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SCHOOL OF ENGINEERING AND COMPUTER SCIENCE

Assessing the robustness of the acceleration
surface method

Master’s thesis completed in order to obtain the degree of Master of Science
in Aerospace Engineering by

GHYSENS François

Supervisor: KERSCHEN Gaëtan
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Abstract

Nonlinearities are an important aspect to consider in the study of the vibrations of a structure,
as they can influence the dynamics of the analysed system, resulting in unexpected behaviours.
Nonlinear system identification aims at finding a mathematical model of the structure taking
into account the nonlinear forces. One method used in the nonlinear system identification
is the acceleration surface method, which helps at determining the functional form of these
nonlinear forces by creating stiffness and damping curves. While the method has proven
to work well in real-life applications, some artefacts sometimes appear in the stiffness and
damping curves, making it more difficult to correctly interpret these curves. The aim of this
work is thus to understand their origin and determine how the curves can be improved.

For this purpose, the acceleration surface method is applied to systems composed of 1, 2
and 10 degrees of freedom, whose response to sine sweep excitations is obtained through nu-
merical integration. The nonlinearities consist of a cubic stiffness, a piecewise linear stiffness
and Coulomb friction, which are all common types of nonlinearities encountered in real-life
structures.

The analysis of the stiffness and damping curves obtained for the different systems re-
veals that the presence of harmonic components in the response of the system to the excitation
can impact the curves, such that the curves can be composed of different lines, which can
complicate the determination of the functional form of the nonlinear forces. Such phenom-
ena particularly occur at superharmonic resonances and modal interactions. An effective way
to improve the curves in such cases is the use of filters to remove the harmonic components
from the response of the system to the excitation. Furthermore, in multiple degree of freedom
systems, the linear forces that have been ignored in the equation of the acceleration surface
method are responsible for the quality of the stiffness and damping curves. Applying the
method to modes for which these forces are small thus yields better results. In particular,
modes for which the neighbouring degrees of freedom of the linear connections oscillate in
phase with the degree of freedom to which the acceleration surface method is applied have
shown to produce better results. The position of the excitation and the extremity of the non-
linear connection to consider in the acceleration surface method also influence the quality of
the stiffness and damping curves.

While the identification of the stiffness force can be done successfully in most cases, the
functional form of the damping force remains difficult to determine with the acceleration sur-
face method and it can only be found in some specific cases. The artefacts in the stiffness
and damping curves can be explained by several phenomena, but are always due to the terms
neglected in the equation of the acceleration surface method.
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Chapter 1

Introduction

Nonlinearities are becoming more and more important in the study of aerospace and mechan-
ical structures. They can occur for various reasons, such as large displacements, material
properties, friction or boundary conditions [1]. Nonlinear vibrations can result in unexpected
behaviours of the structure, such as a shift in the resonance frequencies or even the appear-
ance of new resonances. The behaviour of a nonlinear structure can therefore be difficult to
analyse and predict using a linear model of the structure, for which the equations governing
the dynamics of the system are given by

Mq̈+Cq̇+Kq = p(t) , (1.1)

where M, C and K are respectively the mass, damping and stiffness matrices of the system, q
is the displacement vector and p(t) the vector of the applied force varying with the time t. If
the dynamics of the system is nonlinear, the equations become

Mq̈+Cq̇+Kq+ fnl (q, q̇) = p(t) , (1.2)

where fnl (q, q̇) is the vector of nonlinear forces depending on the displacement q and the
velocity q̇. As this considerably changes the behaviour of the structure, methods used to
analyse and predict the motion of linear systems cannot be applied to nonlinear systems. The
use of specific tools to study the nonlinearities is thus required.

1.1 Nonlinear system identification
An important aspect of the study of nonlinear dynamics is the identification of nonlinear sys-
tems, which aims at creating a mathematical model of the real structure under study. The
goal is therefore to find an analytical expression of the nonlinear forces fnl (q, q̇), such that the
behaviour of the system can be accurately predicted with a numerical model of the structure.
This nonlinear system identification (NSI) is achieved through the analysis of experimental
measurements and is done in three steps [1].

The first step is the nonlinearity detection step, whose goal is to determine whether the
structure behaves in a nonlinear way or not. This can be done by applying a sine sweep exci-
tation to the structure, which consists of a sine excitation whose frequency varies with time. A
visual analysis of the time series of the response can already reveal a nonlinear behaviour of
the system [2]. Indeed, a nonlinear system may exhibit a jump phenomenon, the amplitude of
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the displacement suddenly decreasing. Furthermore, the principle of superposition does not
hold true anymore for nonlinear systems and the resonance frequency is dependent on the forc-
ing level. Other hints at a nonlinear behaviour of the structure are the presence of harmonics
in the response, a difference in the response envelope between sine sweep excitations with an
increasing frequency and a decreasing frequency or even the appearance of a new resonance
[3]. The detection of a nonlinearity is thus not especially difficult, but is of high importance,
as it determines whether the construction of a nonlinear model of the structure is necessary,
such a model being more challenging to obtain.

The second step of NSI is the characterisation step. It follows the determination of the fact
that the system is nonlinear through the detection step. It aims at finding the location of the
nonlinearity, understanding the physics behind it and finding a functional form of the nonlinear
forces fnl (q, q̇). One of the tools used to find the functional form of the nonlinear forces is
the acceleration surface method (ASM), which is a simplified version of the restoring force
surface (RFS) method [4]. It only requires acceleration measurements at both extremities i
and j of a nonlinear connection, which is illustrated in Figure 1.1.

Figure 1.1: Nonlinear connection and its extremities i and j [5].

From the acceleration, the velocity and the displacement can be obtained by integration
using the trapezium rule and high-pass filtering [6]. The acceleration surface method then
results from Newton’s second law applied to the degree of freedom (DOF) i, which is given
by

∑
k

mi,k q̈k +gi (q, q̇) = pi (1.3)

where mi,k is the element (i,k) of the mass matrix M, qk is the displacement of degree of
freedom k, gi is the internal force exerted on degree of freedom i and pi is the external force
applied to degree of freedom i. In this equation, only the terms related to the nonlinear con-
nection between degrees of freedom i and j are retained, which results in the equation

mi,i q̈i +gi
(
qi −q j, q̇i − q̇ j

)∼= pi. (1.4)

The external force is also neglected and the mass mi,i is dropped as it can be seen as a simple
scaling factor, which gives the equation

gi
(
qi −q j, q̇i − q̇ j

)∼=−q̈i. (1.5)

The force gi, which is the sum of the stiffness and damping forces between degrees of freedom
i and j and is supposedly nonlinear, can thus be approximated by the opposite of the accel-
eration at degree of freedom i. The acceleration surface method then consists in representing
−q̈i as a function of the relative displacement qi−q j and the relative velocity q̇i− q̇ j, creating
a three-dimensional surface of the acceleration, hence the name of the method. This surface
can also be represented in a two-dimensional way by plotting −q̈i as a function of the relative
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displacement for q̇i − q̇ j = 0 and as a function of the relative velocity for qi −q j = 0. The re-
sulting curves are called the stiffness curve and the damping curve respectively, as they allow
to visualise the functional form of the stiffness and damping forces of the nonlinear connec-
tion. These curves can then be used to determine whether the stiffness or the damping force is
nonlinear and how it can be modelled by mathematical functions.

The last step of the nonlinear system identification is the parameter estimation, which
can be achieved using the restoring force surface method [7]. This method is the general
form of the ASM method, which is derived from it. Its goal is to find the parameters of the
nonlinear model using the functional form of the nonlinear forces determined in the previous
step. Newton’s second law states that

Mq̈+ f(q, q̇) = p(t) , (1.6)

where f(q, q̇) is the restoring force composed of the stiffness and damping forces of the sys-
tem. This equation can be rewritten as

f(q, q̇) = p(t)−Mq̈. (1.7)

Knowing M and obtaining p(t) and q̈ from experimental measurements, the restoring force
f(q, q̇) can also be obtained. Assuming a functional form of the nonlinear restoring force
obtained from the characterisation step, an estimation of this nonlinear force is given by

f̂nl (q, q̇) =
M

∑
i=1

ki fi (q, q̇) , (1.8)

where fi (q, q̇) are the M assumed functional forms of the nonlinear force and ki are the M
parameters to be estimated with the RFS method. From this expression of the nonlinear force,
the equation

[f1 (q, q̇) · · · fM (q, q̇)]

 k1
...

kM

= p(t)−Mq̈−Cq̇−Kq (1.9)

can be obtained. Knowing the external force p(t) and the displacement q, velocity q̇ and
acceleration q̈ at Q different times ti, . . . , tQ, with Q > M, one obtains an overdetermined
system of equations f1 (q(t1) , q̇(t1)) · · · fM (q(t1) , q̇(t1))

...
f1 (q(tQ) , q̇(tQ)) · · · fM (q(tQ) , q̇(tQ))


 k1

...
kM

=

 p(t1)−Mq̈(t1)−Cq̇(t1)−Kq(t1)
...

p(tQ)−Mq̈(tQ)−Cq̇(tQ)−Kq(tQ)

 ,

(1.10)
for which the parameters ki are the unknowns. The least-squares solution of this system of
equations is given by k1

...
kM

=

 f1 (q(t1) , q̇(t1)) · · · fM (q(t1) , q̇(t1))
...

f1 (q(tQ) , q̇(tQ)) · · · fM (q(tQ) , q̇(tQ))


† p(t1)−Mq̈(t1)−Cq̇(t1)−Kq(t1)

...
p(tQ)−Mq̈(tQ)−Cq̇(tQ)−Kq(tQ)

 .

(1.11)
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This method can result in an accurate determination of the nonlinear parameters [3]. However,
it requires the knowledge of the entire mass, stiffness and damping matrices of the structure,
which may be difficult to obtain in practice for a real-life structure. Furthermore, its results
depend on the correct estimation of the functional form of the nonlinear force done in the char-
acterisation step. This second step is thus of crucial importance and the acceleration surface
method needs to enable a precise determination of this functional form. Once the parameters
have been computed, the nonlinear system identification is complete and an accurate mathe-
matical model of the nonlinear structure can be built.

1.2 Acceleration surface method applied to real structures
The acceleration surface method has already been successfully applied to simple real-life
nonlinear systems, such as a cantilever beam [8] and a clamped-clamped beam [9] having
a polynomial stiffness. It has also been applied to more complex aerospace structures, such as
the SmallSat spacecraft structure [2], aircraft such as the F-16 aircraft [10] and the Morane-
Saulnier Paris aircraft [11] or an aircraft Piccolo tube [12], for which nonlinearities were
detected at the connection between two substructures. Applying the ASM to the nonlinear
connections of these systems revealed the presence of a piecewise linear stiffness and the
clearance of the connection could be estimated from the stiffness curve. The presence of
Coulomb friction was also detected with the ASM for the F-16 aircraft [10].

However, the ASM may sometimes lead to unwanted artefacts in the stiffness and damping
curves, which can make the characterisation of the nonlinearity more difficult. In particular,
for the case of the SmallSat structure, the stiffness curve depicted in Figure 1.2 presents some
unexpected artefacts. Indeed, while the slope of the curve increases at a positive displacement
corresponding to the clearance of the connection, a part of the curve that is decreasing also
appears at such a displacement. A similar observation can also be made at negative displace-
ments. Furthermore, such an artefact is also visible in the case of the aircraft Piccolo tube
[12].

Figure 1.2: Stiffness curve of the nonlinear connection of the SmallSat structure [2].

Applying a qualitative version of the RFS method similar to the ASM to two different
modes of the spacecraft structure simultaneously, the stiffness curve in Figure 1.3 is obtained.
It can be seen that the two modes result in curves with different slopes, both being inexact.
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Furthermore, the curve with the highest slope is composed of two separate lines connecting
together at the maximum relative displacement.

Figure 1.3: Stiffness curve for two different modes of the SmallSat structure [13].

With the experimental data of the ground vibration testing of the F-16 aircraft for a forcing
level of 67 N [14], the ASM can be applied to both extremities of the nonlinear connection
between the wing and the payload and to different modes. It is first applied to the third vibra-
tion mode and to the extremity of the nonlinear connection corresponding to the payload. The
stiffness and damping curves are represented in Figure 1.4.
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(a) Stiffness curve.
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(b) Damping curve.

Figure 1.4: Stiffness and damping curves of the third mode of the F-16 aircraft for which the
ASM is applied to the payload.

As can be seen, both the presence of a piecewise linear stiffness and Coulomb friction can
easily be deduced from the curves and the ASM produces good results. However, applying
the method to other modes may not always yield such good results. Indeed, for the second
mode, the stiffness and damping curves shown in Figure 1.5 are obtained. From these curves,
nothing can be concluded about the functional form of the stiffness and damping forces at the
connection between the wing and the payload.
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(a) Stiffness curve.
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(b) Damping curve.

Figure 1.5: Stiffness and damping curves of the second mode of the F-16 aircraft for which
the ASM is applied to the payload.

The ASM is now applied to the wing side of the nonlinear connection and to mode 3.
The obtained stiffness and damping curves are depicted in Figure 1.6. The stiffness curve
is similar as when the ASM is applied to the payload side of the connection, but the curve
decreases as the relative displacement increases. The stiffness may thus be interpreted as a
negative stiffness, while it is in reality positive. Furthermore, the damping curve exhibits a
different behaviour as for the previous cases and from which the presence of Coulomb friction
cannot be inferred.
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(b) Damping curve.

Figure 1.6: Stiffness and damping curves of the third mode of the F-16 aircraft for which the
ASM is applied to the wing.

As illustrated above, while the acceleration surface method works well in most cases, some
unexpected results may appear in the stiffness and damping curves due to the simplifications
made when using the method. To understand the origin of these results, the ASM is applied
in the following chapters to simple systems with a cubic stiffness, a piecewise linear stiffness
and Coulomb friction. First, 1 DOF systems are considered, then systems consisting of two
degrees of freedom and finally more complex systems composed of 10 degrees of freedom are
studied. Some ways to improve the curves, enabling a better identification of the nonlinear
forces, will also be presented.
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Chapter 2

1 DOF systems

The acceleration surface method is first applied to 1 DOF systems with different nonlinearities,
which consist of a cubic stiffness and a piecewise linear stiffness representing an impact.
Unless specified otherwise, all the results presented in this chapter are obtained with a system
described by the equation

ẍ+0.01 ẋ+ x+ fnl (x, ẋ) = p(t) , (2.1)

where x is the displacement, t the time, fnl (x, ẋ) the nonlinear force and p(t) the external force
applied to the system. The natural frequency of the linear system is equal to 0.159 Hz. The
applied force p(t) consists of a linear sine sweep excitation, as such an excitation produces
good data for the restoring force surface method and thus also the ASM [15]. Its expression is
given by

p(t) = Asin
(

2π f0t +2π
r
2

t2
)
, (2.2)

where A is the forcing amplitude, f0 the starting frequency and r the sweep rate. The response
is computed by the NI2D software [16] using a Newmark integration scheme [17]. The time
step of the Newmark integration scheme is equal to 0.001 s, resulting in a sampling frequency
of 1000 Hz, and its parameters γ and β are equal to γ = 1

2 and β = 1
4 , the Newmark integration

scheme being unconditionally stable for these parameters [18].
After the simulation of the response of the system to the excitation has been carried out,

the acceleration surface method implemented in MATLAB is applied to the results. The dis-
placement and acceleration values of the stiffness curve are obtained by performing a linear
interpolation between two consecutive values of the time series corresponding to velocity val-
ues of opposite signs, the change in sign indicating the presence of a point where the velocity
is equal to zero between the two data points. The damping curve is computed in a similar way.

2.1 Cubic stiffness
In this section, a Duffing oscillator [19] is considered, which is described by the equation

ẍ+0.01 ẋ+ x+ x3 = p(t) , (2.3)

the nonlinear force consisting of a cubic stiffness. The results for different forcing amplitudes
are shown below.
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2.1.1 Forcing amplitude of 0.1 N
A sine sweep excitation with an amplitude of 0.1 N, a starting frequency of 0 Hz, an ending
frequency of 1 Hz and a sweep rate of 0.01 Hz/min is applied to the system. At this forcing
level, the behaviour of the system is strongly nonlinear. To determine the degree to which
the response of the system is nonlinear, the ratio of the root mean square (RMS) value of the
nonlinear force, which is here equal to x3, to the RMS value of the inertia force of the system,
given by mẍ, can be computed. It is expressed as

rnl =
RMS( fnl (x, ẋ))

RMS(mẍ)
, (2.4)

where m is the mass of the system, which is equal to 1 kg here. A high ratio indicates a
strongly nonlinear system while a low ratio indicates a system with a linear behaviour. This
ratio is equal to 86.3 % in this case, meaning that the system already behaves in a strongly
nonlinear way. The acceleration surface and the stiffness and damping curves obtained when
applying the acceleration surface method to the results are represented in Figure 2.1.

(a) Acceleration surface.
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(b) Stiffness curve.
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(c) Damping curve.

Figure 2.1: Acceleration surface and stiffness and damping curves of the 1 DOF system with
a cubic stiffness and for a forcing amplitude of 0.1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The stiffness curve is cubic and in good accordance with the theoretical curve, the points
being however not exactly located on it. This can be explained by the forcing term that is
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ignored in the acceleration surface method, but influences the acceleration of the mass and
therefore also the stiffness and damping curves. The small value of the error is due to the fact
that the error in the acceleration of the stiffness curve can never be larger than the acceleration
the force produces to the mass of the system, obtained from Newton’s second law

p = mẍ ⇔ ẍ =
p
m
, (2.5)

where m is the mass of the system, which is equal to m = 1 kg for this system. The error
resulting from the applied force that is neglected is thus never larger than its forcing amplitude.
However, this forcing amplitude is equal to 0.1 N and the acceleration takes values up to
37 m/s2, which is much greater than 0.1 m/s2. The influence of the external force can thus be
neglected for this forcing level.

The damping curve does not correspond to a linear curve, as it is expected to be. This is
due to the external force. Indeed, while the nonlinear stiffness force is dominant compared
to the external force, the damping force is lower than the amplitude of the applied force.
Similarly as for the stiffness curve, the contribution of the force to the acceleration can be as
high as its forcing amplitude, the mass of the system being equal to 1 kg. However, the highest
acceleration value of the damping curve is equal to 0.17 m/s2 and the force amplitude is equal
to 0.1 N, indicating that the acceleration in the damping curve is mostly due to the external
force and not the damping force itself, which is only responsible for the linear increase trend
visible in the curve. Disregarding the linear increase trend, the damping curve is composed
of points that seem randomly distributed. A curve going from the origin towards a positive
acceleration for positive displacements and a negative acceleration for negative displacements
can also be observed. This curve is due to the measurement points before the occurrence of
the resonance peak, the other points randomly distributed being the result of the data points
located after the resonance peak. Indeed, before the resonance peak, the displacement of the
system is first in phase with the external force, then becomes progressively out-of-phase when
the maximum displacement amplitude is reached, as shown in Figure 2.2.
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Figure 2.2: Phase difference up to the resonance between the displacement and the external
force of the 1 DOF system with a cubic stiffness and for a forcing amplitude of 0.1 N.

As the velocity always has a phase difference of π

2 with the displacement, the velocity
first has a phase difference of π

2 with the external force, thus leading to values close to 0 of
the acceleration for small values of the velocity, the points of the damping curve occurring
at the extrema of the velocity. The velocity and the external force then become briefly in
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phase, leading to the points with the highest amplitude in acceleration, before having a phase
difference of 3π

2 at the resonance peak, leading to an acceleration close to 0 for the highest
amplitude in velocity. After the resonance peak, the phase difference changes more rapidly,
which explains the appearance of points in the damping curve that seem randomly distributed.
This is depicted in Figure 2.3b.

The influence of the phase difference between the displacement and the applied force is
also visible on the stiffness curve. Indeed, for small displacements before the resonance peak,
the displacement and the force are in phase, such that they reach their maximum amplitude
simultaneously. For these points, the points in the stiffness curve have a lower acceleration
amplitude than the curve predicted theoretically, the obtained curve being below the exact
curve for positive displacements and above for negative displacements. After the resonance
peak on the other hand, the obtained curve is above the exact curve for positive displacements
and below it for negative displacements, since the displacement and the acceleration are out-
of-phase. As the displacement amplitude decreases after the resonance peak, the displacement
becomes out-of-phase with the external force. Due to this, the points of the stiffness curve
corresponding to this part of the data are mainly located above the exact curve for positive
displacements and below for negative displacements. This is illustrated in Figure 2.3a.
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(a) Close-up of the stiffness curve.
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(b) Damping curve.

Figure 2.3: Stiffness and damping curves of the 1 DOF system with a cubic stiffness and for
a forcing amplitude of 0.1 N. The points occurring before the resonance peak are indicated in
blue, those occurring after the resonance peak are indicated in orange and the exact curve is
depicted in black.

Although the stiffness curve produces good results, the damping curve does not correspond
to a linear curve, as it is expected to be. This is due to the excitation p(t) that is the only
term that has been discarded from Equation 2.3. Representing −ẍ+ p as a function of the
displacement and velocity in the stiffness and damping curves respectively instead of −ẍ, the
obtained curves correspond perfectly to the expressions of the stiffness and damping forces,
since Equation 2.3 can be rewritten as

0.01 ẋ+ x+ x3 =−ẍ+ p. (2.6)

The stiffness force being fs = x+ x3 and the damping force being fd = 0.01 ẋ, the equation
becomes

fs + fd =−ẍ+ p. (2.7)
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The stiffness and damping curves obtained when taking into account the forcing term are
depicted in Figure 2.4.
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(a) Stiffness curve.
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Figure 2.4: Stiffness and damping curves of the 1 DOF system with a cubic stiffness and for
a forcing amplitude of 0.1 N, taking into account the applied force. The curve obtained from
the simulated measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that both the stiffness and damping curves perfectly correspond to the the-
oretical expression of the stiffness and damping forces when taking the excitation force into
account, which confirms that the inexact curves are due to the fact that the forcing term is
ignored in the acceleration surface method. This observation can also be made for all the
following results of 1 DOF systems, for all the types of nonlinearities studied.

2.1.2 Forcing amplitude of 10 N
The forcing level is now increased to reach 10 N. The nonlinearity ratio rnl is equal to 99.7
%, which indicates that the nonlinear stiffness force is large, the linear stiffness and damping
forces and the external force being negligible with respect to it. Due to the strong nonlinearities
created at such a high forcing, the resonance peak occurs at a frequency higher than 1 Hz,
namely at around 3.09 Hz, as can be seen in Figure 2.5.
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Figure 2.5: Acceleration as a function of the excitation frequency for the 1 DOF system with
a cubic stiffness and for a forcing amplitude of 10 N.
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The ending frequency of the sine sweep excitation is thus set to 10 Hz and the sweep rate
is modified to 1 Hz/min. The acceleration surface method is applied to the entire frequency
window of the sine sweep excitation ranging from 0 to 10 Hz. The ASM is also applied to
the entire frequency range of the excitation for all the other 1 DOF systems studied, unless
specified otherwise. The stiffness curve and the damping curve obtained for these data can be
seen in Figure 2.6.
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(a) Stiffness curve.
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(b) Damping curve.

Figure 2.6: Stiffness and damping curves of the 1 DOF system with a cubic stiffness and for a
forcing amplitude of 10 N. The curve obtained from the simulated measurements is shown in
blue and the exact curve is depicted in orange.

The stiffness curve is very similar to the one obtained for a force amplitude of 0.1 N, except
that the displacement and acceleration amplitudes are higher, which is simply due to the higher
forcing level. The curve has a cubic shape and corresponds to the analytical expression of the
stiffness force.

The damping curve however has a difference with those obtained previously for lower
forcing levels. There are indeed oscillations in the part of the curve composed of the data
points occurring before the resonance peak. These oscillations can be linked to oscillations
appearing in the phase difference between the displacement and the external force, which are
depicted in Figure 2.7.
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Figure 2.7: Phase difference between the displacement and the external force of the 1 DOF
system with a cubic stiffness and for a forcing amplitude of 10 N from 0.2 Hz to the resonance
frequency of 3.09 Hz.

As the points of the damping curve correspond to measurement points for which the dis-
placement is equal to 0 m, if the displacement and the force are not perfectly in phase, the force
will be non-zero at the points where the damping curve is obtained. Oscillations in the phase
difference between the displacement and the external force around and below 0◦ thus lead to
oscillations in the force at the points corresponding to the damping curve, which themselves
are responsible for the oscillations observed in the damping curve. One possibility to reduce
the impact of these oscillations in the damping curve is to use a lower sweep rate for the sine
sweep excitation. The damping curve for a sweep rate of 0.1 Hz/min instead of 1 Hz/min is
illustrated in Figure 2.8.

-1000 -500 0 500 1000

-20

-15

-10

-5

0

5

10

15

20

(a) Damping curve.

100 120 140 160 180 200 220

-1.2

-1

-0.8

-0.6

-0.4

(b) Zoom on the oscillations of the curve.

Figure 2.8: Damping curve of the 1 DOF system with a cubic stiffness and for a forcing
amplitude of 10 N and a sweep rate of 0.1 Hz/min. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that when using a lower sweep rate, the oscillations are not visible anymore
in the damping curve. However, when zooming on the curve such as in Figure 2.8b, it can be
observed that these oscillations are still present, with a higher frequency than previously but a
lower amplitude, which is the reason why they are not visible at first glance.
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2.1.3 Superharmonic resonances
In order to study superharmonic resonances of a 1 DOF system with a cubic stiffness, another
system is considered, for which superharmonic resonances are easier to detect. It is described
by the equation

0.289ẍ+0.1357ẋ+11009x+2.37×109x3 = p(t) , (2.8)

which is a 1 DOF model of the first mode of a cantilever beam with a very thin beam at
the tip [5]. A sine sweep excitation is applied to the system with an amplitude of 10 N, a
starting frequency of 0 Hz, an ending frequency of 15 Hz and a sweep rate of 0.1 Hz/min. The
evolution of the acceleration with the excitation frequency is depicted in Figure 2.9.
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Figure 2.9: Acceleration as a function of the excitation frequency for the 1 DOF system with
a cubic stiffness with the presence of superharmonic resonances and the frequency windows
of the 3:1, 5:1 and 7:1 superharmonic resonances.

It can be seen that there are different peaks in the acceleration time series at 13.5 Hz, 7.02
Hz, 4.90 Hz and even a small peak at 3.80 Hz. The natural frequency of the linear system being
equal to 31.1 Hz, it can be deduced that these peaks correspond respectively to the 3:1, 5:1,
7:1 and 9:1 superharmonic resonances. Indeed, the peaks occur at frequencies close to 1

3 , 1
5 ,

1
7 and 1

9 of the natural frequency of the linear system. The shift of these peaks towards higher
frequencies than expected is simply the result of the hardening nonlinearity, which makes the
system reach resonance at higher frequencies than in the linear case. Furthermore, for each of
these peaks, the analysis of the evolution of the displacement with time reveals the presence
of harmonics of order n for the n : 1 superharmonic resonance, as for each period of the signal,
there are n maxima and n minima visible in the time series. This is shown in Figure 2.10.
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(a) 3:1 superharmonic resonance.
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(c) 7:1 superharmonic resonance.

Figure 2.10: Displacement as a function of the excitation frequency for the 1 DOF system
with a cubic stiffness at the 3:1, 5:1 and 7:1 superharmonic resonances.

The acceleration surface method is applied to the 3:1, 5:1 and 7:1 superharmonic reso-
nances, the frequency windows to which the method is applied being represented in Figure 2.9.
The stiffness curves obtained for each of these resonances are illustrated in Figure 2.11.
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(a) 3:1 superharmonic resonance.
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Figure 2.11: Stiffness curves of the 1 DOF system with a cubic stiffness for the 3:1, 5:1 and
7:1 superharmonic resonances. The different pairs of lines are represented in different colours
and the exact curve is depicted in black.

While the cubic nature of the stiffness force can still be deduced from the curve obtained
for the 3:1 superharmonic resonance, it becomes impossible to recognise a cubic stiffness in
the stiffness curves of the two other superharmonic resonances. While the three curves are
different from each other, they share some common characteristics. Indeed, the curves of the
3:1 and 5:1 superharmonic resonances and those of the 5:1 and 7:1 superharmonic resonances
are to some extent similar to each other. This indicates that the obtained stiffness curves pro-
gressively change as superharmonic resonances of higher order are considered. Furthermore,
for each stiffness curve, a certain number of distinct lines are visible. The number of pairs of
lines is equal to the order of the harmonic component that is dominant in the analysed response
signal. There are thus 3, 5 and 7 pairs of lines respectively for the 3:1, 5:1 and 7:1 superhar-
monic resonances. Each pair of lines can be related to one maximum and one minimum of
each period of the displacement time series. Indeed, the points of the stiffness curve are taken
at the extrema of the displacement, since the velocity is equal to 0 m/s when the displace-
ment reaches an extremum. Since the different extrema over one period do not have the same
displacement and acceleration, this results in different curves that can be distinguished from
each other in the stiffness curve. The curves related to the different extrema have been repre-
sented in different colours in Figure 2.11. The points that are not located on any of the lines
in Figure 2.11a and Figure 2.11b are linked to data points occurring after the resonance peak,
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where the system jumps from the upper branch of the nonlinear frequency response curve to
the lower branch, resulting in a transient response.

The damping curves obtained for the 3:1, 5:1 and 7:1 superharmonic resonances are de-
picted in Figure 2.12.
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(c) 7:1 superharmonic resonance.

Figure 2.12: Damping curves of the 1 DOF system with a cubic stiffness for the 3:1, 5:1 and
7:1 superharmonic resonances. The different pairs of lines are represented in different colours
and the exact curve is depicted in black.

At the 3:1 and 5:1 superharmonic resonances, there are respectively 3 and 5 pairs of lines
in the damping curve, such as in the stiffness curve. The origin of these lines is similar to those
of the stiffness curve, as each of these lines correspond to a different moment of every period
at which the displacement is equal to 0 m. As can be seen in Figure 2.10, the displacement
crosses the horizontal axis 2n times per period for the n : 1 superharmonic resonance, half
of them corresponding to a positive velocity and the other half to a negative velocity, the
velocity being equal to the slope of the curve. These different points where x = 0 m thus
create different lines in the damping curve, the velocity and the acceleration being different
for each of these points. This also explains why there is only one pair of lines for the 7:1
superharmonic resonance. As shown in Figure 2.10c, while there are 7 maxima and 7 minima
of the displacement, there are only two points per period where x = 0 m, thus only creating 2
lines, one for which the velocity is positive and one for which it is negative.

One possible solution to improve the results, especially the stiffness curve, is to filter the
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displacement, velocity and acceleration signals to only keep the n-th harmonic component,
which corresponds to the eigenfrequency of the system. This harmonic component is indeed
the dominant harmonic component in the response, but there is also a large contribution of the
fundamental frequency and even some influence of the other harmonics that are also present.
To do so, a low-pass filter is first applied to remove the fundamental frequency as well as the
harmonics of lower order. Then, a high-pass filter is applied to remove the harmonics of higher
order. The stiffness curves obtained after filtering the results are shown in Figure 2.13.
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(c) 7:1 superharmonic resonance.

Figure 2.13: Stiffness curves of the 1 DOF system with a cubic stiffness for the 3:1, 5:1 and
7:1 superharmonic resonances obtained after filtering the data. The curve obtained from the
simulated measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that filtering the measurement data greatly improves the stiffness curves.
For the 3:1 superharmonic resonance, the cubic shape of the curve is now clearly visible and
for the two other superharmonic resonances, the curve is linear as it should be due to the low
displacements, at which the nonlinearities are not significantly activated. However, the curves
do not exactly correspond to the analytical curve derived from the expression of the stiffness
force, but this is not problematic, since the acceleration surface method is a qualitative method
aimed at finding the functional form of the nonlinear force and is not used to estimate the
parameters of this nonlinear force, which have to be determined with another method.

The damping curves obtained after filtering the displacement, velocity and acceleration for
each superharmonic resonance are illustrated in Figure 2.14.
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(a) 3:1 superharmonic resonance.
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Figure 2.14: Damping curves of the 1 DOF system with a cubic stiffness for the 3:1, 5:1 and
7:1 superharmonic resonances obtained after filtering the data. The curve obtained from the
simulated measurements is shown in blue and the exact curve is depicted in orange.

While filtering improves the stiffness curve, it does not improve the damping curve and
the functional form of the damping force remains difficult to estimate with the acceleration
surface method.

2.2 Piecewise linear stiffness
In this section, the nonlinearity takes the form of a trilinear stiffness, which can exist in real-life
structures for which there is an impact happening at the connection between two substructures,
leading to an increase in stiffness when the displacement amplitude reaches the clearance of
the connection. The studied system is described by the equation{

ẍ+0.01ẋ+ x = p(t) if |x| ≤ 1 m
ẍ+0.01ẋ+3x = p(t) if |x|> 1 m

. (2.9)

2.2.1 Forcing amplitude of 0.1 N
The system is subjected to a sine sweep excitation having an amplitude of 0.1 N, a starting
frequency of 0 Hz, an ending frequency of 1 Hz and a sweep rate of 0.01 Hz/min. This yields a
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nonlinearity ratio of 54.0 %, meaning that the system is nonlinear, but the linear forces and the
excitation force are not negligible compared to the nonlinear force. The stiffness and damping
curves are obtained by applying the acceleration surface method to the results computed by
numerical integration. They are depicted in Figure 2.15.
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(a) Stiffness curve.
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Figure 2.15: Stiffness and damping curves of the 1 DOF system with a trilinear stiffness and
for a forcing amplitude of 0.1 N. The curve obtained from the simulated measurements is
shown in blue and the exact curve is depicted in orange.

Similarly as for the cubic stiffness, the acceleration surface method produces good results
for the stiffness curve, the piecewise linear form of the stiffness force being easy to identify.
Furthermore, for small values of the displacement, the stiffness curve has a similar behaviour
as for the cubic stiffness, which is shown in Figure 2.3a. Indeed, there is a linear part located
below the exact curve for positive displacements and other points situated above it. The origin
of these points is again due to the phase difference between the displacement and the applied
force, which are in phase before the resonance and then become out-of-phase.

The damping curve is almost identical to that of the system having a cubic stiffness. There
is a line due to data points located before the resonance peak, which also has some oscillations
at small velocities. The presence of this line and its oscillations is explained in the same way
as for the cubic stiffness by the phase difference between the displacement and the external
force.

2.2.2 Forcing amplitude of 1 N
A sine sweep excitation with a forcing amplitude of 1 N is now applied, the other parameters
remaining unchanged. This results in a nonlinearity ratio of 64.4 %, the nonlinear force be-
ing thus more important than for a forcing level of 0.1 N. The stiffness and damping curves
obtained for this external force are indicated in Figure 2.16.
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Figure 2.16: Stiffness and damping curves of the 1 DOF system with a trilinear stiffness and
for a forcing amplitude of 1 N. The curve obtained from the simulated measurements is shown
in blue and the exact curve is depicted in orange.

Both the stiffness curve and the damping curve are very close to those obtained for a forc-
ing amplitude of 0.1 N. The only difference in the stiffness curve is the higher displacement
amplitude which is reached due to the higher forcing level. The observations made in Fig-
ure 2.3a and for a forcing level of 0.1 N can also be made here. The main difference with the
previous case are the oscillations that have almost disappeared from the damping curve. There
are still some oscillations, which have however a small amplitude such that they are barely not
visible, as can be seen in Figure 2.17. This is due to the fact that the oscillations in the phase
difference are also smaller.
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Figure 2.17: Close-up on the oscillations of the damping curve of the 1 DOF system with a
trilinear stiffness and for a forcing amplitude of 1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The results obtained when applying the ASM to a 1 DOF system with a cubic stiffness
and a trilinear stiffness are very similar, the functional form of the stiffness force being easy to
identify, while it produces identical damping curves for both types of nonlinearities and does
not allow the detection of the linear expression of the damping force.
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2.3 Conclusion
To conclude, simple nonlinear 1 DOF systems can already produce unexpected results when
using the acceleration surface method. However, the stiffness curves always allow to deter-
mine the functional form of the stiffness force. On the other hand, due to its small amplitude,
the damping force remains difficult to characterise.

Furthermore, in the case of a strong presence of harmonics in the response of the system,
such as during superharmonic resonances, filtering the displacement, velocity and acceleration
signals can greatly improve the stiffness curve. The best way to improve the stiffness and
damping curves is however to take the external force into account and replace −ẍ by −mẍ+ p.
The obtained curves then always correspond exactly to the stiffness and damping forces, as p
is the only term neglected in the acceleration surface method. Doing this is equivalent to using
the restoring force surface method and requires the knowledge of the applied force at every
instant the acceleration is recorded, which can be difficult to achieve in practice.

While 1 DOF systems allow a first analysis of the results obtained when using the acceler-
ation surface method, most structures encountered in real-life applications are more complex
and need to be modelled by a system composed of multiple degrees of freedom. In the next
chapter, 2 DOF systems will thus be studied, for which more complex phenomena can occur.
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2 DOF systems

In this chapter, the acceleration surface method is applied to 2 DOF systems, the nonlinearities
consisting of a cubic stiffness, a piecewise linear stiffness and Coulomb friction, which belong
to the most common types of nonlinearity [20]. A cubic stiffness can for example be encoun-
tered for clamped plates and beams. A piecewise linear stiffness and Coulomb friction on the
other hand are often present at the connection between two substructures having a clearance.
These nonlinear forces are located on the connection between DOF 1 and the ground. A sine
sweep excitation is applied to DOF 2. The system of equations governing the motion of the
system is given by

Mq̈+Cq̇+Kq+ fnl (q, q̇) = p(t) , (3.1)

where M, C and K are respectively the mass, damping and stiffness matrices of the system,

q =

(
q1
q2

)
is the displacement vector, fnl (q, q̇) the vector of the nonlinear forces and p(t) the

vector of the applied force. Knowing the matrices M, C and K and taking into account that
the nonlinear force is located on DOF 1 and the excitation force on DOF 2, the system of
equations becomes[

1 0
0 1

](
q̈1
q̈2

)
+0.01

[
2 −1
−1 2

](
q̇1
q̇2

)
+

[
8 −7
−7 8

](
q1
q2

)
+

(
fnl (q1, q̇1)

0

)
=

(
0

p(t)

)
. (3.2)

Unless specified otherwise, the systems studied in this chapter are governed by Equa-
tion 3.2 and the starting frequency and the ending frequency of the sine sweep excitation p(t),
whose expression is given by Equation 2.2, are 0 Hz and 1 Hz respectively, the natural fre-
quencies of the linear system being equal to 0.159 Hz and 0.616 Hz, and the sweep rate r is
equal to 0.01 Hz/min, the forcing amplitude A being specified for each case.

Since the nonlinear force is located at the connection between DOF 1 and the ground and
the external force is exerted on DOF 2, the ASM is applied to DOF 1 in order to be situated at
one extremity of the nonlinear connection and avoid having an external force at the considered
degree of freedom. The equation of motion of DOF 1 can be expressed as

0.01 q̇1 +q1 +0.01(q̇1 − q̇2)+7(q1 −q2)+ fnl (q1, q̇1) =−q̈1. (3.3)

Using the acceleration surface method, the stiffness force 7(q1 −q2) and the damping force
0.01(q̇1 − q̇2) at the linear connection between DOF 1 and DOF 2 are discarded, which results
in the equation

0.01 q̇1 +q1 + fnl (q1, q̇1)∼=−q̈1. (3.4)
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Using a similar approach as for the 1 DOF systems, the response of the system to the
applied force is computed on the NI2D software with a Newmark integration scheme and the
stiffness and damping curves are obtained following the same methodology.

3.1 First system with a cubic stiffness
First, the system described by Equation 3.2 and a cubic stiffness whose expression is given by
fnl (q1, q̇1) = 0.5 q3

1 are considered, such that Equation 3.4 becomes

0.01 q̇1 +q1 +0.5 q3
1
∼=−q̈1. (3.5)

3.1.1 Forcing amplitude of 0.1 N
A forcing amplitude of 0.1 N is considered. The ratio of the nonlinear force to the inertia force
of DOF 1 is computed similarly as for 1 DOF systems to assess whether the considered mode
is nonlinear. It is given by

rnl =
RMS( fnl (q1, q̇1))

RMS(m1q̈1)
, (3.6)

where m1 is the mass of DOF 1. This ratio is equal to 53.1 % for the first mode, this mode thus
being already significantly nonlinear at a forcing amplitude of 0.1 N. On the other hand, the
second mode has a nonlinearity ratio rnl of 0.163 % and is thus only very weakly nonlinear.

The acceleration time series is depicted in Figure 3.1.
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Figure 3.1: Acceleration of DOF 1 as a function of the excitation frequency for the 2 DOF
system with a cubic stiffness and for a forcing amplitude of 0.1 N and the frequency windows
of the first and second modes.

The stiffness and damping curves obtained for the first vibration mode are shown in Fig-
ure 3.2.
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Figure 3.2: Stiffness and damping curves for the first mode of the 2 DOF system with a
cubic stiffness and for a forcing amplitude of 0.1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that the damping curve is similar to those obtained for the 1 DOF systems.
The part of the curve decreasing as the velocity increases originates from the points occurring
before the resonance and the points that seem randomly distributed and are concentrated at
the centre of the curve arise from the points located after the resonance peak. However, for
the 2 DOF system, the shape of the damping curve, as well as of the stiffness curve, is not
directly due to the external force, since the excitation force does not appear in Equation 3.3. It
is rather due to the stiffness and damping forces at the connection between DOF 1 and DOF
2. Indeed, they are the only terms from the equation of motion of DOF 1 that are neglected
in the ASM. Replacing in the stiffness and damping curves −q̈1 by −q̈1 − 0.01(q̇1 − q̇2)−
7(q1 −q2), the exact shape of the stiffness and damping forces between DOF 1 and the ground
are retrieved. This holds true for all the types of nonlinearities studied and for all the forcing
levels. Furthermore, as the stiffness force is much larger than the damping force, the different
shapes that may be encountered in the curves and that differ from the exact expression of the
forces are mainly due to the stiffness force between DOF 1 and DOF 2, the damping force
only weakly modifying the curves, even the damping curve.

While the stiffness curve is close to the exact curve at small displacements, it starts to differ
as the displacement amplitude increases until it splits in different parts, one strongly increasing
and one strongly decreasing. This can be explained by the presence of third order harmonics
in the response. It leads to the appearance of three maxima and three minima per period of the
displacement time series for sufficiently large displacements, as depicted in Figure 3.3.
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Figure 3.3: Displacement of DOF 1 as a function of the excitation frequency for the 2 DOF
system with a cubic stiffness and a forcing amplitude of 0.1 N at the first resonance mode.

The stiffness curve only taking into account the points for which the velocity is null, this
corresponds to the extrema of the displacement, the velocity being the derivative of the dis-
placement. When only considering the extrema for which the displacement is positive, the
presence of two maxima and one minimum can be observed. As the acceleration is the sec-
ond derivative of the displacement, it is positive for a local minimum of the displacement
and negative for a local maximum. The part of the stiffness curve increasing at large pos-
itive displacements is thus due to the two positive displacement maxima, for which −q̈1 is
positive, and the part of the curve decreasing is due to the local positive minimum, at which
−q̈1 is negative. A similar reasoning can explain the part of the stiffness curve for which the
displacement is negative.

Furthermore, before the separation in two different lines, the stiffness curve stops fol-
lowing the exact curve at some point and even strongly decreases for positive displacements
shortly before the curve gets separated in two. This is due to the difference in amplitude be-
tween q1 and q2 which increases when approaching the resonance frequency. The stiffness
force between both degrees of freedom therefore also increases. Since the amplitude of q2
is larger than that of q1 and both degrees of freedom oscillate in phase, the stiffness force
7(q1 −q2) is negative and thus decreases the value of −q̈1, according to Equation 3.3. The
increase of this force as q1 increases is thus responsible for the drop in the stiffness curve as
the displacement increases. The sharp decrease right before the separation in different parts is
due to the appearance of harmonics of order 3, which causes the maxima of q1 to flatten and
thus not increase with time as much as those of q2, which does not have a harmonic compo-
nent as important as q1. The flattening of the peaks of q1 then finally leads to the creation of
two separate maxima and a minimum between them.

The appearance of an important harmonic component of third order is due to a 3:1 modal
interaction. The presence of this 3:1 modal interaction can be determined by considering
the frequency-energy plots (FEP) of both nonlinear normal modes of the system. These
frequency-energy plots are computed with the NI2D software and are shown in Figure 3.4.
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Figure 3.4: Frequency-energy plots of both nonlinear normal modes as well as the third har-
monics of mode 1 of the 2 DOF system with a cubic stiffness.

It can be seen that the FEP of the third harmonics of mode 1, for which the frequency
of mode 1 is multiplied by 3, crosses the FEP of mode 2 at a frequency of 0.624 Hz, which
corresponds to a frequency of 0.208 Hz for mode 1. This frequency of 0.208 Hz at which the
3:1 modal interaction occurs is very close to that of the resonance of the first mode, which
is equal to 0.211 Hz. This modal interaction thus explains the strong presence of third order
harmonics and the stiffness curve resulting from it.

As the shape of the stiffness curve is due to the presence of harmonics, a possible solution
to obtain a more accurate stiffness curve is to filter the displacement, velocity and acceleration
time signals of both degrees of freedom. A low-pass filter is used to only keep the fundamental
frequency and remove all the harmonic components. The ASM is then applied to the filtered
data. The stiffness and damping curves are shown in Figure 3.5.
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(a) Stiffness curve.
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Figure 3.5: Stiffness and damping curves for the first mode of the 2 DOF system with a cubic
stiffness and for a forcing amplitude of 0.1 N obtained after filtering. The curve obtained from
the simulated measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that removing the harmonic components by filtering the data improves the
stiffness curve, as the cubic expression of the stiffness force can now be clearly identified.
However, it does not match with the analytical curve, but this is not problematic, as the ASM
is mainly a qualitative method. While the stiffness curve is improved, the damping curve on
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the other hand is not changed significantly by the application of a filter. This shows once
again the difficulty of the characterisation of the damping force of a nonlinear system using
the acceleration surface method.

The acceleration surface method is now applied to the second mode of the system. The
stiffness and damping curves are illustrated in Figure 3.6.
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Figure 3.6: Stiffness and damping curves for the second mode of the 2 DOF system with a
cubic stiffness and for a forcing amplitude of 0.1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The displacement being smaller for this mode than for the first mode, the stiffness curve
is linear and the cubic component of the stiffness is not visible, as already predicted by the
low value of rnl. However, the slope of the linear curve is higher than what it should be.
Indeed, one might expect a slope of 1

(
m/s2)/m, the linear coefficient of the stiffness force

between DOF 1 and the ground being equal to 1 N/m and the mass of DOF 1 being equal
to 1 kg. However, the actual slope, computed with a least-squares estimation, is found to be
equal to 14.96

(
m/s2)/m. This illustrates that different modes can yield stiffness curves with

different slopes, the stiffness curve of the first mode being close to the theoretical curve at
small displacements. Such a behaviour has already been observed experimentally, as shown
in Figure 1.3.

The slope of the second mode may be explained by the stiffness force at the connection
between DOF 1 and DOF 2. At mode 2, the two masses oscillate out-of-phase, which creates a
large stiffness force between DOF 1 and DOF 2, the difference q1 −q2 being large, especially
at the displacement extrema. More precisely, as the displacement amplitudes of both degrees
of freedom are approximately equal and of opposite signs, as can be seen in Figure 3.7, q1−q2
can be approximated as 2 q1 since q2 is almost equal to −q1. The stiffness force 7(q1 −q2)
can then be rewritten as 14 q1. The total stiffness force applied to DOF 1, which is the sum of
the stiffness force to the ground and to DOF 2, can thus be approximated by

fs = q1 +14 q1 = 15 q1, (3.7)

where the cubic stiffness term has been neglected since the displacement is small. As the mass
of DOF 1 is equal to 1 kg, this results in a slope of the stiffness curve equal to 15

(
m/s2)/m,

which corresponds to the estimated slope of the stiffness curve.
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Figure 3.7: Displacement as a function of the excitation frequency of both degrees of freedom
at the second mode of the 2 DOF system with a cubic stiffness and for a forcing amplitude of
0.1 N.

The damping curve of the second mode has a line that is similar to the one visible in the
damping curve of the first mode. However, there are other loops in the damping curve, which
are not present for the first mode. They are due to the beating phenomenon occurring after the
main resonance peak. Indeed, each of these loops is due to a different peak of the beating, the
first and largest peak being responsible for the largest loop, as it has the largest velocity and
acceleration amplitudes. This beating phenomenon is shown in Figure 3.8.
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Figure 3.8: Acceleration of DOF 1 as a function of the excitation frequency at the second
mode of the 2 DOF system with a cubic stiffness and for a forcing amplitude of 0.1 N.

3.1.2 Forcing amplitude of 1 N
A sine sweep excitation with a forcing amplitude of 1 N is now applied to the system. The
nonlinearity ratio of the first mode is equal to 126 %, thus being very nonlinear, while the
second mode has a ratio of 22.8 %, indicating that the cubic nature of the stiffness force
between DOF 1 and the ground may also be deduced from the second mode, which is not
possible for a forcing amplitude of 0.1 N. The stiffness and damping curves of the first mode
are depicted in Figure 3.9.
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Figure 3.9: Stiffness and damping curves for the first mode of the 2 DOF system with a
cubic stiffness and for a forcing amplitude of 1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

At first sight, the stiffness and damping curves of the first mode obtained for a forcing
level of 1 N are very different from those obtained for a forcing level of 0.1 N. While the
cubic nature of the stiffness force is not detectable at a forcing amplitude of 0.1 N, it can
be easily identified at an excitation of 1 N. The damping curve remains however difficult to
interpret. This difference in the stiffness and damping curves is also accompanied by a large
increase in the resonance frequency. Indeed, the resonance frequency is equal to 0.211 Hz
for a forcing of 0.1 N and 0.388 Hz for a forcing of 1 N. This increase in the resonance
frequency is due to an isola merging occurring at the frequency of the 3:1 modal interaction.
Furthermore, the different parts of the stiffness and damping curves are related to different
dynamical regimes corresponding to different frequency ranges. These frequency ranges are
represented in Figure 3.10. The stiffness and damping curves with the points of the different
dynamical regimes shown in the corresponding colours are depicted in Figure 3.11.
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Figure 3.10: Displacement of DOF 1 as a function of the excitation frequency at the first mode
of the 2 DOF system with a cubic stiffness and for a forcing amplitude of 1 N. The different
dynamical regimes are indicated in different colours.
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Figure 3.11: Stiffness and damping curves for the first mode of the 2 DOF system with a cubic
stiffness and for a forcing amplitude of 1 N. The points related to the different dynamical
regimes are shown in the corresponding colour and the exact curve is depicted in black.

The first frequency range shown in blue corresponds to the 3:1 modal interaction, which
is already present at a forcing of 0.1 N. The second frequency range indicated in orange cor-
responds to quasiperiodic (QP) oscillations due to a Neimark-Sacker bifurcation occurring at
these frequencies. This Neimark-Sacker bifurcation likely results from the isola merging, as it
has already been established that it can occur at the merging region between the main branch
of the frequency response curve and an isola [21]. The third frequency range depicted in yel-
low results from the isola merging, as it corresponds to the isola that has merged with the main
branch of the nonlinear frequency response curve. The fourth frequency range illustrated in
purple corresponds to a branch-point (BP) bifurcation and the last frequency range represented
in green corresponds to the jump from the upper branch of the nonlinear frequency response
curve to the lower branch. The identification of the Neimark-Sacker and the branch-point bi-
furcations has been obtained by performing a harmonic balance continuation with the NI2D

software.
Having a closer look at the region corresponding to the 3:1 modal interaction, the stiffness

curve and the damping curve obtained only for this region are shown in Figure 3.12.
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Figure 3.12: Stiffness and damping curves for the 3:1 modal interaction of the first mode of
the 2 DOF system with a cubic stiffness and for a forcing amplitude of 1 N. The curve obtained
from the simulated measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that the stiffness curve is similar to the one obtained at a forcing amplitude
of 0.1 N, the curve separating in different parts at high displacement amplitudes. However,
there are three clearly separated lines visible in this case, while there are only two at the lower
forcing, two of them being combined to form a single one. These different lines are again
due to the two maxima of one period responsible for the two lines increasing for a positive
displacement and the decreasing line is due to the minimum for which the displacement is
positive. The line linked to the local minimum also tends towards smaller displacements until
it becomes negative. This is due to the presence of the third order harmonic component which
becomes stronger as the system approaches the resonance. This increasing importance of
the harmonic component reduces the displacement of the local minimum until it eventually
becomes negative. The displacement of one of the two maxima is also reduced, which is
visible on the stiffness curve. This phenomenon is illustrated in Figure 3.13.
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Figure 3.13: Displacement of DOF 1 as a function of the excitation frequency at the 3:1 modal
interaction of the first mode of the 2 DOF system with a cubic stiffness and for a forcing
amplitude of 1 N.

Focusing on the points of the stiffness curve due to the branch-point bifurcation shown
in purple in Figure 3.11a, it can be seen that there is no symmetry between the points at a
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positive displacement and those at a negative displacement, as has been observed for all the
other studied systems. Indeed, while the points related to the branch-point bifurcation follow
the stiffness curve for positive displacements, they are situated above the curve for negative
displacements. The absolute value of the displacement and of the acceleration is smaller at
negative displacements, creating these points. Furthermore, the amplitude of the acceleration
is more strongly reduced as that of the displacement, which is the reason why the points of
the stiffness curve for negative values of the displacement are situated above the rest of the
curve, the acceleration having a lower amplitude for the same displacement. This asymmetry
in the displacement is the result of the branch-point bifurcation and can be seen in Figure 3.10.
The nonlinear frequency response curve including the different branches of the branch-point
bifurcation, computed through harmonic balance continuation on the NI2D software, and the
evolution of the displacement with the excitation frequency are superimposed in Figure 3.14.
It can be seen that at a positive displacement, the response of the system to the excitation
follows the main branch, while at a negative displacement, it follows the lower branch that
appears due to the branch-point bifurcation.
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(a) Positive displacement.
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Figure 3.14: Displacement of DOF 1 as a function of the excitation frequency and nonlin-
ear frequency response curve at the branch-point bifurcation of the first mode of the 2 DOF
system with a cubic stiffness and for a forcing amplitude of 1 N at positive and negative dis-
placements. The displacement is shown in blue, the main branch of the frequency response
curve is depicted in orange and the branches resulting from the branch-point bifurcation are
represented in yellow.

Due to the branch-point bifurcation, harmonics of even order and a constant term appear
in the response of the system. The presence of these harmonics can be put in evidence by the
computation of the Fast Fourier Transform (FFT) of the displacement and the acceleration,
which are depicted in Figure 3.15. The FFT reveals the presence of second and fourth order
harmonics in the response, as well as a constant term, the peak at 0.38 Hz corresponding to the
fundamental frequency. These harmonics of even order are responsible for the asymmetry in
the displacement. The stronger asymmetry of the acceleration as that of the displacement can
be explained by the higher importance of the even harmonics in the acceleration time series
than in the displacement time series.
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(b) FFT of the acceleration.

Figure 3.15: Fast Fourier transform of the displacement and the acceleration of DOF 1 at the
branch-point bifurcation of the first mode of the 2 DOF system with a cubic stiffness and for
a forcing amplitude of 1 N.

The effect of the branch-point bifurcation on the damping curve is the appearance of two
parts with negative values of −q̈1 for both positive and negative velocities. This can be ex-
plained by the presence of harmonics of even order and the asymmetry resulting from it. Due
to this asymmetry, for all the points at which the displacement is equal to 0 m and which
thus correspond to the points of the damping curve, the acceleration is always positive, and
therefore −q̈1 is always negative. This is shown in Figure 3.16a. However, as the excitation
frequency increases, the acceleration becomes always negative when the displacement is null,
thus creating a few points for which −q̈1 is always positive. This is shown in Figure 3.16b.
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Figure 3.16: Displacement and acceleration of DOF 1 as a function of the excitation frequency
at the branch-point bifurcation of the first mode of the 2 DOF system with a cubic stiffness
and for a forcing amplitude of 1 N.

It has been shown that different dynamical regimes can exhibit different behaviours in
the stiffness and damping curves that may make the curves more difficult to analyse. While
the damping curve always remains difficult to interpret, one possible solution to improve the
stiffness curve could be to filter the response, harmonics being present for different dynamical

34



Chapter 3 2 DOF systems

regimes. This method has already proven to be adequate when there is a strong presence
of harmonics. However, due to the large frequency range of the first mode, filtering does
not improve the stiffness curve. Instead of filtering the data, another possibility is to simply
select the dynamical regimes producing the best points on the stiffness curve and excluding
those creating the points that make the stiffness curve more difficult to interpret, such as those
related to the 3:1 modal interaction and the branch-point bifurcation. The frequency ranges
of the excitation force that have been retained are those related to the isola merging and the
jump to the lower branch of the frequency response curve. They are indicated in Figure 3.10
in yellow and green respectively. The resulting stiffness curve is shown in Figure 3.17.
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Figure 3.17: Stiffness curve for the isola merging and the jump of the first mode of the 2 DOF
system with a cubic stiffness and for a forcing amplitude of 1 N.

The stiffness curve and the damping curve obtained for the second mode are represented
in Figure 3.18.

-4 -2 0 2 4

-80

-60

-40

-20

0

20

40

60

80

(a) Stiffness curve.

-15 -10 -5 0 5 10 15

-1

-0.5

0

0.5

1

(b) Damping curve.

Figure 3.18: Stiffness and damping curves for the second mode of the 2 DOF system with
a cubic stiffness and for a forcing amplitude of 1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The cubic nature of the stiffness force can be deduced from the stiffness curve, although
there is a linear stiffness force higher than expected. The linear coefficient obtained through a
least-squares estimation for which the two unknowns are the cubic and the linear coefficients

35



Chapter 3 2 DOF systems

is equal to 14.5
(
m/s2)/m, which is close to 15

(
m/s2)/m, such as in the case of a forcing

amplitude of 0.1 N. The origin of this overestimation of the linear stiffness force is the same as
for a smaller forcing. However, as the displacement amplitude is larger at a higher excitation
level, the cubic component of the stiffness force is not negligible anymore and can be seen
in the stiffness curve. On the other hand, the linear expression of the damping curve is still
impossible to deduce from the damping curve.

3.2 Second system with a cubic stiffness
The system described by[
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)
=

(
0

p(t)

)
(3.8)

is now considered. The only difference with the previous system is the stiffness between DOFs
1 and 2, which is now equal to 1 N/m instead of 7 N/m. The external force p(t) consists of a
sine sweep excitation with a starting frequency of 0 Hz and an ending frequency of 0.5 Hz, the
natural frequencies of the linear system being equal to 0.159 Hz and 0.276 Hz, and a sweep
rate of 0.005 Hz/min, the amplitude being specified in each case.

3.2.1 Forcing amplitude of 0.1 N
The forcing amplitude of the excitation is first equal to 0.1 N. At this forcing level, the first
mode is already strongly nonlinear as rnl = 79.6 %, but there is no modal interaction. On the
other hand, at the second mode, rnl = 6.26 % and the mode is only weakly nonlinear.

The acceleration time series is depicted in Figure 3.19.
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Figure 3.19: Acceleration of DOF 1 as a function of the excitation frequency for the second
2 DOF system with a cubic stiffness and for a forcing amplitude of 0.1 N and the frequency
windows of the first and second modes.

The stiffness and damping curves obtained for the first mode are shown in Figure 3.20.
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Figure 3.20: Stiffness and damping curves for the first mode of the second 2 DOF system with
a cubic stiffness and for a forcing amplitude of 0.1 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

While for the previous system with a cubic stiffness and a forcing amplitude of 0.1 N, the
stiffness curve gets separated in different parts, this does not happen for this system and the
curve is cubic. It is thus easier to interpret the stiffness curve for this system. This is due to
the fact that there is no modal interaction creating strong third order harmonics in this case,
which is the reason for the shape of the stiffness curve of the other system. Indeed, for this
system, the 3:1 modal interaction occurs at higher energy levels, such that it does not appear
for this forcing amplitude, while the system is already nonlinear. This can be seen in the
frequency-energy plot represented in Figure 3.21. The modal interaction occurs at an energy
of around 300 J, while it occurs at an energy of approximately 30 J for the first system. A
modal interaction can thus be created more easily and with low forcing amplitudes for the first
system, while more energy needs to be added to the second system in order to detect a modal
interaction.
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Figure 3.21: Frequency-energy plots of both nonlinear normal modes as well as the third
harmonics of mode 1 of the second 2 DOF system with a cubic stiffness.

While the stiffness curve of the first mode significantly differs to that of the first mode of
the previous system, the stiffness curve of the second mode is similar for both systems, with
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a linear curve having a higher slope than the theoretical curve due to the linear stiffness force
between DOFs 1 and 2.

3.2.2 Forcing amplitude of 2 N
In order to detect the 3:1 modal interaction, a forcing amplitude of 2 N is now considered. The
first mode is such that rnl = 121 % and the second mode has a nonlinearity ratio of 58.9 % and
is thus clearly nonlinear, which is not the case for a forcing amplitude of 0.1 N.

The stiffness and damping curves for the first mode are depicted in Figure 3.22.
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Figure 3.22: Stiffness and damping curves for the first mode of the second 2 DOF system with
a cubic stiffness and for a forcing amplitude of 2 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

It can be seen that two lines appear in the stiffness curve at a displacement q1 close to 0
m, one of them having a negative acceleration and the other one a positive acceleration. These
lines result from the presence of harmonics of third order due to the 3:1 modal interaction
between the two vibration modes. However, unlike for the first system, the stiffness curve
still has a cubic shape and the lines appear at small displacements, not changing significantly
the rest of the curve. This can be explained by the displacement time series shown in Fig-
ure 3.23. Indeed, while for the previous system, new displacement extrema are created close
to the existing extrema, they appear here at displacements close to 0 m. As both maxima,
respectively minima, close to 0 m have a similar amplitude, they form points in the stiffness
curve that are also close to each other. Each of the two lines appearing in the stiffness curve,
corresponding to either the maxima or the minima at small displacements, is thus composed of
two lines corresponding to the two distinct extrema. However, due to the similar displacement
and acceleration values of these extrema, the two lines cannot be distinguished from each
other. Furthermore, an asymmetry can be observed in the displacement time series, which is
due to the presence of even order harmonics and a constant term, resulting from a branch-
point bifurcation. This explains why the lines start to differ from the main curve at a negative
displacement and not at a displacement equal to 0 m.

The different lines in the damping curve can be explained by a similar reasoning, the points
of the damping curve corresponding to the different points for which the displacement of DOF
1 is null.

38



Chapter 3 2 DOF systems

0.224 0.2245 0.225

-8

-6

-4

-2

0

2

4

6

8

Figure 3.23: Displacement of DOF 1 as a function of the excitation frequency for the second 2
DOF system with a cubic stiffness and a forcing amplitude of 2 N at the first resonance mode.

The stiffness curve of the second mode is cubic, but with slightly higher absolute values
of −q̈1 than the exact curve due to the stiffness force between the masses 1 and 2.

3.3 Piecewise linear stiffness
In this section, a trilinear stiffness force representing an impact is added to the linear system.
The equation of motion of the first mass is thus expressed as{

q̈1 +0.01 q̇1 +q1 +0.01(q̇1 − q̇2)+7(q1 −q2) = 0 if |q1| ≤ 1 m
q̈1 +0.01 q̇1 +(1+ knl)q1 +0.01(q̇1 − q̇2)+7(q1 −q2) = 0 if |q1|> 1 m

, (3.9)

where knl is the increase in stiffness due to the impact occurring at displacements of -1 and 1 m.
Different coefficients knl are considered, a constant forcing amplitude of 0.1 N being applied
to the system for all the studied cases. At this forcing level, the displacement amplitude is
higher than 1 m for the first mode, which is therefore nonlinear, but smaller than 1 m for the
second mode, which is thus perfectly linear.

3.3.1 Increase in stiffness of 2 N/m
First, an increase in stiffness of 2 N/m, with knl = 2 N/m, is considered. The stiffness and
damping curves obtained for the first mode are shown in Figure 3.24.
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Figure 3.24: Stiffness and damping curves for the first mode of the 2 DOF system with a
trilinear stiffness with an increase in stiffness of 2 N/m. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

Between displacements of -1 and 1 m, the stiffness curve corresponds almost exactly to the
theoretical curve, but diverges from it as the displacement amplitude increases. For |q1|> 1 m,
the curve is not linear anymore and is not close to the theoretical linear curve. This is due to
the stiffness force 7(q1 −q2), which increases as |q1| becomes greater than 1 m, since the
amplitude of q2 becomes larger than that of q1 while they were close to each other at lower
displacements. For a positive displacement q1, q1 −q2 is thus negative and the stiffness force
between DOF 1 and DOF 2 is also negative, which is the reason why the obtained stiffness
curve is below the exact one for positive displacements. Furthermore, the presence of third
order harmonics in the response of DOF 1 results in a local minimum of the acceleration at the
points where the displacement amplitude is maximum, as shown in Figure 3.25. The points
of the stiffness curve corresponding to the displacement maxima, this may explain the lower
amplitude of the stiffness curve compared to the exact curve.
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Figure 3.25: Displacement and acceleration of DOF 1 as a function of the excitation frequency
for the first mode of the 2 DOF system with a trilinear stiffness with an increase in stiffness of
2 N/m.

One possible improvement of the results is thus to filter the displacement, velocity and
acceleration time series of both degrees of freedom before applying the ASM. A low-pass
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filter removing the harmonic components is used. The stiffness and damping curves obtained
after filtering the data are depicted in Figure 3.26.
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Figure 3.26: Stiffness and damping curves for the first mode of the 2 DOF system with a
trilinear stiffness with an increase in stiffness of 2 N/m obtained after filtering the data. The
curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

The stiffness curve is now clearly piecewise linear, but the damping curve is not modified
significantly. The use of a filter thus again improves the stiffness curve, but not the damping
curve.

The second mode displays a stiffness curve and a damping curve identical to those obtained
for a cubic stiffness and for a forcing amplitude of 0.1 N, which are illustrated in Figure 3.6.
Furthermore, as the displacement amplitude is smaller than 1 m, the system behaves perfectly
linearly for this mode.

3.3.2 Increase in stiffness of 5 N/m
An increase in stiffness knl = 5 N/m is now considered. The acceleration time series for this
system is represented in Figure 3.27.
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Figure 3.27: Acceleration of DOF 1 as a function of the excitation frequency for the second 2
DOF system with a trilinear stiffness with an increase in stiffness of 5 N/m and the frequency
windows of the first and second modes.

The stiffness and damping curves obtained for the first mode are shown in Figure 3.28.
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Figure 3.28: Stiffness and damping curves for the first mode of the 2 DOF system with a
trilinear stiffness with an increase in stiffness of 5 N/m. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The damping curve is similar to that resulting from a trilinear stiffness with a stiffness
increase of 2 N/m and depicted in Figure 3.24b. The stiffness curve, on the other hand, is
almost identical to the one obtained for a cubic stiffness and a forcing amplitude of 0.1 N,
which is shown in Figure 3.2a. The origin of the shape of the curve is also similar and is due
to the harmonic components of the response of the system to the excitation. This illustrates that
two different types of nonlinearities can exhibit the same stiffness curve, making it difficult to
correctly predict from the curve which type of nonlinearity is present in the system.

As has already been shown in the case of a cubic stiffness whose stiffness curve is identical
to the one obtained here, filtering the data before applying the acceleration surface method to
it may improve the stiffness curve such that the functional form of the nonlinear force can be
retrieved from it. A filter is thus also used here to remove the harmonics from the response
and only keep the fundamental frequency. The stiffness and damping curves resulting from it
are represented in Figure 3.29.
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(a) Stiffness curve.

-3 -2 -1 0 1 2 3

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(b) Damping curve.

Figure 3.29: Stiffness and damping curves for the first mode of the 2 DOF system with a
trilinear stiffness with an increase in stiffness of 5 N/m obtained after filtering the data. The
curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

The piecewise linear expression of the nonlinear stiffness force can now be deduced from
the stiffness curve, although it is not perfectly linear for |q1|> 1 m and the observed increase in
stiffness is lower than it should be. Despite this, it can be concluded that filtering the data helps
distinguish a cubic stiffness from a piecewise linear stiffness. However, the characterisation of
the damping force remains a difficult task when using the ASM, even when filtering the data.

The stiffness and damping curves of the second mode are identical to those for a lower
increase in stiffness knl = 2 N/m, since the system is linear at this mode.

3.3.3 Increase in stiffness of 30 N/m
The nonlinearity in the system now consists in an increase in stiffness of knl = 30 N/m when
|q1|> 1 m. The stiffness and damping curves are illustrated in Figure 3.30.
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Figure 3.30: Stiffness and damping curves for the first mode of the 2 DOF system with a tri-
linear stiffness with an increase in stiffness of 30 N/m. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.
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It can be seen that the stiffness curve follows the theoretical curve, even at high displace-
ments. However, there is another branch of the curve appearing at displacements of 1 and -1
m. Following the same reasoning as previously, the presence of this branch is due to the har-
monics of order 3. While in all the previous cases, no branch of the stiffness curve corresponds
to the exact curve, this can be observed here. This is a particular case for which q2 is almost
equal to q1 when q1 reaches a maximum, the stiffness force between DOF 1 and DOF 2 being
therefore small, allowing the stiffness curve to follow the exact curve. A similar behaviour of
the stiffness curve has already been observed experimentally for the SmallSat structure [2], as
shown in Figure 1.2, and an aircraft Piccolo tube [12]. Furthermore, the presence of harmonics
in the response of the SmallSat structure to the excitation has been put in evidence, leading to
the creation of new extrema of the relative displacement of the nonlinear connection [3]. This
might thus explain the appearance of additional branches in the stiffness curve of the SmallSat
structure.

As there is a strong presence of harmonics in the response of the system to the excitation,
a filter can be used to remove these harmonics and improve the stiffness curve. The stiffness
and damping curves obtained after using a low-pass filter are shown in Figure 3.31.
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Figure 3.31: Stiffness and damping curves for the first mode of the 2 DOF system with a
trilinear stiffness with an increase in stiffness of 30 N/m obtained after filtering the data. The
curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

Filtering the data again does not improve the damping curve, but improves the stiffness
curve. Indeed, the branch which was previously present has disappeared and the piecewise
linear expression of the stiffness force can be more easily recognised. However, for a displace-
ment amplitude above 1 m, the curve is not exactly linear and does not follow the theoretical
curve as previously.

As has already been observed for all the cases with a piecewise linear stiffness for the first
mode, the stiffness curve is linear between the positions of the impact. This always holds true,
whether a filter is used or not. This can be explained by the fact that before the change in
stiffness occurs, the system is perfectly linear. There are thus no harmonics appearing which
may influence the shape of the stiffness curve. Furthermore, at these small displacements, q1
and q2 are almost equal, such that the stiffness force at the connection between both masses
is small. However, q1 and q2 are not perfectly equal and the amplitude of motion of DOF 2
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is slightly larger than that of DOF 1. There is thus a small negative stiffness force 7(q1 −q2)
for positive displacements and the stiffness curve lies slightly below the exact curve. This is
illustrated in Figure 3.32a for the case where knl = 30 N/m and for which a filter is used. It
can be seen that the points follow a straight line situated just below the theoretical curve, and
above for negative displacements. The other points are due to the jump after the resonance
peak, for which q1 − q2 changes sign with time, being positive at some points and negative
at others. This behaviour is similar to the one observed for 1 DOF systems and depicted in
Figure 2.3a and can also be seen for systems with a cubic stiffness.

A similar observation can be made for the out-of-phase mode, where two distinct lines
are visible at small displacements, as shown in Figure 3.32b. The lower line, for positive
displacements, is due to the points before the resonance peak for which the amplitude of
motion of DOF 1 is slightly larger than that of DOF 2, the stiffness force between DOF 1 and
DOF 2 thus being slightly smaller than 14 q1. The upper line is due to the points after the
resonance and for which the amplitude of motion of DOF 1 is slightly smaller than that of
DOF 2, the stiffness force between DOF 1 and DOF 2 thus being larger than 14 q1 for positive
displacements. A similar phenomenon has also been put in evidence experimentally on the
SmallSat structure [13], as illustrated in Figure 1.3.
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Figure 3.32: Close-up of the stiffness curve for both modes of the 2 DOF system with a trilin-
ear stiffness with an increase in stiffness of 30 N/m. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

3.4 First system with Coulomb friction
After having studied two types of nonlinear stiffness, nonlinear damping is now considered.
Coulomb friction is thus added to the linear system and Equation 3.3 can be expressed as

0.01 q̇1 +q1 +0.01(q̇1 − q̇2)+7(q1 −q2)+ sign(q̇1) =−q̈1, (3.10)

where

sign(q̇1) =


1 if q̇1 > 0 m/s
0 if q̇1 = 0 m/s
−1 if q̇1 < 0 m/s

. (3.11)

45



Chapter 3 2 DOF systems

3.4.1 Forcing amplitude of 10 N
First, the system is subjected to an excitation level of 10 N, at which both modes are close
to having a linear behaviour, the nonlinearity ratios of the modes being respectively equal to
3.60 % and 1.44 %, the Coulomb friction only having a little influence on the dynamics of
the system. The stiffness and damping curves obtained for the first mode are illustrated in
Figure 3.33.
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Figure 3.33: Stiffness and damping curves for the first mode of the 2 DOF system with
Coulomb friction and for a forcing amplitude of 10 N. The curve obtained from the simu-
lated measurements is shown in blue and the exact curve is depicted in orange.

The stiffness curve is linear and close to the theoretical curve, but the damping curve does
not correspond to the expression of the damping force. The presence of Coulomb friction
in the system is thus difficult to detect from this curve, as the curve is mainly dominated by
the stiffness force between DOF 1 and DOF 2 and is also influenced by the damping force
between DOF 1 and DOF 2.

The stiffness and damping curves of the second mode are represented in Figure 3.34.
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Figure 3.34: Stiffness and damping curves for the second mode of the 2 DOF system with
Coulomb friction and for a forcing amplitude of 10 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.
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It can be seen that the stiffness curve is very similar to the stiffness curves of the previous
cases for the second mode. The damping curve is also similar, as different pairs of lines
related to the different peaks of the beating phenomenon can be observed. However, there is
one difference. Indeed, while for all the other cases, the two large lines related to the main
resonance peak seem to join each other at the centre of the curve, this does not happen here and
there is a jump between them, which can be linked to the jump of the damping force at zero
velocity due to the Coulomb friction. While this jump is smaller than on the theoretical curve
and goes from the positive to the negative values of −q̈1 as the velocity becomes positive, it
may still hint at the presence of Coulomb friction.

3.4.2 Forcing amplitude of 2 N
In order to better detect the existence of Coulomb friction in the system, a lower forcing
amplitude of 2 N is applied to the system, such that the Coulomb friction is not negligible
anymore with respect to the other forces acting on DOF 1, the two modes having a ratio rnl of
36.1 % and 13.8 % respectively. This enhances the nonlinear behaviour of the system. The
stiffness and damping curves of the first mode are shown in Figure 3.35.
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Figure 3.35: Stiffness and damping curves for the first mode of the 2 DOF system with
Coulomb friction and for a forcing amplitude of 2 N. The curve obtained from the simu-
lated measurements is shown in blue and the exact curve is depicted in orange.

The damping curve for this mode does not allow the determination of the expression of
the damping force. The stiffness curve is linear and follows the exact curve, but exhibits
points with a large error compared to the theoretical curve for small displacements. Replacing
−q̈1 by −q̈1−0.01(q̇1 − q̇2)−7(q1 −q2) when applying the ASM to remove the contribution
of the forces between DOF 1 and DOF 2, all the points should be perfectly situated on the
theoretical curve. This is true for all the studied nonlinearities, but not for Coulomb friction,
where these points remain. This is due to the nature of the Coulomb friction force, which is
discontinuous at a velocity of 0 m/s. However, the points of the stiffness curve correspond to
the points at which the velocity is null. Since the displacement and acceleration values of these
points are obtained through linear interpolation between the points with velocities of opposite
signs, the Coulomb friction impacts the acceleration of these points, but the error induced by
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the Coulomb friction in the stiffness force is never larger than 1
(
m/s2)/m, the Coulomb

friction having an intensity of 1 N and the mass of DOF 1 being equal to 1 kg.
The stiffness and damping curves of the second mode are displayed in Figure 3.36.
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Figure 3.36: Stiffness and damping curves for the second mode of the 2 DOF system with
Coulomb friction and for a forcing amplitude of 2 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

As for all the other cases studied previously, the stiffness curve of the second mode is linear
with a slope close to 15

(
m/s2)/m. The damping curve, on the other hand, has a different

shape. There is a jump in acceleration at zero velocity, which is expected for Coulomb friction.
However, when going from a negative to a positive velocity, −q̈1 jumps from a positive to a
negative value, which is the opposite of the Coulomb friction force indicated in orange. This is
due to the stiffness force between DOFs 1 and 2, which is negative for positive velocities and
positive for negative velocities. The linear parts of the curve result from the points occurring
before the resonance and the loop is due to the points occurring after the resonance peak. The
jump at zero velocity in the damping curve only appearing for Coulomb friction, it can be
seen as an evidence for the presence of Coulomb friction in the system, although it does not
correspond to the curve one might expect for Coulomb friction.

3.5 Second system with Coulomb friction
Another system with Coulomb friction is now studied. It is described by the system of equa-
tions[

0.1 0
0 1

](
q̈1
q̈2

)
+0.01

[
2 −1
−1 2

](
q̇1
q̇2

)
+

[
2 −1
−1 2

](
q1
q2

)
+

(
sign(q̇1)

0

)
=

(
0

p(t)

)
,

(3.12)
where the external force p(t) consists of a sine sweep excitation with an amplitude of 5 N,
a starting frequency of 0 Hz and an ending frequency of 1 Hz, the eigenfrequencies of the
linear system being equal to 0.192 Hz and 0.721 Hz, and a sweep rate of 0.01 Hz/min. The
acceleration time series of DOF 1 is depicted in Figure 3.37.
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Figure 3.37: Acceleration of DOF 1 as a function of the excitation frequency of the second 2
DOF system with Coulomb friction and the frequency window of mode 1.

The second mode is not visible in the time series and the ASM therefore cannot be applied
to this mode. At this mode, the motion of DOF 1 is very small since the forces between DOF
1 and the ground and between DOF 1 and DOF 2 act in opposite directions and are small.
On the other hand, the first mode is easily detected and has a nonlinearity ratio of 75.6 %,
indicating a strong nonlinear behaviour of the mode. It can also be observed that for lower and
higher frequencies than the resonance frequency, the acceleration has a constant amplitude of
around 20 m/s2, which is due to the presence of Coulomb friction in the system.

Applying the method to the first mode, the stiffness and damping curves illustrated in
Figure 3.38 are obtained.
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Figure 3.38: Stiffness and damping curves for the first mode of the second 2 DOF system with
Coulomb friction and for a forcing amplitude of 5 N. The curve obtained from the simulated
measurements is shown in blue and the exact curve is depicted in orange.

The presence of Coulomb friction can be deduced from the damping curve as there is a
jump from negative to positive values of −q̈1 as the velocity is equal to 0 m/s. The damping
curve is thus close to the exact curve since the damping force between DOF 1 and the ground
is large compared to the stiffness and damping forces between DOFs 1 and 2. This is due to
the fact that q2 is close to 0 m when q1 = 0 m, such that the stiffness force 1× (q1 −q2) is
small for the points of the damping curve. Additionally, the velocities of DOFs 1 and 2 are
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also close to each other and the damping force between the two degrees of freedom is thus
also small. For this system, the damping force between DOF 1 and the ground can therefore
be correctly characterised using the acceleration surface method, which proved to be difficult
for the other studied systems.

Furthermore, the stiffness curve is linear as expected, but has a lower slope than the theo-
retical curve. This is due to the stiffness force between DOFs 1 and 2, which is negative for a
positive displacement of DOF 1, the displacement amplitude of DOF 2 being larger than the
displacement amplitude of DOF 1.

3.6 Conclusion
The study of nonlinear 2 DOF systems has revealed a lot of different artefacts that may appear
in the stiffness and damping curves and may cause problems for the accurate determination of
the functional form of the nonlinear force. These can be the result of harmonic components
appearing in the response of the system to the excitation or to specific dynamical regimes such
as branch-point bifurcations. In particular, a cubic stiffness and a piecewise linear stiffness
can produce similar stiffness curves, making the identification of the type of nonlinearity in
the system challenging. Furthermore, the characterisation of the damping force is always
difficult due to its small importance compared to the stiffness force.

One solution to improve the results when applying the acceleration surface method is to
filter the measurement data to remove the contribution of the harmonics. This has proven to
be useful to distinguish between a cubic and a piecewise linear stiffness, both resulting in a
similar stiffness curve due to the presence of harmonics. In the case of the presence of several
dynamical regimes in the response of the system, a careful selection of the dynamical regimes
to take into account in the ASM can improve the stiffness curve by excluding those for which
the obtained curves are not satisfactory. Finally, the choice of the resonance mode to which
to apply the method is of crucial importance in order to get the best stiffness and damping
curves. This will be highlighted more particularly in the next chapter, where 10 DOF systems
will be studied.
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10 DOF systems

It has been shown in the previous chapter that different modes yield different stiffness and
damping curves and that the nonlinearities are easier to characterise using one mode instead
of another. In particular, for 2 DOF systems, the first mode, which is the in-phase mode, en-
ables a better identification of the nonlinear force due to the lower stiffness and damping forces
between both masses. The aim of this chapter is thus to analyse on systems with more vibra-
tion modes which of these modes results in the best stiffness and damping curves. Systems
consisting of 10 degrees of freedom are therefore considered, having 10 vibration modes.

4.1 First system with a cubic stiffness
The system represented in Figure 4.1 is first studied. It has a cubic stiffness at the connection
between DOF 5 and DOF 6, the degrees of freedom being numbered in the increasing order
from the left to the right. The excitation consists of a sine sweep excitation with an amplitude
of 0.2 N, a starting frequency of 0 Hz, an ending frequency of 0.35 Hz and a sweep rate of
0.001 Hz/min. The ending frequency has been chosen such as to detect all the modes of the
system, the 10th mode of the linear system having a natural frequency of 0.338 Hz. Different
excitation positions are considered to study their influence on the results.

Figure 4.1: 10 DOF system with a cubic stiffness as represented in the NI2D software.

The equations of motion of the system are given by

Mq̈+Cq̇+Kq+ fnl (q, q̇) = p(t) . (4.1)

The response of the system to the excitation is simulated on the NI2D software using a New-
mark integration scheme with a sampling frequency of 200 Hz, which is more than 200 times
the highest frequency of the excitation of 0.35 Hz, γ = 1

2 and β = 1
4 . The acceleration surface

method is then applied in a similar way as for the 1 DOF and 2 DOF systems.
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4.1.1 Excitation applied to DOF 1
The sine sweep excitation is applied to the first mass and the ASM is applied to all the modes
in order to study the difference in the results between the different modes. Furthermore, the
method is successively applied to the degrees of freedom 5 and 6 to analyse whether one
extremity of the nonlinear connection yields better results than the other.

ASM applied to DOF 5

The ASM is first applied to DOF 5, for which the equation of motion can be expressed as

0.01(q̇5 − q̇6)+(q5 −q6)+(q5 −q6)
3 +0.01(q̇5 − q̇4)+(q5 −q4) =−q̈5, (4.2)

where qi represents the displacement of the mass i.
The acceleration time series of DOF 5 is shown in Figure 4.2. The 10 modes of the system

are visible in the time series and they are well separated from each other, although the four
last modes are closer to each other than the other modes. The acceleration surface method can
thus be applied to each of the modes separately.
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Figure 4.2: Acceleration of DOF 5 as a function of the excitation frequency of the 10 DOF
system with a cubic stiffness and an excitation at DOF 1 and the frequency windows of modes
3, 4 and 7.

For 2 DOF systems, it has been shown that the best mode to which to apply the ASM
corresponds to the mode for which the stiffness and damping forces of the linear connection
are the smallest in comparison with the forces at the nonlinear connection. To verify that
this observation holds true for more complex systems such as 10 DOF systems, the ratio
between the root mean square (RMS) values of the relative displacements q5 −q6 and q5 −q4
is computed for each mode. It is then verified whether the mode with the highest ratio gives
the best results. For all the modes, the displacement ratio

rd =
RMS(q5 −q6)

RMS(q5 −q4)
(4.3)

is thus calculated and indicated in Table 4.1.
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Mode rd [-]
1 0.382
2 1.13
3 0.335
4 4.54
5 0.525
6 0.994
7 1.79
8 0.774
9 1.15

10 0.526

Table 4.1: Displacement ratio of all the modes of the 10 DOF system with a cubic stiffness for
which the excitation is applied to DOF 1 and the ASM is applied to DOF 5.

However, another important aspect regarding the selection of the best mode is the impor-
tance of the nonlinear force to the motion of the system. Indeed, for a cubic stiffness for
example, if the relative displacement is too low, the nonlinear force will remain small and the
system will be almost linear. The ASM should therefore not be applied to modes which are
only weakly nonlinear. To identify the modes for which the nonlinearity is significantly acti-
vated, the time series of the acceleration for different forcing levels are compared. A shift in
the resonance frequency of a mode towards a higher frequency indicates a nonlinear behaviour
and thus enables to identify the nonlinear modes of the system. The acceleration time series
of DOF 5 for different forcing amplitudes is represented in Figure 4.3.
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Figure 4.3: Acceleration of DOF 5 as a function of the excitation frequency of the 10 DOF
system with a cubic stiffness and an excitation at DOF 1 with amplitudes of 0.1, 0.2 and 0.5
N.

The 4th mode is the mode for which the displacement ratio is the highest. Furthermore, this
mode exhibits an increase in the resonance frequency as the forcing level increases, indicating
a nonlinear behaviour of this mode. When analysing the displacements q4, q5 and q6 at this
mode, such as depicted in Figure 4.4, it can be seen that the masses 4 and 5 oscillate in phase
while the mass 6 is out-of-phase compared to them. Furthermore, the displacement amplitudes
of DOFs 4 and 5 are close to each other. The relative displacement between masses 4 and 5 is
thus small in comparison with the relative displacement between masses 5 and 6, explaining

53



Chapter 4 10 DOF systems

the high ratio. The nonlinear behaviour of this mode can be explained by the high relative
displacement q5 − q6, which is maximum for this mode and for which the nonlinear force is
not negligible.
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Figure 4.4: Displacement of DOFs 4, 5 and 6 as a function of the excitation frequency for the
4th mode of the 10 DOF system with a cubic stiffness and an excitation at DOF 1.

Applying the ASM to this mode, the stiffness and damping curves shown in Figure 4.5 are
obtained.
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Figure 4.5: Stiffness and damping curves for the 4th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 1 and for which the ASM is applied to DOF 5. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

The stiffness curve is close to the theoretical curve and has a cubic shape. This mode thus
produces a good stiffness curve, as predicted by the ratio rd and the analysis of the displace-
ments illustrated in Figure 4.4. Among all the 10 vibration modes of the system, this mode
results in the best stiffness curve. However, as in most previous cases, the damping curve does
not allow the proper characterisation of the damping force of the nonlinear connection.

It can also be observed that both curves have similar features as those obtained for 2 DOF
systems. Indeed, the damping curve consists of a set of points decreasing as the velocity
increases before suddenly increasing at the resonance peak. The stiffness curve, on the other

54



Chapter 4 10 DOF systems

hand, is composed of one line situated below the exact curve and one located above it for
positive displacements. They are respectively due to the points before the resonance, for
which q4 has a greater amplitude than q5, and the points after the resonance, for which q5 has
a greater amplitude than q4.

Furthermore, some small oscillations are visible in the stiffness curve, which do not appear
for 2 DOF systems. These oscillations are due to the presence of the harmonics 1/4 in the
response of the system, as shown by the FFT of q̈5 depicted in Figure 4.6.
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Figure 4.6: Fast Fourier transform of the acceleration of DOF 5 at the 4th mode of the 10 DOF
system with a cubic stiffness and an excitation at DOF 1.

There is a small peak visible at 0.0483 Hz, which is close to the natural frequency of the
first mode, which is equal to 0.0482 Hz. It thus results from a 1:4 modal interaction of mode 4
with the first mode of the system. A third order harmonics is also detected with the FFT, with
a higher amplitude than the harmonics 1/4. However, this third order harmonic component
is not responsible for the oscillations of the stiffness curve. Indeed, using a high-pass filter
to only remove the harmonics 1/4, the oscillations of the stiffness curve disappear and the
damping curve is also improved, as illustrated in Figure 4.7.
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Figure 4.7: Stiffness and damping curves for the 4th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 1 and for which the ASM is applied to DOF 5 obtained after
filtering the data. The curve obtained from the simulated measurements is shown in blue and
the exact curve is depicted in orange.
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According to Table 4.1, another mode which may yield a good stiffness curve is the 7th
mode, for which the displacement ratio is high compared to the other modes and a shift in the
resonance frequency is clearly visible. At this mode, the degrees of freedom 4 and 5 vibrate
in phase, although there is a small phase delay for DOF 5, while the degree of freedom 6 is
out-of-phase. However, the difference in amplitude between q4 and q5 is larger than at mode
4. The stiffness and damping curves for this mode are shown in Figure 4.8.
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Figure 4.8: Stiffness and damping curves for the 7th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 1 and for which the ASM is applied to DOF 5. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

The stiffness curve does not exactly follow the theoretical curve, although it remains close
to it due to the small stiffness force between DOFs 1 and 2 compared to the stiffness force
between DOF 1 and the ground. The cubic nature of the stiffness force therefore cannot be
deduced from it. The other modes producing less good results, the 4th mode is the only one
which can be used to determine the functional form of the stiffness force between DOF 5
and DOF 6. Some oscillations are again visible in the damping curve and the FFT of q̈5
reveals some frequency content at the frequency of the first mode. The use of a high-pass filter
removes these oscillations. In fact, such oscillations can also be detected at modes 5, 6, 8, 9
and 10. These oscillations thus occur for mode 4 and all the modes higher than mode 4. They
are always due to a modal interaction with the first mode and can be removed by applying a
high-pass filter to the data.

Now considering mode 3 for which DOFs 5 and 6 are in phase while being out-of-phase
with DOF 4, the displacement ratio is the lowest for this mode. The stiffness and damping
curves of this mode are indicated in Figure 4.9.
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Figure 4.9: Stiffness and damping curves for the third mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 1 and for which the ASM is applied to DOF 5. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

As expected, the stiffness and damping curves do not correspond at all to the theoretical
curves. The stiffness curve decreases as the relative displacement increases, which could be
interpreted as a negative stiffness between degrees of freedom 5 and 6. The choice of the mode
to select for using the ASM is thus of crucial importance in order to correctly characterise the
nonlinearity.

ASM applied to DOF 6

The acceleration surface method is now applied to DOF 6, in order to study the influence on
the results of the choice of the degree of freedom to which the method is applied. The equation
of motion of DOF 6 is given by

0.01(q̇6 − q̇5)+(q6 −q5)+(q6 −q5)
3 +0.01(q̇6 − q̇7)+(q6 −q7) =−q̈6. (4.4)

The stiffness and damping forces at the connection between the masses 6 and 7 now appear in
the equation, while the forces between masses 4 and 5 are present when the ASM is applied to
DOF 5. The computation of the displacement ratio rd is thus adapted accordingly. Its values
for all the 10 modes are indicated in Table 4.2. The comparison between the time series of q̈6
for different forcing levels is illustrated in Figure 4.10.
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Mode rd [-]
1 0.718
2 0.859
3 0.565
4 0.947
5 0.603
6 1.25
7 0.779
8 1.63
9 1.03

10 1.91

Table 4.2: Displacement ratio of all the modes of the 10 DOF system with a cubic stiffness for
which the excitation is applied to DOF 1 and the ASM is applied to DOF 6.
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Figure 4.10: Acceleration of DOF 6 as a function of the excitation frequency of the 10 DOF
system with a cubic stiffness and an excitation at DOF 1 with amplitudes of 0.1, 0.2 and 0.5
N.

Mode 8 has a high displacement ratio, but a low shift in the resonance frequency, indicating
that the nonlinearity is not significantly activated for this mode. Applying the ASM to this
mode thus does not allow the identification of the cubic nature of the stiffness force between
degrees of freedom 5 and 6. While modes 4 and 6 have a good displacement ratio, they also do
not enable the correct characterisation of the nonlinear force. Indeed, the only mode at which
the cubic nature of the stiffness force is visible is the 9th mode. At this mode, the degrees
of freedom 5 and 7 are in phase and the degree of freedom 6 is out-of-phase. However,
there is a small phase delay for DOF 5 and the amplitude of q7 is smaller than that of q5,
resulting in a relative displacement q6 − q7 which is smaller than q6 − q5, but not negligible.
The small difference between q6 −q7 and q6 −q5 explains why the displacement ratio is only
slightly higher than 1. The displacements of the DOFs 5, 6 and 7 at mode 9 are represented in
Figure 4.11.
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Figure 4.11: Displacement of DOFs 5, 6 and 7 as a function of the excitation frequency for
the 9th mode of the 10 DOF system with a cubic stiffness and an excitation at DOF 1.

The stiffness and damping curves obtained for this mode are illustrated in Figure 4.12.
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Figure 4.12: Stiffness and damping curves for the 9th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 1 and for which the ASM is applied to DOF 6. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

The stiffness curve does not follow the theoretical curve and two different lines are visible.
Similarly as for Figure 4.5a, the presence of these distinct lines is due to the fact that at the
resonance peak, the amplitude of q7 becomes larger than the amplitude of q6 while it is smaller
before the resonance peak is reached. The stiffness curve seems to be almost linear, but there
is a small curvature visble at the highest displacement amplitude, indicating the presence of a
cubic stiffness. There is no other mode for which the resulting stiffness curve is cubic.

4.1.2 Excitation applied to DOF 4
The sine sweep excitation is now applied to DOF 4, the other parameters of the excitation
remaining unchanged. The ASM is again applied to DOF 5 and DOF 6 and to all the modes.
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ASM applied to DOF 5

The acceleration surface method is first applied to DOF 5. The displacement ratios of the 10
modes are indicated in Table 4.3. The comparison between the time series of the acceleration
of DOF 5 for different forcing levels is illustrated in Figure 4.13.

Mode rd [-]
1 0.293
2 0.614
3 0.460
4 3.13
5 0.392
6 1.51
7 1.41
8 0.875
9 1.51

10 0.461

Table 4.3: Displacement ratio of all the modes of the 10 DOF system with a cubic stiffness for
which the excitation is applied to DOF 4 and the ASM is applied to DOF 5.
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Figure 4.13: Acceleration of DOF 5 as a function of the excitation frequency of the 10 DOF
system with a cubic stiffness and an excitation at DOF 4 with amplitudes of 0.1, 0.2 and 0.5
N.

Mode 4 has again the best displacement ratio and a significant shift in the resonance fre-
quency as the forcing amplitude increases. It thus corresponds to the mode for which the
expression of the nonlinear stiffness force is the easiest to determine. The stiffness and damp-
ing curve obtained for this mode are depicted in Figure 4.14.
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Figure 4.14: Stiffness and damping curves for the 4th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 5. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

Both curves are similar to those depicted in Figure 4.5, obtained for a forcing at DOF 1.
However, the maximum values of the relative displacement and velocity and of the accelera-
tion are higher, such that the cubic shape of the stiffness curve is more visible, which facilitates
the characterisation of the nonlinearity. The higher amplitude of motion of this mode com-
pared to the case of an excitation applied to DOF 1 can be explained by the fact that this mode
is more excited for a force applied to DOF 4 than for a force applied to DOF 1. Furthermore,
some oscillations are again present in the curves due to the presence of the harmonics 1/4.
They can be removed by applying a high-pass filter to the data.

Another mode for which the ASM produces good results is the second mode. Indeed,
although the displacement ratio is not very high, the analysis of the acceleration time series
reveals a strong nonlinear behaviour. Furthermore, the amplitude of the relative displacement
q5 − q6 and of the acceleration q̈5 are maximum for this mode. The stiffness and damping
curve obtained for this mode are shown in Figure 4.15.
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Figure 4.15: Stiffness and damping curves for the second mode of the 10 DOF system with
a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 5.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

The cubic nature of the stiffness force can be deduced from the stiffness curve. However,
similarly as for 2 DOF systems with a cubic stiffness, there is a separation of the curve in
two distinct branches at a relative displacement of approximately -0.9 and 0.9 m. This is
again due to the presence of harmonics in the response of the system. Since there are both
harmonics of higher order and the harmonics 1/2, both a low-pass and a high-pass filter have to
be successively applied to the data. The stiffness and damping curves obtained when filtering
the data is represented in Figure 4.16.
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Figure 4.16: Stiffness and damping curves for the second mode of the 10 DOF system with a
cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 5 obtained
after filtering the data. The curve obtained from the simulated measurements is shown in blue
and the exact curve is depicted in orange.

The different branches of the stiffness curve have disappeared and the curve is cubic,
although it does not correspond to the theoretical curve. Once again, filtering the data before
applying the acceleration surface method proves to be a good solution to improve the stiffness
curve. On the other hand, the damping curve is still difficult to interpret.
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An additional mode for which the functional form of the stiffness force may be found
from the stiffness curve is the 9th mode. However, the cubic shape is less clearly visible as
for modes 2 and 4, but it is more easy to identify as when the excitation is applied to DOF
1, for which the stiffness curve is shown in Figure 4.12a. While there is only one mode for
which the cubic nature of the stiffness force between DOFs 5 and 6 can be identified when
applying the excitation to DOF 1, there are three modes when applying the forcing to DOF 4.
This highlights the influence of the position of the excitation on the results of the ASM.

ASM applied to DOF 6

The acceleration surface method is now applied to DOF 6. The displacement ratio

rd =
RMS(q6 −q5)

RMS(q6 −q7)
(4.5)

is computed for each mode and indicated in Table 4.4.

Mode rd [-]
1 0.569
2 0.471
3 0.699
4 0.657
5 0.525
6 2.31
7 0.776
8 1.67
9 1.07

10 2.15

Table 4.4: Displacement ratio of all the modes of the 10 DOF system with a cubic stiffness for
which the excitation is applied to DOF 4 and the ASM is applied to DOF 6.

Despite its low displacement ratio, mode 2 is the mode for which the resulting stiffness
curve is the best. Similarly as when the ASM is applied to DOF 5, it can be explained by
the high amplitude of q6 − q7 and q̈6 at this mode. The stiffness and damping curves for the
second mode are illustrated in Figure 4.17.
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Figure 4.17: Stiffness and damping curves for the second mode of the 10 DOF system with
a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 6.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

Both curves are similar to those obtained for the same mode when the ASM is applied
to DOF 5. The stiffness curve is cubic, but there is the presence of two branches, one at the
positive displacements and one at the negative displacements. These branches are more visible
in this case than in Figure 4.15a. They are again due to the presence of harmonics. Applying
a low-pass and a high-pass filter to remove all the harmonics and only keep the fundamental
frequency, the stiffness and damping curves in Figure 4.18 are obtained.
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Figure 4.18: Stiffness and damping curves for the second mode of the 10 DOF system with a
cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 6 obtained
after filtering the data. The curve obtained from the simulated measurements is shown in blue
and the exact curve is depicted in orange.

It can be seen that the stiffness curve is not composed of different branches anymore and
has a cubic shape. However, unlike in Figure 4.16a, the cubic coefficient seems to be nega-
tive while it is in reality positive. The nonlinearity could thus be considered as a softening
nonlinearity while it is actually hardening. This is due to the stiffness force between masses 6
and 7, which makes the stiffness curve decrease as the relative displacement increases. As the
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acceleration surface method only intends at finding the functional form of the nonlinear force
and not at determining its coefficients, the method could still provide useful information with
such a stiffness curve, the correct cubic coefficient being afterwards determined accurately
with a parameter estimation technique.

Despite their low displacement ratios, modes 5, 7 and 9 are also good candidates to apply
the ASM as the stiffness curves exhibit a slightly cubic curve and are similar to the curve
depicted in Figure 4.12a. Applying the excitation to DOF 4, there are thus again more modes
for which the stiffness curve is cubic than when applying the excitation to DOF 1 and the
ASM to DOF 6.

On the other hand, modes 6, 8 and 10, which have the highest displacement ratios, do
not produce stiffness curves from which the cubic expression of the stiffness force can be
recognised. For these modes, the curve is close to the theoretical curve, which can be explained
by the high displacement ratio, the stiffness force of the nonlinear connection being high
compared to that of the linear connection neglected in the ASM. As the neglected force is
small, the curve is close to the exact curve obtained from the expression of the stiffness force
of the nonlinear connection. However, the stiffness curve has a different shape and is not
cubic due to the neglected forces that are small but not null. This is illustrated for mode 6 in
Figure 4.19.
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Figure 4.19: Stiffness and damping curves for the 6th mode of the 10 DOF system with a cubic
stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 6. The curve
obtained from the simulated measurements is shown in blue and the exact curve is depicted in
orange.

The unexpected shape of the stiffness curve for these three modes may be explained by
the fact that they cannot be clearly detected in the time series of the acceleration of DOF 6
as they are close to the previous mode, which also has a larger amplitude. These modes may
therefore be impacted by the other modes, creating these stiffness and damping curves. The
acceleration time series of DOF 6 and the frequency windows of modes 6, 8 and 10 used for
the ASM are shown in Figure 4.20.
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Figure 4.20: Acceleration of DOF 6 as a function of the excitation frequency of the 10 DOF
system with a cubic stiffness and an excitation at DOF 4 and the frequency windows of modes
6, 8 and 10.

4.2 Second system with a cubic stiffness
Another system is now considered whose nonlinearity also consists of a cubic stiffness at the
connection between DOFs 5 and 6. The stiffness coefficients on one side of the nonlinear
connection are all equal to 1 N/m and are equal to 10 N/m on the other side. One side of the
nonlinear connection thus has a higher stiffness than the other. This may occur in real-life
structures for which the connection between two substructures may exhibit nonlinear charac-
teristics [2, 10, 11]. Each of the two substructures being made of different materials and having
a different geometry, they have a different stiffness, such that one side of the nonlinearity often
has a higher stiffness than the other. The studied system is represented in Figure 4.21.

Figure 4.21: Second 10 DOF system with a cubic stiffness as represented in the NI2D soft-
ware.

A sine sweep excitation is applied to the system having an amplitude of 0.2 N, a starting
frequency of 0 Hz, an ending frequency of 1 Hz, which is higher than the frequency of the
10th linear mode equal to 0.966 Hz, and a sweep rate of 0.001 Hz/min. The parameters of the
Newmark integration scheme are γ = 1

2 and β = 1
4 and the sampling frequency is equal to 200

Hz, which is 200 times the highest frequency of the excitation.

4.2.1 Excitation applied to DOF 4
The forcing is first applied to DOF 4 as this showed to provide good results for the previous
10 DOF system. The ASM is applied to the degrees of freedom 5 and 6 and to all the modes.
The time series of the acceleration of DOFs 5 and 6 are depicted in Figure 4.22.
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Figure 4.22: Acceleration of DOF 5 and DOF 6 as a function of the excitation frequency of
the second 10 DOF system with a cubic stiffness and an excitation applied to DOF 4 and the
frequency windows of the studied modes.

At both degrees of freedom, the first seven modes can be detected, although mode 6 has a
small amplitude at DOF 6 and mode 7 has a small amplitude at DOF 5. However, the modes
8, 9 and 10 have such a small amplitude that they are difficult to identify in the time series.
The ASM can therefore not be applied to these modes, as the frequency band of a mode needs
to be determined from the time series before applying the method to the data of this frequency
band. Additionally, at such small amplitudes, the modes behave linearly and are therefore of
little interest for the ASM.

ASM applied to DOF 5

The acceleration surface method is first applied to DOF 5 and to mode 1. The resulting stiff-
ness and damping curves are illustrated in Figure 4.23.
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Figure 4.23: Stiffness and damping curves for the first mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 5.
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It can be seen that the stiffness curve is composed of 5 different pairs of lines indicated in
different colours, which are due to the 5 maxima and 5 minima per period. These extrema are
due to the presence of harmonic components, such as the harmonics of third and fifth order,
in the response of the system to the excitation and can be seen in Figure 4.24. Three of these
lines have a positive value of −q̈5 for a positive relative displacement and are due to the three
maxima for which q5−q6 is positive, the two other lines corresponding to the two minima for
which the relative displacement is positive. These different pairs of lines separate the stiffness
curve in two different parts for which the value of −q̈5 has opposite signs, making it more
difficult to analyse the curve. This is similar to what can also be encountered for 2 DOF
systems. While there are several extrema of the relative displacement per period, it is equal
to 0 m at only two points, one for which the relative velocity is positive and one for which
it is negative. The damping curve is therefore not composed of different curves such as the
stiffness curve. Applying a low-pass filter to remove the harmonic components, the obtained
stiffness and damping curves are shown in Figure 4.25.
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Figure 4.24: Relative displacement q5 − q6 as a function of the excitation frequency for the
first mode of the second 10 DOF system with a cubic stiffness and an excitation at DOF 4.
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Figure 4.25: Stiffness and damping curves for the first mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF
5 obtained after filtering the data. The curve obtained from the simulated measurements is
shown in blue and the exact curve is depicted in orange.
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Filtering the data before applying the ASM improves the stiffness curve, as it is now cubic
and not composed of different lines. It is thus easier to interpret the curve and deduce from it
the cubic nature of the stiffness force between DOFs 5 and 6, although it does not correspond
to the exact curve. However, applying a filter does not improve the damping curve, which
remains impossible to interpret.

Applying the ASM to DOF 5 and to the other modes, it can be concluded that modes 3
and 4 also produce cubic stiffness curves, which are however less good than that of mode 1
obtained after filtering the data.

ASM applied to DOF 6

The ASM is now applied to DOF 6. When considering the first mode, the stiffness curve is
similar to the curve obtained when the ASM is applied to DOF 5. However, at small relative
displacements when the curve is not separated in different curves, the curve is decreasing
as the relative displacement increases. This is due to the stiffness force between the masses
6 and 7, which decreases as the relative displacement q6 − q5 increases. Using a low-pass
filter to remove the harmonic components, the resulting stiffness curve is cubic such as the
one represented in Figure 4.25a, but it seems to have a negative cubic coefficient, such as in
Figure 4.18a. This is again due to the linear stiffness force between DOFs 6 and 7, which
decreases as a cubic function of the relative displacement q6 −q5, as depicted in Figure 4.26.
A similar reasoning explains the stiffness curve shown in Figure 4.18a.
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Figure 4.26: Stiffness force between DOFs 6 and 7 as a function of the relative displacement
q6−q5 for the first mode of the second 10 DOF system with a cubic stiffness and an excitation
at DOF 4 and for which a low-pass filter has been used.

Applying the acceleration surface method to mode 4, the obtained stiffness and damping
curves are depicted in Figure 4.27.
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Figure 4.27: Stiffness and damping curves for the 4th mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF 6.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

Both in the stiffness curve and in the damping curve, three distinct curves can be observed
for small relative displacements and velocities. They are due to the presence of the harmonics
3 and 1/3 in the response of the system to the excitation, the presence of the harmonics of third
order being due to a 3:1 modal interaction with mode 8, as indicated by the frequency-energy
plots represented in Figure 4.28.
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Figure 4.28: Frequency-energy plots of the nonlinear normal modes 4 and 8 of the second 10
DOF system with a cubic stiffness as well as the third harmonics of mode 4.

These harmonics create small variations in amplitude of the maxima of the relative dis-
placement, such as already illustrated for another system in Figure 4.4. As these oscillations
are small, the different curves resulting from the different maxima, for the stiffness curve, and
the different zeros, for the damping curve, are close to each other, unlike in cases for which
there are stronger harmonic components creating additional maxima. As these different lines
result from harmonic components, a low- and a high-pass filter are applied to the data to re-
move all the harmonic components. The obtained stiffness and damping curves are shown in
Figure 4.29.
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Figure 4.29: Stiffness and damping curves for the 4th mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 4 and for which the ASM is applied to DOF
6 obtained after filtering the data. The curve obtained from the simulated measurements is
shown in blue and the exact curve is depicted in orange.

4.2.2 Excitation applied to DOF 7
The sine sweep excitation is now applied to DOF 7, which is situated in the part of the system
with the highest stiffness. The time series of the acceleration of DOFs 5 and 6 are depicted in
Figure 4.30.
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Figure 4.30: Acceleration of DOF 5 and DOF 6 as a function of the excitation frequency of
the second 10 DOF system with a cubic stiffness and an excitation at DOF 7 and the frequency
windows of the studied modes.

While for an excitation at DOF 4, modes 8, 9 and 10 were not detectable and mode 7 was
only weakly visible, these modes can now easily be detected in both time series. The ASM
can therefore be applied to these modes. On the other hand, modes 5 and 6 cannot be detected
in the time series of −q̈6.

The acceleration surface method is applied to DOF 5 and to mode 7. The resulting stiffness
and damping curves are illustrated in Figure 4.31.
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Figure 4.31: Stiffness and damping curves for the 7th mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 7 and for which the ASM is applied to DOF 5.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

The stiffness curve is cubic and close to the theoretical curve and the damping curve is lin-
ear as it should be. However, the damping curve does not exactly correspond to the theoretical
curve obtained from the analytical expression of the damping force between DOFs 5 and 6.
Furthermore, some loops can be observed around the linear part of the damping curve. These
loops are due to the beating phenomenon occurring after the main resonance peak. Despite
these loops in the damping curve, this mode allows the correct identification of the functional
forms of both the stiffness and the damping force between DOFs 5 and 6, the stiffness force
being cubic and the damping force being linear.

The ASM is now applied to mode 8. The stiffness and damping curves obtained for this
mode are represented in Figure 4.32.
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Figure 4.32: Stiffness and damping curves for the 8th mode of the second 10 DOF system
with a cubic stiffness and an excitation at DOF 7 and for which the ASM is applied to DOF 5.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

Both the stiffness curve and the damping curve are close to the theoretical curve. However,
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due to the small relative displacement q5 −q6 at this mode, the stiffness curve is only weakly
cubic and may be mistaken for a linear stiffness curve. The determination of the cubic nature
of the stiffness force is thus more difficult when applying the ASM to mode 8 than when
applying it to mode 7. On the other hand, the damping curve is closer to the theoretical curve
than the damping curve of mode 7 and the loops in the curve are less visible, although still
present. The linear expression of the damping force can thus be recognised from this mode,
but not the cubic expression of the stiffness force.

The fact that the damping curve is linear and close to the theoretical curve is due to the
stiffness force between DOFs 4 and 5 which is small for mode 8. Indeed, the damping curve
corresponds to the points for which the relative displacement q5 −q6 is equal to zero and thus
q5 = q6, both displacements being close to 0 m. The degrees of freedom 4, 5 and 6 reaching
0 at almost the same moment, meaning that they are perfectly in phase, respectively out-of-
phase, the displacement of DOF 4 is also close to q5 when q5 = q6, such that the stiffness
force 1× (q5 −q4) is small and only has a small influence on the damping curve, while it is
larger for other modes. Similar observations with linear stiffness and damping curves can also
be made for modes 9 and 10. Applying the ASM to DOF 6 does not produce a linear damping
curve for any mode, such that the nonlinear connection cannot be accurately characterised.

4.3 Coulomb friction
A 10 DOF system with Coulomb friction is considered in this section. The system is similar to
the system studied in Section 4.2, the cubic stiffness force being replaced by Coulomb friction
with an intensity of 0.1 N located at the connection between the masses 5 and 6. The forcing
again consists of a sine sweep excitation with an amplitude of 0.2 N, a starting frequency of
0 Hz, an ending frequency of 1 Hz and a sweep rate of 0.001 Hz/min. The parameters of the
Newmark integration scheme are the same as previously. As the damping curve yields good
results for the system in Section 4.2 and an excitation applied to DOF 7, the forcing is again
applied to DOF 7.

4.3.1 ASM applied to DOF 5
The ASM is applied to DOF 5 and mode 8, as this results in good stiffness and damping curves
for the previous system. The stiffness and damping curves are depicted in Figure 4.33.
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Figure 4.33: Stiffness and damping curves for the 8th mode of the 10 DOF system with
Coulomb friction and an excitation at DOF 7 and for which the ASM is applied to DOF 5.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

The damping curve is close to the theoretical curve and the presence of Coulomb friction
in the system can be deduced from it, as the jump in −q̈5 at zero relative velocity is clearly
visible. Similarly as for the previous system, this is due to the low stiffness force between
DOFs 4 and 5 at the points of the damping curve, which is only responsible for a small increase
in amplitude of −q̈5 in the damping curve. On the other hand, the points composing the
stiffness curve are not concentrated on a line, but a linearly increasing trend can be seen.
Indeed, all the points of the curve seem bounded by an upper and a lower limit, which are both
linearly increasing with the same slope as the theoretical curve. Furthermore, these limits
are located 0.1 m/s2 above, respectively below, the exact curve. This is due to the Coulomb
friction, having an intensity of 0.1 N, thus creating an acceleration of 0.1 m/s2, the mass of
DOF 5 being equal to 1 kg. As the points of the stiffness curve are obtained through linear
interpolation, they are not always situated on the lower or upper limit, but are always located
between them. The distribution of the points is thus not due to the linear stiffness and damping
forces between DOFs 4 and 5, but to the discontinuity in the damping force between DOFs 5
and 6 resulting from the presence of Coulomb friction. Similar stiffness and damping curves
are obtained for modes 9 and 10.

4.3.2 ASM applied to DOF 6
The ASM is now applied to DOF 6 and mode 9. The stiffness and damping curves are shown
in Figure 4.34.
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Figure 4.34: Stiffness and damping curves for the 9th mode of the 10 DOF system with
Coulomb friction and an excitation at DOF 7 and for which the ASM is applied to DOF 6.
The curve obtained from the simulated measurements is shown in blue and the exact curve is
depicted in orange.

A jump can be seen in the damping curve. However, as the relative velocity becomes
positive, −q̈6 jumps from a positive to a negative value, while it should be the opposite. A
similar behaviour has already been observed in Chapter 1 for a stiffness curve obtained from
experimental measurements on an F-16 aircraft. The shape of the damping curve is mainly
due to the stiffness force between DOFs 6 and 7. Indeed, the representation of this stiffness
force as a function of the relative velocity q̇6 − q̇5 at the points of the damping curve is almost
identical to the actual damping curve, the difference being mainly due to the Coulomb friction
having an amplitude of 0.1 N. This is illustrated in Figure 4.35.

The stiffness curve is linear, but with a higher slope than the theoretical curve. This is again
due to the stiffness force between DOFs 6 and 7, the masses 6 and 7 oscillating perfectly out-
of-phase, resulting in a linear stiffness curve with a higher slope than it should. Such stiffness
curves have already been encountered at the out-of-phase mode of 2 DOF systems.

Similar stiffness and damping curves can also be observed for modes 8 and 10.
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Figure 4.35: Stiffness force between DOFs 6 and 7 as a function of the relative velocity q̇6− q̇5
for the 9th mode of the 10 DOF system with Coulomb friction and an excitation at DOF 7.
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4.4 Cubic stiffness and Coulomb friction
Since the functional form of both the stiffness and the damping force can be correctly identified
using the ASM for the previous systems with only a cubic stiffness or only Coulomb friction, a
system with both a cubic stiffness and Coulomb friction is now considered. Such a system with
both a nonlinear stiffness and Coulomb friction can also be encountered in real-life structures
[10]. The system is the same as in Section 4.2 to which Coulomb friction with an intensity
of 0.1 N has been added between DOFs 5 and 6. A sine sweep excitation with a starting
frequency of 0 Hz, an ending frequency of 1 Hz and a sweep rate of 0.001 Hz/min is applied
to DOF 7, as this enables an accurate characterisation of both the stiffness and the damping
force of the nonlinear connection. The forcing amplitude is equal to 1 N, such that both the
cubic stiffness and the Coulomb friction are not negligible with respect to the linear force
terms. Applying the ASM to DOF 5 and to mode 8 as for the system with only Coulomb
friction, the stiffness and damping curves depicted in Figure 4.36 are obtained.

The stiffness curve is cubic and a jump at zero relative velocity can be seen in the damping
curve, indicating the presence of Coulomb friction. Both the cubic stiffness and the Coulomb
friction can thus be identified from the curves, leading to an accurate characterisation of the
nonlinear forces.
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Figure 4.36: Stiffness and damping curves for the 8th mode of the 10 DOF system with a
cubic stiffness and Coulomb friction and an excitation at DOF 7 and for which the ASM is
applied to DOF 5. The curve obtained from the simulated measurements is shown in blue and
the exact curve is depicted in orange.

4.5 Conclusion
It has been demonstrated that the choice of the mode used in the acceleration surface method
is of high importance, as only some modes allow the accurate characterisation of the nonlinear
force. In particular, the modes for which the relative displacements of the linear connections
of the degree of freedom to which the ASM is applied are low with respect to those of the
nonlinear connection are of high interest for the acceleration surface method. These modes
mostly correspond to modes for which the degrees of freedom at each extremity of the nonlin-
ear connections vibrate out-of-phase while those of the linear connections oscillate in phase

76



Chapter 4 10 DOF systems

and have a similar amplitude. On the other hand, the considered modes also need to have a
nonlinear behaviour in order to determine the expression of the nonlinear forces.

Furthermore, the selection of the extremity of the nonlinear connection to which to apply
the method also influences the results, as different modes should be considered depending on
the selected degree of freedom. One of these degrees of freedom may also yield better results
and simplify the characterisation of the nonlinearity. The selection of the location at which
to apply the excitation is also of crucial importance, as the activation of the modes depends
on the position of the force on the structure, some excitation positions enabling a correct
characterisation of the stiffness and damping forces and others not.

Oscillations in the stiffness and damping curves have been detected, resulting from a modal
interaction with the first mode of the system. These oscillations can easily be removed by
using a high-pass filter. It has also been shown that the presence of harmonics of higher order
can have an influence on the stiffness and damping curves, but the curves can be improved by
applying a low-pass filter to the data.
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Conclusion

The acceleration surface method has been applied to 1 DOF, 2 DOF and 10 DOF systems with
different types of nonlinearities, such as a cubic stiffness, a trilinear stiffness and Coulomb
friction. The systems were subjected to sine sweep excitations at different forcing levels.
The response of the system was obtained through numerical integration using a Newmark
integration scheme on the NI2D software.

It has been shown that the ASM works well for the characterisation of the stiffness force
of the nonlinear connection while the characterisation of the damping force remains a difficult
task. Nonetheless, some artefacts may appear in the stiffness curve as well as in the damping
curve which may complicate the determination of the functional forms of the stiffness and
damping forces. These artefacts can result from the presence of harmonics in the response
of the system to the external force. These harmonics especially appear at some dynamical
regimes, such as superharmonic resonances or modal interactions. This may even lead to
similar stiffness and damping curves for different types of nonlinearities, making the charac-
terisation of the nonlinear force more challenging. One solution to improve the results and
enable a better characterisation of the nonlinearity is to filter the measurement data in order to
remove the harmonic components. This method has proven to work well for the identification
of the stiffness force.

Finally, the choice of the degree of freedom and the mode to which to apply the ASM is of
crucial importance, as the results can significantly differ between modes and the considered
degrees of freedom. In particular, modes for which the relative displacement of the nonlinear
connection is large in comparison with the relative displacement of the linear connection are of
high interest for the ASM. Such modes mostly correspond to modes for which the extremities
of the nonlinear connection oscillate out-of-phase, while those of the linear connection have
a similar amplitude and vibrate in phase. The importance of the position where the force is
applied to the structure has also been highlighted.

In some future work, it might be worth trying to improve the results obtained with the
acceleration surface method for experimental measurements on a real-life structure by filter-
ing the measurement data, as this proved to work well for numerical simulations of simple
systems. Furthermore, it could be investigated in more details why the method works well to
characterise the damping force in some cases, but not in others, and why the quality of the
results strongly depends on the location of the external force applied to the system and the
degree of freedom to which the method is applied.
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[2] J.P. Noël, L.Renson, and G. Kerschen. “Complex dynamics of a nonlinear aerospace
structure: Experimental identification and modal interactions”. In: Journal of Sound
and Vibration 333 (2014), pp. 2588–2607.
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