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Abstract

The superpotential technique allows the reconstruction of inflationary models.
Assuming that the Hubble parameter is a function of the scalar field, we can re-
construct the scalar field potential. In this thesis, we are interested in using this
technique to find the conditions on the reconstructed potential leading to the forma-
tion of Primordial Black Holes in the early universe. It has indeed been shown that
PBHs can form if a growing mode of the Mukhanov-Sasaki equation is present, or if
the scalar perturbation spectrum is blue-tilted. These two conditions place different
constraints on the inflationary model. In particular, we applied the superpoten-
tial technique to a series of inflationary models. Compared to other reconstruction
methods, this technique has been found to be very powerful in such a context. It
leads to quite general predictions for the shape of the inflaton potential needed for
the amplification. The case of inflation in the context of General Relativity was
first investigated. Exploiting the conformal mapping and the Jordan-Einstein frame
transformation, the analysis was extended to non-minimally coupled inflaton. The
case of f(R) theories was also studied in detail.
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Introduction
Many fundamental questions arise in the context of classical cosmology, preventing us
from understanding the evolution of the universe in its entirety. One of its most challeng-
ing issues is that the initial conditions of the primordial universe appear highly fine-tuned.
To address these challenges, the model of inflation has been introduced as an extension
to the classical framework. Inflation is defined as a period of rapid exponential expansion
in the early universe driven by a new scalar field, called the inflaton field. It properly
sets the initial conditions for the subsequent hot Big Bang model of classical cosmology.
But more remarkably, inflation provides a mechanism for the generation of primordial
density fluctuations. These fluctuations are believed to be the seeds for the formation
of the anisotropies observed in the Cosmic Microwave Background (CMB) and for the
formation of the Large-Scale Structures (LSS) in the universe. In the early universe, the
presence of such energy density perturbations has also led to the conclusion that highly
dense objects could have been formed through gravitational collapse. These objects are
called Primordial Black Holes (PBHs). Depending on their mass, PBHs have a variety of
possible cosmological implications. The most promising and studied is their contribution
to the dark matter content of the universe.

Several observations indicate that most of the mass of the universe remains invisible.
One of the invisible and not yet understood components constitutes the so-called dark
matter problem. In the late universe, dark matter could explain the observations of galaxy
rotation and the evolution of galaxy clusters, both showing missing gravitational attrac-
tion. In the early universe, the formation of the LSS also requires additional matter for the
CMB overdensities to form the first galaxies. The measurements of the baryon-to-photon
ratio from the Big Bang Nucleosynthesis (BBN) [1] and the CMB [2] indicate the same
evidence of a missing constituent, see [3], [4] for more details. Consequently, dark matter
(DM) must be present in both the late universe and the early universe. This invisible
matter is referred to as non-baryonic matter due to its exotic physical behaviour. There
are no particles within the Standard Model (SM) of particle physics that exhibit these
properties. However, instead of a new particle, the missing matter could be in the form
of compact objects spread throughout the entire universe. While the so-called MACHOs
[5], or Massive Compact Halo Objects, in our galaxy have been ruled out by gravitational
lensing observations, PBHs have a much wider possible range of masses, which still makes
them a potential DM candidate [6]. Recently, PBHs have regained huge interest within
the community with the discoveries of gravitational wave observations. Indeed, with the
high number of detections of black hole mergers observed by LIGO and Virgo, the ques-
tion about a primordial origin comes back into light.

The formation of PBHs in the early universe requires some specific features in the
inflationary dynamics. At small scales, the perturbations remain unconstrained by obser-
vation. If their amplitudes are amplified compared to those observed at larger scales, they
could form PBHs through gravitational collapse. It has been shown that such amplifica-
tion can occur if a growing mode of the Mukhanov-Sasaki equation is present, or if the
power spectrum of the perturbations shows an excess at small scales. Such conditions can
be obtained if a particular phase is introduced in the potential during which the inflaton
field evolves towards a de Sitter attractor. The core of the thesis is to study the potential
in the vicinity of such a de Sitter attractor. To do so, we use the superpotential technique
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to reconstruct the inflationary potential. Imposing the conditions for the amplification
of the perturbations, specific constraints on the form of the potential and consequently
on the inflationary dynamics are obtained. In this thesis, we are interested in applying
this procedure to General Relativity (GR) and modified gravity theories which can be
connected to GR by a redefinition of the inflaton field and a conformal transformation of
the metric.

This thesis is organised as follows. In the first Chapter 1, we start by briefly presenting
the formalism and achievements of classical cosmology. We introduce the limitations of
this theory in Section 1.2 with the flatness and the homogeneity problems. Inflation is
then formally presented in Section 1.3. Once we combine General Relativity and quantum
mechanics to describe inflation, we end up with a natural explanation of the formation
of density fluctuations. In Chapter 2, we introduce the quantum description of inflation
with the theory of perturbations in cosmology. We use this formalism to describe the evo-
lution of the perturbations. In Chapter 3, we review the physics behind the possibility of
forming PBHs in the early universe. The two mechanisms to produce amplified perturba-
tions are described in Section 3.3. In Chapter 4, we introduce the superpotential method,
with the new idea of reconstructing inflationary potentials leading to the amplification
of perturbations. This new approach is first applied in the context of GR in Section 4.2.
The last two chapters detail its application to modified gravity theories. In Chapter 5,
we investigate non-minimally coupled scalar fields, while in Chapter 6, we study f(R)
gravity theories.

In this work, natural units with ℏ = c = 1 have been used for simplicity and conve-
nience. We also work with the reduced Planck mass, denoted as M2

P = (8πG)−1. The
notation over-dot and prime refer to the derivative with respect to (w.r.t.) cosmic time
and conformal time, respectively.
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1 Homogeneous cosmology

1.1 Friedman-Lemaître-Roberson-Walker model

In the 1950s, the expansion of the universe was discovered, which led to the idea of an
evolving universe. More particularly, the universe could be understood as a thermal evo-
lution driven by the expansion of the universe. In this Section, we review this classical
description of the evolution of the universe, mostly basing our approach on the following
references [7]–[10].

In classical cosmology, the universe is described as homogeneous and isotropic on large
scales. It means that the universe appears the same in all directions, and at all locations
in the universe. It can be described by the Friedman-Lemaître-Roberson-Walker (FLRW)
metric:

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

]
,

where t is the cosmic time and K is the space curvature: K = 0 for a flat universe, K > 0
for a spatially closed universe and K < 0 for a spatially open universe. The scale factor
a(t) describes the relative size of the universe as it evolves over time.

By defining the coordinate χ ≡ dr/
√
1−Kr2, it is possible to write the metric in a

more convenient way:

ds2 = dt2 − a2(t)
(
dχ2 + f

(
χ2
) (

dθ2 + sin2 θ dϕ2
))

, (1)

where

f
(
χ2
)
≡


sinh2 χ K = −1

χ2 K = 0

sin2 χ K = +1

.

Note that the coordinates (t, r, θ, ϕ) or (t, χ, θ, ϕ) are comoving coordinates, which means
that they are moving along with the expansion of the universe. Comoving quantities are
related to physical ones by the scale factor:

r(t) = a(t)x,

where the physical distance r(t) evolves proportionally to the expansion, while the co-
moving distance x remains constant.

The dynamics of the expansion is contained in the scale factor a(t). The Friedmann
equations describe its evolution as a function of the matter content in the universe. They
are obtained from the Einstein equations:

Rµν −
1

2
Rgµν ≡ Gµν = 8πGTµν − Λgµν , (2)

where Λ is the cosmological constant which can describe dark energy. The Ricci tensor
Rµν and the Ricci scalar R are defined as:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, R ≡ gµνRµν ,
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with the Christoffel symbols defined as: Γµ
αβ ≡ gµν

2
[gαν,β + gβν,α − gαβ,ν ]. For the FLRW

metric case, the non-zero components of the Ricci tensor and the Ricci scalar are given
by: 

R00 = −3 ä
a
,

Rij =
(

ä
a
+ 2 ȧ2

a2
+ 2K

a2

)
gij,

R = 6
(

ä
a
+ ȧ2

a2
+ K

a2

)
.

(3)

The stress-energy tensor Tµν contains all the energy content of the universe. Homogeneity
and isotropy imply the stress-energy tensor to be diagonal with identical spatial compo-
nents. Assuming a perfect fluid of energy density ρ(t) and pressure p(t), the stress-energy
tensor for a free-falling observer takes the following form:

Tµν = (ρ− p)uµuν + pgµν = diag(ρ,−p,−p,−p), (4)

where we have introduced the time-like velocity 4-vector uµ = (1, 0, 0, 0), in a comoving
frame with the fluid.

Using these results, the first Friedmann equation is obtained from the 00-component
of the Einstein equations:

H2 =
1

3M2
P

ρ− K

a2
+

Λ

3
, (5)

where H is the Hubble parameter:

H ≡ ȧ

a
. (6)

It describes the rate of expansion of the universe. The second Friedmann equation is
obtained from the ii-components of the Einstein equation, where the Hubble parameter
is simplified using the first Friedmann equation (5). It describes the acceleration of the
scale factor:

ä

a
= − 1

6M2
P

(ρ+ 3p) +
Λ

3
. (7)

An additional equation can be obtained from the conservation of the total stress-energy
tensor, ∇µT

µν = 0. The 0-component of this equation leads to the conservation equation:

ρ̇+ 3H(p+ ρ) = 0. (8)

The equations of state of the fluids in the universe can be described by a linear relation:

p = wρ. (9)

Despite not being the most general form, it can be used to describe most of the evolution
of the universe. Non-relativistic particles (dust) are described by w = 0, while relativistic
particles have w = 1/3. The cosmological constant Λ, possibly leading to an accelerated
expansion, has a negative fluid pressure corresponding to w = −1.

Using Eq. (9), the conservation equation (8) takes the following form:

ρ̇

ρ
= −3(1 + w)

ȧ

a
,

which has as solution:
ρ ∝ a−3(1+ω). (10)
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In Table 1, we can find the evolution of the different fluid densities. Except for the
cosmological constant, they reflect the fact that the expansion of the universe dilutes
the different kinds of constituents. The scale factor a describes the expansion in each
spatial direction. As a consequence, the evolution of matter density is diluted in the three
dimensions of space. For the radiation density, the additional power of the scale factor
comes from the redshift.

w ρ(a) a(t)

MD 0 a−3 t2/3

RD 1
3

a−4 t1/2

Λ -1 a0 eHt

Table 1: Evolution of the energy densities and scale factor of the constituents of the
universe. MD, RD state for matter domination and radiation domination respectively.

We can also use the result (10) in the first Friedmann equation (5), to extract the time
dependence of the scale factor:

ȧ

a
=

1√
3MP

√
ρ ⇒ da

a
∝ a−

3
2
(1+w)dt,

where we have assumed a spatially flat expanding universe and neglected the cosmological
constant. The general solution of this equation is given by:

t ∝ a
3
2
(1+w). (11)

In Table 1, we have specified the individual cases. In Figure 1, we can see the different
evolution of the three types of composition.

10−10 10−8 10−6 10−4 10−2 1 102 104
10−5

1

105

1010

1015

1020

1025

1030

C
M

B

B
B

N

ρr

ρm

ρΛ

a(t)

ρ
(a
)

radiation era matter era dark energy era

Figure 1: Evolution of the energy density for non-relativistic particles (matter), relativistic
particles (radiation) and dark energy density as a function of time. Pict. taken from [11].

Classical cosmology, based on the FLRW model, allows us to draw several important
conclusions about the origin and evolution of the universe. First, classical cosmology
demonstrates that the universe is not static but expanding. The FLRW model allows us
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to trace the evolution of the universe’s expansion rate over time. In the past, the universe
was dominated by radiation. Due to the expansion of the universe, the universe passed
from a radiation-dominated universe (RDU) to a matter-dominated universe (MDU). The
transition happened at the matter-radiation equality level, see Figure 1. By continuing
to expand, the universe is currently in a period dominated by the cosmological constant
Λ. In the same way, a transition has occurred at the matter-Λ equality level.

The expansion of the universe predicts a thermal history of the universe. In the course
of its expansion, the universe has cooled. The effective interactions at high temperature
are governed by the rate of expansion: interactions decouple as soon as their reaction
rate becomes lower than the expansion rate. In particular, the universe emerges from a
state where high-temperature matter is ionised and in thermodynamic equilibrium. Once
the background temperature was sufficiently low to allow the binding of electrons with
nuclei, photons were able to propagate freely through the universe. This period is called
recombination, and the last scattering of photons with electrons defines the last scattering
surface. Today, we observe these free photons with a redshifted wavelength in the Cosmic
Microwave Background, see Figure 2, which is the relic of this ionised state in the past.
Before the formation of the CMB, small density inhomogeneities caused the formation of
acoustic oscillations in the plasma. It led to small temperature fluctuations imprinted in
the CMB. The angular momentum spectrum of the CMB matches the theoretical predic-
tion, see [12].

It also agrees with the Big Bang Nucleosynthesis. BBN is the period of the universe
during which almost all the basic nuclei were formed [2]. This has only been possible for
a specific range of temperatures. Indeed, the temperature needed to be low enough for
the nuclei to stay in bound state (T ≲ 1 MeV) and high enough to allow the Coulomb
potential to be crossed for the nuclear reactions. The abundance of these elements matches
the theoretical predictions described by the Boltzmann equation, see [12], [13].

1.2 FLRW model’s problems

Despite the great success of the FLRW cosmology, a number of inconsistencies remain
unexplained in the context of classical cosmology. The most important of these are the
horizon problem and the flatness problem: the universe seems to have very specific and
fine-tuned initial conditions in the primordial universe. In this Section, we review briefly
these problems1 and their resolution with the introduction of an inflationary period of the
universe, before the RDU described by classical cosmology. This Section is mainly based
on the references [9], [11], [15]–[17].

1.2.1 The flatness problem

The flatness problem can be easily understood from the expression of the Friedmann
equation (5). Indeed, one can see that the curvature term decreases with the scale factor
as 1/a2. Comparing with the evolutions in Table 1, the matter density ρm decreases as
1/a3 and the radiation density ρr as 1/a4. This means that the ordinary constituents of
the universe decrease much faster with the scale factor. As suggested by observation, the

1See the original article of Alan H. Guth [14].
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only explanation for the fact that the curvature does not dominate today is to assume
an extremely small initial value for it. Within classical cosmology, there is no mechanism
that can explain such a tiny curvature, and this leads to the flatness problem of the FLRW
model. To express it more rigorously, let us rewrite the Friedmann equation (5) as follows,
neglecting the cosmological constant:

1 = Ωtot(t)−
K

(aH)2
,

where we have defined Ωtot =
∑

i Ωi and Ωi =
1

3M2
P

ρi
H2 . Using this equation, one can define

the time-dependent curvature parameter:

ΩK(t) ≡ − K

(aH)2
= 1− Ωtot(t). (12)

Using Eq. (11), we can find the evolution of this quantity for a MDU and a RDU. Using
Table 1, we find for both cases H ∝ t−1. Therefore, for RD, we have ΩK ∝ t ∝ a2, while
for MD, we find ΩK ∝ t2/3 ∝ a. For a time ti deep in the early universe, during the RD,
and a time t0 defined as the present time, in the MD, we can then express the following
ratio:

ΩK(t0)

ΩK(ti)
=

a0/aeq

(ai/aeq)
2 ⇒ ΩK(t0) = ΩK(ti)

aeq
a0

(
a0
ai

)2

,

where we have defined aeq as the scale factor at the moment of matter-radiation equality.
Using the relation for redshift aeq

a0
= (1 + zeq)

−1 ≈ 1
3500

[15] and the evolution in RD
ρr ∝ 1

a4
, we finally find:

ΩK(t0) ≈
Ωk(ti)

3500

(
ρr,i
ρr,0

)1/2

.

The time ti in the RDU can be taken as the Planck time for which ρ
1/4
r,i ∼ MP. The

radiation density today is given by ρr,0 ≈ 7.8042 × 10−34 g/cm3 [8], which can be con-
verted into electron-Volts (eV): ρ1/4r,0 ≈ 2.41× 10−4 eV. These results lead to the condition
ΩK(t0) = 1060ΩK(ti). The last measurement from the Planck experiment measurements
of the CMB anisotropies gives |ΩK(t0)| < 0.005 at the present time [12]. Consequently,
we must have the extremely small fine-tuned initial condition: |ΩK(ti)| < 10−62 at the
Planck time.

1.2.2 The horizon problem

Observations of the CMB show that the universe was highly homogeneous and isotropic
on a large scale in the past, see Figure 2. Temperature anisotropies are indeed extremely
small and universal:

δT

T0

∼ δρ

ρ

∣∣∣∣
CMB

∼ 10−5, (13)

where T0 is the CMB temperature today (T0 ∼ 2.73 K). As we shall see, this observation
is surprising as the CMB appears to be causally disconnected. There is no physical mech-
anism to explain why the universe appears so homogeneous.
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The maximum distance between two regions that are causally connected is determined
by the maximum distance that light can travel. To express it, we introduce the conformal
time η via the relation:

dη =
dt

a
, (14)

where t is the cosmic time. This allows us to rewrite the FLRW metric, in Eq. (1), as
conformal to Minkowski. For a radial photon (θ and ϕ constants), we have that the line
element is reduced to:

ds2 = a2(η)(dη2 − dχ2) = 0.

This equation gives the greatest comoving distance that a photon can travel between an
initial time ti and a subsequent time t. We then define the so-called comoving particle
horizon:

∆χmax(t) = η(t)− η(ti) =

∫ t

ti

dt′

a(t′)
. (15)

We can now use the result in Eq. (11) to express dt/a ∝ a
3
2
(1+w)−2, and we find the

following expression for the comoving horizon:

∆χmax(t) = η(t)− η(ti) ∝
2

(1 + 3w)

(
a

1
2
(1+3w) − a

1
2
(1+3w)

i

)
, (16)

For all ordinary matter, w > −1/3, the comoving particle horizon is growing and dom-
inated by late time, a ≫ ai. Therefore, it is finite and there exist regions in the CMB
that were not in causal contact in the past. Since the CMB is highly homogeneous, the
horizon problem stands for the fact that it is not possible to explain why two regions of
the CMB have the same average temperature while being causally disconnected.

To be more explicit, let us consider a flat universe composed of matter and radiation,
neglecting the contribution of the cosmological constant. The derivative w.r.t. cosmic
time can be expressed in the following way:

d

dt
=

da

ȧ
= H

d

d ln a
. (17)

Therefore, we can rewrite the expression of the comoving particle horizon, in Eq. (15), as
follows:

∆χmax(t) =

∫ a

ai

da

a2H
=

∫ ln a

ln ai

(aH)−1d ln a. (18)

The first Friedmann equation (29) is often written in terms of the critical energy density.
The critical energy density is: ρcrit,0 = 3MPH

2
0 . The first Friedmann equation becomes:

H2 = H2
0

(
ρm,0

ρcrit,0
a−3 +

ρr,0
ρcrit,0

a−4

)
= H2

0

ρm,0

ρcrit,0
(a+ aeq) a

−4

where we used, in the last equality, ρr,0 = aeqρm,0. Using this result, we find:

a2H = H0

√
ρm,0

ρcrit,0

√
a+ aeq.
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We can therefore express the distance travelled by light between the conformal time η1
and η2 as:

η2 − η1 =

∫ a2

a1

da

a2H
=

2√
Ωm,0

H−1
0

(√
a2 + aeq −

√
a1 + aeq

)
.

Two points of the last scattering surface separated by more than two comoving horizons
were not in causal contact. The comoving distance from the observer today and the surface
of last scattering is given in a flat universe by dA(ηrec) = η0 − ηrec. Therefore, the angular
separation corresponding to a causal region at recombination is given by:

θh ≈ 2∆χmax(ηrec)

dA(ηrec)
=

2(ηrec − ηi)

η0 − ηrec
= 0.036 rad ≈ 2.1◦.

where we used a0 = 1 for the scale factor today, aeq = 3500−1 at the matter-radiation
equality, arec = 1100−1 at recombination, and ai → 0 deep in the early universe [11]. The
number of causally disconnected regions of the last scattering surface is then approximated
by 4π

0.0362
≈ 104. As a result, there must exist a mechanism to make these 104 patches

causally connected in order for the last scattering surface to be very homogeneous as
observed today.

Figure 2: CMB anisotropies measured by PLANCK. The universe appears homogeneous
at large scales. At smaller scales, small inhomogeneities of the order 10−5 are present.
Credit ESA.

1.2.3 Introduction of an inflationary phase

The origin of the problems is linked to the fact that the RDU and MDU have a decelerating
expansion. This can be seen using the dynamical equation (7) with either MD or RD,
neglecting Λ and K:

ä

a
= −4πG

3
(1 + 3w)ρ. (19)

It shows that for ordinary matter, for which both pressure and energy density are pos-
itive, one has ρ + 3p > 0 giving ä

a
< 0. This condition is known as the Strong Energy

Condition (SEC). It reflects the fact that gravity is attractive, which implies the universe
to decelerate during RD and MD.

9



Since a2H2 = ȧ2 is decreasing, the curvature density, defined in Eq. (12), is increasing
with time. It is exactly the reason why the initial condition of the curvature density needs
to be so small. The idea behind inflation is to assume the existence of an accelerated
phase of expansion before the RDU and MDU. It is equivalent to say that the SEC must
be violated, see Eq. (19). In this way, ΩK is decreasing during the whole duration of
this period. It is then possible to generate dynamically a very small initial value of the
curvature density, without having to assume a fine-tuned initial condition for K. Using
the evolution of the scale factor, in Eq. (11), we can express the evolution of the Hubble
parameter and the condition leading to the violation of the SEC:

H =
ȧ

a
=

2

3(1 + w)

1

t
⇒ aH ∝ t

2
3(1+w)

−1 = a−
1
2
(1+3w). (20)

The SEC, ρ+3p > 0, effectively leads to a decelerating expansion. The only way to have
ȧ increasing is to violate the SEC: 1+3w < 0 ⇔ w < −1/3. Such a condition requires the
existence of a negative pressure fluid. Now let us check the horizon problem. By imposing
the violation of the SEC, we now obtain a really large comoving particle horizon due to
the contribution from early times, see Eq. (16) using ai → 0 and w < −1/32. Therefore,
inflation gives an early phase where the universe was causally connected long before the
conventional hot Big Bang, thereby also solving the horizon problem.

Let us make a comment on the comoving particle horizon, defined in Eq. (18). In
Section 2.1, we are going to introduce the comoving Hubble radius as (aH)−1. In contrast
to the comoving particle horizon, the comoving Hubble radius is defined as the comoving
distance that light can travel during one Hubble time. In other words, particles whose
distance is greater than one comoving Hubble radius cannot be in causal contact. So the
comoving particle horizon is linked to the comoving Hubble radius, but they are intrinsi-
cally different. In fact, the comoving particle horizon is calculated by the time integration
of the Hubble radius. In the standard Big Bang cosmology, the comoving Hubble radius
is increasing, since aH is decreasing. We have found that the comoving particle horizon
was really small in the past, leading to the horizon problem, see Eq. (15). The particle
horizon is then dominated by the value of the comoving Hubble radius at late times. For
this reason, the particle horizon and the Hubble radius are often used to refer to the same
concept. However, one should keep in mind that when we introduce inflation, the Hubble
radius is decreasing, which means that the comoving particle horizon is dominated by the
value of the Hubble radius at early times. Consequently, inflation makes the comoving
particle horizon much larger than the actual Hubble radius.

In the context of inflation, it will be useful to introduce the number of e-folds to
parameterise time evolution. Such a number represents the logarithmic growth of the
scale factor between two times t1 and t2:

N(t1, t2) =

∫ t2

t1

dtH(t) = ln

(
a(t2)

a(t1)

)
. (21)

It is particularly useful during inflation because of the extremely fast-growing scale factor.
It can be shown that the minimum number of e-folds required for inflation to solve the

2Note that using the inverse of Eq. (20) in Eq. (18), one can check that we find our previous result
in Eq. (16).
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flatness and horizon problems is of the order N(tend, ti)min ∼ 60, see [15] for instance.

Another useful trick is that the derivative w.r.t. conformal time, see Eq. (14), is
related to the derivative w.r.t. cosmic time:

Q′ = aQ̇.

The conformal Hubble parameter H can be defined using this definition. It is related to
the Hubble parameter in the following way:

H =
ȧ

a
=

a′

a2
⇒ H ≡ a′

a
= aH. (22)

1.3 Single-field inflation

As we just saw in the previous Section, solving the flatness and the horizon problems is
possible by introducing a period of rapid and exponential expansion in the early universe,
before the hot Big Bang. In this Section, we study how it is possible to generate such an
inflationary period by introducing a new scalar field in the energy content of the universe.
We call it the inflaton field. This inflationary paradigm has become the most common
extension of modern cosmology and is supported by some observations. This Section has
the same general references as the previous Section 1.2.

1.3.1 Slow-roll inflation

Inflation requires the violation of the SEC, w < −1/3, see Section 1.2.3. The cosmolog-
ical constant or vacuum energy, w = −1, is an important example satisfying the SEC
violation. It gives the so-called de Sitter universe for which the evolution of the scale
factor takes the form a(t) = eHt with a constant rate of expansion H = cst. , see Table
1. However, if a cosmological constant is at the origin of inflation, the expansion phase
would last forever. One needs to introduce a mechanism that stops inflation. A way to
produce an accelerated expansion, but with a natural end towards classical cosmology, is
to introduce a new scalar field dominating the matter content in the early universe. In
this scenario, inflation is driven by this field, called the inflaton field. We present in this
Section the simplest models, considering the minimal coupling between the scalar field
and gravity.

Let us consider a homogeneous scalar field ϕ(t, x⃗) = ϕ(t) dominating the energy con-
tent of the early universe. In this context, the matter-gravity action takes the following
form:

S = SE + Sϕ =
M2

P

2

∫
d4x

√
−gR +

∫
d4x

√
−g

[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (23)

where SE is the Einstein-Hilbert action and Sϕ is the inflaton action, with the general
Lagrangian for a scalar field. We define V (ϕ) as the potential of the inflaton field and
R is the Ricci scalar, defined in Eq. (3). Taking the approximation of a flat universe
K = 0, the spatial metric reduces to δij which implies that the metric determinant is
given by:

√
−g = a3. Varying this new action, w.r.t. the inflaton field δS

δϕ
= 0, we get the

11



Klein-Gordon equation3:

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0 (24)

The energy-momentum tensor for the scalar field is given by4:

Tµν ≡ − 2√
−g

∂Sϕ

∂gµν
= ∂µϕ∂νϕ+ gµν

[
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

]
. (25)

Using the energy-momentum tensor of a perfect fluid, see Eq. (4) and the energy-
momentum tensor for the inflaton field, Eq. (25), we find the pressure and energy densities:

ρ =
1

2
ϕ̇2 + V (ϕ), (26)

p =
1

2
ϕ̇2 − V (ϕ). (27)

Consequently, the scalar field behaves like a fluid with an equation of state given by:

w =
p

ρ
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

< −1/3, (28)

where w < −1/3 must be dynamically verified during inflation. We see that the SEC
violation is achieved when the potential energy is much greater than the kinetic energy:
1
2
ϕ̇2 ≪ V (ϕ). In other words, when the inflaton field is slowly rolling into its potential.

The dynamic induced by this condition is called "slow-roll" inflation. In the limit ϕ̇ → 0,
the scalar field is fixed and we recover the de Sitter universe evolution, with w = −1.
However, now inflation ends naturally when the SR parameters ϵi ≈ 1. This occurs when
the inflaton has reached its minimum and starts oscillating5. Inflation is for this reason
referred to as a quasi-de Sitter evolution. It means that the universe underwent an almost
constant rate of expansion6.

The first Friedmann equation (5) can be obtained using Eq. (26). The second Fried-
mann equation is obtained by deriving the first one w.r.t. cosmic time, and substituting
the Klein-Gordon equation (24):

H2 =
1

3M2
P

ρ =
1

3M2
P

(
1

2
ϕ̇2 + V (ϕ)

)
, (29)

Ḣ = − 1

2M2
P

ϕ̇2. (30)

To parameterise the expansion, we can introduce the first slow-roll parameter, ϵ1. In
order to have an accelerated expansion, we need to impose the Hubble constant to vary
slowly:

ϵ1 ≡ −d lnH

dN
= −d lnH

dt

dt

dN
= − Ḣ

H2
≪ 1, (31)

3One needs to use the following relation ϕ̇δ(ϕ̇) = ϕ̇ d
dt (δϕ) and perform an integration by parts.

4We used the relation δ
√
−g

δgµν = − 1
2

√
−ggµν in the second equality, to write Tµν = −2

∂Lϕ

∂gµν + gµνLϕ.
5This period is called "reheating". To generate the RDU which begins the classical picture of the hot

Big Bang cosmology, the universe needs indeed to reheat after inflation. It is during this period that the
inflaton field decays into the matter content of the classical cosmology, see [11], [18] for instance.

6As mentioned earlier, a de Sitter universe never stops growing: ds2 = −dt2 + e2Htdx⃗2.
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where N is the number of e-folds, defined in (21), t is the cosmic time, and H the Hubble
parameter. This is the first slow-roll condition and it is equivalent to the accelerated
expansion conditions for inflation: − Ḣ

H2 = − äa
ȧ2

+1 ≪ 1 ⇒ ä > 0, where the scale factor
a > 0. In order to solve the classical cosmological problems, the fast expansion driven
by the inflaton field must last long enough. Indeed, the first slow-roll condition needs to
last over an extended period of at least 60 e-folds, see annex 1.2. Therefore, we need the
variation of the first SR parameter to be slow, ϵ1 ≪ 1, which can be expressed with the
second slow-roll condition:

ϵ2 ≡
d ln ϵ1
dN

=
d ln ϵ1
dt

dt

dN
=

ϵ̇1
Hϵ1

≪ 1. (32)

In fact, a set of slow-roll parameters can be introduced with the same idea. Slow-roll
parameters are introduced as a way to replace the degrees of freedom: the inflation field
and the Hubble parameter. These parameters are used to describe the behaviour of
the scalar field driving inflation and the expansion rate of the universe. The idea is that
during a period of SR inflation, these parameters are smaller than unity, so that their time
derivatives are even smaller. This hierarchy is established through a recursive definition of
the SR parameters and proves to be useful to simplify the inflationary dynamics. Different
hierarchies exist, each of them related to the evolution of distinct (homogeneous) degrees
of freedom. In this work, we use two different slow-roll hierarchies. Depending on the
model considered, one hierarchy may be more useful to describe the dynamics of the
system. The first hierarchy introduced so far is that of the Hubble flow functions. The
Hubble flow functions are defined recursively as follows:

ϵ0 =
H0

H
,

ϵi+1 =
ϵ̇i
Hϵi

. (33)

A second hierarchy commonly used is that of the scalar field flow function7. The scalar
field flow functions are defined as:

δ0 =
ϕ

ϕ0

,

δi+1 =
δ̇i
Hδi

. (34)

From the two Friedmann equations, we understand that the SR condition 1
2
ϕ̇2 ≪ V (ϕ),

is equivalent to the condition of a slow-varying Hubble parameter. From Eq. (30), we
can write the second SR parameter in Eq. (32) as ϵ2 = 2ϵ1 +

2ϕ̈

Hϕ̇
. We conclude that the

second SR condition is satisfied provided that the acceleration of the inflaton is small:

ϕ̈ ≪ Hϕ̇. (35)

There exists a wide variety of inflation models that have been developed. In [19], a
comprehensive review of the different inflation models is presented. In this thesis, we
will focus on single-field inflation, where the expansion of the universe during inflation is

7In general, the ϵi and the δi can be related through the homogeneous Friedmann and Klein-Gordon
equations.
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driven by a unique scalar field known as the inflaton field8.

Let us end this Section by expressing the SR parameters in conformal time. This
will be useful in the study of the evolution of the perturbations with the Mukhanov-
Sasaki equation, see Section 2.3. Let’s recall that the number of e-folds is defined as
dN = d ln a = Hdt = Hdη, see Eq. (21). Then, the Hubble flow functions, see Eqs. (33),
can be expressed as:

ϵ1 =− d lnH

dN
= −d lnH/a

dN
= 1− H′

H2
, (36)

ϵi =
1

ϵi−1

dϵi−1

dN
=

ϵ′i−1

Hϵi−1

. (37)

The scalar field flow function, see Eqs. (34), can also be defined in terms of the conformal
time:

δ1 =
σ′

σH
, (38)

δi =
δ′i−1

Hδi−1

. (39)

1.3.2 Attractor solution

Let us now introduce the concept of attractor, following the references [8], [11], [18]. To
illustrate the principle, let us choose a potential of the form V (ϕ) = 1

2
mϕ2. Starting from

the KG equation (24) and using ϕ̈ = ϕ̇dϕ̇
dϕ

, we obtain the following differential equation:

dϕ̇

dϕ
= −

√
3
2

1
MP

(
ϕ̇2 +m2ϕ2

)1/2
ϕ̇+m2ϕ

ϕ̇
. (40)

This differential equation can be translated into a phase space diagram, see Figure 3.
Whatever the initial conditions, the scalar field evolves towards a unique solution, called
the attractor solution. This solution is SR inflation. Noting that SR inflation can be
characterised by ϕ̈ ≪ Hϕ̇, we can neglect dϕ̇/dϕ. The first SR condition 1

2
ϕ̇2 ≪ 1

2
m2ϕ2 is

satisfied for |ϕ| large. Using these SR conditions in Eq. (40), we find:

ϕ̇att ≈ −
√

2

3
mMP.

The SR attractor solution is almost constant for large values of the field, i.e. slowly
varying. When this is no longer the case, the SR condition is no longer satisfied and we
recover the oscillating behaviour of the scalar field in its potential around the minimum,
see Figure 3. To find this result, we start from Eq. (29), ϕ̇2 +m2ϕ2 = 6M2

PH
2, and make

the following change of variable:

ϕ̇ =
√
6MPH sin θ,

mϕ =
√
6MPH cos θ.

(41)

8In contrast, multi-field inflation proposes an inflationary phase driven by several distinct scalar fields.
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By deriving the second expression w.r.t. time, we find the expressions of θ̇ and Ḣ:
Ḣ = −3H2 sin2 θ and θ̇ = −m − 3

2
H sin 2θ. Therefore, H is a decreasing function of

time, and θ ≃ −mt+ α with α a constant phase which can be set to zero. Going back in
Eqs. (41), we find an oscillating inflaton field and a spiral attractor in the phase space,
see Figure 3.

Figure 3: Phase space diagram describing the inflaton field in a potential V (ϕ) = 1
2
m2ϕ2.

The attraction towards the SR solution is illustrated. Pict. taken from [9].

In the literature, it is usually assumed that the inflaton field evolves towards a de Sitter
attractor. As we will see, SR inflation is indeed compatible with the CMB observations,
see Section 2.3.3. In Section 3.3.2, we are going to introduce another type of attractor
solution in order to produce PBHs. This is done by a proper inflaton potential which
leads to the so-called ultra-slow-roll (USR) inflation, or constant-roll (CR) inflation. In
the study of inflationary dynamics and its implications for the formation of PBHs, it is
necessary to check the stability of the scalar field close to its attractor. This analysis
corresponds to studying how small perturbations around the attractor evolve in time. If
the fluctuations in the scalar field remain small and oscillate around the attractor, the
solution is said to be stable. On the other hand, if they are growing, potentially leading
to a departure from the attractor solution, it indicates instability. By assessing stability
close to the USR or CR attractor, we will be able to find the conditions for the production
of PBHs during such a phase, see Section 4.2 for the whole discussion in the context of
GR.

1.3.3 Constant-roll inflation

In SR inflation, the inflaton field slowly rolls down its potential. As we saw before, this
SR condition is mathematically equivalent to ϕ̈/Hϕ̇ ≪ 1, see Eq. (35). It can be used to
simplify the Klein-Gordon equation in Eq. (24):

V,ϕ ≈ −3Hϕ̇ ⇔ ϕ̈

Hϕ̇
≈ 0.

The CR inflation [20]–[22] is a general case, interpolating between standard SR and
USR approximations. In this case, the inflationary model is defined by a constant rate of
roll with a constant parameter α ≡ V,ϕ/Hϕ̇. The Klein-Gordon equation (24) is given by:

ϕ̈+ (3 + α)Hϕ̇ = 0 ⇔ ϕ̈

Hϕ̇
= −(3 + α) = cst. . (42)
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The first Friedmann equation (30) can be used to express the second derivative of the
inflaton as ϕ̈ = −M2

PḦ

ϕ̇
. Using this result in Eq. (42), we find the equivalent Klein-Gordon

equation expressed as follows:

Ḧ + 2(3 + α)HḢ = 0. (43)

As we saw earlier, we can use the SR parameters to replace the degrees of freedom
and their derivatives. Using the definitions (33) and (34), we can express the second SR
parameters as:

ϵ2 =
Ḧ

ḢH
+ 2ϵ1,

δ2 =
ϕ̈

ϕ̇ϕ
− δ1 + ϵ1.

Using these results in Eqs. (42) and (43) respectively, we find:

2ϵ21 − ϵ1ϵ2 − 2(3 + α)ϵ1 = 0
ϵ1 ̸=0−→ 2ϵ1 − ϵ2 + 2(3 + α) = 0, (44)

δ1(δ2 + δ1 − ϵ1) + (3 + α)δ1 = 0
δ1 ̸=0−→ δ2 + δ1 − ϵ1 + (3 + α) = 0,

where the solution ϵ1 is a constant de Sitter solution. By differentiating twice Eq. (44)
w.r.t. cosmic time, we find the following conditions:

2ϵ1 − ϵ3 = 0 ⇒ 2ϵ1 = ϵ3,

2ϵ1ϵ2 − ϵ3ϵ4 = 0 ⇒ ϵ2 = ϵ4

More generally, we have that ϵ2i+1 = 2ϵ1 and ϵ2i = ϵ2 with i a natural integer. In addi-
tion, it has been shown that CR admits solutions describing the evolution to a de Sitter
attractor, see [20], [23] for more details. Using such a limit ϵ1 → 0 in Eq. (44), the odd
SR parameters can take a zero value and the even ones a constant and different from zero
value. Therefore, in the limit N ≫ 1, we can have a hierarchy with zero odd parameters
and constant even parameters. Note that we have the same pattern for the scalar flow
functions. In the following, we are going to use these asymptotic values to generate PBHs.

The particular case of USR inflation [24], [25] is defined by α = 09. In other words,
the variation of the potential V,ϕ ≈ V,ϕϕ ≈ 0 is negligible, while ϕ̈ becomes significant for
the dynamics. In the Klein-Gordon equation (24), it basically means neglecting the slope
of the potential:

ϕ̈ ≈ −3Hϕ̇ ⇒ ϕ̈

Hϕ̇
≈ −3. (45)

Solving this equation for ϕ̇ using Eq. (6), we find:

ϕ̇ ∝ a−3 ∝ e−3N , (46)

where in the last equality, we used the result from Table 1 for w = −1 and the definition
of N , see Eq. (21). Therefore, we find that the velocity of the field is decreasing very

9The case α ≈ −3 gives back SR. Any other value corresponds to a different constant rate of roll.

16



rapidly. This explains the denomination "ultra-slow-roll" inflation, the slow-varying be-
haviour of the field is enforced during the USR regime. The scalar field is almost fixed for
the duration of the USR phase and the field variation becomes more and more negligible.
The universe is then dominated by the potential energy, which gives rise to the eternal
de Sitter expansion. Thus, USR is even closer to de Sitter inflation evolution, in which
H = cst. and w = −1, than SR. In SR inflation, we had w < −1/3, while in USR we
have w → −1 as it can be seen from Eq. (28) taking ϕ̇2 ≪ V (ϕ). As the derivative of the
potential vanishes during USR, one can add an inflection point in the overall potential of
the inflaton to include a phase of USR. However, one usually assumes USR phases with
a duration of a small number of e-folds to avoid eternal inflation.

Let us continue the analysis of the difference between the SR and USR regimes. The
first slow-roll parameter, defined in Eq. (31), can be expressed using the second Friedmann
equation (30):

ϵ1 =
ϕ̇2

2M2
PH

2
. (47)

Using this expression, we can express the second SR parameter defined in Eq. (32) as:

ϵ2 =
2ϕ̈

Hϕ̇
+ 2ϵ1. (48)

Using Eq. (46) into Eq. (47), we find that the first SR parameter is evolving very rapidly
ϵ1 ∝ e−6N during USR. It gives extremely smaller and smaller values of ϵ1 ≪ 1 as the
universe expands compared to SR in which ϵ1 ≪ 1 but is usually nearly constant. Using
Eq. (45) into (48), we find that the second parameter is also varying very rapidly but it
evolves towards a constant value ϵ2 ≈ −6. This is completely different from the SR case
ϵ2 ≪ 1.
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2 Quantum fluctuations during inflation
Inflation can explain the flatness and the horizon problems of classical cosmology. How-
ever, what makes its great success is the fact that the inflaton field can produce small
density perturbations. They give a possible origin of the formation of the anisotropies in
the Cosmic Microwave Background10, see Figure 2. In addition, the universe is observed
to be structured in a very particular way: galaxies are grouped in clusters of galaxies,
which eventually are grouped in superclusters. These particular features on large scales
are called the Large Scale Structures [26]. We currently understand these structures as
sharing the same origin as the anisotropies imprinted in the CMB. These small seeds were
the starting point of a long gravitational collapse to the large structures observed today11.
As a result, the introduction of inflation gives a natural explanation to the origin of these
seeds.

In the last Section, the inflaton field was considered as a function of time (homoge-
neous field), which drives the dynamics of the universe. Then, by using the Friedmann
equations (29) and (30), one can calculate the end of inflation with the rupture of the
SR condition (31). The expectation value of the inflaton field can therefore be used to
parameterise the time evolution. Due to the uncertainty principle, we expect the inflaton
field to have spatial fluctuations. In other words, this means that all the regions of the
universe do not end inflation at the exact same time. Inflation leaves regions with greater
or lower density, depending on when inflation ended. It is precisely these spatial pertur-
bations which could be at the origin of the initial seeds of the perturbations that later
evolved into the structures we observe today.

We now want to describe more generally the dynamics of such perturbations, introduc-
ing spatial and time dependencies of the scalar field. To do so, we introduce the spatial
perturbation of the inflaton field δϕ around its background value ϕ̄:

ϕ(t) → ϕ(x⃗, t) = ϕ̄(t) + δϕ(x⃗, t), (49)

where the condition δϕ ≪ ϕ̄ must be satisfied to keep the accelerated expansion (gener-
ated by the background value, ϕ̄).

Since during inflation, the energy content was dominated by the inflaton field, any
perturbation of the inflaton field produced fluctuations in the stress-energy tensor Tµν :

δϕ ⇒ δTµν .

Einstein’s equations describe how the energy content in the universe influences the cur-
vature of spacetime, see Eq. (2). Gravity is coupled to any kind of component in the
universe, including the inflaton field. Consequently, any perturbations of the inflaton field
induced fluctuations in the spacetime itself, and hence in the spacetime curvature:

δTµν ⇒ δRµν −
1

2
δ (gµνR) = 8πGδTµν ⇒ δgµν . (50)

10As briefly discussed in Section 1.1, the CMB reflects the decoupling of the photon from the hot
plasma constituting the early universe. It brings us information about the state of the universe 380,000
years after the Big Bang.

11This accretion process took place during matter-domination. It is described by the Jeans instabilities
which capture gravitational instabilities, see for example [8].
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In addition, the Klein-Gordon equation describes the evolution of the field and is obtained
by varying the inflaton action. Since the action (23) contains the metric perturbations,
they also induce a back-reaction on the scalar field perturbations [27]:

δgµν ⇒ δS ⇒ δϕ.

All in all, we end up with an intimate coupling between the scalar field and the metric
perturbations:

δϕ ⇔ δguν .

As a consequence, we need to study both of them simultaneously to understand the evolu-
tion and the consequences of the (quantum) perturbations of the inflaton field. The small
induced curvature perturbations have affected the dynamics of the matter content of the
universe when inflation ends, explaining the particular feature of the matter distribution
in both the CMB and the LSS.

We are going to illustrate how we describe the formation and evolution of these per-
turbations. In Section 2.1, we will first discuss the perturbations’ evolution depending on
their relation with the Hubble horizon. Then, we will briefly outline the description of
the metric perturbations with the so-called perturbed Einstein equations and the related
gauge invariance, see Section 2.2. Finally, we will see how we can describe the evolution
of these perturbations from their production to the late universe in Section 2.3. These
general references [11], [18], [27], [28] have been used throughout the Chapter.

2.1 Super-horizon and sub-horizon Perturbations

We will see later on that cosmology is often studied with the statistical properties of
the primordial density perturbations. To do so, perturbations are decomposed in terms
of the power spectrum in Fourier space. In this context, a cosmological perturbation
is characterised by its comoving wavenumber k ∼ 1/(comoving length), or its comoving
wavelength λ. The wavelength and the inverse of the wavenumber can be considered as
the physical scale of the perturbation.

The expansion rate is characterised by the Hubble parameter, see Eq. (6). The
Hubble-Lemaître law describe the recession of galaxies from each other:

v = HD, (51)

where v is the recession velocity, H is the Hubble parameter expressed at a given time,
and D is the separation distance. Each point in the universe moves away from each other
with a speed proportional to their separation. The inverse of the Hubble parameter H−1

has a time unit (or length unit in natural units), it gives an estimate of the age of the
universe. The distance DH = c/H (1/H in natural units) corresponds approximately to
the distance that light can travel in one Hubble time. It is called the Hubble distance or
Hubble radius. The Hubble radius can be used to define a scale of causal interactions: it
defines the distance over which particles are causally connected within one Hubble time12.

12Note that taking back the Hubble-Lemaître law in Eq. (51), objects moving at a speed greater than
the speed of light are not in causal contact with the observation point. It corresponds to objects behind
the Hubble radius:

c = HDH =
DH

1/H
.
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In comoving coordinates, we can further define the comoving Hubble distance or radius
as RH = (aH)−1. The comoving Hubble radius represents the comoving distance that
light can travel during one Hubble time. In contrast to the fixed perturbation wavelength
when working in comoving coordinates, the comoving Hubble radius is evolving with the
expansion:

d

dt

(
1

aH

)
= − ä

a2H2
.

During inflation, the accelerated expansion of the universe ä > 0, makes the comoving
Hubble radius decrease. Using Eq. (20), we have that RH decreases as a−1 during infla-
tion, which can also be deduced from the fact that the Hubble radius is nearly constant.
In contrast, it increased as a and a1/2 for the RDU and MDU respectively, see Table 1.
Currently, the universe is dominated by the cosmological constant Λ, so that the comov-
ing radius is again decreasing as a−1. When studying the evolution of the fluctuations
produced in the early universe, we can compare their comoving wavelengths with the size
of the Hubble radius. This comparison provides us with two sets of perturbations: super-
Hubble and sub-Hubble modes13. We call the super-Hubble regime, the regime where
fluctuations have wavelengths longer than the comoving Hubble radius: k−1 > (aH)−1.
In contrast, the period during which the perturbation wavelengths are inside the comov-
ing Hubble radius is called the sub-Hubble regime: k−1 < (aH)−1. Physically, it means
that within one Hubble time, the whole perturbation scale is in causal contact.

Figure 4 represents the evolution of a given perturbation during the early universe.
When a perturbation mode is produced, it begins evolving inside the Hubble radius. In-
deed, as the Hubble radius is extremely large during inflation, all the perturbations start
their evolution in the sub-Hubble regime. As the universe expanded, the Hubble radius
decreased. At some time, the mode crossed the Hubble horizon, becoming a super-horizon
mode when k = aH. When inflation ended, the standard picture of the hot Big Bang
emerges14. During this period, the Hubble radius is growing, so that the mode could
potentially re-enter the horizon again when k = aH. The time of re-entry depends on
the scale k−1 of the perturbation. Indeed, small-scale modes exit the horizon later during
inflation and re-enter the horizon earlier in the post-inflationary era. These modes are
often associated with the formation of smaller structures, such as galaxies and other cos-
mic objects. Large-scale modes have the exact opposite behaviour. These perturbation
modes are associated with LSS in the universe, such as the distribution of galaxies.

Horizon re-entry is an important concept to understand the formation of PBHs in the
early universe. It defines the time at which light can traverse the comoving scale of the
perturbation 1/k within one Hubble time, i.e. 1/k ∼ 1/(aH). We will use this concept in
Section 3.

13In the literature, we also use the term super-horizon and sub-horizon, due to the fact that in classical
cosmology, the comoving horizon is dominated by the Hubble radius in the late universe, see the discussion
on Eq. (18).

14Reheating is the phase just following the end of inflation. It marks the beginning of the classical Hot
Big Bang cosmology. It is the quantum fluctuation of the inflaton field, in its minimum, that generated
the actual particle content of the universe.
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Figure 4: Evolution of perturbations during the inflation and the Hot Big Bang. Each
mode enters the super-horizon regime because of inflation. During this phase, perturba-
tions are causally connected. Pict. taken from [11].

2.2 Cosmological perturbation theory

We have seen that the perturbations of the inflaton field, in Eq. (49), induce perturba-
tions in the metric, see Eq. (50). In this Section, we introduce the description of the
metric perturbations and present the corresponding perturbed Einstein equations. Note
that a complete derivation can be found in [27].

We start by perturbing the FLRW metric to first-order, since we are interested in the
evolution of the perturbations at linear order. We write the metric as the sum of the flat
FLRW metric, described by the background metric ḡαβ, and its small perturbation δgαβ:

ds2 = [ḡαβ + δgαβ (x
γ)] dxαdxβ,

with |δgαβ| ≪ |ḡαβ|. The background metric can be expressed in conformal time as
ḡαβdx

αdxβ = a2(η) (dη2 − δijdx
idxj).

We can write this perturbed metric by introducing the perturbed quantities in the
spatial and time components:

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2Bidx

idη + (δij + 2Eij) dx
idxj

]
, (52)

where all the functions A, Bi, and Eij depend on space and time. Note that the factors 2
are introduced for convenience in the derivation of the quantity of interest. It is possible
to classify all the perturbed metric components Bi and Eij into scalar-vector-tensor (SVT)
ones, thanks to the so-called SVT decomposition. Indeed, the SVT decomposition allows
us to write any three-vector into a divergenceless vector, and the gradient of a scalar:

Bi = ∂iB︸︷︷︸
scalar

+ B̂i︸︷︷︸
vector

,

where we have ∂iB̂i = 0. Moreover, the SVT decomposition applied to rank-2 symmetric
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tensor gives:

Eij = Cδij +

(
∂i∂j −

1

3
δij∇2

)
E︸ ︷︷ ︸

scalar

+
1

2

(
∂iÊj + ∂jÊi

)
︸ ︷︷ ︸

vector

+ Êij︸︷︷︸
tensor

,

where C and E are scalars, Êi a transverse vector, and Êij a traceless tensor.

One can verify that the Einstein equations to linear order do not couple the different
SVT types. Thanks to this decomposition, we can therefore study scalar, vector, and
tensor perturbations separately: each of them evolves independently. Scalar perturbations
are associated with variations in the spatial curvature or the gravitational potential. Thus,
they are responsible for the variations in the density perturbations observed in the CMB.
On the other hand, vector perturbations do not affect the spatial curvature of the universe.
These modes arise when a cosmological fluid has a rotational velocity. They are negligible
during inflation. Finally, tensor perturbations describe gravitational waves [29]. They
are important in the study of the polarisation of the CMB but do not affect the scalar
sector at linear order. As a result, scalar perturbations have the most significant impact
on the formation of the LSS and the CMB anisotropies. As we will see, these fluctuations
may also be crucial in the formation of PBHs. We therefore restrict our analysis to scalar
perturbations. We are left with the four scalar quantities to describe the scalar metric
perturbation: A, B, C, and E.

2.2.1 Gauge freedom

Before going any further in deriving the evolution of perturbations, we need to introduce
the problem of gauge redundancy. Indeed, general relativity is a gauge theory in which all
coordinate transformations, from a local frame to another, define gauge transformations.
When we considered the classical FLRW description of the universe, it was natural to
express the dynamics by choosing the coordinate system respecting the symmetries, i.e.
those of the homogeneous and isotropic universe. However, there is no evident preferable
coordinate system to analyse perturbations. We therefore need to study this aspect in
more detail. Mathematically, we can define the coordinate transformation at the same
physical point q as follows:

xµ(q) 7→ x̃µ(q) = xµ(q) + ξµ(q), (53)

where ξµ is an infinitesimal 4-vector which can be decomposed as:

ξ0 ≡ T,

ξi ≡ Li = ∂iL+ L̂i.

This gauge freedom can cause fictitious perturbations to appear in addition to, or even
instead of, physical ones. Fictitious perturbations reflect the gauge nature of general rel-
ativity and the particular coordinate system considered.

To illustrate this point, let us follow the approach in [18]. We first consider the
homogeneous and isotropic FLRW universe. The energy density is unperturbed, and we
have a homogeneous energy distribution ρ(x, t) = ρ(t). This mathematically means that
we have a constant energy over the hypersurfaces t = cst, see Figure 5. Because of gauge
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freedom, we can change the coordinate system. We can choose a different time coordinate,
t̃, related to the old homogeneous frame, in the following way:

t → t̃ = t+ δt(x, t),

where δt ≪ t. Since the energy density is a scalar, it has the same value at a given
physical point in both the old and the new frames: ρ̃(t̃,x) ≡ ρ(t(t̃,x)). However, the
energy density on the hypersurfaces t̃ = cst. now depends on the spatial coordinates x,
see Figure 5. We therefore no longer have a homogeneous universe in the new coordinate
system:

ρ̃(t̃,x) ≡ ρ(t(t̃,x)) = ρ(t̃− δt(x, t)) ≃ ρ(t̃)− ∂ρ

∂t
δt ≡ ρ(t̃) + δρ(x, t̃).

So, in the new frame, we end up with a background energy ρ(t̃), with spatial fluctuations
δρ(x, t̃). These perturbations are related to the change of coordinates and are therefore
non-physical. This illustrates the essence of the gauge problem.

Coming back to the perturbation evolution problem, we now know that the perturbed
quantities of interest, δϕ and δgµν , depend on the specific gauge choice. For the metric
perturbations, we first conclude that the degrees of freedom used to describe scalar per-
turbations of the metric (A, B, C, and E) are not all physical. It can be shown that only
two are physical [27]. The transformation of the metric perturbations, in Eq. (54), can be
found using the transformation of the metric tensor gµν(x) =

∂x̃α

∂xµ
∂x̃β

∂xν g̃αβ(x̃). Considering
the change of coordinates in Eq. (53) and perturbing to linear order, we find:

A 7→ A− T ′ −HT,

B 7→ B + T − L′, B̂i 7→ B̂i − L̂′
i,

C 7→ C −HT − 1
3
∇2L,

E 7→ E − L, Êi 7→ Êi − L̂i, Êij 7→ Êij.

(54)

The transformation of the perturbation of the field is found similarly using Eq. (49) with
the gauge transformation described in Eq. (53). Expanding to linear order, we find the
following transformation:

δϕ 7→ δϕ− ϕ̄′T. (55)

There are two different approaches to solve the gauge problem: we can either find
the evolution of the gauge-invariant variables by rewriting the Einstein equation in terms
of these gauge-invariant quantities, or we can choose a specific gauge and perform the
computation in the gauge chosen. In this thesis, we will fix the gauge using C = E = 0.
Using this condition, we see that the scalar part of the perturbed metric, in Eq. (52), has
no spatial perturbations, or equivalently δgij = 0. This gauge is called the spatially flat
gauge (SF).

As an example of gauge-invariant quantities, we can report the following Bardeen
variables as follows:

Ψ ≡ A+H (B − E ′) + (B − E ′)
′
,

Φ ≡ −C +
1

3
∇2E −H (B − E ′) .

23



In addition, we introduce the comoving curvature perturbation, being a gauge-invariant
quantity composed of the gravitational potential and the inflaton perturbation:

R = −C +
1

3
∇2E +H

δϕ
˙̄ϕ

SF
= H

δϕ
˙̄ϕ
, (56)

where in the last equality, we used the spatially flat gauge C = E = 0. The gauge
invariance of all these quantities can be verified using the transformations in Eqs. (55)
and (54). Note that in the following, we will remove the bar notation for the background
quantities.

Figure 5: Gauge problem arising from the relativistic description of the universe. The
quantity ϵ ≡ ρ is the energy density. Pict. taken from [18].

2.2.2 Perturbed Einstein equations

In the SF gauge, the perturbed metric in Eq. (52) takes the following form:

gµν
SF
= a2

(
−(1 + 2A) ∂iB

∂iB δij

)
⇒ gµν

SF
=

1

a2

(
−(1− 2A) ∂iB

∂iB δij

)
,

where in the last equality, we wrote the inverse of this metric expressed at linear order.

This metric leads to the perturbed Einstein equations:

δGµν = δRµν −
1

2
δgµνR− 1

2
gµνδR = δTµν

It turns out that it is easier to work with higher and lower indices mixed together:

δGµ
ν = δ (gµαGαν) = δgµαGαν + gµαδGαν = δT µ

ν
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It can be shown, see [27], that the perturbed Einstein tensor in the SF gauge is given by:

δG0
0

SF
=

1

a2
(
6H2A+ 2H∇2B

)
, (57)

δG0
i

SF
=

1

a2
(−2H∂iΦ) , (58)

δGi
j

SF
=

1

a2

[(
2HA′ + 4

a′′

a
A− 2H2A+ ∂i∂

iA+ 2H∂i∂
iB + ∂i∂

iB′
)
δij

−∂i∂jA− 2H∂i∂jB − ∂i∂jB
′] .

where the prime denotes the derivative w.r.t. conformal time (see the definition in Eq.
(14)).

In the case of inflation, the energy content of the universe is dominated by the inflaton
field. Using the energy-momentum tensor in Eq. (25), we can now write its perturbed
version in the following way:

δT µ
ν =∂µδϕ∂νϕ+ ∂µϕ∂νδϕ− δgµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
− gµν

(
1

2
δgαβ∂αϕ∂βϕ+ gαβ∂αδϕ∂βϕ+

∂V

∂ϕ
δϕ+

∂V

∂ϕ
δϕ

)
.

Using the conformal time for the background quantities, in Eqs. (27) and (26):

T 0
0 =

1

2
ϕ′2 + V (ϕ)a2, T 0

i = 0, T i
j =

(
1

2
ϕ′2 − V (ϕ)a2

)
δij,

one can show that the energy-momentum tensor perturbations are given by [27]:

δT 0
0

SF
= Aϕ′2 − δϕ′ϕ′ − δϕ

∂V

∂ϕ
a2,

δT 0
i

SF
= −∂iδϕϕ′,

δT i
j

SF
=

(
−Aϕ′2 + δϕ′ϕ′ − δϕ

∂V

∂ϕ
a2
)
δij.

To conclude, perturbations of the metric generalise the Einstein equations into perturbed
Einstein equations. The field perturbation describes perturbations in the energy content
of the universe. We obtain a set of equations coupling the scalar field and the metric
perturbations.

2.3 Evolution of scalar perturbations

To study the evolution of the scalar perturbations at linear order, we need to write the
perturbed Klein-Gordon equation. It describes the equation of motion of the perturbation
δϕ. The Klein-Gordon equation is given by:

1√
−g

∂ν
(√

−ggµν∂νϕ
)
=

∂V

∂ϕ
.
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To leading order, it gives the usual homogeneous Klein-Gordon equation (24). Using
the perturbed metric in (52) and the perturbed field in Eq. (49), it gives the perturbed
Klein-Gordon equation [27]:

δϕ′′ + 2Hδϕ′ −∇2δϕ− A′ϕ′ −∇2Bϕ′ SF
= −δϕ

∂2V

∂ϕ2
a2 − 2A

∂V

∂ϕ
.

We can suppress the perturbed quantities A and ∇2B using the perturbed Einstein equa-
tions (57) and (58). Performing the change of variable v = aδϕ, one can finally show that
the perturbed Klein-Gordon equation reduces to:

v′′k +

(
k2 − z′′

z

)
vk = 0, (59)

where vk is the Fourier transform of v(η,x). We have defined the variable z in conformal
time as:

z ≡ aϕ′

H
. (60)

The Hubble parameter in conformal time H is defined in Eq. (22). Eq. (59) is called
the Mukhanov-Sasaki equation. It describes the way in which metric and matter fluc-
tuations influence each other: the evolution of density fluctuations is influenced by the
kinetic energy k2 and the dynamics of the inflationary model z. It connects the behaviour
of the scalar field perturbation to the expansion of the universe, providing the temporal
evolution of the perturbations.

The function z is a time-dependent function and depends on the inflationary model
considered. Eq. (60) is valid for general relativity. In this work, we are also interested in
modified theories of gravity. The generalisation of the derivation of the Mukhanov-Sasaki
equation in these frameworks can be found in [30]–[32]. The variable z of Eq. (60) then
takes the following form:

z ≡ aϕ′

H
√
Z =

aϕ̇

H

√
Z. (61)

The change of variable suppressing the friction term proportional to δϕ′, is generalised to:
v = a

√
Zδϕ. We will define the function Z later when studying the particular cases indi-

vidually. With this specific definition of z, we can write the third term of the Mukhanov-
Sasaki equation in the general form:

z′′

z
≡ a2H2fMS. (62)

The function fMS can be expressed through the SR parameters. In the case of general
relativity, the function z given by Eq. (60) can be expressed as follows:

ϵ1 = − Ḣ

H2
=

1

2M2
P

(ϕ′)2

H2
⇒ z =

√
2MPa

√
ϵ1. (63)

where we used the definition of the first SR parameter with Eq. (30) expressed in confor-
mal time. The corresponding function fMS is expressed in Eq. (264), see annex A.1 for
the derivation.
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We are interested in studying the consequences of the scalar perturbation on the
evolution of the universe. To do so, we need to calculate the evolution of the comoving
curvature perturbation, defined in Eq. (56). We can express it in terms of the variable v
and the function z:

R SF
= Hδϕ

ϕ′ =
v

z
. (64)

The resolution of the Mukhanov equation therefore gives the evolution of the comoving
curvature perturbation. Before proceeding in this direction, we need to quantise the
inflaton field perturbations, which are a quantum field.

2.3.1 Quantising inflationary perturbations

To describe the quantum fluctuation of the scalar field, we need to use quantum field
theory on curved spacetime. In this Section, we review the main steps and refer to the
reference [17] for complete details. To perform this description, we follow the canonical
quantisation procedure. First, we promote the field v(η,x) and its conjugate momentum
π(η,x) into quantum operators v̂(η,x) and π̂(η,x) = dv(η,x)/dη. Then, we impose the
equal-time commutation relation:

[v̂(η,x), π̂ (η,x′)] = iδ(3) (x− x′) , (65)

where δ(3) is the 3-dimensional Dirac delta function. This essentially means that modes
at different spatial coordinates are independent and commute. This is the definition of
locality, see [33]. The field v̂ and its conjugate momentum can then be expanded in
Fourier modes:

v̂(η,x) =

∫
d3k

(2π)3
v̂k(η)e

ik ·x,

π̂(η,x) =

∫
d3k

(2π)3
π̂k(η)e

ik ·x. (66)

The commutation relation (65) becomes:

[v̂k(η), π̂k′(η)] =

∫
d3x

∫
d3x′ [v̂(η,x), π̂ (η,x′)] e−ik ·xe−ik′ ·x′

= i(2π)3δ(3) (k+ k′) , (67)

The operators v̂k(η) satisfy the Mukhanov-Sasaki equation. The general solution of
such an equation can be expressed through a linear combination of the complex mode
functions vk and their complex conjugates as [17]:

v̂k(η) = vk(η)âk + v∗k(η)â
†
−k,

where â−k and â†−k are time-independent creation-annihilation operators and v̂−k = v̂†k.
Inserting this expression in the Fourier expansion (66), we find the following mode expan-
sion of the field operator v̂:

v̂(η,x) =

∫
d3k

(2π)3

[
âkvk(η)e

ik ·x + â†kv
∗
k(η)e

−ik ·x
]
. (68)
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Using the mode expansion of the fields (68) and Eq. (67), the commutation relation
(65) becomes the usual commutation relation for creation and annihilation operators:

[âk, â
†
k′ ] = (2π)3δ(3) (k+ k′) , (69)

provided that the mode functions vk and vk∗ are properly normalised, i.e. the Wronksian
W [vk, v

∗
k] is given by:

W [vk, v
∗
k] ≡ vkv

′∗
k − v′kv

∗
k = i. (70)

Let us note that the mode function vk defining the mode expansion is not unique.
One can indeed use a Bogoliubov transformation and define new mode functions (using
linear combinations of the mode functions and their complex conjugates). Different mode
functions give a different particle interpretation. Therefore, we are left with an ambiguity
to define the physical vacuum state:

âk (ηi) |0⟩ = 0.

The vacuum state can be defined as the ground state of the Hamiltonian, which is time-
dependent. A way to solve the ambiguity is thus to choose a particular moment in time
and find the corresponding lowest energy eigenstate of the Hamiltonian. In the context of
quantum fields in de Sitter spacetime, the Bunch-Davies vacuum state is a natural choice.
It is defined as the minimum energy eigenstate in the early universe, at η → −∞. As we
will see in the next Section, the Mukhanov-Sasaki equation then reduces to the equation
of a harmonic oscillator with a fixed frequency ω2

k = k2. Therefore for each Fourier mode,
we take the vacuum state of the harmonic oscillator at η → −∞. The corresponding
mode function for this vacuum is of the form, see [11]:

lim
kη→−∞

vk(η) =
1√
2k

e−ikη, (71)

This condition defines the Bunch-Davies initial condition. The mode function vk(η) sat-
isfying the limit (71) as initial condition is called the Bunch-Davies mode function.

2.3.2 Sub-Hubble and super-Hubble regimes

To have a first idea of the evolution of vk, we will split the evolution into sub-Hubble
and super-Hubble regimes [20], defined in Section 2.1. Let us consider the formation of
quantum field perturbations at early times, during inflation. At this time, we have a
quasi-constant expansion with a slow-varying scalar field: ϕ′/H ∼ cst. . Then, using Eq.
(63), we find: z′′

z
≈ a′′

a
= (a2H)′

a
≈ 2R−2

H . As mentioned earlier, the Hubble radius during
inflation is large. All the perturbations we observe today in the CMB and the LSS are in
the sub-Hubble regime and we have k2 ≫ z′′/z. The Mukhanov-Sasaki equation becomes
the equation of a harmonic oscillator of fixed frequency ω2

k = k2:

v′′k + k2vk = 0.

The general solution of this differential equation is a superposition of a progressive and
regressive plane waves: vk = C+e

−ikη + C−e
ikη. The integration constants are fixed by

imposing as initial condition, the Bunch-Davies condition (71):

lim
kη→−∞

C+e
−ikη + C−e

ikη =
1√
2k

e−ikη ⇒ C+ =
1√
2k

and C− = 0. (72)
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Thus, the perturbations have an oscillatory behaviour when they are still inside the Hub-
ble radius. The comoving curvature perturbation Rk, defined in Eq. (64), is therefore
also oscillating.

As the expansion evolves, the Hubble radius decreases. At some point, the mode can
eventually enter the super-Hubble regime in which we have k2 ≪ z′′/z:

v′′k −
z′′

z
vk = 0.

By multiplying by z and adding the null term zv′k − z′vk, we can write this equation
as d

dη
(zv′k − z′vk) = 0. After integration and division by z2, we can again make appear

a conformal time derivative: d
dη

vk
z

= Bk

z2
, and finally obtain the general super-Hubble

solution:
Rk =

vk
z

= Ak +Bk

∫
dη

z2
= Ak + Ck

∫
dt

a3ϵ1
, (73)

where Ak, Bk, and Ck are integration constants, and we used Eq. (63) in the last equality.
Consequently, the curvature perturbation is a linear combination of two solutions: a
constant solution given by Ak and a growing or decreasing solution depending on the
form of z. In the standard SR inflation, ϵ1 is approximately constant. Therefore, the
function which multiplies Ck is decreasing as a−3 → 0. In this case, the constant solution
is going to dominate for a large. We say that the comoving curvature perturbation on
large scales is frozen. It will remain frozen until horizon re-entry. In Section 3.3, we are
going to see that PBHs can be produced if a growing solution is instead present.

2.3.3 Power spectrum

In the early universe, the sub-horizon perturbations oscillate. Since the inflaton is a
quantum field, the amplitude of these oscillations has a quantum mechanical behaviour.
By definition, the mean value of the density perturbations vanishes for the vacuum,
⟨v̂(η,x)⟩ ≡ ⟨0|v̂|0⟩ = 0. To describe statistically the fluctuations, one must calculate
the vacuum expectation value of the square of v̂(η, x). It has non-zero quantum fluctua-
tions:

⟨v̂2(η, x)⟩ =
∫

d3k

(2π)3

∫
d3k′

(2π)3
vk(η)v

∗
k′(η)⟨0|[â+k, â

†
−k′ ]|0⟩

=

∫
d3k

(2π)3
|vk(η)|2 =

∫
d ln k

k3

2π2
|vk(η)|2 . (74)

where |0⟩ is the Bunch-Davies vacuum state and we used Eq. (69) in the second equality.
This relation expresses the vacuum fluctuations of the Mukhanov-Sasaki field. We can
now define the dimensionless power spectrum of the scalar perturbation as the statistical
distribution of these fluctuations, using Eq. (64) into (74):

PR(k, η) ≡
k3

2π2
|Rk(η)|2 =

k3

2π2

|vk(η)|2

z2(η)
. (75)

In order to compare the theoretical predictions of a model of inflation with observation,
one needs to compute the power spectrum and compare it with the observed one (which
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can be inferred by CMB anisotropies). It describes how the amplitude of the perturba-
tions varies as a function of the scale k−1.

The spectral index is often introduced to describe the slope of the power spectrum:

ns − 1 =
d lnPR(k, η)

d ln k
(76)

The spectral index is said to be red-tilted when ns − 1 < 0. It means that for decreasing
wavelengths or increasing wavenumbers k, the power spectrum decreases. In contrast,
the power spectrum is blue-tilted when ns − 1 > 0. In such cases, the power spectrum
increases for increasing wavenumbers k. When the spectral index is null, the spectrum is
flat or "scale-invariant". This means that the amplitude of the power spectrum is inde-
pendent of k. Flatness is a consequence of a constant Hubble parameter H. A red-tilted
spectrum, in contrast, usually indicates a slowly decreasing H(t).

Let us now calculate explicitly the primordial power spectrum generated by a SR
inflationary phase [11], [34], [35]. To do so, the Mukhanov-Sasaki equation (59) needs to
be solved for the mode functions vk. In GR, the function z is defined in Eq. (63). In
Annex A.1, the first and second derivatives have been calculated:

z′

z
= H

[
1 +

1

2
ϵ2

]
, (77)

z′′

z
≈ H2

[
2− ϵ1 +

3

2
ϵ2

]
. (78)

The first expression is exact, while the second is approximated to first order in the SR
parameters. We now want to express the conformal Hubble parameter H, defined in Eq.
(22), in the same approximate SR expansion.

Let us first calculate the expression of the conformal time, defined in Eq. (14), in
terms of the SR parameters:

η =

∫
dt

a
=

∫
da

a2H
= − 1

aH
+

∫
1

a

dH−1

da
da = − 1

aH
+

∫
ϵ1

a2H
da,

= − 1

aH
− ϵ1

aH
+

∫
1

a

d (ϵ1H
−1)

da
da = − 1

aH
− ϵ1

aH
+

∫
ϵ1ϵ2
a2H

− ϵ21
a2H

da, (79)

where we have integrated by parts twice using da = aHdt and used the relations:

1

a

dH−1

da
= − 1

aH2

dH

da
=

ϵ1
a2H

,

1

a

d (ϵ1H
−1)

da
=

1

aH

dϵ1
da

+
ϵ1
a

dH−1

da
=

ϵ1ϵ2
a2H

− ϵ21
a2H

.

From Eq. (79), we can express the conformal Hubble parameter up to linear order as:

H = aH ≈ −1

η
(1 + ϵ1). (80)

By inserting Eq. (80) into Eq. (78), we find to linear order:

z′′

z
=

1

η2

[
2 + 3

(
ϵ1 +

1

2
ϵ2

)]
.
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Therefore, we can write the Mukhanov-Sasaki equation (59) as follows:

v′′k +

(
k2 − ν2 − 1/4

η2

)
vk = 0, where ν ≡ 3

2
+ ϵ1 +

1

2
ϵ2, (81)

and ν can be considered constant to such an approximation order. Defining the changes
of variables vk → η1/2ṽk and kη → s, Eq. (81) can be recast in the form of a Bessel
equation:

s2
d2ṽk
ds2

+ s
dṽk
ds

+
(
s2 − ν2

)
ṽk = 0.

This equation has its general solution expressed through the Bessel functions Jν(s) and
Yν(s):

ṽk(s) = AJν(s) +BYν(s).

Imposing the Wronskian condition (70) together with the Bunch-Davies initial condition
(71), it is possible to find the expression of A and B [17] and write the Bunch-Davies
vacuum mode function as:

ṽk(η) =

√
π

2

√
−ηH(1)

ν (−kη) (82)

where H
(1)
ν (−kη) = Jν(kη)− iYν(kη) is the Hankel function of the first kind.

To compute the power spectrum of R = v/z, we need the expression of z(η). Using
Eq. (80) in Eq. (77), and integrating over η, we get:

z(η) = z∗ (η/η∗)
1
2
−ν , (83)

where η∗ is a reference time, coming from the integration. A convenient choice for η∗ will
be η∗ = −k−1

∗ , which is the time of horizon crossing of the mode with wavenumber k∗.
Indeed, we saw that after horizon exit, the modes are frozen. It is therefore not necessary
to follow the evolution of the mode after horizon exit. Inserting Eqs. (82) and (83) into
the definition of the power spectrum of the scalar perturbation (75), we find:

PR(k) =
k3

2π2

1

2ϵ∗1M
2
Pla

2
∗
(−k∗η)

2ν−1 π

4
(−η)

∣∣H(1)
ν (−kη)

∣∣2 . (84)

The Hankel function can be approximated using the late-time limit kη → 0− as follows:

lim
kη→0−

∣∣H(1)
ν (−kη)

∣∣2 = 22νΓ(ν)2

π2
(−kη)−2ν ≈ 2

π
(−kη)−2ν ,

Using this limit and a∗ = k∗/H∗ in Eq. (84), we finally obtain:

PR(k) =
1

8π2ϵ∗1

H2
∗

M2
Pl

(
k

k∗

)3−2ν

, (85)

where all the quantities with a star ∗ are evaluated at the time of horizon exit t∗ of the
mode with wavenumber k∗. We see that the whole dynamics of inflation is contained into
ϵ1 and ν. Extracting the scale dependence of the power spectrum, see Eq. (76), we get
the spectral index:

ns − 1 ≡ 3− 2ν = −2ϵ1 − ϵ2. (86)
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The current constraints on the spectral index are set by CMB measurements of the
PLANCK mission to ns = 0.965 ± 0.004 [36]. Thus, the latest measurement of the
power spectrum indicates a time-dependent inflationary phase. This is in agreement with
SR inflation, in which the power spectrum turns out to be slightly red-tilted due to the
smallness of the SR parameters, see Eq. (86). As a result, SR inflation predicts the correct
nearly flat power spectrum due to the approximate time translation invariant dynamics
(ϵi small). The time-dependence allows inflation to end, leaving the universe with density
fluctuations, responsible for the formation of the CMB anisotropies and the LSS [37]. In
the next Section, we will see how they can also be responsible for the generation of the
PBHs.

Figure 6: Reconstruction of the primordial power spectrum from the PLANCK data anal-
ysis 2015. The left and right parts are not well constrained due to the lack of resolution.
Pict. taken from [36].
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3 Primordial Black Holes
A black hole (BH) is defined as a stellar object characterised by a huge gravitational
field. Mathematically, general relativity predicts that a black hole forms when its mass
M collapses into the corresponding Schwarzschild radius:

RS =
2GMBH

c2
, (87)

where G is the gravitational constant, M is the mass of the black hole, and c is the speed
of light. So it relates the mass of a black hole to the size of its event horizon15. We can
then classify them according to their radius [6]. Stellar-mass BHs are produced by the
astrophysical evolution of stellar objects. Their mass is typically several times the solar
mass (M⊙). Higher in the mass range, intermediate-mass BHs are thought to form from
the gravitational collapse of the first primordial stars, with masses greater than 100M⊙.
Finally, supermassive BHs are found at the centres of galaxies with masses between 106

and 1010M⊙.

BHs formed by stellar evolution come from stellar objects with mass greater than the
Chandrasekhar mass, 1.4M⊙. However, density perturbations in the early universe can
also form BHs [38]. These black holes are called Primordial Black Holes, in the sense that
they originate from the density fluctuations of the early universe and not from the con-
ventional collapse of massive stars [39]. PBHs can have a wide range of possible masses.
As a result, they are interesting for several explanations of open cosmological questions.
They may, for instance, be the seeds for the formation of supermassive BHs. Much lower
in mass, there is a small mass window allowing PBHs to explain the whole DM content.
The mass of a BH is expressed by its Schwarzschild radius in Eq. (87). PBHs, covering
the entire DM content, have a tiny size between 0.1 and 1 angstrom [39], i.e. the size of
the smallest atoms.

In Section 3.1, we are going to review the physics behind the formation of PBHs. In
Section 3.2, we will see the different constraints on the mass window allowed for PBHs. In
contrast to other dark matter candidates, PBHs do not require new physics or new par-
ticles, but a particular inflationary phase must be introduced. In the context of inflation,
the usual SR condition needs to be modified. Studying the formation of PBHs therefore
means studying the inflation dynamics. In Section 3.3, we will review the various possi-
bilities of achieving this. This Chapter is based on [3], [28], [40] as main references.

3.1 Formation mechanism

Inflation provides a natural mechanism for the production of PBHs. To understand the
formation of PBHs from an initial overdensity, it is essential to remember that gravita-
tional information travels at the speed of light. Therefore, an initial density perturbation
of scale k−1 can start to collapse provided that its content is in causal contact. It means
that the matter content within a given perturbation will feel the whole gravitational

15The event horizon is defined as the maximal distance at which events can still be influenced. Note
the difference with the particle horizon, which is defined as the maximal distance past events could affect
us.
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attraction once the light signal has travelled a distance comparable to k−1. Just after in-
flation, we enter RD in which the scale factor evolves as a ∝ t1/2, see Table 1. Therefore,
since H = ȧ

a
= 1

2t
∼ t−1, the Hubble time H−1 is a good estimator for the age of the uni-

verse just after inflation. As we saw before, the comoving distance that a light signal can
travel in one Hubble time is the Hubble radius RH = (aH)−1. Therefore, in one Hubble
time after inflation, a given perturbation will be in causal contact if k−1 ∼ (aH)−1. It is
the definition of horizon re-entry introduced previously in Section 2.1. In other words, in
the sub-Hubble regime, comoving curvature perturbations may collapse and can poten-
tially form PBHs.

Following this picture, we conclude that PBHs are formed with a mass similar to the
horizon mass MH , which is the mass enclosed within the Hubble horizon [41]:

MPBH ∼ MH , (88)

In this work, we shall consider perturbations re-entering the Hubble horizon during the
RD universe. During MD, the horizon mass would be huge: the horizon mass at matter-
radiation equality is already of the order M

(eq)
H ∼ 1017M⊙ [42]. However, during RD,

radiation pressure is extremely large, see Eq. (9): p = 1
3
ρ. The condition for accretion

is determined by the competition between the curvature perturbation collapsing due to
gravity and the radiation pressure, see Figure 7. Therefore, in addition to horizon re-entry,

Figure 7: Gravitational collapse against radiation dilution of a perturbation on a FLRW
background. Pict. taken from [43].

perturbations also need a large amplitude to undergo sufficient gravitational collapse and
form PBHs. More precisely, the density perturbations need to be amplified w.r.t the ones
responsible for the generation of the anisotropies in the CMB. These last ones have an
amplitude constrained by the CMB observations [36]:

δ =
δρ

ρ
∼ PR (kCMB)

1/2 ∼ δT

T0

∼ 5× 10−5.

where we used the relation (13). The quantity δ is called the density contrast. We
saw earlier that the power spectrum is slightly red-tilted at CMB scales. However, at
smaller scales, the power spectrum is not well constrained and it is therefore possible for
the perturbations to be larger, see Figure 6. Thus, we are interested in a mechanism
producing amplified perturbations at small scales: k−1

PBH ≪ k−1
CMB. This corresponds to

requiring an amplified power spectrum: PR(kPBH) ≫ PR(kCMB) ∼ 10−9 [36]. If the
overdensities exceed in some region a certain threshold δc at re-entry:

δ ≡ δρ

ρ

∣∣∣∣
k=aH

∼ PR (kPBH)
1/2 > δc, (89)
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these regions begin to collapse, eventually forming PBHs. In [44], Carr estimated the
threshold using Newtonian gravity and introducing the sound speed of the density per-
turbations cs:

δ > δc ≃ c2s,

The sound speed gives the speed of propagation of the pressure wave generated by the
over-density. A smaller sound speed corresponds to a lower pressure and a faster collapse.
The sound speed is related to the equation of state (9): p = wρ = c2sρ. During RD, this
estimation gives δc ≃ c2s = 1/316. More recently, refined estimates have given δc = 0.45
[43].

The amount of PBHs formed in the early universe can be related to the amplitude
PR (kPBH), see Eq. (89). Let us introduce the fraction of DM consisting in PBHs today:

fPBH ≡ ρPBH

ρDM

∣∣∣∣
t0

,

The case fPBH = 1 corresponds to the situation where PBHs constitute the whole dark
matter content. It might be possible as well that PBHs do not constitute the whole dark
matter content: 0 < fPBH < 1. We can also introduce the PBHs collapse fraction defined
at the time of formation:

β =
ρPBH

ρtot

∣∣∣∣
form

During the RDU, when PBHs are assumed to be formed, the total energy density evolves
as: ρtot = ρr ∝ a−4. On the other hand, once PBHs are formed, their density is that
of pressureless matter (dust): ρPBH = ρm ∝ a−3. Therefore, during RDU and until
matter-radiation equality, the collapse fraction evolves as the scale factor ρPBH/ρtot ∝ a:

β ∼ aform
aeq

ρPBH

ρtot

∣∣∣∣
eq

.

Since ρPBH/ρtot does not change a lot between matter-equality and today, we can approx-
imately relate the two PBH fractions at the time of formation and today as follows17:

fPBH ≃ aeq
aform

β. (90)

Since aform ≪ aeq, a significant fraction of the DM component in the form of PBHs today
only requires a really small fraction of the total energy component in the form of PBHs at
the time of formation. Note that this conclusion is general for all dark matter candidates.

Finally, let us remember that small-scale perturbations re-entered the horizon earlier
than larger scales, see Figure 4. The horizon re-entry of the amplified perturbations at
very small scales (k−1

PBH) occurred during the RD universe. This is well consistent with
the previous consideration on the horizon mass.

16Note that one could deduce that everything collapses when cs → 0, in MDU. However, this relation
is only valid when the initial overdensity can be assumed spherically symmetric. The lack of pressure
and the longer collapse time for smaller perturbations δ induce non-sphericity effects.

17Note that this description is only an approximation. We refer to [28] for the complete details.
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3.1.1 PBH masses

Let us now estimate the PBH masses, in Eq. (88). The initial overdensities at the origin
of galaxy formation are of the order δ ∼ 10−4, and it took billions of years to form them
[45]. In contrast, the initial overdensities must be extremely large for PBH formation,
see Eq. (89). Once the horizon scale has been reached, it required only 10 Hubble times
1/Hk=aH to form the corresponding PBH [40]. In a RDU, the scale factor evolves as
a ∝ t1/2. The time of formation expressed in number of e-folds is then given by:

∆Nform = ln

(
10

Hk=aH

)1/2

− ln

(
10

Hk=aH

)
≈ 1.

Therefore, the collapse of an initial overdensity into a PBH just after horizon re-entry is
extremely fast, approximately one e-fold. The time of PBH formation can be approxi-
mated as the time of the horizon re-entry of the corresponding mode, i.e., we assume an
immediate formation when k = aH.

This approximation enforces the first intuition about the PBH masses in Eq. (88),
and the radius of the horizon mass is exactly defined by the Hubble distance:

MPBH ∼ MH(k) = ρV |k=aH =
4π

3
ρ

(
1

H

)3

,

where ρ is the energy density. Note that as the mass is a physical quantity, we have
considered the physical length, instead of the comoving one. The physical quantity cor-
responding to the Hubble radius RH = 1/(aH) is the Hubble distance DH = 1/H, see
Section 2.1. The first Friedmann equation in RDU gives H2 ∝ ρ ∝ a−4 ∝ t−2. Using these
last results, we can express the PBH mass as a function of the time of horizon re-entry
i.e. MPBH ∝ ρ−1/2 ∝ a2 ∝ t, which is often written in the form:

MPBH(a) =

(
aform
aeq

)2

M
(eq)
H ≃

(
aform
aeq

)2

1017M⊙, (91)

MPBH(t) ∼ 1015
t

10−23 s
g. (92)

Due to Hawking radiation, PBHs of mass 1015 g would be completely evaporated today.
It is for this reason that the PBH mass is often expressed with this mass reference in the
last expression. Depending on the time of mode re-entry, a very wide range of masses can
be produced, and PBHs represent the only black holes potentially smaller than one solar
mass. If PBHs are formed during the Planck time (10−43 s), they would have a Planck
mass, MP ∼ 10−5 g, and 105M⊙ if they formed around t ∼ 1 s. Let us now consider the
PBH mass corresponding to one solar mass. In this case, the PBHs formed during the
QCD epoch t ∼ 10−6 s, using Eq. (92). This phase began when quarks were no longer
asymptotically free and bound into hadrons, when the energy dropped below 200 MeV
[46]. Using Eq. (91), it corresponds to aform ∼ 10−9aeq. Assuming that the whole DM
content is in the form of PBHs, fPBH = 1, one finds β ∼ 10−8 using Eq. (90). In other
words, solar-mass PBHs at the time of formation represent only 10 parts per billion of
the whole universe.
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3.1.2 Collapse fraction

As we saw earlier, overdensities exceeding the collapse threshold δc can form PBHs. There-
fore, the PBH abundance at the time of formation β is directly related to such overden-
sities at horizon re-entry. To estimate the collapse fraction β, it is possible to use the
Press-Schechter model of gravitational collapse [47]. This method is used in the context
of large-scale structure formation. Since we are identically dealing with perturbations at
different length scales, one can apply it for PBH formations. Let us introduce the proba-
bility density function (PDF) of initial overdensities P (δ). It describes the likelihood to
find an overdensity δ and it can be used to find the collapse fraction:

β ≡ ρPBH

ρ

∣∣∣∣
form

=

∫ ∞

δc

P (δ)dδ, (93)

In the following, we assume a Gaussian distribution for the perturbations δ:

PG(δ) =
1√
2πσ

e−(δ−µ)2/2σ2

, (94)

where µ is the mean and σ2 is the variance of the distribution. The variance is an
important quantity, as the larger it is, the more the probability density will spread around
the mean. Consequently, more overdensities will exceed the threshold δc and lead to a
larger β. By choosing a zero mean µ = 0 for the overdensity distribution, we can integrate
Eq. (93):

β =

∫ ∞

δc

dδ√
2πσ

exp

(
− δ2

2σ2

)
=

1

2
Erfc

(
δc√
2σ

)
≃ σ√

2πδc
exp

(
− δ2c
2σ2

)
, (95)

where the function Erfc = 1 − Erf is the complementary error function. Using the limit
δc/σ ≪ 1, an asymptotic expansion has been performed in the last equality, Erfc(x) ∼
1− 2√

π
x.

3.1.3 Primordial scalar fluctuation

We now want to relate this result to the amplitude of the scalar perturbation generated
during inflation. To do so, the density contrast δ can be Taylor expanded at linear order
in the curvature perturbation R as follows [48]:

δ(x⃗, t) ≃ 2(1 + w)

(5 + 3w)

∇2R(x⃗)

(aH)2
+O(R2) ⇒ δk ≃ −4

9

(
k

aH

)2

Rk,

where the second equality is written in Fourier space, in the RDU with w = 1/3. There-
fore, using the definition of the power spectrum in Eq. (75), we can finally write:

Pδ(k) ≃
16

81

(
k

aH

)4

PR(k). (96)

Since we chose a Gaussian distribution for δ, see Eq. (94), the variance can be related
to the primordial power spectrum Pδ. The density contrast δ represents the fluctuation in
density w.r.t. to the average density of the universe. Since PBH formation is sensitive to
specific scales where the density exceeds the critical threshold δc, it is necessary to smooth
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the density contrast. This is done by using a window function W on a scale relevant to
PBH formation, i.e. the scale corresponding to the horizon re-entry B ∼ k−1 = (aH)−1.
This eliminates fluctuations on small scales while highlighting larger scales. In other
words, it makes it easier to identify regions where the density is sufficiently high for
the formation of PBHs. Doing so, it can be shown that the variance of the Gaussian
distribution can be expressed as [49]:

σ2(B) ≡
〈
δ2
〉
=

∫ ∞

0

d ln k W2(k,B)Pδ(k),

Common choices for the window function are the volume-normalised Gaussian or top hat
functions, which have their Fourier transform respectively given by:

W(k,B) = exp

(
−k2B2

2

)
, W(k,B) =

3 sin(kB)− 3kB cos(kB)

(kB)3
.

These window functions suppress high-frequency modes in Fourier space. In the case
where the curvature power spectrum Pδ is characterised by a narrow peak around the
wave-number kPBH, the integral over Fourier modes can be approximated by evaluating
the power spectrum at horizon re-entry:

σ2 ∼ Pδ (kpbh) ⇒ PR (kpbh) ∼
81

16
Pδ (kpbh) ∼ 5σ2, (97)

where in the second part, we used Eq. (96) evaluated at horizon re-entry k = aH. Using
Eq. (95), one can do a rough estimate for the initial scalar perturbation required for the
formation of PBH:

PR ∼ 5δ2c
2 ln(1/β)

∼ 0.4

ln(1/β)
.

We conclude that β is exponentially sensitive to δc or PR, while PR is logarithmically
sensitive to β or sensitive to the square of δc.

If we take the particular case of PBHs of one solar mass, with fPBH = 1 and β = 10−8,
we find PR ∼ 0.4

ln 108
∼ 10−2. On the other hand, the lowest possible PBH mass MPBH ∼

1015 g, which would evaporate at present due to intense Hawking radiation, has been
constrained with β < 10−28 [50]. In this case, we find the lower value: PR ∼ 8 × 10−3.
The amplitude of the power spectrum is then limited to:

PR ≳ 10−2. (98)

This range is valid for all possible fractions fPBH. If one can somehow measure the value
of fPBH, and hence deduce β, the amplitude of the power spectrum can be adjusted with
some freedom. On the other hand, if one measures the amplitude of the power spectrum,
this will impose a very fine-tuned constraint on β despite its exponential sensitivity to
PR. Similarly, β is exponentially sensitive to δc as can be seen from Eq. (95). Taking the
case of PBH decaying today, with 5σ2 ∼ 10−2 using Eq. (97), we get:

β (δc = 0.4)

β (δc = 1/3)
≃ 10−5. (99)

Note that during the QCD transition phase, relevant for the formation of solar mass
PBHs, the radiation pressure decreased significantly: w = 1/3 → 0.25. Therefore, PBH
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formation was easier and we obtain a collapse fraction amplified by several orders of mag-
nitude [46].

We conclude that the production of PBHs in the early universe requires very fine-tuned
conditions. In particular, comparing the result (98) to the CMB scales, we find:

∆PR ≡ PR (kPBH)

PR (kCMB)
∼ 107. (100)

This implies that the primordial power spectrum needs to be amplified by several orders of
magnitude. In Section 3.3, we will see how it is possible to produce such an amplification
between CMB large scales and small PBH scales. Let us remember that the results
found above are only valid for PBHs formed during the RDU and assuming Gaussian
perturbations. Non-Gaussianity effects would have drastic implications on the outcome.
This is related to the exponential sensitivity on δc, see Eq. (99). We refer to [49] for a
discussion on the topic.

3.2 Observational constraints

Up to now, there is no confirmed direct evidence of the existence of PBHs. However,
current observations have set limits on the allowed mass range of PBHs [50], [51]. The
main constraints are shown in Figure 8. Gravitational constraints are usually expressed
in terms of the DM fraction fPBH. In the case of PBHs currently evaporating, Hawking
radiation constraints appear and they are usually expressed in terms of the collapse frac-
tion β [52]. Let us remember, however, the relation between the two fractions in Eq. (90).
Based on the observational constraints, there is still a mass window where the entire Dark
Matter content may consist in PBHs: fPBH = 1. This range spans from 1017 to 1022 g, or
equivalently from 10−16 to 10−12M⊙. It is often referred to as the "asteroid mass window".

The idea that PBHs could be small led Hawking to make the link between quantum
mechanics and general relativity to study their quantum properties [54]. He found that
BHs radiate thermally in the same way as a black body with a temperature proportional
to the BH’s surface area:

TBH =
ℏc3M2

P

MBHk
∝ 1

MBH

,

Since a black body distribution emits radiation energy as T 4 per unit area, the total
energy radiated by a BH is given by the surface area times T 4. Let us recall that a BH’s
radius is proportional to its mass, see Eq. (87). Therefore, the total energy radiated is
given by:

EBH ∝ 1

M2
BH

⇒ dMBH

dt
∝ 1

M2
BH

,

The corresponding evaporating timescale of PBHs is found by integration and is given by:

τevap ∝ M3
PBH.

As mentioned earlier, PBHs with masses less than MPBH ≲ 10−18M⊙ = 1015 g would have
evaporated at the present time [55]. This kind of PBHs is formed before 10−23 s, see Eq.
(92). Their size is comparable to that of a proton. PBHs decaying at the present time
correspond to masses 10−18M⊙ < MPBH ≲ 10−16M⊙. Such PBHs are drastically con-
strained by observation, see Figure 8. Smaller masses would have completely evaporated
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Figure 8: Direct constraints on the abundance of PBHs as a function of their mass.
Coloured areas are forbidden due to the absence of detection by observational detectors.
On the lower part of the mass spectrum in orange, constraints associated with PBH
evaporation are shown. Microlensing constraints are represented in blue, and gravitational
wave constraints for sub-solar mass PBHs in purple. Finally, constraints derived from
PBH accretion in the CMB are illustrated in red. Pict. taken from [53].

today, while the Hawking radiation is negligible for higher masses.

When a massive object passes between an observer and a distant light source, the
light rays from the background source are bent. This phenomenon is called microlensing.
PBHs should act as lenses and produce specific features in the light-curve of the source.
The intensity of the distortion depends on the mass of the PBH and its distance to the
light source. The Hyper-Suprime Cam on the Subaru telescope has set microlensing con-
straints on PBH masses ranging from 10−12M⊙ ≲ MPBH ≲ 10−6M⊙. It has ruled out
fPBH = 1 with a lower limit fPBH ≲ 10−2 for MPBH ∼ 10−9M⊙ [56]. The higher mass
range 10−6M⊙ ≲ MPBH ≲ 1M⊙ has been constrained with older surveys such as OGLE,
MACHO and EROS [57].

When we consider larger masses, current gravitational wave detectors become sensi-
tive to mergers of binaries [58]. A wide number of merger events have been detected
by LIGO/Virgo since 2015. The possibility that such binaries have a primordial origin
has been raised. The mass range 1M⊙ ≲ MPBH ≲ 102M⊙ is strongly constrained with
fPBH ≲ 10−3. Below in mass, the microlensing constraints are more restrictive. However,
it is important to point out that these gravitational constraints are model-dependent.
They require an estimate of the rate of PBH mergers in the early universe. In those
models, it is assumed that PBH binaries are formed soon after PBH formation with a
significant fraction remaining unchanged until today. Making the distinction between an
astrophysical or cosmological origin of these gravitational wave observations will require
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further advancement in our theoretical understanding of PBHs. However, the detection
of a mass below the Chandrasekhar limit would exclude an astrophysical origin. Note
that solar-mass PBHs can be potentially detected with the current gravitational wave
detectors.

We expect PBHs to accrete gas in the early universe. At some point, radiation pres-
sure exceeds the gravitational attraction, producing intense energetic radiation. Such
radiation has been used, for instance, to make the first picture of the event horizon of a
supermassive BH [59], [60]. In the early universe, this effect would heat and ionise the
intergalactic medium. Depending on the number of PBHs, this would affect the CMB
anisotropies. For masses MPBH ≳ 1M⊙, fPBH = 1 appears to be excluded. The constraint
is lowered to fPBH ≲ 10−4 for MPBH ≳ 102M⊙ [61]. Note that accretion is not relevant for
a smaller range of masses. Let us briefly mention the dynamical constraints, which are
not very precise and are contained in the accretion constraints. For very massive PBHs,
dynamical effects could modify or even suppress some cosmological objects, such as dwarf
galaxies. This provides the constraints on the highest masses of PBHs.

3.3 Amplification of the perturbations

Let us summarise the key points introduced up to now. Inflation produced inflationary
perturbations. Depending on the scale range, these perturbations were the seeds for the
formation of the anisotropies in the CMB, the LSS, and possibly the PBHs. In this sce-
nario, the abundance of PBHs is related to the amplitude of fluctuations in the inflaton
field, see Eq. (93). During the quasi-de Sitter expansion regime of SR inflation, the
SR parameters remain small and approximately constant, resulting in a nearly flat and
scale-invariant spectrum of scalar perturbations, see Eq. (86). The formation of PBHs
requires the amplitude of the field fluctuations to be significantly enhanced by several
orders of magnitude w.r.t. what is typically measured from the CMB, see Eq. (100).
The mechanism of enhancement must increase the amplitude of the shortest wavelength
perturbations while preserving the features of CMB perturbations.

The necessary amplification of the inflationary fluctuations can be achieved through a
phase of USR or CR inflation. In this transient phase, the conditions for slow-roll inflation
are temporarily violated and the inflaton field evolves towards a de Sitter attractor, see
Section 1.3.3. The USR phase can be realised in the presence of an inflection point in the
inflaton potential [39], [62] which decelerates the inflaton field before the end of inflation,
see Figure 9. The amplification can be achieved in two different ways, which we will
investigate in this Section.

3.3.1 Constant SR parameters

The method presented below allows us to verify if conditions for the amplification of the
perturbations are present. Such conditions are investigated by assuming a phase with
nearly constant SR parameters. Let us first briefly explain in which context such an as-
sumption can be made. SR parameters are found to be exactly constant in the de Sitter
inflation and in the power law inflation. In the de Sitter case, H is constant and all the
SR parameters are zero ϵi = 0 for i > 0, see the definitions (33). In power law inflation,
we have a = tcst. and H ∝ t−1, so that ϵ1 is constant and all the other SR parameters are
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Figure 9: Introduction of an inflection point in the inflationary potential for the generation
of PBHs. Pict. taken from [63].

zero. In addition, the SR parameters can be approximated as constant in the SR case, as
the SR parameters are small. We can then use constant SR parameters during slow-roll
provided that we expand the expressions to first order. However, it is still possible to
make such an approximation for more general cases. For example in the case of CR, we
have already mentioned that the asymptotic limits of the SR parameters have zero and
constant values. Therefore, close to the USR attractor, we can also use the same results.

There also exists a wide variety of other transient phases having such behaviour in
the large a limit. This limit can be satisfied during inflation, and correspondingly the
SR parameters tend to zero and constant values for either even or odd indices. Let us
illustrate this point by considering the condition [64]:

ϵi = li + Li(N) with lim
N→∞

Li(N) = 0. (101)

Due to their definition, we can express the SR parameters recursively as follows:

ϵi+1 ≡
dϵi/dN

ϵi

N→∞
=

Li,N(N)

li + Li(N)
.

In the same way, we can express the subsequent SR parameter as:

ϵi+2 ≡
dϵi+1/dN

ϵi+1

N→∞
=

Li,NN(N)

Li,N(N)
+ ϵi+1.

If we suppose Li(N) ∝ e−γN ∼ a−γ, with γ > 0, we find the following limits:

ϵi+1
N→∞
= 0,

ϵi+2
N→∞
= −γ + ϵi+1.

As a result, the overall hierarchy behaviour alternates between constant and zero values:

lim
N→∞

ϵi = li, lim
N→∞

ϵi+1+2n = 0, lim
N→∞

ϵi+2n = −γ. (102)

Let us note that the condition limN→∞ Li,N(N) = 0, in Eq. (101), is a necessary but not
sufficient condition to obtain such limits. One can indeed verify that Li ∝ N−γ gives the
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sequence limN→∞ ϵj = 0 for j > i. Let us mention that due to the recursive definition of
SR parameters, other hierarchies, such as the scalar field flow functions in Eqs. (34), may
have the same behaviour.

The limit in Eq. (102) where the odd parameters are going to zero is the only one
being able to produce an amplification in the presence of a minimally coupled inflaton:

ϵ1 = ϵ2i+1 → 0, ϵ2 = ϵ2i → cst. .

This has been the major conclusion from the article [64] and it can be easily checked
by using the other limit. Therefore, in the present work, we adopt this result and we
explicitly verify the amplification through the condition on the parameters Φ and ns − 1,
which we will define below. Since the de Sitter inflation has all its SR parameters ϵi = 0,
we will need a de Sitter attractor and the evolution toward it for the generation of the
amplification. As we saw in Section 1.3.3, the CR and USR phases have such a de Sitter
attractor.

3.3.2 Amplification from a growing solution

In SR inflation, we have seen that the curvature perturbation on super-Hubble evolution
is given by a constant and a decaying mode, see 2.3.2. It means that on super-Hubble
scales, the constant mode is dominant over the decreasing one. This gives the slightly
red-tilted power spectrum in Figure 6. In USR, the situation can be radically different
[22], [40]. As we saw before in Section 1.3.3, a USR phase has ϵ1 ∝ a−6 = e−6N . Therefore,
taking the first expression of Eq. (73) with this new evolution of ϵ1, we have:

Rk ∝ Ak + Ck

∫
dt

e−3Ht
∝ e3Ht ∝ a3. (103)

In this scenario, when the scalar curvature perturbation exits the horizon, a growing
solution which multiplies Ck is present. If we assume a USR phase for a small number of
e-folds, only a small interval of perturbations are concerned with this growing solution.
As we saw before, the largest scales we observe today exited the horizon much earlier than
smaller scales. The solution Ck decreases much longer than it increases during the USR
phase. Therefore, the growing phase of the solution does not affect large scales, for which
the constant mode Ak remains dominant. During the RDU after inflation, the smallest
scales are re-entering the horizon with an amplified amplitude. Thus we may find the
favourable form of the power spectrum needed to produce PBHs. In Section 1.3.3, we
saw that ϵ2 ≈ −6 during USR. Let us mention that if it takes a different constant value,
ϵ2 = cst., it is still possible to have a growing solution on super-Hubble scales. In such
a case, the first SR parameter is evolving as ϵ1 ∝ aϵ2 . Using Eq. (73), we see that the
scalar perturbation Rk is growing on super-Hubble scales provided that:

ϵ2 < −3. (104)

Let us now introduce a systematic and general way to solve the Mukhanov-Sasaki
equation for the case of constant SR parameters. Doing so, we are going to find the
necessary condition leading to the presence of a growing solution. We follow the procedure
presented in [64]. Using the definition of the curvature perturbation in Eq. (64), we can
rewrite the Mukhanov-Sasaki equation (59) as follows:

R′′
k + 2

z′

z
Rk + k2Rk = 0. (105)
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At this point, it is convenient to introduce the new dimensionless variable ξ = k/(aH).
Using the definition of conformal time, see Eq. (14), it is possible to express the first and
second derivatives w.r.t. conformal time in terms of this new variable:

d

dη
= aH (1− ϵ1) ξ

d

dξ
, (106)

d2

dη2
= a2H2 (1− ϵ1)

2

[
ξ2

d2

dξ2
+

ϵ1ϵ2

(1− ϵ1)
2 ξ

d

dξ

]
, (107)

where we used ϵ′1 = aHϵ1ϵ2, see Eq. (37), to express the second derivative w.r.t. to η.

Performing this change of variable in Eq. (105), we find:

ξ2
d2Rk

dξ2
+

(
ϵ1ϵ2 − 2 (1− ϵ1)

1
H

z′
z

(1− ϵ1)
2

)
ξ
dRk

dξ
+

ξ2

(1− ϵ1)
2Rk = 0 (108)

where we have used the conformal Hubble parameter, see the definition (22). Since
dN = d ln a = aHdη, we can write:

d ln z

dN
=

z′

z

1

H
(109)

Eq. (108) is a homogeneous linear second-order differential equation. Let us now
assume the long wavelength limit ξ → 0, i.e. the super-Hubble regime. The last term of
the differential equation (108) can be set to zero, it gives:

ξ2
d2Rk

dξ2
= −

(
ϵ1ϵ2 − 2 (1− ϵ1)

d ln z
dN

(1− ϵ1)
2

)
ξ
dRk

dξ
.

This equation admits two solutions, one is the constant solution and one is of the form
Rk ∝ ξβk if the SR parameters are constant. Indeed, assuming this form, we obtain the
solution:

β =
(1− ϵ1)

2 − ϵ1ϵ2 + 2 (1− ϵ1)
d ln z
dN

(1− ϵ1)
2 .

The growing solution takes then the form [64]:

Rk =
vk
z

∝
(

k

aH

)β

∼ e−β(1−ϵ1)N .

We can therefore see that the solution ξβ is increasing provided that the following
condition is satisfied:

Φ ≡ β (1− ϵ1) =
1− 2ϵ1 + ϵ1 (ϵ1 − ϵ2) + 2 (1− ϵ1)

d ln z
dN

(1− ϵ1)
< 0. (110)

In this case, the amplitude of the power spectrum is amplified and the formation of PBHs
is possible. In the other case, when Φ > 0, the solution ξβ decreases in time. The constant
solution is then dominant in the long wavelength limit and we do not have super-horizon
evolution.
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3.3.3 Amplification from a blue-tilted spectrum

When the condition necessary for the generation of a growing solution is not satisfied, the
rapid changes in the value of the SR parameters may still lead to amplified perturbations
[65], [66]. The definition of the power spectrum (85) and the spectral index (86) are
sensitive to the slow-roll parameters. These expressions, however, have been found in the
context of SR inflation, and to the linear order in the SR parameters. They cannot be used
to estimate the amplification in the case of CR or USR inflation. A complete analytical
estimate of the spectrum is not possible and one needs to solve the Mukhanov-Sasaki
equation numerically. Nonetheless, to get an idea of USR dynamics, let us use the same
Eq. (85) in the USR case18. During USR, the first SR parameter evolves as ϵ1 ∝ a−6.
Consequently, the power spectrum exhibits a growth pattern characterised by:

PR ∝ e6N , (111)

with additional corrections [22], [28]. Thus, the power spectrum is amplified very rapidly.
Therefore, the rapid variation during the USR dynamics could produce amplification of
the perturbation by generating a blue-tilted spectrum [23].

Now, we aim to generalise this procedure to scenarios where the SR parameters are
constant. To determine the spectral index, we must revisit the Mukhanov equation (59).
By performing the change of variable ξ once again, we can express it using Eqs. (106)
and (107) in the following manner:[

ξ2
d2vk
dξ2

+
ϵ1ϵ2

(1− ϵ1)
2 ξ

dvk
dξ

]
+

ξ2 − fMS (ϵi)

(1− ϵ1)
2 vk = 0. (112)

This equation is a linear second-order differential equation, which can be easily solved if
SR parameters are constant. In addition, in the case of the long wavelength limit, the
variable ξ → 0 and one can neglect the ξ2 term in the differential equation. Doing so, Eq.
(112) admits two solutions of the form vk = ξα. Indeed, using this form, the differential
equation is reduced to a simple second-order equation:

α2 +

[
ϵ1ϵ2

(1− ϵ1)
2 − 1

]
α− fMS (ϵi)

(1− ϵ1)
2 = 0.

The solutions are given by the standard quadratic formula:

α1,2 =
−
[

ϵ1ϵ2
(1−ϵ1)

2 − 1
]
±
√[

ϵ1ϵ2
(1−ϵ1)

2 − 1
]2

+ 4 fMS(ϵi)

(1−ϵ1)
2

2
. (113)

Since vk ∼ ξα, we can express the curvature perturbation Rk in the following way:

vk ∼ k−1/2

(
k

aH

)α

⇒ Rk =
vk
z

∼ k−1/2kα.

18In SR inflation, the reference time is often chosen as the time of horizon exit, as perturbations are
constant on super-horizon scales during this phase. Since we are in a similar situation where the modes
are frozen, we still choose the time of horizon re-entry in Eq. (85). Let us note that when the modes are
growing on super-horizon scale, as the perturbations do not freeze, the reference time needs to be chosen
after the growing phase.
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The factor k−1/2 in front comes from the Bunch-Davies conditions (72). Using this form
for the curvature perturbation, we can express Eq. (75) as:

PR ∝ k2+2α.

Finally, using Eq. (76), we can calculate the spectral index to be ns−1 = 2+2α. We want
to verify if we can have a blue-tilted spectrum in the presence of a decreasing solution.
We need ξα to increase as ξ → 0. This is the case when α < 0. We therefore choose the
negative solution α2, in Eq. (113), and we check the condition for which the spectral index
is positive19. So, the spectral index is blue-tilted when we have the following condition
satisfied:

ns − 1 = 2−
[

ϵ1ϵ2

(1− ϵ1)
2 − 1

]
−

√[
ϵ1ϵ2

(1− ϵ1)
2 − 1

]2
+ 4

fMS (ϵi)

(1− ϵ1)
2 > 0. (114)

Let us end this Section by remarking that both Eqs. (103) and (111) reinforce our
statement about the duration of the USR phase, see Section 1.3.3. It must be short to
prevent PR from approaching 1, where perturbations stop to be small, and cosmological
perturbation theory breaks down. Because of quantum mechanics, this scenario could
lead to eternal inflation in certain regions of the universe, as the inflaton field is just as
likely to move backwards along the potential as it is to go down to the minimum.

19Let us remember that the spectral index is red-tilted when ns − 1 < 0. This indicates that at short
wavelengths or large wavenumbers k−1, the power spectrum has an excess. While we say that the power
spectrum is blue-tilted when ns − 1 > 0.
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4 Potential reconstruction for the generation of PBHs
In inflation, the choice of the potential V determines the evolution of the inflaton field
and its quantum perturbations. As a consequence, different forms of the potential lead
to different predictions for the subsequent universe. By imposing the formation of PBHs
in the early universe, the form of the potential is constrained. Before we define the con-
ditions on the potential, we first need to construct the inflationary potential compatible
with the theory of inflation. There are several possibilities to do so. In Section 4.1, we
will study the superpotential method, which allows the reconstruction of the inflationary
potential. The idea is to use the homogeneous scalar field to parameterise the dynamics.
This can be compared, for instance, with the reconstruction method presented in [64],
where the scale factor is used instead. We will find the form of the potential leading
to the amplification of perturbations in General Relativity and in some specific modified
gravity theories, in Sections 4.2 and 4.3 respectively.

In the following Sections, we will use the notation ∂µ to refer to the derivative w.r.t.
the coordinates xµ. We also adopt the following notations for the derivative of a quantity
Q w.r.t. time and the field σ: {

dQ
dt

= Q̇
dQ
dσ

= Q,σ

. (115)

In Section 1.3.2, we introduce the concept of "attractor", which represents a point of
stability that attracts the scalar field. During the CR and USR phases, the scalar field
evolves towards a quasi-de Sitter attractor and a de Sitter attractor solution, respectively.
In this context, we are interested in a monotonic evolution of the scalar field. This means
that the inflaton is moving continuously towards the minimum of the potential, transi-
tioning smoothly towards the attractor solutions. This implies that we can substitute the
time evolution, in Eq. (115), with the evolution w.r.t. the field:

Q̇ = Q,σσ̇. (116)

It’s important to note that our aim is finding the behaviour of the inflaton potential
in the vicinity of the attractor. The reconstructed potential represents only a small part
of the full SR inflaton potential. We refer to [23] for an example of a complete potential
leading to the formation of PBHs.

4.1 Superpotential method

The superpotential method is presented in [67], and we review such method in this Sec-
tion. We want to describe the formation of PBHs in General Relativity (GR) as well as in
modified gravity theories in which the inflaton may be non-minimally coupled to gravity
[68]. Therefore, we first generalise the inflationary formalism studied in Chapter 1.3 for
GR. We shall refer to these modified gravity theories as the Jordan Frame (JF), while the
case of GR will be referred to as the Einstein Frame (EF).

Non-minimally coupled scalar field models are of great interest, particularly in the
context of inflation or to explain the presence of the present cosmic acceleration (Dark
Energy). In such models, additional interactions are added to influence the dynamics of
the early universe. The simple models are obtained by assuming a non-minimally coupled
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scalar field to the Ricci scalar R. This interaction can be defined by a differentiable
function U(σ) that describes the interaction between the scalar field σ and the curvature.
Note that we are going to use the notation σ for the scalar field when working in the JF.
We will reserve the notation ϕ for the special case of GR. The inflation action, in Eq.
(23), is generalised into:

S =

∫
d4x

√
−g

[
U(σ)R− 1

2
gµν∂µσ∂νσ + V (σ)

]
, (117)

where g is the determinant of the metric tensor gµν , R is the Ricci scalar, and V (σ) is the
potential. In the context of GR, the scalar field is minimally coupled to gravity. We must
recover the Einstein-Hilbert gravitational action of Eq. (23) by choosing U as a constant
given by U0 = M2

P/2.

Let us now assume the evolution of a homogeneous scalar field in a flat universe. The
general line element for a flat FLRW spacetime is given by:

ds2 = NL(t)
2dt2 − a2(t)

(
dx2

1 + dx2
2 + dx2

3

)
,

where we have introduced the lapse function NL because we are interested, in the next
Sections, in mapping the EF and the JF by redefining the field and the metric [69]. In-
deed, the mapping from one frame to another does not preserve the metric, meaning that
the lapse function is not frame-invariant. Usually, we choose the case NL = 1 so that the
time t is the cosmic time in this particular frame. The choice NL = a gives a conformal
metric gµν = a2ηµν , so that t is then the conformal time.

This metric has a determinant given by
√
−g = NLa

3. With this metric, the Ricci
scalar, given in Eq. (3), takes the form [68]:

R = −6

(
ä

aN2
L

− Ṅ ȧ

aN3
L

+
ȧ2

a2N2
L

)
. (118)

The dynamics of the homogeneous scalar field is described by the action (117). Insert-
ing Eq. (118) and the expression for the determinant into the action, we find the following
Lagrangian:

L = −6U

(
äa2

N2
L

− ṄLȧa
2

N2
L

+
ȧ2a

NL

)
− a3σ̇2

2NL

+NLa
3V.

Integrating by parts the second term, we find after some algebra:

L = 6U

(
ȧ2a

NL

+
6a2ȧσ̇U,σ

NL

− a3σ̇2

2NL

+NLV a3
)
.

We can obtain the equations of motion by varying the action (117) w.r.t. the degrees
of freedom. The variations w.r.t. the lapse function and the scale factor give, after some
algebra, the first and second Friedmann equations in the Jordan frame respectively:

6Uȧ2

a2
+

6U,σȧσ̇

a
=

1

2
σ̇2 +N2

LV,

4Uä

a
+

2Uȧ2

a2
+

4U,σȧσ̇

a
− 4UȧṄL

aNL

+ 2U,σσσ̇
2 + 2U,σσ̇ − 2U,σσ̇ṄL

NL

= −1

2
σ̇2 +N2

LV.
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The Klein-Gordon equation is obtained by varying the action with respect to σ:

σ̈ +

(
3
ȧ

a
− ṄL

NL

)
σ̇ − 6U,σ

[
ä

a
+

ȧ2

a2

]
+ 6

ȧṄL

aNL

U,σ +N2
LV,σ = 0.

As mentioned before, we are free to choose a particular lapse function in a given frame.
Let us choose NL = 1 for simplicity. In this case, we find the following set of equations,
as in [67]:

6UH2 + 6U̇H =
1

2
σ̇2 + V, (119)

2U
(
2Ḣ + 3H2

)
+ 4U̇H + 2Ü +

1

2
σ̇2 − V = 0, (120)

σ̈ + 3Hσ̇ + V,σ = 6
(
Ḣ + 2H2

)
U,σ. (121)

where we used ä
a
= Ḣ + H2. Let us remember that each quantity is now defined in the

JF.

Combining Eqs. (119) and (120), we find:

4UḢ − 2U̇H + 2Ü + σ̇2 = 0.

Using Eq. (116) for a monotonic scalar field evolution, we can rewrite this equation in
terms of derivatives w.r.t. σ:

4UH,σG− 2HU,σG+ 2U,σσG
2 + 2U,σσ̈ +G2 = 0,

where we have defined the function G = σ̇. As stated before, the evolution is described
by the scalar field in the superpotential method. The Hubble parameter is also expressed
as a function of the field H(σ). Similarly, we can also write σ̈ = Ġ = G,σG, so that we
finally find:

4UH,σ + 2 (G,σ −H)U,σ + (2U,σσ + 1)G = 0. (122)

The reconstruction method, aiming to reconstruct the potential of the theory, is based
on this last equation. Indeed, the solution of this first-order linear differential equation
gives the functions G(σ) or H(σ) once the other is chosen. When knowing U(σ) and
G(σ), the solution is given by:

H(σ) = −
[∫ σ 2G,σ̃U,σ̃ + (2U,σ̃σ̃ + 1)G

4U3/2
dσ̃ + c0

]√
U, (123)

with c0 an integration constant. While for a given H(σ) and U(σ), we find:

G(σ) =

[∫ σ U,σ̃H − 2UH,σ̃

U,σ̃

eΥdσ̃ + c̃0

]
e−Υ(σ), (124)

where we have defined:
Υ(σ) ≡ 1

2

∫ σ 2U,σ̃σ̃ + 1

U,σ̃

dσ̃.

and c̃0 is another integration constant. Note that both U(σ) and V (σ) need to be differ-
entiable functions of the scalar field σ.
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Finally, we reconstruct the potential V (σ) by inserting the functions G, U , and H into
Eq. (119):

V (σ) = 6UH2 + 6U,σGH − 1

2
G2. (125)

The field evolution σ(t) can also be found from the integration of G.

When the scalar field approaches the USR or CR phase, the inflaton evolves towards a
de Sitter attractor, and the inflaton tends to a fixed value. In other words, we are looking
for a solution where the scalar field approaches asymptotically a constant attractor value
σ0. This condition is satisfied when the time variation of the field vanishes:

lim
σ→σ0

G = 0. (126)

An important remark can now be made observing this result. Close to the attractor, the
potential in Eq. (125) and the Hubble parameter in Eq. (123) have the following de Sitter
behaviour: {

H2 = V/6U

H = −c0
√
U

⇒ V = −6c20U
2. (127)

This implies that the desired de Sitter solution at the attractor results in a potential
V ∝ U2. We will explicitly verify that the derivative of V/U2 w.r.t. the field vanishes in
the specific cases examined in the following Sections.

To summarise, the superpotential method is a technique that enables the reconstruc-
tion of the potential starting from a given ansatz [70]. The fundamental observations
leading to reconstruction are outlined below:

1. The dynamical equations contain three functions (H,U,G), from which the potential
can be reconstructed, see Equation (125).

2. U(σ) determines the gravitational model (EF, JF).
3. G(σ) = σ̇ determines the dynamics of the inflation.
4. H (or G) can be derived analytically through an integral, see Eq. (123) (Eq. (124)).

U and H (or G) must be selected such that the integral can be exactly performed.
5. In proximity to the attractor, dV/U2

dσ
≃ 0, see Equation (127).

The SR parameters are useful functions to describe the inflaton dynamics. Before
applying the reconstruction method, we first illustrate how the two first SR parameters
are expressed and used in the context of the reconstruction. The Hubble and scalar flow
functions are defined recursively in Eqs. (33) and (34). Let us now express them as
functions of the scalar field σ using G and H, which will simplify the derivation of the
hierarchy:

ϵ1 = −GH,σ

H2
, (128)

ϵi+1 =
Gϵi,σ
Hϵi

. (129)

δ1 =
G

Hσ
, (130)

δi+1 =
Gδi,σ
Hδi

. (131)
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Let us now express the second SR parameter in more detail using the expression of the
first SR parameter. We can express the derivatives ϵ1,σ and δ1,σ as follows:

ϵ1,σ = ϵ1

(
G,σ

G
+

H,σσ

H,σ

− 2
H,σ

H

)
, δ1,σ = δ1

(
G,σ

G
− H,σ

H
− δ1

H

G

)
.

With this expression, the second slow-roll parameter takes the following form:

ϵ2 = 2ϵ1 −
G

H

H,σσ

H,σ

+
G,σ

H
, δ2 = −δ1 + ϵ1 +

G,σ

H
.

We end up with the following expressions:

ϵ1 = −σH,σ

H
δ1,

ϵ2 = 2ϵ1 −
σ2H,σσ

H

δ21
ϵ1

+
G,σ

H
.

δ1 =
G

Hσ
, (132)

δ2 = −δ1 + ϵ1 +
G,σ

H
. (133)

4.2 General Relativity

General Relativity is usually associated with a minimally coupled scalar field. We recover
GR by defining the function U as constant:

U ≡ U0 =
M2

P

2
. (134)

For GR, let us use the conventional notation ϕ to denote the scalar field. Substituting
Eq. (134) into the equations of motion in Eqs. (119), (120), and (121), we find:

3M2
PH

2 =
1

2
ϕ̇2 + V, (135)

4M2
PḢ + 6M2

PH
2 +

1

2
ϕ̇2 − V = 0, (136)

ϕ̈+ 3Hϕ̇+ V,ϕ = 0. (137)

The first equation is the first Friedmann equation obtained in Section 1.3, in Eq. (29).
The third one is the Klein-Gordon equation obtained in Eq. (24). Substituting Eq. (135)
into Eq. (136), we recover the second Friedmann equation in Eq. (30):

Ḣ = − 1

2M2
P

ϕ̇2.

Using Eq. (116), we can further relate the function G(ϕ) and the derivative of the Hubble
parameter w.r.t. ϕ:

G(ϕ) = ϕ̇ = −2M2
PH,ϕ. (138)

This result is also consistent with Eq. (122) by substituting U0. In addition, since the
derivative of U0 vanishes, the solution of the differential equation in Eq. (124) no longer
exists. Instead, G(ϕ) can simply be obtained by differentiating H, as shown in Eq. (138).
The other solution in Eq. (123) is equivalent to the result in Eq. (138):

H(ϕ) = − 1

2M2
P

∫ ϕ

Gdϕ̃− c0
√

U0 ⇒ H,ϕ = − 1

2M2
P

G.
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Potential reconstruction

The process of reconstruction of the potential is thus straightforward and exact, once we
have fixed the expression of either G(ϕ) or H(ϕ). The potential, in Eq. (125), can then
be written in terms of the Hubble parameter:

V (ϕ) = 3M2
PH

2 − 2M4
PH

2
,ϕ. (139)

Note that we can express the relation close to the attractor, defined in Eq. (126),
using Eq. (138):

lim
ϕ→ϕ0

G = 0 ⇔ lim
ϕ→ϕ0

H,ϕ = 0. (140)

The Hubble parameter is constant close to the de Sitter attractor, in addition to the fixed
scalar field.

The first slow-roll parameter, defined in Eq. (128), can be expressed using the expres-
sion of the function G(ϕ) in Eq. (138):

ϵ1 =
G2

2M2
PH

2
. (141)

Due to the simple relation between G and H in GR, we can use the general definition
in Eq. (129) to derive the second slow-roll parameter:

ϵ2 = G
ϵ1,ϕ
Hϵ1

=
2ϵ1G,ϕ − 2ϵ1

H,ϕG

H

Hϵ1
=

2G,ϕ

H
+ 2ϵ1. (142)

Similarly, let us express the third slow-roll parameter:

ϵ3 = G
ϵ2,ϕ
Hϵ2

=

2G,ϕϕG

H
− 2G,ϕ

H,ϕG

H2 + 2 (2ϵ1G,ϕ + 2ϵ21H)

Hϵ2
=

G,ϕϕG+ 3G,ϕϵ1H + 2ϵ21H
2

G,ϕH + ϵ1H2
.

(143)
With Eq. (138), we can then express the three slow-roll parameters either with the

function G(ϕ), with Eqs. (141), (142), and (143), or with the function H(ϕ):

ϵ1 = 2M2
P

(
H,ϕ

H

)2

,

ϵ2 = −4M2
PH,ϕϕ

H
+ 2ϵ1,

ϵ3 =
4M4

PH,ϕϕϕH,ϕ − 6M2
PH,ϕϕϵ1H + 2ϵ21H

2

−2M2
PH,ϕϕH + ϵ1H2

.

ϵ1 =
G2

2M2
PH

2
,

ϵ2 =
2G,ϕ

H
+ 2ϵ1,

ϵ3 =
G,ϕϕG+ 3G,ϕϵ1H + 2ϵ21H

2

G,ϕH + ϵ1H2
.

(144)

Let us also express the first two scalar flow functions using Eqs. (132) and (133):

δ1 = −2M2
P

H,ϕ

Hϕ
,

δ2 = −2MP
2H,ϕϕ

H
+ ϵ1 − δ1.

We are interested in studying the form of the potential close to the attractor. Let us
consider a Taylor expansion of the Hubble parameter H close to the attractor ϕ0:

H(ϕ) =
∞∑
n=0

hn

(
ϕ

ϕ0

− 1

)n

≡
∞∑
n=0

hn

(
δϕ

ϕ0

)n

, (145)
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where we assume that H is well-defined at ϕ0. Before proceeding, we must first mention
that h0 must be positive to have inflation close to the attractor. Assuming that H(ϕ) is
continuous and differentiable at ϕ0, we can express the condition (140) as a condition on
the first coefficient of the Taylor expansion: h1 = 0.

Furthermore, by expressing G to leading order using Eq. (138), we find:

G ≃ −4M2
P

h2

ϕ0

(
ϕ

ϕ0

− 1

)
, (146)

This equation gives a new condition on h2 to ensure ϕ0 is an attractor: h2/ϕ0 > 0. Indeed,
when h2/ϕ0 > 0 and ϕ is greater than ϕ0 (ϕ > ϕ0), then G is negative. Conversely, if
ϕ is slightly less than ϕ0 (ϕ < ϕ0), then G is positive. In both cases, the field ϕ evolves
towards its attractor ϕ0.

With these three conditions on the coefficients of the Taylor expansion, we can find
the asymptotic behaviours of the SR parameters when ϕ → ϕ0:

ϵ1(ϕ0) = ϵ3(ϕ0) = ... = 0, (147)

ϵ2(ϕ0) = ϵ4(ϕ0) = ... = −8
M2

P

ϕ2
0

h2

h0

.(148)

δ1(ϕ0) = δ3(ϕ0) = ... = 0, (149)

δ2(ϕ0) = δ4(ϕ0) = ... = −4
M2

P

ϕ2
0

h2

h0

.(150)

To obtain an amplified spectrum, the odd SR parameters must approach zero, while the
even parameters must tend to a constant as ϕ approaches ϕ0. From the set of SR parame-
ters identified above, we observe that the parameters ϵ2 and δ2 tend towards a constant if
the expansion of H includes a quadratic term: h2 ̸= 0. The subsequent SR parameters can
be evaluated similarly as ϕ approaches ϕ0. We have explicitly verified with Mathematica
that the hierarchy alternates between zero and constant values. This result is consistent
with the results in [64].

Finally, to obtain the evolution of ϕ(t), we integrate the function G in Eq. (146):

ϕ(t) ≃ ϕ0

(
1 + e−4M2

Ph2ϕ
−2
0 t
)
≃ 1 + e−γN , (151)

where in the last equality, we defined γ = 4M2
Pϕ

−2
0

h2

h0
. The Hubble parameter, expressed

to second order in Eq. (145), is given by:

H(t) ∼ h0 + h2e
−8M2

Ph2ϕ
−2
0 t ∼ h0 + h2e

−2γN .

To summarise, in GR, we have found conditions on the Taylor expansion of H to
express the behaviour close to the attractor possibly producing an amplified spectrum.
One can find the corresponding conditions on G starting from the expansion:

H(ϕ) =
∑
n

hn

(
ϕ

ϕ0

− 1

)n

with h0 > 0 and h2 ̸= 0, (152)

G(ϕ) =
∑
n

gn

(
ϕ

ϕ0

− 1

)n

with g0 = 0 and g1 ̸= 0, (153)

and relating the Taylor coefficients of the series through the relation between G and H, see
Eq. (138). The Hubble parameter needs to have a vanishing Taylor first-order coefficient.
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We can also explicitly verify that the set of SR parameters, expressed in terms of G(ϕ)
in Eqs. (144), is consistent with the condition that the function G contains a linear term
in (ϕ/ϕ0 − 1), as was obtained in Eq. (146). Note that it should not contain a constant
value in the limit of ϕ which tends to ϕ0.

Let us express the potential (139) using the expression H = h0+h2

(
ϕ
ϕ0

− 1
)2

as exact.
We then find the potential leading to the formation of PBHs:

V (ϕ) = 3M2
P

(
h0 + h2

(
ϕ

ϕ0

− 1

)2
)2

− 8M4
P

h2
2

ϕ2
0

(
ϕ

ϕ0

− 1

)2

. (154)

Amplification of the perturbations

The asymptotic limit of the SR parameters in Eqs. (149), (150), (147), and (148) are
necessary conditions for the generation of PBHs. However, to effectively verify the ampli-
fication of the perturbations, we need to explicitly satisfy the conditions expressed either
by the parameter Φ or the spectral index found in Eqs. (110) and (114), respectively.
Let us remember that the function z, present in the Sasaki-Mukhanov equation (59), is a
time-dependent function which varies according to the specific model of inflation consid-
ered. In the case of GR, with a minimally coupled inflaton, z ∝ a

√
ϵ1, see Eq. (63). The

corresponding functions z′/z and z′′/z are derived in annex A.1.

Let us first check if the amplification can be obtained through the presence of a growing
solution. Using the result (263) from the annex:

z′

z
= aH

[
1 +

1

2
ϵ2

]
,

in Eq. (110), we can express the parameter Φ in the case of GR as:

Φ ≡ β (1− ϵ1) =
3− 4ϵ1 + ϵ2 + ϵ1 (ϵ1 − 2ϵ2)

(1− ϵ1)
.

Evaluating Φ w.r.t. the hierarchies in Eqs. (148) and (147), only constants and terms
linear in the SR parameters ϵ2 remain:

Φ = 3 + ϵ2 = 3− 8M2
P

ϕ2
0

h2

h0

= 3− 2γ. (155)

The growing solution exists for Φ < 0, i.e. ϵ2 < −3 as found in Eq. (104). If we assume
ϕ0 > 0 without loss of generality, we find the following condition on h2:

γ >
3

2
⇒ h2 >

3ϕ2
0

8M2
P

h0. (156)

If this condition is satisfied, it ensures the presence of a growing solution and the amplifi-
cation of the perturbation required for the formation of PBHs. Let us remember that we
impose h0 > 0 to have an expanding universe during inflation.
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On the other hand, we can still have amplification in the absence of the growing
solution but with a blue-tilted spectrum. The power spectrum can be expressed in Eq.
(114) through the function fMS defined in (62). This function is derived in Eq. (264):

z′′

z
= a2H2

[
2− ϵ1 + ϵ2

(
3

2
+

ϵ2
4
− ϵ1

2
+

ϵ3
2

)]
≡ a2H2fMS (ϵi) .

Imposing now the particular limit of the SR parameters found above, we can evaluate
fMS close to the attractor as:

fMS = 2 +
3ϵ2
2

+
ϵ22
4
.

Using the condition γ < 3
2
, we finally express the spectral index in Eq. (114) as:

ns − 1 = 3−
√

9 + 6ϵ2 + ϵ22 = 3− |3 + ϵ2| = −ϵ2 = 2γ. (157)

It leads to a blue-tilted spectrum when ns − 1 > 0, corresponding to the interval:

0 < γ <
3

2
. (158)

This is indeed the case for h2 > 0, as it was for ϕ0. Note that the condition h2/ϕ0 > 0 on
G, see Eq. (146), is thus well satisfied.

Note also that we obtain the same result as presented in the article [23]. Specifically,
they demonstrated the possibility of generating a blue-tilted spectrum with CR inflation
provided that −3

2
< −3 − α < 0, see Eq. (42) for the definition of α. As we approach

the attractor, we find δ2 → ϕ̈

Hϕ̇
= −3 − α, as indicated in Eq. (133). Furthermore, in

the context of GR, the limit of the second SR parameters are related by δ2 =
ϵ2
2
, see Eq.

(150). Hence, the condition investigated in [23] can be expressed in the same way, close
to the attractor as Eq. (157): −3

2
< ϵ2

2
< 0. In ref. [64], the authors used a different

method for the reconstruction of the potential, parametrising the evolution with the scale
factor instead of the scalar field:

H(a) = H0

(
α +

A

an

)m

⇒ H ∼ αmH0

(
1 +

mA

αan

)
when

A

αan
≪ 1. (159)

They found that the condition to have a growing solution, Φ < 0, is n > 3, see Eq. (37)
in [64]. The blue-tilted condition for the spectral index is 0 < n < 3, see Eq. (38) in [64].
By comparing with the conditions found above, see Eqs. (156) and (157) respectively, we
find the following relation between the two reconstruction methods:

n =
8M2

Ph2

ϕ2
0h0

. (160)

Note that we can also verify that the expression for the evolution of the scalar field in
terms of the scale factor gives the same result. Starting from equation (138), we can
indeed determine the evolution of ϕ(a) using Eq. (17):

H
dϕ

d ln a
= −2M2

P

H,ϕ

H
.
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Using the Taylor expansion of H in Eq. (152) to leading order, we can integrate this
expression to find:

ϕ(a)

ϕ0

− 1 = e1
(a0
a

) 4M2
Ph2

ϕ20h0 .

Inserting this result back into the Taylor expansion of H, we obtain:

H(a) = h0 + h2e
2
(a0
a

) 8M2
Ph2

ϕ20h0 .

Comparing with the Taylor expansion of H from [64], taken in Eq. (159), we find the
same n as before, in Eq. (160).

To conclude this Section, let us analyse a specific case by choosing particular values
for h2 and h0. For simplicity, we set M2

P = 1 and select an arbitrary attractor value
ϕ0 = 5. We first choose the specific parameters h0 = 1 and h2 = 10, defining the Hubble
parameter. In this case, Eq. (155) yields Φ = −1/5. The corresponding potential, in Eq.
(154), is illustrated in Figure 10. This potential produces a growing solution since the
condition Φ < 0 is satisfied, see Eq. (156). Figure 11 illustrates the parameter α defined
in the Klein-Gordon equation (42). We have an evolution similar to CR inflation close
to the attractor, with a constant parameter α = −1.42. The trajectory of the scalar field
in the phase space diagram is simply represented by a linear decreasing function, see Eq.
(146). As ϕ0 has been chosen positive, the function G decreases towards ϕ0, consistently
with the fact that ϕ0 is indeed an attractor. Finally, one can use Eq. (127) to verify that
near the attractor, we indeed observe a de Sitter behaviour: V/U2

0 ∝ cst. , see Figure 12.
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4.0

4.5

Figure 10: Potential for the particular case

H = h0+h2

(
ϕ
ϕ0

− 1
)2

with the parameters
chosen as M2

P = 1, ϕ0 = 5, h0 = 1, and
h2 = 1.
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Figure 11: Plot of the parameter α =
V,ϕ

HG
.

Close to the attractor, it remains nearly
constant, around α = −1.42.

Let us now illustrate the USR case for the same value of the attractor ϕ0 = 5. We
can indeed fine-tune the parameters h0 and h2 to recover the USR α = 0 around the
attractor, see Eq. (42). Indeed, taking the limit of the SR parameters in Eqs. (149) and
(147) into Eq. (133), we have δ2 → ϕ̈

Hϕ̇
. We can then impose the following condition to

recover USR:
δ2 = −4

M2
P

ϕ2
0

h2

h0

= −3 ⇒ h2

h0

=
3ϕ2

0

4
.
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15

Figure 12: Derivative of V/U2
0 w.r.t. ϕ. We do indeed have a de Sitter behaviour close to

the attractor, i.e. dV/U2
0

dϕ
= 0, see Eq. (127).

Let us choose h0 = 4/5 and h2 = 15. In this case, the potential is flattened close to the
attractor, see Figure 13. The CR parameter α is then null, and we find an evolution close
to the attractor which resemble to the one of USR, see Figure 14. We also verify the
condition ensuring the presence of a growing solution since Φ = −3.
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Figure 13: Potential for the particular case

H = h0+h2

(
ϕ
ϕ0

− 1
)2

with the parameters
chosen as M2

P = 1, ϕ0 = 5, h0 = 4/5 and
h2 = 15.
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Figure 14: Plot of the parameter α =
V,ϕ

HG
.

It vanishes close to the attractor when con-
sidering the choice M2

P = 1, ϕ0 = 5, h0 =
4/5 and h2 = 15.

Note that we can also impose conditions to find the SR case, for which α ≈ −3.
However, this corresponds to setting δ2 ≈ 0, so we need to impose h2 ≈ 0. With our
particular form of the Hubble parameter H, this results in a nearly constant Hubble
parameter. SR inflation is therefore reduced to the de Sitter inflation case, with Φ > 0
and a flat power spectrum ns − 1 ≈ 0, see [64].

Stability

The USR or CR phase, induced by the inflaton potential, deviates the dynamics of the
inflaton field from the typical slow-roll evolution. During this phase, the inflaton field re-
laxes towards a de Sitter attractor. However, one needs to verify that the solutions found
above are stable. Indeed, if the solution is unstable, it is impossible to approach the de
Sitter attractor and obtain any amplification. Therefore, we will verify that homogeneous
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perturbations, δϕ, tend to zero.

Using the relation d2

dt2
= HH,N

d
dN

+ H2 d2

dN2 , we can first express the homogeneous
Klein-Gordon equation (137) in terms of e-folds as:

HH,Nϕ,N +H2ϕ,NN + 3H2ϕ,N + V,ϕ = 0 (161)

We can then extract the Hubble parameter from Eq. (135): H =
√

V/3

M2
P−ϕ2

,N/6
. Using this

result in Eq. (161) and expanding to linear order around the attractor ϕ → ϕ0 + δϕ, we
find:

3M2
PV,ϕ(ϕ0) +

(
V (ϕ0)δϕ,NN + 3V (ϕ0)δϕ,N + 3M2

PV,ϕϕ(ϕ0)δϕ
)
= 0, (162)

where |δϕ|MP ≪ 1. Using the expression of the potential in Eq. (154), we have that
V (ϕ0) = 3M2

Ph
2
0 and:

V,ϕ(ϕ0) = 0, (163)

V,ϕϕ(ϕ0) = 12
M2

P

ϕ2
0

h0h2

(
1− 4

3

h2

h0

M2
P

ϕ2
0

)
=

V (ϕ0)

3M2
P

γ (3− γ) . (164)

The linearised equation for δϕ, in Eq. (162), is a second-order differential equation with
constant coefficients. Therefore, its general solution is given by the sum of two indepen-
dent exponential solutions:

δϕ = c1 exp
−N(3−γ) +c2 exp

−γN . (165)

In the previous Section, we have started from one of these two solutions and we have
reconstructed the corresponding potential. From the result (165), we see that besides such
a solution, one also has a second solution which can also be found by the replacement:

γ → 3− γ. (166)

This corresponds to make the substitution:

h2 → −h2 + 3ϕ2
0h0/(4M

2
P). (167)

The two independent solutions found by linearising the KG equation close to ϕ0, are asso-
ciated to the invariance of the potential w.r.t. the transformation (167). Therefore, both
solutions give the same reconstructed potential. We can explicitly check that V (ϕ0) and
V,ϕϕ(ϕ0), present in Eq. (162), are invariant w.r.t. this transformation. Let us note that
the substitution (167) can be deduced by observing that the coefficient 3

4M2
P

is equal to
−1

2
multiplied by the ratio between the coefficient in front of H2 and that in front of H2

,ϕ

in Eq. (139). In the following, we will use this last result to find the invariance of the
potential for non-minimal coupling cases.

Let us now discuss the stability of the solutions in Eq. (165). As the field approaches
the de Sitter attractor, the homogeneous perturbations δϕ need to decrease in time to
ensure stability. In cases where both solutions are decreasing in time, the solution is
stable. On the other hand, if one solution is increasing, the system is unstable. However,
the system may still evolve towards the de Sitter attractor provided fine-tuned initial
conditions are chosen. The case of USR is of this kind with one solution evolving towards
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the de Sitter attractor and one moving away from it. Depending on the initial conditions,
the decreasing solution can dominate for a certain period. This is the reason why getting
amplification with an USR phase is not straightforward and requires special initial condi-
tions. The SR phase preceding the USR phase needs to bring the conditions to have the
unstable solution negligible.

For GR, the stability condition is respected for any choice of the initial conditions c1
and c2 if:

γ < 3. (168)

In the case γ < 3/2, the second exponential will decrease more slowly, becoming dominant
close to the attractor. The second exponential will also dominate for a non-negligible
amount of time when 3/2 < γ < 3, provided that c1 ≪ c2. In such a case, one essentially
finds the previous solution (151) and the expressions (155) and (157). On the other hand,
the first exponential will dominate close to the attractor if the condition 3/2 < γ < 3 is
satisfied. It will also overcome the first exponential for a non-negligible amount of time if
γ < 3/2 and c2/c1 ≪ 1. In such a case, one needs to make the replacement found above,
see Eq. (166), in Eqs. (148) and (150), to find the corresponding SR parameters for this
second solution. It gives:

ϵ1(ϕ0) = ϵ3(ϕ0) = ... = 0,

ϵ2(ϕ0) = ϵ4(ϕ0) = ... = 2δ2.

δ1(ϕ0) = δ3(ϕ0) = ... = 0,

δ2(ϕ0) = δ4(ϕ0) = ... = −3 + γ.

The corresponding conditions for the generation of PBHs are determined using the same
approach, based on Eqs. (155) and (157):

Φ = 2γ − 3,

ns − 1 = 6− 2γ.

Let us introduce a general method to check the stability of the solutions in a systematic
way [71], [72], without solving again Eq. (162). The equilibrium point of the potential
can be found by solving V,ϕ(ϕ0) = 0, as in Eq. (163). Stability is verified if the potential
has a positive concavity V,ϕϕ(ϕ0) > 0. One may check that Eq. (168) is equivalent to this
condition, see Eq. (164). Note that for non-minimally coupled scalar fields, one needs to
define an effective potential to check the stability.

4.3 Jordan Frames

We now want to consider a more general case with non-minimally coupled inflaton U(σ).
In such cases, the simple connection between the functions G and H,ϕ defined and found
in the EF, see Eq. (138), no longer holds. Indeed, we now have to consider the differential
equation (122), containing both the first derivatives of G and H. Therefore, we need to
use its solutions (124) and (123). The potential and the SR parameters are no longer
expressed in terms of a single function and its derivative. The missing function can
be obtained analytically through integration, provided that the two others are chosen
properly. Indeed, they need to be such that the integral can be performed exactly. Let
us try in this context to derive some results for more general frames, in which U is not
constant. Note that we henceforth return to the notation with σ indicating the inflaton
field and the Hubble parameter H and the function G are now defined in the JF. Using
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Eq. (122), we can write:

G,σ

H
= 1− 2

U

U,σ

H,σ

H
−
(
U,σσ

U
+

1

2U,σ

)
G

H
.

So, we can express the second scalar field flow parameter in Eq. (133) as:

δ2 = ϵ1 − δ1 + 1− 2
U

U,σ

H,σ

H
−
(
U,σσ

U
+

1

2U,σ

)
δ1σ.

The case of Induced Gravity is defined by U(σ) = ξσ2

2
. Using it in the previous relation,

we find:
δ2 = ϵ1 −

ϵ1
δ1

− 4ξ + 1

2ξ
δ1 + 1.

This relation can be inverted, it gives back the well-known relation between SR parameters
in Induced Gravity, see [73] for instance:

ϵ1 =
δ1

1 + δ1

(
δ1
2ξ

+ 2δ1 + δ2 − 1

)
. (169)

Performing the same procedure, we can generalise this result to more general modified
gravity theories, in which U(σ) = ξσ2

2
+ J . We find:

ϵ1 =
δ1

1 + δ1 +
2J
ξσ2

(
δ1
2ξ

+ 2δ1 + δ2 − 1

)
. (170)

In both cases, Eqs. (169) and (170), we find that when δ1 → 0, when G is linear in
(σ/σ0 − 1), ϵ1 ∼ −δ1. Starting from this relation and using the definition of the two first
SR parameters, see Eqs. (128) and (130), we find:

dH

H
∼ dσ

σ
⇒ H

H0

∼ σ

σ0

⇒ H ∼ H0

[(
σ

σ0

+ 1

)
− 1

]
. (171)

Therefore, we find here a different result from that of GR, see (152). In the next Section,
we are going to complete the discussion for IG and more general modified gravity theories
employing another method. We are going to use the mapping between the EF and the
JF. This method turns out to be easier to deal with the problem of amplification of the
fluctuation.
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5 Non-minimally coupled scalar fields
A non-minimally coupled model can be mapped into the corresponding Einstein Frame
through a conformal transformation of the metric and a field redefinition20. In this way,
it is possible to express G and H in the JF in terms of their counterparts in the EF. The
main advantage of this method is that the relation (138), defined for GR (EF), will still
be used to describe the dynamics in the JF. Therefore, the reconstruction of the potential
in the JF will be obtained in terms of the Hubble parameter in the EF and its derivative.
In this Section, the tilted notation refers to quantities expressed in the EF, with ϕ the
inflaton in that frame. We first review how the two actions in both frames are linked
to one another following the same approach as [39]. Then, we construct the mapping
between the two frames, i.e. we relate the quantities G and H with G̃ and H̃ defined in
the JF and EF, respectively.

5.1 Weyl transformation

A Weyl transformation, or conformal transformation, is a mathematical transformation
applied to the metric tensor of general relativity. This transformation influences the
measurements of timelike and spacelike intervals. However, it preserves the light cones,
meaning that the causal structure remains unchanged. It is defined as follows [76]:

gµν = Ω−2(x)g̃µν =
U0

U
g̃µν ⇒ Ω2 =

U

U0

. (172)

where Ω2 is a non-vanishing, regular function of spacetime coordinates and U0 is defined
for the EF in (134). The determinant of the metric is then given by:

√
−g = Ω−4

√
−g̃.

The line element can be expressed in the two frames as follows [74]:

ds2 = N2
L(t)dt

2 − a2(t)(dx2 + dy2 + dz2) = Ñ2
L(t)dt

2 − ã2(t)(dx2 + dy2 + dz2).

From the metric in Eq. (172), we can relate the JF (σ, U,NL, a) and the EF
(
ϕ, U0, ÑL, ã

)
at the homogeneous level. Indeed, the lapse function and the scale factor are related by
the following relations:

ÑL =ΩNL, (173)
ã =Ωa. (174)

Performing a Weyl transformation, defined in Eq. (172), one can express the corre-
sponding transformation of the Ricci scalar [76], [77]:

R = Ω2

(
R̃ + 3

2Ω2

Ω4
− 3

2
g̃µν

∂µΩ
2

Ω2

∂νΩ
2

Ω2

)
= Ω2

(
R̃ + 3

2Ω2

Ω4
− 3

2

(
∇ log Ω2

)2) (175)

where the d’Alembertian is defined as 2 = gµν∂µ∂ν = Ω2g̃µν∂µ∂ν .

20For this reason, EF and JF are mathematically equivalent [74]. However, in practice, these different
frames can still generate different predictions [75], i.e. predictions may not be frame-independent.
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Let us transform the action in the JF, see Eq. (117), into that of the EF. We first use
the conformal transformation defined in Eq. (172) to express U and g in the EF:

S =

∫
d4x

√
−g̃

Ω4

[
U0Ω

2R− 1

2
Ω2g̃µν∂µσ∂νσ + V (σ)

]
,

We can then use the definition of the Ricci scalar in Eq. (175). Using the fact that the
integral on the second term

∫ √
−g̃2Ω2 vanishes due to the Gauss’s theorem, we are left

with:

S =

∫
d4x
√
−g̃

(
U0R̃− 1

2

(
1

Ω2
+ 3U0

(
d log Ω2

dσ

)2
)
g̃µν∂µσ∂νσ + Ṽ (σ)

)
,

where the potential in the Einstein frame is defined as:

Ṽ (σ) =
V (σ)

Ω4
.

Now, we can perform the following scalar field transformation, and introduce the new
scalar field ϕ [67]:

dϕ

dσ
=

√
1

Ω2
+ 3U0

(
Ω2

,σ

Ω2

)2

=

√
U0

U
+ 3U0

U2
,σ

U2
. (176)

Doing so, we recover the action for a minimally coupled scalar field ϕ, or the EF action:

S =

∫
d4x
√
−g̃

[
M2

P

2
R̃− 1

2
g̃µν∂µϕ∂νϕ+ Ṽ (ϕ)

]
.

5.2 Jordan and Einstein frame mapping

Let us see how the conformal transformation modifies the expression (138) in the JF.
Starting from the field transformation in Eq. (176), we can express the function G̃ as
follows:

G̃ =
dϕ

ÑLdt
=

dϕ

dσ

dσ

ΩNLdt
=

U0

U

√
U0

(
U + 3U2

,σ

)
U

G. (177)

We can do the same for the Hubble parameter using the transformation in Eqs. (173)
and (174):

H̃ =
dã

ãÑLdt
=

d(Ωa)

Ω2aNLdt
=

1

Ω2

dΩ

NLdt
+

1

Ω

da

aNLdt
=

√
U0

U

(
H +

U,σ

2U
G

)
. (178)

where, in the last equality, we used Eq. (172).

Using Eq. (138) defined in the EF, we can express G̃ as follows:

G̃ = −4U0H̃,ϕ = − 4U0U√
U0 (U + 3U ′2)

Y,σ, (179)

where in the last equation, we used again the field transformation (176) to express the
derivative in the JF. We have also introduced the function Y (σ) ≡ H̃(ϕ(σ)) to underline
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the different functional dependencies, when expressing H̃ in terms of the scalar field in
the JF with Eq. (176).

We can now invert the function G̃ in Eq. (177) to find the corresponding expression
in the Jordan frame G(σ). Using Eq. (179), and after some algebra, we find:

G = −

√
2U

M2
P

4UY,σ

1 + 3U2
,σ/U

. (180)

Inverting Eq. (178) and using Eq. (180), we find the expression of H in the JF:

H =

√
2U

M2
P

(
Y +

2U,σY,σ

1 + 3U2
,σ/U

)
. (181)

By substituting these two expressions for H and G in the JF, we can explicitly check that
they satisfy Eq. (122).

Therefore, the reconstruction procedure in the JF can be done by assuming a given
non-singular Hubble parameter Y (σ) ≡ H̃(ϕ(σ)) in the EF, expressed through the scalar
field σ through the relation ϕ(σ) obtained with Eq. (176). The functions G and H
in the JF are expressed with Eqs. (180) and (181) respectively. Knowing the three
functions, we can correspondingly express the JF potential using Eq. (125) and find the
specific inflationary evolution in the JF. In practice, we will impose the conditions found
previously for the amplification of the perturbations in the EF, and we will use the results
of this Section to translate them into the JF.

5.3 Induced Gravity

Induced gravity is a particular modified gravity theory in which the Newton constant
is associated with the expectation value of a scalar field, similarly to the Brans-Dicke
theory [78]. The traditional Einstein-Hilbert term, which describes gravity in terms of
the curvature of spacetime, is replaced by a mass-like term associated with a scalar field
[32], [73]. In this theory, the function U(σ) is given by:

U(σ) =
ξ

2
σ2. (182)

Using the conformal mapping, we can express the functions G and H for this case,
using Eqs. (180) and (181):

G = −ασ3Y,σ, (183)
H = βσY + ασ2Y,σ, (184)

where we have defined β ≡
√
ξ/MP and α ≡ 2ξβ/(1 + 6ξ).

Potential reconstruction

With the expressions of G, H, and U , we can reconstruct the potential using Eq. (125):

V = 3ξσ4 (βY + ασY,σ)
2 − 6ξσ4 (ασY,σ) (βY + ασY,σ)−

σ4

2
(ασY,σ)

2

=
ξ2σ4

[
3(1 + 6ξ)Y 2 − 2ξσ2Y 2

,σ

]
M2

P(1 + 6ξ)
.

(185)
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To proceed with the study of the generation of PBHs, we search for specific patterns
in the hierarchies of the SR parameters. For IG, it is easier to work with the scalar field
flow functions. We can express the first two scalar field flow functions using Eqs. (130)
and (131):

δ1 =
G

σH
= − ασY,σ

βY + ασY,σ

, (186)

δ2 = σδ1,σ = −βY δ1 + [2α (1 + δ1) + δ1β]σY,σ + α (1 + δ1)σ
2Y,σσ

βY + ασY,σ

. (187)

As before, we assume that the inflaton approaches a particular attractor value σ0,
which we take as positive without loss of generality. We have expressed all the quantities
in terms of the EF Hubble parameter Y . Let us now expand Y around the attractor σ0

and impose the conditions on the Taylor coefficients of Y , leading to the suitable hierarchy
required for the amplification of the perturbations:

Y (σ) =
∑
n

yn

(
σ

σ0

− 1

)n

with y0 > 0 and y2 ̸= 0. (188)

In this case, when the field approaches the attractor, we have that Y → y0, Y,σ → 0, and
Y,σσ → 2y2

σ2
0
. Using these results in Eqs. (186) and (187), we find the following limit for

the SR parameters:

δ1(σ0) = 0,

δ2(σ0) = −2
α

β

y2
y0
. (189)

In the vicinity of σ0, we find that Y has the following behaviour Y ∼ y0+y2 (σ/σ0 − 1)2.
Thus, a straightforward potential that could result in an amplification can be obtained
by taking this truncated second-order Taylor expansion as an exact function Y . In this
scenario, σY,σ = 2y2σ

σ0
(σ/σ0 − 1), and the potential in Eq. (185) becomes:

V =
ξ2σ4y22

M2
P(1 + 6ξ)

3(1 + 6ξ)

[
y0
y2

+

(
σ

σ0

− 1

)2
]2

− 8ξ
σ2

σ2
0

(
σ

σ0

− 1

)2
 . (190)

Let us now examine the behaviour of G and H in the vicinity of σ0, using this same
expression for Y in Eqs. (183) and (184):

G ≃ −2y2ασ
2
0

(
σ

σ0

− 1

)
, (191)

H ≃ βσ0y0

[
1 +

(
1 + 2

αy2
βy0

)(
σ

σ0

− 1

)]
. (192)

As found before in Eq. (171), it’s worth noting that the Hubble parameter H approaches
a constant value linearly as the field σ evolves. This is very different from the EF be-
haviour, in which Y has no linear term as an essential condition for the generation of
PBHs. In contrast, G has the same form as in the EF in Eq. (146), so that σ(t) evolves
in a similar way as in GR, see Eq. (151).
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Let us now consider the equations of motion, and in particular, we observe that the
linear combination of Eqs. (119)/3 + (120) gives the following result:

4U
(
Ḣ + 2H2

)
= −6U̇H − 2Ü − 1

3
σ̇2 +

4

3
V.

Using this relation in the Klein-Gordon equation (121), we find after some algebra:

(σ̈ + 3Hσ̇)

(
1 + 3

U2
,σ

U

)
+

U,σ

2U
σ̇2 (1 + 6U,σσ) +

(
V,σ − 2

U,σ

U
V

)
= 0. (193)

Using the expression of U in Eq. (182) for the case of Induced Gravity, in this reformulated
Klein-Gordon equation, we find the relation:

σ̈ + 3Hσ̇ +
σ̇2

σ
= − Veff ,σ

1 + 6ξ
,

where Veff,σ = dV/dσ − 4V/σ. When one can neglect σ̇2, this equation is similar to the
equation of motion in GR for USR, see Eq. (137). In this latter case, the scalar field
is stuck at the minimum of the potential, V,σ = 0. In IG, the situation is different, the
scalar field can be constant at Veff,σ = 0:

dV

dσ
=

4V

σ
⇒ σ

dlnV
dσ

= 4. (194)

We will use this expression to check our results for IG.

Amplification of the perturbations

Let us now work with the Mukhanov-Sasaki equation, in Eq. (59), to find the conditions
leading to the formation of PBHs. In the case of IG, the generalised function z, defined
in Eq. (61), is given by [79]:

z = aϕδ1

√
1 + 6ξ

1 + δ1
,

where we have defined Z = 1+6ξ
(1+δ1)2

.

As before, we begin studying the amplification checking the presence of a growing
solution. In Eq. (266) from the annex A.2, we have expressed the function z′/z in terms
of the SR parameters:

z′

z
= aY

[
1 + δ1 + δ2 −

δ1δ2
1 + δ1

]
,

We can express the parameter Φ using this result and Eq. (109) in Eq. (110):

Φ =

[
1− ϵ1 −

ϵ1ϵ2
(1− ϵ1)

+ 2

(
1 + δ1 + δ2 −

δ1δ2
1 + δ1

)]
With our hierarchies of slow-roll parameters, see Eqs. (189), we then find:

Φ = 3 + 2δ2 = 3− 4αy2
βy0

, (195)
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Imposing the condition for the existence of the growing solution Φ < 0, we find:

3 <
4αy2
βy0

⇒ y2
y0

>
3β

4α
=

3(1 + 6ξ)

8ξ
. (196)

If the growing solution is absent, we need to check if the spectrum is blue-tilted. In
Eq. (267), the derivation of the function fMS can be found, it is given by:

fMS = δ21 + δ22 + (3− ϵ1) (1 + δ1 + δ2) + δ2δ3 +
δ1δ2

(
ϵ1 + δ1 − 3δ2 − δ3 +

2δ1δ2
1+δ1

)
1 + δ1

− 1.

In the limit δ1 → 0 and δ3 → 0, it can be simplified as follows:

fMS = 2 + 3δ2 + δ22.

The scalar spectral index, in Eq. (114), then takes the form:

ns − 1 = 3−
√

9 + 12δ2 + 4δ22 = 3− |3 + 2δ2| = −2δ2 = 4
αy2
βy0

, (197)

where in the last equality, we used the condition 3 > 4αy2
βy0

. Therefore, we have a blue-tilted
spectrum if the following condition is satisfied:

0 <
4αy2
βy0

< 3 ⇒ 0 <
y2
y0

<
3β

4α
=

3(1 + 6ξ)

8ξ
. (198)

Let us now consider a particular case, choosing some specific values for y2 = 1 and
y0 = 1. As before, let us choose M2

P = 1, ξ = 1, and an arbitrary attractor value σ0 = 1.
For this choice of values, we find, from Eq. (195), Φ = 13/7 > 0. Consequently, we have a
constant and decreasing solution. Eq. (197) for the spectral index gives ns − 1 = 8/7 > 0
which is blue-tilted. The potential for induced gravity, using Y ∼ y0 + y2(σ/σ0 − 1)2, is
shown in Figure 15. We have also plotted the logarithmic derivative of the potential, as
derived in Eq. (194). We see that the derivative of the effective potential w.r.t. the scalar
field vanishes for σ = σ0. In addition, it asymptotically tends to +8 as σ → ±∞, which
can be analytically obtained using the expression for the potential in Eq. (190). Figure
17 illustrates the phase space and the attractor value σ0 = 1. We have also verified the
de Sitter relation in Eq. (127) near the attractor, see Figure 18.

Finally, as for the minimal coupling, let us check that our conditions for the generation
of amplification are compatible with the results in [64]. In that article, the condition
3 < 2n was found in order to have the growing solution, and the condition 0 < 2n < 3
for the blue-tilted spectrum, see Eqs. (78) and (81) in [64]. Comparing with our previous
conditions, see Eqs. (196) and (197) respectively, we find the following relation between
the two reconstruction methods:

n =
2αy2
βy0

. (199)

Starting from Eq. (191), using H in Eq. (192) at leading order together with Eq. (17),
we can express the evolution of the scalar field in terms of the scale factor:

dσ

d ln a
= −2y2ασ0

βy0

(
σ

σ0

− 1

)
⇒ σ(a)

σ0

− 1 =
(a0
a

) 2αy2
βy0 .
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Figure 15: Potential reconstructed in In-
duced Gravity using the parameters: MP =
1, y0 = 1, y2 = 1, σ0 = 1, and ξ = 1.
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Figure 16: Plot of the function σdlnV/dσ.
It takes value 4 at the attractor σ = σ0 and
at σ = 0, as expected from Eq. (194).
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Figure 17: Phase space diagram for the sim-
ple potential of order two with the partic-
ular choice M2

P = 1, σ0 = 1, y0 = 1 and
y2 = 1. The scalar field σ is evolving to-
wards its attractor σ0 = 1.
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Figure 18: Derivative of V/U2 w.r.t. σ. We
do well have a de Sitter behaviour close to
the attractor, i.e dV/U2

dσ
= 0, see Eq. (127).

From the expression of H in Eq. (192) for IG and substituting this last result, we find:

H ≃ βσ0y0

[
1 +

(
1 + 2

αy2
βy0

)(a0
a

) 2αy2
βy0

]
.

Comparing it with the Taylor expansion of H from [64], see Eq. (159), we do indeed find
the same Hubble evolution with the scale factor, w.r.t. a power n given by Eq. (199).

Stability

Using the same arguments as in GR, see Section 4.2, we can apply an analogous procedure
to find the second perturbed solution, see Eq. (165), and the stability conditions. Starting
from the expression of the potential in Eq. (185), we can deduce its invariance by taking
the same combination of the coefficients of the potential as in GR, i.e. the ratio between
the coefficients of Y 2 and that of σ2Y 2

,σ, divided by −2:

y2 → −y2 +
3 (1 + 6ξ)

4ξ
y0 = −y2 +

3β

2α
y0.
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Note that the potential is indeed invariant close to the attractor. Therefore, one needs
to expand the expression (190) in order to check explicitly the invariance. Applying this
replacement in Eqs. (195) and (197), we find the following conditions for the amplification
when the second solution is dominant.

Φ =
4αy2
βy0

− 3,

ns − 1 =6− 4αy2
βy0

.

5.4 General Jordan frames action

Let us now consider more general Jordan frame actions for which the gravitational inter-
action is described by the function [80]:

U(σ) =
ξσ2

2
+ J. (200)

Note that this coupling is equivalent to a quadratic polynomial form [70].

U(σ) =
ξσ2

2
+ C1σ + J0.

Indeed, defining σ0 = −C1

ξ
, J = J0 − C2

1

2ξ
, we can rewrite it as: U(σ) = ξ

2
(σ − σ0)

2 + J .
Therefore, by redefining σ − σ0 → σ one recovers (200).

Using our results for the mapping between JF and EF in Eqs. (180) and (181), this
coupling gives the following functions in the Jordan frame:

G = −27/2

MP

U5/2Y,σ

(1 + 6ξ) ξσ2 + 2J
, (201)

H =

√
2U

MP

(
Y +

4ξUσY,σ

(1 + 6ξ) ξσ2 + 2J

)
. (202)

Potential reconstruction

The potential is then obtained from Eq. (125):

V =
(ξσ2 + 2J)

2

M2
P

(
3Y 2 −

2 (ξσ2 + 2J)
2
Y 2
,σ

ξ(1 + 6ξ)σ2 + 2J

)
. (203)

Let us proceed in the same manner as usual. We can represent the scalar field flow
functions as defined in Eq. (130) and (131):

δ1 =− 8U2Y,σ

ξ(1 + 6ξ)σ3Y + 2JσY + 4ξUσ2Y,σ

, (204)

δ2 =− 4U (4ξσY,σ + 2UY,σσ)

(2J + ξ(1 + 6ξ)σ2)Y + 4ξσUY,σ

(205)

− δ1
(2J + 3ξ(1 + 6ξ)σ2)Y + (2J(1 + 4ξ)σ + ξ(1 + 14ξ)σ3)Y,σ + 4ξσ2UY,σσ

(2J + ξ(1 + 6ξ)σ2)Y + 4ξσUY,σ

.
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Let us now suppose that the inflaton evolves to the same attractor σ0, with the same
assumption σ0 > 0 and the same constrained Taylor expansion for Y , see Eq. (188).
With this condition, we find the following limit for the SR parameters:

δ1(σ0) = 0,

δ2 (σ0) = − 4y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

. (206)

We can again find a simple potential leading to an amplification using the truncated
Taylor expansion at second order Y = y0 + y2 (σ/σ0 − 1)2 as exact:

V =
y22 (ξσ

2 + 2J)
2

M2
P

3

[
y0
y2

+

(
σ

σ0

− 1

)2
]2

−
8
σ2
0
(ξσ2 + 2J)

2
(

σ
σ0

− 1
)2

ξ(1 + 6ξ)σ2 + 2J

 . (207)

The behaviour in the vicinity of σ0 gives:

G ≃ − 4y2
MPσ2

0

(ξσ2
0 + 2J)

5/2

(ξ(6ξ + 1)σ2
0 + 2J)

(
σ

σ0

− 1

)
, (208)

H ≃ y0
MP

√
ξσ2

0 + 2J +

(
4y2
MP

ξ (ξσ2
0 + 2J)

3/2

ξ(6ξ + 1)σ2
0 + 2J

+
y0
MP

ξσ2
0√

ξσ2
0 + 2J

)(
σ

σ0

− 1

)
. (209)

It’s worth noting that we still find the linear behaviour of the Hubble parameter H ap-
proaching the attractor in the JF. Additionally, the time dependence of σ(t) still remains
similar to that in the EF, see Eq. (146). Note also that we can explicitly check that the
previous results for the case of Induced Gravity can be recovered by taking J = 0 in the
JF. In addition, the results in the EF can be recovered by taking ξ = 0 and J =

M2
P

2
. In

particular, using these values in the general expression of the potential in Eq. (203), we
recover the potential in GR found in Eq. (139) and the one for IG in Eq. (185).

Developing Eq. (193) for the JF using Eq. (200), we find:

(σ̈ + 3Hσ̇)

(
1 + 6

ξ2σ2

ξσ2 + 2J

)
+

ξσ (1 + 6ξ)

ξσ2 + 2J
σ̇2 = −Veff ,σ.

where Veff ,σ =
(
V,σ − 4ξσ

ξσ2+2J
V
)
. The derivative of the effective potential vanishes when:

d lnV

dσ
=

4ξσ

ξσ2 + 2J
. (210)

When such a condition is satisfied, the scalar field can be constant, with σ̇ ≈ σ̈ ≈ 0, and
it is possible to have a de Sitter behaviour.

Amplification of the perturbations

The function z, present in the Mukhanov-Sasaki equation in Eq. (61), for the JF has the
following form [80]:

z = aϕδ1

√
1 + 3U̇2

ϕ̇2U

1 + U̇
2HU

,
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where the function Z is defined as Z =
(
1 + 3U̇2

ϕ̇2U

)
/
(
1 + U̇

2HU

)2
.

In the annex A.3 in Eq. (271), we have derived the function z′/z in terms of the SR
parameters:

z′

z
= H [1 + γ1 + γ2 − γ3 + γ4] ,

where the functions γi are defined in Eqs. (270). The amplification through the presence
of a growing solution is verified through the value of Φ, defined in Eq. (110) and having
the following form:

Φ =

[
1− ϵ1 +

ϵ21 − ϵ1ϵ2
(1− ϵ1)

+ 2 (1 + γ1 + γ2 − γ3 + γ4)

]
.

The parameters δi have been defined in terms of the SR parameters in Eq. (275). Using
our hierarchies of SR parameters in (206), we then find:

Φ = 3 + 2δ2 = 3− 8y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

, (211)

and the growing solution can exist for:

3 <
8y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

. (212)

Otherwise, we need to continue with the derivation of the spectral index. The function
fMS is derived in Eq. (272) and is given by:

fMS = [(1 + γ1 + γ2 − γ3 + γ4) (2 + γ2 − γ3 + γ4)] .

Using Eqs. (275) and (206), we find the following result close to the de Sitter attractor:

fMS = 2 + 3δ2 + δ22.

The scalar spectral index in Eq. (114) then takes the form:

ns − 1 = 3− |3 + 2δ2| = −2δ2 =
8y2
σ2
0y0

(2J + ξσ2
0)

2

(2J + ξσ2
0(6ξ + 1))

, (213)

where in the first equality, we used the fact that the condition (212) is not satisfied.
Therefore, the spectrum is blue-tilted if the following condition is satisfied:

3 >
8y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

> 0 ⇒ 3σ2
0

8

ξ(1 + 6ξ)σ2
0 + 2J

(ξσ2
0 + 2J)

2 >
y2
y0

> 0. (214)

Note that we can find this result using the second method of the derivation of the function
fMS in Eq. (268) or from the spectral index in Eq. (276).

Let us take some particular coefficients y2 = 1/3 and y0 = 1. We choose M2
P = 1,

ξ = J = 1 and an attractor value σ0 = 1. We find, with Eq. (211), Φ = 8/7 > 0,
which gives a constant and decreasing solution. The associated spectral index, Eq. (213),
is ns − 1 = 8/3 > 0 which is blue-tilted. The behaviour of the potential close to the
attractor, in Eq. (207), is shown in Figure 19. The de Sitter relation in Eq. (127) close to
the attractor is verified, see Figure 22. Figure 21 represents the phase space of the scalar
field.
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Figure 19: Potential reconstructed in the
JF using the parameters: MP = 1, y0 = 1,
y2 = 1/3, σ0 = 1, and ξ = J = 1

.
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Figure 20: Figure representing d lnV
dσ

in blue
and 4ξσ

ξσ2+2J
in red. They intersect at the at-

tractor value σ0 = 1, at 4/3, see Eq. (210).
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Figure 21: Phase space diagram for the sim-
ple potential of order two. The scalar field
σ is evolving towards its attractor σ0 = 1.
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Figure 22: Derivative of V/U2 w.r.t. σ. We
do well have a de Sitter behaviour close to
the attractor, i.e. dV/U2

dσ
= 0, see Eq. (127).

Stability

The invariance of the potential in the JF, see Eq. (203), can be found, as in the previous
cases, by considering the ratio between the coefficients of Y 2 and σ2Y 2

,σ, divided by −2:

y2 → −y2 +
3σ2

0 (ξ(1 + 6ξ)σ2
0 + 2J)

4 (ξσ2
0 + 2J)

2 y0.

Applying this replacement in Eqs. (211) and (213) one obtains the second solution which
yields the following conditions on the amplification:

Φ =
8y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

− 3,

ns − 1 =6− 8y2
σ2
0y0

(ξσ2
0 + 2J)

2

ξ(1 + 6ξ)σ2
0 + 2J

.

5.5 Conformal coupling

Let us now study a particular case in which the coupling is conformal together with a
nonzero Einstein–Hilbert term [81]. It corresponds to taking ξ = −1/6 in the general
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expression Eq. (200):

U = J − σ2

12
.

We can express the functions G and H using the results found for the general JF, see
Eqs. (201) and (202):

G = −25/2U5/2Y,σ

MPJ
, (215)

H =

√
2U

MP

(
Y − UσY,σ

3J

)
. (216)

Potential reconstruction

The potential can be obtained from Eq. (203):

V =
1

36M2
P

(
12J − σ2

)2(
3Y 2 −

(
12J − σ2

)2 Y 2
,σ

36J

)
. (217)

Using ξ = −1/6 in Eqs. (204) and (205), we find the SR parameters in this particular
coupling:

δ1 = − (σ2 − 12J)
2
Y,σ

36JσY + (σ2 − 12J)σ2Y,σ

δ2 =− (σ2 − 12J) (4σY,σ + (σ2 − 12J)Y,σσ)

36JY + (σ2 − 12J)σY,σ

− δ1
(σ2 − 12J)σ2Y,σσ + 4 (3J + σ2)σY,σ + 36JY

36JY + (σ2 − 12J)σY,σ

Assuming in the same way as before σ0 > 0 and considering the constrained Taylor
expansion for Y , we obtain the following limits:

δ1(σ) = 0,

δ2(σ0) = − y2
σ2
0y0

(σ2
0 − 12J)

2

18J
. (218)

As usual, we write the potential that might lead to an amplification close to the
attractor, by using the second-order truncated Taylor expansion as the exact function
Y = y0 + y2 (σ/σ0 − 1)2 in Eq. (217):

V =
y22

36M2
P

(
12J − σ2

)23

[
y0
y2

+

(
σ

σ0

− 1

)2
]2

− (12J − σ2)
2

9Jσ2
0

(
σ

σ0

− 1

)2
 . (219)

The behaviour of the functions G and H, see Eqs. (215) and (216), close to σ0 is given
by:

G ≃ − y2
MP

(12J − σ2
0)

5/2

18
√
6Jσ0

(
σ

σ0

− 1

)
,

H ≃ y0
MP

√
12J − σ2

0√
6

+

(
y0
MP

σ0

√
12J − σ2

0√
6(σ2

0 − 12J)
− y2

MP

(12J − σ2
0)

3/2

36
√
6J

)(
σ

σ0

− 1

)
.
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Amplification of the perturbations

Using the asymptotic limit of the SR parameters in Eqs. (218), we find the parameter Φ:

Φ = 3− y2
σ2
0y0

(σ2
0 − 12J)

2

9J
. (220)

The growing solution exists provided that the following condition is satisfied:

3 <
y2
σ2
0y0

(σ2
0 − 12J)

2

9J
. (221)

In the case where the condition (221) is not satisfied, the scalar spectral index takes
the form:

ns − 1 = 3−

∣∣∣∣∣3− y2
σ2
0y0

(σ2
0 − 12J)

2

9J

∣∣∣∣∣ = y2
σ2
0y0

(σ2
0 − 12J)

2

9J
. (222)

The spectrum is blue-tilted when we have the condition:

3 >
y2
σ2
0y0

(σ2
0 − 12J)

2

9J
> 0 ⇒ 27σ2

0J

8 (σ2
0 − 12J)

2 >
y2
y0

> 0. (223)

We take some particular coefficients y2 = 2 and y0 = 1 to illustrate the conformal
coupling case. We choose M2

P = J = 1 and an attractor value σ0 = 2. We find with Eq.
(220), Φ = −5/9 < 0, which gives a growing solution. The behaviour of the potential
close to the attractor, in Eq. (219), is shown in Figure 23. The de Sitter relation in Eq.
(127) is verified in Figure 26.
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Figure 23: Potential reconstructed in the
JF using the parameters: MP = J = 1,
y0 = 1, y2 = 2, σ0 = 1, and ξ = −1/6

.
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Figure 24: Figure representing d lnV
dσ

in blue
and 4ξσ

ξσ2+2J
in red. They intersect at the at-

tractor value σ0 = 2, at −1, see Eq. (210).

Stability

The invariance of the potential in the JF, see Eq. (217), is given for:

y2 → −y2 +
54Jσ2

0

(σ0
2 − 12J)2

y0.
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Figure 25: Phase space diagram for the sim-
ple potential of order two. The scalar field
σ is evolving towards its attractor σ0 = 2.
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Figure 26: Derivative of V/U2 w.r.t. σ. We
do well have a de Sitter behaviour close to
the attractor, i.e dV/U2

dσ
= 0, see Eq. (127).

Applying this replacement in Eqs. (220) and (222) we obtain the second solution which
yields the following conditions on the amplification:

Φ =
y2
σ2
0y0

(σ2
0 − 12J)

2

9J
− 3,

ns − 1 =6− y2
σ2
0y0

(σ2
0 − 12J)

2

9J
.
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6 f(R) cosmological models
In this Section, we consider another class of modified gravity theories generalising GR,
called f(R) gravity theories. In this class of models, the action is modified by replacing
the simple Ricci scalar R term with a more general function f(R) [82], [83]. These theories
have a modified gravitational dynamics, which can explain various cosmological problems,
such as inflation and dark energy21. The action for f(R) gravity models is given by [82]:

SR =

∫
d4x

√
−gf(R), (224)

where f(R) is the function of the Ricci scalar R and needs to be double differentiable.
Let us consider a new auxiliary scalar field φ described by the following action, without
a kinetic term:

SR =

∫
d4x

√
−g [f,φ(φ)(R− φ) + f(φ)] . (225)

This action is equivalent to the original action (224). Indeed, the equation of motion for
the scalar field is given by:

f,φφ(φ)(R− φ) = 0.

As we assumed f to be double differentiable, we have f,φφ(φ) ̸= 0 which imposes φ = R.
Therefore, the new degree of freedom is constrained by its "equation of motion" which
is not dynamical, and the two actions are equivalent. The important point is that the
action (225) is defined on the spacetime as the original action (224).

As before, we want to use the superpotential method with the goal to describe the
conditions for the amplification of the perturbations. To do so, we can first describe the
dynamics with the action (225). This action is that of a non-minimally coupled scalar
field with a field potential and no kinetic term:

SR =

∫
d4x

√
−g [F (φ)R− V (φ)] (226)

where we have defined F (φ) ≡ df(φ)
dφ

and the potential as:

V = F (φ)φ− f(φ). (227)

As in the case of a non-minimally coupled scalar field model, we can perform a field
and metric transformations to obtain a minimally coupled scalar field action. The metric
transformation is a conformal transformation, see Eq. (172), which is defined as:

gµν = Ω−2(x)g̃µν =
M2

P

2F (φ)
g̃µν ⇒ Ω2 =

2F (φ)

M2
P

. (228)

21Observations show us that the expansion of the universe is actually accelerating. It requires breaking
the SEC, as we saw before in annex 1.2, with the presence of a fluid with w < − 1

3 to get ä
a > 0, see

Eq. (7). Dark energy has been introduced to account for this missing fluid and cannot be composed of
ordinary matter. Since observations indicate wDE ∼ −1, dark energy is consistent with the cosmological
constant Λ, note, however, the new Dark Energy Survey showing deviation from these values [84]. The
theories f(R) can offer a unified framework for both the accelerated expansion dynamics in the early
universe and in the late universe.
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Using this transformation and the corresponding Ricci transformation in Eq. (175), we
find the following action:

SE =

∫
d4x
√

−g̃

[
M2

P

2
R̃− 1

2

(
3F

Ω2

(
d log Ω2

dφ

)2
)
g̃µν∂µφ∂νφ− Ṽ

]
, (229)

where we have defined the potential in the EF as:

Ṽ =
V

Ω4
= M4

P

Fφ− f

4F 2
.

To recover the minimal coupling action, one finally needs to define the field as:

dϕ

dφ
=

√
3F

Ω2

Ω2
,φ

Ω2
=

√
3

2
MP

F,φ

F
⇒ ϕ =

√
3

2
MP ln

(
2

M2
P

F (φ)

)
. (230)

Inserting this new field into Eq. (229), we indeed obtain an EF action with a minimally
coupled scalar field ϕ:

SE =

∫
d4x

√
−g

[
M2

P

2
R̃− 1

2
g̃µν∂µϕ∂νϕ− Ṽ (ϕ)

]
.

At this point, one could proceed in the same way as previously. However, in this
context, the goal is reconstructing the form of f . A major difference comes from the fact
that the potential in the JF depends on the form of the function f(φ). To recover the
potential in Eq. (226), one needs to find the form of f(φ). We follow the steps presented
in [85]. Before going into the reconstruction procedure, let us note that not all potentials
in the EF can be analytically transformed in the JF. Indeed, the functions f and R can
be expressed only parametrically in terms of Ṽ as [83]:

R =

[√
6

MP

Ṽ,ϕ +
4Ṽ

M2
P

]
e

√
6ϕ

3MP , (231)

f =
M2

P

2

[√
6

MP

Ṽ,ϕ +
2Ṽ

M2
P

]
e
2

√
6ϕ

3MP . (232)

So, the function f in Eq. (232) and the corresponding potential in the JF can only be
obtained in an analytical form for some specific choices of the potential in the EF. If we
choose, for instance, the following form for the function R:

R = C1 + Cke
kϕ
MP , (233)

with C1 and Ck ̸= 0 being some arbitrary constants, Eq. (231) becomes a linear first-order
differential equation. Its solution gives the form of the potential Ṽ in the EF:[√

6

MP

dṼ

dϕ
+

4Ṽ

M2
P

]
e

√
6

3
ϕ

MP = C1 + Cke
k ϕ
MP

⇒ Ṽ (ϕ) =
M2

P

2

(
C2e

−2
√
6ϕ

3MP + C1e
−

√
6ϕ

3MP + Cωe
6

3MP
ϕ

)
, (234)
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where we have defined C2 as the integration constant, ω =
√
6k/2− 1, and Cω =

√
6Ck√
6+3k

=
Ck

ω+2
. Using this result in Eqs. (231) and (232), we find:

R = Cω(ω + 2)e
(ω+1)

√
6ϕ

3MP + C1,

f =
M2

P

2

(
Cω(ω + 1)e

(ω+2)
√
6ϕ

3MP − C2

)
.

which combined gives finally the analytical expression of the function f(R), see:

f(R) =
M2

P

2

[
Cω(ω + 1)

(
R− C1

Cω(ω + 2)

)ω+2
ω+1

− C2

]
. (235)

where C2 is an integration constant, ω =
√
6k/2− 1, and Cω =

√
6Ck√
6+3k

= Ck

ω+2
.

The reconstruction procedure to find the function f(R) in Eq. (235), and thus the
potential V in (227), can be fulfilled if the form of the potential in the EF is given by
Eq. (234). Let us remember that in our case, we are interested in a potential having a
de Sitter behaviour close to an attractor ϕ0. We assume the following form of the Hubble
parameter in the EF:

H̃(ϕ) = yae
a
√

3
2

ϕ−ϕ0
MP + ybe

b
√

3
2

ϕ−ϕ0
MP . (236)

This form is the same as Eq. (16) in [85], providing the following relations between the

parameters: Wa ≡ yae
−a
√

3
2

ϕ0
MP and Wb ≡ ybe

−b
√

3
2

ϕ0
MP . Using this form for the Hubble

parameter, we find the corresponding potential in the EF using Eq. (139):

Ṽ = 3M2
P

((
1− a2

)
y2ae

√
6a

(ϕ−ϕ0)
MP + 2yayb(1− ab)e

√
3
2
(a+b)

(ϕ−ϕ0)
MP +

(
1− b2

)
y2be

√
6b

(ϕ−ϕ0)
MP

)
,

which is formally analogous to Eq. (234). To obtain an analytical expression for f(R), it
is necessary to compare this potential with the one in Eq. (234), obtained with R defined
in Eq. (233). An appropriate analytical expression can be found only for some specific
parameters a and b, and the result has been presented in Tab. 1 from [85].

6.1 Frame mapping

We can now constrain further the form of the potential for the amplification of the per-
turbations. We start by expressing the scalar evolution and the Hubble parameter in the
EF, in the same way as Eqs. (177) and (178) for the previous JF:

G̃ =
dϕ

ÑLdt
=

dϕ

dφ

dφ

ΩNLdt
=

√
3

2
M2

P

F,φ

F 3/2
G. (237)

where we have used the field transformation in Eq. (230) and Eqs. (173) and (174). The
Hubble parameter is given by:

H̃ =
dã

ãÑLdt
=

1

Ω2

dΩ

NLdt
+

1

Ω

da

aNLdt
=

MP

2
√
2

F,φ

F 3/2
G+

MP√
2F

H. (238)

Let us now use the scalar field evolution in the EF, as in Eq. (138):

G̃ = −2M2
PH̃,ϕ = −2

√
2√
3
MP

F

F,φ

Y,φ. (239)
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where in the last equation, we used the field transformation (230) to express the derivative
in the JF. In addition, the function F can be expressed inverting Eq. (230) as follows:

F =
M2

P

2
e
√

2
3

ϕ
MP ⇒ Ω2 =

2F

M2
P

= e
√

2
3

ϕ
MP , (240)

where we used it to express the Weyl transformation defined in Eq. (228).

We can now invert Eq. (237) to express the scalar evolution G in the JF, and substi-
tuting Eq. (239) one obtains:

G = − 4√
3

F 3/2

F,φ

H̃,ϕ = − 4
√
2

3MP

F 5/2

F 2
,φ

Y,φ. (241)

Inverting Eq. (238) and using Eqs. (240) and (241), we finally find the expression of H
in the JF:

H = e
ϕ√
6MP

(
H̃ +

√
2

3
MPH̃,ϕ

)
=

√
2F

MP

(
Y +

2

3

F

F,φ

Y,φ

)
. (242)

Potential reconstruction

Starting from Eqs. (241) and (242), one can express the first and second SR parameters
in terms of Y (ϕ(φ)) and its derivatives. In a way similar to the previous non-minimal
coupling case, we could use the Taylor expansion of the Hubble parameter in terms of
the scalar field in the JF. Doing so, we would find the conditions on the coefficients of
the expansion. We could also find expressions similar to Eqs. (208) and (209) close to
the attractor. However, we now have a constrained Hubble parameter in the EF, see Eq.
(236), which leads to an analytical expression for the potential. So, instead of using the
Taylor expansion of Y (φ), we can Taylor expand w.r.t. the scalar field in the EF, H̃(ϕ).
Let us now find the SR parameters in terms of H̃(ϕ) and its derivatives. The first SR
parameter is found by taking the derivative of the first expression in Eq. (242):

ϵ1 = − 1

H2

dH

NLdt
= −ΩG̃

H,ϕ

H2
= 2M2

PH̃,ϕ

H̃√
6MP

+ 4
3
H̃,ϕ +

√
2
3
MPH̃,ϕϕ(

H̃ +
√

2
3
MPH̃,ϕ

)2 . (243)

Differentiating of the first SR parameter, we can then find the second SR parameter:

ϵ2 = ΩG̃
ϵ1,ϕ
Hϵ1

(244)

=
2M2

PH̃,ϕ

H̃ +
√

2
3
MPH̃,ϕ

H̃,ϕϕ

H̃,ϕ

− 2
H̃,ϕ +

√
2
3
MPH̃,ϕϕ

H̃ +
√

2
3
MPH̃,ϕ

+

H̃,ϕ√
6MP

+ 4
3
H̃,ϕϕ +

√
2
3
MPH̃,ϕϕϕ

H̃√
6MP

+ 4
3
H̃,ϕ +

√
2
3
MPH̃,ϕϕ

 .

Amplification of the perturbations

As usual, let us suppose that the scalar field evolves towards some attractor ϕ0 > 0,
without loss of generality. We need to evaluate the behaviour of the SR parameters close
to the attractor ϕ0 and impose the condition to get amplification. The first SR parameter

78



in Eq. (243) needs to vanish close to the attractor. This requires to impose H̃,ϕ (ϕ0) = 0.
Using Eq. (236), we find:

H̃,ϕ (ϕ0) =

√
3

2

1

MP

(aya + byb) = 0 ⇒ yb = −a

b
ya. (245)

The second SR parameter needs to go to a constant ϵ2 → cst. , so that H̃,ϕϕ (ϕ0) ̸= 0, and
H̃(ϕ0) > 0 to ensure inflation:

H̃ (ϕ0) = ya + yb =
(b− a)ya

b
> 0, (246)

H̃,ϕϕ (ϕ0) =
3

2M2
P

(
a2ya + b2yb

)
=

3

2M2
P

a(a− b)ya ̸= 0.

Using these results in Eqs. (243) and (244), we find the following asymptotic limits:

ϵ1(ϕ0) = 0,

ϵ2(ϕ0) = 3ab. (247)

We are looking for solutions where ϕ0 is an attractor. Close to the attractor ϕ0, the
scalar field ϕ in the EF must evolve toward ϕ0 linearly at leading order, see Eq. (153):

G̃(ϕ) ∼ g̃0

(
ϕ

ϕ0

− 1

)
,

with g̃0 < 0 to ensure the attraction, as we assumed ϕ0 > 0. Substituting the constrained
Taylor expansion, see Eq. (152), up to the second order:

H̃(ϕ) ∼ h0 + h2

(
ϕ

ϕ0

− 1

)
= H̃ (ϕ0) +

H̃,ϕϕ (ϕ0)

2
(ϕ− ϕ0)

2 ,

in the first expression in Eq. (239), we find:

G̃(ϕ) ∼ −2MP
2H̃,ϕϕ (ϕ0) (ϕ− ϕ0) = 3a(b− a)ya (ϕ− ϕ0) = 3abϕ0H̃ (ϕ0)

(
ϕ

ϕ0

− 1

)
.

In the second equality, we used Eqs. (245) and (246). The condition g̃0 = 3abϕ0H̃ (ϕ0) < 0
is satisfied when a and b have opposite signs. This condition is also compatible with the
de Sitter condition, H̃(ϕ0) > 0, when considering ya > 0, see Eq. (246).

To summarise, the generation of amplification in f(R) theories requires the solutions
to have ya > 0, (b − a)/b > 0 and a · b < 0. Imposing all these conditions in Tab.
1 from [85], we are left with a restricted range of possible analytical solutions, which
are presented in Tab. 2. Let us remind that the requirement of the existence of the
de Sitter attractor has changed the Hubble parameter in the EF, see Eq. (236), with
Wa ≡ ya exp

(
−a
√

3/2ϕ0/M
2
P

)
.

The function z, present in the Sasaki-Mukhanov equation in Eq. (61), for the f(R)
models is defined as follows [86]:

z = a

√
3M2

P

2

Ḟ
√
F
(
H + Ḟ /2F

) ,
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a b yb = −a
b
ya f(R) F (R) ϵ2 = 3ab

−2
3

1 2
3
ya 20y2a

(
3R

100y2a

)5/3
− 10y2a

3

(
3R

100y2a

)2/3
-2

−1 1
3

3ya 96y2a

(
R

144y2a
− 1

3

)3/2 √
R

144y2a
− 1

3
-1

−1
3

1 1
3
ya

32
3
y2a

(
R

16y2a
− 1

3

)3/2 √
R

16y2a
− 1

3
-1

−7
3

1 7
3
ya 160y2a

(
3R

400y2a

)5/6
− 280

3
y2a

(
3R

400y2a

)−1/6

-7

−5
3

1 5
3
ya

128
3
y2a

(
R

32y2a
− 5

3

)3/4 (
R

32y2a
− 5

3

)−1/4

-5

Table 2: Analytical expressions for f(R) from Tab. 1 in [85], imposing the conditions
ya > 0, (b − a)/b > 0 and a · b < 0 for the amplification of the perturbations. Note that
the first solution in [85], with b = 0 is not included, as the condition (245) is undefined.
The second and third cases are equivalent, substituting ya ↔ ya/3.

In the annex A.4, we have derived the function z′/z and z′′/z using two different methods.
Substituting the limit of the SR parameters in the vicinity of the attractor, see Eqs. (247),
into Eq. (289), it gives:

z′

z
→ 1 + ϵ2.

The parameter Φ, defined in Eq. (110) becomes:

Φ = 3 + 2ϵ2. (248)

The amplification through the growing solution occurs when:

ϵ2 < −3

2
. (249)

The function fMS is derived in Eq. (290). Imposing the limit for the SR parameters,
it reduces to the form:

fMS → 2 + 3ϵ2 + 2ϵ22.

The scalar spectral index in Eq. (114) becomes:

ns − 1 = −2ϵ2, (250)

which is blue-tilted if the following condition is satisfied:

−3/2 < ϵ2 < 0. (251)

Let us analyse the first case in Table 2, with a = −2
3

and b = 1. Using the expression
(248), we find an increasing solution: ϕ = −1. The corresponding potential in the JF can
be found with Eq. (227) and is presented in Figure 27.

6.2 de Sitter solutions in f(R) theories

In the previous Section, we applied the superpotential method to reconstruct f(R) theories
for the amplification of the perturbations. The results were quite limited. However, a
wider range of f(R) models have been studied in the literature, and it is therefore useful
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Figure 27: Reconstructed potential in Eq. (227) for the first case, a = −2
3

and b = 1, in
Table 2 with ya = M2

P = 1.

to enlarge the analysis. To do so, one can adopt a more specific approach compared to
the general reconstruction method. Starting from a particular model, it is indeed possible
to verify explicitly the existence of a de Sitter attractor and subsequently the possibility
of an enhancement of the primordial spectrum. In addition, we can check the stability of
the solutions. The reconstruction methods previously applied in the EF and JF frames
cannot indeed be straightforwardly applied in the reconstruction of f(R) theories. Let us
remember that a de Sitter phase corresponds to eternal inflation with constant expansion.
Therefore, the first SR parameter vanishes. Since we can express the Ricci scalar in Eq.
(3) in terms of the first SR parameter:

R = 6

(
ä

a
+

ȧ2

a2

)
= 6(2− ϵ1)H

2, (252)

we deduce that the de Sitter attractor R ≡ R0 is a positive constant R0 ∝ H2 = cst. > 0.

The field equations in f(R) gravity can be obtained by varying the action (224) w.r.t.
gµν [86]:

F (R)Rµν(g)−
1

2
f(R)gµν −∇µ∇νF (R) + gµν□F (R) = 0.

In the flat FLRW metric, the field equations are given by [86]:

3FH2 = (FR− f)/2− 3HḞ , (253)

−2FḢ = F̈ −HḞ , (254)

Using Eq. (252) and introducing the notation nx ≡ R
x

dx
dR

, it is possible to write Eq.
(253) in the following way:

1 = (2− ϵ1)
nf − 1

nf

− Ṙ

HR
nF . (255)

The existence of the de Sitter attractor implies the condition can then be reformulated
as:

nf (R0) = 2. (256)
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Differentiating Eq. (255), we obtain a Klein-Gordon-like equation of the form:

F̈ + 3HḞ +
2f −RF

3
= 0,

for the homogeneous field F . The last term in the last equation is the potential gradient:

V,F =
2f −RF

3
. (257)

Thus, the stability of the de Sitter solution with respect to homogeneous perturbations
can be studied using the potential implicitly defined by Eq. (257). The equilibrium point
given by V,F (R0) = 0 is the de Sitter attractor found in Eq. (256). The stability condition
is V,FF (R0) > 0, and we find a new condition on nF :

V,FF (R0) =
dR

dF

dV,F

dR

∣∣∣∣
R=R0

=
R

3

(
1− nF

nF

)∣∣∣∣
R=R0

> 0 ⇒ 0 < nF (R0) < 1, (258)

provided that R0 > 0. Expressing nF using its definition F (R) = df(R)
dR

, we can rewrite
this stability condition in terms of the function f(R) and its derivative:

f,R −Rf,RR

f,RR

∣∣∣∣
R=R0

> 0 ⇒ 0 < f,RR|R=R0
<

f,R
R

∣∣∣∣
R=R0

,

when f,R(R0) > 0.

Instead of solving the Klein-Gordon equation for homogeneous perturbations as in GR,
see Eq. (162), one may differentiate Eq. (255) to find the two solutions ϵ

(1,2)
2 . By doing

so and imposing the usual limit of SR parameters, with the odd parameters ϵ2i+1 → 0,
and the de Sitter condition nf (R0) → 2, one finds:

ϵ
(1,2)
2 (R0) = −1

2

(
3±

√
25− 16

nF (R0)

)
. (259)

The real limit of ϵ2 only exists when nF (R0) ≥ 16/25. By comparison with the sta-
bility condition (258), we finally have that the interval 16/25 < nF (R0) ≤ 1 ensures a
stable solution. The second SR parameter then takes the corresponding extreme values
−3 < ϵ

(1)
2 < −3/2 and −3/2 < ϵ

(2)
2 < 0. In such cases, the SR parameters may approach

the de Sitter attractor ϵ1 → 0, while ϵ2 → cst. . When 0 < nF (R0) ≤ 16/25, the solutions
are still stable, but ϵ2 becomes imaginary and solutions oscillate.

When the stability condition is not satisfied, the solution ϵ
(1)
2 is the only one having the

appropriate constant behaviour for amplification, corresponding to a decreasing ϵ1 → 0.
When nF (R0) > 1, we find indeed the extreme value −4 < ϵ

(1)
2 < −3, corresponding to

nF (R0) = +∞ and nF (R0) = 1, respectively. Instead, 0 < ϵ
(2)
2 < 1 does not respect

the condition required for amplification, see Eqs. (249) and (251). The case nF (R0) < 0

leads to the range −∞ < ϵ
(1)
2 < −4, corresponding to nF (R0) = 0− and nF (R0) = −∞,

respectively. As before, 1 < ϵ
(2)
2 < +∞ is outside the condition for amplification.
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The conditions for the generation of PBHs in Eqs. (248) and (250) can be then
extended with the two possible ϵ

(1,2)
2 . Close to the attractor, one has:

Φ(1,2) = 3 + 2ϵ
(1,2)
2 = ∓

√
25− 16

nF (R0)
, (260)

and

n(1,2)
s − 1 = −2ϵ

(1,2)
2 = 3±

√
25− 16

nF (R0)
. (261)

Therefore, with this method, we first need to find the de Sitter solution by solving
Eq. (256) and then find the corresponding parameter nF (R0) to determine the expression
of the second SR parameter, see Eq. (259). Then, we can check the stability and the
amplification of the perturbations with Eqs. (258), (260) and (261). By applying this
procedure, we can extend the solutions found with the superpotential method in Table 2.
The results are presented in Table 3. We see that the first three cases are stable, while
the last two are unstable with nF (R0) < 0. In the next Sections, we analyse different
models found in the literature using this method.

a b f(R) R0 nF (R0) ϵ
(1)
2 ϵ

(2)
2

−2
3

1 20y2a

(
3R

100y2a

)5/3
− 10y2a

3
100y2a

3
2
3

-2 -1

−1 1
3

96y2a

(
R

144y2a
− 1

3

)3/2
192y2a

2
3

-2 -1

−7
3

1 160y2a

(
3R

400y2a

)5/6
− 280

3
y2a

400y2a
3

−1
6

-7 /

−5
3

1 128
3
y2a

(
R

32y2a
− 5

3

)3/4
256y2a

3
−2

3
-5 /

Table 3: Stability of the f(R) solutions found in Table 2 found with the superpotential
method.

6.2.1 Scale-invariant model

The Starobinsky inflation is based on a modification of general relativity by including a
term in the action that involves the square of the Ricci scalar [19]. Let us consider this
model with the function f(R) defined as:

f(R) = αR2,

which directly gives nf (R0) = R
f

df
dR

∣∣∣
R=R0

= 2. It essentially means that the de Sitter

attractor R0 can take all positive values. Since nF (R0) = R
F

dF
dR

∣∣
R0

= 1, the stability
condition (258) is not satisfied, similarly to what occurs for USR inflation, see Section
4.2. Therefore, only ϵ

(1)
2 can exist as an unstable solution. One can indeed check that

ϵ
(2)
2 = 0. Using Eq. (259), we find:

ϵ
(1)
2 = −3.

It gives Φ(1) = −3 < 0, using Eq. (260). The amplification of the spectrum is therefore
generated by the existence of an increasing solution for the curvature perturbations. This
model is the simplest model for the generation of amplification.
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6.2.2 Powers of R binomial

Let us analyse the specific model [87]:

f(R) = R + αRn/M2n−2.

The de Sitter attractor is found by solving Eq. (256):

R0 = M2

(
1

α(n− 2)

)1/(n−1)

. (262)

To ensure R0 > 0, this solution requires α(n− 2) > 0. Using this result, we find:

nF (R0) =
n

2
.

The solutions are stable provided that 0 < n < 2, using Eq. (258). Beyond this range,
n > 2 and n < 0, the de Sitter solution in Eq. (262) exists but is unstable. In this case,
only ϵ

(1)
2 approaches the de Sitter limit.

The definition of the second SR parameter in Eq. (259) becomes:

ϵ
(1,2)
2 = −1

2

(
3±

√
25− 32

n

)
.

Therefore, one also needs n ≥ 32/25 to have a definite second SR parameter, the interval
32/25 < n < 1 has a stable definite limit. Using Eqs. (259) and (261), we can finally
deduce the conditions for the amplification studying the behaviour of:

Φ = ∓
√

25− 32

n
and ns − 1 = 3±

√
25− 32

n
,

on varying n.

6.2.3 Second-order polynomial in R

Let us now consider an extension of the Starobinsky model of the form:

f(R) = αM2 + βR + γR2/M2.

The first term corresponds to a cosmological constant, i.e. Λ = αM2R0 = αM2.

Following the same procedure used above, one finds that the de Sitter solution exists
provided that α · β < 0:

R0 = −2M2α

β
.

Correspondingly, one finds:

nF (R0) = − 4αγ

β2 − 4αγ
,

Assuming β real, the stability condition is satisfied for the ranges 0 < β2 < 4αγ or
4αγ < 0 < β2. In such a case, one find:

ϵ
(1,2)
2 = −1

2

(
3±

√
25 +

4 (β2 − 4αγ)

αγ

)
,

Φ(1,2) = ∓

√
25 +

4 (β2 − 4αγ)

αγ
and ns − 1(1,2) = 3±

√
25 +

4 (β2 − 4αγ)

αγ
.
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6.2.4 n-order trinomial

Let us now consider a similar case to the previous one but with a more general form of
the function f(R):

f(R) = R + α
R2

M2
+ β

Rn

M2n−2
.

This model is a power-law extension of the Starobinsky model, see [88]. In the same way
as before, the de Sitter solution is given by:

R0 = M2

(
1

β(n− 2)

)1/(n−1)

,

as found in the literature [89]. Therefore, it exists if β(n− 2) > 0. Correspondingly, the
stability condition becomes:

nF (R0) =
1 + M2n(n−1)

2R0α(n−2)

1 + M2(n−1)
2R0α(n−2)

≡ 1 + nν

1 + ν
where ν =

M2(n− 1)

2R0α(n− 2)
.

In the case n > 1, the stability condition is respected if −1/n < ν < 0 and ν < −1. While
the case n < 2 requires ν > 0 to have a stable solution. We find that:

ϵ
(1,2)
2 = −1

2

(
3±

√
25− 16(1 + ν)

1 + nν

)
,

Φ(1,2) = ∓
√

25− 16(1 + ν)

1 + nν
and ns − 1(1,2) = 3±

√
25− 16(1 + ν)

1 + nν
.
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Conclusion
Primordial black holes may be very promising candidates for explaining several astrophys-
ical and cosmological observations. Since PBHs behave as cold and collision-less matter,
they could form the entire dark matter content in the universe. In addition, their primor-
dial origin could have seeded the formation of supermassive BHs in the centre of galaxies
[45]. The current and future gravitational wave detectors have increased the hope of de-
tecting their existence, leading to a regain of interest since their introduction in the 70s
[90].

In this thesis, we have investigated a possible mechanism for generating the amplifi-
cation of inflationary perturbations leading to the formation of PBHs. The latest obser-
vations of the LSS and the CMB with PLANCK have so far confirmed the predictions
of the SR inflation scenario at large scales. During SR inflation, the perturbations are
frozen on the super-horizon regime with a slightly red-tilted power spectrum. By intro-
ducing a de Sitter attractor in the inflaton potential, the inflationary dynamics became
completely different at small scales. In particular, the amplification of perturbations is
possible during inflationary phases very similar to USR and CR inflation because of the
large variation in the dynamical quantities. A negative value of the parameter Φ ensures
the existence of a growing solution of the Mukhanov-Sasaki equation, see Eq. (110). On
the other hand, in absence of such a growing solution, a blue-tilted spectral index could
still produce amplification, see Eq. (114).

During CR or USR inflationary dynamics, when the inflaton field approaches the de
Sitter attractor, the odd SR parameters go to zero while the even ones go to a constant dif-
ferent from zero. In such scenarios, the conditions for the amplification could be obtained.
By expressing the SR parameters in terms of the Hubble parameter, one can deduce the
conditions on the form of the Taylor expansion of the Hubble parameter necessary for the
amplification. With the form of the resulting Hubble parameter, the inflaton potential
was constrained to generate the amplification of the perturbations. We have then explic-
itly verified the existence of the growing solution or of the blue-tilted power spectrum.

We have applied this statement to the inflationary dynamics reconstructed with the
superpotential method. This method is a technique allowing the reconstruction of the
potential starting from some ansatz. The dynamical equations contain three functions
(H,U,G), from which the potential can be reconstructed, see Eq. (125). The function H
(or G) can be obtained analytically by integration, see Eq. (123) or Eq. (124), once U
and G (or H) are given. The functions which must be integrated can be defined in such a
way that exact integration can be performed. Such a technique has been found to be very
useful, compared to other reconstruction methods. It leads to quite general predictions
for the shape of the inflaton potential needed for the amplification close to the attractor.
Moreover, it is applicable to a wide class of models.

The case of inflation in the context of General Relativity has first been investigated.
The simple relation relating the functions H and G, see Eq. (138), allowed us to re-
construct the dynamics in an easy and straightforward way. The formation of PBHs is
possible provided that one of the two conditions in Eqs. (156) or (158) is satisfied. Ex-
ploiting the Jordan-Einstein frame transformation, the analysis has been extended to the
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case of a non-minimally coupled inflaton. Indeed, using the mapping between these two
frames, we are still able to use the relation (138) in the EF to find the condition in the
JF. In the case of IG, the conditions in Eqs. (196) or (198) are found. The general Jordan
frame case, of the form U = ξσ2

2
+ J , has then been investigated. The conditions on the

generation of amplification are given in Eqs. (212) or (214). Studying the particular case
ξ = −1/6 for the conformal coupling, we obtained the conditions (221) or (223). Finally,
f(R) gravity theories were studied in detail. In these theories, the reconstruction method
is slightly different and more complicated due to the new function f(R). The reconstruc-
tion can lead to models with exact solutions only for some specific reversible f(R) gravity
models. The requirement of amplification gave the conditions in Eqs. (249) and (251).
To broaden the analysis, specific models have been studied verifying the existence of the
de Sitter attractor directly.

The monotonic evolution of the inflaton field towards the de Sitter attractor may not
be stable. In Section 4.2, we have found the stability conditions for the two possible solu-
tions of the homogeneous perturbation of the inflaton field. We applied a similar analysis
for the case of Induced Gravity and general Jordan frames. In f(R) gravity theories, we
checked the stability for the models obtained with the specific requirement of the de Sitter
attractor.

Reconstructing a realistic inflationary model with a phase leading to an amplification
of the power spectrum of the curvature perturbations is not straightforward. Calculating
the exact features of the inflaton potential needed for the enhancement is a useful tool
for the inflationary model building.
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A Annex: Mukhanov-Sasaki equation

A.1 General Relativity

In GR, the variable z is defined by the scale factor a and the first slow-roll parameter ϵ1
as:

z ∝ a
√
ϵ1.

Using the definition of the SR parameters defined in conformal time, see Eqs. (37),
we have:

ϵ′1 = Hϵ1ϵ2,

ϵ′2 = Hϵ2ϵ3.

Using these definitions, we can express the first derivatives of z w.r.t. conformal time:

z′ ∝ a′
√
ϵ1 +

a

2

ϵ′1√
ϵ1

= a′
√
ϵ1 +

a′

2

ϵ1ϵ2√
ϵ1
.

Thus, we find:

z′

z
= H

[
1 +

1

2
ϵ2

]
, (263)

z′′

z
=

a′′

a
+H2 ϵ2

2
+

a′′

a

ϵ2
2
+H2 ϵ

2
2

4
+H2 ϵ2ϵ3

2
,

= H2

[
2− ϵ1 + ϵ2

(
3

2
+

ϵ2
4
− ϵ1

2
+

ϵ3
2

)]
. (264)

where in the last equality, we used the definition (36) to express the second derivative of
the scale factor w.r.t. conformal time:

a′′

a
= H2 +H′ = (2− ϵ1)H2. (265)

A.2 Induced Gravity

In IG, the variable z is defined by the scale factor, the scalar field σ, and the Hubble
parameter as:

z =
aσ̇

H

√
1 + 6γ

1 + δ1
= aσδ1

√
1 + 6γ

1 + δ1
.

Using the scalar field functions in Eqs. (38) and (39), the first derivatives of z w.r.t.
conformal time becomes:

z′ = a′σδ1

√
1 + 6γ

1 + δ1

(
1 + δ1 + δ2 −

δ1δ2
1 + δ1

)
.
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Thus, we find:

z′

z
=H

[
1 + δ1 + δ2 −

δ1δ2
1 + δ1

]
, (266)

z′′

z
=
a′′

a

(
1 + δ1 + δ2 −

δ1δ2
1 + δ1

)
+H2

(
δ1 + δ2 −

δ1δ2
1 + δ1

)
+H2

(
δ21 + 2δ1δ2 −

δ21δ2
1 + δ1

)
+H2

(
δ1δ2 + δ22 −

δ1δ
2
2

1 + δ1

)
−H2

(
δ21δ2
1 + δ1

+ 2
δ1δ

2
2

1 + δ1
+

δ1δ2δ3
1 + δ1

− δ21δ
2
2

(1 + δ1)
2

)
=H2

[
δ21 + δ22 + (3− ϵ1) (δ1 + δ2 + 1) + δ2δ3 +

δ1δ2
1 + δ1

(
ϵ1 + δ1 − 3δ2 − δ3 +

2δ1δ2
1 + δ1

)
− 1

]
.

(267)

where in the last equality, we used Eq. (265).

A.3 General Jordan frame

First method

In JF, we can define the function z as follows [80]:

z = aϕδ1

√
1 + 3U̇2

ϕ̇2U

1 + U̇
2HU

= aϕδ1

√
U2 + 3ξ2σ2U

U + ξσ2

2
δ1

= aϕδ1

√
N1

D1

.

Using the above definition, we can derive the first derivative of z w.r.t. conformal
time.

z′ = a′ϕδ1

√
N1

D1

(1 + δ1 + δ2)−
1

2
aϕδ1

N ′
1√

N1D1

− aϕδ1

√
N1D

′
1

D2
1

It allows us to find the quantity of interest in the same way as for the IG case:

z′

z
= H

[
1 + δ1 + δ2 − δ1

(
1

2

N2

N1

+
D2

D1

)]
,

z′′

z
= H2

[
δ21 + δ22 + (3− ϵ1) (δ1 + δ2 + 1) + 3δ1δ2 + δ2δ3 − 1

− δ1

(
3

2

N2

N1

+ 3
D2

D1

)
− δ21

(
N2

N1

+ 2
D2

D1

− 3

4

N2
2

N2
1

+
D2

2

D2
1

+
1

2

N3

N1

+
D3

D1

)
− δ1δ2

(
3

2

N2

N1

+ 3
D2

D1

)
+ ϵ1δ1

(
1

2

N2

N1

+
D2

D1

)
] . (268)

where we have defined:

N1 =
ξ2σ4

4
(1 + 6ξ) + ξσ2J(1 + 3ξ) + J2,

N2 = ξ2σ4(1 + 6ξ) + 2ξσ2J(1 + 3ξ),

N3 = 4ξ2σ4(1 + 6ξ) + 4ξσ2J(1 + 3ξ),

D1 =
ξσ2

2
(1 + δ1) + J,

D2 = ξσ2(1 + δ1) +
ξσ2

2
δ2,

D3 = 2ξσ2(1 + δ1) + 2ξσ2δ2 +
ξσ2

2

δ2δ3
δ1

.

They have been defined on the basis of the conformal derivatives of the numerator N1
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and the denominator D1, with the goal of extracting the SR parameters:

1

H2

N ′
1

N1

=
δ1
H

N2

N1

,

1

H2

N ′′
1

N1

= −ϵ1δ1
N2

N1

+ δ1δ2
N2

N1

− δ21
N2

2

N2
− δ21

N3

N1

,

1

H2

D′
1

D1

=
δ1
H

D2

D1

,

1

H2

D′′
1

D1

= −ϵ1δ1
D2

D1

+ δ1δ2
D2

D1

− δ21
D2

2

N2
− δ21

D3

D1

.

and where we defined N ′
2 = Hδ1N3 and D′

2 = Hδ1D3.

Second method

Let us now verify this calculation with another method. Let us restart by redefining the
function z in a slightly different way:

z ≡ aϕ̇

H

√
1 + 3U̇2

ϕ̇2U(
1 + U̇

2HU

) =
aϕ̇

H
√
F

√
E

(1 + γ3)
(269)

where we have defined E ≡ 2U
(
1 + 3U̇2

ϕ̇2U

)
and a new hierarchy of parameters γi:

γ1 ≡ − Ḣ

H2
, γ2 ≡

ϕ̈

Hϕ̇
, γ3 ≡

U̇

2HU
, γ4 ≡

Ė

2HE
. (270)

Using these definitions, we can find the first derivative of z w.r.t. conformal time:

z′ = aż = a

(
ȧϕ̇

H
√
F

√
E

(1 + γ3)
+

aϕ̈

H
√
F

√
E

(1 + γ3)

− aϕ̇Ḣ

H2
√
F

√
E

(1 + γ3)
− 1

2

aϕ̇Ḟ

HF 3/2

√
E

(1 + γ3)
+

1

2

aϕ̇

H
√
F

Ė√
E (1 + γ3)

)
.

The quantities of interest in the Mukhanov-Sasaki equation are then expressed as follows:

z′

z
=
aż

z
= H [1 + γ1 + γ2 − γ3 + γ4] , (271)

z′′

z
=
aȧż + a2z̈

z
= H2 [(1 + γ1 + γ2 − γ3 + γ4) (2 + γ2 − γ3 + γ4)] , (272)

where we are considering situation where the parameters γi are constant, and therefore
the following relations have been used:

Ḣ =
ä

a
− ȧ2

a2
⇒ ä

aH2
= 1− γ1,

Hγ̇1 = −Ḧ

H
+ 2

Ḣ2

H2
= 0 ⇒ Ḧ

H
= 2

Ḣ2

H2
,

Hγ̇2 =

...
ϕ

ϕ̇
− Ḣϕ̈

Hϕ̇
− ϕ̈2

ϕ̇2
= 0 ⇒

...
ϕ

ϕ̇
= −γ1γ2H

2 + γ2
2 ,

Hγ̇3 =
1

2

F̈

F
− 1

2

ḢḞ

HF
− 1

2

Ḟ 2

F 2
= 0 ⇒ 1

2

F̈

F
= −γ1γ3H

2 + 2γ2
3 , (273)

Hγ̇4 =
1

2

Ë

E
− 1

2

ḢĖ

HE
− 1

2

Ė2

E2
= 0 ⇒ 1

2

Ë

E
= −γ1γ4H

2 + 2γ2
4 .
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Let us now assume |γi| ≪ 1 for (i = 1, 2, 3, 4), we can then find the spectral index of
curvature perturbations at leading order in γi:

ns − 1 ≈ 3−

√
1 + 4

fMS

(1− ϵ1)2
≈ 3−

√
1 + 4(2 + 2γ1 + 3γ2 − 3γ3 + 3γ4)(1 + 2ϵ1)

≈ 3− 3

(
1 +

2

9
(6γ1 + 3γ2 − 3γ3 + 3γ4)

)
≃ −4γ1 − 2γ2 + 2γ3 − 2γ4, (274)

where we used the Taylor expansion to eliminate the two exponents.

In particular, for the non-minimal coupling case, we can relate the γi parameters,
defined in Eqs. (270), to the SR hierarchies ϵi and δi. Indeed, using the definitions in
Eqs. (200) and (133), we can write:

γ1 = ϵ1, γ2 = δ1 + δ2 − ϵ1, γ3 =
δ1

1 + ρ
, γ4 =

(1 + 6ξ)δ1
ρ+ 1 + 6ξ

. (275)

where we have defined ρ ≡ M2
P

ξϕ2 . The approximated scalar spectral index of the scalar
perturbations, in Eq. (274), with these expressions becomes:

ns − 1 = −2

(
ϵ1 + δ1 + δ2 −

δ1
1 + ρ

+
(1 + 6ξ)δ1
ρ+ 1 + 6ξ

)
, (276)

and we recover the result in [80].

A.4 f(R) gravity

First method

In f(R) gravity theories, we introduce the quantity E = 3Ḟ 2M2
P/2 and define the function

z as follows:

z = a

√
E√

FH (1 + γ3)
= a

√
3M2

P

2

Ḟ√
FH (1 + γ3)

, (277)

where γ3 =
Ḟ

2HF
. Remembering that the field kinetic term ϕ̇2 is not present in the action

(225), we conclude that the parameter γ2, defined in Eq. (270), vanishes. We can now
also write γ4 =

Ė
2HE

= F̈
HḞ

.

Using these definitions, we can find the first derivative of z w.r.t. conformal time:

z′ = aż =
a

(1 + ϵ3)

√
3M2

P

2

(
ȧ

Ḟ√
FH

+ a
F̈√
FH

− 1

2
a

Ḟ 2

F 3/2H
− a

Ḟ Ḣ√
FH2

)
.

We then find:

z′

z
=
aż

z
= H [1 + γ1 − γ3 + γ4] ,

z′′

z
=
aȧż + a2z̈

z
= H2

[
2 + 2γ1 − 3γ3 + 3γ4 − 2γ1γ3 + γ1γ4 − 3γ3γ4 + 3γ2

3 + γ2
4

]
,(278)
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where we used that F̈
F

= 2H2γ3γ4. Substituting Eq. (273) in Eq. (278), we find the
result in Eq. (272) with γ2 = 0. We could have deduced these results by comparing the
definition of the function z in the first equality of Eq. (277) with Eq. (269). They are
the same when γ2 = 0.

Let us now assume that we have |γi| ≪ 1 for (i = 1, 3, 4). We can then find the
spectral index of curvature perturbations to leading order in the parameters γi:

ns−1 ≈ 3−

√
1 + 4

fMS

(1− ϵ1)2
≈ 3−3

(
1 +

2

9
(2γ1 − 3γ3 + 3γ4)(1 + 2ϵ1)

)
≃ −4γ1+2γ3−2γ4,

(279)
where we used the Taylor expansion to eliminate the two exponents. This approximated
expression is the same as in [86].

We can then use the definition of the Ricci scalar, see Eq. (3), and express the first
and second derivatives w.r.t. cosmic time:

R = 6

(
ä

a
+

ȧ2

a2

)
= 6(2− ϵ1)H

2 (280)

dR

dt
=− 2ϵ1HR, (281)

d2R

dt2
=+ 6ϵ21H

2R, (282)
where we have restricted the framework to a particular set of solutions for which ϵ1 = 0.

We can introduce the first and second derivatives of F w.r.t. cosmic time:

dF

dt
=
dF

dR

dR

dt
= −2ϵ1H

dF

dR
R, (283)

d2F

dt2
=
d2F

dR2

(
dR

dt

)2

+
dF

dR

d2R

dt2
= 4ϵ21H

2d
2F

dR2
R2 + 6ϵ21H

2dF

dR
R, (284)

where in the last equality, we used the result for the Ricci scalar in Eqs. (281) and (282).
We can express the first SR parameter in terms of the derivatives introduced above, in
Eqs. (283) and (284):

γ1 = ϵ1 = − Ḣ

H2
=

F̈ −HḞ

2FH2
= 2ϵ21

d2F

dR2

R2

F
+ 3ϵ21

dF

dR

R

F
+ ϵ1

dF

dR

R

F
,

where in the second equality, we used the field equation to express Ḣ, see Eq. (254). We
can then extract the expression of the first SR parameter and the parameters present in
the MS equation can be expressed in the same way:

γ1 =
1− dF

dR
R
F

2d2F
dR2

R2

F
+ 3dF

dR
R
F

, (285)

γ3 =
1

2

Ḟ

HF
= −dF

dR

R

F
ϵ1, (286)

γ4 =
F̈

HḞ
=

4ϵ21H
2 d2F
dR2R

2 + 6ϵ21H
2 dF
dR

R

−2ϵ1H2 dF
dR

R
=

(
−2R

d2F

dR2

/dF

dR
− 3

)
ϵ1. (287)
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Let us now assume an ansatz on the form of the function f(R) = αRn (n > 0). In
this case, we have:

F =
df

dR
= nαRn−1,

dF

dR
=(n− 1)

F

R
,

d2F

dR2
=(n− 1)(n− 2)

F

R2
.

Using these results in Eqs. (285), (286) and (287), we find the result in [86], i.e. constant
parameters γi (i = 1, 3, 4) expressed thought n:

γ1 =
2− n

(n− 1)(2n− 1)
,

γ3 = −(n− 1)ϵ1 =
n− 2

2n− 1
,

γ4 = −(2n− 1)ϵ1 =
n− 2

n− 1
.

Instead of using the approximate expression in Eq. (279), we can use the exact expression
of the spectral index, see Eq. (114). We find the same result as in the reference [86]:

ns − 1 = − 2(n− 2)2

2n2 − 2n− 1
.

In figure 28, the plot of this spectral index and the one of the parameter Φ is repre-
sented in a range of n leading to inflation. Therefore, there is no amplification possible
when considering the parameters γi constant.

Figure 28: The curve in green represents the first SR parameter, ϵ1 as a function of the
parameter n. The plot range for n have been constrained to allow inflation to occur:
0 < ϵ1 < 1. In red, the parameter Φ is represented. It is positive, so we do not have
a growing solution. In blue, is the spectral index ns − 1 which is red-tilted. So for the
particular case studied here and with constant γi parameters, it is not possible to have
amplification.
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Second method

Let us develop the function z in Eq. (277) in terms of the SR parameters:

z = a

√
3M2

P

2

Ḟ
√
F
(
H + Ḟ /2F

) , (288)

The derivative of F (R) w.r.t. cosmic time can be differentiated as follows:

Ḟ = ˙f,R = f,RRṘ.

Differentiating the Ricci scalar in Eq. (280) w.r.t. cosmic time and assuming non-constant
SR parameters, we find:

Ṙ = −6H3ϵ1ϵ2 − 12H3(2− ϵ1)ϵ1,

where we used the definition Ḣ = −H2ϵ1 and ϵ̇1 = Hϵ1ϵ2. Substituting the following
results in Eq. (288), we then find:

z = 3
√
6MPaH

2 ϵ1(2ϵ1 − ϵ2 − 4)
√

f,Rf,RR

f,R + 3H2ϵ1(2ϵ1 − ϵ2 − 4)f,RR

.

The quantities needed to verify whether the amplification is present have been found
using Mathematica by making the usual substitutions:

Ṙ → HRδ1, δ̇1 → Hδ1δ2, δ̇2 → Hδ2δ3, δ̇3 → Hδ3δ4,

Ḣ → −H2ϵ1, ϵ̇1 → Hϵ1ϵ2, ϵ̇2 → Hϵ2ϵ3, ϵ̇3 → Hϵ3ϵ4.

It gives the results:

z′

z
=

aż

z
= aH ×

6f,RRRf
2
,RH

2ϵ1(−2ϵ1 + ϵ2 + 4)2 − 9f 3
,RRH

4ϵ21(−2ϵ1 + ϵ2 + 4)3

−f,RRf
2
,R (4ϵ21 − 2ϵ1(3ϵ2 + 5) + ϵ2(ϵ2 + ϵ3 + 5) + 4)

f,RRf,R(2ϵ1 − ϵ2 − 4) (3f,RRH2ϵ1(2ϵ1 − ϵ2 − 4) + f,R)
(289)

z′′

z
=

aż′

z
= (aH)2×

−6f 3
,RH

2ϵ1(2ϵ1 − ϵ2 − 4)
[
6f,RRRRf,RH

2ϵ1(−2ϵ1 + ϵ2 + 4)2 + 36f 2
,RRRH

4ϵ21(−2ϵ1 + ϵ2 + 4)3

−f,RRRf,R (14ϵ21 − ϵ1(19ϵ2 + 34) + 3ϵ2(ϵ2 + ϵ3 + 5) + 12)
]

+f,RRf
3
,R

[
f,R

(
− 12ϵ31 + ϵ21(30ϵ2 + 38)− ϵ1(ϵ2(15ϵ2 + 9ϵ3 + 47) + 32) + ϵ2

(
3ϵ2ϵ3

+ϵ2(ϵ2 + 7) + ϵ23 + 7(ϵ3 + 2)
)
+ 8
)
− 18H4ϵ21(−2ϵ1 + ϵ2 + 4)2

(
6f,RRRRH

2ϵ1(−2ϵ1 + ϵ2 + 4)2

+f,RRR (2ϵ21 − ϵ1(5ϵ2 + 4) + ϵ2(ϵ2 + ϵ3 + 4))
)]

+9f 3
,RRf,RH

4ϵ21(−2ϵ1 + ϵ2 + 4)2
[
18f,RRRH

4ϵ21(−2ϵ1 + ϵ2 + 4)3 + f,R

(
26ϵ21 − ϵ1(37ϵ2 + 62)

+6ϵ2(ϵ2 + ϵ3) + 29ϵ2 + 20
)]

+ 3f 2
,RRf

2
,RH

2ϵ1

[
f,R

(
8ϵ41 − 4ϵ31(6ϵ2 + 7)

+2ϵ21(ϵ2(14ϵ2 − ϵ3 + 26) + 6) + ϵ1
(
32− ϵ2 (7ϵ

2
2 + ϵ2(9ϵ3 + 31)− 2ϵ3(ϵ3 + 6) + 4)

)
+ϵ2 (ϵ

2
2 − 16) ϵ3 + (ϵ2 + 4)2 (ϵ22 − 1) + (ϵ2 − 4)ϵ2ϵ

2
3

)
− 108f,RRRH

4ϵ21(−2ϵ1 + ϵ2 + 4)4
]

−81f 5
,RRH

8ϵ41(−2ϵ1 + ϵ2 + 4)5 − 27f 4
,RRf,RH

6ϵ31(−2ϵ1 + ϵ2 + 4)3
[
6ϵ21 − ϵ1(7ϵ2 + 6)

+ϵ2(ϵ2 + ϵ3 + 1)− 12
]
+ f,RRf

3
,Rϵ2ϵ3ϵ4 (3f,RRH

2ϵ1(2ϵ1 − ϵ2 − 4) + f,R)

f,RRf 2
,R(4− 2ϵ1 + ϵ2) (3f,RRH2ϵ1(2ϵ1 − ϵ2 − 4) + f,R)

2

(290)
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