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Introduction

Gravitational waves are predictions of General Relativity, a theory that emerged at the
start of the XXth century. Direct observation through advanced laser interferometers of
gravitational waves generated by the coalescence of two black holes has been reported a
century later. Since then many other Compact Binary Coalescence (CBC) events have
been detected. Other astrophysical phenomena are expected to generate gravitational
waves and are searched in the data stream of these detectors.

This work is part of the search for minute-long burst searches which are different
from CBC events because they are longer and not well-modelled thus the more tradi-
tional template-based methods cannot be used. Long-duration burst searches use a time-
frequency representation of the correlation of the data from multiple detectors. These are
spectrograms which show the time-frequency evolution of signals. These spectrograms
are dominated by the background noise of the detectors and transient non-astrophysical
noise called glitches.

The GWpyxel pipeline searches for signals in spectrograms using fast and effective deep
learning methods, namely the ALBUS model which acts as a non-linear noise removal filter
for spectrograms to highlight potential signals and discriminate glitches. ALBUS takes as
input spectrograms possibly containing signals and glitches partially hidden by the noise
and outputs a spectrogram without the background noise, containing the reconstructed
signals. Its output is then clustered to form triggers which indicate where each signal
is seen in the spectrogram. Significant triggers can be sent to astronomers for further
investigation and to potentially find their electromagnetic counterparts.

The current clustering process to obtain the triggers needs improvements as it finds
an average of 5 to 6 low-significance non-physical triggers per 1000 seconds of data which
unnecessarily increases the processing time. Furthermore, one signal is often clustered as
two or more separate triggers, leading to the possibility that a significant astrophysical
signal could be missed by being fragmented into several less significant triggers. This
work presents a modification to ALBUS which changes its role from a noise removal filter
to an image segmentation model which directly outputs the triggers.

The first chapter introduces the theory behind gravitational waves, from their emer-
gence out of the theory of General Relativity to the interferometer detectors on Earth
and the detected and potentially detectable astrophysical sources. The second chapter
presents the technical aspects needed to analyse the data of the detectors. The third
chapter is the practical work of this thesis which aims at enhancing the clustering process
inside the minute-long gravitational wave burst search pipeline GWpyxel.
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Chapter 1

Gravitational Waves

In this section, we will cover the theoretical origin of gravitational waves, the principles
behind the detectors, and the potential sources of such waves, especially the long-duration
burst sources.

1.1 General Relativity

General Relativity (GR), proposed by Albert Einstein in 1915 [1], is the prevailing theory
of gravity. This section is adapted from [2] and will provide a short introduction to the
theory and how GW emerge from it.

We start by introducing the basics of calculations in relativity. This is a four-dimensional
theory, events x are notated as quadri-vectors,

x = (ct, x, y, z), (1.1)

With c being the speed of light, and t, x, y, z the coordinates in time and space. The
speed of light is introduced to have the same dimensions across the vector’s components.
We can use natural units, where c = 1, to simplify the notations, this implies that the
dimensions of space and time are equivalent. We remove the bold notation for vectors
and introduce an index µ to notate the vector’s components. Our quadri-vector becomes,

xµ = (x0, x1, x2, x3) = (t, x, y, z). (1.2)

Higher order tensors are notated via two or more indices such as T µν . One useful notation
is the Einstein summation convention, where a sum is implicitly made over repeated lower
and upper indices. The sums typically run over three to four elements, relating to the
three spatial dimensions and the fourth time dimension. Greek indices run from 0 to 3
and Latin from 1 to 3. For two quadri-vectors x and y the convention is∑

µ=(0,1,2,3)

xµy
µ ≡ xµy

µ and
∑

i=(1,2,3)

xiy
i ≡ xiy

i. (1.3)

To measure distances we introduce the line element ds which is defined as follows,

ds2 = gµνdx
µdxν , (1.4)
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with dx being an infinitesimal displacement and gµν being the metric tensor. In special
relativity, spacetime is the in Minkowski spacetime and the metric tensor is

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.5)

so the line element becomes

ds2 = −dt2 + dx2 + dy2 + dz2. (1.6)

In GR the metric tensor can have different values and non-null off-diagonal terms. GR
states that the presence of mass and energy causes spacetime to curve. The Einstein field
equations mathematically describe this curvature:

Gµν = 8πGTµν , (1.7)

where Gµν is the Einstein tensor representing spacetime curvature, Tµν is the energy-
momentum tensor describing the mass and energy content in the spacetime, and G is the
gravitational constant. To explore the emergence of gravitational waves, we employ the
weak field approximation, where the metric tensor gµν can be expressed as the Minkowski
metric ηµν plus a small perturbation hµν ,

gµν = ηµν + hµν , (1.8)

which allows the linearization of the Einstein field equation by inserting this expression
inside the Einstein tensor Gµν

Gµν = Rµν −
1

2
gµνR, (1.9)

where Rµν is the Ricci tensor, R is the Ricci scalar, and gµν is the metric tensor. The
Ricci tensor is a contraction of the Riemann tensor Rα

µβν

Rµν = Rα
µαν . (1.10)

The Riemann tensor has the expression

Rα
µβν = ∂βΓ

α
µν − ∂νΓ

α
µβ + Γα

σβΓ
σ
µν − Γα

σνΓ
σ
µβ, (1.11)

where Γα
µν are the Christoffel symbols which describe how vectors change as they are

transported along coordinates in spacetime and are defined as

Γα
µν =

1

2
gασ (∂µgνσ + ∂νgµσ − ∂σgµν) . (1.12)

These symbols depend on the inverse metric gασ, which is given by

gασ = ηασ + hασ. (1.13)

To simplify the linearized equation, a change of variable known as the trace-reverse trans-
formation is applied, it is

h̄µν = hµν −
1

2
ηµνh, (1.14)
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where h = ηµνhµν is the trace of hµν . In the Lorentz gauge (∂µh̄
µν = 0) and in the absence

of any sources (Tµν = 0), the linearized gravitational wave equation becomes

□ h̄µν = 0, (1.15)

where □ represents the d’Alembertian operator. This wave equation describes the propa-
gation of gravitational waves, that travel at the speed of light. For a plane-wave solution
travelling in the z direction, we have

h̄µν = Aµνe
ikσxσ

, (1.16)

with k being the wave vector, and A a 16 component tensor. Using the symmetry of Aµν ,
the Lorenz gauge (Aµνk

µ = 0) which restricts the choice of coordinates, and the traceless-
transverse gauge (Aµ

µ=0) which is another constraint allowed in the Lorenz gauge, these
16 components reduce to 2 independent components A+ and A×,

Aµν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 . (1.17)

These two independent components relate to the two polarisations h+ and h× of a gravi-
tational wave. The effect of two linearly polarized waves on a ring of matter is illustrated
in Fig 1.1.

Figure 1.1: Representation of the effect of the passage of a linearly polarised (either h+

or h×) GW on a ring of matter over time.

1.2 Detectors

General relativity predicts the existence of gravitational waves, this section will detail the
instruments designed to detect those waves.

The first detectors were rigid bars of metal with a specific resonant frequency, if a
gravitational wave of that frequency would pass through the detector bar, then a tiny
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vibration could be sensed. Claims of detection were made [3] but have been proven to be
wrong [4].

Figure 1.2: Joseph Weber besides one of his gravitational wave detector bars, at the
University of Maryland [5].

The minimum attainable strain hmin for these detectors is given by

hmin ≤
1

ω0LQ

(
15kBT

M

)1/2

, (1.18)

with ω0 being the resonant frequency, L the length, Q a quality factor equal to τω0 with
τ being the damping time, kB the Boltzmann constant, T the temperature, and M the
mass of the bar.

In the case of Weber’s bar, the mass of the detector M was 1,410 kg, the length L
was 1.5 m, the resonant frequency ω0 was 1,660 Hz (which was thought to be suited for
detecting supernovae), and the quality factor Q was 2× 105 at room temperature. With
these parameters, the smallest detectable strain hmin would be of the order of 10−20. We
must note that this order of magnitude is only attainable if the signal perfectly matches
the resonant frequency of the bar and if it lasts for at least τ , which is equal to 120 seconds
in this case. Supernovae signals are now known to cover a wider range of frequencies and
to last about 1 second [6] which renders them undetectable by this instrument.

Refinements of such detectors exist, such as cryogenically cooled spherical detectors
[7]. Still, none of them have detected an astrophysical signal, due to their low sensitivity
and narrow range of frequencies.

Modern-day detectors are based on the Michelson interferometer in which a laser
sends light through a beam splitter, and the two rays of light travel through kilometre-
long vacuum-sealed arms, and mirrors at each end of the arms reflect the two beams of
light which are merged while crossing the beam splitter, and a photodetector measures
any phase difference.

One key assumption that has to be taken to be able to detect anything is that the
wavelength of the GW signal is much longer than the size of the detector so that during
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the travel time of the light, the detector arms are not stretched by a significant amount
[8]. These interferometers are kilometre-sized and they search for signals around 1000
Hz, which corresponds to a wavelength on the order of 100 kilometres. The wavelength is
∼100x times longer than the size of the interferometer so the long wavelength assumption
is valid.

Multiple refinements to the original Michelson interferometer have been made to
achieve an extremely high sensitivity capable of detecting faint signals sent from the
edge of our observable universe. They are schematized in Fig 1.3 and they include [9]:

• Laser source: It is a Nd:YAG laser which is a common type of high-power infrared
laser with a wavelength λ = 1064nm, it is stabilized in frequency, direction and
intensity.

• Fabry Perot cavities: They are cavities bounded by partially silvered mirrors in
each arm, photons make several round trips between these mirrors before leaving
the arms. These cavities are effectively increasing the length of the arms, they also
serve the purpose of increasing the laser power. The impact of these cavities on the
long wavelength approximation is detailed in [10].

• Power Recycling: Placed between the laser and the beam splitter, it increases the
laser’s power to achieve greater sensitivity.

• Signal Recycling: It is used to maintain a broad frequency response but can also
focus its sensitivity around one specific frequency, like the detector bar mentioned
earlier.

• Suspension: They are used to reduce the vibrations of the mirrors. The test masses
are suspended by quadruple pendulums which passively dampen vibration. This
system is also stabilized by an active damping system which senses the seismic
vibrations and cancels them out.
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Figure 1.3: A schematic representation of the Advanced LIGO interferometer. The effec-
tive power of the laser is indicated at the exit of the laser and in the Fabry-Perot Cavities.
[11]

Figure 1.4: The strain noise spectrum of Advanced LIGO and its main noise sources. [9]

These detectors must face many sources of noise, the main ones are presented in Fig. 1.4:
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• Quantum Noise: This is a combination of the shot noise due to the random times
of the arrival of the photons at the photodiode and the radiation pressure exerted
by the photons on the mirrors. Increasing the power of the laser decreases the shot
noise but increases the radiation pressure. This is the main limiting noise source,
especially at high frequencies.

• Seismic noise: They are the vibrations from the activity around the detector that
manages to pass through the suspension system. Since this system is very effective,
this noise contribution is negligible beyond the low frequencies.

• Gravity gradients: Variation in the local density around the detector perturb the
suspended mirrors (due to clouds or even tumbleweeds [12]). An underground de-
tector would be less affected [13].

• Thermal noise: Suspension thermal noise, coating Brownian noise, coating thermo-
optic noise, and substrate Brownian noise all relate to thermal loss in the fibres of
the quadruple pendulum suspensions or the coatings of the mirrors.

• Excess Gas: Residual gases inside the arms modify the refractive index through the
path of the light beam.

These sources of noise are the main contributors to the background we currently observe,
they are present all the time but can vary in intensity. We call the background non-
stationary, non-Gaussian and coloured, meaning that it can vary over time, it is not as
well-behaved as Gaussian noise, and it varies across frequency. These detectors also suffer
from transient noise artefacts which are called glitches and result from coupling within
the various instruments of the detector.

Unlike traditional electromagnetic astronomy, where a telescope can be pointed at a
specific region in the sky, GW interferometers are omnidirectional, meaning that signals
are received from every direction in the sky. More specifically, they are called quasi-
omnidirectional since they are less sensitive in certain directions. This is because the
two arms have to be stretched by a different amount to produce a detectable phase shift.
The antenna pattern for each polarisation is shown in Fig. 1.5, this shows that a single
antenna is blind in some directions, proving the need for a multiple detector system.
Another benefit of a multi-detector system is the use of time delay between the detections
to pinpoint the localisation of the source in the sky. A single detector cannot tell the
direction of an incoming signal. However, if another detector detects the same signal,
the delay between the two detections can restrict the possible localisation of the source
projected onto the sky. The more detectors the more precise the localisation can be.

The modern-day system of detectors consists of the two most sensitive ones, the LIGO
interferometers located in the USA (a third LIGO interferometer is under construction
in India), followed by the VIRGO interferometer in Italy which is less sensitive than the
American ones but has detected signals [15]. And finally, KAGRA, located in Japan.
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Figure 1.5: The antenna pattern in geocentric coordinates for the plus (left) and cross
(middle) polarization, as well as the total receiving pattern (right) which is the root
sum square of the two polarisations. These surfaces, as well as the colour, indicate the
sensitivity of an interferometer with its arms along the x and y axis to a gravitational
wave coming from a certain direction in the sky. (From [14])

Figure 1.6: The VIRGO observatory, with its two 3-kilometre arms. Located near Pisa,
Italy. [16]

Future detectors could be the Einstein Telescope (ET)[13], composed of three two-
armed interferometers of 10 kilometres each and the LISA (Laser Interferometer Space
Antenna) which would be a GW space observatory composed of three satellites separated
by 2.5 million kilometres. Due to its longer arms, it would observe at much lower frequen-
cies (10−4 − 10−1Hz), enabling new science opportunities such as measuring the Hubble
constant [17].
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1.3 Sources

General relativity predicts that gravitational waves exist and can travel through space
from their source to our detectors on Earth. This section will present the detected astro-
physical sources and those that should be detectable in the future.

The emission of gravitational waves is due to the acceleration of a non-axisymmetric
distribution of matter (with a non-null quadrupole moment). Due to mass and momentum
conservation, the monopole and dipole moment vanish and the first contributing term is
the quadrupole moment of the mass distribution. This constrains the possible emitting
astrophysical sources: a single rotating black hole would not produce gravitational waves
since it is spherical, likewise a perfectly spherical supernova, even though violent, would
still not generate gravitational waves.

We can characterise a GW by a quantity named h, called the strain, which is the
fractional deformation of an object of length L caused by the GW

h ≈ |hµν | ≈
∆L

L
. (1.19)

We can estimate the strain measured on Earth produced by a distant source using this
relation that relates h to the energy radiated per unit time [14]

c3

16πG
|ḣ|2 = 1

4πd2
Ė. (1.20)

With c being the speed of light, G the gravitational constant, d the distance to the source,
Ė.

Supposing a highly energetic event, with an energy of about a thousandth of the mass
of the Sun (E ≈ 10−3M⊙c2), located in the nearest galaxy cluster, the Virgo Cluster
(d ≈ 15 Mpc), that has a timescale τ and a signal of frequency f we can use

Ė ≈ E

τ
and ḣ ≈ 2πfh, (1.21)

to get an idea of the typical strain of such events, expressing f in kilo hertz and τ in
milliseconds we get

h ≈ 5× 10−22

(
E

10−3M⊙c2

) 1
2 ( τ

1 ms

)− 1
2

(
f

1 kHz

)−1(
d

15 Mpc

)−1

. (1.22)

Using 1.19, a one-kilometre object on the surface of the Earth would be stretched by
about a thousandth of a fermi (1 fm = 10−15 m, which is about the size of a proton).

Detecting such waves seems impossible but the advanced laser-interferometers de-
scribed in the previous section have overcome this challenging task.

To get an idea of the typical mass of the most easily detectable sources we start with
the orbital frequency of a gravitationally bound system of mass M and size R [14]

f ≈ 1

2π

(
GM

R3

) 1
2

. (1.23)
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The radius of a non-spinning BH is the Schwarzschild radius, RBH = 2GM/c2 so

fBH ≈ 104
(
M⊙
M

)
Hz. (1.24)

Current detectors are the most sensitive between 100 to 1000 Hz, which means that a
compact system of two BH of 10 to 100 M⊙ would be the most easily detectable.

The first detected source of GW was the merging of two inspiralling black holes in
2015, with masses of 36 and 29 M⊙, the resulting merged BH mass is 62 M⊙, meaning
that 3 M⊙c2 have been radiated through GW. The event happened about 430 Mpc away,
was measured for about 0.1 seconds, ranged from 35 to 250 Hz and reached a strain of
10−21 [11]. Many binary black hole events have been detected since [18]. Then, merger
events of a black hole and a neutron star [19] or two neutron stars have been detected
[20]. Every observed GW event are compact binary coalescence.

Other astrophysical sources include continuous GW emitters such as single rapidly
spinning neutron stars presenting a “mountain” on their surface, the height of these
bumps is on the order of the millimetre [21] for a star radius of about 10 km. The fastest
spinning neutron star reaches 716 Hz [22], potentially emitting GWs at twice that fre-
quency. Another type of GWs are stochastic signals. The stochastic background of GWs
is an analogue to the cosmic microwave background (CMB), it permeates the universe
and carries insightful information about its content and cosmology. It could include phe-
nomena ranging from the sum of unresolved astrophysical sources to inflationary effects
occurring just after the Big Bang [23].

The last type of GWs are the burst signals, they can be either second-long or minute-
long. Core-collapse supernovae can produce second-long burst signals [24]. This work
focuses on the search for minute-long burst signals, which can be generated by many
astrophysical processes. A representation of their signature in a spectrogram can be seen
in Fig. 1.7 and their physical meaning is detailed below.
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Figure 1.7: A spectrogram showing the signature of several astrophysical and ad-hoc
signals [25]. The different letters correspond to different parameters. The detail of every
given signal is in the text.

• ISCOChirp: Core collapse supernovae (CC-SNe) are extremely energetic events hap-
pening at the end of the lifetime of a massive star. A star, over its lifetime, fuses
heavier and heavier atom cores, starting from hydrogen into helium and ending with
the silicon-burning process that turns silicon into iron and nickel. The elements in-
side the star organize themselves in layers, with the lighter elements on top. The
fusion of elements lighter than iron releases energy, this heat provides inner pres-
sure to the star, preventing it from collapsing against its gravity. Once the star
has reached the creation of an iron core, it can no longer create enough internal
pressure to hold against its weight. The iron core under extreme pressure from the
outer layers collapses into a neutron star or a black hole, while the outer layers
are ejected outwards. Type Ib and Type Ic are CC-SNe that lack hydrogen (Ib) or
hydrogen and helium (Ic), these outer layers have been expelled by strong stellar
winds or the interaction with a companion star.

In these systems, if the remnant of the CC-SNe is a BH, the expelled matter can fall
back towards the BH, in the accretion disk. The interaction between the rotation of
the BH and the matter at the Innermost Stable Circular Orbit (ISCO) may produce
gravitational waves. The frequency evolution of the orbital frequency at the ISCO
can be expressed by

fISCO(t) = f1 + (f0 − f1)e
−at/T , (1.25)

an exponentially decreasing function of time, where f0 and f1 are the starting and
ending frequency, T is the total duration, and a a dimensionless coefficient. Har-
monics are produced by multipole mass moments.[26]
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• Magnetar: The remnant of a binary NS merger can either be a black hole or another
neutron star. In the case of a neutron star remnant, if the final mass is too high
it will collapse in seconds into a BH and if the mass is low enough the remnant
will be stable. Magnetic field amplification during the merging phase can lead to a
magnetar, a neutron star with a powerful magnetic field. The intense magnetic field
can distort the newly born star into a prolate ellipsoid that could emit GW during
its spindown [27].

• ECBC: Eccentric Compact Binary Coalescences, these signals are similar to CBC,
which are well modelled and searched mainly through matched filtering. Eccentric
coalescence events can present harmonics due to the eccentricity and if the two
objects have different masses [28]. Lower mass binary systems emit at higher fre-
quencies, for modern detectors this means that they spend more time in the high
sensitivity frequency range, meaning that we would detect them as long-duration
signals. Matched filtering searches require a bank of templates and are computa-
tionally heavier for longer signals. Unlike CBCs, ECBCs are not mainly searched
through matched filtering since they are longer and their eccentricity complicates
the generation of templates.

• GRBplateau: Gamma ray burst (GRBs) are burst of electromagnetic radiation at
high energies observed isotropically in the sky. They have been classified in two
subtypes, short GRBs and long GRBs. Long GRBs have been associated with core-
collapse supernovae [29]. As stated earlier, CC-SNe can produce a neutron star,
or even a magnetar. The X-ray light curves of long GRBs present a steep descent,
followed by a plateau, and end with another steep descent. The presence of a plateau
can be explained by energy being injected continuously with progressively reduced
activity, for example by the magnetic dipole losses of the inner magnetar. However,
this energy could also be provided by the emission of GW due to non-axisymmetric
deformations of the magnetar [30].

• ADI: Accretion Disk Instabilities. Long GRBs can leave a black hole surrounded
by an accretion disk. Turbulence in this torus of matter coupled to the spin of the
black hole at its centre could produce GWs [31].

• WNB: This is not an astrophysical signal, it is an ad-hoc signal used to test the
detection pipelines, in particular, it is a White Noise Burst, a signal which has the
same power across a certain range of frequencies.

• SG: Same as WNB, Sine Gaussian, a sine wave of constant frequency with an am-
plitude modulated by a Gaussian function across time.
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Chapter 2

Data analysis

The gravitational wave interferometers continuously measure a strain that demands anal-
ysis. This large amount of data requires signal, image processing, and more recently
machine learning. Understanding the workings of those techniques is crucial for this
work.

2.1 Machine Learning

Machine learning problems can be categorised into two groups: supervised learning and
unsupervised learning.

Supervised learning is, given a database of inputs and outputs, finding a function that
predicts the output of a given input. This is formally defined as follows: from a learning
sample (xi, yi|i = 1, ..., N) with xi ∈ X and yi ∈ Y , find a function f : X −→ Y that
minimizes the expectation of some loss function ℓ : Y×Y −→ R over the joint distribution
of input/output pairs: Ex,y{ℓ(f(x), y)} [32].

An example of supervised learning could be to use a database of N galaxies with the xi

being physical measurements of those galaxies and the yi their morphological classification,
labelled by experts. From this database, find a function that automatically labels the
morphology of a galaxy given its measurements.

Unsupervised learning is concerned with applications where the database is not la-
belled. It aims at finding regularities or patterns in the data. For example, one could use
the same database of N galaxies without any label to try to recover or discover groups
sharing similar morphology.

2.1.1 Clustering

Clustering is an unsupervised learning problem. The goal is to find groups within unla-
belled data. There exist many ways to approach this task, we will go through some of
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them that will be used in this work. First, we need to define some concepts.

A cluster is a group of data points, the distance between two clusters can be the
largest distance between two points in the clusters, the shortest distance or the average
distance. The distance between clusters can be measured with the Euclidian distance,
the Manhattan distance, or other distances meaningful to our problem.

K-means

There exist many algorithms to find clusters in a dataset, we will start by explaining
K-means clustering.

We start by specifying how many clusters we wish to find in the dataset. Then, so-
called cluster centres are placed randomly in our input space. Datapoints are assigned to
the cluster which corresponds to the nearest cluster centre. We then compute the centroid
of every point belonging to each cluster and these centroid become the new cluster centres.
We then iteratively repeat this procedure until the clustering stabilises. This process is
illustrated in Fig. 2.1.

This final clustering depends on the initialisation of the cluster centres, we can thus
rerun this algorithm several times to see the stability of clusters. One drawback is the
need to provide the number of clusters in advance, which is sometimes unknown. One
can empirically find the number of clusters using the so-called elbow method. Since it
is based on the distance to the cluster centroid, this algorithm assumes that clusters are
roughly spherical and not elongated.

Figure 2.1: A visualisation of the Kmeans algorithm. We start with the unclustered 2D
dataset (left). We place at random k cluster centres represented by coloured crosses, each
colour corresponding to a cluster. We then assign each point to the cluster corresponding
to the nearest cluster centre (middle). We move the cluster centres to the centroid of
the previously clustered points. We then reassign each point to its closest cluster centre
(right). We set k = 3 and for visualisation purposes, the cluster centres are placed so
that a reasonable clustering is achieved in one step. In practice, setting k is not trivial
and the final clustering depends on the initialisation of the cluster centres.
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Hierarchical clustering

This algorithm can be used in two ways, a divisive way and an agglomerative way. We
will first explain the most used one which is agglomerative clustering.

We start by assigning a different cluster to each datapoint, we thus have as many
clusters as there are datapoints. We then merge the two clusters which are the closest
to each other and keep a record of their distance. We repeat the process by iteratively
merging the two closest clusters until there is only one cluster remaining. By keeping
track of the distances between the clusters that are merged together we can create a
visualisation of the clustering process called a dendrogram. An example is shown in Fig.
2.2. Large jumps in the dendrogram show that the two clusters were far apart. We can cut
the iterative merging process at a certain step, this translates to cutting the dendrogram
horizontally at a certain distance, for example, to keep a certain number of clusters or to
fix a maximum distance between final clusters.

Divisive clustering is similar but it starts with one cluster for all the data points
and tries every possible division into two clusters and keeps the one that maximises the
distance between the two resulting clusters. This comes with a large computing cost,
which renders agglomerative clustering more favourable.

Figure 2.2: A visualisation of hierarchical clustering, with the final clustering (left) and the
associated dendrogram (right). The dendrogram starts at the bottom with every point
in a different cluster. The closest clusters are iteratively merged (we used the average
distance), and we cut the dendrogram at a maximum distance between clusters of 4. This
cut can be chosen by looking at the dendrogram, we see that between a wide range of
distances (from ≈ 3.5 to 6.5) no clusters are merged, which means the clusters formed
before this range of distances are far apart.

DBSCAN

Densitity-Based Spatial Clustering for Applications with Noise is an algorithm proposed
in 1996 [33] that clusters points together using their density in the input space. It starts
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by finding all so-called core points with a minimum of N neighbours below a distance of
ϵ. It then assigns a cluster to each group of connected core points. If non-core points
have core points in a circle of radius ϵ they are labelled with the cluster of the core point,
otherwise they are labelled as noise. Such a clustering is shown in Fig. 2.3.

Figure 2.3: This is a visualisation of a clustering achieved with DBSCAN. A circle of
radius ϵ = 1 is shown. The minimum number of points in that circle required to be
considered a core point is set to 5. Core points are bold and non-core points are light
coloured. Noise points are grey.

HDBSCAN

Hierarchical Density-based Spatial Clustering for Applications with Noise is a clustering
algorithm proposed in 2013 [34]. It is DBSCAN but with an integration over the ϵ
parameter.

We need to specify the parameter N , the required number of samples inside a circle
of radius ϵ to form a cluster. It then sweeps over increasing values of ϵ. When ϵ is small,
every point is labelled as noise. As ϵ increases clusters appear in regions of N or more
samples within a distance ϵ. These clusters grow as ϵ becomes larger, and merge to form
larger and larger clusters. Once ϵ has reached a high enough value, all points are grouped
within the same cluster.

The final clusters are chosen to be the most stable ones over ϵ. HDBSCAN removes
one of the two parameters of DBSCAN, which allows the clustering of varying densities
of points. The N parameter is still left to tune.
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Figure 2.4: The clustering achieved by HDBSCAN (left) with N = 5, and the condensed
tree provide a visualisation of the clustering process (right). We see that for low values
of ϵ there are no clusters, then the the most dense points are labelled as a cluster, and as
ϵ increases, two other clusters appear. The orange and green clusters are merged when
ϵ gets larger than ≈ 2. All points are associated with the same cluster when ϵ reaches
≈ 5. The width of the tree branches is proportional to the size of the cluster. The final
clusters are chosen to be the ones that are stable the longest while considering the number
of points in the cluster (this can be seen as choosing the branches that “fill the most ink
on the page”).

Comparison of the different algorithms

A comparison of the strengths and weaknesses of each algorithm on a more complex and
diverse dataset [35] is shown in Fig. 2.5.
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Figure 2.5: A comparison of four clustering algorithms on the same dataset. KMeans
is used to find 6 clusters. The Hierarchical clustering uses the average distance and the
dendrogram is cut to find 6 clusters. DBSCAN uses ϵ = 0.025 and N = 5. HDBSCAN
uses N = 15. We note that the different shapes present in this data are not well clustered
by KMeans and the Hierarchical clustering. We see that the density-based approaches
perform better, but DBSCAN, due to not being able to tackle varying densities links
what seem to be separate clusters together, it also finds small clusters in pink, purple,
and orange. HDBSCAN successfully finds six clusters while labelling the background
points as noise.

We conclude that HDBSCAN performs better (on this dataset) than the other algo-
rithms since it can classify points as noise, does not assume any shape for the clusters,
and can cluster points of varying densities.
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2.1.2 Neural Networks

This section will present models suited for supervised learning tasks, starting from simple
fully connected networks and how to train them to more complex convolutional neural
networks and their applications.

Fully Connected Network

Neural networks are functions that take several numbers as inputs and return other num-
bers as outputs. The inner workings of the function are layers of connected neurons. The
neurons can be tuned to produce the desired output from the inputs.

The neurons are themselves functions. A neuron with a single input and a single output
takes its input which is a number, multiplies it by a weight, adds a bias, and passes the
resulting number into a non-linear activation function (some common activation functions
are represented in Fig. 2.6b). The output of this function is called the activation of the
neuron. The activation a of a neuron that is connected to n other neurons is

a = f

(
b+

n∑
i=1

wiai

)
, (2.1)

with ai and wi being the activation of the ith neuron in the previous layer and the weight
linking them, b is the bias and f is the activation function.

The weight and bias are the parameters that are tuned during the training phase.
Combining neurons can create algorithms ranging from simple logic gates to complex
models provided that the parameters are set correctly or found during a training proce-
dure.

A realisation of a neural network is presented in Fig. 2.6a. The depth is the number
of layers, deep learning refers to the study and use of deep neural networks with millions
or more parameters.

Training Neural Networks

The parameters of these neural networks are found by finding a minimum in the parameter
space of a Loss function over the training set. One must remember that what is minimized
is the empirical risk which is an approximation of the true error using the training data.
For a regression problem, one can use the Mean Squared Error (MSE) as a Loss function.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2, (2.2)

where yi are the true outputs in the learning set (xi, yi|i = 1, ..., N) and ŷi are the
predictions f(xi) of a model f . For a classification problem, the Cross-Entropy (CE) loss
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Fig. 2.6a: A schematic view of a neural
network architecture. It is composed of an
input layer, hidden layers, and an output
layer. For this architecture, the depth of
the hidden layers is 3, and their widths are
4, 6, and 5.

Fig. 2.6b: Illustration of three common
activation functions: the ReLU (Rectified
Linear Unit), the ELU (Exponential Lin-
ear Unit), and the Sigmoid.

function can be used,

CE = −
N∑
i=1

yi log(ŷi), (2.3)

where yi is the true label in a one-hot encoded form and ŷi is the predicted class proba-
bilities.

Due to the large number of parameters, the parameter space is of high dimension and
cannot be sampled finely to find the minimum. Because these losses are differentiable,
so as the operations within the network, gradients of the loss function with respect to
the parameters can be computed, and are used by optimizers to find a minimum in the
parameter space.

A simple optimizer is Stochastic Gradient Descent (SGD) where gradients are com-
puted on a subset B of the dataset (called a batch) and the parameters θ are updated at
every step t like so [36],

θt+1 ← θt − η ·
∑
i∈Bt

∂ℓi(θt)

∂θ
, (2.4)

where η is the learning rate, a hyperparameter which sets the scale at which the loss
landscape is probed, Bt is the set of the indices of the batch t and ℓi(θt) is the loss of the
sample i computed with the parameters θt. The size of the subset B is called the batch
size and is a hyperparameter controlling the amount of randomness introduced in the
computation of the gradients compared with the gradient computed on the full dataset.
Introducing randomness can be beneficial for getting out of local minima.

One can refine SGD by adding inertia from the previous steps to the next steps, this
is called SGD with momentum. The learning rate can also be adapted as a function of
the gradients of the previous steps, this is called adaptive learning rate and one of the
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most common optimizers, Adam (Adaptive moment estimation) implements both of these
improvements.

Convolutional Neural Networks

As stated previously, neural networks take as inputs a list of numbers. This means that
we can give it an image as input but only if we flatten it into a list of values. By flattening,
we lose any spatial information previously contained in the image. Convolutional Neural
Networks are a variation of the traditional neural networks which use the convolution
operation to extract spatial information in the images. The convolution operation is
illustrated in Fig. 2.7. The role that played the weights in the fully connected neural
network is now played by the values inside the convolution kernels. Traditional fully
connected layers are replaced by convolutional layers that can output several feature maps
using several kernels. CNNs are composed of convolutional layers, but also max-pooling

Figure 2.7: An illustration of the convolution operation of an input of size 5x5 by a kernel
of size 3x3, with a stride of 1. Figures adapted from [37] using [38].

layers, and they are illustrated in Fig. 2.8. These layers are used to reduce the size of
their input. Another type of layer is the transposed convolution layer, shown in Fig. 2.9

Figure 2.8: An illustration of the max pooling operation of an input of size 8x8 by a
kernel of size 2x2, with a stride of 1. Figures adapted from [37] using [38].

which, contrary to the max pooling layer, increases the size of their inputs. Convolutional
neural networks have proven to be powerful algorithms for image classification [39], object
detection [40], and image segmentation [41].
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Figure 2.9: An illustration of the transposed convolution operation of an input of size 2x2
by a kernel of size 3x3, with a stride of 1. This is equivalent to a convolution of the 2x2
input with a padding of 2 with another kernel as shown in [37]. Figures adapted from
[37] using [38].

The model presented in [41] will be of interest to this work. It is called the U-net
due to its architecture shown in Fig. 2.10. It was first proposed for the segmentation of
biomedical images, it is composed of two parts, an encoder part which uses convolutions
and max-pooling to reduce the sizes of the input image to low-resolution feature maps and
a decoder part which upscales those feature maps with transposed convolutions. Feature
maps from the encoder part are concatenated with feature maps from the decoder part
to retain precise spatial information.

22



copy and crop

input
image

tile

output 
segmentation 
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

57
2 

x 
57

2

28
4²

64

128

256

512

57
0 

x 
57

0

56
8 

x 
56

8

28
2²

28
0²

14
0²

13
8²

13
6²

68
²

66
²

64
²

32
²

28
²

56
²

54
²

52
²

512

10
4²

10
2²

10
0²

20
0²

30
²

19
8²

19
6²

39
2 

x 
39

2

39
0 

x 
39

0

38
8 

x 
38

8

38
8 

x 
38

8

1024

512 256

256 128

64128 64 2

conv 1x1

Figure 2.10: The architecture of the U-Net [41]. The input is a single 572x572 image which
is convoluted to produce 64 feature maps, these feature maps are themselves convoluted
and max-pooled while passing through activation functions multiple times until they reach
the number of 1024 32x32 feature maps. They are then upscaled in the decoder part and
concatenated with previous feature maps from the encoder part to produce a segmentation
map.

2.2 Gravitational Wave Data Analysis

Gravitational wave laser interferometers, when operational, constantly output a strain
over time. One can make an analogy with sound to better grasp the difficulty of finding
signals in this data. Microphones also record a strain over time, so one can convert the
output of the interferometer to sound, and play it through speakers, GW signals sound
like pops or small chirps buried into a loud noise, (examples of such audio files can be
found in [42]). Due to the large amount of data, the wide parameter space covered by
potential signals, and their low signal-to-noise ratio, it is necessary to develop several
pipelines to process and detect potential signals.

When we know precisely what our source sounds like we can use this knowledge to
pierce through the background noise, but when no exact model is known, we must listen
for when we hear something above the noise.

This translates to the GW world by the modelled vs unmodelled searches. Modelled
searches use matched filtering with a bank of simulated waveforms to detect low SNR
signals. Unmodelled searches have to use other means to detect signals. This work
focuses on the unmodeled search for long-duration GW signals.
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2.2.1 Unmodelled long-duration GW pipeline

The mathematical developments are adapted from [43] and [6]. One way to analyse a
signal is to do a Fourier transform of it, which provides the amplitude at each frequency
of the signal. The Fourier Transform of a function x(t) is given by:

x̃(f) =

∫ ∞

−∞
x(t)e−i2πft dt. (2.5)

In practice our signal is a time series of a finite length with N samples at times tn =
t0 + n×∆t, we thus use the discrete version

x̃(f) =
N−1∑
n=0

x(tn)e
−i 2π

N
fn. (2.6)

Repeating this Fourier transform for several segments gives a view of the evolution of the
different frequency components of the signal. Putting each of these segments together
gives a spectrogram, a map of the evolution of the intensity across frequencies of our
signal.

Figure 2.11: A 1000s second spectrogram of data from the Ligo Livingston (L1) interfer-
ometer. With a time resolution of 6 seconds and a frequency of resolution of 4 Hz. It is
dominated by low-frequency noise and constant-frequency lines.

Fig. 2.11 shows such a spectrogram for data from a LIGO interferometer. We notice
that the spectrogram is dominated by low-frequency noise and lines of constant frequency
that last for the whole duration of the segment, these come from violin harmonics which
are resonant frequencies in the silica fibre by which the mirrors are suspended, or even
power lines at the harmonics of 60 Hz, the frequency of the alternating current in America.
One can get rid of those artefacts by using a spectral whitening technique, the goal is
to convert our noise into white noise. This means that we will render the intensity of
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the noise across frequency constant, this is called white noise in analogy to white light.
Technically, we normalise our signal by the noise spectrum of our detector shown in Fig.
1.4. To formally explain this procedure we must define the correlation between two signals
x(t) and y(t) as

rxy(t) =

∫ ∞

−∞
x(τ)y(t+ τ) dτ, (2.7)

and the cross-spectral density being the Fourier Transform of this correlation

Sxy(f) =

∫ ∞

−∞
rxy(t)e

−i2πft dt. (2.8)

The Power Spectral Density (PSD) is the Fourier Transform of the auto-correlation of a
signal Sxx. Finaly, a whitened signal is x̃/

√
Sxx.

Figure 2.12: A spectrogram of the same data as in 2.11 but whitened. A wide-band glitch
dominates the spectrogram but a signal is visible from 200 s to 600 s in time and 250
Hz to 1000 Hz in frequency. We still see the lines at constant frequencies that were not
entirely removed by the spectral whitening procedure.

Fig. 2.12 shows the spectrogram of the same segment that has been whitened. What
we see now is a loud, transient, wide-band signal, it is a glitch. Glitches come in a variety
of shapes, and projects linking citizen science and machine learning like Gravity Spy [44]
aim at classifying the glitches. Examples of different classes of glitches are shown in Fig.
2.13. We notice that these glitches are often short-lived, typically less than a few seconds
[45], so using our time resolution they appear as vertical bands.
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Figure 2.13: Spectrograms of interferometer data containing glitches of different classes.
Figure taken from [45]. The different classes relate to different features of the glitches,
such as their duration or morphology in the spectrogram.

One way to get rid of glitches is to use another detector, since the glitches are due to
local noise happening at the detector, one glitch in Hanford should not happen exactly at
the same time as another glitch detected three thousand kilometres away in Livingston,
the location of the second LIGO interferometer. More precisely, if each detector has a
glitch rate of R, and the glitches have a duration T , the rate of coincident glitches is R2T .
We thus define the coherence between two signals as

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(2.9)

We can thus make a spectrogram of the coherence between the two detectors. This is
shown in Fig. 2.14. We see that the loud glitch goes away and we see a signal which was
faint in the previous spectrograms now appear clearly in the coherence spectrogram. This
is another benefit of the coherence operation, if signals happen during the same time-bin
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in each detector then it gets amplified. Because the travel time between both detectors
is about 10µs, while our time resolution is 6s, any physical signal will be captured inside
the same time-bin.

Figure 2.14: Coherence spectrogram of data from the H1 and L1 detector located in
Hanford and Livingston. The glitch present in the L1 spectrogram disappears because no
glitch happened at the same in H1 data. The signal is now clearly visible.

We notice that there are still remnants of the whitening procedure, the horizontal lines
have not been totally removed, we thus apply a normalisation across time of all frequency
bins so that they sum to one, this is called normalisation. The resulting spectrogram is
shown Fig. 2.15.

Figure 2.15: Normalised coherence spectrogram. The normalisation across time removes
the lines remaining from the spectral whitening procedure. The spectrogram now only
contains noise and a visible signal.

As no long-duration signal has presently been observed, the chirp seen in the spec-
trograms is manually injected. The challenge of our long-duration unmodeled GW burst
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searches can be stated as follows: find potential traces of signals in coherent spectrograms,
while disregarding glitches.

One way to detect such signals would be to use classical computer vision to seek
patterns in the spectrogram, which are images. One could use the Hough Transform to
detect lines like in [46], edge detection algorithms like the Sato Filter [47] or other more
complicated algorithms but they have the disadvantage that they are slow.

A more powerful method would be to not hard-code an algorithm that detects those
signals but to let an artificial intelligence train to recognize such signals in any given
image. The use of artificial intelligence to detect objects in images is well researched as
stated in section 2.1.2, and this exact problem of detecting chirping signals in a noisy
environment polluted by transient artefacts has been researched in a different context but
surprisingly similar way when searching for dolphin chirps in the noisy waters of South
Korea’s islands that are hidden by the clicks the claws of the snapping shrimps [48].

Knowing that the algorithms capable of training to achieve our task exist, having the
computational power to train one, there is still one issue: the need for a dataset. Indeed
modern deep-learning methods require large datasets of images on which to train, this
renders the use of the templates in fig 1.7 impossible since they would take too long
to generate and they are not numerous enough to provide a good dataset on which to
learn. The next section will show how this problem was circumvented to allow the use of
deep-learning methods inside a long-duration GW pipeline.

2.2.2 ALBUS

The problem of generating a dataset of spectrograms with injected signals on which to
train a large neural network has been solved by using generic chirp-like signals. This was
done using the scipy signals library [49] which contains linear, quadratic, hyperbolic, and
logarithmic signals. These signals are represented in a spectrogram in Fig. 2.16.
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Figure 2.16: A spectrogram showing the signature of typical signals generated to create the
dataset on which ALBUS is trained. The different frequency evolutions are highlighted.
The parameters (starting and ending frequency, duration) have been chosen arbitrarily.

This idea led to the creation of ALBUS (Anomaly detection for Long-duration BUrst
Searches) [50], a CNN that acts as a non-linear noise removal filter for spectrograms of
gravitational wave data. The goal of CNN is to take as input a noisy spectrogram possibly
containing signals and glitches, and output two spectrograms, which respectively contain
the reconstructed signals and glitches without noise. To achieve such a behaviour we need
to create a dataset of input of expected outputs and to choose an architecture.

Dataset

With the multiple publicly available deep-learning models and the relatively easy access
to GPUs on which to train them, having a good dataset becomes the last key ingredient
to successfully train a good algorithm.

The dataset of ALBUS contains the inputs and the expected outputs, called the target
maps. For each input spectrogram, there are two output target maps, one for the signals
and one for the glitches. We can subdivide the dataset into four parts, the backgrounds,
chirps, glitches, and combined spectrograms, each having its inputs and target maps.

The generation of the inputs starts from coherence spectrograms of non-coincident (at
different times) H1 and L1 data. The backgrounds have no further processing, as they are
created from non-coincident data we expect no signal to appear in the spectrograms. In
the chirp dataset, we inject one chirp of the types presented in Fig. 2.16 per spectrogram
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with parameters selected in the parameter space of Table.2.1. For the glitch dataset, we
carefully chose the two times of the H1 and L1 data so that one glitch lines up in our
spectrogram. The combined dataset is created like the glitch dataset while also injecting
one chirp in each spectrogram.

Range of values
Duration 10 - 500 s
Delay 0 - 950 s
Frequency range 30 - 2000 Hz
Max. Bandwidth 1000 Hz
Frequency evolution linear, quadratic, logarithmic or hyperbolic
β parameter - Kaiser 1 - 4
Coherent amplitudes 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30
N◦ harmonics 1, 2, 3
Frequency spacing 10, 15, 20, 25, 30 Hz
Attenuation coeff. 0.5, 0.6, 0.7, 0.8

Table 2.1: Range of parameters of the injected chirps. Delay is the starting time of
the chirp in the spectrogram. The β parameter controls the amplitude evolution of the
chirp that is modulated by a Kaiser window. The Coherent amplitude relates to the
amplitude of the signal, it is computed as the sum over all the pixels of the difference of
a spectrogram with and without the injection. Harmonics are also simulated by injecting
chirps at spaced starting or ending frequencies with an attenuated Coherent amplitude.

The generation of the target maps is one of the most crucial elements as this is what
the network will learn to output.

The background target maps are simply spectrograms where every pixel is zero, so
when we give our network a spectrogram with no injected signals or glitches, it will learn
to output blank spectrograms.

The target maps for the chirps are created by applying a threshold at the 99th percentile
on the input coherence spectrogram, this provides a binary image that highlights pixels
of high coherence on the whole input spectrogram. Then we inject the same signal in no
noise, this provides a clean spectrogram of the whole signal, which is thresholded above
its mean value, this results in a binary image where the high energy pixels of the signal
are highlighted. Then we take the intersection of those two binary images, this keeps only
the bright pixels of the input spectrogram that belong to the signal. Finally, we multiply
the coherence spectrogram by that binary image and normalise it by dividing it by its
maximum value. This process is illustrated for a specific chirp in Fig. 2.17. One must
consider this question: the algorithm presented above to generate target maps for chirps
takes as input the coherence spectrogram and outputs the highlighted pixels belonging
to the signal, why not use this algorithm to detect signals instead of the CNN since they
serve the same purpose? The answer is that the target map generation algorithm also
takes as input the signal injected in no noise, which we do not have access to in a real-life
scenario.

Concerning the glitches target maps, the question asked above becomes relevant since
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Figure 2.17: A visualisation of the generation of a target map for a chirp. It begins by
thresholding the coherence spectrogram above its 99th percentile. Then it thresholds the
signal injected in no noise above its mean. Finally, it takes the values of the coherence
spectrogram that belong to the intersection of the two thresholded images and divides
them by their maximum value so that the values are in the [0,1] interval. The excess
power at all frequencies in the duration of the signal is due to spectral leakage. It is an
artefact of the discrete Fourier transform which assumes that the signal is periodic. The
signal can be tapered by a window function to mitigate these effects.
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we do not have access to the glitch injected in no noise because we do not inject the
glitches. We thus correlate two noisy strains that contain a glitch. To generate the target
maps for glitches we first train ALBUS on chirps only, and the target maps of input
spectrograms containing a glitch will be the output of this first version of ALBUS for that
spectrogram.

Finally, to create the target maps for a combined spectrogram, one containing a chirp
and a glitch, we proceed the same way, we generate the glitch target map before injecting
the chirp, and then we generate the chirp target map using the algorithm described above.

The LIGO interferometers are operational during periods lasting several months called
observing runs. The dataset is generated using the noise from a specific observing run on
which ALBUS will be used. This is done because the noise is not assumed to be the same
for different observing runs.

Architechture

The architecture of the CNN is inspired by [51] which is itself inspired by the U-net
presented in section 2.1.2. The exact architecture is shown in Fig. 2.18.

Figure 2.18: The architecture of ALBUS, with the encoder part in blue and the decoder
part in red. Lines represent the concatenation of the previous feature maps and the
numbers are the number of feature maps. [50]

Training and Results

The Loss function used was the MSE loss between the outputs of ALBUS and the target
maps as they are real-valued. This sets ALBUS as a noise removal filter, that regresses a
spectrogram of the expected signal/glitch in no noise.

It was trained for 20 epochs using Adam on a training-validation-testing split of 60%
- 6.66% - 33.33% (i.e. 9000 - 1000 - 5000 images from each dataset). The loss curves are
shown in Fig. 2.19. The output of ALBUS on two samples is shown in Fig. 2.20 and
2.21.
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Figure 2.19: The training and validation loss curve of the training of ALBUS

Figure 2.20: The outputs of ALBUS for this coherence spectrogram (left). The Anomaly
Map (middle) is the output containing the signal, the anomaly. The glitch map (right) is
the output containing the potential glitch, as there is no glitch in the input spectrogram,
ALBUS correctly outputs a blank glitch map.

Figure 2.21: The outputs of ALBUS for this coherence spectrogram (left). The Anomaly
Map (middle) is the output containing the signal, the anomaly. The glitch map (right) is
the output containing the glitch.
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Clustering of ALBUS outputs

To be used in a GW pipeline, the output of ALBUS must be transformed into triggers,
triggers are potential signals that are ranked according to detection statistics based on
their intensity and their shape. The triggers allow for a statistical analysis of the pipeline
and relevant triggers can be sent to astronomers for further investigation. The current
clustering procedure to transform the anomaly map into a set of triggers is as follows:

• Apply Yen’s Threshold as described in [52]. Which automatically finds threshold
values different for each spectrogram. This produces a binary map.

• Apply the Euclidian Distance Transform (EDT) on the binary map, this sets the
value for each pixel as its Euclidian distance to the closest thresholded pixel.

• Threshold this EDT at a value of 5, which essentially enlarges all previously found
clusters, and links clusters which were 10 pixels apart.

• All non-connected clusters are labelled as triggers that can be statistically analysed.

This exact procedure is illustrated for a certain input spectrogram in Fig. 2.22.
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Figure 2.22: The clustering procedure for a certain TF map (Time-Frequency map, a
coherence spectrogram). The anomaly map is the output of ALBUS containing potential
signals. It is thresholded using Yen’s threshold, and then EDT is applied and thresholded
at 5 pixels, this forms the triggers shown in light red.
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Chapter 3

Improving ALBUS’s Clustering

This work aimed to improve the clustering steps of ALBUS integrated into the GW-
pyxel pipeline. As explained earlier, the output of ALBUS, the reconstructed chirp or
glitch, passed through a Yen’s threshold to become binary, and this binary map was then
transformed using a thresholded Euclidian Distance Transform to obtain triggers. The
problem with this method was that the reconstructed signals were often not continuous.
Yen’s threshold can binarise a single signal into multiple separate regions that cannot be
linked with the EDT. Also, the EDT greatly enlarges triggers and thus does not provide
an exact mask of the potential signal. Finally, Yen’s threshold on a spectrogram contain-
ing no signals still leads to 5-6 low-significance triggers, which increases the processing
time.

We will start by exploring the idea of using an unsupervised clustering algorithm on
the output of ALBUS. This was not optimal as it required many free parameters to be
tuned. This led to the fundamental question of why the signals in the outputs of ALBUS
were sometimes discontinuous. This proved to be due to the generation of the dataset
on which ALBUS was trained. This led to the idea of entirely skipping the clustering
algorithms and training ALBUS to output the trigger masks directly, which required
changing the dataset generation and the training procedure. Results of this newly trained
version of ALBUS are then shown and compared to the previous one. Finally, we perform
the entire analysis necessary to assess the performance of this new detection pipeline for
long-duration burst searches and critically discuss its results.
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3.1 Clustering Algorithms

The outputs of ALBUS are spectrograms with continuous values, these are thresholded
to become binary, these binary regions are then connected by enlarging them using the
EDT. One can replace the use of the EDT by an unsupervised clustering algorithm. This is
illustrated in Fig. 3.1 which shows the points in the output spectrogram of ALBUS which
are above Yen’s threshold and Fig. 3.2 shows the application of clustering algorithms
presented in section 2.1.1 on those points.

Figure 3.1: A spectrogram containing two signals (left). The output of ALBUS for this
spectrogram (middle), only the anomaly map is shown, the glitch map is empty for this
spectrogram. A scatter plot of the pixels above the threshold set by Yen’s threshold
method (right). We observe that discontinuities in the distribution of the points appear
when going through ALBUS and Yen’s threshold.

Using clustering algorithms to group the points above Yen’s threshold in the output of
ALBUS is thus not optimal since it requires the tuning of several parameters. For example,
Kmeans requires the number of signals to cluster to be known in advance. The cluster
densities have to be known for DBSCAN to perform well, but they can vary depending
on the signals. HDBSCAN requires a minimum number of points to form a cluster but
signals can greatly vary in size so this also requires tuning.

Provided that a satisfactory tuning of these parameters can be found, clustering al-
gorithms are only a fix to a more profound problem. The fundamental problem is the
discontinuity of the signals produced by ALBUS and thresholded by Yen’s threshold.
Fixing this problem can be achieved by modifying these two steps.
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Figure 3.2: A comparison of the four clustering algorithms presented in section 2.1.1
on the pixels above Yen’s threshold in the output of ALBUS. KMeans is used to find 2
clusters. Hierarchical clustering uses the average distance and the dendrogram is cut to
find 2 clusters. DBSCAN uses ϵ = 50 and N = 5. HDBSCAN uses N = 42. Even though
the parameters are set to produce relevant results no clustering algorithm performs as
wanted. Kmeans and Hierarchical clustering assume spherical distributions of points and
thus fail to cluster the two signals separately. DBSCAN does not make this assumption
and thus it clusters the different lines separately. However, it clusters the discontinuous
parts of those signals separately since they are further apart than the distance between
the two signals. HDBSCAN performs well but classifies the edges of the signals as noise
which is not wanted.
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3.2 Directly Finding the Triggers

The discontinuities in the reconstructed signals arise in part due to ALBUS, and more
precisely due to its target maps which are generated as discontinuous reconstructions of
signals. The target maps are what ALBUS learns to output and thus this CNN reproduces
signals with discontinuities. As the outputs of ALBUS are spectrograms of continuous
values, the discontinuities are often only drops in the intensity profile of the reconstructed
signal. Because of those drops in intensity, the signals are fragmented by Yen’s threshold.

One way to prevent this fragmentation would be to train ALBUS to output signals
with a smooth intensity profile, the threshold would thus not cut the signal into several
parts. Another more elegant way would be to remove Yen’s threshold and train ALBUS to
directly output the trigger masks. The trigger mask is what was obtained by going through
the previous clustering procedure, it is a binary spectrogram containing a connected region
for each signal.

One can achieve this goal by changing the role of ALBUS from a noise-removal filter
to an image segmentation algorithm. ALBUS as an image segmentation CNN would
associate each pixel in a spectrogram with a label, these labels are “background”, “chirp”
or “glitch”. Several changes are required for ALBUS to output segmented spectrograms,
these are discussed in the following sections.

3.2.1 New Target Maps

The outputs of ALBUS are determined by the target maps on which it trains. Changing
what ALBUS outputs thus requires changing the dataset, specifically the target maps.
We need target maps which now are binary spectrograms containing pixels highlighting
the signals or glitches visible in the input spectrogram.

To create the chirp target maps, we have access to the signal injected in no noise, which
when thresholded, gives a binary footprint of the signal. One cannot use this footprint
as a target map because when the signal is injected in noise, its edges can get buried in
the noise and the signal will appear shorter. One must not train ALBUS to output those
invisible parts of the signal.

The algorithm producing the chirp target maps is presented in Fig. 3.3. It starts
by thresholding the signal in no noise at an amplitude outside of our current detectors’
sensitivity, this creates a mask containing the footprint of our signal. It then, through
the use of a Sato edge detection filter [47], computes the edge strength of the coherence
spectrogram inside this mask. This edge strength is then thresholded at an empirical
value to produce a binary spectrogram containing pixels of high edge strength inside the
footprint of the signal. We need to filter potential pixels of noise in the spectrogram
that have a high edge strength inside a part of the footprint buried into the noise. As a
filter, we use the HDBSCAN algorithm presented in section 2.1.1 which can find clusters of
different densities and labels as noise the points which are not part of any cluster. Further
filtering of those noise pixels is applied using the remove_small_objects() function from
the skimage library [53]. A bounding box containing all the non-filtered pixels is then
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used to crop the mask, forming our target map.

Figure 3.3: The algorithm to produce the binary target maps. It uses the coherence
spectrogram and the spectrogram of the signal injected in no noise, which is thresholded
above an amplitude of 10−24 1/

√
Hz. The edge strength of the coherence spectrogram

inside the mask is computed using a Sato filter. The edge strength is thresholded at an
empirical value of 0.035, this thresholded spectrogram is then filtered using HDBSCAN
and remove_small_objects(). The points passing these filters are shown in yellow and
the others in red. The target map is the mask cropped by a bounding box containing all
the filtered pixels

The generation of these binary target maps is more convoluted than the previous
target maps, this is not an issue since they only serve during training and, as long as they
are generated correctly, they can be done by any means. Many datasets are even labelled
by hand, like in [48].

The background target maps are spectrograms with every pixel labelled as background,
and the glitches target maps are generated as before, they are the outputs of an inter-
mediate version of ALBUS trained only on chirps and background. The combined target
maps are generated by first creating the glitch target map, then injecting a chirp and
creating the chirp target map.

41



3.2.2 Loss Function and Architecture

Now that the target maps are segmented spectrograms, we use the cross entropy loss
function to train ALBUS. This loss function expects as input the probabilities for each
class for each pixel. We need to modify the last convolutional layer of ALBUS that
previously outputted two spectrograms to output three spectrograms. The value of each
pixel inside the three spectrograms will be the probability for the pixel to belong to the
“background”, “chirp”, or “glitch” class respectively. The probabilities need to be in
the range [0, 1] and sum to 1. We thus add a SoftMax layer which normalises the three
outputs xi from the last convolutional layer,

SoftMax(xi) =
exi∑C
j=1 e

xj

. (3.1)

Where C is the number of classes, three in our case.

3.2.3 Training

A training-validation-test split of 75%-15%-10% was used (ie. 36689-7336-4891). We used
batches of size of 32, containing images randomly sampled from the four datasets. We
performed hyperparameter tuning using the validation set for 34 models using different
learning rates, learning rate schedulers, weight decay, initialisations, architectures, widths,
and data augmentation.

The learning rate schedulers tried were ReduceLROnPlateau and CyclicLR from Py-
Torch [54]. ReduceLROnPlateau reduces the learning rate by a certain factor when a
metric has stopped improving for a certain number of epochs. CyclicLR implements a
triangular cyclical learning rate as detailed in [55]. This cycle helps in deciding when
to stop the training phase because the losses become minimal when the learning rate is
minimal.

We used the Adam optimizer, which has a weight decay parameter that prevents
the weights from becoming too large and thus acts as a regularisation method against
overfitting. The initialization of the weights tried were the Xavier and He initialisations,
as well as starting from the weights of the previous version of ALBUS. These parameters
were found to not greatly affect the training nor reduce overfitting.

As in [48], the DeepLabV3 model was also tried as a replacement for the U-Net archi-
tecture of ALBUS. This led to poorer results because the segmentation was not as precise
as with ALBUS, this could be investigated further using different resolutions.

The first layer of ALBUS produces 16 feature maps, which are doubled several times
to reach 256 individual feature maps at the centre of the network. Different widths were
tried by changing the number of feature maps by a factor of 1/4 to 2.

Data augmentation was used, which is a technique to artificially increase the size of
the dataset by applying modifications to the images ranging from random flips, rotations,
blurring, changes in colour, etc. As the model is purposefully trained only on real noise
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spectrogram, we restrict the data augmentation to a horizontal flip of the image which
is equivalent to reversing the time in our spectrogram. The signals are generated with
parameters randomly taken from Table 2.1, flipping the time axis is effectively another
realisation of a randomly generated signal. At the scale of our spectrogram, the coherence
of the noise does not appear to depend on time, horizontally flipping our images does not
alter their physical plausibility. Since our spectrograms are spectrally whitened, we could
even flip the frequency axis, but this was not done since glitches seem to be more frequent
in the lower frequencies.

The final parameters were chosen as the ones that performed best on the validation
set. This model uses a cyclical learning rate ranging from 10−4 to 10−2, the training is
stopped after 2 cycles (6 epochs) to avoid the apparent overfitting problem appearing after
10 epochs. Stopping the training is called early stopping and is a regularisation method
against overfitting. It uses no weight decay, He initialization, the ALBUS architecture
with 16 feature maps and data augmentation through horizontal flipping. The loss curve
of this model is shown in 3.4a. Then, the model was trained on the training and validation
sets and the final performances were computed on the test set. The metric used is the
intersection over union (IoU) which computes, the ratio between the intersection and
union of the outputs of ALBUS and the target maps. The IoU can range from 0 to 1,
the IoU is 0 when the highlighted pixels do not overlap with the target map, and it is 1
when they are the same. It achieved an IoU of 0.82± 0.15 for the chirp class and an IoU
of 0.84± 0.2 for the glitch class. The evolution of the metric is shown in Fig.3.4b.

Fig. 3.4a: The loss curves of the final model.
The training loss is shown per batch to visual-
ize the effect of the cyclical triangular learning
rate scheduler, it is smoothed over 1000 batches
for better visualisation. The training loss de-
creases near 0 while the validation loss stag-
nates after several epochs and starts to increase
after 10 epochs, we perform early stopping at
6 epochs to avoid this problem.

Fig. 3.4b: The IoU curves of the final model
for the chirp and glitch class. The training IoU
metric increases towards 1 while the validation
metric stagnates after several epochs, we per-
form early stopping at 6 epochs to avoid over-
fitting. The model generally performs best on
glitches which can be understood since glitches
have a simpler morphology than chirps, they
often appear as vertical lines.
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3.3 Results

This section illustrates the results obtained with this newly trained version of ALBUS.
We first detail the enhanced clustering process. We then perform the analysis of the
performance of this model as part of a burst detection pipeline.

3.3.1 Clustering

The output of ALBUS on spectrograms containing chirps and glitches is shown in Fig.
3.5 and Fig. 3.6. This new version of ALBUS successfully segments spectrograms by
highlighting pixels belonging to chirps or glitches.

Figure 3.5: The input coherence spectrogram containing a signal (left). The output of
the new version of ALBUS which segments the input spectrogram into the chirp (middle)
and glitch (right) class. The signal is well recovered. There is no glitch present in the
spectrogram, no pixels are labelled as glitch by the network.

Figure 3.6: The input coherence spectrogram containing a signal and a glitch (left). The
output of the new version of ALBUS which segments the input spectrogram into the chirp
(middle) and glitch (right) class. The signal and the glitch are well recovered.
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The clustering process for a spectrogram containing multiple astrophysical signals is
shown in Fig. 3.7. We notice that it highlights similar triggers as the previous clustering
process shown in Fig. 2.22 but in only one step.

Figure 3.7: The input time-frequency spectrogram in which three simulated astrophysical
signals have been injected (left). The triggers directly found by the new version of ALBUS
(right), the triggers are highlighted in pink on top of the input TF map.

We can use the test set as a way to quantify the improvement in the clustering pro-
cedure. We first compare the IoUs of the new outputs and the target maps, against the
IoUs of the Yen-thresholded previous outputs and the target maps. This is done in Fig.
3.8 which shows the distribution over the test set of the IoUs of the chirp and glitch
class for the old and new version of ALBUS. The previous model reaches a chirp IoU of
0.65±0.18 and a glitch IoU of 0.65±0.2. The new model reaches higher IoUs (0.82±0.15
and 0.84± 0.2) meaning that its outputs more closely resemble the target maps than the
outputs of the previous model that have been thresholded. Provided that our target maps
always show the right footprint of the signal, our model thus more precisely highlights
each pixel belonging to a chirp or a glitch.
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Figure 3.8: Histogram of the IoU between the new target maps and the outputs of the
new version of ALBUS (blue), and the IoU between the new targets maps and the Yen
thresholded outputs of the previous version of ALBUS (orange). The left histogram is
for the chirp class and the right spectrogram is for the glitch class. The new models
more closely match the new target maps compared to the Yen thresholded outputs of the
previous model which are more discontinuous. We note as seen in Fig. 3.4b that the new
model performs slightly better on glitches.

The test set contains spectrograms with a single injected chirp. We thus run the
old and new clustering procedure on the test set and record the number of triggers per
spectrogram, which should always be 1 if a signal is visible. The histogram of the number
of triggers per spectrogram is shown in Fig. 3.9.

We notice that the new model assigns fewer triggers per signal. This means that
the triggers are less discontinuous compared to those obtained by the previous version of
ALBUS. However, there are still some signals and target maps which are fragmented into
several triggers. This can happen when the signal is highly vertical as shown in Fig.3.10.
We thus enlarge the triggers as before using the EDT at a reasonable distance of 1 pixel
to link such fragmented signals.
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Figure 3.9: Histogram of the number of triggers per spectrogram containing a single
injected chirp. A perfect model would always produce one trigger per signal. The results
of the previous model are shown on the left, with the number of triggers generated by
Yen’s threshold in grey and the final number of triggers after applying the EDT in orange.
The results of the new model are shown on the right, with the total number of triggers
generated by the new ALBUS in blue, and the number of triggers per target map in green.
This shows that the triggers are less fragmented using the new model. The target maps as
well as the new outputs are still sometimes fragmented this can happen for highly vertical
signals.

Figure 3.10: A highly vertical signal and its target map which is fragmented into two
parts. This is due to the resolution of our spectrograms and the threshold applied to
produce the mask during the generation of our target maps.
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3.3.2 Analysis

ALBUS is the detection engine inside the gravitational wave burst search pipeline GW-
pyxel. We must verify that the changes to ALBUS did not decrease the previous detection
capacity.

To assess ALBUS’s sensitivity we will first generate several years of data that does not
contain any signals. We will then analyse the distribution of triggers found by ALBUS
on this data. We will compare the distributions of triggers found on coincident data that
potentially contain real signals. Next, we will inject simulated astrophysical signals at
increasing amplitudes to determine the amplitude at which ALBUS can detect them.

Background and Foreground Analysis

Having access to the data from two detectors, we can generate several years of data
using time slides. This process starts by splitting the multiple days of data available
into segments of 1000 seconds and then generates spectrograms of the coherence between
two segments at different times. We used 36 days of data to generate 30 years of non-
coincident data. These spectrograms do not contain any physical signals since they use
data at different times for each detector. We then run this new version of ABLUS on
the 30 years of data and record every trigger it found. We associate each trigger with
a detection statistic, called the anomaly score, which is the sum inside the coherence
spectrogram of the pixels belonging to the trigger. The distribution of the background
triggers is represented in red as a reverse cumulative histogram in Fig. 3.14.

This histogram informs us that a total of ∼ 3000 triggers were detected above a
minimum anomaly score of ∼ 3× 10−3. Most triggers are found around a score of 0.1. A
few loud triggers have a score above 0.6, this is the tail of our distribution and we can
visualize the loudest in Fig. 3.11 to understand their origin.

Figure 3.11: The loudest trigger detected in 30 years of non-coincident data. This broad-
band trigger is the correlation of two glitches that was partly misclassified as a chirp
probably because it spans two pixels.

This spectrogram shows that the loudest trigger is the correlation of two glitches that

48



was partly misclassified as a chirp probably because it spans two pixels. The tail of the
background distribution contains about 5 triggers which are all similar to the one shown
in Fig. 3.11, since they are associated with glitches and we expect glitches to have a
duration of 6 seconds (1 pixel in our spectrogram) we can decide to disregard any trigger
with a duration of 6 seconds. This cut to the background distribution is shown in grey in
Fig. 3.14. The loudest trigger of this new distribution is shown in Fig. 3.12, where the
noise appears to form a faint line that is detected by the network.

Figure 3.12: The loudest trigger of the cut background distribution. This distribution
contains the triggers from the 30 years of non-coincident data (background distribution)
that are longer than 6 seconds. It is the 6th loudest trigger of the background distribution.
We see in the input spectrogram (left) that the noise randomly formed a line that is
detected as a chirp by ALBUS (right).

Finally, the 30 days of coincident data is analysed by ALBUS and the distribution
of the 20 triggers found is shown in green in Fig. 3.14. No trigger is found above the
background distribution, meaning there is no significant detection. The loudest foreground
trigger is shown in Fig. 3.13.

Figure 3.13: The loudest foreground (coincident data) event. This event has an anomaly
score below the loudest event of the background so it is not considered significant. It is
recovered by the network as several separate triggers because it is uncertain that it is a
chirp.
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Figure 3.14: Reverse cumulative histogram of the background, cut background and fore-
ground distribution of triggers, expressed using the alarm rate corresponding to the back-
ground distribution. The tail of the background distribution is removed by applying a
cut to remove every trigger of one pixel. The foreground distribution is slightly above
the background which might indicate a difference between coincident and non-coincident
data. No foreground trigger has an anomaly score above the background.

The apparent excess of triggers in the foreground distribution compared to the back-
ground distribution could be due to a significant difference between the coincident and
non-coincident data. We can test the significance of this discrepancy by assuming that
the probability for a certain number of spectrograms to contain triggers follows a Poisson
distribution. Under this assumption, we can test the hypothesis that the foreground and
background distribution have different rates λ of spectrograms containing triggers. Let λ1

be the background rate and λ2 be the foreground rate. The null hypothesis H0 is λ1 = λ2,
and the alternative H1 is λ1 ̸= λ2. We found that 2548 spectrograms contained triggers in
the 942 001 background spectrograms and 15 spectrograms contained triggers in the 3178
foreground spectrograms. We can perform a Poisson means test [56] and the probability
of finding at least 15 events in the foreground spectrograms under the H0 hypothesis is
7.3%. This does not provide enough evidence to reject the null hypothesis. However,
further analysis with more foreground data could better assess any potential discrepancy.
We note that the previous rate of triggers per background spectrogram was 5-6, and is
now 1 trigger per 288 spectrograms.

Injection Analysis

The second part of the analysis consists of injecting the simulated astrophysical signals
shown in Fig. 1.7 into background noise, at increasing hrss values. The hrss stands for the
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root-sum-square gravitational-wave amplitude,

hrss =

√∫ ∞

−∞
(h2

+(t) + h2
×(t)) dt, (3.2)

with h+ and h× being the two signal polarisations. We inject 20 different models at
18 different hrss values 100 times. The proportion of signals detected by the network is
called the efficiency and we compute efficiency against hrss. We report the efficiency for
every detected signals as well as the efficiency for detected signals that have an anomaly
score above the loudest event in the cut background distribution. This ensures that the
detection is due to the signal and not a fluctuation in the noise. The hhrss at which
the efficiency above the cut background equals 50% is reported as the “50%hrss” and
determines the sensitivity of our network to the signal.

The efficiency curves for representative signals of different families are shown in Fig.3.15
for the ISCOchirp, in Fig. 3.16 for the Magnetar (also called magXnetar), in Fig. 3.17
and 3.18 for the ECBC (also called NCSACAM), in Fig. 3.19 for the GRBplateau, in
Fig.3.20 for the ADI, and finally in Fig.3.21 for the PT waveforms. The PT (Piro-Thrane)
waveforms are not represented in Fig. 1.7, they are the result of fallback accretion on a
neutron star [57].

Figure 3.15: The efficiency for the ISCOchirpA waveform at different hrss. The orange
curve counts every trigger as detection and the blue curve counts only the triggers having
an anomaly score above the loudest cut background event. At low hrss values, no signal is
detected, and as the hrss increases, ALBUS detects more of them, eventually detecting all
of them. The 50%hrss are represented as dashed lines. These efficiency curves resemble
sigmoid functions, the slope of the sigmoid should be the greatest, meaning that every
signal is detected above the same hrss. The difference between the two curves should
be as low as possible, meaning that the loudest cut background trigger is not negatively
impacting the detection sensitivity. We notice a slight dip at 8e-21 hrss. As each injection
is associated with a unique identifier, we can go back and look at the reason for this dip.
In our case, the background noise was too high at the times chosen for one of the hundred
injections at this hrss.
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Figure 3.16: The efficiency for the maXgnetarF waveform at different hrss. This waveform
is well recovered by the network, the difference between the two curve is small and the
slope is high.

Figure 3.17: The efficiency for the NCSACAM D waveform at different hrss. This wave-
form is particularly not well recovered by the network as the efficiency stays at 0 for high
hrss values, and does not reach 1. This limitation regarding NCSACAM waveforms is
further detailed in 3.4, it is due to the network misclassifying it as glitches due to the
morphology of the signal in the spectrogram.
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Figure 3.18: The efficiency for the NCSACAM C waveform at different hrss. Contrary
to the NCSACAM D waveform from the same family, this waveform is relatively well
recovered by the network. This is due to the morphology of the signal, especially the
harmonics which reduce the verticality of the signal and help the network in not classifying
it as a glitch.

Figure 3.19: The efficiency for the GRBplateauShort waveform at different hrss. This
waveform is well recovered by the network. We notice a dip at 5e-21 hhrss which might
indicate a change of regime in the inner workings of the network for a waveform of this
amplitude.
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Figure 3.20: The efficiency for the adi B waveform at different hrss. This waveform is
relatively well recovered by the network. However, an efficiency of 1 is only reached a
high hrss values. This waveform, as NCSACAM suffers from a drop in efficiency due to
its high verticality and resemblance to glitches.

Figure 3.21: The efficiency for the PT B waveform at different hrss. This waveform is well
recovered by the network. We notice a dip a 6e-21 hhrss which might indicate a change of
regime in the inner workings of the network for a waveform of this amplitude.

We chose to not focus the analysis on the ECBC (NCSACAM) waveforms since they
are not adapted for our network due to their numerous harmonics on which ALBUS is not
trained and due to their low frequency and verticality which tricks ALBUS into classifying
them as glitches. The poor performance of ALBUS on these waveforms is discussed in
more detail in section 3.4.
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A comparison of the 50%hhrss obtained using the previous and new version of ALBUS
is shown in Table 3.1. The results are different for each waveform but the average change
in sensitivity is a factor of 1.00, the new version of ALBUS has a similar performance to
the previous one while having a better clustering process. This version performs better
on signals which resemble the training set of ALBUS (signals without harmonics that are
not too steep, like maXgnetar of PT), and it performs less well on signals that are more
different than its training set (like ISCOchirp). A discussion of those results is presented
in section 3.4.

Waveform % 50 hrss (10
−22) Ratio

Previous version Current version
GRBplateauShort 2.78 2.65 1.05

ISCOchirpA 4.12 4.74 0.87
ISCOchirpB 2.34 2.69 0.87
ISCOchirpC 2.12 2.29 0.92

PT A 1.67 2.02 0.82
PT B 5.68 3.63 1.57
adi B 2.12 3.67 0.58

maXgnetarD 5.68 5.32 1.07
maXgnetarE 6.13 5.32 1.15
maXgnetarF 3.68 3.49 1.05

Average Ratio 1.00

Table 3.1: Comparison of the 50%hrss of the previous and current versions of ALBUS on
astrophysical waveforms.

55



3.4 Discussion

3.4.1 Under the Hood

Neural networks are often labelled as black-box algorithms, assuming that their behaviour
is unexplainable. This is partially true due to their large number of parameters. However,
it is still possible to grasp some aspects of the inner workings of CNNs. Understanding
the behaviour of the algorithm is useful for discussing its results. We will first present the
maximum response samples and then intermediate probabilities outputs of the CNN.

Maximum Response Samples

Having at our disposal a trained neural network with fixed weights that takes as input
images, we can generate synthetic images that maximize the activation of a certain filter
at a certain layer. We can perform gradient ascent of this activation with the parameters
being the values of the pixels in the input image. This produces synthetic images that
highlight what information a filter of the network is extracting from the image.

Fig. 3.22 shows the maximum response sample for the first four filters of the first
six layers of the network. The first layers extract low-level information like the colour of
the image or its texture. For example, the second filter in the first layer is maximally
activated when the input image is green. The second filter in the second layer is looking
for bright, yellow, vertical lines, which is reminiscent of what our glitches look like in
our spectrograms, this filter is probably one of the many filters looking for glitches. As
we go deeper into the network, the patterns become increasingly complex because they
are the result of combinations of the previous patterns. Some of these deeper filters
look for continuous ridges, reminiscent of our chirping signals. This figure only shows
24 maximum response samples each one corresponding to a filter, the networks contain
about two thousand filters and two million parameters.
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Figure 3.22: Maximum response samples of 4 filters for different layers
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Intermediate Probabilites

This new version of ALBUS performs image segmentation, which assigns a label to each
pixel in the spectrogram. The chosen label is the one which has the highest probability. We
can access these probabilities that are produced by ALBUS just after the SoftMax layer,
visualizing these intermediate probabilities reveals information that is lost when converted
to a segmented spectrogram. Such visualisation of the intermediate probabilities and their
logarithm is shown in Fig. 3.23.

Figure 3.23: A visualisation of the probabilities associated with each class for a spectro-
gram of background data where ALBUS finds a trigger. The input spectrogram (top left)
and its segmented output (top middle). The probabilities for each class (middle row)
are obtained after the SoftMax layer. The logarithm of those probabilities (bottom row)
highlights the complex patterns captured by the network.

This figure shows a spectrogram of non-coincident data that does not contain any
physical signals. However, the random fluctuations of the noise can resemble lines and be
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detected as chirps by the CNN. The segmented output of ALBUS contains part of a faint
line that the network classified as a chirp. To better grasp what the network was seeing
when segmenting those few pixels we can look at the output of the SoftMax layer which
contains probabilities for each class. The background probabilities are high throughout
the spectrogram. A faint line appears in the chirp probabilities, the part of this line that
has a higher P(chirp) than P(background) is classified as a chirp. The probabilities for
the glitch class are near 0. The SoftMax layer takes the exponential of the logits that
ALBUS outputs, we can access those normalized logits by taking the logarithm of the
probabilities, this gives us a better view of what the network truly sees. Many features
that were not visible before appear, we first see that the small segmented signal is seen as
part of a potentially larger signal. The CNN also highlights a potential chirp at around
400 s and 1800 Hz, which is somewhat visible in the input spectrogram. Other small, and
low probability, chirp-like ridges appear in this log-probability spectrogram. The glitch
probabilities are lower but resemble those of the chirp in morphology, although having
more emphasis on vertical ridges. The background probabilities are high throughout the
spectrogram and decrease where the other probabilities are high.

3.4.2 Limitations

With this greater understanding of the workings of ALBUS we can address the limita-
tions that were highlighted by the analysis. The two main limitations were identified by
inspecting the injection analysis process using the intermediate probabilities.

The first limitation is that low-frequency and steep vertical signals like the NCSACAM
waveforms are confused for glitches by the network. This is illustrated in Fig.3.24 where
we see that the signal is labelled as a glitch. The harmonics present in NCSACAM, when
they become visible in the spectrogram, aid the network in classifying it as a signal and
not a glitch since they decrease the verticality of the signal, this is visualised in Fig. 3.25.

Figure 3.24: An example of an injected NCSACAM D waveform at 2× 10−21 hrss that is
misclassified as a glitch by the network.
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Figure 3.25: An example of an injected NCSACAM C waveform at 2 × 10−21 hrss that
is partially classified as a chirp, in part because of its harmonics. Since this version of
ALBUS was not trained on harmonics it still partially misclassified it as a glitch.

The second limitation is that for a pixel to be labelled as chirp it has to have a chirp
probability higher than the background and glitch probabilities. It is observed that poten-
tial signals are first seen in the probability spectrograms before reaching this threshold.
This phenomenon is more pronounced for the waveforms that do not closely resemble
those of the training set, like the ISCOchirp waveforms, this decreases the 50%hrss be-
cause the waveform has to reach a high hrss to pass this threshold. This is illustrated in
Fig.3.26 and Fig.3.27.

Figure 3.26: An example of an injected ISCOchirpA waveform at 5 × 10−22 hrss that is
not classified as chirp by the network even though it is highlighted in the logarithm of
the probabilities for the chirp class. The probability of those pixels being background is
higher and thus ALBUS does not detect any trigger.
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Figure 3.27: An example of an injected maXgnetarE waveform at 4.5 × 10−22 hrss that
is not classified as chirp by the network even though it is highlighted in the logarithm of
the probabilities for the chirp class. The probability of those pixels being background is
higher and thus ALBUS does not detect any trigger.

3.4.3 Prospects

Although the improvement of the clustering process is not a priori supposed to increase
the sensitivity of ALBUS, resolving the previously mentioned limitations could make this
new version of ALBUS a better detection engine in the GWpyxel pipeline. The problem
of the network confusing signals for glitches comes from the fact that glitches and highly
vertical chirps have similar morphologies in the spectrogram. A possible solution to this
problem could be to use the sky position to discriminate glitches from signals. Since
physical signals come from a single direction in the sky, we can shift the two time series
to point to a certain direction in the sky.

The problem of pixels belonging to signals that are not segmented as such because
they have a higher probability of being background is probably a consequence of class
imbalance. Class imbalance happens in classification problems when some labels are
over-represented and others are not. The average size of our signals in the training data
is 167 pixels, while the rest of the image of size 513 × 166 − 167 = 84991 pixels is la-
belled as background. The chirp/background ratio is 0.2%. It could be the case that
the network has been biased by this disparity and learned that assigning large proba-
bilities to the background class decreases its loss during training. Class imbalance is a
well-documented problem and many solutions exist to mitigate its effects in our case of
semantic segmentation like modifying the cross-entropy loss function [58][59].

A possible direct solution to this problem could be to assign the label “chirp” to a
pixel if its probability of being a chirp is above a certain fixed threshold instead of above
the background probability. This introduces an empirical value at which to threshold
these chirp probabilities, and it is reminiscent of the need to apply Yen’s threshold in
the previous version of ALBUS. It could still provide better results than the previous
method since the probabilities outputted by the new ALBUS are more continuous than
the previous outputs of ALBUS which were discontinuous. In practice, one could decrease
this probability threshold to an arbitrarily low value, this would have the effect that any
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chirp-like ridge inside a spectrogram would be marked as a trigger. Provided that a good
detection statistic is used to rank the multiple triggers and enough computing power is
available to process them, having more low-probability triggers is not a problem.

Other possible improvements could be to address the issue of the clustering of two
intersecting signals. Even though this is not bound to happen in the next years, it could
become relevant for future detectors such as the Einstein Telescope which could detect
several intersecting signals inside a spectrogram of 1000s. Possible ways to solve the
separation of intersecting lines are already used with neural networks in robotics [60] and
in other spectrogram segmentation work like [48]. One could also transition to instance
segmentation which combines object detection with semantic segmentation to directly
distinguish different triggers. Signals with harmonics on which the previous version of
ALBUS was trained could be added to the training set of this new version by modifying
the target maps. Since the new generation of the target maps uses an edge detection filter,
harmonics will decrease the edge strength of the signal, making the direct application of
this new algorithm ineffective. This can be easily solved by creating the target maps for
each harmonic independently and taking their union as a final target map. The inputs
of the network are .png images of the spectrograms, this means that three channels are
used as input, but they all carry the same information, this can be changed by using
only one channel for the amplitude in the coherence spectrogram. Other input channels
can be added to use more information such as spectrograms from the Virgo detector.
Increasing the parameter space covered by the chirps in the training set of ALBUS could
be beneficial, for example, we could add exponentially decaying chirps to mimic the
ISCOchirp waveforms.

3.5 Conclusion

After seeing the emergence of gravitational waves for the theory of General Relativity, we
explained how laser interferometers were capable of detecting such waves. We then pre-
sented various astrophysical sources which are often poorly understood and our scientific
knowledge would benefit from measurements of their gravitational radiation.

The data analysis tools used to extract the physical information from the strain of the
detectors were presented, notably the ALBUS model which is a novel way of analysing
spectrograms to detect potential signals using deep learning methods.

This work started as an attempt to improve the clustering process of ALBUS. We
first tried to add another clustering algorithm on top of the existing processes. We then
reverted to a more elegant change in the network which required regenerating the dataset
and retraining the model with some modifications.

The direct clustering obtained with this new version is of better quality and the sensi-
tivity was not hindered. These changes open the door for many possible exciting improve-
ments. The field of deep learning does not cease to provide better and better models.
Exploring the intersection of the state of the art in gravitational wave astronomy and
deep learning seems deeply promising.
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