0.996 512 0.001 0.983 0.845 0.91
Stylesheet 101,775 0.108 929 0.001 833,066 0.888 1,401 0.001 0.99 0.986 0.988
Script 332,304 0.354 8,644 0.009 589,039 0.628 7,184 0.007 0.974 0.978 0.976
Font 53,385 0.056 520 0.001 872,900 0.931 10,366 0.011 0.99 0.837 0.907

Table 4.3: Content classification heuristic evaluation (total: 937,171 resources) with advanced
metrics.

Validation of this heuristic implied a dataset of 25,000 websites, encompassing 937,171
resources, and involved confusion matrix construction to evaluate classification performance.
Results, including precision, recall, and f1-score for each category, are detailed in Table 4.3.
The f1-score, representing the harmonic mean of precision and recall, shows robust outcomes
across categories, with scores exceeding 90% except for the Document category, which
faced a precision challenge at 66%. This anomaly comes from instances where resources,
like images, fail to load correctly (e.g., returning an HTML document with status code other
than 200), yet are classified as images by Chrome’s performance tool. This discrepancy
raises questions about Chrome’s internal decision-making processes, which are not publicly
documented.

24



CHAPTER 4. DATA COLLECTION METHODOLOGY

True Positive False Positive True Negative False Negative
Raw Prop. Raw Prop. Raw Prop. Raw Prop.

Manual Inspection
EasyList 77 0.015 - - 5,114 0.985 - -
EasyPrivacy 243 0.047 - - 4,948 0.953 - -

Complete List
EasyList 77 0.015 0 0.0 5,114 0.985 0 0.0
EasyPrivacy 243 0.047 0 0.0 4,948 0.953 0 0.0

Pruned List
EasyList 64 0.012 0 0.0 5,127 0.988 13 0.002
EasyPrivacy 170 0.033 0 0.0 5,118 0.986 73 0.014

Table 4.4: Advertisement heuristic validation (total: 5,191 resources).

4.4.2 Advertisement Heuristics

We can use NetQuartz’s logging feature of the URLs of each resource (Section 3.3.4)
to test them against well-known Adblock Plus filter lists. The goal is to detect resources
related to service promotions, advertisements, or user information analysis and tracking,
often conducted for the purpose of delivering personalized ads. We use two primary lists
for this purpose: EasyList [28], focusing on advertisements, and EasyPrivacy [29], aimed
at eliminating all forms of internet tracking–both lists have been sourced on March 25th,
2024.

A website predominantly loads its advertisements dynamically, which requires user
interaction [68] that falls outside the programmed capabilities of NetQuartz for its
main features. For efficiency reasons, an additional heuristic has been implemented to
reduce the large number of filter rules. The application of the latter reduced the number
of rules by 39% across both lists.

We have so employed a dual approach, integrating both heuristic-based and Adblock
Plus filtering list-based strategies. The heuristic method simplifies the selection of rule
subsets to consider: general rules located at the beginning of the file are included without
exception. The presence of specific keywords within a rule is then assessed to determine
its eligibility for the subset, the heuristic (along with the chosen keywords) is summarized
in Algorithm 1.

To validate our classification approach, we randomly selected 100 websites (encompass-
ing a total of 5,191 resources) and initially conducted a manual inspection of advertising
and tracking resources. Subsequently, we applied the full lists without any form of pruning,
followed by a final pass using our pruned list approach. The results are documented in
Table 4.4: we can clearly see that it is the complete lists that are more efficient regarding
the manual inspection, although our approach has the particularity of exposing no false
positives. We can therefore affirm that this heuristic shows a precise lower bound on
advertising and tracking content.
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Algorithm 1 Pruning heuristic for Adblock Plus filter lists
1: Input: file_path – path to the filter list file
2: Output: filtered_rules – list of relevant filter rules
3: procedure LoadRules(file_path)
4: Initialize filtered_rules as an empty list
5: for each line in the file at file_path do
6: if line is a general_rule then
7: Add line to filtered_rules

8: else
9: for each keyword in the list ["ad", "doubleclick", "googlesyndication", "af-

filiates", "banner", "track", "analytic", "pop", "taboola", "stat", "collect"] do
10: if keyword is found in line then
11: Add line to filtered_rules

12: return filtered_rules
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Chapter 5

Results

The aim of this chapter is to present the main results obtained from post-processing
the NetQuartz campaign carried out between March 2nd 2024 and March 25th 2024.
Section 5.1 first shows the preliminary results of this campaign and the consequences for
subsequent analysis, in particular, the labeling of websites into 3 different classes according
to their IPv4/IPv6 loading strategy: Fully IPv4 websites, Fully Dual-Stacked websites
and Mixed websites. Section 5.2 then looks at the main results relating to the content
(number of HTTP/S GETs, website size, and size distribution into the different resource
categories) over the 3 website classes. Section 5.3 then focuses on the largest of the
classes, "Mixed " (a class forced to load a fraction of its resources in IPv4, even with IPv6-
preferenced loading), to understand how much of the content is delivered over IPv4 and
IPv6 when IPv6-preferenced loading occurs. The analysis will continue with a performance
evaluation between the two IP address families within the three website classes (Section 5.4).
Finally, we present some statistics about on user experience such as: resource failure rate
analysis; advertising content and its impact on user experience; data URL resources and
HTTP unsecured websites (Section 5.5).

5.1 Preliminary results

Prior to the discussion of the results, we propose a classification of websites according to
the way they respond to NetQuartz requests:

• Websites loading all their resources over IPv4-only servers can only be accessed
and loaded via the IPv4 protocol. We choose to label such websites as Fully IPv4
websites.

• Websites loading all their resources over dual-stack servers are fully accessible over
IPv6, but full access over IPv4 is also possible. We label such websites as Fully
Dual-Stacked websites.

• We have observed websites hosting some resources on IPv4-only servers and others
on dual-stack ones, supporting both IPv4 and IPv6. This setup allows those websites
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Figure 5.1: Website classification summary.

to be accessed either entirely over IPv4 or through a combination of both protocols.
We label such websites as Mixed websites.

All website classes can be loaded using a full-IPv4 approach (see Figure 3.2c). However,
for Fully Dual-Stacked websites, IPv6-preferenced loading corresponds to a full-IPv6
approach, as all the resources are hosted on dual-stack servers. Finally, Mixed websites can
be accessed using an IPv6-preferenced loading approach, by preferring IPv6 connections
where available. Figure. 5.1 provides a summary of the different website classes along with
the content loading approaches.

Table 5.1 provides an initial overview of the distribution of websites based on their class.
More than 73.8% of the measured websites belong to the Mixed class. Both Fully IPv4
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Mixed Fully IPv4 Fully Dual-Stacked No Resources
Raw Prop. Raw Prop. Raw Prop. Raw Prop.
160,920 0.738 28,861 0.132 24,454 0.112 3,738 0.017

Table 5.1: Distribution of the different website configurations (total: 217,973 websites).

and Fully Dual-Stacked classes are equally represented (13.2% and 11.2% respectively).
Finally, Table 5.1 shows a low proportion (1.7%) of websites from which no data could be
captured using Selenium.

5.2 Website content delivery

We will now look at the content delivery. In particular, we dissect the web pages collected
by NetQuartz such that we expose the various resources composing home pages.

5.2.1 Number of Resources

Our investigation into resource distribution directly corresponds to the number of HTTP/S
GET requests initiated by a user. This metric is obviously independent of the IP protocol
used for loading.

Figure 5.2a shows, as a CDF, the number of resources contained in web pages, in
function of the website class. The Fully IPv4 class consistently loads fewer resources,
typically loading up to 70 resources at their 95th percentile. The Mixed class requires
more resources, up to 168 at the 95th percentile. Finally, the Fully Dual-Stacked class is
between the two other classes. This difference can be explained by the fact that websites
tend to become larger in size and number of resources fetched over time. Considering HTTP
Archive [39] data collected between 2012 and 2024, we find that the number of requests
performed towards websites has increased by 25% in the median since 2012. As stated
in Chapter 2, the IPv6 adoption has also significantly increased over time and it is thus
interesting to note that Fully IPv4, being older than Fully Dual-Stacked and Mixed
websites, will therefore load fewer resources.

Figure 5.2b splits the downloaded resources into their respective categories, according
to the website class. The distribution shows that Image and Script are the predomi-
nant categories, regardless of the website class. Media and Other categories are barely
nonexistent.
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Figure 5.2: Number of resources requested via an HTTP/S GET during the loading of Fully IPv4,
Fully Dual-Stacked, and Mixed websites. The bottom and top whiskers represent the 5th and
95th percentiles, respectively. For readability reasons, outliers are not shown in the boxplots.

5.2.2 Website Size

Our analysis extends into the overall size of websites, noting that the total raw–meaning
after decoding–data transmitted during the loading process is totally independent of
whether the loading is IPv4-only or IPv6-preferenced.

As illustrated in Figure 5.3a, Fully Dual-Stacked websites have the highest data size,
which correlates with their higher resource numbers. Figure 5.3b shows that Image and
Script are still the predominant categories, the figure also reveals a significant insight into
resource utilization and efficiency, particularly in Mixed websites, where Script resources,
although fewer in number, contribute disproportionately to the total data volume. This can
be attributed to the complexity and functionality embedded within those scripts, which
often include libraries and frameworks that are essential for modern web applications but
are inherently large.

In terms of data distribution, average values provide an interesting perspective. While
the majority of websites manage to maintain Media sizes relatively low, as indicated by the
clustering of data points near the origin in the boxplot (Figure 5.3b), there are outliers with
considerably large resource loads. These outliers skew the average upwards, as depicted in
Figure 5.3c. This observation underscores the variable nature of web content distribution,
where most websites optimize resource sizes, but some, possibly due to specific functional
or design requirements, load larger Media files.

Figure 5.3d summarizes the reclassification step (see Section 4.4.1) of the resources
loaded through the Fetch & XHR API. This is done by extracting the average size of the
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Figure 5.3: Fully IPv4, Fully Dual-Stacked, and Mixed websites raw size distribution (in
Kilobytes). The bottom and top whiskers represent the 5th and 95th percentiles, respectively. For
readability reasons, outliers are not shown in the boxplots.

Fetch & XHR category and subsequently illustrating how each other category contributes
to this average. On average, Media emerges as the largest category typically loaded
asynchronously. This asynchronous loading allows for enhanced user experiences by not
blocking the rendering of other page elements while large media files are being loaded.
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Figure 5.4: Normalized ratio (ρ) calculated for the 162,190 Mixed wesbites, prioritizing more
resources loaded over IPv4 on the left-hand side (negatives values), and more resources loaded
over IPv6 on the right-hand side (positive values).

5.3 Dual-Stack content distribution

The Mixed websites are those which, when loaded with the default behavior of a dual-stack
client (i.e. to prefer IPv6 [62]), load a certain portion of their resources in IPv6 and the
other in IPv4. The aim of this section is to focus on the 160,920 so-called Mixed websites
(see Table 5.1) and to evaluate the portion of content downloaded in IPv6 and IPv4 when
IPv6-preferenced loading occurs.

Figure 5.4a presents the probability density function of a normalized ratio calculated
for each website. We express the ratio as

ρ =
IPv6_resources− IPv4_resources

total_number
. (5.1)

where ρ ∈]− 1, 1[. The limits of the interval (-1 and 1) are rejected as they represent the
case of Fully IPv4 and Fully Dual-Stacked websites respectively. A negative ρ means
the website prefers to load more resources over IPv4, while a positive ρ means the website
prefers IPv6. A null value means that the website equally loads resources in IPv4 and
IPv6.

Figure 5.4a shows that 64% of the data points fall into negative values, indicating a
higher number of resources loaded over IPv4. Conversely, 35% of the points are positive,
showcasing a preference for IPv6, with the remaining 1% balancing out at zero, indicating
an equal distribution of resources across both protocols. The figure also includes a count
of websites contributing to each bin, providing a clear view of the data distribution and
the significant skew towards IPv4.

Figure 5.4b shows the same ρ calculated across the different resource categories inferred
by Selenium. We see that for Media; Other and Fetch & XHR resources, the probability
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Figure 5.5: Dual-Stack content distribution. The bottom and top whiskers represent the 5th and
95th percentiles, respectively. Outliers are not shown in the boxplots.

density is concentrated around 0 according to a normal distribution. Document and Image
contribute the most to the left side (giving priority to IPv4 resources) while Font seems
to give priority to IPv6. This analysis can give insights about each category’s distribution,
but the largest–as established in Section 5.2.1–categories remain in favor of IPv4 resources.

Figure 5.5 delves deeper into the category of content loaded over each protocol. The
box plots in Figure 5.5a demonstrate that most categories predominantly load over IPv4.
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Image stands out the most by loading only 42% of the images over IPv6 when considering
the 95th percentile. However, exceptions are observed with Fetch & XHR asynchronous
requests and Font , which are more frequently loaded over IPv6. Even though the number
of Script resources appears comparable between IPv4 and IPv6, a significant difference
emerges when examining the size of these resources. Figure 5.5b reveals that scripts loaded
over IPv6 tend to be larger and more complex, with sizes reaching up to 8,000 KB at the
95th percentile while reaching only the half in IPv4 content.

The analysis of average values (see Figure 5.5c) across these resource categories further
enhances our understanding of protocol prioritization by showing that Media files also
predominantly use IPv4.

5.4 Performances

5.4.1 Parameters Influencing Performance

In Section 5.2 we have already considered content-related metrics such as website size and
the number of resources, we now integrate performance-related metrics that potentially
impact performance: the number of Autonomous Systems (ASes) and the number of IP
origins involved during loading. These metrics were derived in the postprocessing phase,
using MaxMind geolocation services to perform the IP to AS mapping [52].

Figure 5.6a reveals that Mixed websites tend to load resources from a larger number of
different IP addresses (up to 30 at the 95th percentile), while the majority of Fully IPv4
websites (≈ 80%) loads resources from maximum 2 IP addresses. Similarly, Figure 5.6b
quantifies the amount of ASes involved in loading resources. Mixed websites can rely–
considering the 95th percentile–up to 10 ASes, while Fully IPv4 rely on less than 2
different ASes and Fully Dual-Stacked on less than 4. It is worth noticing that, despite
the different loading strategies, the global distribution of these metrics shows no significant
differences. This indicates that the underlying network infrastructure treats full-IPv4 and
IPv6-preferenced sessions similarly in terms of routing diversity and connection origination.
We have also examined ASes relationships, relying on CAIDA dataset [12], and observed
that 80% of the websites analyzed by NetQuartz hosted their main HTML document
within an AS that had no direct connections to any other AS involved in the resource loading
process. This suggests a significant dispersion of resources, whatever the IP protocol used.
If we look deeper into these relations, we measured that–at the 95th percentile–for each
website main AS, there is only up to 1 direct connection and up to 8 indirect connections
to all the other ASes involved in the loading. These direct connections may be peering
relationships or client-supplier relationships, but the latter are rare and we have not been
able to identify any significant pattern at this level, apart from the fact that the preferred
IP protocol has no influence on these parameters.

Figures 5.6c and 5.6d delve deeper into these performance-related metrics by highlight-

34



CHAPTER 5. RESULTS

0 10 20 30 40 50 60
Number of IP Origins

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fully IPv44

Fully Dual-Stacked4

Mixed4

Fully Dual-Stacked6

Mixed6

(a) Number of ̸= IP origins involved in the loading.

0 2 4 6 8 10 12 14
Number of ASes

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fully IPv44

Fully Dual-Stacked4

Mixed4

Fully Dual-Stacked6

Mixed6

(b) Number of ̸= Autonomous Systems (ASes) involved
in the loading.

D
oc

um
en

t

Im
ag

e

M
ed

ia

Fe
tc

h-
X
H
R

Fo
nt

Sc
rip

t

St
yl

es
he

et

O
th

er

Category

0

3

6

9

12

15

18

N
u

m
b

e
r

o
f

O
ri

g
in

s

Fully Dual-Stacked Mixed Fully IPv4

(c) Number of ̸= IP origins across resource categories.

D
oc

um
en

t

Im
ag

e

M
ed

ia

Fe
tc

h-
X
H
R

Fo
nt

Sc
rip

t

St
yl

es
he

et

O
th

er

Category

0

2

4

6

8

N
u

m
b

e
r

o
f

A
S

e
s

Fully Dual-Stacked Mixed Fully IPv4

(d) Number of ̸= ASes across resource categories.

Figure 5.6: Performance-related metrics involved in the loading of Fully IPv4, Fully
Dual-Stacked, and Mixed websites. Parameters captured during IPv6-preferenced loading are
differentiated using subscripts: subscript4 showcases the use of full-IPv4 loading while subscript6 is
for IPv6-preferenced loading. The bottom and top whiskers represent the 5th and 95th percentiles,
respectively. For readability reasons, outliers are not shown in the boxplots.

ing their distribution within each resource category. Although Image is one of the largest
categories alongside Script , it is surprisingly much more balanced in terms of ̸= IP origins
and ASes (whatever the website class). Script remains the biggest contributor above the
other categories, as expected given our previous observations on the number of HTTP/S
GET requests (see Figure 5.2b). Surprisingly, asynchronous Fetch & XHR resources are
particularly present both in terms of the number of different ASes and IP origins involved
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Figure 5.7: RTT estimations correlations results.

in their loading. This indicates that the few resources loaded asynchronously are likely to
be loaded from different origins, whether at the scale of an AS or an IP address.

To determine what can influence website load times, we first performed a correlation
study between RTT pings estimations logged by NetQuartz (see Section 3.3.2) and
website load times. We selected and studied both websites having an IPv4-only main HTML
server and a dual-stack one. IPv4 pings (see Figure 5.7a) were compared over both IPv4-
only and dual-stack servers hosting the main HTML while, for IPv6 pings (see Figure 5.7b),
we were logically forced to consider the subset of dual-stack main HTML servers. The figures
show poor correlations, the first explanation being that the scale of a single server is not
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Figure 5.8: Correlations performed on both content-related and performance-related metrics.
IPv6-preferenced loading (which reduces to full-IPv4 loading in the case of Fully IPv4 websites)
has been considered for the whole analysis.

applicable to an entire website. To prove this, we are now considering a ratio similar to
the one presented in Section 5.3, but computed as follows:

ϕ =
same_origin_resources− different_origin_resources

total_number
. (5.2)

where ϕ ∈ [−1, 1]. The limits of the interval are such that: 1 represents the case where all
resources are loaded from the main HTML hosting server and -1 is the case such that all the
resources are loaded from a different server than the main one. A negative ϕ means the
website prefers to load more resources over servers different than the one hosting the main
HTML, while a positive ϕ means the website prefers content from the same origin. A null
value means that the website equally loads resources from the same origin and ̸= origins.
Figure 5.7c shows the distribution of these ratios over all the websites, 35% of the data
points fall into negative values; 63% fall into positive ones; 2% are at 0. We should also
note that a large number of sites (around 10%) are at 1, pushing the probability density
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76% of the variance (56% explained by PC1 and 20% explained by PC2). IPv6-preferenced loading
(which reduces to full-IPv4 loading in the case of Fully IPv4 websites) has been considered for
the whole analysis.

to the right. Taking this into account, the probability–for the remaining 90%–of having
servers different from the main one involved in loading is considerable. We would also
like to point out here that basing ourselves on the scale of a single server, as in previous
studies linked to this subject, is not completely representative of a website as perceived by
a user. This is one of the first gaps that our work aims to identify and correct.

To explain load times, we can also perform individual correlations on each of the
metrics (content-related and performance-related) that we have at our disposal, the results
of which are shown in Figure 5.8. The correlations for the size of the website and the
number of ASes are particularly poor. A qualitative study enabled us to demonstrate
that e.g. certain websites with a large size sometimes load faster because they require
a smaller number of HTTP/S GET requests. Conversely, some websites generating very
few requests load too slowly because they actually have a relatively large total size. This
demonstrates that the problem cannot in fact be reduced to a 2D problem when the
entire complexity of a website is considered, the approach must be multiplexed. This is
why, to determine how these metrics interrelate and contribute to website load times, we
performed a two-dimensional Principal Component Analysis (PCA). This dimensionality
reduction technique helps us visualize the correlations among the variables. The results,
depicted in Figure. 5.9, illustrate that vectors (arrows) with similar orientations are likely
to be correlated. We note that the number of resources requested over HTTP/S significantly
correlates with load times. Other features such as website size, the number of ASes, and
IP origins do not show strong individual correlations with load times. However, when
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considered together (size + ASes + IP origins), their cumulative impact becomes apparent.
These observations suggest that a dual view of both content-related and network-centric
metrics is essential to fully understand website performance dynamics.

5.4.2 IPv4 vs. IPv6 website load time

It has been established in Section 5.4.1 that the number of resources significantly im-
pacts load times, with Fully IPv4 websites loading fewer resources compared to Fully
Dual-Stacked, and subsequently, Mixed websites. The same relationship can be observed
by considering the loading time of the website (Figure 5.10a), classes loading fewer resources
will therefore load faster.

Regardless of the website’s class, IPv6-preferenced sessions outperform the full-IPv4
ones. Mixed class loads 20% faster in median and 11% faster at their 95th percentile when
using IPv6-preferenced loading. The difference is even more noticeable in the case of Fully
Dual-Stacked class, IPv6-preferenced load 16% faster in median and 24% faster at the
95th percentile. This observation is further pointed out by the boxplots in Figures 5.10b,
5.10c, 5.10d showing the distribution of loading times across the various content categories.
Predominantly, Image and Script remain the dominant categories, yet in all instances,
IPv6-preferenced loading times are slightly better than those of full-IPv4.

Typical justifications for the enhanced performance of IPv6 include the absence
of NAT processing, reduced header processing at network nodes, and the avoidance of
fragmentation [44, 20]. However, in our case, the argument regarding NAT processing does
not hold since our vantage points use publicly addressable IP addresses.

To investigate deeper into potential reasons behind IPv6’s performance advantage,
we used specific data provided by NetQuartz: the average Round Trip Time (RTT)
extracted from the five pings performed to the server hosting the main HTML document
(see Section 3.3.2) and the IP addresses logged for each resource during the loading process
(see Section 3.3.4).

We first examined the RTT estimates, Figure 5.11 shows that the distributions between
IPv4 and IPv6 for dual-stack servers are the same, so RTT estimation is not an ideal
candidate to explain this difference in performance. Nevertheless, there is a clear difference
in performance between IPv4-only servers and dual-stack servers, with pings towards
dual-stack servers responding 78% faster for the 95th percentile and 71% faster in the
median.

We then calculated geographical distance–through MaxMind geolocation services [52]–
using the Haversine formula to measure the distance between each server hosting a resource
and the corresponding vantage point. These distances were weighted by the resource size,
scaled down by a factor of 106 for readability reasons, producing what we refer to as
the "HaverSize score". Assuming we have n resources, each with a resource size si (in
Kilobytes) and a Haversine distance di from the vantage point (in kilometers), and K is
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Figure 5.10: Website load time distribution (in seconds) of Fully IPv4, Fully Dual-Stacked
and Mixed websites. Subscript4 showcases the use of full-IPv4 loading while subscript6 is for
IPv6-preferenced loading. The bottom and top whiskers represent the 5th and 95th percentiles,
respectively. Outliers are not shown in the boxplots.

the scaling factor set to 106, then the HaverSize score of a website is calculated as follow:

HaverSize =

∑n
i=1 si × di

K
. (5.3)

The HaverSize score is a non-negative metric (≥ 0), a score close to zero indicates that
the sum of the weighted distances for all resources is minimal. Practically, this suggests
that most resources are either very small in size or are close to the vantage point.
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Figure 5.11: ping response times (in milliseconds) for IPv4 vs. IPv6 on dual-stacked and IPv4-only
classes. Subscript4 means that the ping is performed over IPv4 loading while subscript6 is for
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Figure 5.12: HaverSize scores, where each score is the weighted sum of Haversine distance (in
kilometers) between the vantage point and the resource server, with weights proportional to
resource sizes, comparing full-IPv4 and IPv6-preferenced loading strategies.

Figure 5.12 highlights the distribution of these HaverSize scores, which consistently
show a preference for IPv6. This suggests that IPv6-preferenced loading leads to routes
that might be more efficient or involve shorter physical distances. It is important to note
that IP geolocation and Haversine calculations do not precisely represent the exact network
paths taken by IP packets, they still provide useful insights into the underlying website
infrastructure and the physical proximity of connected resources.
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Failure Type Full-IPv4 Session IPv6-Preferenced Session
Raw Prop. Raw Prop.

Read Timeout 11,850 0.0553 10,092 0.047
Connect Timeout 2,269 0.01 2,048 0.01

Table 5.2: Failure rate table showing the raw number and the proportion of Mixed websites that
have experienced at least one failure (either during a connection or a reading attempt and either
during the full-IPv4 session or IPv6-preferenced one).
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Figure 5.13: Normalized ratio (ρfailure) calculated for the Mixed wesbites, prioritizing more
resources that have failed over IPv4 on the left-hand side (negatives values), and more resources
that have failed over IPv6 on the right-hand side (positive values).

5.5 A step into user experience

5.5.1 Resource failure

Failed resources can compromise the display of a website, and therefore the user experience,
if they fail to download. In this section, we will explore failure rates at the transport layer,
while failures at the application layer (detectable through HTTP error status codes) will not
be explored within the scope of this work. We will also try to see whether these failure rates
differ according to the IP protocol used to fetch the resource. Table 5.2 shows the rate of
websites having experienced at least one failure of a certain type. This table gives us some
initial insights, showing that connection failures are much less common than read failures.
Directly comparing the full-IPv4 session with the IPv6-preferenced session still does not
give us enough information as to which IP protocol is the source of the failure, since, as a
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Figure 5.14: Distribution of the number of A and AAAA DNS records associated to the server hosting
the main HTML document of the website.

reminder, IPv6-preferenced loading does not exclude the use of IPv4 (see Section 5.1).
To solve this, let us consider the most prominent website class, Mixed, and re-consider

a modified version of the ratio ρ introduced in Section 5.3. Our new ratio is ρfailure and
is constructed by normalizing the difference between the number of resources that have
failed (either read timeout or connect timeout) over IPv6 and IPv4, i.e:

ρfailure =
IPv6_failed_resources− IPv4_failed_resources

total_number
. (5.4)

Let us now consider the distribution (Figure 5.13) of this ratio applied to Mixed websites
that have experienced at least one failure (9,842 websites in total). Figure 5.13a highlights
that most values fall into 1 or -1, with a preference for -1 (indicating a higher number
of failures over IPv4). So it seems that when a website experiments failure, it will either
experiment it completely over IPv4 or completely over IPv6: 76% of the data points fall into
-1 value and 22% fall into 1. However, we should also remember Figure 5.4a, which showed
that IPv4 resources are predominant by default, which makes our previous observation
even more relevant.

Figure 5.13b extends the analysis to the different resource categories, showing that
Document are the most prone to such failures. If the Document in question is the main
HTML, this can become problematic. That said, NetQuartz has been designed to test
only the first IP address returned by getaddrinfo() when it fetches the resource, whereas
typically, a failure would involve testing the next IP addresses. Hopefully, NetQuartz
gives us the opportunity to see how many backup solutions, in terms of DNS records, the
main HTML hosting server offers (see Section 3.2b). These are shown in Figure 5.14: in both
A and AAAA records, all websites offer up to 8 backups at their 95th percentile.
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Figure 5.15: data URLs distribution. The bottom and top whiskers represent the 5th and 95th

percentiles, respectively. Outliers are not shown in the boxplots.

5.5.2 data URL resources

When it comes to user experience, the most important parameter is certainly website
loading time. As established in Section 5.4.1, the number of resources requested via HTTP/S
significantly influences load time. In light of this observation, many websites are adopting
the use of data URLs to embed data directly within Document resources (NetQuartz
Step 3 – see Section 3.3.3). This approach helps to minimize HTTP overhead by reducing
the number of separate requests required for resource fetching. We examined the usage of
data URLs across various websites and found that 38% of them incorporate this technology.
At the 95th percentile, Figure 5.15a shows that each website contains up to 8 data URLs,
embedding a total of 17.2 Kilobyte of data within these URLs ( Figure 5.15c). We have also
observed that the majority of these data URLs are concentrated in the Image category, with
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Figure 5.16: Ads and trackers distribution. The bottom and top whiskers represent the 5th and
95th percentiles, respectively. Outliers are not shown in the boxplots.

up to 7 data URLs Image resources and up to 1 in the Font category (see Figure 5.15b),
the other categories are almost non-existent. We can therefore see that most websites
introduce this technology to load small images, mainly saving several HTTP/S fetches for
these small resources, at the cost of a slightly heavier HTML document in terms of Kilobytes.

5.5.3 Advertising

We cannot talk about user experience without introducing advertising. Most websites
use this approach to sell their service or third-party services in return for payment.
NetQuartz allows us to establish a lower bound on these ads (see Section 4.4.2). We
are interested in ads as such but also in tracking resources which are particularly useful for
collecting information about the user and delivering personalized advertising accordingly.
Figure 5.16a shows that, at the median, we have no ads and up to 2 trackers, while at
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the 95th percentile, we have up to 10 ads and 12 trackers. Figures 5.16d and 5.16c delve
deeper into user experience by showing that, at the 95th percentile, users spend up to 0.6
seconds loading ads (encompassing 693 KB) and 0.8 seconds loading trackers (∼ 1400KB).
Furthermore, Figure 5.16b highlights that these ads and trackers are mainly within the
Script categories, it is thus not just about fetching them, it is about executing them–which
adds an extra delay. We are just trying to raise the ecological point here, by asking whether
it is really necessary to devote such a large amount of network resources for the sole
purpose of promoting services. Remember that NetQuartz only detects a lower bound
on these ads, and NetQuartz has not been configured to capture all dynamic resources
(see Section 4.4.2) (in particular by manually scrolling down the page), which also explains
why Fetch & XHR is not the dominant category in Figure 5.16b.

5.5.4 Security

Our aim here is to open a parenthesis on the security aspect of websites, taking advantage
of NetQuartz’s pass into the DomCop’s top300,000 domain list to take a look at the
issue of website security in 2024. NetQuartz has fetched the certificate of each main
service domain (see Section 3.3.1) and we observed that 2 % of the websites analyzed
provided an expired certificate at the time of fetching, i.e. 4,479 websites. We also logged
and analyzed all the websites that only accepted HTTP connections, expressly refusing or
ignoring the HTTPS request on their main server (the one hosting the main HTML), i.e. 8874
of them (or 4%). A special feature of these HTTP websites is that they load almost all their
resources over IPv4, Figure 5.17a shows the distribution of ρHTTP which is the same ρ

ratio already introduced in Section 5.3 but applied to HTTP websites only. The preference
for IPv4 is more pronounced in this context, with 77% percent of sites falling into negative
values vs. 64% percent for normal rho (recall from Figure 5.4a). We therefore conclude
that HTTP websites tend to load slightly more over IPv4 (and less over IPv6) than normal
websites.

So far, our definition of an HTTP website has been limited to the fact that the main
server has expressly refused or ignored our HTTPS requests, but what about the other
servers that make up the website? More specifically, it is important to note that displaying
an HTTP website involves downloading not just one, but a multitude of resources over
HTTP–see Figure 5.17c. This makes access to the website even more insecure. Conversely, a
certain number of resources of HTTP websites are still downloaded over HTTPS (they mainly
come from other origins e.g. from google servers refusing HTTP connection).

46



CHAPTER 5. RESULTS

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Dual-Stack HTTP Content Ratio ρHTTP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
e
n

si
ty

0

20

40

60

80

100

120

140

160

A
m

ou
nt

of
W

eb
si

te
s

(a) Normalized ratio (ρHTTP ) calculated
for the HTTP wesbites, prioritizing more re-
sources loaded over IPv4 on the left-hand
side (negatives values), and more resources
loaded over IPv6 on the right-hand side (pos-
itive values).

H
TTPS

H
TTP

Cer
tifi

ca
te

In
va

lid

Category

0

5

10

15

20

L
o
a
d

T
im

e
(s

)

(b) IPv6-preferenced loading times of: HTTPS
websites, HTTP websites and websites that
have delivered an expired certificate.

0 50 100 150 200
Number of Resources

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

HTTP

HTTPS

(c) Distribution of the number of HTTP and
HTTPS resources loaded within HTTP websites.

Figure 5.17: Unsecured HTTP websites analysis.
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Conclusion

This thesis contributes to understanding dual-stack server performance through the devel-
opment and deployment of NetQuartz, a website data analyzer tool. NetQuartz is
designed to derive and compare the performance of websites across both IPv4 and IPv6
protocols. We successfully collected and analyzed data from more than 200,000 websites
after a two-week measurement campaign.

Our analysis categorizes websites into three distinct classes based on the servers hosting
their resources: Fully IPv4, Fully Dual-Stacked, and Mixed. This classification allows
us to uncover patterns in web resource management and loading efficiencies. Notably,
Fully IPv4 class are generally smaller in size compared to Fully Dual-Stacked class,
with Mixed class presenting the largest sizes and the greatest number of resources. This
observation is particularly insightful as it correlates with our finding that the number of
resources is directly linked to loading times.

Our findings also reveal that Fully Dual-Stacked and Mixed classes typically perform
better in IPv6-preferenced loading than in full-IPv4 one.

The observation is particularly interesting with Mixed websites, where we find that
resources tend to be loaded more over IPv4 than IPv6, yet the overall performance in
IPv6-preferenced loading remains more efficient.

6.1 Future works

Our findings could benefit, in the same way as similar work [42, 7], from a longitudinal study
in which NetQuartz would make well-defined and periodic passes over an identified
subset of the DomCop list. In addition, we limited ourselves to three measurement points
during this campaign, although well distributed geographically, the European machine
was allocated almost the entire initial sample i.e. ∼ 82%, Asia and North America each
gets ∼ 9% of the latter. This implies that repeating the study on a large number of
measurement points could shed light on the increased efficiency of IPv6-preferenced
loading, thus discarding the hypothesis of having carried out the measurements in an
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overly "IPv6-friendly" environment. Finally, integrating traceroute measurements within
NetQuartz could give a better estimate of the distance, in terms of number of hops,
between the measurement point and the target servers. This would require an efficient
methodology and tuning so as not to compromise NetQuartz’s computing speed.

6.2 Ethical considerations

The collection of web resources can be a contentious topic, often raising ethical concerns and
attracting attention. In-depth analysis of web content is generally considered unacceptable,
and many web services and hosts have anti-scraping and anti-bot measures in place to
discourage such activity. It is important to note that the focus of this project has been on
collecting metadata related to resources, such as size, loading time, or resource category,
rather than harvesting their content.

Additionally, we have intentionally avoided using techniques to bypass anti-scraping
measures to ensure that no web service is deceived or impersonated, whether by simulating
a human user or a web browser. Furthermore, all heuristics used are exclusively based on
information that is either readily available or explicitly provided to the user.

This thesis aims to provide valuable insights into web resource dynamics while adhering
to ethical guidelines and focusing on metadata. The integrity and security of web entities
were not compromised.
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Appendix A: NetQuartz
implementation details

As explained in Section 3.6, several patches have to be performed during NetQuartz
development.

The first (see Figure A) is a patch on the socket.getaddrinfo(), it gives us the opportunity
to select to select either full-IPv4 or IPv6-preferenced behavior:

The urllib3 library does not natively expose the IP address used in the HTTP connec-
tion. To capture this information, we modified the _make_request method within the
HTTPConnectionPool class such that each response object now includes the peer attribute,
which stores the IP address and port number of the server to which the connection was
established. The Python code for this patch is represented through Figure B.

The timing management problem of the Python requests library has been handled by
using a trace function, as explained in Section 3.6.2. The code used to implement this
trace function is highlighted through Figure C.
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�
1 old_getaddrinfo = socket.getaddrinfo
2

3 def new_getaddrinfo (*args , ** kwargs):
4 responses = old_getaddrinfo (*args , ** kwargs)
5 return [response
6 for response in responses
7 if response [0] == socket.AF_INET]
8

9 # Calling ‘socket.getaddrinfo = new_getaddrinfo ‘ will select full -
IPv4 behavior

10 # Calling ‘socket.getaddrinfo = old_getaddrinfo ‘ will get back to
IPv6 -preferenced behavior� �

Figure A: Python patch performed on getaddrinfo() to select IP address family preference.�
1 from urllib3.connectionpool import HTTPConnectionPool
2 def _make_request(self ,conn ,method ,url ,** kwargs):
3 response = self._old_make_request(conn ,method ,url ,** kwargs)
4 sock = getattr(conn ,’sock’,False)
5 if sock:
6 setattr(response ,’peer’,sock.getpeername ())
7 else:
8 setattr(response ,’peer’,None)
9 return response

10 HTTPConnectionPool._old_make_request = HTTPConnectionPool.
_make_request

11 HTTPConnectionPool._make_request = _make_request
12 # source: https :// stackoverflow.com/questions /22492484/ how -do-i-get

-the -ip-address -from -a-http -request -using -the -requests -library� �
Figure B: Python patch performed on urllib3 to fetch the IP address used while establishing the
connection.�

1 def timeout_trace(frame , event , arg):
2 if time.time() - start_time_timeout > resource_timeout:
3 raise TimeoutError("Operation timed out")
4 return timeout_trace
5 # resource_timeout being set to 2 seconds , start_time_timeout is

passed to the trace function when the HTTP GET request is
executed , and simply corresponds to the timestamp of when the
request was initiated.� �

Figure C: Python trace function to measure total resource downloading time against
resource_timeout.
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Appendix B: Paper submitted at the
Internet Measurement Conference
(IMC) 2024

The study of this work led us to submit a paper to the Internet Measurement Conference
(IMC) 2024. The paper is currently under review (early reject notification on June 28th,
2024; notification of acceptance on July, 31st 2024). The paper is essentially a compressed
version of this thesis, with fewer technical details and fewer results.
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NetQuartz: Dissecting Dual-Stack Website Content
Paper #181, 12 pages body, 14 pages total

ABSTRACT
The ongoing shift from IPv4 to IPv6 is crucial for the

evolving Internet landscape. However, the prevalence of dual-
stacked environments requires a deeper understanding of
how web content is distributed across both protocols, es-
pecially given the varied nature of websites configurations.
While prior studies have focused on IPv6 adoption and per-
formance metrics, limited research explores dual-stacked
servers’ impact on the application layer where user experi-
ence is directly affected.
To address this gap, we developed NetQuartz, a tool

designed to asses the performance and the content deliv-
ery of websites across dual-stack servers. We have deployed
NetQuartz over several vantage points and collected data
for more than 200,000 websites, revealing patterns by classi-
fying them into three classes based on server configurations:
(𝑖) Fully IPv4 websites, where all resources are loaded
from IPv4-only servers; (𝑖𝑖) Fully Dual-Stacked websites,
which load all their resources from servers supporting both
IPv4 and IPv6; (𝑖𝑖𝑖) Mixedwebsites, which retrieve resources
from a combination of both server types. Script and Image
were identified as the two most dominant categories in terms
of content, regardless of the website’s class. Fully IPv4web-
sites generally contained fewer resources, leading to smaller
page sizes and faster load times. Fully Dual-Stacked and
Mixed configurationwebsites showed better performance un-
der IPv6-preferenced loading, despite Mixed websites tend-
ing to load more resources over IPv4. NetQuartz and col-
lected data will be made available to the research community
upon paper acceptance.

KEYWORDS
dual-stack, IPv6, performance, content, NetQuartz

1 INTRODUCTION
Since the early 80’s, the Internet Protocol version 4 (IPv4) [13]

has been the main protocol supporting packet switching
networks and internetworking technology. However, the
exponential deployment of the Internet, since the mid-90’s,
has led to an exhaustion of IPv4 addresses [30], requiring
a transition towards its successor, Internet Protocol version
6 (IPv6) [15]. Since then, IPv6 has been more and more
adopted [11, 12, 17, 28]. If IPv6 allows for dealing with IPv4
address exhaustion [30], it also comes with an additional
feature, called Extension Header [10, 16], that leads to more
flexibility and innovation. Examples of innovations can be
found in observability [7] or forwarding [26].

A smooth transition from IPv4 to IPv6 has been made
possible thanks to dual-stack devices, i.e., devices with net-
work interfaces that can originate and understand both IPv4
and IPv6 packets [35], avoiding so a complete shift from one
protocol version to the other. Up to now, studies primarly
focus on the adoption and basic performance of IPv6 met-
rics, such as addressing and routing [11, 12, 17, 39]. However,
few researches focused on dual-stack aspects. For instance,
Bajpai et al. [3, 4, 22] provide valuable insights into server
performance and transport-layer metrics but do not extend
their analysis to the application layer where user experience
directly takes place. This is crucial as a significant portion
of websites includes content fetched from multiple, distinct
servers [8], possibly over different version of the Internet
Protocol, introducing so additional delay. Huston [31, 32]
used Google ads to measure the latency of client connections
to APNIC servers and found that IPv6 was faster than IPv4
half the time, but experimented with a higher failure rate.
Further, Bajpai et al. [28], show a significant reduction in
latency for both IPv4 and IPv6 for Alexa top 10K websites.
They also report a reduction in IPv6 connection failures
and find that the main contributors to these failures are Im-
age, Stylesheet, Script categories. Also, Dhamdhere et al. [17]
evaluated these load times on the Alexa list and found that
IPv6 performance can be much worse than IPv4 if the AS
paths are different, otherwise they are similar. However, it
is unclear which amount of content (e.g., Image, Stylesheet,
Script, etc.) is delivered through wich version of the Internet
Protocol.
This is exactly what we want to investigate in this pa-

per. In particular, we make the following contributions: first,
we introduce NetQuartz, our tool designed to assess and
compare the content delivery capabilities and performance of
websites across dual-stack servers. For eachwebsite,NetQuartz
maintains two loading sessions: (𝑖) a full-IPv4 loading, al-
ways preferring IPv4 connections, and (𝑖𝑖) an IPv6-preferenced
loading, prioritizing IPv6 connections where available, and
defaulting to IPv4 otherwise. This paper carefully explains
how NetQuartz has been built to reach those goals.
Second, we have deployed NetQuartz over several van-

tage points and collected data from more than 200,000 ana-
lyzable websites extracted and filtered from DomCop list [20].
Third, we propose to classify websites based on their

server configurations into three classes: (𝑖) Fully IPv4 web-
sites, where all resources are loaded from IPv4-only servers;
(𝑖𝑖) Fully Dual-Stacked websites, which load all their re-
sources from servers supporting both IPv4 and IPv6; (𝑖𝑖𝑖)
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Mixedwebsites, which retrieve resources from a combination
of both server types. All three classes are initially accessed
with full-IPv4 loading, using only IPv4 connections. Sep-
arately, Mixed and Fully Dual-Stacked websites are also
accessedwith an IPv6-preferenced loading, which prioritizes
IPv6 connections where possible. For Fully Dual-Stacked
websites, IPv6-preferenced is equivalent to full-IPv6 loading,
as all resources are available on dual-stack servers.
Fourth, whatever the website class, content-related anal-

ysis revealed that Image and Script were the predominant
categories, both in terms of the size and the number of re-
sources queried over HTTP/S. The analysis also showed that
Fully IPv4 websites typically load fewer resources, result-
ing in faster loading times. For Fully Dual-Stacked and
Mixed websites, the performance under IPv6-preferenced
loading consistently outperforms that of IPv4. We observed
that Mixedwebsites load 20% faster in median and 11% faster
in their 95th percentile when using IPv6-preferenced loading,
Fully Dual-Stacked websites load 16% faster in median
and 24% faster in the 95th percentile. The observation is
particularly interesting with Mixed websites, for which we
found that 64% of these websites were loading more HTTP/S
resources over IPv4 than IPv6, yet the overall performance
in IPv6-preferenced sessions remains more efficient.

Finally, NetQuartz source code, as well as data collected,
will be made freely available to the research community upon
paper acceptance.

The remainder of this paper is organized as follows: Sec. 2
provides a detailed explanation of NetQuartz and itsmethod-
ology; Sec. 3 discusses the data collection methodology, ex-
plaining the setup and execution of our measurement en-
vironment; Sec. 4 presents our results, first exploring the
delivery of web content across websites, then examining the
specific dual-stack distribution of Mixedwebsites, and finally
assessing broader performance measures. Sec. 5 positions
our work with respect to the state of the art; finally, Sec. 6
concludes this paper by summarising its main achievements
and suggesting areas for future researches.

2 NETQUARTZ
NetQuartz, our tool for measuring content delivery and

performance of websites, works in three steps as illustrated
in Fig. 1:

Step 1 : Main HTML domain processing (Sec. 2.1). It performs
a DNS lookup for the domain and send ping towards
the server hosting the main HTML of the website;

Step 2 : Resources collection (Sec. 2.2). It collects (through
an headless browser technology) and logs all the re-
sources and their categories (Image, Script, etc) that
are loaded along with the main HTML document;

Step 3 :Website loading comparison protocol (Sec. 2.3). It
loads the full website both in an full-IPv4 and an
IPv6-preferenced loading and collects metrics from
the loading of each resource.

2.1 Step 1: Main HTML Domain Processing
As depicted in Fig. 1a, NetQuartz begins by accepting

a list of domains along with the URLs of a web home page
that can be queried on that domain and the HTTP status code
returned while fetching the home page. The domain of these
URLs point to the server that hosts the main HTML document
of the website. Only entries with successful status code (200)
are considered for the processing.

NetQuartz starts by querying the DNS to assess the nature
of the main HTML hosting server and then performs ping in
IPv4 (and IPv6 if the server has been identified as dual-stack)
on the first record returned by the DNS. NetQuartz logs the
average time and standard deviation associated with these
pings, sending a predefined number of ICMP packets to each
home page’s hosting server. The goal is to have an estimation
of the RTT (in both IPv4 and IPv6 when available) towards
this main server, it will thus be possible to determine at a
later stage whether this metric is a sufficient indicator of
website performance.

2.2 Step 2: Resources Collection
Most websites not only load the main HTML for the home

page but will also parse it [47] to load additional resources
(Image, Script, etc) so that they can ensure the website com-
plete rendering.NetQuartz relies on Selenium [43], a head-
less browser technology, for facilitating the collection of
these resources. Fig. 1b illustrates this step: we use a Chrome
browser through a dedicated executable driver [19], allowing
script-driven browser interactions. The communication be-
tween Selenium and the chromedriver is handled through
the WebDriver protocol, an HTTP-based protocol that uses
JSON objects to instruct the browser what actions to per-
form [45]. These resources are kept on memory for further
analysis.

2.3 Step 3: Website Loading Comparison
Protocol

Before establishing the methodology for comparing web-
sites, it is worth looking at the generic behaviour of a dual-
stack user when loading a website from a set of servers. The
browser first performs a DNS lookup on the domain hosting
the main HTML document, the latter is then retrieved via an
HTTP/S request. As soon as the main HTML is available, the
browser parses it to identify all the resources needed to ren-
der the web page, which may come from servers different
than the one hosting the main HTML. When resources are
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Figure 1: NetQuartz general overview.

available in both IPv4 and IPv6, the default behaviour of
most browsers is often to prefer IPv6 [46]. This can be prob-
lematic if the IPv6 connectivity is broken. It is for this reason
that most browsers now implement the Happy Eyeballs al-
gorithm, which recommends selecting one address family to
establish the connection, as a result of a competition started
after a specific timer (typical value is 300 ms for Chrome and
Firefox) [42, 50]. For practical reasons and in order to focus
only on the comparison between IPv4 and IPv6 and not on

an efficient selection of the protocol, the Happy Eyeballs
algorithm is not included in our protocol.

Fig. 1c catalogs our protocol for comparingwebsite loading
times, highlighting the complexity of web resource down-
loads, which often originate from servers distinct from the
origin domain. The protocol takes as input the list of re-
sources collected with Selenium during step 2 (Sec. 2.2) and
mimics as much as possible a user browsing behavior, adher-
ing to the HTTP standard [24, 25] and connection persistence.
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Sequential requests through session management showcase
sessions with full-IPv4 loading or an IPv6-preferenced load-
ing, illustrating that prioritizing IPv6 does not guarantee
exclusive IPv6 resource loading, as depicted in the figure.
Practically, this preference is enforced by manipulating

the getaddrinfo() function to return only IPv4 addresses
during a full-IPv4 loading while retaining default behavior
for an IPv6-preferenced one. To mitigate biases between the
two loading strategies, a DNS query precedes each HTTP/S
GET, ensuring domain name server caching before the load-
ing times measurements.
During each HTTP/S GET request, additional metrics are

collected, such as the resource URL and the content-type HTTP
header. For both full-IPv4 and IPv6-preferenced loadings,
we measure the load time of each resource, we also collect
the byte size of the HTTP/S response, the status code of the
response, and information about any resource download
errors. All the data is logged into a json file and kept for
further postprocessing. The total website loading time is
computed by summing the loading times of all successfully
loaded resources within both IPv4 and IPv6-preferenced
loadings, ensuring neither loading strategy is unfairly penal-
ized for experiencing more failures or timeouts. To preserve
data integrity at this level, failure reasons are logged for
later comparison, aiming to analyze the failure rate (and
reasons) of web resources within full-IPv4 loading versus
IPv6-preferenced loading.

NetQuartz proactively identifies and handles specialized
URLs [48], such as data URL that encodes data directly within
the URL itself [37], these resources do not involve traditional
network loading over IPv4 or IPv6. They are still logged
for postprocessing (Sec. 3.4), including the assessment of
the size and category of data encapsulated within data URL
resources.

2.4 Hyperparameters
The first hyperparameter – related to main HTML domain

processing (Sec. 2.1) – involves the count of IPv4 (and IPv6
if applicable) pings performed without compromising the
tool’s performance. The value chosen for this parameter will
be discussed later in Sec. 3.3.
The majority of websites dynamically load a significant

portion of their content via the Fetch API and/or the XML-
HttpRequest (XHR) API [34]. This introduces a degree of
ambiguity to the concept of a website’s loading process, the-
oretically allowing it to extend indefinitely. To detect full
initial loading, Selenium uses the browser’s “load” event– a
pivotal moment in a webpage’s lifecycle signaling the full
loading and parsing of the page [36]. This will not take into
account content dynamically loaded post-initial “load” event
via asynchronous calls.

That brings us into our second hyperparameter: we have
implemented a timer “selenium_timeout” for the web load-
ing process conducted by Selenium (Sec. 2.2). Similarly, an-
other timer “resource_timeout” is used within the third
NetQuartz step (Sec. 2.3), applying to the loading time of
each resource so that we prevent resources from loading
indefinitely or in case the targeted web server is not even re-
sponding. Upon expiration, this timer exposes the timeout’s
cause and context: a “connect timeout” denotes a failed server
connection attempt, whereas a “read timeout” occurs upon a
failed read attempt from an already established connection.
Another critical parameter is the data write rate to disk,

introducing a protective layer for the tool by logging data
at a specific frequency. The last parameter relates to a more
global timeout “processing_timeout” that limits the to-
tal NetQuartz processing time for each domain. This is
intended to prevent excessive time spent on sites with an
abundance of resources that exceed a predefined threshold.
If the total time exceeds the set limit, domain processing
stops, but data collected is kept, ensuring usability while
acknowledging the incomplete analysis of all site resources.
The values chosen for these parameters will be discussed
later in Sec. 3.3.

3 DATA COLLECTION METHODOLOGY
Fig. 2 provides an overview of the methodology followed

when running NetQuartz for collecting data. As illustrated,
a four steps methodology is applied, each of those steps being
described in the following subsections.

3.1 Step 1: Domains List Collection
Due to the discontinuation of the Alexa list, we rely on

DomCop [20] which lists domain services (e.g., google.com).
The list contains 10 million entries but we limit ourselves
to the the first 300,000 websites for the processing and the
analysis (list obtained on February 19th, 2024). As explained
in Sec. 2.1, NetQuartz needs as input not only the main
service domain, but also the web home page URL for that
service, alongwith the HTTP status code fetched. These pieces
of information are not included by default in the DomCop file,
requiring so a preprocessing stage (Sec. 3.2).

3.2 Step 2: Preprocessing Step
An initial HTTPS connection attempt to each website is

made, following HTTP redirection codes (range 300 to 399)
until a successful 200 status code is obtained. This redirection
strategy is commonly employed by web services to guide
users directly to the service’s web home page (e.g., navigating
to google.com in a browser redirects to https://www.google.com/).
If the HTTPS attempt fail, a subsequent attempt over HTTP
is made. This process allows us to determine the applicable
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Figure 2: Data collection methodology overview.

Category Total HTTP HTTPS
Raw Prop. Raw Prop. Raw Prop.

All Websites 300,000 1.0 15,276 0.051 266,019 0.887
200 (Success) Status Code 217,974 0.727 9,264 0.031 208,710 0.696
Status Code ≠ 200 63,321 0.211 6,012 0.02 57,309 0.191
No Response 18,705 0.062 / / / /

Table 1: Summary of the preprocessing step (total:
300,000 websites).

application layer protocol, the URL for accessing the service’s
home page (e.g., https://www.google.com/), and its status;
all such information is appended to the original csv file.

The preprocessing phase results are summarized in Table 1:
73% of input websites yielded a home page with a 200 (OK,
request succeeded) status code, 21% responded with error
status codes, while 6% did not respond to connection requests.
Despite a preference for HTTPS connections, 4% of the sites
are still exclusively accepting HTTP connections.

3.3 Step 3: NetQuartz Execution
We deployed NetQuartz on three vantage points (VP)

that are hosted by different cloud service providers across
three regions, one inNorthAmerica hosted byDigital Ocean [18],
one in Europe hosted by OVH [40], and one in Asia hosted
by Vultr [49]. Each VP was tasked with allocated portions
of the csv resulting from previous steps: North America
and Asia (both got 1 CPU and 0.8 GB of RAM) dealed each one

with 25,000 randomly selected items from the csv, while
the European VP (8 CPUs and 32 GB of RAM) run through
250,000 websites randomly picked up from the csv. The mea-
surement campaign was launched on March 2nd, 2024 and
concluded on March 25th, 2024.
The values fixed for each NetQuartz’s hyperparameter

(Sec. 2.4) are as follows: selenium_timeout has been fixed to
40 seconds, resource_timeout to 2 seconds, processing_
timeout to 70 seconds. During NetQuartz execution, data
logging to disk was performed by each VP after every 1,000
websites processed. Five IPv4 pings– and five IPv6 pings
when applicable – were executed towards the main HTML
hosting server (Fig. 1a). Those values were fixed based on the
observation of Cumulative Distribution Functions detailed
in Appendix A.
NetQuartz execution summary is reported in Table 2

which indicates that of the 217,974 websites accepted by the
preprocessing stage, 93.2% encountered no errors, 1.5% trig-
gered the selenium_timeout, and 5.3% had their processing
manually halted upon exceeding the processing_timeout
though these sites remain analyzable (see Sec. 2.4), with an
equitable assessment of their resources between full-IPv4
and IPv6-preferenced sessions.
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Processing Completed selenium_timeout processing_timeout
Raw Prop. Raw Prop. Raw Prop.
203,102 0.932 3,329 0.015 11,543 0.053

Table 2: Summary of the NetQuartz execution step
(total: 217,974 websites).

3.4 Step 4: NetQuartz Output
Postprocessing

When NetQuartz processing is done on each VP, json
outputs are merged, parsed, and flattened into a final csv
file. During this postprocessing stage, we apply a content
reclassification heuristic to fill a gap in the classification of
the Chrome performance tool (Sec. 3.4.1). This stage is also
responsible for processing data URL resources logged by
NetQuartz (Sec. 2.3) to infer their types and sizes.

3.4.1 Reclassifying Resources Loaded Through Fetch & XHR
API. While straightforward HTML document parsing tech-
niques might suffice when classifying static content, they
fall short in capturing the full spectrum of dynamic web con-
tent [23]. Selenium makes us able to operate the network
performance tool, accessible through the Chrome driver in-
terface, to infer the following categories: Document, Image,
Media, Fetch, XHR, Font, Stylesheet, Script, and Other . That
last category is a kind of tie-break, for resources that do not
fall within one well known category.

Chrome’s network performance tool does not explicitly
reveal resource categories for Fetch & XHR, they represent
more a classification of requests within the dynamic context
of a site. This categorization gap comes from the Chrome
performance tool’s dual consideration of content type and
loading context, with dynamic loading contexts (Fetch &
XHR) taking precedence over content-based categories.

Addressing this, we use the content-type header collected
by NetQuartz (Sec. 2.3) to build an heuristic able to re-
classify the Fetch & XHR context-related categories into the
content-related ones. The content-type HTTP Header reliabil-
ity is not without its challenges; services might declare a
content type that diverges from the actual content, a practice
countered by browsers through MIME (Multipurpose Inter-
net Mail Extensions) type sniffing [21]. This involves pay-
load inspection – following well-defined standards [1] – to
derive the true content type, potentially influenced by the
resource’s file extension. Ethically, our developed heuristics
refrain from inspecting payload content.
The basis of the heuristic is keyword detection within

the content-type header encoding the resource MIME type,
described by type, subtype, and parameters:

type/subtype;parameter=value

Keyword detection focuses on the type and subtype fields,
and is summarized in Fig. 3. Validation and evaluation of

Document
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*
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content-type 
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video, 
audio

font

image
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*

font, 
woff, 
woff2

htm
l

css
  javascript

Figure 3: Resource classification heuristic, based on the
content-type header of the HTTP response. Asterisks (‘*’)
indicate no particular emphasis on the field.

the heuristic has been performed and documented in Appen-
dix B.1.

4 RESULTS
This section presents results of data collected byNetQuartz.

Prior to results discussion, we propose a classification of
websites according the way they respond to NetQuartz
requests:
Class 1: Websites loading all their resources over IPv4-only

servers can only be accessed and loaded via the IPv4
protocol. We choose to label such websites as Fully
IPv4 websites.

Class 2: Websites loading all their resources over dual-stack
servers are fully accessible over IPv6, but full access
over IPv4 is also possible. We label such websites as
Fully Dual-Stacked websites.

Class 3: We have observed websites hosting some resources
on IPv4-only servers and others on dual-stack ones,
supporting both IPv4 and IPv6. This setup allows
those website to be accessed either entirely over IPv4
or through a combination of both protocols. We label
such websites as Mixed websites.

All website classes can be loaded using a full-IPv4 ap-
proach (see Fig. 1c). However, for Fully Dual-Stacked
websites, IPv6-preferenced loading corresponds to be a full-
IPv6 approach, as all the resources are hosted on dual-stack
servers. Finally, Mixed websites can be accessed using an
IPv6-preferenced loading approach, by preferring IPv6 con-
nections where available. Fig. 4 provides a summary of the
different website classes along with the content loading ap-
proaches.
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Figure 4: Website classification summary.

Mixed Fully IPv4 Fully Dual-Stacked No Resources
Raw Prop. Raw Prop. Raw Prop. Raw Prop.
162,190 0.7444 24,354 0.112 27,936 0.128 3,494 0.016

Table 3: Distribution of the different website configu-
rations (total: 217,974 websites).

Table 3 provides an initial overview of the distribution of
websites based on their class. More than 74.4% of the mea-
sured websites belong to the Mixed class. Both Fully IPv4
and Fully Dual-Stacked classes are equally represented
(11.2% and 12.8% respectively). Finally, Table 3 shows a low
proportion (1.6%) of websites from which no data could be
captured using Selenium.

In the following, we first dissect data collected by looking
at the web pages content (Sec. 4.1). Second, Sec. 4.2 focuses
on the most prominent class, i.e., Mixed. Finally, Sec. 4.3
looks at the three classes performance.

4.1 Web Content Delivery
We look at the content delivery. In particular, we dissect

the web pages collected by NetQuartz such that we expose
the various resources composing home pages.

Our investigation into resource distribution directly corre-
sponds to the number of HTTP/S GET requests initiated by a
user. This metric is obviously independent of the IP protocol
used for loading.

Fig. 5a shows, as a CDF, the number of resources contained
in web pages, in function of the website class. The Fully
IPv4 class consistently load fewer resources, typically load-
ing up to 70 resources in their 95th percentile. The Mixed
class requires more resources, up to 168 in the 95th percentile.
Finally, the Fully Dual-Stacked class is between the two
other classes. This difference can be explained by the fact
that websites tend to become larger in size and number of
resources fetched over time. Considering HTTP Archive [29]
data collected between 2012 and 2024, we find that the num-
ber of requests performed towards websites has increased by
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Figure 5: Number of resources requested via an
HTTP/S GET during the loading of Fully IPv4, Fully
Dual-Stacked, and Mixed websites. The bottom and top
whiskers represent the 5th and 95th percentiles, respec-
tively. For readability reasons, outliers are not shown
in the boxplots.

25% in the median since 2012. As stated in Sec. 1, the IPv6
adoption has also significantly increased over time and it is
thus interesting to note that Fully IPv4, being older than
Fully Dual-Stacked and Mixed websites, will therefore
load fewer resources.
Fig. 5b splits the downloaded resources into their respec-

tive categories, according to the website class. The distri-
bution shows that Image and Script are the predominant
categories, regardless of the website class. Media and Other
categories are barely nonexistent.

Our analysis extends into the overall size of websites, not-
ing that the total raw – meaning after decoding – data trans-
mitted during the loading process is totally independent of
whether the loading is IPv4-only or IPv6-preferenced.

As illustrated in Fig. 6a, Fully Dual-Stacked websites
have the highest data size, which correlates with their higher
resource numbers. Fig. 6b shows that Image and Script are
still the predominant categories, the figure also reveals a
significant insight about resource utilization and efficiency,
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Figure 6: Fully IPv4, Fully Dual-Stacked, and Mixed websites raw size distribution (in Kilobytes). The bottom and
top whiskers represent the 5th and 95th percentiles, respectively. For readability reasons, outliers are not shown in
the boxplots.

particularly in Mixed websites, where Script resources, al-
though fewer in number, contribute disproportionately to
the total data volume. This can be attributed to the complex-
ity and functionality embedded within those scripts, which
often include libraries and frameworks that are essential for
modern web applications but are inherently large.
In terms of data distribution, average values provide an

interesting perspective. While the majority of websites man-
age to maintain Media sizes relatively low, as indicated by
the clustering of data points near the origin in the boxplot
(Fig. 6b), there are outliers with considerably large resource
loads. These outliers skew the average upwards, as depicted
in Fig. 6c. This observation underscores the variable nature
of web content distribution, where most websites optimize
resource sizes, but some, possibly due to specific functional
or design requirements, load larger Media files.

Fig. 6d summarizes the reclassification step (Sec. 3.4.1) of
the resources loaded through the Fetch & XHR API. This is
done by extracting the average size of the Fetch & XHR cate-
gory and subsequently illustrating how each other category
contributes to this average. On average, Media emerges as
the largest category typically loaded asynchronously. This
asynchronous loading allows for enhanced user experiences
by not blocking the rendering of other page elements while
large media files are being loaded.

4.2 Dual-Stack Content Distribution
The Mixed websites are those which, when loaded with

the default behavior of a dual-stack client (i.e. to prefer IPv6),
load a certain portion of their resources in IPv6 and the other
in IPv4. The aim of this section is to focus on the 162,190
so-called Mixed websites (see Table 3) and to evaluate the
portion of content downloaded in IPv6 and IPv4when IPv6-
preferenced loading occurs.
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Fig. 7 presents the probability density function of a nor-
malized ratio calculated for each website. We express the
ratio as

𝜌 =
IPv6_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 − IPv4_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙_𝑛𝑢𝑚𝑏𝑒𝑟 . (1)

where 𝜌 ∈] − 1, 1[. The limits of the interval (-1 and 1) are
rejected as they represent the case of Fully IPv4 and Fully
Dual-Stacked websites respectively. A negative 𝜌 means
the website prefer to load more resources over IPv4, while
a positive 𝜌 means the website prefer IPv6. A null value
means that the website equally loads resources in IPv4 and
IPv6.

Fig. 7 shows that 64% of the data points fall into negative
values, indicating a higher number of resources loaded over
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Figure 8: Dual-Stack content distribution. The bottom and top whiskers represent the 5th and 95th percentiles,
respectively. Outliers are not shown in the boxplots.

IPv4. Conversely, 35% of the points are positive, showcasing
a preference for IPv6, with the remaining 1% balancing out
at zero, indicating an equal distribution of resources across
both protocols. The figure also includes a count of websites
contributing to each bin, providing a clear view of the data
distribution and the significant skew towards IPv4.
Fig. 8 delves deeper into the category of content loaded

over each protocol. The box plots in Fig. 8a demonstrate
that most categories predominantly load over IPv4. Image
stands out the most by loading only 42% of the images over
IPv6 when considering the 95th percentile. However, excep-
tions are observed with Fetch & XHR asynchronous requests
and Font, which are more frequently loaded over IPv6. Even
though the number of Script resources appears comparable
between IPv4 and IPv6, a significant difference emerges
when examining the size of these resources. Fig. 8b reveals
that scripts loaded over IPv6 tend to be larger and more com-
plex, with sizes reaching up to 8,000 KB in the 95th percentile,
while reaching only the half in IPv4 content.

The analysis of average values (Fig. 8c) across these re-
source categories further enhances our understanding of
protocol prioritization by showing that Media files also pre-
dominantly use IPv4.

4.3 Performance
4.3.1 Parameters Influencing Performance. In Sec. 4.1 we
have already considered content-related metrics such as
website size and the number of resources, we now integrate
network-centric metrics that potentially impact performance:
the number of Autonomous Systems (ASes) and the num-
ber of IP origins involved during loading. These metrics
were derived in the postprocessing phase, using MaxMind
geolocation services to perform the IP to AS mapping [38].
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Figure 9: Performance-related metrics involved in
the loading of Fully IPv4, Fully Dual-Stacked, and
Mixed websites. Parameters captured during IPv6-
preferenced loading are differentiated using subscripts:
subscript4 showcases the use of full-IPv4 loading while
subscript6 is for IPv6-preferenced loading.

Fig. 9a reveals that Mixed websites tend to load resources
from a larger number of different IP addresses (up to 60),
while the majority of Fully IPv4 websites (≈ 80%) loads
resources from maximum 2 IP addresses. Similarly, Fig. 9b
quantifies the amount of ASes involved in loading resources.
Mixedwebsites can rely up to 15 ASes, while Fully IPv4 rely
on less than 2 different ASes. It is worth noticing that, despite
the different loading strategies, the global distribution of
these metrics shows no significant differences. This indicates
that the underlying network infrastructure treats full-IPv4
and IPv6-preferenced sessions similarly in terms of routing
diversity and connection origination. We have also exam-
ined ASes relationships, relying on CAIDA dataset [9], and
observed that 80% of the websites analyzed by NetQuartz
hosted their main HTML document within an AS that had no
direct connections to any other AS involved in the resource
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The 2 Principal Components explain 76% of the vari-
ance (56% explained by PC1 and 20% explained by PC2).

loading process. This suggests a significant dispersion of
resources, whatever the IP protocol in use.

To determine how these metrics interrelate and contribute
to website load times, we performed a two-dimensional Prin-
cipal Component Analysis (PCA). This dimensionality reduc-
tion technique helps us visualize the correlations among
the variables. The results, depicted in Fig. 10, illustrate that
vectors (arrows) with similar orientations are likely to be
correlated. We note that the number of resources requested
over HTTP/S significantly correlates with load times. Other
features such as website size, the number of ASes, and IP
origins do not show strong individual correlations with load
times. However, when considered together (size + ASes + IP
origins), their cumulative impact becomes apparent. These
observations suggest that a dual view of both content-related
and network-centric metrics is essential to fully understand
website performance dynamics.

4.3.2 Website IPv4 vs. IPv6 Load Times. It has been es-
tablished in Sec. 4.3.1 that the number of resources signifi-
cantly impacts load times, with Fully IPv4 websites load-
ing fewer resources compared to Fully Dual-Stacked, and
subsequently, Mixed websites. The same relationship can
be observed by considering the loading time of the website
(Fig. 11a), classes loading fewer resources will therefore load
faster.
Regardless of the website’s class, IPv6-preferenced ses-

sions outperform the full-IPv4 ones. Mixed class loads 20%
faster in median and 11% faster in their 95th percentile when
using IPv6-preferenced loading. The difference is even more
noticeable in the case of Fully Dual-Stacked class, IPv6-
preferenced load 16% faster in median and 24% faster in the
95th percentile. This observation is further pointed out by

the boxplots in Figs. 11b, 11c, 11d showing the distribution of
loading times across the various content categories. Predomi-
nantly, Image and Script remain the dominant categories, yet
in all instances, IPv6-preferenced loading times are slightly
better than those of full-IPv4.
Typical justifications for the enhanced performance of

IPv6 include the absence of NAT processing, reduced header
processing at network nodes, and the avoidance of fragmen-
tation [14, 33]. However, in our case, the argument regarding
NAT processing does not hold since our vantage points use
publicly addressable IP addresses.

To investigate deeper into potential reasons behind IPv6’s
performance advantage, we used specific data provided by
NetQuartz: the average Round Trip Time (RTT) extracted
from the five pings performed to the server hosting the main
HTML document (see Sec. 2.1) and the IP addresses logged for
each resource during the loading process (see Sec. 2.3).

We first examined the RTT estimates, Fig. 12 shows that the
distributions between IPv4 and IPv6 for dual-stack servers
are the same, so RTT estimation is not an ideal candidate to
explain this difference in performance. Nevertheless, there is
a clear difference in performance between IPv4-only servers
and dual-stack servers, with pings towards dual-stack servers
responding 78% faster for the 95th percentile and 71% faster
in median.

We then calculated geographical distance – through Max-
Mind geolocation services [38] – using the Haversine for-
mula to measure the distance between each server hosting
a resource and the corresponding vantage point. These dis-
tances were weighted by the resource size, scaled down by a
factor of 106 for readability reasons, producing what we refer
to as the “HaverSize score”. Assuming we have 𝑛 resources,
each with a resource size 𝑠𝑖 (in Kilobytes) and a Haversine
distance 𝑑𝑖 from the vantage point (in kilometers), and 𝐾 is
the scaling factor set to 106, then the HaverSize score of a
website is calculated as follow:

HaverSize =

∑𝑛
𝑖=1 𝑠𝑖 × 𝑑𝑖
𝐾

. (2)

The HaverSize score is a non-negative metric (≥ 0), a score
close to zero indicates that the sum of the weighted distances
for all resources is minimal. Practically, this suggests that
most resources are either very small in size or are located
very close to the vantage point.

Fig. 13 highlights the distribution of these HaverSize
scores, which consistently show a preference for IPv6. This
suggests that IPv6-preferenced loading leads to routes that
might be more efficient or involve shorter physical distances.
It is important to note that IP geolocation and Haversine
calculations do not precisely represent the exact network
paths taken by IP packets, they still provide useful insights
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Figure 11: Website load time distribution (in seconds) of Fully IPv4, Fully Dual-Stacked and Mixed websites.
Subscript4 showcases the use of full-IPv4 loading while subscript6 is for IPv6-preferenced loading. The bottom and
top whiskers represent the 5th and 95th percentiles, respectively. Outliers are not shown in the boxplots.
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loading while subscript6 is for IPv6 pings.

into the underlying website infrastructure and the physical
proximity of connected resources.

4.3.3 User Experience. When analyzing resource failure rates
(NetQuartz Step 3 – see Sec. 2.3) within Mixed websites,
we found that 6.21% of these websites encountered one or
more read failures when using IPv4, and 5.28% experienced
similar issues over IPv6. While connection failures are less
common, they still occur, affecting 1.08% of websites on IPv4
and 0.98% on IPv6. The disparity in failure rates, in favor
of IPv6, is a direct consequence of the heavier resource de-
mands placed on IPv4 in these Mixed environments (see
Sec.4.2). The failures also vary significantly by content type,
providing insights into which categories are most susceptible
to issues: whatever the website class, Document consistently
exhibit the highest failure experience accross websites. 66%
of the Fully IPv4 websites are subject to Document-related
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Figure 13: HaverSize scores, where each score is the
weighted sum of Haversine distance (in kilometers) be-
tween the vantage point and the resource server, with
weights proportional to resource sizes, comparing full-
IPv4 and IPv6-preferenced loading strategies.

failures, 65% of Fully Dual-Stacked and 55% of Mixed
websites.

As established in Sec. 4.3.1, the number of resources re-
quested via HTTP/S significantly influences load time. In light
of this observation, many websites are adopting the use of
data URLs to embed data directly withinDocument resources
(NetQuartz Step 3 – see Sec. 2.3). This approach helps to
minimize HTTP overhead by reducing the number of sepa-
rate requests required for resource fetching. We examined
the usage of data URLs across various websites and found
that 38% of them incorporate this technology. At the 95th
percentile, each website contains up to 8 data URLs, embed-
ding a total of 17.2 Kilobyte of data within these URLs. We
have also observed that the majority of these data URLs are
concentrated in the Image category.
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5 RELATEDWORK
Recent researchs have evaluated the impact of Happy

Eyeballs on websites performance, showing that the de-
fault 300ms timer was not always leading to the best out-
come [5, 6]. Piraux et al. [41] recently provided a DNS ex-
tension as an adaptative address family selection algorithm
able to dynamically select, according to end-to-end latency
measures, the best address family for establishing the con-
nection.
Research on Internet path-length aspects between IPv4

and IPv6 has also been performed [27]. It showed that IPv6
and IPv4 paths share similar path lengths, implying that,
despite IPv6 ’s less stable paths and higher dynamics, the
fundamental infrastructure (in terms of distance data travels)
is comparable to IPv4.

Web content has also been examined. Butkiewicz et al. [8]
found that a significant portion of web pages includes con-
tent fetched from multiple, distinct servers, introducing ad-
ditional delay. They highlight that it is not just the total
size of the page that affects load times but, more signifi-
cantly, the number of individual objects requested. Other
works [8, 34] show that images and JavaScript are among
the prominent content types, with JavaScript objects, in par-
ticular, contributing substantially to the total page size. Most
of the studies were only focused on the root home page of
the service.
On the contrary, Lookyloo [5] – a networking tool web

interface – focuses on the classification of all the resources
linked to the home page along with their category but, to our
best knowledge, no paper has been published on it. Bajpai et
al. [2, 22] give insights at the content level of dual-stack web
servers, their focus was mainly on the failure rate and the
performance of content delivery over IPv4 and IPv6. Our
work seeks to complement theirs by delving into application-
level metrics and evaluating how much of the content is
distributed over IPv4 and IPv6.
When discussing web performance, user experience is a

crucial factor. Sengupta et al. [44] conducted a study using
Google’s Chrome User Experience Report (CrUX), which
focused specifically on user experience and user-related met-
rics, particularly those associated with web page render-
ing. Although this research is orthogonal to our work, it
underscores disparities in these metrics across devices and
geographic regions, revealing that desktops generally outper-
form mobile devices. Furthermore, it highlights that certain
countries benefit from superior network performance, lead-
ing to a better overall user experience.
To date, and to our best knowledge, no studies have ex-

plored how web content is distributed across IPv4 and IPv6,
along with the associated performance consequences on the
different web categories. Our work aims at filling this gap.

6 CONCLUSION
This paper contributes to understanding dual-stack server

performance through the development and deployment of
NetQuartz, a website data analyzer tool. NetQuartz is
meticulously designed to derive and compare the perfor-
mance of websites across both IPv4 and IPv6 protocols. We
successfully collected and analyzed data from 217,974 web-
sites after a two-week measurement campaign.

Our analysis categorizeswebsites into three distinct classes
based on the servers hosting their resources: Fully IPv4,
Fully Dual-Stacked, and Mixed. This classification allows
us to uncover patterns in web resource management and
loading efficiencies. Notably, Fully IPv4 class are generally
smaller in size compared to Fully Dual-Stacked class, with
Mixed class presenting the largest sizes and greatest number
of resources. This observation is particularly insightful as it
correlates with our finding that the number of resources is
directly linked to loading times.
Our findings also reveal that Fully Dual-Stacked and

Mixed classes typically perform better in IPv6-preferenced
loading than in full-IPv4 one.
The observation is particularly interesting with Mixed

websites, where we find that resources tend to be loaded
more over IPv4 than IPv6, yet the overall performance in
IPv6-preferenced loading remains more efficient.
Our conclusions could benefit from a broader analysis

to better understand the performance differences observed
between full-IPv4 and IPv6-preferenced loading. Expanding
the number of vantage points and incorporating traceroute
analyses could provide a more detailed understanding of the
exact paths taken by IPv6 and IPv4 packets.

SOFTWARE ARTEFACT
NetQuartz source code, data analysis scripts, and data

collected will be released to the community upon paper ac-
ceptance.

ETHICS
The collection of web resources can be a contentious topic,

often raising ethical concerns and attracting attention. Scru-
tinizing web content is generally considered unacceptable,
and many web services and hosts have anti-scraping and
anti-bot measures in place to discourage such an activity. It
is important to note that the focus of this project has been on
collecting metadata related to resources, such as size, load-
ing time, or resource category, rather than harvesting their
content.
Additionally, we have intentionally avoided using tech-

niques to bypass anti-scraping measures to ensure that no
web service is deceived or impersonated, whether by sim-
ulating a human user or a web browser. Furthermore, all
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inferential rules and heuristics used are exclusively based
on information that is either readily available or explicitly
provided to the user.

This ethical approach highlights a focus on transparency
and respect for web standards and privacy, and avoids inva-
sive or deceptive practices. This project aims at providing
valuable insights into web resource dynamics while adhering
to ethical guidelines and focusing on metadata. The integrity
and security of web entities were not compromised.
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A NETQUARTZ HYPERPARAMETERS
TUNING

NetQuartz timeout-hyperparameters (Sec. 2.4) values
are fixed based on Cumulative Distribution Functions (CDFs)
illustrated in Fig. 14a to determine the most effective timeout
settings for the different stages of processing. The tuning
is based on 100 websites randomly sampled from the top
300,000 websites in DomCop’s list. selenium_timeout (with
x-axis being the time spent loading the website with sele-
nium) is fixed to 40 seconds, to capture 95% of the websites
from the tested sample. Similarly, processing_timeout (with
x-axis being the total time spent by NetQuartz to process
the website) is fixed to 70 seconds. resource_timeout (with
x-axis being the time spent loading the web resource) is in-
tentionally set to 2 seconds to capture 100% of resources, the
goal is to prevent resources from loading indifinitely, we still
want to capture a maximum amount of them. The number of
IPv4– and IPv6 when applicable – pings is set to 5. Fig. 14b
shows that with 5 pings, we still get a reliable snapshot
of the network’s conditions without significantly increas-
ing the overall processing time per domain, ensuring that
NetQuartz remains efficient in processing the top300,000
websites from DomCop.

B HEURISTICS
B.1 Reclassification of Fetch, XHR and

Other Resources
Our heuristic, based on HTTP content-type header analy-

sis 3.4.1, is validated against Chrome’s network performance
tool classification which employs requisite techniques for op-
timal category derivation. The heuristic’s foundation lies in
keyword detection within the header encoding the resource
media type as highlighted in Fig. 3.
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(a) Tuning of the timer values.
Dotted lines highlight the cho-
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Figure 14: NetQuartz hyperparameter tuning.

Type True Positive False Positive True Negative False Negative Accuracy Recall f1-score
Raw Prop. Raw Prop. Raw Prop. Raw Prop.

Document 31,623 0.033 16,290 0.017 888,298 0.947 960 0.001 0.66 0.97 0.785
Image 367,260 0.391 1,970 0.002 540,339 0.576 27,602 0.029 0.994 0.93 0.961
Media 2,799 0.002 47 0.000 933,813 0.996 512 0.001 0.983 0.845 0.91
Stylesheet 101,775 0.108 929 0.001 833,066 0.888 1,401 0.001 0.99 0.986 0.988
Script 332,304 0.354 8,644 0.009 589,039 0.628 7,184 0.007 0.974 0.978 0.976
Font 53,385 0.056 520 0.001 872,900 0.931 10,366 0.011 0.99 0.837 0.907

Table 4: Content classification heuristic evaluation (to-
tal: 937,171 resources) with advanced metrics.

Validation of this heuristic implied a dataset of 25,000
websites, encompassing 937,171 resources, and involved con-
fusion matrix construction to evaluate classification perfor-
mance. Results, including precision, recall, and f1-score for
each category, are detailed in Table 4. The f1-score, repre-
senting the harmonic mean of precision and recall, shows
robust outcomes across categories, with scores exceeding
90% except for the Document category, which faced a preci-
sion challenge at 66%. This anomaly comes from instances
where resources, like images, fail to load correctly (e.g., re-
turning an HTML document with status code other than 200),
yet are classified as Images by Chrome’s performance tool.
This discrepancy raises questions about Chrome’s internal
decision-making processes, which are not publicly docu-
mented.
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