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Abstract

Characterizing the vibrational response of structures is essential for ensuring safety and in-
tegrity under dynamic loads, or "excitations". Linear systems resonate only at their natural
frequencies, known as fundamental resonances, and obey the principle of superposition. Real-
world structures exhibit nonlinear behavior and the same excitation frequency can lead to
multiple stable or unstable solutions, with possible jumps between solutions. In addition to
their fundamental resonance, nonlinear systems can resonate at any multiple or fraction of the
excitation frequency, a phenomenon known as superharmonic or subharmonic resonance.

Experimental modal analysis, based on linear assumptions, fails to characterize nonlinear re-
sponses. New approaches have been developed for more systematic and reliable testing of
nonlinear structures. This thesis investigates a recently introduced derivative-free method for
experimental arclength control-based continuation (ACBC). The study focuses on a one-degree-
of-freedom system with cubic nonlinearity, known as the Duffing oscillator. Both a numerical
Duffing oscillator and an experimental setup involving an electronic circuit simulating the Duff-
ing oscillator’s behavior are considered.

The ACBC method is applied to identify the frequency response of both numerical and elec-
tronic Duffing oscillators. While their fundamental resonance is fully identified, superharmonic
and subharmonic resonances remain challenging to identify completely. To address these lim-
itations, e new double-sweep strategy is introduced into the existing ACBC method. This
approach successfully identifies superharmonic and subharmonic resonances, including isolated
responses. Furthermore, the double-sweep strategy effectively detects isolated responses exper-
imentally. It opens the door to advancing the study of secondary resonances, enhancing the
design of mechanical structures to avoid unexpected failures and ensure long-term reliability.

Keywords: Nonlinear dynamics, Control-based continuation, Superharmonic resonance, Sub-
harmonic resonance, Derivative-free method



Acknowledgements

First of all, I am extremely grateful to my academic supervisor, Prof. Gaëtan Kerschen, for
sharing his invaluable expertise with me. His constant availability and support have played a
fundamental role in my progress through every step of this work. Through our meetings, he
have always steered me in the right direction while providing constructive suggestions to keep
improving this manuscript.

I would like to warmly thank Ghislain Raze, for taking so much of his time to share his
knowledge of control-based continuation and nonlinear dynamics with me. He was able to
answer all my questions and, thanks to him, I always felt welcome and supported at the office.

I would like to take this opportunity to recognize the contribution of all the professors and
teachers met along the way.

Enfin, je remercie ma famille et mes amis pour leur amour et leur soutien, et pour l’inspiration
qu’ils ont été tout au long de ma vie. En particulier, je dois exprimer ma profonde gratitude
à mes parents pour leurs encouragements constants au fil des ans. Je ne les remercierai jamais
assez pour leur incroyable soutien.



iv

Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Resonances of linear and nonlinear systems 7
2.1 Dimensionless Duffing oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Single-degree-of-freedom (SDOF) linear and nonlinear systems . . . . . . . . . . 9

2.2.1 Undamped and unforced SDOF systems . . . . . . . . . . . . . . . . . . 9
2.2.2 Harmonic Balance Method . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Damped and forced SDOF systems . . . . . . . . . . . . . . . . . . . . . 12

2.3 Reference case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Basics of control theory 19
3.1 Control system structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Open-loop control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Closed-loop control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Proportional action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Integral action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Derivative action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Description of the ACBC method 26
4.1 Open-loop and control-based experiments . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Offline control-based continuation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Adaptive filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Arclength continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Arclength strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Application of the ACBC method 38



v

5.1 Parameter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.1 Initial sweep angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Sweep rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Tolerance criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Adaptive filters’ step size factor . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.5 Summary of parameter analysis . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Identification of the fundamental resonance . . . . . . . . . . . . . . . . . . . . . 47
5.3 Identification of secondary resonances . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Identification of odd-superharmonic resonances . . . . . . . . . . . . . . 51
5.3.2 Identification of even-superharmonic resonances . . . . . . . . . . . . . . 53
5.3.3 Identification of subharmonic resonances . . . . . . . . . . . . . . . . . . 55

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Double sweep strategy 57
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Double sweep strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Non-fundamental sweep illustrations . . . . . . . . . . . . . . . . . . . . 61
6.2.2 Identification procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 FRC identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Experimental validation 66
7.1 Electronic Duffing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.1 Fundamental resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2.2 Secondary resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Adaptive ellipse size 72
8.1 Principle of the adaptive strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 Application of the adaptive strategy . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Conclusions and future developments 79
9.1 Further improvements and perspectives . . . . . . . . . . . . . . . . . . . . . . . 80

A Matlab/Simulink diagrams 83
A.1 ACBC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 ACBC method with the double-sweep strategy . . . . . . . . . . . . . . . . . . . 84

B Detailed results 86



B.1 Discrimination between intersecting FRCs solutions . . . . . . . . . . . . . . . . 86
B.2 Secondary resonances of the numerical Duffing oscillator . . . . . . . . . . . . . 86
B.3 More results for the electronic Duffing oscillator . . . . . . . . . . . . . . . . . . 90

Bibliography 92



List of symbols

Variable Description

c Damping coefficient

cx,n Cosine Fourier coefficient of the response’s n-th harmonic

e Synthesis error of adaptive filters / Control error

f Mass-normalized force amplitude

k Stiffness coefficient

k3 Cubic stiffness coefficient

kd Differential controller gain

ki Integral controller gain

kp Proportional gain

ki,nf Integral gain for double sweep

K Proportional gain

l Harmonic number / Superharmonic index

m Mass coefficient

n Harmonic number

N Total number of harmonics considered

p Amplitude of fundamental excitation

p∗ Targeted amplitude of fundamental excitation

Q Basis of harmonic signals

sx,n Sine Fourier coefficient of the response’s n-th harmonic

t Time

ts Sampling time

Td Derivative time

Ti Integral time

u Outpout of the controller

w Weight coefficients

x Response (displacement) of the nonlinear oscillator
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1| Introduction

The vibrational analysis of mechanical systems is crucial for both predicting the behavior of
a future system and experimentally characterizing an existing structure to understand its re-
sponse under different conditions. Engineers create mathematical models to anticipate system
responses to various excitations, and then perform experimental characterization to validate
these models [23].

For a predominantly linear structure, the response to a sum of excitation signals equals the
sum of the responses to each individual signal, illustrating the superposition principle. This
principle has two main consequences. First, the response to a multi-harmonic excitation can be
broken down into responses to each frequency component. Second, the frequency response at
any forcing amplitude can be determined from a previously computed frequency response at an
arbitrary forcing. The frequency response function can be identified either by testing each fre-
quency individually (stepped or swept sine testing) or by testing all frequencies simultaneously
(broadband testing) [27, 59]. This approach, known as experimental modal analysis (EMA),
allows for predicting responses to any periodic excitation. EMA is the primary method for
assessing structural dynamics, supported by mature software like Simcenter Testlab (Siemens)
and BK Connect (Brüel and Kjaer).

Real-world structures exhibit nonlinear behavior from various sources. Common nonlinearities
include geometric and inertia nonlinearity, nonlinear material behavior (foams, rubber isola-
tors), and nonlinear damping (dry friction, hysteretic damping). Additionally, boundary condi-
tions (free surfaces in fluids, vibro-impacts from loose joints or contacts with rigid constraints,
clearances, imperfectly bonded elastic bodies) and external body forces (e.g., magnetoelastic,
electrodynamic or hydrodynamic forces) can introduce nonlinearity [39].

Nonlinearity poses challenges to the EMA testing philosophy. Figure 1.1 shows the harmonically
forced response of a Duffing oscillator, a one-degree-of-freedom system with cubic nonlinearity.
The figure illustrates multiple stable and unstable solutions resulting from bifurcations, super-
harmonic resonances, and subharmonic resonances, appearing as isolated branches of solutions.

With traditional swept (or stepped) sine testing approaches, the jump phenomenon [39] oc-
curs between different coexisting solutions along the fundamental resonance. Open-loop EMA
methodologies cannot fully characterize nonlinear dynamics, as the same excitation can lead to
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different responses (folding), and some responses are unstable. Small perturbations can cause
the system to diverge from the unstable response.

Figure 1.1: Frequency response [77] of
a Duffing oscillator ẍ+0.01 ẋ+x+x3 =

3 sin(ω t) calculated using harmonic
balance-based numerical continuation
[20].

Control-based nonlinear vibration testing (CBNVT) offers a novel approach to testing engineer-
ing structures by conducting closed-loop experiments to stabilize all responses. This method
uses numerical continuation schemes to explore system dynamics [22, 45, 68]. Sieber and
Krauskopf pioneered CBNVT to go around fold bifurcations in numerical examples [70]. The
first experimental demonstration tracked periodic orbits through a fold (saddle-node) bifurca-
tion using a parametrically excited pendulum [71]. CBNVT evolved into two main directions:
control-based continuation (CBC) [10, 12, 13, 15] and phase-locked loops (PLL) [49, 72].

Identification of fundamental resonances

In PLL, the phase lag between the applied excitation and the system response is controlled.
This method was used to find the fundamental resonance or its backbone 1 for various nonlinear
structures, including beams and plates with nonlinear stiffness or damping [4, 19, 35, 56, 66].
In these applications, the one-to-one relationship between phase lag and response allows going
around fold bifurcations, as shown in Figure 1.2.

Figure 1.2: Illustration of
phase lag monotone behav-
ior around the fundamental
resonance of a Duffing os-
cillator at different forcing
amplitudes [83]. Unstable
responses are indicated by
dashed lines.

CBC controls the structural response x by comparing it to a reference x∗ and generating a
control action u to stabilize the desired periodic orbit. To maintain non-invasiveness, meaning

1The backbone is the collection of amplitude resonance points at different forcing levels.
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the stabilized solution matches an open-loop solution, u must be monoharmonic. Typically,
non-fundamental harmonics of the reference x∗

nf are adjusted using fixed-point iterations. The
continuation process moves smoothly from one periodic solution to another by varying x∗. As-

nf

f

Figure 1.3: Illustration of control-
based continuation (CBC) [11]. Grey
boxes are performed offline.

suming a derivative controller, its action is u(t) = kd
d
dt
[x∗(t) − x(t)] = p sin(ωt), where the

controlled parameter is either the forcing amplitude p or frequency ω. Both are controlled by
the continuation through the reference displacement x∗. In CBC, the choice of the controlled
parameter is crucial. Figures 1.4a and 1.4b show three-dimensional plots of displacement am-
plitude x against both controlled parameters. The manifold (in grey) can be sliced at constant
forcing frequency to get FRCs2 (Figure 1.4a) rather than amplitude to produce S-curves (Figure
1.4b). At the fundamental resonance, forcing frequency shows a non-monotonous increase at
constant forcing, requiring advanced continuation schemes. Figure 1.4c highlights that, with
high enough controller gains kd, S-curves feature a monotonous increase in displacement at
fixed forcing frequency, allowing simpler continuation schemes. Identifying S-curves provides
an indirect but effective method to identify FRCs [11].

(a) (b) (c)

Figure 1.4: (a-b) Manifold of the Duffing oscillator linking displacement amplitude x, forcing
frequency ω and forcing amplitude p with (a) FRC at constant excitation amplitudes and
(b) S-curves at constant frequencies. The white dashed line marks the locus of saddle-node
bifurcations, representing the boundary between stable and unstable orbits. (c) S-curves for
ω = 4 and kd = 0.5 (yellow), 1 (orange), or 2 (blue) with stable (solid line) and unstable
(dashed line) orbits. The complete figure is sourced from [3].

This strategy was used to identify features of nonlinear oscillators [4, 61–64] and applied to
2FRCs refer to frequency response curves.
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frictional systems [42] and biochemical systems [29]. All these studies focused on characterizing
the primary resonance of structures.

Abeloos pioneered adaptive filtering for online Fourier decomposition, eliminating the need for
offline correction iterations [1, 3]. This simplifies implementation and speeds up experiments.
It can be used either for CBC or PLL experiments [83].

Directly identifying folded FRCs would necessitate numerical continuation schemes that involve
computing derivatives. Experimentally computing derivatives is challenging due to inevitable
noise. Abeloos introduced a novel method for experimental arclength control-based continua-
tion that is both conceptually simple and derivative-free [1, 2]. Figure 1.5 shows preliminary
experimental results for a geometrically nonlinear beam. In addition to handling bifurcations
and unstable branches, the algorithm identified an isolated branch of periodic solutions with
stable and unstable portions. Up to five co-existing solutions are observed for a phase lag
around −π/4.

Figure 1.5: Preliminary exper-
imental results of the online,
derivative-free arclength control-
based continuation method as
proposed in [1, 2], applied to
a clamped-clamped beam struc-
ture.

Identification of secondary resonances

Characterizing superharmonic resonances with the current CBC is not possible because S-curves
for these resonances cannot be unfolded [1].

Using phase resonance nonlinear modes [77], Zhou recently investigated PLL to identify the
backbones of superharmonic and subharmonic resonances, and the nonlinear FRC near these
resonances. A numerical Duffing oscillator and a clamped-clamped experimental system were
studied [83]. As shown in Figure 1.6, superharmonic resonances were successfully identified,
but subharmonic resonances were not fully captured. For isolated responses, a phase lag does
not correspond to a unique response, as illustrated in Figure 1.5.

Abeloos developed a new definition of phase lag in PLL that accounts for multiple harmonics
to compute odd superharmonic resonances in systems with modal coupling [1]. When the
backbones of two resonances intersect, modal interactions can prevent the PLL from stabilizing
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some orbits. CBC can be combined with PLL testing to stabilize these orbits in a clamped-
clamped beam structure [1, 28].

Figure 1.6: FRCs (solid
lines) and backbone
(blue dashed line) of
the 2 : 1 superharmonic
resonance identified by
PLL testing applied
to a clamped-clamped
beam structure [83].

Apart from these two studies, the literature rarely addresses the identification of nonlinear
frequency response curves for secondary resonances. These studies used PLL for conservative
cubic and quadratic nonlinearities and highlighted limitations in detecting isolated responses.
No recent attempts have been made to identify secondary resonances with CBC.

1.1. Objectives

This research aims to advance the methodology proposed by Abeloos for online, derivative-less
control-based nonlinear vibration testing, termed ACBC. This method is designed to experimen-
tally identify frequency responses of nonlinear systems subjected to harmonic forcing, without
relying on predefined mathematical models. The algorithm is implemented in Matlab/Simulink,
which can easily be used by a real-time controller such as a MicroLabBox from dSPACE for
experimental validation.

This master’s thesis attempts to answer two key questions:

a) Is the ACBC algorithm capable of identifying the complete frequency response of a
numerical/electronic Duffing oscillator, including secondary resonances with com-
plex topology?

b) How can the step size selection in the ACBC algorithm be automated to ensure
accurate frequency response capture?

This work is divided into nine chapters. Chapter 2 examines dimensionless single-degree-of-
freedom linear and nonlinear oscillators: how do the resonance behaviors of linear and nonlinear
systems differ? Chapter 3 provides a qualitative overview of PID control: what is the role of
tuning the proportional, integral, and derivative terms? Chapter 4 presents the traditional
CBC and the ACBC method, emphasizing the improvements the latter introduces for the
direct identification of FRCs. Chapter 5 identifies the FRC of a numerical Duffing oscillator
using the ACBC method: what challenges arise in identifying fundamental and secondary
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resonances? Chapter 6 enhances the ACBC algorithm to better identify both attached and
isolated secondary resonances by introducing control of a non-fundamental harmonic of the
response, called the double sweep strategy. Previous chapters focused on identifying the FRC
of a numerical Duffing oscillator. Chapter 7 applies the original ACBC algorithm and the double
sweep strategy to an electronic Duffing oscillator, demonstrating the algorithms’ performance in
an experimental environment. Chapter 8 proposes an adaptive strategy in the ACBC method to
adjust the step size based on the local curvature of the FRC. Chapter 9 presents the conclusions
and future perspectives.
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2| Resonances of linear and

nonlinear systems

The dynamical behavior of linear systems is well-documented, both theoretically and experi-
mentally [31, 36]. Despite the inherently nonlinear nature of most structures, linear analysis
remains extensively used. In mechanical engineering, linear assumptions are valid for small
displacements. Within this linear regime, systems exhibit nearly mono-harmonic responses to
mono-harmonic inputs, with resonances occurring at specific frequencies, independent of the
amplitude of the forcing.

Overlooking strong nonlinear effects can cause inconsistencies between numerical models and
experimental outcomes. Significant excitations of nonlinear systems result in multi-harmonic
responses and cause resonance frequencies to shift with increasing amplitude [54]. These shifts
lead to multi-stable regions and the jump phenomenon [50]. Additionally, new resonances may
emerge at fractions or multiples of the amplitude-dependent fundamental resonance frequency
[53]. This complicates the prediction and identification of the system’s frequency response.

This chapter aims to compare the responses of linear and nonlinear systems. It illustrates
phenomena in nonlinear structures through the study of a simple academic system. It builds
on concepts from the course Nonlinear Vibrations of Aerospace Structures taught by Professor
Kerschen at the University of Liège [38].

2.1. Dimensionless Duffing oscillator

This work investigates the well-known single-degree-of-freedom Duffing oscillator [43], with
linear viscous damping and subjected to harmonic forcing. Only steady-state responses are
considered. The Duffing system is characterized by a cubic stiffness and the governing equation
of motion is

mẍ(t) + c ẋ(t) + k x(t) + k3 x
3(t) = p sin(ωt) (2.1)

with the displacement x(t), the mass m, the linear stiffness k, the cubic stiffness k3, the linear
viscous damping c, the excitation amplitude p, and the excitation frequency ω. The dots over
variables indicate time derivatives.
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The mass-normalized equation of motion is

ẍ(t) + 2 ζ ω0 ẋ(t) + ω2
0 x(t) + α3 x

3(t) = f sin(ωt) (2.2)

Here, ω0 =
√

k/m denotes the natural frequency, ζ =
ω0 c

2 k
the modal damping coefficient, α3

the mass-normalized cubic stiffness, and f the mass-normalized force amplitude. This equation
is a second-order nonlinear differential equation with constant coefficients. Two initial condi-
tions are necessary, i.e. x(0) = x0 and ẋ(0) = ẋ0.

The next step is to nondimensionalize the system, allowing the results to apply to any Duffing
system.

First, applying the change of variable τ = ω0t, , Equation (2.1) becomes

ω2
0 mx′′ + ω0 c x

′ + k x+ k3 x
3 = p sin

( ω

ω0

τ
)
. (2.3)

Derivatives with respect to τ are denoted by ′.

Second, by introducing the variables x̄ = x/σ and ω̄ = ω/ω0, and dividing Equation (2.3) by
k, it becomes

x̄′′ + 2 ζ x̄′ + x̄+ σ2 k3
k
x̄3 =

p

σk
sin(ω̄ τ). (2.4)

The dimensionless transformation is completed by setting σ as
√

k/k3, leading to the final
nondimensionalized form of the equation:

x̄′′ + 2 ζ x̄′(τ) + x̄+ x̄3 = p̄ sin(ω̄ τ) (2.5)

The parameters ζ and p̄ remain arbitrary in this dimensionless equation.

Therefore, Equation (2.2) is nondimensionalized by setting ω0 and α3 to unity. This is equiv-
alent to setting m, k, and k3 to unity in Equation (2.1). These unit parameters are adopted
throughout this work, as detailed in Table 2.1. The force amplitude will be specified in each
case.

m [kg] c [Ns/m] k [N/m] k3 [N/m3] ω0 [rad/s] α3 [N/(m3 kg)] ζ [%]

1 0.01 1 1 1 1 0.5

Table 2.1: Set of parameters for the Duffing oscillator.
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2.2. Single-degree-of-freedom (SDOF) linear and nonlin-

ear systems

The Duffing system is progressively explored, starting from the basic undamped and unforced
scenario and advancing to the damped and forced scenario. At each step, the system is analyzed
both with and without nonlinearity.

2.2.1. Undamped and unforced SDOF systems

In the linear case, Equation 2.2 is modified to describe the free motion of the undamped single-
degree-of-freedom oscillator:

ẍ(t) + ω2
0 x(t) = 0, x(0) = x0, ẋ(0) = ẋ0. (2.6)

After some manipulation, detailed in [38], the solution to this equation is formulated as:

x(t) =

√
x2
0 +

ẋ2
0

ω2
0

sin

(
ω0 t+ tan−1

(ω0 x0

ẋ0

))
. (2.7)

The response of the linear oscillator exhibits harmonic motion with the natural frequency ω0,
which solely relies on the parameters k and m.

In the nonlinear case, the equation describing the free motion of the undamped single-degree-
of-freedom oscillator is:

ẍ(t) + ω2
0 x(t) + α3 x

3(t) = 0, x(0) = x0, ẋ(0) = ẋ0. (2.8)

The set of initial conditions, [x(0), ẋ(0)] = [x0, 0], is used for comparison with the linear case.
After some manipulations detailed in [38], the solution to the nonlinear equation is written

x(t) = x0 cn(Ω t |κ) (2.9)

with the motion frequency Ω =
√

ω2
0 + α3 x2

0 and κ = α3 x
2
0 / 2Ω

2. The symbol cn denotes the
mathematical function called the elliptic cosine [38].

Two key observations can be made from the analytical solution. The response of the nonlinear
oscillator does not take the form of a harmonic function. The frequency Ω depends on the
linear stiffness k and the mass m, as in the linear case. The frequency also depends on the
initial displacement x0 and the nonlinear coefficient α3.
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Figure 2.1 shows the free responses of both linear and nonlinear undamped oscillators to various
initial displacements.
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Figure 2.1: (a) Linear and (b) nonlinear undamped oscillator responses for various initial
displacements (ẋ0 = 0 m/s): x0 = 0.5 m ( ), x0 = 1 m ( ), and x0 = 2 m ( ).

The principle of superposition stipulates that the response generated by multiple inputs is
equivalent to the sum of the responses induced by each input individually. While this principle
holds for the linear oscillator, as depicted in Figure 2.1a, it no longer applies to the nonlinear
oscillator, as evident in Figure 2.1b. This deviation can be explained by the dependency of
the motion frequency Ω on the initial conditions. For the undamped case, there is no energy
dissipation, preserving both energy and oscillation amplitude over time.

Although the elliptic cosine closely resembles a pure cosine function, the response of the non-
linear oscillator deviates from harmonic motion. This is clearly highlighted when examining
the acceleration in Figure 2.2a.
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Figure 2.2: (a) Acceleration response of a nonlinear undamped oscillator for different initial
conditions (ẋ0 = 0 m/s): x0 = 0.5 m ( ), x0 = 1 m ( ), and x0 = 2 m ( ). (b) Fast Fourier
Transform of the acceleration response for the initial conditions [x0, ẋ0] = [1, 0].
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The acceleration profile lacks harmonic behavior, differing significantly from the linear case.

The Fast Fourier Transform of the acceleration response is illustrated in Figure 2.2b. The most
prominent peak denotes the fundamental resonance. The amplitude of the first harmonic alone
is inadequate for reconstructing the total amplitude. At higher frequencies, three additional
peaks are visible, corresponding to the third, fifth, and seventh harmonics, respectively. This
observation emphasizes the generation of harmonics by nonlinear systems.

Figure 2.3 illustrates the effects of both the sign and magnitude of the nonlinear coefficient α3.
As mentioned previously, the motion frequency Ω depends on the nonlinear coefficient. Since
the nonlinearity arises from the cubic displacement term, the sign of the nonlinear coefficient
determines whether the system’s stiffness increases or decreases relative to the linear case. A
larger positive nonlinear coefficient results in increased stiffness within the system.

0 2 4 6 8 10

-0.5

0

0.5

1

Figure 2.3: Nonlinear undamped oscillator
responses for [x0, ẋ0] = [1, 0] and various
nonlinear coefficients: α3 = −0.5 N/m3/kg
( ), α3 = 0 N/m3/kg ( ), α3 = 0.5

N/m3/kg ( ), and α3 = 1 N/m3/kg ( ).

The comparative analysis between undamped linear and nonlinear oscillators reveals distinct
behaviors. Nonlinear oscillators deviate from purely harmonic responses, violate the superpo-
sition principle, exhibit frequency-amplitude dependency, and generate harmonics.

Jacobi elliptic functions cannot provide an exact analytical solution for the nonlinear damped
case, and no closed-form solution exists for forced or unforced systems. In this scenario, the
harmonic balance method (HBM) is commonly used, reconstructing the system’s response with
a combination of sinusoidal functions.

2.2.2. Harmonic Balance Method

The harmonic balance method is widely used in the literature for examining the periodic so-
lutions of nonlinear mechanical systems [20, 44, 58]. This technique is also referred to as the
Fourier–Galerkin method because it applies the Galerkin method using Fourier basis and test
functions.

The method relies on the assumption that every nonlinear steady-state response of a system,
subjected to an excitation frequency ω, can be represented by an infinite Fourier series of
harmonics of this frequency. In practice, truncated Fourier series up to the order N represent
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the periodic solutions, i.e.

x(t) =
c0√
2
+

N∑
l=1

(
sl sin(ωl t) + cl cos(ωl t)

)
(2.10)

where ωl =
lω

ν
, with ν is an integer. The Fourier coefficients sl and cl are the new unknowns

of the problem. The fundamental harmonic is defined as the harmonic within the series where
l = ν, whereas the secondary harmonics represent all other harmonics where l ̸= ν.

The methodology proceeds as follows. First, the approximation is substituted into the equations
of motion. Then, the coefficients associated with a specific harmonic ωl are equated, while
higher-order harmonic terms produced by nonlinearities are neglected. This process yields a
set of 2N +1 nonlinear algebraic equations to solve for 2N +2 unknowns, i.e. ω and the 2N +1

Fourier coefficients. To close the system, an additional equation is required. Typically, the
cosine coefficient of the first harmonic is set to 0. The resulting nonlinear algebraic system can
be solved using methods such as Newton-Raphson iterations.

The HBM is advantageous for its accuracy with low-order approximations, especially with
smooth nonlinearities. While adding more harmonics can enhance accuracy, typically only the
first few with significant amplitudes are retained, particularly in large-scale nonlinear systems
where balancing accuracy and computational cost is crucial.

2.2.3. Damped and forced SDOF systems

All physical systems are damped. To better stick to reality, viscous damping is introduced to
model dissipation. Additionally, mechanical systems are not left free by the environment. To
assess the forced response of the studied system, a periodic signal is often applied to observe
the response of the system at a particular frequency or in a frequency range.

Under harmonic forcing, the governing equation of the damped linear SDOF oscillator becomes

ẍ(t) + 2 ζ ω0 ẋ(t) + ω2
0 x(t) = f sin(ω t), x(0) = x0, ẋ(0) = ẋ0. (2.11)

The solution of this second-order ordinary differential equation can be decomposed into a
homogeneous solution (for the unforced system) and a particular solution. For the steady-state
response, only the particular solution is relevant. Details on computing the particular solution
are provided in [38]. The particular solution xp is

xp(t) =
f√

(ω0 − ω2)2 + (2ζ ω0 ω)2
sin

(
ω t− tan−1

( 2 ζ ω0 ω

ω2
0 − ω2

))
. (2.12)

Figure 2.4 shows the amplitude and phase of the FRF for a damped linear system, varying with
different damping coefficients.
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Figure 2.4: (a) Amplitude and (b) phase Bode plots for the frequency response of a damped
linear SDOF system with varying damping levels: ζ = 0.05% ( ), ζ = 0.5% ( ), and ζ = 5%
( ).

In linear theory, the frequency response function (FRF) is commonly used because it remains
constant for linear systems and is easily estimated from measured data. It is especially useful
for identifying resonance frequencies. The FRF is defined as the ratio of the Fourier transform
of the response xp(t) to the Fourier transform of the excitation f(t).

The scaling of xp with f illustrates the validity of the principle of superposition. The steady-
state response remains independent of the initial conditions. Additionally, as ω approaches
ω0, the amplitude of the steady-state response grows significantly, even with small forcing
amplitudes. This phenomenon is known as resonance.

Resonance can be defined in two ways. First, amplitude resonance is intuitively identified as a
local maximum in the FRF. Second, phase resonance, introduced by Fraiejs de Veubeke [25],
occurs when the motion is in quadrature with the excitation, resulting in a phase lag of π/2.
In lightly damped structures, phase resonance is very close to amplitude resonance.

The forced response of the damped nonlinear SDOF oscillator can also be analyzed. The
governing equation is

ẍ(t) + 2 ζ ω0 ẋ(t) + ω2
0 x(t) + α3 x

3(t) = f sin(ω t), x(0) = x0, ẋ(0) = ẋ0. (2.13)

Figure 2.5 shows the frequency response computed using HB continuation. Stability analysis
is performed using Hill’s method in the HBM formalism [34, 78]. As shown in Figure 2.5a, the
nonlinear equivalent of the FRF varies with the forcing amplitude and is no longer a function.
It is referred to as the nonlinear frequency response curve (FRC).

Volvert extensively investigated the frequency response of the Duffing oscillator [77]. Each
harmonic l of the Fourier series of the response (cf. Equation (2.10)) may resonate if ωl = l ω/ν



14 2| Resonances of linear and nonlinear systems

0 1 2 3 4 5

0

10

20

30

40

50

60

70

(a)

0 1 2 3 4 5

0

1

2

3

4

5

6

(b)

Figure 2.5: (a) Scaled and (b) unscaled nonlinear frequency response of the Duffing oscillator
for various forcing levels: f = 0.025 N/kg ( ), and f = 0.25 N/kg ( ). Stable branches are
shown with solid lines and unstable branches with dotted lines. Results obtained using HB
continuation.

aligns with the (amplitude-dependent) frequency of the primary resonance of the system. Stoker
[73] categorized resonances into four distinct categories, namely

• 1 : 1 primary/fundamental resonance l = ν = 1;

• l : 1 superharmonic or ultra harmonic resonances;

• 1 : ν subharmonic resonances;

• l : ν ultra-subharmonic resonances.

This work excludes ultra-subharmonic resonances. It focuses on the most significant resonances:
the fundamental resonance, and the first super- and sub-resonances.

Figure 2.5b shows that as the forcing level increases, the fundamental resonance peak shifts to
higher frequencies. This shift creates regions with multiple solutions at the same frequency,
marked by fold bifurcations where the slope of the excitation frequency with respect to ampli-
tude is zero.

Bifurcations give rise to multi-valued responses and alter stability, as shown in Figure 2.6. Be-
fore and after the bifurcation points, only one stable solution exists (red or blue line). Between
these points, two are stable (red or blue lines) and one is unstable (dashed line). The steady-
state response depends on initial conditions, which define the system’s basins of attraction and
determine the converging solution. Even a minor perturbation will cause the system to deviate
from the unstable solution. The jump phenomenon occurs when the system transitions from
three solutions to one.

In Figure 2.5, secondary resonances are observed at f = 0.25 N/kg when the system is excited
away from its natural frequency ω0. These are the third and one-third harmonic resonances,
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Figure 2.6: FRC of the fundamental resonance, showing stable (colored lines) and unstable
(dashed line) solutions. Basins of attraction are indicated in the boxed areas, which represent
the attractor toward which the system at given initial conditions (x0, ẋ0) converges.

located around ω0/3 and 3ω0, respectively. As shown in Figure 2.7 or Figure 2.8, the amplitude
of the third, and one-third harmonics reaches a local maximum and dominates in these frequency
regions.
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Figure 2.7: (a) FRC around the 3 : 1 superharmonic resonance (f = 0.25 N/kg) with stable
branches (black) and unstable branches (grey). (b) Amplitude contribution of the third har-
monic (black) and first harmonic (grey). Results obtained using HB continuation.

Secondary resonances can be attached or detached from the main branch, depending on system
characteristics and forcing level. Like primary resonances, secondary resonances can exhibit un-
stable and multi-stable solutions between fold bifurcations. In Figure 2.5, secondary resonances
are absent at lower forcing level due to insufficient excitation.

For the 1 : 3 subharmonic resonance, there are three potential solutions, each with the same
maximum amplitude and a phase lag shifted by 2 π/3. This phase shift from t to t + 2π

3ω
does

not affect the fundamental harmonic, as 3ω (t + 2 π/(3ω)) = 3ω t + 2 π = 3ω t mod(2π). In
general, for subharmonic resonances, ν solutions exist with the same maximum amplitude and
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Figure 2.8: (a) FRC around the 1 : 3 superharmonic resonance (f = 0.25 N/kg) with stable
branches (black) and unstable branches (grey). (b) Amplitude contribution of the one-third
harmonic (black) and first harmonic (grey). Results obtained using HB continuation.

a phase lag shifted by 2π/ν. Volvert discussed this in [77].

Melnikov-type analyses, which use perturbations of solutions, have established criteria necessary
for the occurrence of subharmonic and superharmonic resonances [16, 30]. These analytical
methods apply to strong nonlinearities but are limited to weak forcing and damping.

2.3. Reference case

In the following chapters, the goal is to determine the frequency response of the Duffing system
under a harmonic forcing of f = 1 N/kg. Figure 2.9 presents the FRC obtained using HB con-
tinuation. Besides the 3 : 1 and 1 : 3 resonances, additional secondary resonances appear both
below and above the primary resonance. As the forcing increases, each secondary resonance
becomes prominent.

(a) (b)

Figure 2.9: (a) FRC of the Duffing oscillator (f = 1 N/kg), with stable branches (black) and
unstable branches (grey). (b) Zoomed version. Results obtained using HB continuation from
Volvert’s thesis [76].
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In Figure 2.9b, superharmonic resonances of the form l : 1, where l is odd, extend along the
continuation of the main branch. Resonances such as 3 : 1, 5 : 1, 7 : 1, 9 : 1, and so forth are
observed. At constant forcing amplitude, odd l : 1 resonances are more pronounced for lower
l values. Their shape depends on the forcing level. Initially, they appear as peaks devoid of
folding (e.g. 9 : 1), subsequently forming a loop with fold bifurcations (e.g. 3 : 1).

Even l : 1 resonances, such as the 2 : 1 resonance shown in Figure 2.9b, bifurcate from the main
branch. The 2 : 1 and 4 : 1 resonances result from symmetry-breaking bifurcations. Initially,
the response of the perfectly symmetric Duffing system has only odd harmonics. Between two
symmetry-breaking bifurcations, both odd and even harmonics are present. At the bifurcation
point, the system transitions from the stable main branch with odd harmonics to an unstable
branch, while a new stable branch with both odd and even harmonics forms. This new resonance
branch also exhibits fold bifurcations at its top.

The newly-created 1 : 2 subharmonic resonance is observed at around 2ω0.

The phase evolution is not discussed here because it is not used in the methods developed
in the next chapters. In nonlinear systems, the phase quadrature of resonances is not always
π/2, unlike the linear case. Volvert examines the phase quadrature evolution for the Duffing
oscillator in [77].

2.4. Conclusions

This chapter demonstrated the main differences between the resonance behavior of linear and
nonlinear systems using a Duffing oscillator characterized by cubic stiffness. Starting with
undamped and unforced cases, complexity was added by incorporating damping and external
harmonic forcing.

Analytical solutions were found for linear cases, while for nonlinear cases, analytical solutions
only exist for the undamped and unforced single-degree-of-freedom Duffing system. A numerical
approximation of the response is possible using the harmonic balance method.

The resonant behavior of nonlinear systems is more complex than that of linear systems. The
fundamental resonance peak shifts to higher frequencies, and fold bifurcations create regions
with both stable and unstable solutions. The jump phenomenon, where the system transitions
from multiple solutions to one, can cause rapid amplitude changes over a short frequency range,
potentially damaging the structure [41, 84]. Another major difference from linear systems is
the presence of multiple harmonics in the response. Each harmonic can resonate if ωl =

l ω/ν matches the amplitude-dependent frequency of the fundamental resonance. Odd l : 1

superharmonic resonances extend from the main branch and can be calculated using classical
HB continuation. In contrast, even l : 1 superharmonic resonances bifurcate from the main
branch and require advanced bifurcation analysis [20, 21, 81]. The 1 : ν subharmonic resonances
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appear as isolated branches, needing a minimum forcing amplitude and basin of attraction
calculations for identification.
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3| Basics of control theory

Feedback control is an interdisciplinary field applied across all areas of engineering. The core
idea is to measure a system’s output and use it to adjust a controller, ensuring a system
variable aligns with a specific reference value. This approach ensures dynamic systems perform
optimally, maintain stability, and adapt to changing conditions and disturbances, even with
imperfect design models or varying system dynamics.

PID control is one of the earliest feedback control strategies and is widely used in practical
engineering applications [46, 69, 82]. Developed through extensive experience and trial and
error, it evolved from simple proportional feedback (P) to include integral control (PI) for elim-
inating steady-state offset. Later, an anticipatory derivative term was added, resulting in the
PID controller to improve dynamic response. Its simple structure, reliable operation, and ease
of adjustment have made it a mature method in industrial control. PID control is especially
useful when the system’s structure and parameters are not well understood or when an accurate
mathematical model is hard to obtain. They are thus particularly well suited for a model-less
approach such as CBC.

The main objective of this chapter is to provide a qualitative understanding of tuning the
proportional, integral, and derivative terms of PID control. It begins with a brief review of
open-loop and closed-loop control systems, followed by an explanation of how to analyze the
step response for control design. Finally, the chapter covers PID control by examining its three
components. The discussion draws on concepts from [26, 85].

3.1. Control system structures

The two main control structures are the open- and closed-loop control systems. Figure 3.1
illustrates block diagrams for both control systems.

Each system includes two key components: the process and the controller, depicted as boxes
with arrows indicating the causal relationship between inputs and outputs. The process has
an input, known as the control variable u, and an output, known as the process variable y.
A sensor measures the output, and an actuator provides the input. The desired value of the
process variable is referred to as the setpoint or reference value ysp. The control error e = ysp−y
is determined by comparing this setpoint to the actual output. The controller’s input varies
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(a) (b)

Figure 3.1: (a) Block diagram of an open-loop system. (b) Block diagram of a closed-loop
system.

depending on whether open-loop or closed-loop control is used. The purpose of both control
systems is to keep the process variable close to the desired value.

The process can be any dynamical system whose dynamics need to be controlled. To illustrate
the variables, a simple example can be considered. An aircraft’s autopilot system consists of
ensuring the aircraft follows the desired flight path and maintains stable flight conditions. The
process variable y can be the aircraft’s altitude, heading, or airspeed, measured by onboard
sensors. The control variables u are the adjustments made to the control surfaces (such as
ailerons, elevators, and rudder) and engine thrust. The desired flight parameters, set by the
pilot or the autopilot system, represent the setpoint ysp.

3.1.1. Open-loop control

Open-loop control is a system where the output does not affect the input control action. As
illustrated in Figure 3.1a, the controller action modifies the reference variable before it is applied
to the process.

The performance of open-loop control, determined by the control error, depends on the user’s
expertise and system knowledge. Applying the example of an aircraft autopilot with open-loop
control, it would adjust its parameters based on the desired altitude or speed, without using
feedback from the aircraft’s actual motion.

3.1.2. Closed-loop control

Closed-loop control is a system in which the process output is fed back to adjust the controlled
input of the process. The closed feedback loop connecting the process and the controller is
depicted in Figure 3.1b.

The goal of the feedback loop is to keep the process variable y close to the desired value
ysp despite disturbances and variations of the process characteristics. Feedback is a simple yet
powerful concept. To illustrate, consider a system in equilibrium that experiences a disturbance,
causing the process variable y to exceed the setpoint ysp. This results in a negative error e,
causing the controller to reduce the controlled variable u which then decreases the process
output y. This mechanism is known as negative feedback because the controlled variable u
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moves in the opposite direction to the process variable y. In the block diagram, the sign-
reversing block indicates the negative feedback.

In general, closed-loop systems have better performance than open-loop systems. The lack
of feedback can lead to decreased precision and responsiveness to system or environmental
changes, especially if the process is not perfectly known by the designer. Proper control design
is essential to ensure good performance.

3.2. Control design

The design of controllers is often based on their step response. The step response is the response
of the system when subjected to an abrupt change of one parameter, typically from zero to a
constant value, at a specified time. The step response reveals how the system transitions from
its initial state to a new steady state in response to this sudden change.

Figure 3.2 shows the time-domain specifications for this step response.

Figure 3.2: Time-domain specifications
defined for the step response.

Some specifications correspond the the amplitude of the response. The static or steady-state
error is the difference between the final steady-state output and the desired output value (1
here). The overshoot is the amount by which the system output exceeds its final steady-state
value, expressed as a percentage of that value.

Other specifications relate to the time axis. The settling time is the time required for the
response to reach the steady state and stay within the specified tolerance bands around the
final value. In general, the tolerance bands are 2% or 5%. The response up to the settling time
is known as the transient response and the response after the settling time is known as the
steady-state response. The rise time is the time required for the response to rise from 10% to
90% of its final value. The delay time is the time required for the response to reach 10% of its
final value from the zero instant.

To ensure good control design, the effects of load disturbances, measurement noise, and model
uncertainties must also be assessed. This can be done using frequency-domain specifications,
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which are linked to time-domain specifications. Comprehensive control design is beyond this
study’s scope. For details, see [26, 85].

3.3. PID control

The most common feedback control strategy used in practice is the PID control. Mathemati-
cally, the law governing the PID control variable u is a sum of three terms based on the control
error e:

u(t) = K e(t) +
1

Ti

∫ t

0

e(t) dt+ Td
d

dt
e(t). (3.1)

The first term is proportional to the error, the second term to the integral of the error, and the
third term to the derivative of the error. The controller parameters are the proportional gain
K, the integral time Ti, and the derivative time Td.

In the literature, another formulation of the controlled parameters is often encountered with
kp = K the proportional gain, ki = 1/Ti the integral gain, and kd = Td the derivative gain.

The choice of controller parameters influences the controlled input of the process, and conse-
quently, the process output.

3.3.1. Proportional action

Initially, the idea of solely proportional control was proposed to adapt the control action propor-
tionally to the current error. The control action is reduced if the error decreases, and increases
as the error increases. The control law of Equation (3.1) becomes

u(t) = K e(t). (3.2)

Figure 3.3 shows the controller output u and the process output y after a step change in the
setpoint ysp for different values of proportional gain K.

A proportional controller alone cannot ensure zero steady-state error. As the proportional gain
K increases, the system exhibits more oscillations and greater overshoot, bringing the steady-
state process output y closer to the setpoint ysp. Larger proportional gains allow for a reduction
of the rise time. Excessively high loop gains can destabilize the closed-loop system.

3.3.2. Integral action

The introduction of the integral term aims to eliminate the steady-state error. The integral
action guarantees an increasing (respectively decreasing) control action no matter how small
the positive (respectively negative) control error is. A simple way to visualize this is to assume
a system in a steady state with a constant control signal u0 and constant error e0. For this PI
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(a)

(b)

Figure 3.3: Step response of a closed-loop system with proportional control for different pro-
portional gains K = kd. (a) Time evolution of the process output y with a setpoint ysp = 1.
(b) Time evolution of the control action u. The illustration is sourced from [85].

control, Equation 3.1 becomes

u0 = K

(
e0 +

e0
Ti

t

)
. (3.3)

This proves that as long as e0 ̸= 0, the control action u0 cannot be constant.

Figure 3.4 shows the controller output u and the process output y after a step change in the
setpoint ysp for different values of integral time Ti = 1/ki. The proportional gain K is set to
unity.

(a)

(b)

Figure 3.4: Step response of a closed-loop system with PI control for different integral times
Ti = 1/ki. (a) Time evolution of the process output y with a setpoint ysp = 1. (b) Time
evolution of the control action u. The illustration is sourced from [85].

Distinct values of Ti can be compared with the pure proportional controller, i.e., Ti =∞. For
finite values of Ti, the steady-state error vanishes. For larger values of Ti, the response slowly
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approaches the setpoint. A faster approach and larger oscillations are observed for lower values
of Ti.

3.3.3. Derivative action

If a PI control causes excessive oscillations, adding a derivative term, often called an anticipatory
term, can help. The derivative action reduces oscillations, stabilizing the closed loop. This
instability arises from the delay between changes in the control variable and their effect on the
process output.

A simplification is to interpret the action of a controller with proportional and derivative action
as making the control proportional to the predicted process output. For a PD control, Equation
3.1 becomes

u(t) = K

(
e(t) + Td

d e(t)

d t

)
. (3.4)

The control error is proportional to a Taylor series expansion of e(t+ Td). The control error is
thus proportional to a linear prediction of the control error at time Td ahead, as illustrated in
Figure 3.5.

Figure 3.5: Interpretation of
derivative action as predictive
control using linear extrapolation
for prediction. The illustration is
sourced from [85].

Figure 3.3 shows the controller output u and the process output y after a step change in the
setpoint ysp for different values of derivative time Td = kd.

Distinct values of Td can be compared with the pure PI control, i.e., Td = 0. Initially, increasing
Td reduces oscillations, but excessive Td increases them again. The derivative action improves
the transient response by reducing the overshoot and reduces the settling time.

Derivative action is often not used. Many industrial controllers only implement PI control.

3.4. Conclusions

This chapter introduced the two main control system structures: open-loop and closed-loop
control. In open-loop control, the system’s output is not measured, and the actuating signal is
not corrected to match the output with the reference signal. In contrast, closed-loop control
incorporates a sensor to measure the output and uses feedback to modify the control variable.

Time-domain specifications were introduced to characterize the step response in the control
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(a)

(b)

Figure 3.6: Step response of a closed-loop system with PID control for different derivative times
Td = kd. (a) Time evolution of the process output y with a setpoint ysp = 1. (b) Time evolution
of the control action u. The illustration is sourced from [85].

design. The chapter concluded with a discussion on the Proportional-Integral-Derivative (PID)
control and the effect of each term. The proportional term reduces rise time, the integral term
eliminates steady-state error, and the derivative term improves transient response.

Although methods for automatically tuning PID gains exist, the complexity of the systems
considered in the following sections makes these methods inapplicable. Therefore, the controller
gains will be set by trial and error, based on the qualitative understanding provided in this
chapter.
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4| Description of the ACBC method

Time-invariant nonlinear systems exhibit complex behaviors, including multiple branches of
orbits interconnected by bifurcations (see Chapter 2). These systems are typically characterized
theoretically using advanced numerical continuation techniques [22, 37, 67]. For nonlinear
mechanical systems vibrating under external force, numerical continuation computes steady-
state behavior through frequency response curves (FRCs) [50].

Identifying FRCs for nonlinear mechanical systems experimentally is challenging with tradi-
tional excitation signals like swept or stepped sines. The same excitation signal can yield
different responses based on the initial state (folding), and perturbations can cause the system
to jump between periodic orbits. Near bifurcations, the shrinking basin of attraction may cause
jumps before reaching resonance, leaving resonances unidentified. Additionally, periodic orbits
can be unstable, making them unobservable in practice. [3]

New approaches have been developed to test nonlinear structures more systematically and
reliably. Control-based nonlinear vibration testing (CBNVT) extends numerical continuation
to feedback-controlled experiments.

There are two traditional control-based continuations (CBC): derivative-based and mapping-
based. Derivative-based continuation involves experimentally calculating derivatives, which is
highly inaccurate with noise and requires stopping the experiment. Mapping-based continuation
explores a large portion of the response surface, though typically only a segment is needed.
Mapping-based methods can be performed online or offline, depending on the continuation
procedure.

This chapter introduces a new method for experimental arclength CBC: the online, derivative-
less control-based nonlinear vibration testing (ACBC), developed by Gaëtan Abeloos [1, 2]. The
chapter begins by illustrating the folding phenomenon in open-loop experiments and explaining
the principle of control-based experiments. The classical offline CBC [11] is introduced for
unfolding and stabilizing open-loop experiments. The ACBC method, which enhances this
approach with adaptive filters and arclength continuation, is also presented.
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4.1. Open-loop and control-based experiments

In open-loop testing, the input parameters are excitation amplitude p and frequency ω. The
objective is to characterize the response amplitude by varying one parameter while keeping
the other constant. S-curves are obtained by keeping ω constant, while FRCs are obtained by
keeping p constant.

Figure 4.1 shows the FRC and S-curve for an open-loop experiment. The fundamental ampli-
tude of the system response X1 cannot be directly imposed as it is a measured, not an input
parameter. No matter which curve the experimenter aims to identify, ω and p are not the

(a) (b)

Figure 4.1: (a) FRC at p = 1 N and (b) S-curve at ω = 2 rad/s for the Duffing oscillator
with ζ = 5 % and other parameters as in Table 2.1. Stable solutions (solid line) and unstable
solutions (dashed line) are depicted. The illustrations are sourced from [1].

best parameters for the experiment. Both the FRC and S-curve appear folded. Additionally,
unstable solutions cannot be observed in open-loop experiments because any perturbation will
cause the system to deviate.

The identification of FRCs of mechanical systems can be done using CBC. It extends the nu-
merical continuation principle to a feedback-controlled experiment. The two parts are explained
here below.

Figure 4.2 represents the control-based experiment, which ensures the stabilization of any or-
bit. A feedback loop is used to indirectly impose X1 by defining a new input parameter, the
amplitude of a reference displacement x∗. In the considered version of CBC [11], the controller
provides the excitation of the structure. Unlike traditional feedback control, the control-based
experiment does not aim to make the response x converge to the reference x∗. Instead, it
adjusts the reference signal until a specific controller output is achieved, exciting the structure
as desired. The control action is defined as u = g(x∗ − x) where g(·) describes the controller’s
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dynamics.

Figure 4.2: Block diagram of
control-based experiment.

The stabilized orbit corresponds to the sought orbit if the controller is non-invasive, i.e. if
its output u corresponds to monoharmonic forcing when the system lies on the orbit. In a
linear system with initially monoharmonic control action, the response is monoharmonic at the
excitation frequency. Imposing a monoharmonic reference ensures the control action continues
to be monoharmonic.

Because a nonlinear system responds at different frequencies under monoharmonic forcing, its
displacement can be decomposed into fundamental and non-fundamental harmonic compo-
nents, i.e. x(t) = xf(t) + xnf(t). The reference displacement x∗ can also be decomposed into
fundamental and non-fundamental harmonic components, i.e. x∗(t) = x∗

f (t)+x∗
nf(t). These two

multi-harmonic displacements are fed in the controller which synthetizes u(t) = uf(t) + unf(t).
Non-invasiveness is achieved when unf(t) = 0, i.e. the control output u(t) = uf(t) is a harmonic
excitation applied to the system.

Once the desired orbit is identified, the continuation process smoothly transitions from one
orbit to another. The reference is adjusted, and the control-based experiment stabilizes a new
periodic orbit in the open-loop experiment.

4.2. Offline control-based continuation

This section uses the traditional implementation of CBC [11], applied in several studies [42,
61, 62, 64]. It assumes that different solutions rarely share the same fundamental amplitude
X1 at a specific excitation frequency. Imposing X1 would lead to a unique response, provided
X1 increases monotonously for a fixed forcing frequency. This means fundamental S-curves
are monotonous and fundamental FRCs do not intersect. Based on this key assumption about
S-curves, X1 can be sequentially increased to identify S-curves, and FRCs can be indirectly
approximated. X1 is imposed through a control-based experiment.

This CBC is termed offline CBC because it cancels invasiveness and performs continuation by
stopping the experiment for offline iterations.

The excitation of the structure can be generated by a derivative controller whose input is the
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difference between the reference displacement x∗ and the measured displacement x:

u(t) = kd
d
dt
(
x∗(t)− x(t)

)
(4.1)

CBC can use any control law. The user-defined gain determines the experiment’s dynamics,
modifying the system’s response to perturbations and stabilizing unstable orbits (see [13] and
[1]).

At steady state, the system displacement x, the displacement reference x∗, and the control
action u can be approximated with truncated Fourier series of N harmonics:

x(t) =
N∑

n=1

sx,n sin(nω t) + cx,n cos(nω t)

x∗(t) =
N∑

n=1

sx∗,n sin(nω t) + cx∗,n cos(nω t)

u(t) =
N∑

n=1

su,n sin(nω t) + cu,n cos(nω t)

(4.2)

The fundamental and non-fundamental component for each signal respectively corresponds to
n = 1 and n ∈ [2;N ].

The controller is invasive if the excitation of the structure is multi-harmonic. The system
follows a periodic orbit that is not the result of classical open-loop tests. Monoharmonic
forcing is achieved by adjusting the reference x∗

nf until it is matches to xnf, i.e. by setting the
non-fundamental Fourier coefficients of x∗

nf equal to those of xnf

(sx∗,n, cx∗,n)
N
n=2 = (sx,n, cx,n)

N
n=2. (4.3)

Fixed-point iterations can correct the Fourier coefficients of the reference signal. The up-
date can be performed offline using derivative-free Picard iterations, as detailed below. Once
non-invasiveness is achieved, the fundamental components of the system displacement xf and
reference displacement x∗

f generate the fundamental excitation applied to the system.

Using Picard iterations in the control-based experiment, one point on the S-curves can be
stabilized. This procedure is illustrated in Figure 4.3.

The fundamental phase of the reference x∗
f does not affect the response, as a time-invariant

oscillator allows any phase difference to be removed by a time shift. The fundamental compo-
nent of the reference is chosen as x∗

f = X∗
1 sin(ω t). The controlled experiment has only two

input parameters: the reference frequency ω and amplitude X∗
1 =

√
(sx∗,1)2 + (cx∗,1)2. The

amplitude of the force p is replaced by the fundamental amplitude of the reference X∗
1 .

To identify one S-curve point, the excitation frequency ω and fundamental amplitude of the
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nf

f

Figure 4.3: Control-based algorithm for one S-curve point identification. The grey boxes rep-
resent offline steps.

reference displacement X∗
1 are set to a constant. The continuation procedure determines the

fundamental amplitude.

The feedback loop must run continuously to maintain system stability. The correction step for
non-invasiveness, performed at steady state, is done offline.

The corrective iterations involve the following steps. Once the controlled system reaches a
steady state, the time series of x and u are recorded over one period. Fourier decomposition of
u and x is then performed using the direct Fourier transform. The non-fundamental Fourier co-
efficients of x are copied into the corresponding coefficients of x∗. These steps are repeated until
the non-fundamental Fourier coefficients of the control action u fall below a specified tolerance,
i.e., max

n

(
(|su,n|, |cu,n|)Nn=2

)
< tol. The corrective iterations do not modify the fundamental

Fourier coefficients of the reference sx∗,1 and cx∗,1.

The continuation process moves smoothly from the previously found periodic orbit to another.
Figure 4.4 represents the complete block diagram of the offline CBC.

nf

f

Figure 4.4: Offline CBC algorithm for S-curve identification. The grey boxes represent the
offline steps.
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With sufficiently high derivative gain, the S-curves are unfolded, allowing the use of a simple
sequential continuation scheme, as illustrated in Figure 4.5. To find a new periodic solution
on the S-curve, the fundamental amplitude X∗

1 is incremented by a step h, i.e., X∗
1 ← X∗

1 + h.
This step continuation is performed offline.

Figure 4.5: S-curves at ω = 2 rad/s with ζ = 5 % and other
parameters as in Table 2.1, kd = 0.5 (blue), 1 (orange), and 2
(yellow). The illustration is sourced from [1].

Once the continuation identifies a complete S-curve for a specific frequency, it is repeated for
different frequencies. Each continuation process begins by initializing the Fourier coefficients
of x∗ to create a monoharmonic signal with a small amplitude and constant frequency. The
collection of S-curves forms the dynamic response surface, and the FRC can be approximated
by slicing at a constant forcing amplitude. This CBC is a mapping-based continuation.

The main drawbacks of this method are offline computations and the assumption that S-curves
can always be unfolded with high derivative gain. This is not always true, especially with
superharmonic resonances of the Duffing oscillator [1]. Additionally, it identifies a large portion
of the response surface when only a segment is needed for FRC identification.

4.3. Adaptive filters

Fourier decomposition can be performed using discrete Fourier transform (DFT), synchronous
demodulation, and adaptive filters. Offline methods, such as DFT, compute coefficients after
collecting data over several periods and operate in parallel to the experiment. Online methods,
including synchronous demodulation and adaptive filters, update coefficients at each sample
time, matching the controller’s frequency. Reference [1] highlighted the advantages of adaptive
filtering over conventional synchronous demodulation with low-pass filters.

The key idea of this section is to impose non-invasiveness (Equation 4.3) online. Figure 4.6
presents the updated block diagram of the CBC.

The offline estimation and correction of the Fourier coefficients of x∗
nf is removed. Instead, x∗

nf

is synthesized by online estimation of Fourier coefficients of x using adaptive notch filters. This
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nf

f

Figure 4.6: CBC algorithm with adaptive filters for S-curve identification. Only the sequential
continuation is performed offline.

makes control-based experiments simpler and faster.

Identifying a periodic solution on the S-curve can continously run through time. The contin-
uation over the S-curve is still performed offline. An online continuation of the S-curve was
proposed in [3].

Adaptive notch filters isolate or remove specific frequency components from the input signal
x(t). In the CBC, instead of using the usual filter outputs, the Fourier coefficients of the
targeted component are directly accessed.

The truncated Fourier expansion of x(t) with N harmonics is given by

x(t) =
c0√
2
+

N∑
n=1

sn sin(nω t) + cn cos(nω t)

= Q(t) zT

(4.4)

where Q(t) is a basis composed of harmonic signals

Q(t) =

[
1√
2

sin(ω t) cos(ω t) · · · sin(N ω t) cos(N ω t)

]
, (4.5)

and z contains the Fourier coefficients of x(t)

z =
[
c0 s1 c1 · · · sN cN .

]
(4.6)

An adaptive filter synthesizes the signal x̂ by applying a time-varying linear combination of the
basis Q. The approximation of the measured signal x(t) is

x̂(t) = Q(t)wT (t) ≈ x(t) (4.7)
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where the weight coefficients are

w =
[
w0(t) w1,s(t) w1,c(t) · · · wN,s(t) wN,c(t).

]
(4.8)

The weights are updated online using the least mean squares (LMS) algorithm, which is simple
and cost-effective [3]. The synthesis error, e(t) = x(t) − x̂(t) = x(t) − Q(t)wT (t), is the
difference between the measured signal and its approximation. The weights are updated after
each time step ts based on the gradient of the mean squared error:

w(t+ ts) = w(t) + µQ(t) e(t), (4.9)

where µ is the step size factor. A small µ ensures smooth, slow convergence, while a large µ

leads to fast convergence with large oscillations, similar to PID control behavior (see Chapter
3). An illustration is provided in Appendix B of [1]. For more information on adaptive filters,
readers can refer to [32].

When the synthesis error e is nearly zero and the weights w are almost constant, Equation 4.7
becomes similar to a Fourier decomposition of x. In this situation, the elements of w, can be
viewed as an approximation of the Fourier coefficients, w ≈ z.

4.4. Arclength continuation

This section presents the experimental arclength continuation method proposed by Abeloos
[1]. Figure 4.7 shows the block diagram combining arclength continuation with the control-
based experiment and adaptive filters. The input for the continuation is the fundamental force
amplitude, denoted as p =

√
(sp,1)2 + (cp,1)2 in the following. The method is performed online

and does not require derivatives.

nf

f

Figure 4.7: Arclength CBC algorithm with adaptive filters for FRC identification (ACBC
method), with all steps performed online.

The algorithm is conceptually simple. Figure 4.8 illustrates the basic idea of the arclength
continuation, which aims to continue the FRC curve even when it folds.
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Figure 4.8: Illustration of the arclength continuation method proposed in [1, 2]. Circles rep-
resent previously identified responses, the square indicates the next response, the blue point
marks the center of the ellipse, and red points highlight responses intersecting the ellipse along
the arc.

Distinct solutions rarely exhibit identical fundamental amplitudes at a specific excitation fre-
quency. The sought FRC (in black) is essentially one-dimensional in the fundamental amplitude
X1 versus excitation frequency ω plane. By knowing two solutions of the FRC (red and blue
circles), a small ellipse can be drawn around the last identified periodic solution (blue circle).
The ellipse intersects the FRC twice: the first intersection (red circle) is the previously iden-
tified point, while the second intersection (red square) is the next response to be identified on
the branch. This latter solution can be found by sweeping along the ellipse, incrementing the
arc angle α until the excitation amplitude p enforced by the controller matches the desired ex-
citation amplitude p∗. The newly identified point then serves as the center for the next ellipse,
allowing the identification of the subsequent point on the FRC.

The continuation procedure is outlined in Algorithm 4.1. Two previous solutions of the FRC are
needed to determine the next one. The current response, (ωc, X

∗
1,c), is the center of the ellipse,

while the previous solution, (ωp, X
∗
1,p), lies on the ellipse. The slope of the FRC is approximated

by the angle β derived from these responses. The ellipse is defined by its semi-major axes ∆ω

and ∆X∗
1 . Sweeping along the ellipse involves incrementing the angle α, adjusting the input of

the CBC experiment (ω, X∗
1 ). The sweep continues until the next solution is found, i.e., when

α reaches a point where p converges to p∗ within a specified tolerance tolp. The sweep must
start from an initial arc angle, α0, to ensure adequate separation from previously identified
responses and to prevent identifying an already known point.

The continuation is performed online using adaptive filters and relies on transient responses.
By sweeping slowly, it is assumed that the transient response approximates the steady-state
response. Transients result from sudden changes in CBC’s input parameters. To dampen these
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Algorithm 4.1 Arclength continuation for CBC experiment [1].
1: (ωp, X

∗
1,p) and (ωc, X

∗
1,c) defined by user

2: loop
3: α← α0

4: β ← atan2(X∗
1,c −X∗

1,p, ωc − ωp)
5: (ω,X∗

1 ) = (ωc +∆ω cos(β + π − α), X∗
1,c +∆X∗

1 sin(β + π − α))
6: Wait duration tcooldown for steady-state
7: while |p− p∗| > tolp do
8: Modify α with chosen sweeping strategy while maintaining the equality in step 5 con-

tinuously
9: end while

10: (ωp, X
∗
1,p)← (ωc, X

∗
1,c)

11: (ωc, X
∗
1,c)← (ω1, X

∗
1 )

12: end loop

transients, a cooldown period tcooldown is recommended before starting the sweep. Transients
most significantly affect accuracy in resonance regions.

This arclength continuation identifies the responses at the desired harmonic forcing while ex-
cluding the continuation arcs from the exported data. This method is similar to the mapping-
based continuation approach, particularly the one used in [64], which creates a local map of
the response surface near branches of interest.

4.4.1. Arclength strategies

Three strategies are proposed in [1] for the sweep of the arc angle along the ellipse.

Figure 4.9 illustrates the time evolution of the arc angle α and the force amplitude p for the first
sweeping strategy. This strategy involves sweeping at a constant angle rate α̇ = ηα until the
targeted excitation amplitude p∗ is reached within a specified tolerance. The sweep concludes
once this tolerance criterion is met. At the end of the sweep, the system is not in a steady state
due to transients in both the system response and adaptive filters.

Figure 4.9: Time evolution of the arc
angle α and the force amplitude p dur-
ing the first sweeping strategy of the
arclength continuation, as proposed in
[1].

Figure 4.10 illustrates the time evolution of the arc angle α and the force amplitude p for the
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second sweeping strategy.

Figure 4.10: Time evolution of the
arc angle α and the force amplitude
p during the second sweeping strategy
of the arclength continuation, as pro-
posed in [1].

This strategy uses an integral controller for sweeping the arc angle. The integral control law is
expressed as α̇ = ki(p − p∗) using the force amplitude error as input. Integral gain is chosen
to eliminate steady-state error (see Chapter 3). While differential or proportional controllers
could adjust overshoot or settling time, no controller is optimal across the entire frequency
spectrum. Only integral control is used for simplicity, focusing on tuning a single parameter.
The control ensures smooth convergence of the arc angle to its target, reducing transient effects
before the stop criterion is met.

Figure 4.11 illustrates the time evolution of the arc angle α and the force amplitude f for the
third sweeping strategy.

Figure 4.11: Time evolution of the arc
angle α and the force amplitude p dur-
ing the third sweeping strategy of the
arclength continuation, as proposed in
[1].

This third strategy combines elements of the previous two. It starts by sweeping at a constant
arc angle rate until reaching the target excitation amplitude p∗. Then, it switches to the
integral controller for gradual convergence to p∗ over a predefined time tconv. This method
introduces three parameters (α̇, ki, tconv), whereas the previous methods each introduced only
one parameter (either α̇ or ki).
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4.5. Conclusions

Challenges arise when applying classical swept or stepped sine methods to identify the complete
frequency response of nonlinear systems under harmonic forcing, including both stable and
unstable branches. Control-based continuation (CBC) provides a more systematic and reliable
approach for identifying nonlinear frequency responses.

This chapter first introduced the traditional CBC [11], which assumes that S-curves can be un-
folded with sufficient control gain. The method uses fixed-point iterations for non-invasiveness
cancellation and sequential continuation to identify S-curves. FRCs are approximated indirectly
from a collection of S-curves.

Next, the ACBC method was introduced as a novel approach for control-based nonlinear vi-
bration testing. It builds on traditional CBC but performs online non-invasiveness cancellation
using adaptive filters, and uses derivative-free arclength continuation to directly identify FRCs.
Since the FRC is one-dimensional in the response amplitude/excitation frequency plane, an
ellipse can be drawn from two previously identified points to find the next point on the FRC.
The three strategies proposed in [1] were illustrated, highlighting the algorithm’s conceptual
simplicity.
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The arclength control-based continuation (ACBC) was used by Abeloos in [1] to identify the
fundamental resonance in various numerical nonlinear systems. These systems included a hard-
ening Duffing oscillator, a softening-hardening Duffing oscillator, a piecewise linear one-degree-
of-freedom oscillator, and a three-degree-of-freedom oscillator with cubic nonlinearity. Abeloos
also tested the method on an experimental setup with a clamped-clamped thin beam. The
method identified an isolated response branch, due to modal coupling, on top of the fundamen-
tal resonance.

The chapter begins with an analysis of the impacts of various parameters. Then, the ACBC
method is used to identify the complete frequency response, including fundamental, super-, and
subharmonic resonances, of the Duffing oscillator from Chapter 2. Challenges in identifying
these resonances are highlighted.

Only the sweep strategy using PID control is considered. Unlike the constant sweep rate
strategy, the PID strategy provides a smooth approach to the next FRC intersection. Abeloos’
third strategy introduces three parameters to be tuned, two more than the PID strategy. To
achieve better performance, a proportional-integral control could be considered. For simplicity,
only integral control is used in the sweep strategy, i.e., α̇ = ki(p− p∗).

The ACBC method is implemented in Matlab/Simulink (see Appendix A.1). The control-based
experiment utilizes a derivative controller for displacement. It works with velocity signals to
avoid the need for computing derivatives. The arc sweep is conducted in the plane defined by
the fundamental amplitude of velocity, Ẋ∗

1 = ωX∗
1 , versus the excitation frequency, ω.

Stability assessment in CBC is a challenge in experimental research [10, 15]. This work aims
to identify both stable and unstable open-loop responses. The following figures will not differ-
entiate between stable and unstable solutions.

5.1. Parameter analysis

A forcing amplitude of 0.01 N is used to illustrate parameter influence, considering: the starting
sweep angle α0, ellipse semi-major axes (∆ω, ∆Ẋ∗

1 ), the integral gain ki of the sweep rate
control law, and adaptive filters’ step size factor µ. The estimated force amplitude during the
sweep, referring to the estimation of the first harmonic amplitude of the force, will be discussed
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based on these parameters. The force is assumed to be made non-invasive by the control-based
continuation.

Figure 5.1 shows the FRC at 0.01 N identified using the ACBC method. Figure 5.1b illustrates
the path followed in the input parameter space, i.e., the first amplitude/excitation frequency
plane where the ellipses are drawn. This plane is referred to as the sweeping plane in the
following discussion. The parameters used are summarized in Table 5.1. The identification
process starts at low frequencies and sweeps towards higher frequencies.

(a)
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0.2

0.4
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0.8

(b)

Figure 5.1: ACBC method
applied to the Duffing os-
cillator’s fundamental reso-
nance. (a) Sweeping plane.
Arcs indicate the path fol-
lowed during the sweep,
black circles denote accepted
points. The contour is ob-
tained with HB continua-
tion. (b) FRC amplitude at
p = 0.01 N. Red circles de-
note accepted points. The
dotted curve represents the
results of the HB continua-
tion.

∆Ẋ∗
1 [m/s] ∆ω [rad/s] ki [rad/(s N)] kd [kg/s] µ [-] α0 [rad]

0.025 0.025 0.5 1 0.5 ts π/2

Table 5.1: ACBC simulation parameters for the fundamental resonance of the Duffing oscillator
(p = 0.01 N).

5.1.1. Initial sweep angle

The initial sweep angle is set to ensure the sweep starts far enough from the previous point,
preventing the re-identification of the previous point instead of the next one.

Figure 5.2 illustrates the continuation for two distinct values of starting sweep angles (α0 = π/2

and α0 = π). The choice of the starting sweep angle can accelerate computation. The most
appropriate value is α0 = π, as it begins the search along the secant of the two previously
identified solutions. As the ellipse size is reduced, the next point is likely to be close to α = π.
This is illustrated in Figure 5.2b, where only a very small arc of each ellipse is swept because
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the first estimate is close to the next solution, except at the resonance peak. In the following,
the initial sweep angle is set to π.
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(b)

Figure 5.2: Sweeping
plane for the ACBC
method with distinct
starting sweep angles:
(a) α0 = π/2 and (b)
α0 = π. Purple arcs
indicate the sweep and
red circles denote ac-
cepted points.

The initial sweep angle determines if the sweep occurs inside or outside the FRC. As illustrated
in Figure 5.1a, sweeping outside the FRC explores higher forcing levels, while sweeping inside
explores lower levels, making it better for experiments. Starting the sweep outside the FRC
ensures the identification continues on the same branch.

5.1.2. Sweep rate

The integral controller regulates the arc angle, which is associated with the force level of the
intersected FRC. Ideally, the sweep should wait for a steady state after each arc angle change to
ensure the force meets the desired tolerance accurately. This is highly computationally expen-
sive. Instead, the sweep angle is continuously changed at a slow rate to keep transients small
and the estimated force close to steady state. The FRC accuracy depends on the transients’
amplitude in the system response and adaptive filters. The sweep rate is influenced by both
the integral gain and ellipse size.

Figure 5.3 shows the impact of varying the integral gain and semi-major axes on accuracy.

In the integral control law, the sweep rate α̇ is proportional to the integral gain ki. As illustrated
in Figure 5.3a, decreasing the integral gain reduces transients and increases accuracy, though
it extends the testing time. If the sweep is too fast, transients degrade the accuracy of the
identified FRC, and can prevent the estimated force amplitude from reaching the target p∗. In
the latter case, the continuation procedure will loop indefinitely and fail to identify the next
point.
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Figure 5.3: Parametric study varying (a) the integral gain ki = 0.25 (×), ki = 0.5 (♢♢♢), ki = 1

(×), ki = 2 (×) or (b) the semi-major axes ∆Ẋ∗
1 = ∆ω = 0.0125 (×), ∆Ẋ∗

1 = ∆ω = 0.025

(♢♢♢), ∆Ẋ∗
1 = ∆ω = 0.05 (×), ∆Ẋ∗

1 = ∆ω = 0.1 (×). The grey dotted curve is the solution
obtained with HB continuation.

The same effects observed for a reduced integral gain can be observed for a reduced size of the
ellipse, see Figure 5.3b. Reducing the ellipse size allows for the identification of more points and
also decreases the magnitude of transients. It also causes the experiment to last much longer.

In Figure 5.3, for integral gains ki = 1 and 2 or step sizes ∆ω = ∆Ẋ∗
1 = 0.5 and 0.1, accuracy

decreases near the resonance peak. The parameter influence on the sweep rate also depends on
the ellipse’s location.

The effects of step size, integral gain, and ellipse location are further investigated by observing
transients in the estimated force amplitude during the sweep.

Ellipse size

Figure 5.4 shows the evolution of the estimated force amplitude along an ellipse for different
ellipse sizes (∆ω, ∆Ẋ∗

1 ) with a constant sweep rate. The arc angle, denoted as α in Figure 4.8,
starts on the upper branch of the fundamental resonance.

Smaller ellipses intersect only the upper branch, as shown in Figure 5.4a for ∆Ẋ∗
1 = ∆ω = 0.025

or 0.0125. Starting from a zero arc angle in Figure 5.4b, the sweep is initially outside the
targeted fundamental resonance. The ellipse intersects FRCs at higher forcing levels than the
targeted 0.01 N, as shown in Figure 5.1a. Around α = π, the ellipse intersects the targeted
FRC, then continues inside the fundamental resonance, intersecting FRCs at lower forcing
levels, until returning to the starting point at an arc angle α = 2π.

Larger ellipses, such as ∆Ẋ∗
1 = ∆ω = 0.05, intersect both the upper and lower branches. After
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Figure 5.4: (a) Sweeping
plane for the fundamen-
tal resonance of the Duff-
ing oscillator (p = 0.01

N). (b) Variation in force
amplitude along an ellipse
for various ellipse size:
∆Ẋ∗

1 = ∆ω = 0.0125

( ), ∆Ẋ∗
1 = ∆ω = 0.025

( ), ∆Ẋ∗
1 = ∆ω = 0.05

( ).

intersecting the targeted FRC around α = π, the ellipse encounters varying force levels due
to intersecting two FRC solutions on the unstable branch. Following α = π, the sweep starts
inside the targeted FRC, reaches the first unstable branch intersection, continues outside to the
second intersection, and then finishes inside the targeted FRC, returning to the starting angle
α = 0.

In Figure 5.4b, larger ellipses intersect FRCs at higher forcing amplitudes, resulting in a steeper
slope of the estimated force versus arc angle at the desired FRC intersections. This requires a
slower sweep rate or lower integral gain.

Increasing the ellipse size can be unfeasible in practice due to high forcing levels during the
sweep, which could exceed shaker limitations or compromise structural integrity.

Integral gain

The sweep rate is proportional to the integral gain in the sweeping strategy.

Figure 5.5 illustrates the evolution of the force amplitude along an ellipse for different values
of constant sweep rate α̇.

At sufficiently slow sweep rates, the estimated force amplitude at a given arc angle converges,
as shown with α̇ = π/1250 or π/6250 rad/s in Figure 5.5a. If the ellipse is swept too fast,
transients degrade the estimated force amplitude, as shown with α̇ = π/50 or π/250 rad/s
in Figure 5.5a. An inappropriate sweep rate results in very inaccurate outcomes or unmet
tolerance criteria, causing repeated sweeps.

Proximity to resonance

Figure 5.6 illustrates the evolution of the estimated force amplitude along the same ellipse at
distinct locations of the fundamental resonance.
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Figure 5.5: (a) Sweep-
ing plane for the funda-
mental resonance of the
Duffing oscillator (p =

0.01 N). (b) Variation in
force amplitude along an
ellipse for distinct values
of sweep rate: α̇ = π/50

rad/s ( ), α̇ = π/250

rad/s ( ), α̇ = π/1250

rad/s ( ), α̇ = π/6250

rad/s ( ).
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Figure 5.6: (a) Sweeping
plane for the fundamental
resonance of the Duffing
oscillator (p = 0.01 N).
(b) Variation in force am-
plitude with arc angle for
three ellipses located at
different distances from
the peak of the funda-
mental resonance.

When drawn closer to the fundamental resonance, the ellipse intersects FRCs at higher forcing
levels. As shown in Figure 5.1a, FRCs for different forcing levels converge near resonance.

The slope of the force amplitude relative to the arc angle is steeper near the resonance. Since
the integral control of the sweep rate is proportional to the estimated force amplitude p, a lower
gain is needed near resonance. A sweep rate providing good accuracy far from resonance can
introduce errors close to it. No integral gain is optimal for the entire frequency range.

In practice, the same ellipse could not be used both far from and close to resonance if the
forcing levels increase significantly during the sweep and become too large for the experiment.

5.1.3. Tolerance criterion

The tolerance criterion immediately stops the sweep when the absolute error between the tar-
geted force p∗ and the estimated force p falls below a specified tolerance. This section illustrates
the effects of prematurely stopping the integral controller due to this criterion.
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Figure 5.7 shows the time evolution of the estimated force during the sweep of two ellipses at
different locations. In Figures 5.7b and 5.7c, blue and red indicate the ellipse’s location, either
far from or close to resonance (see Figure 5.7a).
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Figure 5.7: (a) Sweeping plane for the fun-
damental resonance of the Duffing oscilla-
tor (p = 0.01 N). (b and c) Time evolution
of the estimated force during the sweep
with ( ) and without ( or ) trigger-
ing the tolerance criterion. The black dot-
ted line represents the targeted forcing, i.e.
0.01 N. The same parameters are used in
both cases.

The purple solid curve shows the time evolution of the estimated force when the sweep stops
upon reaching the tolerance criterion. The dotted red and blue curves show the time evolution
of the estimated force if the sweep continues, ignoring the tolerance criterion.

When the ellipse is drawn far from the resonance peak (Figure 5.7b), smooth convergence occurs
before the tolerance criterion is triggered. Closer to the resonance (Figure 5.7c), the tolerance
criterion is met before the integral controller fully converges. If the controller is not stopped,
it overshoots and then converges to the targeted force. Premature stopping by the tolerance
criterion introduces an error. In the presence of oscillations, the estimated force can reach its
target multiple times before reaching a steady state.

Fine-tuning the integral controller is necessary to prevent overshoots and oscillations, which
are unsuitable due to the tolerance criterion. This involves using a lower gain, which increases
computational time but ensures sufficient accuracy (see Chapter 3).
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The presented example had two key points. It proved that the tolerance criterion is applicable
for the integral control without overshoot and highlighted that a given integral gain causes
overshoot near resonance but not far from it. This aligns with the previous observations about
the need for a slower sweep rate close to resonance.

5.1.4. Adaptive filters’ step size factor

In the ACBC method, adaptive filters estimate the system response and force (see Chapter 4).
The dynamics of adaptive filters depend on the step size factor µ.

Figure 5.8 shows the time evolution of the estimated force amplitude during cooldown. Intro-
duced in Chapter 4, cooldown time dampens transients from sudden changes in CBC input
parameters and is applied before each sweep.
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Figure 5.8: Time evolution of the estimated force amplitude during cooldown for different step
size factors: (a) µ = 0.0625 ts ( ), µ = 0.125 ts (. ), µ = 0.25 ts ( ), and (b) µ = 0.25 ts

( ), µ = 0.5 ts ( ), µ = 1 ts ( ).

The step size factor dictates the convergence of the adaptive filters’ approximation to the signal.
Given sufficient time, filters with different step size factors converge to the same estimate. The
effect of the step size factor is similar to that of a PID control (see Chapter 3). A smaller µ

allows smoother, slower convergence, while a larger µ results in a faster response with greater
overshoot and more oscillations. If µ is too large (e.g., µ = 1 ts), the oscillations are larger and
take longer to dampen. The cooldown needs to be set appropriately for a particular µ.

Figure 5.9a illustrates the influence of the step size factor and cooldown on the accuracy of the
identified FRC. Figures 5.9c, 5.9b, and 5.9d compare the time evolution of the force and its
amplitude estimation. Vertical dotted lines indicate when the tolerance criterion is met. The
sweep always starts after a cooldown.

The solution is accurate for µ = 0.5 ts. For µ = 1 ts, a too-short cooldown (100 s) is inadequate
as the estimation has not converged. The tolerance criterion is triggered immediately after
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Figure 5.9: (a) Parametric study varying the step size factor and the cooldown duration:
µ = 0.5 ts with tcooldown = 100 s (♢♢♢), µ = 1.1 ts with tcooldown = 100 s (×), µ = 1.1 ts with
tcooldown = 500 s (o), µ = 1.2 ts with tcooldown = 500 s (o). The black line is identified using
HB continuation. (b, c, d) Time evolution of the force (in gray) and its estimated amplitude for
three of the cases represented in (a), with colors matching those in (a). Vertical dotted lines
indicate when the tolerance criterion is met.

the first cooldown, but the solution is inaccurate due to transients in the filter estimation (see
Figures 5.9 and 5.9c). This issue mainly occurs during the first cooldown. For subsequent
cooldowns, the ACBC method accurately identifies the next FRC point. Figure 5.9d shows
that allowing more time for the first cooldown enables the filters to converge, resulting in
better accuracy of the identified FRC solution for the first point. In the example considered,
µ = 1.1 ts is already too large as it creates large oscillations and requires a longer cooldown,
although the solution can still be identified.

In Figure 5.9b, the step size factor is too large, causing the adaptive filters to poorly approximate
the force. The filters destabilize the control-based continuation, preventing the force from
becoming non-invasive.
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5.1.5. Summary of parameter analysis

To ensure reliable results, all parts of the ACBC method must work effectively. The sweep rate
of the arclength continuation should be small enough to avoid introducing large transients. The
ellipse size and integral gain influence the sweep rate, and their effects depend on the ellipse’s
position on the FRC. The step size factor and cooldown time must be set appropriately to
ensure the adaptive filters converge.

Generally, a set of constant parameters can be found to work in the frequency region of interest.
For better performance, parameters could be adapted based on the ellipse’s location.

Several parameters require tuning before applying the ACBC method. Further research could
establish practical guidelines applicable in any situation. One potential approach involves using
linear modal parameters. Although linear theory is inadequate for nonlinear systems, it can
quickly provide rough estimates. For example, the ellipse size could be estimated based on the
linear resonance bandwidth.
Additionally, determining a criterion for an optimal sweep rate, considering the combined in-
tegral gain and ellipse size parameters, would be advantageous.

5.2. Identification of the fundamental resonance

This section applies the ACBC method to identify the fundamental resonance in the reference
case from Chapter 2 and discusses the encountered challenges.

Figure 5.10 shows the identification of the fundamental resonance for the Duffing oscillator at
1N using the ACBC method and HB continuation. The parameters used are listed in Table
5.2.
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Figure 5.10: FRC around the fundamental resonance of the Duffing oscillator (p = 1 N). (a)
ACBC method, (b) Harmonic balance continuation.
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∆Ẋ∗
1 [m/s] ∆ω [rad/s] ki [rad/(s N)] kd [kg/s] µ [-]

0.5 0.5 0.01 (start) 5 0.2 ts

Table 5.2: ACBC simulation parameters for the fundamental resonance of the Duffing oscillator
(p = 1 N).

The ACBC method accurately identifies the fundamental resonance, although the resonance
reveals an exceptionally narrow peak extending far from the natural frequency. This extreme
scenario results from the system’s light damping (ζ = 0.5%) and large forcing amplitude.
Identifying the resonance peak posed several challenges, detailed below.

The integral gain, starting at 0.01 as shown in Table 5.2, was kept constant until the sweep
became too fast and overlooked the next FRC solution. When this occurred, the integral gain
was reduced and kept constant until it became unsuitable again.

Challenges encountered

Maintaining a proper sweep rate with constant ellipse size and integral gain over the large
frequency shift of fundamental resonance is challenging. Furthermore, curvature constraints on
the ellipse size require sufficient discretization for accurate FRC representation.

Figure 5.11 shows the fundamental resonance in the sweeping plane, illustrating three ellipses in
different regions of the resonance curve. The three ellipses are drawn during the identification
of the upper branch of the fundamental resonance.

2 4 6 8 10

0

20

40

60

80

100

6.2 6.3 6.4

44.2

44.3

44.4

9 9.1 9.2
92.1

92.2

92.3

8.2 8.3 8.4

77.65

77.75

77.85

a

b
c

d

Figure 5.11: Sweeping plane for
the fundamental resonance of
the Duffing oscillator (p = 1

N). Three constant-sized ellipses
(∆Ẋ∗

1 = ∆ω = 0.1) are shown
on the upper branch of the reso-
nance. The starting point for the
purple ellipse is marked in pink.
Arrows indicate the sweep direc-
tion. The main figure axes are
not scaled, while the zoomed-in
sections have equally scaled axes.

The resonance is narrow where the ellipses are drawn, intersecting both the upper (stable)
and lower (unstable) branches of the fundamental resonance. Near the resonance peak, these
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branches converge. Consider the purple ellipse: the sweep starts from a known solution (a) on
the upper branch, marked by the pink point in Figure 5.11, and proceeds clockwise. The next
intersection with the FRC identifies the next point (b) on the upper branch. Continuing the
sweep, the ellipse intersects two points on the lower branch (points c and d).

Figure 5.12 shows the estimated force amplitude along the three ellipses for a constant sweep
rate and ellipse size. The desired amplitude of 1N is indicated by a horizontal line.
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Figure 5.12: (a) Force amplitude variation with arc angle swept at π/10000 rad/s for three
ellipses (∆Ẋ∗

1 = ∆ω = 0.1) at different distances from the fundamental resonance peak. (b)
Zoomed view. Curve colors correspond to the ellipse locations in Figure 5.11. The pink circle
marks the starting point.

The sweep starts at the pink point (a) at zero arc angle. The ellipse is swept to the next
intersection (b), encountering FRCs with increasing forcing levels compared to the 1N reference,
as it is outside the fundamental resonance. Further sweeping identifies a third intersection
(c), encountering FRCs with lower forcing levels between the branches. Sweeping outside the
resonance branches identifies the fourth intersection (d) with higher forcing levels encountered
during the sweep. Finally, the ellipse returns to the starting point (a), passing through the
resonance and encountering lower forcing levels.

The amplitudes of the estimated forces along the sweep can be compared for the three distinct
ellipses. The forcing levels of the intersected FRCs reach magnitudes dozens of times the
targeted amplitude, even for the small ellipse considered (∆ω = 0.1 while the identification
is over 8-9 rad/s), which may be impractical in experiments. Additionally, as one approaches
resonance, the spacing between solutions (b to c and d to a) decreases. These observations result
in steep force amplitude gradients with respect to the arc angle, complicating the maintenance
of small transient magnitudes during the sweep. Near resonance, strong transients require a
very small sweep rate or integral gain, while a larger integral gain could be used far from
resonance. A too-fast integral gain causes significant transients and potential overshoot in the
estimated force, which is unsuitable for the tolerance criterion.
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Figure 5.13 shows the variation in force amplitude estimation with different constant sweep
rates for the ellipse near resonance in Figure 5.11. A faster sweep rate increases transients and
overlooks the solution. The ellipse misses the desired FRC at points (b) and (c). A constant
integral gain across this frequency range is impractical for the presented case.
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Figure 5.13: (a) Force amplitude variation with arc angle for the ellipse closer to the resonance
peak in Figure 5.11 (∆Ẋ∗

1 = ∆ω = 0.1). (b) Zoomed view. The solid blue line is obtained with
α̇ = π/10000 rad/s and the dotted orange line with α̇ = π/1000 rad/s. The pink circle marks
the starting point.

The size of the ellipse drives the rate of the sweep and the accurate discretization of FRC.
Both necessitate a small ellipse. As the ellipse size is constant for the complete frequency
range, a small ellipse requires a lot of computational time. The computational time could
be reduced by adjusting the ellipse size based on the curvature, using a larger ellipse size in
straighter regions and a smaller size in more curved regions. This solves the problem but it
requires adapting the integral gain in consequence. In experiments, the ellipse size could also
be limited by the maximum forcing level the shaker can provide or the structure can withstand.

The final comment emphasizes the need for a high sampling frequency. At low forcing levels,
non-fundamental harmonics have minimal impact, except near the peak. With high forcing and
light damping, nonlinearity amplifies these harmonics, causing a frequency shift from 1 rad/s
to 9 rad/s. Thus, a sampling frequency chosen at one point of the curve can be inaccurate
near the peak. Low sampling frequency can miss solutions, similar to a rapid sweep. Proper
sampling requires slowing computation.

In conclusion, the problems encountered are similar to those noted previously, primarily due to
the large frequency shift caused by significant excitation in the lightly damped structure. This
extreme case complicates maintaining constant integral gain and ellipse size across the frequency
range. For typical fundamental resonance cases, changing the integral gain is unnecessary,
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though it becomes not optimal near resonance.

5.3. Identification of secondary resonances

This section applies the ACBC method to identify the super-and subharmonic resonances in
the reference case from Chapter 2 and discusses the encountered challenges.

5.3.1. Identification of odd-superharmonic resonances

Figure 5.14 shows the 3 : 1 superharmonic resonance identified using the ACBC algorithm and
HB continuation. The parameters for the ACBC algorithm are detailed in Table 5.3. Two
continuation runs are performed for the ACBC method. The first, shown in blue in Figure
5.14a, starts from a frequency lower than the 3 : 1 resonance. The second, shown in purple,
starts from a frequency higher than the 3 : 1 resonance.
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Figure 5.14: FRC around the 3 : 1 resonance of the Duffing oscillator (p = 1 N). (a) ACBC
method. Two continuation runs are performed ( ) and ( ). (b) Harmonic balance continua-
tion.

∆Ẋ∗
1 [m/s] ∆ω [rad/s] ki [rad/(s N)] kd [kg/s] µ [-]

0.1 0.002 0.5 0.5 0.1 ts

Table 5.3: ACBC simulation parameters for the 3 : 1 resonance of the Duffing oscillator (p = 1

N).

The 3 : 1 superharmonic is not fully identified by the ACBC method, as the upper part of the
loop is undetected. For the first run, the algorithm cannot turn around the loop and finds the
lower branch solution instead. The second run shows similar results. Turning around the fold
bifurcation is impossible with any set of parameters considered. Further investigation is needed
to understand why the top of the loop is difficult to identify.
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Figure 5.15 illustrates the FRC of the 3 : 1 resonance at different forcing levels.
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Figure 5.15: Comparison of FRC around the 3 : 1 resonance for distinct forcing levels: p = 0.9

N ( ), p = 1 N ( ), p = 1.1 N ( ). (a) Total amplitude, and (b) Sweeping plane. The
dash-dotted line represents an ellipse, with intersections marked by two previously identified
FRC solutions at 1N in blue and the next solution to identify in pink.

As the force increases, the FRC of the 3 : 1 resonance shifts along the frequency axis and ampli-
fies. The ACBC method assumes that two FRC responses do not share the same fundamental
amplitude at a particular frequency. This assumption is verified outside the superharmonic
resonance region but not within it.

In the sweeping plane, the 3 : 1 FRCs at different forcing levels intersect. The pink circle in
Figure 5.15b highlights two solutions of distinct FRCs (1 N and 1.1 N) with the same first
harmonic amplitude at a given frequency. These solutions have different non-fundamental
harmonics as they correspond to different FRCs.

Intersections in the sweeping plane are problematic. Consider the sweep of the ellipse repre-
sented in Figure 5.15b. Blue points correspond to previously identified solutions, while the
pink point is the next FRC solution to be identified. Since only the fundamental harmonic
is controlled during the sweep, it is uncertain which FRC will be identified at the pink point.
Two situations can arise: ideally, the point corresponds to the FRC at the desired forcing 1N,
satisfying the tolerance criterion, and the sweep continues to the next FRC solution. Alterna-
tively, if the algorithm encounters the solution at 1.1N, the tolerance criterion is not satisfied,
the point is rejected, and the sweep misses the solution point.

The same issue occurs with other odd superharmonics that have a loop at the top, such as
5 : 1 and 7 : 1. Figure 5.16 illustrates the identification of the 9 : 1, 11 : 1, and 13 : 1

superharmonic resonances, which do not have a loop at the top. The ACBC method can
identify these superharmonics. In systems with increased damping, more odd superharmonic
resonances do not exhibit a loop at the peak of the resonance curve.
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Figure 5.16: FRC around the 9 : 1, 11 : 1, and 13 : 1 resonances of the Duffing oscillator
(p = 1N). (a) ACBC method, (b) Harmonic balance continuation.

Maintaining non-invasive forcing within the superharmonic resonance regions posed a challenge.
For the l : 1 resonance, an additional tolerance criterion was introduced concerning the ampli-
tude of the l-th harmonic in the controlled force. Further details will be provided in the next
chapter.

5.3.2. Identification of even-superharmonic resonances

Figure 5.17 illustrates the identification of the 2 : 1 superharmonic resonance with the ACBC
method and with HB continuation. The parameters for the simulation are presented in Table
5.4. Two continuation runs are performed for the ACBC method. The first, shown in blue in
Figure 5.17a, starts from a frequency lower than the 2 : 1 resonance. The second, shown in
purple, starts from a frequency higher than the 2 : 1 resonance.
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Figure 5.17: FRC around the 2 : 1 resonance of the Duffing oscillator (p = 1N). (a) ACBC
method. Two continuation runs are performed ( ) and ( ). (b) Harmonic balance continua-
tion.
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∆Ẋ∗
1 [m/s] ∆ω [rad/s] ki [rad/(s N)] kd [kg/s] µ [-]

0.1 0.002 0.5 0.1 0.1 ts

Table 5.4: ACBC simulation parameters for the 2 : 1 resonance of the Duffing oscillator (p = 1

N).

The ACBC method does not identify all branches in the 2 : 1 superharmonic resonance region,
missing the two unstable branches. In the first run, the stable 2 : 1 branch is identified after
the symmetry-breaking bifurcation point. It reaches the fold bifurcation at the top of the 2 : 1

resonance but cannot turn around, falling to the lower part of the 2 : 1 resonance. In the second
run, the stable 2 : 1 branch is followed up to the bifurcation point, where it again cannot turn
around and jumps to another stable 2 : 1 branch. The unstable branches and part of the stable
branch at the top of the 2 : 1 resonance are not identified. Performing the two runs for any set
of parameters does not allow the identification of the unstable branches.

Identifying the 2 : 1 resonance presents a challenge similar to that of odd superharmonic reso-
nances. In the superharmonic resonance region, multiple FRCs at different forcings share the
same fundamental amplitude at a given frequency. During the sweep, it is difficult to determine
which branch to follow since only the first harmonic of the response is controlled. Evaluating the
non-fundamental harmonic components is necessary to differentiate these intersecting FRCs.
This explains why the ACBC method jumps from one stable 2 : 1 branch to another without
turning around bifurcation points.

Figure 5.18 illustrates the superharmonic resonances for different forcing levels, 1N and 3N,
obtained with HB continuation [76]. For 1N, the 4 : 1 superharmonic has a sharp profile and

(a) (b)

Figure 5.18: FRC around the superharmonic resonances of the Duffing oscillator at distinct
forcing amplitudes: (a) p = 1N, and (b) p = 3N. These results are obtained with HB continu-
ation. The illustration is sourced from [76].

bifurcates over a narrow frequency range, making identification challenging. At 3N, its shape
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resembles the 2 : 1 resonance observed at 1N. The ACBC method faces similar issues identifying
the 4 : 1 superharmonic resonance as it does with the 2 : 1 superharmonic resonance.

5.3.3. Identification of subharmonic resonances

In Chapter 2, the 1 : 2 and 1 : 3 subharmonic resonances appeared detached from the main
branch. Proper initialization is required to find a solution. Ideally, at a frequency within the
subharmonic resonance range, one could start from the main branch and draw a large enough
ellipse to intersect with the subharmonic’s first harmonic component. The ACBC algorithm
cannot identify the subharmonic resonance branches, even when starting from a known point
on the isolated branch, instead identifying the low main branch solution.

Figure 5.19 illustrates the 1 : 3 subharmonic resonance at 1 N and the main branch FRCs for
different forcing levels.
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Figure 5.19: FRC around the 1 : 3 subharmonic resonances of the Duffing oscillator (p = 1 N).
The main branch FRCs are represented for distinct forcing levels, i.e. p = 0.5 N ( ), p = 1 N
( ), p = 2 N ( ), p = 4 N (. ), p = 8 N (. . . ). (a) Total amplitude. (b) Sweeping plane.

Figure 5.19b represents the sweeping plane, where several main branches of FRCs at different
forcing levels intersect with the 1 : 3 subharmonic resonance at 1 N. At these intersections, the
solutions share the same fundamental amplitude at a given frequency but have different non-
fundamental components (see Chapter 2). Since the sweep relies solely on the first harmonic
amplitude, it cannot distinguish between the two solutions. To identify the isolated FRC, non-
fundamental harmonics must be controlled. The ACBC method controls only the first harmonic
component during the sweep but can reject the solution point if the forcing is incorrect.

The same issue arises for the 1 : 2 subharmonic resonance.
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5.4. Conclusions

This chapter began with a parametric study on the initial sweep angle, ellipse size, integral gain
of the sweep rate control law, and the adaptive filters’ step size factor. A fast sweep leads to
inaccurate results due to transients in the adaptive filters and system response. A slower sweep
rate is needed near resonance, and the tolerance criterion can introduce errors if the integral
control overshoots. Adaptive filters converge if the step size factor is small enough. Several
parameters require tuning in the ACBC method. Although this process is generally straightfor-
ward, further research could potentially improve user experience by identifying practical rules
for various situations.

The chapter also explored the ACBC method for mapping the frequency responses of nonlinear
systems, focusing on the numerical Duffing oscillator from Chapter 2.

The ACBC method successfully identified the fundamental resonance in the 1N reference case,
though maintaining consistent parameters across a broad frequency spectrum proved difficult.
Adapting the ellipse size is crucial for enhancing accuracy along the FRC, especially to capture
curvatures or expedite computations along straighter sections.

In the 1N reference case, the method struggled to capture superharmonic behaviors accurately.
The assumption that the first amplitude component at a given frequency leads to a unique
solution holds for fundamental resonances but not for secondary resonances. Multiple solutions
with distinct non-fundamental components may coexist at different forcing levels. Although
the ACBC method is assumed to stabilize all solutions, this may not hold in superharmonic
resonance regions. Additionally, isolated subharmonic resonances were beyond the method’s
current detection capabilities.

These observations underscore the need for further refinement of the ACBC method.
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In linear systems, steady-state vibrations occur only at excitation frequencies. Nonlinearities
can cause superharmonic and subharmonic responses at integer multiples or fractions of the
excitation frequency. Secondary resonance often produce harmonics with amplitudes exceeding
the fundamental harmonic. While superharmonic resonances are mostly attached, subharmonic
resonances can be connected or separated from the main branch. Accurately characterizing
these resonances is crucial for engineering designs.

Experimental characterization of secondary resonances is rarely addressed in the state of the
art. Traditional offline CBC, discussed in Chapter 4, cannot characterize superharmonic res-
onance as it relies on S-curve unfolding, which does not apply to superharmonic resonances
[1]. Combining phase-lock loop (PLL) and CBC for superharmonic resonances was proposed
in [1, 28]. Experimental characterization of superharmonic and subharmonic resonances using
PLL was proposed in [83]. PLL has difficulty identifying completely isolated subharmonic res-
onances as one phase lag no longer corresponds to a unique response (see Chapter 1).

This chapter proposes enhancements to the ACBC algorithm to address secondary resonances.
It presents the motivation and principle of the double-sweep strategy, which is then applied
to the secondary resonances of the numerical Duffing oscillator. The ACBC method with the
double sweep strategy is implemented in Matlab/Simulink (see Appendix A.2).

6.1. Motivation

Chapter 5 showed that the ACBC method only partially identified superharmonic resonances
and failed to identify subharmonic resonances. Figure 6.1a illustrates the 3 : 1 superharmonic
resonance in the sweeping plane.

In secondary resonance regions, one point of the sweeping plane may correspond to multiple
system responses at different forcing levels. While the multiple responses share the same first
harmonic component at a certain frequency, their non-fundamental components differ because
they correspond to distinct forcing-level FRC solutions.

Figure 6.1b shows the 3 : 1 superharmonic in a 3D plot by adding the third harmonic ampli-
tude. Distinct FRC points with the same fundamental component at a specific frequency are
distinguished by introducing the third harmonic, which significantly contributes to the response
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Figure 6.1: Comparison of FRC around the 3 : 1 resonance for distinct forcing levels: p = 0.9

N ( ), p = 1 N ( ), p = 1.1 N ( ). (a) Sweeping plane. The dash-dotted line represents an
ellipse, with intersections marked by two previously identified FRC solutions at 1N in blue and
the next solution to identify in pink. (b) 3D plot incorporating the third harmonic amplitude
to the sweeping plane. A larger version of the 3D plot is in Appendix B.1.

in the 3 : 1 resonance region.

6.2. Double sweep strategy

The key idea is to perform a simultaneous second sweep on a non-fundamental harmonic, termed
non-fundamental sweep, alongside the arclength continuation’s fundamental sweep. Controlling
the resonant harmonic allows for the discrimination of the different responses, and eventually
for tracing out a complete FRC around a non-primary resonance.

Considering the 3 : 1 resonance example in Figure 6.2, each solution in the region with three
solutions is characterized by a unique pair of Fourier coefficients (sẋ,3, cẋ,3). The illustration
uses an ellipse with a null frequency semi-major axis, forming a vertical line to simplify the
following explanations.

Consider fixing one of the third harmonic Fourier coefficients of the reference velocity to a
constant, e.g., sẋ∗,3 = b, in the ACBC method. The other non-fundamental Fourier coefficients
of the system velocity are still copied into those of the reference velocity. Non-invasiveness is
no longer guaranteed during the sweep because sẋ∗,3 ̸= sẋ,3:

u(t) = kd
(
ẋ∗(t)− ẋ(t)

)
= kd su,1 sin(ω t) + kd cu,1 cos(ω t) + kd su,3 sin(3ω t),

(6.1)

where su,n = (sẋ∗,n − sẋ,n) and cu,n = (cẋ∗,n − cẋ,n). The goal of the second sweeping procedure
is to make the control-based experiment converge to sẋ∗,3 = sẋ,3 = b, achieving non-invasiveness
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Figure 6.2: (a) FRC around the 3 : 1 resonance of the Duffing oscillator (p = 1 N) obtained
with the double sweep strategy. Colored points indicate solutions on distinct branches of the
3 : 1 resonance. (b) Evolution of one of the third harmonic Fourier coefficients of the control
action su,3 with respect to the controlled third harmonic Fourier coefficient of reference velocity
sẋ∗,3. An ellipse with a null frequency semi-major axis is used to simplify the explanations.

and identifying the middle branch solution of the 3 : 1 resonance.

Controlling this Fourier coefficient sẋ∗,3 allows convergence towards the desired solution of the
3 : 1 resonance. This control can be applied similarly to the sweep along the ellipse, either by
sweeping at a constant rate on sẋ∗,3 or using an integral control law ṡẋ∗,3 = ki,nf su,3 = ki,nf (sẋ,3−
sẋ,3). The two sweeps are performed simultaneously. The fundamental sweep is assumed faster
than the non-fundamental sweep to keep the non-fundamental reference approximately constant
during the fundamental sweep. Integral control is preferred over a constant sweep rate as it
ensures smooth convergence without needing the non-fundamental sweep to be much slower
than the fundamental sweep.

Figure 6.2b shows the evolution of the control invasiveness su,3 with respect to the controlled
Fourier coefficient sẋ∗,3. This is achieved by fixing sẋ∗,3 to a constant value while sweeping across
the first harmonic and observing the converged value of su,3. It visualizes the plane where the
non-fundamental sweep is performed. The sign of the controller and the initialization of the
coefficient sẋ∗,3 determine which solution the control-based experiment converges towards. In
Figure 6.2b, the FRC solutions with the same color are identified using the same control gain
sign ki,nf but distinct initialization.

Figure 6.3 illustrates the combination of the ACBC method with the double sweep strategy for
identifying the resonance associated with the k-th harmonic. For l : 1 superharmonic (or 1 : ν

subharmonic) resonances, the non-fundamental sweep controls a Fourier coefficient of the l-th
harmonic (or 1/ν-th harmonic) of the reference velocity.

The desired non-fundamental Fourier coefficient, such as sẋ∗,k, is controlled using an integral
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Figure 6.3: Arclength control-based continuation (ACBC) combined with the double sweep
strategy (in blue). The non-fundamental sweep is performed on the k-th harmonic.

control law is ṡẋ∗,k = ki,nf su,k with the control invasiveness as input. The initial value of the
controlled Fourier coefficient sẋ∗,k,0 is set based on the branch to be identified.

Adaptive filters update the other non-fundamental Fourier coefficients of the reference signal.
The integral control action disappears when monoharmonic excitation is achieved and the con-
trolled Fourier coefficient reaches its target, making the experiment non-invasive. An additional
tolerance criterion is introduced for the k-th component amplitude of the control action, i.e.,√

(su,k)2 + (cu,k)2 < tolnf. The fundamental and non-fundamental sweeps are performed simul-
taneously, and a solution on the sought FRC is found when both tolerance criteria are satisfied.
The continuation procedure for the ACBC method with double sweeps is updated in Algorithm
6.1.

Algorithm 6.1 ACBC method with double sweep strategy.

1: (ωp, Ẋ
∗
1,p), (ωc, Ẋ

∗
1,c) and sẋ∗,k,0 defined by user

2: loop
3: α← α0

4: sẋ∗,k ← sẋ∗,k,0

5: β ← atan2(Ẋ∗
1,c − Ẋ∗

1,p, ωc − ωp)
6: (ω, Ẋ∗

1 ) = (ωc +∆ω cos(β + π − α), Ẋ∗
1,c +∆Ẋ∗

1 sin(β + π − α))
7: Wait duration tcooldown for steady-state
8: while |p− p∗| > tolp NOR

√
(su,k)2 + (cu,k)2 > tolnf do

9: Modify α and sẋ∗,k with PID sweeping strategies while maintaining the equality in step
5 continuously

10: end while
11: (ωp, Ẋ

∗
1,p)← (ωc, Ẋ

∗
1,c)

12: (ωc, Ẋ
∗
1,c)← (ω1, Ẋ

∗
1 )

13: sẋ∗,k,0 ← sẋ∗,k

14: end loop
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In the ACBC method, the stop criterion prevents overshoot in the integral control sweep strat-
egy (see Chapter 5). The method also converges to a slightly invasive solution for the resonant
harmonic near secondary resonance peaks. This invasiveness can be reduced by waiting after
triggering the stop criterion.

Combining the original stop criterion with the non-invasiveness criterion guarantees smooth
convergence of both integral controls (accepting overshoot). This allows for a larger integral
gain during the fundamental sweep, speeding up computation while maintaining non-invasive
force.

6.2.1. Non-fundamental sweep illustrations

The illustration of the non-fundamental control law is also presented for an even-superharmonic
resonance and a subharmonic resonance. As with the 3 : 1 resonance, the sign of the integral
gain ki,nf and the initial Fourier coefficient guide the identified solution.

Consider the identification of the 2 : 1 resonance with sẋ∗,2 as the controlled Fourier coefficient.
Figure 6.4 illustrates the 2 : 1 superharmonic resonance and the relationship between su,2 and
sẋ∗,2 for an ellipse with a null frequency semi-major axis.
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Figure 6.4: (a) FRC around the 2 : 1 resonance of the Duffing oscillator (p = 1 N) obtained with
the double sweep strategy. Colored points indicate solutions on distinct branches of the 2 : 1

resonance. (b) Evolution of one of the second harmonic Fourier coefficients of the control action
su,2 with respect to the controlled second harmonic Fourier coefficient of reference velocity sẋ∗,2.

Even superharmonic resonances emerge from symmetry-breaking bifurcations, creating two
symmetric branches wrt. the frequency axis. These branches have solutions with the same
maximum absolute amplitude but differ by a phase shift of π. The associated Fourier coefficients
have the same magnitude but opposite signs. This explains the seven solutions shown in Figure
6.4b. The solution with sẋ,2 = 0 corresponds to the unstable branch, which lacks even harmonic
components.
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Figure 6.5 presents the 1 : 2 subharmonic resonance and the relationship between su,1/2 and
sẋ∗,1/2 for an ellipse with a null frequency semi-major axis.
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Figure 6.5: (a) FRC around the 1 : 2 resonance of the Duffing oscillator (p = 1 N) obtained
with the double sweep strategy. Colored points indicate solutions on distinct branches of the
1 : 2 resonance. (b) Evolution of one of the one-half harmonic Fourier coefficients of the control
action su,1/2 with respect to the controlled one-half harmonic Fourier coefficient of reference
velocity sẋ∗,1/2.

For the subharmonic resonances 1 : ν, there exist ν potential solutions, each characterized by
the same maximum amplitude and a phase lag shifted by 2π/ν, see Chapter 2. The number
of possible Fourier coefficients associated to one FRC solution depends on the subharmonic
considered. For the 1 : 2 subharmonic, each point on the isolated branch corresponds to two
pairs of Fourier coefficients (sẋ,1/2, cẋ,1/2). The solution on the main branch does not involve any
contribution from the 1/2-th harmonic and corresponds to the point su,1/2 = 0. Identifying an
isolated subharmonic resonance starting from the low main branch is possible. One can start
from a Fourier coefficient equal to zero to identify the unstable main branch with a positive
integral gain ki,nf.

6.2.2. Identification procedure

In this proof of concept, distinct branches were identified through multiple trial-and-error runs.
The continuation was halted at each fold bifurcation to change the sign of the non-fundamental
integral gain ki,nf and the initial value of the controlled non-fundamental Fourier coefficient.

An automatic procedure could be considered. Fold bifurcations interconnect the secondary
resonance branches. As one gets closer to the bifurcation, the Fourier coefficients of the two
branches converge to the same value. The two branches are identified with an opposite integral
gain ki,nf. Switching the sign of the gain ki,nf would allow to continue the identification on the
branch after the fold bifurcation. The sign of the integral gain ki of the fundamental sweep
need also to be changed as the direction of the sweep is changed.
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6.3. FRC identification

This section summarizes the identified responses in the numerical Duffing reference case (see
Chapter 2).

Figure 6.6 shows the complete nonlinear frequency response curve of the Duffing oscillator
under a 1 N harmonic force. The superharmonic and subharmonic resonances are identified
using the double sweep strategy, and the fundamental resonance is identified using the ACBC
method (see Chapter 5). Higher-order odd superharmonic resonances (9 : 1, 11 : 1, and 13 : 1)
do not exhibit a loop atop the resonance and were identified with the ACBC method.
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Figure 6.6: FRC of the Duffing oscillator (p = 1 N). (a) ACBC method. Secondary resonances
are identified with the double-sweep strategy. (b) Harmonic balance continuation [77].

Figure 6.7 provides a detailed view of the frequency range where the superharmonic resonances
occur.
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Figure 6.7: FRC around the superharmonics of the Duffing oscillator (p = 1 N). (a) ACBC
method. Secondary resonances are identified with the double-sweep strategy. (b) HB continu-
ation [77].
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The total amplitude and harmonic contribution near the distinct secondary resonance are pre-
sented in Appendix B.2, which also summarizes the parameters used. Each integral gain was
chosen by trial and error, and there could exist parameters leading to a faster characterization.

At 1N, the 4 : 1 superharmonic shows a sharp shape and bifurcates narrowly, complicating its
identification. At 3N, the 4 : 1 resonance bifurcates over a wider frequency range. The identi-
fication of this resonance is presented in Figure 6.8. This confirms the complete identification
of even-superharmonic resonance, including symmetry-breaking and fold bifurcations.
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Figure 6.8: FRC around the 4 : 1 superharmonic of the Duffing oscillator (p = 3 N). (a) ACBC
method with the double-sweep strategy. (b) HB continuation [77].

6.4. Conclusions

This chapter presented an improvement of the ACBC method for identifying any secondary
resonance.

In secondary resonance regions, multiple FRC solutions at distinct forcing levels can share the
same fundamental amplitude at a given frequency. In the ACBC method, adaptive filters update
non-fundamental harmonics to ensure non-invasiveness, but it cannot discriminate between
solutions during the sweep.

The double sweep strategy introduces an integral control on the resonant non-fundamental
harmonic, allowing discrimination of different responses and tracing a complete FRC around
a non-primary resonance. This strategy successfully identified all super- and subharmonic
resonances in the numerical Duffing oscillator’s frequency response. The double sweep strategy
allows the identification of multiple branches at a specific frequency, enabling the choice of
which branch to continue after symmetry-breaking bifurcations or detecting isolated responses,
such as subharmonic resonances.

This chapter serves as a proof of concept. The identification was performed through multiple
runs. A potential automation for a one-run search was proposed. Further studies are needed to
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understand the interaction of the two sweeps and to establish practical rules for setting control
gains appropriately.
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7| Experimental validation

Understanding nonlinear characteristics from experimental data remains challenging. Methods
have been proposed using hammer impacts [5, 18, 65], shaker tables [40], and electrodynamical
vibration exciters (shakers) [51, 55, 57]. Shakers are the most commonly used due to their
ability to provide repeatable inputs with various signals: sinewaves, random, and transients, in
both open-loop and closed-loop setups. Many vibration testing methods assume a sinusoidal
excitation.

When testing structures with shakers, the structural response can distort the applied force,
compromising the quality of test results. This phenomenon, known as shaker-structure inter-
action, results in non-fundamental harmonic content in the measured force [17, 52, 74, 75].
Higher harmonics can be generated by the nonlinear structural response or by nonlinearities in
the path from the control voltage input to the applied force.

This chapter experimentally applies the original ACBC method and the double-sweep strat-
egy to an electronic circuit implementing a Duffing oscillator. This setup addresses classical
experimental issues without involving shaker-structure interactions.

7.1. Electronic Duffing

The electronic Duffing oscillator [60] is an electronic circuit designed to implement a weakly
dissipative oscillator with very strong nonlinearity and relatively small resonance frequencies.
The Duffing oscillator equations were presented in Equation 2.1. The setup is depicted in Figure
7.1. This circuit features one input and two outputs. The input voltage represents the force
applied to the Duffing oscillator, while the output voltages correspond to the displacement and
velocity of the oscillator.

The electronic system can be associated with equivalent coefficients similar to those in the
Duffing equation [60]. These parameters can be adjusted by turning the knobs of the poten-
tiometers. The parameters are summarized in Table 7.1.

According to [60], the circuit replicates the Duffing oscillator’s dynamics but not perfectly due
to three main non-idealities. First, voltage offsets at the input and output of integrated circuits
disrupt symmetry in the oscillator. Second, imperfect integrators arise from the finite open-
loop gain of operational amplifiers and dissipation in capacitors. Finally, imperfect nonlinearity
results from small errors introduced by analog multipliers. The electronic system used in the
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Figure 7.1: Setup of the electronic Duffing system [60].

m [s2] c [s]

1e-4 4.947e-4

k [-] k3 [V−2]

1.68 0.985

Table 7.1: Set of
parameters for the
electronic Duffing
oscillator.

lab exhibits a response offset of -0.1 V.

The electronic Duffing oscillator is interfaced with a MicroLabBox from dSPACE, where the con-
trol algorithm is implemented. The MicroLabBox is programmed with the RTI1 for Simulink.
Only minor modifications are needed, such as adding input and output blocks, and converting
continuous-time blocks to their discrete-time counterparts.

7.2. Experimental results

The ACBC method is used to identify the fundamental resonance of the electronic Duffing
oscillator at three distinct forcing levels. The double sweep strategy is employed to identify the
3 : 1, 2 : 1, and 1 : 3 secondary resonances at the higher forcing level.

7.2.1. Fundamental resonances

Figure 7.2 presents the identification of the fundamental resonance of the electronic Duffing
oscillator for different force levels using the ACBC method. The parameters used for the ACBC
method are detailed in Table 7.2. The results obtained with the ACBC method are confirmed
with the swept-up and -down sine tests, as illustrated in Figure 7.2b and in Appendix B.3.

As the forcing level increases, the fundamental resonance of the electronic oscillator shifts
to higher frequencies, exhibiting behaviors like multistability and amplitude-frequency depen-
dence, similar to hardening Duffing oscillators discussed in Chapter 2. Nonlinear hysteresis is
observed when swept sine tests identify different branches in regions with multiple solutions.
The jump phenomenon occurs when transitioning from multiple to single solutions. The ACBC

1Real-time interface
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Figure 7.2: (a) FRC around the fundamental resonance of the electronic Duffing oscillator for
distinct forcing levels: p = 0.125 V ( ), p = 0.5 V ( ), p = 2 V ( ). Results are obtained
using the ACBC method. (b) Comparison of results obtained with the ACBC method (red) at
p = 2 V, and with swept-up (black) and swept-down (grey) sine tests.

method matches swept sine results in stable solutions and identifies unstable solutions, which
swept sine tests cannot.

p [V] ∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] ki [rad/(V s)]

0.125 0.1 2π · 0.5 5 10 ts 1

p [V] ∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] ki [rad/(V s)]

0.5 0.05 2π · 2 20 10 ts 0.5

p [V] ∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] ki [rad/(V s)]

2 0.2 2π · 1 20 20 ts 5 (start)

Table 7.2: ACBC simulation parameters for the fundamental resonance of the electronic Duffing
oscillator.

The integral gain ki was kept constant for identifying the fundamental resonance of FRC related
to p = 0.125 and 0.5 V. For p = 2 V, it was necessary to reduce the integral gain as resonance
approached. These observations align with those from the identification of the numerical Duffing
oscillator in the 1 N reference case, as discussed in Chapter 5. Additionally, a larger differential
gain kd was required to enable the turn and stabilize the unstable solutions near resonance at
higher forcing levels. The presented cases exhibit significant frequency shifts, which would be
impossible to achieve in mechanical systems without causing damage.
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7.2.2. Secondary resonances

The larger forcing level is considered for identifying secondary resonances. Table 7.3 summarizes
the parameters used for identifying the 3 : 1, 2 : 1, and 1 : 3 secondary resonances.

∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] |ki,nf| [-] |ki| [rad/(V s)]

0.01 0.01;0.005 5 10ts 1;0.1 100

∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] |ki,nf| [-] |ki| [rad/(V s)]

0.01 0.1;0.01 1 10 ts 1 100

∆Ẋ∗
1 [V/s] ∆ω [rad/s] kd [s] µ [-] |ki,nf| [-] |ki| [rad/(V s)]

0.01 0.1;0.01 5 10 ts 1 10

Table 7.3: Double sweep strategy simulation parameters for the 3 : 1, 2 : 1, and 1 : 3 resonances
of the electronic Duffing oscillator (p = 2 V).

Figure 7.3 shows the 3 : 1 and 2 : 1 superharmonic resonances of the electronic Duffing oscillator
at p = 2 V. It compares results from two swept sine tests with the ACBC method using the
double sweep strategy.
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Figure 7.3: FRC around the (a) 3 : 1 and (b) 2 : 1 resonances of the electronic Duffing oscillator
at p = 2 V. The ACBC method results (red) using the double sweep strategy are compared
with swept-up (black) and swept-down (grey) sine tests.

The superharmonic resonances appear at values larger than one-third and one-half of the natural
frequency (130 rad/s). The high forcing level and cubic stiffness make the system extremely
nonlinear.

For the 3 : 1 resonance, the swept sine tests do not identify the top of the resonance. The jump
phenomenon occurs when transitioning from a multiple-solutions region to a single-solution
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region. The FRC identified with the double-sweep strategy matches the swept sine tests in the
lower part of the resonance. The original ACBC method cannot turn around fold bifurcations,
as explained in Chapter 6. The double-sweep strategy allows the identification of the top of the
3 : 1 resonance. Near the fold bifurcation, identification is more complex due to closer Fourier
coefficients, suggesting a lower integral gain for the non-fundamental sweep may be needed.

Similarly, for the 2 : 1 resonance, the swept sine tests identify parts of the stable branches
and jump between them, but the unstable branch is not identified. The double-sweep strategy
allows the identification of the complete 2 : 1 resonance. Unlike the numerical Duffing oscillator,
the electronic Duffing oscillator is not perfectly symmetric, resulting in the 2 : 1 resonance
not arising from symmetry-breaking bifurcations. The unstable main branch with only odd
harmonics is absent (see Chapter 2). This asymmetry in the electronic Duffing oscillator is due
to unavoidable offsets.

The order of magnitude of the integral gains ki and ki,nf highlights that the fundamental sweep
must be faster than the non-fundamental sweep, especially near the resonance of the non-
fundamental harmonic. Stabilizing unstable solutions requires a lower differential gain kd for
secondary resonances compared to primary resonances. A less significant frequency shift is
observed.

Figure 7.4 shows the 1 : 3 subharmonic resonance detected and continued using the ACBC
method’s double sweep strategy.

400 450 500 550

0.8

1.2

1.6

(a)

400 450 500 550

0

0.25

0.5

0.75

1

(b)

Figure 7.4: FRC around the 1 : 3 resonance of the electronic Duffing oscillator at p = 2

V. Results obtained with the double sweep strategy. (a) Total amplitude. (b) Amplitude
contribution of the fundamental harmonic (black) and the one-third harmonic (grey).

Isolated responses require specific methods for identification as they do not lie in the direct
continuation of the frequency response branch. In the state of the art, techniques such as
stochastic interrogation excitation can be used [48]. For subharmonic resonance, a PLL based on
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the PRNM principle was used in [83], but it only partially identified the subharmonic resonance.
Additionally, isolated frequency response branches can occur near primary resonances due to
modal interactions or nonlinear damping. These isolated responses can be detected by tracking
the backbone of the fundamental resonance [80]. The original ACBC method has also been
applied to experimentally detect and continue such isolated responses [1].

Using the double sweep strategy, the 1 : 3 subharmonic resonance detection begins from a point
on the main branch at a frequency near 3ω0. The same procedure for detecting an isolated
response, as presented in Section 6.2.1 of the previous chapter, was applied here. The isolated
subharmonic resonance was detected and fully identified experimentally, a remarkable result.
A complete subharmonic resonance had already been identified in [14] using an ad hoc method
to detect the isola. The double-sweep strategy offers a more robust detection approach.

7.3. Conclusions

This chapter applied the ACBC method and the double-sweep strategy to an electronic Duffing
oscillator, allowing experimental method validation without uncertainties from shaker-structure
interactions.

Figure 7.5 summarizes the obtained results. The original ACBC method successfully identi-
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Figure 7.5: FRC of the electronic
Duffing oscillator (p = 2 V). The fun-
damental resonance was obtained us-
ing the original ACBC method, while
secondary resonances were identified
with the double-sweep strategy.

fied the fundamental resonance with a significant frequency shift. The double-sweep strategy
identified one even and one odd superharmonic resonance. Additionally, a subharmonic was
detected from the FRC main branch and fully identified, which is a notable result. While other
secondary resonances exist, their identification was not attempted. Future work could focus on
this. This chapter demonstrates the double-sweep strategy’s application to various secondary
resonances of the electronic Duffing oscillator.

The ACBC method, with and without the double sweep strategy, was applied to the electronic
Duffing oscillator similarly to the numerical example, with only parameter changes. No new
limitations were encountered, demonstrating the methods’ robustness. Further work is needed
to study the range of parameters for which both versions of the ACBC method are effective.
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8| Adaptive ellipse size

In the ACBC method, the ellipse size remains constant throughout the frequency range. The
ellipse size influences both the sweep rate and FRC discretization, necessitating a small ellipse,
as detailed in Chapter 5. Three crucial factors define the quality of a solution: computational
speed, discretization, and robustness. A constant small step length ensures accurate curvature
capture but demands significant computational time. Robustness relates to the number of
analysis restarts required.

Figure 8.1a shows the drawback of using a large step length. Adjusting the ellipse size based
on the curvature of previous solutions can reduce computational time. Larger sizes are used in
straighter sections and smaller ones in curved parts, as shown in Figure 8.1b.

(a) (b)

Figure 8.1: (a) Approximate representation (in red) of the exact solution (in black) using a
constant step length. (b) Approximate representation (in yellow) of the exact solution (in
black) using an adaptive step length. This illustration is sourced from [24].

This chapter introduces an adaptive ellipse size strategy in the ACBC method. The strategy,
based on curvature, is first explained and then applied to the reference Duffing oscillator under
0.01 N force.

8.1. Principle of the adaptive strategy

Fayezioghani et al. [24] proposed an adaptation law for quasi-static problems based on local
curvature. This curvature is calculated using the cosine distance between a hyper angle δ and
an optimal hyper angle δopt. The hyper angle δ is defined between the line connecting two
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solution points (the linearized solution path) and the tangent to the analytical curve at the
second point.

In the present work, the analytical solution is unknown. The hyper angle is calculated from
the difference between the two previous FRC slope angles β in the sweeping plane (see Figure
8.2a).
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Figure 8.2: (a) Illustration of the hyper angle δ, defined as the angle between the two previous
FRC segments. The blue points denote the three most recently determined points on the FRC.
β denotes the FRC slope angle. (b) The cosine distance versus the hyper angle δ is drawn for
an optimal hyper angle δopt = 0.2 and γ = 1.

The proposed adaptive ellipse size law is based on the cosine distance between the hyper angle
δ and an optimal hyper angle δopt:

∆Ẋ∗
1,n+1 =

(
cos(δn) + 1

cos(δopt) + 1

)γ

∆Ẋ∗
1,n. (8.1)

where n indicates the current ellipse, and γ is a magnifying exponent. To simplify, only one
of the ellipse’s semi-major axes is varied, with the other parameter fixed, assuming constant
eccentricity. Circular ellipses are considered, i.e., ∆Ẋ∗

1 = ∆ω.

As shown in Figure 8.2b, the step size increases when the hyper angle is smaller than the
optimal angle and decreases when the hyper angle is larger. The adaptive strategy tries to keep
the hyper angle δ close to δopt. The optimal angle δopt should not be exactly 0, as this would
cause the step size to progressively decrease to an infinitesimally small value.

Figure 8.3 illustrates the effect of the exponent γ on the cosine distance.

In Figure 8.2b, the cosine distance remains close to 1 when |δ| < |δopt|. In this range, a larger
exponent, denoted γmax, is required to accelerate the increase of the ellipse size. Conversely,
for |δ| > |δopt|, the rate of size decrease with γ = 1 is satisfactory.
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Figure 8.3: The cosine distance versus the hyper angle δ is drawn for an optimal hyper angle
δopt = 0.2 rad with various γ values: (a) γ = 1 ( ), γ = 2 ( ), γ = 4 ( ), γ = 16 ( ) (b)
γ = 25 ( ), γ = 50 ( ), γ = 75 ( ), γ = 100 ( ), γ = 125 ( ).

If the hyper angle deviates significantly from the optimal value, |δ| > |δtol|, a restart is necessary
since δ is only known after computing the new point. Restarts often occur in high-curvature
regions. The ellipse size is decreased based on the cosine distance and an exponent γrestart. A
larger γrestart results in a stronger decrease in ellipse size to restart the computation. This value
is set above 1 to avoid frequent consecutive restarts but should not be too large to prevent
excessive reduction of the ellipse size. The choice of the tolerance angle δtol and the optimal
angle δopt is illustrated in the next section. The adaptive ellipse size strategy is detailed in
Algorithm 8.1. The ellipse size is adjusted when a FRC solution is found during arclength
continuation. The adaptive strategy begins once the first two points have been computed.

Algorithm 8.1 Adaptive ellipse size strategy.
1: δtol, δopt, γmax, and γrestart defined by user
2: (ωp, Ẋ

∗
p ) and (ωc, Ẋ

∗
c ) defined by arclength continuation

3: β1 ← β2

4: β2 ← atan2(Ẋ∗
c − Ẋ∗

p , ωc − ωp)
5: δ ← β2 − β1

6: if |δ| ≤ |δtol| then
7: if |δ| ≤ |δopt| then
8: γ ← γmax

9: else
10: γ ← 1
11: end if
12: else
13: γ ← γrestart

14: end if
15: ∆Ẋ∗

1 ←
( cos(δ) + 1

cos(δopt) + 1

)γ
∆Ẋ∗

1
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8.2. Application of the adaptive strategy

This section illustrates and discusses the results of the adaptive strategy based on the param-
eters used. Table 8.1 summarizes these parameters.

∆Ẋ∗
1,start [m/s] ∆Ẋ∗

1,max [m/s] ∆Ẋ∗
1,min [m/s] γrestart [-]

0.025 0.2 0.005 4

ki [rad/(s N)] δopt [rad] δtol [rad] α0 [rad]

0.25 0.1; 0.15; 0.2 0.2; 0.4 π

Table 8.1: Simulation parameters for the adaptive step strategy applied to the fundamental
resonance of the numerical Duffing oscillator (p = 0.01 N). A circular ellipse is considered
∆ω = ∆Ẋ∗

1 .

The integral gain is kept constant. Both the integral gain and ellipse size influence the sweep
rate, as detailed in Chapter 5. To maintain an adequate sweep rate, the integral gain must
be small enough for the various ellipse sizes. Ideally, the integral gain should be adjusted
simultaneously with the ellipse size.

Setting the upper limit of the ellipse size ∆Ẋ∗
1,max too high can cause the continuation to miss

the resonance peak. To avoid this, the upper limit should be predetermined based on the band-
width of the linear system’s resonance. A phase criterion could also detect if the size was too
large, as the phase lag shifts by π after the resonance.

Three examples are considered to compare the results based on the tolerance angle δtol, optimal
angle δopt, and exponent γmax.

Figure 8.4 shows the cosine distance for various parameter pairs (γmax, δopt). The exponent γmax

adjusts based on the optimal hyper angle δopt to ensure a consistent maximum value increase
when δ = 0. This allows for the comparison of results with different optimal angles. These
pairs of values are used in subsequent analyses.

-0.2 -0.1 0 0.1 0.2
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Figure 8.4: The cosine distance versus
the hyper angle δ for different pairs of
parameters: δopt = 0.2 and γ = 125

( ), δopt = 0.15 and γ = 222 ( ),
δopt = 0.1 and γ = 501 ( ).
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Figure 8.5 illustrates the adaptive step strategy for various tolerance angles δtol. The acceptable
angle interval is [−δtol; δtol] and the optimal angle set to δopt = δtol/2. The ellipse is equally
increased or decreased within the acceptable angle interval. The continuation process starts at
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Figure 8.5: FRC around the fundamental resonance of the Duffing oscillator (p = 0.01 N) using
the adaptive step size strategy with δopt = δtol/2, varying the tolerance angle: (a) δtol = 0.2

rad, (b) δtol = 0.4 rad.

low frequencies. The adaptive strategy begins once the first two FRC points are identified.

For larger δtol and δopt, larger steps occur in curved regions, either at the bottom or top of
the resonance, as the tolerance criterion accepts larger angles. The ellipse increase is faster
in straight regions, e.g. at the start of the frequency range. Although the maximal value is
the same in Figure 8.4, the ellipse increase at any specific angle is larger with a larger optimal
angle. The adaptive strategy aims to keep the hyper angle close to its optimal value, resulting
in smaller steps for the smaller optimal angle case. Imposing a lower tolerance angle makes the
strategy more prone to restarts.

The objective is to achieve a result similar to δtol = 0.4 rad using δtol = 0.2 rad by adjusting δopt.
Figure 8.6 shows the adaptive step strategy for δopt at different proportions of the acceptable
angle interval.

Increasing the proportion of the optimal angle relative to the tolerance angle has consequences.
The portion leading to an ellipse size increase becomes larger. For the same hyper angle,
the ellipse size increase is greater with a larger optimal angle (see Figure 8.4). More straight
segments are observed with a larger optimal angle. Comparing Figures 8.5b and 8.6b, similar
results are seen for the straight regions. The curved regions at the bottom of the resonance are
more refined with the lower tolerance angle. This is not observed on top of the resonance, but
this probably depends on the history of the ellipse increase. In Figure 8.6b, a large segment
is observed until the peak of the resonance. In contrast, in Figure 8.5b, a large segment lands
before the peak, causing restarts before turning around the resonance.
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Figure 8.6: FRC around the fundamental resonance of the Duffing oscillator (p = 0.01 N) using
the adaptive step size strategy with δtol = 0.2, varying the optimal angle: (a) δopt = δtol/2, (b)
δopt = 3 δtol/4.

Figure 8.7 presents the adaptive step strategy for distinct exponents γmax of the cosine distance.
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Figure 8.7: FRC around the fundamental resonance of the Duffing oscillator (p = 0.01 N) using
the adaptive step size strategy with δtol = 0.2 and δopt = 3 δtol/4, varying the exponent γmax:
(a) γmax = 99, (b) γmax = 222. The maximum cosine distance for (a) is 1.75 and for (b) 3.5.

The exponent γmax controls the rate of ellipse size increase (see Figure 8.3b). With a lower
exponent, the ellipse size increases more gradually with more steps. At the end of the resonance,
distinct ellipse reduction behaviors are observed. With γmax = 222, the ellipse size reduces
slowly, while with γmax = 99, the reduction is abrupt due to a restart. This behavior is hard to
predict as it depends on the history of ellipse adjustment, which itself depends on the starting
point and the rate of ellipse increase or decrease.
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8.3. Conclusions

The chapter introduced an adaptive ellipse size strategy that adjusts the size of the ellipse based
on curvature: larger sizes are used in straighter sections and smaller sizes in curved sections.
This approach aims to balance discretization accuracy and computational speed.

To simplify, the integral gain was set to a constant value. This is not optimal as the ellipse
size changes significantly. A further analysis of the integral gain could help identify a condition
related to the ellipse size, ensuring a sufficiently slow sweep.

A comparison was presented in a specific case to illustrate the influence of the parameters to be
tuned, though it is not exhaustive. From these discussions, it was observed that the tolerance
angle affects the number of restarts and the ellipse size in curved regions. The position of the
optimal angle within the acceptable angle interval drives the rate at which the ellipse size is
adjusted. The exponent γmax determines how quickly the ellipse size increases. Resonance turn
is well-discretized in all the cases.

The adaptive strategy is effective when parameters are well-tuned. However, many parameters
need tuning, and this process is complex, often requiring multiple identification attempts to
find the optimal set. Work still needs to be performed to strengthen the robustness of the
adaptive strategy.
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developments

Experimental modal analysis predicts responses to periodic excitation in linear systems but
struggles with real-world nonlinearities. Diverse phenomena can appear, including multiple
stable and unstable solutions resulting from bifurcations, and attached or detached secondary
resonances. Traditional EMA methods, like swept or stepped sines, identify only one sta-
ble solution in regions with multiple solutions, leading to jump phenomena. Control-based
nonlinear vibration testing addresses these issues with closed-loop experiments to stabilize all
responses, providing a more systematic and reliable approach. This research aimed to advance
the ACBC methodology proposed for online, derivative-less control-based nonlinear vibration
testing. This method is designed to experimentally identify frequency responses of nonlinear
systems subjected to harmonic forcing, without relying on predefined mathematical models.

This master’s thesis addressed two research questions:

a) Is the ACBC algorithm capable of identifying the complete frequency response of a
numerical/electronic Duffing oscillator, including secondary resonances with com-
plex topology?

b) How can the step size selection in the ACBC algorithm be automated to ensure
accurate frequency response capture?

To adequately address these research questions, some background was necessary. Chapter 2
illustrated the complex and rich dynamics of the harmonically forced Duffing oscillator. The
system was nondimensionalized, making the results applicable to any Duffing system. Chapter
3 explained control theory and the effects of PID tuning. Chapter 4 highlighted the advantages
of the ACBC method over traditional CBC.

The first question encompassed nearly the entire work. Chapters 5 and 6 focused on the numer-
ical Duffing oscillator, while Chapter 7 considered the electronic Duffing oscillator. In Chapter
5, the ACBC algorithm identified the fundamental resonance using constant parameters and
the PID sweep strategy. The fundamental resonance shifts significantly to higher frequencies for
lightly damped nonlinear systems under high forcing, complicating identification with constant
parameters. The superharmonic resonances were only partially identified, while subharmonic
resonances were not identified at all.
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In secondary resonance regions, a key assumption of the ACBC method no longer holds, as
multiple FRC solutions at different forcing levels can share the same fundamental amplitude at
a specific frequency. To address this, Chapter 6 introduced the double sweep strategy, which
distinguishes different intersecting solutions by sweeping the non-fundamental resonating har-
monic using integral control. The fundamental and non-fundamental sweeps are performed
simultaneously, with the fundamental sweep assumed to be faster. By adjusting the sign of
the non-fundamental integral gain and the initialization of the controlled non-fundamental har-
monic, the double sweep strategy can converge to distinct solutions. This method successfully
identified complete superharmonic resonances and isolated subharmonic resonances, achieving
the detection of isolated responses.

Chapter 7 applied both methods to the electronic Duffing oscillator [60], avoiding experimental
uncertainties from shaker-structure interactions. The ACBC method identified the fundamental
resonance at three distinct forcing levels. The double sweep strategy identified one of each type
of secondary resonance, including odd- and even-superharmonic and subharmonic resonances.
No additional limitations were introduced in either method compared to the numerical Duffing
oscillator.

The second question was investigated in Chapter 8 using an adaptive ellipse size strategy based
on the local curvature of the FRC. Further research is needed to refine this strategy, as sev-
eral parameters require tuning and their relationships must be studied. When well-tuned, the
adaptive strategy performed effectively in the low-forcing case considered.

The main contribution of this thesis is the introduction of the double-sweep strategy, a pioneer-
ing experimental method for detecting isolated responses, including subharmonic resonances.
This represents the first robust method for such experimental detection. Furthermore, the
double-sweep strategy enables the continuation of both superharmonic and subharmonic reso-
nances. The performance and innovative features of the double-sweep strategy will be showcased
in an upcoming journal publication.

9.1. Further improvements and perspectives

The Duffing oscillator was used as the primary example of a nonlinear oscillator throughout this
thesis. While it effectively illustrates many aspects of nonlinear oscillations, exploring other
systems with more complex nonlinearities, such as piecewise linear or polynomial stiffness,
Coulomb friction, or nonlinear damping is essential.

Exploring nonlinear systems with higher-dimensional structures is a crucial direction for future
research. An initial step in this direction is demonstrated using a numerical system with two
clamped masses and a cubic spring [76]. This setup reveals a 3 : 1 modal interaction between
the second mode’s 3 : 1 resonance and the first mode’s fundamental resonance. At low forcing
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levels, an isolated response emerges near the fundamental resonance of the first mode, merging
with this resonance as the forcing increases. The double sweep method detected and continued
the isolated response by controlling the third harmonic response (see Figure 9.1).
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Figure 9.1: FRC of the first mode dis-
placement for a two-degree-of-freedom
system under a 0.05 N harmonic force,
illustrating the isolated response gen-
erated by 3 : 1 modal interac-
tions. Fundamental resonance and
isola were identified using the double-
sweep strategy. The dynamics of the
considered 2DOF system are detailed
in [76].

The maturity of control-based methods for industrial applications requires automatic adapta-
tion of parameters to ensure effectiveness across various systems. Several parameters require
tuning in the ACBC method. An adaptive strategy was proposed for ellipse size, which is effec-
tive for well-tuned parameters but introduces four new parameters. Further research is needed
to identify practical rules for setting these parameters based on the desired performance. The
adaptive step strategy uses various ellipse sizes, and maintaining a constant integral gain is not
optimal. Establishing a relationship between ellipse size and integral gain for an appropriate
sweep rate is necessary, and it is also beneficial for the constant step size strategy.

Throughout the ellipse sweep, the controller applies a varying forcing amplitude to the structure.
In practical experiments, this amplitude might become excessively large, going beyond shaker
limitations or leading to structural breakdown. It is worth noting that using an ellipse with a
different eccentricity would not necessarily alleviate this issue if the ellipse’s semi-major axes
remain parallel to the Cartesian frame. An alternative eccentricity could be beneficial if the
ellipse is oriented parallel to the FRC, as this adjustment would enable greater spacing between
steps while minimizing overlap with higher forcing FRCs. Other derivative-free approaches,
alternative to the ellipse sweep, could also be investigated. For example, the piecewise-linear
continuation method [6–9] was recently used experimentally [33].

The control-based experiment stabilizes the sought periodic orbits of the uncontrolled system
when the control gain is sufficiently high. In this work, the differential gain was set by trial
and error due to the absence of a robust tuning method. Excessively high differential gain can
destabilize the system. Future research could explore adaptive controllers that automatically
adjust the gain during experiments [47].

Further investigation of the double-sweep strategy is needed. Examining the interaction be-
tween the two sweeps could provide practical guidelines to ensure the algorithm operates cor-
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rectly in any situation. Currently, the strategy involves stopping at fold bifurcations and
switching the integral gain sign, but an automatic procedure could be implemented. Finally,
rigorous proof is necessary to ensure the algorithm can reliably find a solution that meets both
tolerance criteria.
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A| Matlab/Simulink diagrams

A.1. ACBC method

Understanding the Simulink diagrams is facilitated by referencing Algorithm 4.1 or Figure 4.7.

In Figure A.1, the arclength continuation process uses a PID sweep strategy, defined by α̇ =

ki(p−p∗). Once the tolerance criterion |p−p∗| < tolp is satisfied, the cooldown phase dampens
transients by disconnecting the arc angle α from the PID control. Transitions between search
and cooldown phases are managed using switches. The sweep angle in the diagram is calculated
as β + π − α− α0. The variable curr contains (ωc, Ẋ

∗
1,c), while prev contains (ωp, Ẋ

∗
1,p).

Figure A.1: Simulink diagram for the arclength continuation.

In Figure A.2, the control-based experimental model uses a derivative controller on the dis-
placement x. It utilizes velocity signals directly, multiplying (ẋ∗ − ẋ) by the derivative gain
kd to avoid computing derivatives. The inputs to the control-based experiment are the excita-
tion frequency ω and the fundamental amplitude Ẋ∗

1 of the reference signal ẋ∗
f . The outputs

generated are the displacement x and the fundamental amplitude of the force p. Additionally,
non-fundamental harmonics of the system velocity ẋnf are matched to those of the reference
signal ẋ∗

nf online using adaptive filters. Although the nonlinear system used here is the Duffing
oscillator, this method can be applied to any system.
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Figure A.2: Simulink diagram for the control-based experiment.

In Figure A.3, adaptive filters are used for online estimation of the Fourier coefficients [3], [79].

Figure A.3: Simulink diagram for the adaptive filters.

A.2. ACBC method with the double-sweep strategy

Understanding the Simulink block diagram for the double sweep is easier with Figure 6.3.

In Figures A.4 and A.5, the modified parts of the Simulink model compared to the original
ACBC method are highlighted in magenta blocks. Assume that the k-th harmonic is controlled.
The non-fundamental force tolerance checks if the amplitude of the k-th component of the force,
force_amp2 =

√
(su,k)2 + (cu,k)2, is below the tolerance tolnf. The non-fundamental sweep

control law is ṡẋ∗,k = ki,nf su,k. The controlled non-fundamental Fourier coefficient is s_x_k =
sẋ∗,k. The corresponding Fourier coefficient of the force is s_u_k = su,k.
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Figure A.4: Simulink diagram for the double sweep strategy.

Figure A.5: Simulink diagram for the control-based experiment using the double sweep strategy.
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B.1. Discrimination between intersecting FRCs solutions

Figure B.1: The 3D plot shows that the third harmonic amplitude allows the discrimination
between intersecting FRC solutions in the sweeping plane (ω, ωX1).

B.2. Secondary resonances of the numerical Duffing os-

cillator

This section presents the total amplitude and harmonic contribution near the secondary reso-
nances. These results are obtained using the ACBC method with the double-sweep strategy.
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Figure B.2: FRC around the 2 : 1 superharmonic of the Duffing oscillator (p = 1 N). (a) Total
amplitude. (b) Amplitude contribution of the second harmonic (black) and first harmonic
(grey).

∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.1 0.002 0.1 0.1 ts 0.1 / -0.05 0.5

Table B.1: Double sweep strategy simulation parameters for the 2 : 1 resonance of the Duffing
oscillator (p = 1 N).
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Figure B.3: FRC around the 2 : 1 superharmonic of the Duffing oscillator (p = 3 N). (a) Total
amplitude. (b) Amplitude contribution of the fourth harmonic (black) and first harmonic
(grey).
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∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.1 0.001 0.25 0.1 ts ±0.1 0.5

Table B.2: Double sweep strategy simulation parameters for the 4 : 1 resonance of the Duffing
oscillator (p = 3 N).
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Figure B.4: FRC around the 3 : 1 superharmonic of the Duffing oscillator (p = 1 N). (a) Total
amplitude. (b) Amplitude contribution of the third harmonic (black) and first harmonic (grey).

∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.5 0.005 0.5 0.1ts ±0.05 0.5

Table B.3: Double sweep strategy simulation parameters for the 3 : 1 resonance of the Duffing
oscillator (p = 1 N).
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Figure B.5: FRC around the 5 : 1 superharmonic of the Duffing oscillator (p = 1 N). (a) Total
amplitude. (b) Amplitude contribution of the fifth harmonic (black) and first harmonic (grey).
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∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.02 0.001 0.5 0.1 ts ± 0.1 0.5

Table B.4: Double sweep strategy simulation parameters for the 5 : 1 resonance of the Duffing
oscillator (p = 1 N).
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Figure B.6: FRC around the 1 : 2 subharmonic of the Duffing oscillator (p = 1 N). (a) Total
amplitude. (b) Amplitude contribution of the one-half harmonic (black) and first harmonic
(grey).

∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.01 0.01 1 1 ts ± 0.1 0.5

Table B.5: Double sweep strategy simulation parameters for the 1 : 2 resonance of the Duffing
oscillator (p = 1 N).
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Figure B.7: FRC around the 1 : 3 subharmonic of the Duffing oscillator (p = 1 N). (a) Total
amplitude. (b) Amplitude contribution of the one-third harmonic (black) and first harmonic
(grey).

∆Ẋ∗
1 [m/s] ∆ω [rad/s] kd [kg/s] µ [-] ki,nf [-] ki [rad/(s N)]

0.1 0.125 1 0.5 ts ± 0.1 0.1

Table B.6: Double sweep strategy simulation parameters for the 1 : 3 resonance of the Duffing
oscillator (p = 1 N).

B.3. More results for the electronic Duffing oscillator
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Figure B.8: Comparison of results obtained with the ACBC method (red) and with sine sweep
up (black) and down (grey). FRC around the fundamental resonance of the electronic Duffing
oscillator at distinct forcing levels. (a) p = 0.125 V. (b) p = 0.5 V.
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Figure B.9: Harmonic contribution around the (a) 3 : 1 and (b) 2 : 1 resonance of the electronic
Duffing oscillator at p = 2 V, with the fundamental harmonic in grey and the resonant non-
fundamental harmonic in black.
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