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ABSTRACT

Abstract

The focus of this master thesis is to use a new signal processing technique, the Qp transform
[1] in a recent machine algorithm LensID [2] to enhance the detection rate of gravitational
wave signals lensed by galaxies. First, we will introduce the concept associated with gravita-
tional waves, signal processing and machine learning. Second, we will present one measured
signal which is part of a lensing study, GW191105, where the Qp transform helps to distin-
guish a gravitational wave better. Third, we will show various examples of injected lensed
signals which are better recognised with their characteristic chirp evolution. Finally, a dis-
cussion of the implementation of this technique with LensID and the associated improvement
will be presented. Finally, we summarise our main �ndings and future prospects.
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INTRODUCTION

Introduction

The captivating overlap of theoretical physics and advanced data analysis unfolds in the
study of gravitational waves and signal processing techniques. The history of Gravitational
Wave (GW) traces back to the 1915 formulation of the general theory of relativity of Albert
Einstein [3]. Nevertheless, Einstein himself did not believe in gravitational waves at �rst [4],
in June 1936, the year after he had sent a paper about the EPR paradox, he sent a paper
with Rosen in which their calculations are wrong and stated that gravitational waves do not
exist. Howard Percy Robertson was at the origin of the criticism against their paper and
convinced Einstein that his calculation with Rosen could be modi�ed to yield the correct
solution. Predicted as ripples in the fabric of space-time, these waves result from the rate of
change in the acceleration of quadrupole objects like merging black holes or neutron stars.

Despite the theoretical brilliance of Einstein, experimental technology took several
decades to catch up. The 1970s saw indirect evidence through observations of a binary
pulsar system, where the orbit decay of pulsar aligned with expectations of energy loss
through gravitational radiation. Russell A. Hulse and Joseph H. Taylor, Jr. received the
1993 Nobel Prize in Physics for this discovery, providing strong indirect support for gravi-
tational waves [5] [6].

Direct detection remained elusive until the Laser Interferometer Gravitational-Wave
Observatory (LIGO) became operational in the early 2000s. In September 2015, LIGO made
history by detecting gravitational waves from the merger of two black holes, con�rming their
existence and ushering in a new era in astrophysics [7].

The success of LIGO, along with detectors like Virgo and KAGRA, hinges on sophis-
ticated signal processing techniques. Signal processing is pivotal for extracting meaningful
information from the noisy data recorded by these detectors. Researchers utilise matched
�ltering, time-frequency analysis, and machine learning algorithms to identify and charac-
terise gravitational wave signals within the data.

Matched �ltering, inspired by radar signal processing, enhances the signal-to-noise ra-
tio by cross-correlating observed data with theoretically predicted waveforms [8]. Time-
frequency analysis, employing methods like spectrograms, studies the frequency evolution
over time of the signal, o�ering insights into the astrophysical source. An interesting method
has also emerged for gravitational wave physics, the Q transform, which o�ers a better rep-
resentation of transient signals [9].

The history of signal processing intertwines with communication systems, radar tech-
nology, and the emerging �eld of gravitational wave astronomy. Mathematical foundations
�nd roots in the work of mathematicians like Claude Shannon, the father of information
theory. His 1948 paper "A Mathematical Theory of Communication" introduced concepts
like entropy, setting the stage for signal processing formalisation [10].

Mathematical tools, especially Fourier analysis dating back to the 19th-century works
by Jean-Baptiste Joseph Fourier [11], play a crucial role. The Fourier transform became

1



INTRODUCTION

foundational, allowing the representation of signals in the frequency domain, and facilitating
the analysis of complex signals by decomposing them into simpler sinusoidal components.

The advent of computers in the mid-20th century played a pivotal role, with the de-
velopment of fast Fourier transform (FFT) algorithms of Cooley and Tukey in the 1960s
revolutionising e�ciency [12]. In the context of gravitational wave astronomy, signal pro-
cessing techniques became indispensable for interferometric detectors like LIGO.

The rich history of signal processing includes luminaries like Alan V. Oppenheim and
Ronald W. Schafer, whose book "Discrete-Time Signal Processing" signi�cantly impacted
the domain, introducing key concepts and algorithms [13].

As gravitational wave detectors push sensitivity and accuracy boundaries, signal process-
ing remains at the forefront, extracting meaningful information. Machine learning automates
detection and classi�cation, boosting the e�ciency of data analysis pipelines with the use of
many algorithms, often called pipelines by the LIGO-Virgo-KAGRA (LVK) collaboration,
which helps recover signals in the various noises present in the detectors.

Interdisciplinary collaboration between physicists, engineers, and mathematicians con-
tinues to drive innovations in both gravitational wave astronomy and signal processing,
creating a symbiotic relationship that enhances our ability to explore the universe.
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1 A Brief Introduction to Gravitational Waves

In this section, we give a brief introduction to General Relativity which helps to understand
the gravitational waves we are going to study later. The developments presented here are
taken from [14].

1.1 General Relativity: Basics

1.1.1 Notation

Usually, when one talks about General Relativity, one introduces the Einstein summation
convention to simplify equations. The main idea is to hide summation symbols and under-
stand that repeated indices (one index up and one done) imply a summation. For example,

v⃗ =
3∑
i=1

viei ≡ viei x =
3∑

µ=0

xµeµ ≡ xµeµ (1.1)

In addition, we add that Latin letters will be associated with 3 components (1 to 3), space,
while Greek letters are used for 4 (0 to 3), time and space. Moreover, letter with a vector,
such as v⃗, has 3 components and bold ones, such as x, 4. We will also use a coma to denote
partial derivative of a quantity such that,

∂

∂xj
vi ≡ vi,j (1.2)

1.1.2 Metric

The metric or metric tensor is one key ingredient for General Relativity, it gives a notion of
physical distances, more precisely it is the square of an in�nitesimal distance between two
points. Often one writes it as,

ds2 = gµνdx
µdxν (1.3)

ds2 is here the squared distance, gµν the metric tensor and dxµ the dual basis of ∂
∂xµ

, a

coordinate basis. In special relativity, one �nds that gµν = ηµν with,

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 or


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


Here we will use the �rst one.

1.1.3 Christo�el Symbols

The Christo�el symbols Γρµν , also known as connection coe�cients, play a key role in de-
scribing how vectors change as they are parallel transported around space-time. They are
given by

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) (1.4)

3
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1.1.4 Geodesic Equation

The geodesic equation describes the path of free-falling objects in space-time. It can be
expressed as

d2xρ

dτ 2
+ Γρµν

dxµ

dτ

dxν

dτ
= 0 (1.5)

where τ is the proper time along the geodesic.

1.1.5 Riemann Curvature Tensor, Ricci Tensor and Scalar

The Riemann curvature tensor Rρ
σµν is a measure of the curvature of space-time, de�ned as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (1.6)

The Ricci tensor is obtained by contracting the Riemann tensor, Rµν = Rλ
µλν , while the

Ricci scalar is obtained by contracting the Ricci tensor, R = Rµ
µ. Note also that,

Rµν = ∂ρΓ
ρ
νµ − ∂νΓ

ρ
µρ + ΓσµνΓ

ρ
σρ − ΓσµρΓ

ρ
σν (1.7)

It is well known [15] that the Riemann tensor has in general 14 independent components
and the special case of Rρ

σµν = 0 imply a �at space-time. In addition to this, we note Rµν =
0, impose more conditions on the Riemann tensor, and we observe only 10 independent
components. This last case is important because it holds for gravitational waves propagating
in vacuum.

1.1.6 Geodesic Deviation Equation

We can now introduce the deviation of geodesics, this equation describes the relative motion
of nearby particles moving along neighbouring geodesics in curved space-time. Roughly, the
equation quanti�es how the separation between two geodesics changes over time due to the
curvature of space-time.

Aν = Rν
µσλT

µT σXλ (1.8)

where we have Aν the relative acceleration of in�nitesimally close geodesics, T µ a tangent
vector to the geodesics and Xλ an in�nitesimal displacement between geodesics.

1.1.7 Einstein Equation

The Einstein �eld equations form the core of General Relativity, relating the geometry of
space-time to the distribution of matter within it. They are given by

Gµν + Λgµν =
8πG

c4
Tµν (1.9)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci

scalar, Λ is the cosmological constant, G is the gravitational constant, c is the speed of
light, and Tµν is the stress-energy tensor. Mathematically, the Einstein equation can be
expressed, in a coordinate basis as a set of coupled non-linear partial di�erential equations
for the metric.

4
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1.2 Gravitational Waves

Knowing the basic principles of General Relativity, we can now focus on a peculiar solution,
gravitational waves. Gravitational waves (GW) represent ripples in the fabric of space-time,
a profound consequence of the general theory of of relativity of Albert Einstein. As we are
going to see, these waves are generated by the rate of change in the quadrupole of massive
objects, leading to �uctuations in the geometry of space and time.

1.2.1 Linearised Equation

The mathematical formulation of gravitational waves begins with the �eld equations of
Einstein. Even though, researchers have managed to show exact solution interpreted as
gravitational wave [16], we will present here a derivation which involves perturbing the metric
tensor and linearising the �eld equations, resulting in the wave equation for gravitational
waves. Mathematically, this process explores the dynamics of the space-time metric under
small perturbations.

We will assume that the propagation of gravitational waves happens as a small gravita-
tional �eld on top of a �at metric. Let gµν represent the metric tensor and hµν denote the
perturbation. For example, in the solar system we have hµν ≲

GM⊙
R⊙c2

≈ 10−6. We thus have,

gµν ≈ ηµν + hµν , |hµν | ≪ 1

When we want to linearise the Einstein �eld equation, we need to compute the Christo�el
symbols which are here,

Γαµν =
1

2
ηαβ(hµβ,ν + hβν,µ − hµν,β) (1.10)

We then note that the Ricci tensor becomes more simple as quadratic Christo�el sym-
bols, see equation (1.4), are either zero or quadratic in hµν , so that at �rst order in hµν ,

Rµ
σνρ = ∂νΓ

µ
ρσ − ∂ρΓ

µ
νσ ⇒ Rµν = ∂ρΓ

ρ
νµ − ∂νΓ

ρ
µρ (1.11)

Assuming that here ηµν lowers and ηµν raises indices. We de�ne □ = ∂λ∂
λ and have at

linear order,

Rµν =
1

2
(hλµ,λν −□hµν − hλλ,µν + hλν,λµ) (1.12)

If we take the approximation that there is no accelerated expansion of the Universe
(i.e. Λ = 0) and compute the Ricci scalar, we can then write the linearised Einstein �eld
equations as,

□hµν + h,µν − hλµ,λν − hλν,λµ − ηµν□h+ ηµνh
λσ
,λσ = −16πG

c4
Tµν (1.13)

We then de�ne γµν ≡ hµν − 1
2
ηµνh or equivalently hµν ≡ γµν − 1

2
ηµνγ and obtain,

5
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−□γµν − ηµνγ
α,β
αβ + γ,αµα,ν + γ,ανα,µ = −16πG

c4
Tµν (1.14)

In addition, the theory, via the Einstein tensor, is invariant under coordinate transfor-
mation and we can pick the gauge transformation, see [14] for details ,

hµν → h′µν + ξµ,ν + ξν,µ (1.15)

which can be interpreted as an in�nitesimal coordinate transformation of the form,

xµ = x′µ − ξµ(x) (1.16)

Writing it in terms of γµν and derivating one times, one gets,

γ′µν,ν = γµν,ν +□ξµ + ξν,µ,ν − γ′λ,µ,λ = γµν,ν +□ξµ (1.17)

We can always �nd a solution to γµν,ν = −□ξµ. In this gauge, often called Harmonic, Lorenz,
Hilbert or even de Donder gauge, we can thus change hµν accordingly to equation 1.15 and
also �nd,

γαβ,β = 0 (1.18)

It might remind you the electromagnetism, where the Lorenz gauge is given by A,µµ = 0 in
a way that we get the wave equation □Aµ = 0 for the four-potential in vacuum.
In contrast, we here �nd that the linearised Einstein �eld equations yield the wave equation,

□γµν = −16πG

c4
Tµν (1.19)

Here, □ is the d'Alembertian operator, G is the gravitational constant, c is the speed
of light, and Tµν is the energy-momentum tensor. A general solution of this equation takes
the form,

γµν(x) =
4G

c3

�
δ(cx0 − cy0 − |x− y|)

|x− y|
Tµν(y) d

4y =
4G

c4

�
Tµν(x

0 − |x−y|
c
,y)

|x− y|
d3y (1.20)

We see in this solution that we have a retarded perturbation propagating at the speed
of light. We will discuss vacuum solution in Section 1.2.2 and others in Section 1.2.4.

1.2.2 Vacuum Solution: Gravitational Waves

We will now focus on the vacuum solution which assumes Tµν = 0. In that case, the Einstein
equations give,

Rµν −
1

2
Rgµν = 0 ⇔ Rµν = 0 (1.21)

We note here that all the physics lies inside the Riemann tensor which is contracted here to
obtain the Ricci tensor.

6
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When we pick the Hilbert gauge, we still have some degree of freedom and can pick
γµµ = 0 (traceless), we are not going to detail this but explanations can be found in [14]. In
this gauge, γµν = hµν , thus our equation becomes,

□hµν = 0 (1.22)

We can write the solution as a superposition of plane wave,

hµν = Re(ϵµνe
ikσxσ) (1.23)

From equation (1.18), (1.22) and the traceless condition, we �nd kµϵ
µ
ν = 0,k2 = kµk

µ = 0
and ϵνν = 0. We call ϵµν the polarisation vector of the gravitational wave.
Along with these conditions, in this Hilbert gauge, we still have the choice for ξµ(x) and pick
ξµ(x) = Re(−iϵµeikσxσ) with a wave propagating in the third space direction, kµ = (k,0,0,k).
One can show that the resulting polarisation vector is,

ϵµν =


0 0 0 0

0 ϵ11 ϵ12 0

0 ϵ12 −ϵ11 0

0 0 0 0

 (1.24)

We have here found an example of transverse, traceless tensor, often called Transverse
Traceless (TT) gauge. In general, the TT gauge is thus a peculiar Hilbert gauge de�ned by,

hµ0 = 0
∑
k

hkk = 0 hkj,j = 0 (1.25)

Note that here, as for light, we have two linearly independent polarisation states, the main
di�erence between light and gravitational wave resides in their transformation under ro-
tation. For example, if we make a spatial rotation by an angle ϕ about the third space
dimension, we obtain,

ϵ′µν = Rα
µ(ϕ)R

β
ν (ϕ)ϵαβ =


1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 0 0 1



1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 0 0 1

 ϵ′µν (1.26)

=


0 0 0 0

0 ϵ11 cos 2ϕ+ ϵ12 sin 2ϕ −ϵ11 sin 2ϕ+ ϵ12 cos 2ϕ 0

0 −ϵ11 sin 2ϕ+ ϵ12 cos 2ϕ −ϵ11 cos 2ϕ− ϵ12 sin 2ϕ 0

0 0 0 1

 (1.27)

We know that light is invariant under rotation of 360°, the objects we have discovered
here, the gravitational waves, are di�erent from light because they are also invariant under
rotation of 180°.

7
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1.2.3 Geodesic Deviation in the Presence of Gravitational Waves

Geodesic deviation provides a framework for understanding how gravitational waves a�ect
the motion of particles. In the presence of a gravitational wave, nearby geodesics experience
tidal forces, leading to the stretching and squeezing of space-time. We will look at equation
(1.8) in the speci�c case of test particles at rest and follow them along ∂t with separation
vector Xµ, we then have,

d2X i

dt2
= −Ri

0j0X
j (1.28)

Remember, Rµσνρ = gµλR
λ
σνρ, so that here,

Ri0j0 =
1

2
(h0j,0i + hi0,j0 − hij,00 + h00,ij) = −1

2
hTTij,00 (1.29)

Where we use the TT gauge in the last equality so that �nally, by lowering the i index,

d2Xi

dt2
=

1

2

∂2hTTij
∂t2

Xj (1.30)

Assuming that the test particles are initially at rest with coordinate Xi(0) when hij = 0 and
evolve along a geodesic ζ(t), we �nd a solution,

Xi(τ) ≈ Xi(0) +
1

2
hij(ζ(t))X

j
(0) (1.31)

We can focus on particles aligned in the third direction, X⃗ = (0,0,a), with di�erent a for
di�erent particles. In the case where we pick a perturbation of the form of equation (1.24)
which is often written with ϵ11 = h+ and ϵ12 = h×. In the case of a periodic plane wave
propagating in the z-direction, we have,

h+ = Re[A+e
−iω(t−z)] and h× = Re[A×e

−iω(t−z)] (1.32)

We see that hijX
j
(0) = 0 meaning the perturbations are always transverse to the direction

of the gravitational waves. We thus rewrite the equation (1.30) as,(
Ẍ1

Ẍ2

)
=

1

2

(
ḧ+ ḧ×
ḧ× −ḧ+

)(
X1

(0)

X2
(0)

)
(1.33)

As hij is real symmetric, we can diagonalise with an orthogonal matrix R and write,(
Ẍ1

Ẍ2

)
=

1

2
R

(
Ω 0

0 −Ω

)
RT

(
X1

(0)

X2
(0)

)
(1.34)

De�ning the displacement along the principal direction,(
χ

κ

)
= RT

(
X1

X2

)
,

(
χ0

κ0

)
= RT

(
X1

(0)

X2
(0)

)
(1.35)

We �nd a "quadrupole" type oscillation, which can be imaged as in Figure 1 de�ned by,

χ ≈ χ0 + Ω(t)χ0, κ ≈ κ0 − Ω(t)κ0 (1.36)

8
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Figure 1: Gravitational e�ect on test particles with "quadrupole" type oscillation, from [17].

1.2.4 Sources

To have an idea of how gravitational waves are produced, we will develop a mathematical
view of their generation process and then describe the known sources and present search.
We now go back to the Hilbert gauge and take equation (1.20) for a localised and distant
sources with |x| = r,

γµν(t,x) =
4G

c4r

�
Tµν(t− r,y) d3y (1.37)

From the linearised conservation law T µν,ν = 0 and under the assumption of nearly Newtonian
sources for which the energy density is dominated by the matter density ρ (T 00 ≃ ρc2), one
can �nd the spatial perturbation [14],

γkj(t,x) =
2G

c4r

∂2

∂t2

�
ρ(t− r, y) ykyj d3y (1.38)

We see with this equation that the �rst multipole associated with a gravitational wave is
the quadrupole contrary to electrodynamics where one can have radiation with a dipole.
For completeness, we give the quadrupole formula of Einstein which gives the luminosity
observed for a given source,

LGW =
G

5c5
⟨
...
Q
ij ...
Q ij⟩ (1.39)

where angle brackets denote time averages over several characteristic periods of the source
and Q is the traceless quadrupole tensor,

Qkj(t) =

�
(3xkxj − r2δkj)ρ(t,x) d

3x (1.40)

So that in the TT gauge, one �nds also,

hTTjk (t,r) =
2G

3c4r

...
Q
TT

jk (t− r) (1.41)

To estimate the strain power associated with a gravitational wave, one can assume Q̈ ≃Mv2

where M is the mass and v the orbital speed of binaries objects, the period under which
these objects orbit each others is de�ned as T , we thus write those equations as,

h ≃ G

c4
Mv2

r
(1.42)

9
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LGW ≃ G

c5

(
Mv2

T

)2

(1.43)

We see in equation (1.42) that the perturbation measured in detectors is proportional the
the energy of the sources and becomes smaller with the distance of the source. Near the
merger, for black holes binaries of 10 solar masses travelling near the speed of light at 100
Megaparsec, we �nd a strain around 10−21 which matches with recent measurements. We
see in equation (1.43) that the emitted power depends on the period on which the system
oscillates meaning that quadrupole oscillating with a higher frequency would emit more
energy per unit time.
On the one hand, the known and detected sources leading to gravitational waves are black
hole binaries, neutron star binaries and black hole neutron-star binaries, lose energy by
emitting gravitational radiation and thus their orbit shrinks with time until collision. One
often called those type of object, the Compact-Binary Coalescences (CBC) as one can seen
in Figure 2.

Figure 2: Detected CBC signals. Legend is included in the image to show the black hole/neu-
tron star origin with an arrow explaining the merging scenario, the �rst 2 circles represent
initial objects and the third one represents the �nal object, taken from the LIGO Virgo
KAGRA (LVK) Collaboration made by Aaron Geller.

On the other hand, undetected and investigated sources are for example gravitational
waves coming from white dwarf binaries, fast rotating neutron stars which are not symmetric
due to their rotation. There should also exist a stochastic background of mixed gravitational
waves from which we can only extract statistical properties [18], their origin depends on the
frequency bands of the detectors, they can come from binaries or early universe sources for
example [19].
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1.2.5 Detector: Working Principle and Noises

Gravitational wave detectors, such as the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) and Virgo, operate based on the principle of interferometry. A laser beam
is split and sent along two perpendicular arms, each equipped with a highly re�ective mir-
ror suspended as pendulum. Gravitational waves cause tiny changes in the arm lengths in
the sense discussed in Section 1.2.3, altering the interference pattern when the beams are
recombined, see Figure 6. By precisely measuring these changes, detectors can identify and
characterise gravitational wave signals.

Figure 3: Two masses connected by a spring as an idealised gravitational wave detector,
from [14].

To understand a bit more the physics behind the detection, let us describe a toy model,
depicted in Figure 3 in which two massesm are connected by a massless spring of equilibrium
length 2l0. The vector connecting the two masses forms an angle θ with the z-axis (direction
of propagation of our gravitational wave) and ϕ with the x-axis. The gravitational wave
produce a tidal acceleration TGW on the test masses. Let ω0 be the frequency of the oscillator,
and we assume that the damping time τ0 ≪ 1/ω0. The separation of the masses is 2(l0+ξ(t)),
where the relative separation ξ(t) will satisfy the di�erential equation,

ξ̈ +
1

τ0
ξ̇ + ω2

0ξ = TGW (1.44)

In the case where we assume only polarisation along x and y (A× = 0), from equation (1.32)
and (1.33), when projected onto the detector (giving a factor l0 sin

2 θ cos2 2ϕ due to the
rotation about the z and y-axis), the tidal acceleration is,

TGW = −1

2
ω2Re{A+e

−iωt}l0 sin2 θ cos2 2ϕ (1.45)

The driven solution of the equation is thus,

ξ = Re{Ae−iωt} with A =
1

2
A+l0 sin

2 θ cos 2ϕ
ω2

ω2 − ω2
0 + iω/τ0

(1.46)
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We see here the transverse nature of gravitational wave in the term sin2 θ (perpendicular
wave to the detector would not make perturbation). Moreover, we see that the amplitude
of the wave is related to the relative displacement (i.e. A+ ≃ ξ

l0
), this tends to explain why

we usually de�ne the strain of a gravitational wave to be,

h ≡ ∆l

l0
(1.47)

We understand that the gravitational wave through A+ and ω is related to the change in
length of the oscillator but also by its orientation with respect to the detector via θ and ϕ.

To give an idea of the typical strain observed now and in the future, we depicted in Figure
4 the typical sensitivity curve of certain detectors but also some astrophysical sources, using
an online software developed within the LVK collaboration [20].

Unfortunately, gravitational waves are immersed in background noise, thus the success of
gravitational wave detection relies on the comprehension of various sources of noise that can
mask or mimic true signals. Understanding and minimising noise are crucial for enhancing
the sensitivity of detectors.
Noise in gravitational wave physics is a wide subject and we will not take the time to detail
this here but will simply go through some of the known noises [21], [22], [23], [24]. For
example, we will look at some of the noises seen in the Advanced LIGO detector which
consists in a Michelson interferometer with mirror being our test masses as depicted in
Figure 5 and 6.

12
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Figure 4: Sensitivity curve for di�erent detectors and di�erent frequency ranges. Current
detectors, Advanced Virgo (AdV), Advanced LIGO(aLIGO) and International Pulsar Tim-
ing Array (IPTA) are shown but also next-generation detectors such as LISA, Einstein
Telescope (ET) and Cosmic Explorer (CE). In addition, we have added typical strain ob-
served for di�erent classes of signals such as the stochastic background, massive binaries
and compact binary inspirals but also the �rst signal detected GW150914.

Figure 5: A 40 kg mirror from LIGO de-
tectors, from [25].

Figure 6: Sketch of the working principle of
the LIGO interferometer. Light is sent into a
beam splitter and then mirrors (test masses)
re�ect or let light go through to �nish again
in the beam splitter and form an interference
pattern which changes with noise or with grav-
itational wave signals, from [25].
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We have illustrated some of the associated noises in Figure 7 with the non-exhaustive
list of the noise,

1. Quantum noise takes into account the e�ects of statistical �uctuations in detected
photon arrival rate (shot noise) and radiation pressure due to photon number �uctu-
ations.

2. Seismic noise comes from the transmission of vibrations to the suspension systems of
the test masses or from seismic waves for example.

3. Newtonian noise sometimes called gravity gradient comes also from seismic waves
which produce density perturbations in the earth close to the test masses, which in
turn produce �uctuating gravitational forces on the masses.

4. Suspension thermal noise denotes the thermal �uctuation in the suspension which
holds the test masses leading for example to the 510Hz fundamental violin mode.

5. Coating Brownian, coating Thermo-optic and substrate Brownian noises arise from
mechanical and elastic dissipation in the coatings.

6. Excess gas noise in the 4 km long beam tubes will lead to statistical variations in the
column density of gas particles in the beam path. Indeed, even if the tubes contain
one of the largest and cleanest vacuum system in the world, the remaining particles
will make light scatter along its path and perturb the measurements.

Figure 7: Sketch of the di�erent noises for the Advanced LIGO detector, from [26].
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Moreover, other noise sources include power lines, trucks passing close to the detector,
and imperfections in the detector components. Advanced signal processing techniques are
employed to distinguish true gravitational wave signals from the noise, this will be discussed
in Section 2.

1.3 Lensing in Gravitational Waves

Now let us describe rapidly the properties of lensing as we are going to search gravitational
wave lensing later. On the one hand, lensing in astrophysics is known to happen for light
when going near large masses, we will use the development coming from [27], [28] and [29]
without deriving them explicitly to give the physical intuition behind the phenomena. In
Figure 8, one can observe the path taken by light when going through a galaxy cluster,
explaining why we can see multiple images. In addition, we show in Figure 9, di�erent
measurements made for light deviation.

Figure 8: Sketch of the gravitational lensing observed for light when going through a galaxy
cluster. Credit: NASA, ESA.
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(a) (b) (c) (d)

Figure 9: Examples of lensing observed for light. (a) Einstein ring, (b) Einstein cross, (c)
Cosmic snake, (d) Smiley face. Credit: ESA/Hubble, NASA.

On the other hand, from now on, we will focus on lensing that happens on the grav-
itational waves. There exist di�erent regimes depending on the size of the wavelength in
comparison to that of the system in which it passes [30] and also depending on the density
contrast [27],

δL =
ρL − ρavuniv
ρavuniv

(1.48)

where ρL and ρavuniv are the density of the lens and that of the average universe.
There exist two main categories, strong and weak lensing. Strong lensing occurs when the
density of the object deforming the path of the wave, the lens, is much larger than the one
of the average universe, i.e. δ ≫ 1, this lensing leads to images we can observe in Figure 9.
People sometimes refer to milli and micro lensing as the strong lensing coming from star-size
objects leading to images split by a milli or micro arcsecond. While weak lensing occurs
when δ > 1 and might sometimes come from δ < 0, this leads to small deformation of
the images, for example, a circle might become an ellipse. Those lensing types can also
be described through the size of their wavelength such that micro lensing happens when
the wavelength is greater or comparable to the size of the object (often described via their
Schwarzschild radius RSchw = 2GM

c2
) while milli and strong lensing occurs when the geometric

optics approximation holds (i.e. when the wavelength is much smaller than the object size),
one can see how their strain changes in Figure 10. Micro lensing often presents changing
amplitudes, milli lensing presents beating patterns and other kinds of strong lensing simply
present time separation between their signals.
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(a) (b)

(c)

Figure 10: Examples of lensing observed for light. (a) micro lensing, (b) milli lensing, (c)
strong lensing, from [30].

We have shown for light that multiple images could be observed coming from the same
object at the same time. The same can happen for gravitational waves but signals will not
always be observed at the same time, this can be explained in the context of a perturbed
Minkowski background metric,

ds2 = −(1 + 2
U

c2
)(cdt)2 + (1− 2

U

c2
)dl2 (1.49)

where U ≡ U(r⃗) = −GM
r

is the gravitational potential which we assume small (U ≪ c2),
this is the weak �eld limit. This model gives us for null ray, the travel time being,

t =

� √
1− 2 U

c2

1 + 2 U
c2

dl ≃
�

1− 2
U

c2
dl = l − 2

�
U

c2
dl (1.50)

where l is the Euclidean length of the path. We see that depending on the length of the path,
the travel time changes. Moreover, if the gravitational wave goes through a more intense
gravitational �eld, the travel time will become longer (remember that U is negative).
Other e�ects might also perturb the signals such as magni�cation, distortion and the phase
shift known as the Morse phase, we will not discuss those technical points and focus on the
characteristics of gravitational lensing made by galaxies.
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Galaxies are much denser than the average universe, from this, we know that we are in
a strong lensing regime. We will focus on the case where the wavelength is in the range
of about [3 105,3 107]m (frequency in [10,103]Hz) and galaxy have typical masses around
1011M⊙ corresponding to a Schwarzschild radius of 3 1014m, which tells us that we are not
in the micro lensing regime. We will also suppose that signals are separated in time and not
in the milli lensing regime.

During the third run of observation, O3, strong lensing searches were made using a set
of algorithm LensID [31], GOLUM [32] [33] and HANABI [34]. LensID helps to identify
potential lensing signals and will be discussed in Section 3.1, we will try to improve its
results later. GOLUM then helps to �lter the signals better and HANABI helps to get the
�nal analysis. Such a separation between the di�erent analysis tools is needed because for
n detected gravitational wave signals, about n2 pairs can be made and thus the number
of analysis scales very fast. We understand that LensID can be viewed as a fast analysis
algorithm so that its computation time should be small while the other two serve as �ner
�lters.

Until now, no detection of lensed gravitational wave has been made but the e�ort to
observe one continues in the LVK collaboration partially because measurement on light
indicates its feasibility. Moreover, lensing via the multiple signals measurement coming
from the same sources would help to better localise position of the signals in the sky [35],
see Figure 11. We also know that lensing magni�es the signal coming from a gravitational
wave events, this implies that the observed masses look greater than the actual masses of
the objects. We thus understand that studying gravitational wave lensing would then also
help to characterise which portion of our gravitational waves are lensed and thus understand
the uncertainties on the observed masses better.

Figure 11: An illustration of a sky localisation of a quadruply lensed gravitational wave (4
signals). It shows both the individual (color) and the combined (black) sky localisations at
90% con�dence. Each lensed gravitational wave essentially gives us a new set of detectors
with which to localise the event in the sky, allowing for improved sky localisation, from [35].
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2 Signal Processing Technique

To understand gravitational waves better, one often uses signal processing techniques to
improve the representation of the data. These techniques will be presented in this section
in a way such that one understands the general principles. We will sometimes refer to
continuous de�nitions and sometimes to discrete ones but one should keep in mind that the
data are discrete.
The fundamental object we are going to transform is the strain and we will represent it as,

s(t) ↔ [s(t0),s(t1),...,s(tN−1)] (2.1)

One can observe an example strain of the gravitational wave event GW191105 in Figure
12. As its name indicates, it occurred the 05 November 2019. The time resolution, ∆t,
is given by the inverse of the sampling rate which is here 4096Hz. Note that data are
measured with a sampling rate of 16 384Hz and usually down-sampled to 4096Hz to reduce
computation time.

Figure 12: Example strain of GW191105 during 32 s at 4096Hz.

2.1 Fourier Transform

First, let us introduce the key ingredient to discuss the time-frequency relation, the Fourier
Transform. The Fourier Transform is a powerful mathematical tool used in signal processing,
physics, and many other �elds to analyse and represent functions in terms of their frequency
components. It was developed by Joseph Fourier in the early 19th century [11].

Let us consider our function s(t), which represents a signal in the time domain. The
Fourier Transform of s(t), denoted as s̃(ν), provides a representation of s(t) in the frequency
domain. The formula for the Fourier Transform is given by,

s̃(ν) =

� ∞

−∞
s(t)ei2πνt dt (2.2)

Here, ν represents the angular frequency (in radians per unit time), and i is the imagi-
nary unit. The integral extends over the entire real line.
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In terms of discrete de�nitions,

s̃(ν) =
N−1∑
n=0

s(tn)e
i2πνn/N (2.3)

One important principle associated with this transform is the Gabor�Heisenberg uncer-
tainty principle relating time and frequency uncertainties [36],

σt · σν ≥
1

4π
(2.4)

where for a given function satisfying ψ ∈ L2(R) and ∥ψ∥2L2(R) = 1 ,

u =

� ∞

−∞
t|ψ(t)|2dt σ2

t =

� ∞

−∞
(t− u)2|ψ(t)|2dt (2.5)

ξ =

� ∞

−∞
ν|ψ̃(ν)|2dν σ2

ν =

� ∞

−∞
|ν − ξ|2|ψ̃(ν)|2dν (2.6)

Here, σt represents the uncertainty in time, and σν represents the uncertainty in fre-
quency. This uncertainty principle implies that if we take a signal localised in time (i.e. one
that has a short time resolution), then its frequency content becomes more spread out, and
vice versa. It has implications in well-known subjects in physics. For example, in quantum
mechanics, where the Heisenberg Uncertainty Principle states that there is a limit to the
precision with which two conjugate observables, such as position and momentum, can be
simultaneously known.

The mathematical framework of the Fourier Transform allows us to analyse and under-
stand the frequency content of signals. By transforming a signal from the time domain to
the frequency domain, we can gain insights into its spectral composition. This is partic-
ularly useful in applications such as audio processing, communication systems, and image
analysis.

The Fourier Transform has many important properties, such as linearity, time-shifting,
frequency-shifting, and convolution, which make it a versatile tool for analysing and manip-
ulating signals in various domains where �nding cyclic signals is needed.

2.2 Whitening

As discussed in Section 1.2.5, gravitational wave signals are hidden in various kinds of noise.
An ingredient to distinguish those signals better is the whitening procedure.
Given our set of data s(t), one can compute its Power Spectral Density (PSD) via,

P (ν) = lim
T→∞

1

T

∣∣∣∣∣
N−1∑
n=0

s(tn)e
i2πνt/N

∣∣∣∣∣
2

(2.7)
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where T is the duration in which the PSD is evaluated. Note for completeness that one can
de�ne an Amplitude Spectral Density (ASD) via

√
PSD which gives an order of magnitude

of the amplitude of the signal at di�erent frequencies, see discussion about strain in Section
1.2.5. Afterwards, one can whiten the data according to [37],

swhite(t) =
N−1∑
k=0

s̃(νk)√
P (fk)

e−i2πtk/N (2.8)

This process helps to �atten the observed noise, an example of the change of the PSD can
be observed in Figure 13. One can then more easily distinguish gravitational wave signals
from noises.

Figure 13: Comparison between PSD. The top image represent the PSD of GW191105 with
T=4s. Bottom one, the whitened PSD of GW191105 with T=4s. The violin mode at 500
Hz takes less importance after whitening.
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2.3 Wavelet Transform

Until now, signals were either presented in time or frequency domains, which is not suitable
for gravitational wave analysis as their frequency evolves with time. To have both informa-
tion about frequency and time, many other transforms have been developed. One central
transform is the wavelet transform. General information about wavelet can be obtained
in [38] and [39], we will focus on the needed pieces of information. We de�ned a wavelet
transform as,

Ts(ν, τ) =

� ∞

−∞
s(t)ψ∗

ν,τ (t) dt (2.9)

There exists an inversion formula,

x(t) =
1

Cψ

� ∞

−∞

� ∞

−∞
Ts(ν, τ)ψν,τ (t) dν dτ (2.10)

in the case where one of the following admissibility condition holds,

Cψ =

� ∞

−∞

|ψ̃(y)|2

|y|
dy <∞ (2.11)

� ∞

−∞
ψ(x) dx = 0 , i.e. ψ̃(0) = 0 and ψ̃(x) is continuously di�erentiable (2.12)

Note that the Gabor-Heisenberg uncertainty in equation (2.4) holds for the ψ functions. It
is known that the lower bound of the inequality can be obtained with the Gabor-Morlet
wavelet [39],

ψ∗(t,τ,ν,σ) =

(
2

σ2π

) 1
4

e−
(t−τ)2

σ2 e−2πiν(t−τ), (2.13)

so that

σt =
σ

2
σν =

1

2πσ
(2.14)

In general, one cannot invert transform with the Gabor-Morlet wavelet, but thanks to the
admissibility condition, we know that the transform can be inverted when νσ ≫ 1

π
because,

� ∞

−∞
ψ(x) dx = (2πσ2)

1
4 e−π

2ν2σ2 ≃ 0 (2.15)

2.4 Q Transform

Researchers have developed another transform which is known as the Q transform [40], [41],
[42],

X(τ,ν,Q) =

� ∞

−∞
s(t)w(t,τ, ν,Q)e−2πiνt dt (2.16)
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where Q = ν
σν

> 0 and the function w is a time-domain window centred on time τ with
a duration that is inversely proportional to the frequency under consideration. Note for
example the following window which leads to a similar transform as the one associated with
the Gabor-Morlet wavelet,

w(t, τ, ν, Q) =

(
8πν2

Q2

) 1
4

e−(
2πν(t−τ)

Q )
2

(2.17)

The main di�erence with the Gabor-Morlet wavelet resides in the shift in time in the complex
exponential but also in the de�nition of σ = Q

2πν
. Nevertheless, one can still recover the signal

through an inversion formula [1],[43] because of the connection between the Q transform
and the Mellin transform.
To compute the Q transform one can use the package PyCBC [44] or GWpy [45], those
packages compute the Q transform based on our formula. To know which Q parameter
one should use, both algorithms have their technique to optimise the Q-value, this will be
explained more in-depth in Section 5.1.1. You can see a Q transform based on GWpy in
Figure 15 for the Livingston detector (L1) of the �rst GW event GW150914.

2.5 Qp Transform

Recently, a new paper [1] has suggested a wavelet Q transform where the only di�erence
with the Morlet wavelet is the introduction of a parameter Q such that the wavelet from
equation (2.13) is parametrised with σ = Q

2πν
.

ψ∗(t, τ, ν, Q) =

(
8πν2

Q2

) 1
4

e−(
2πν(t−τ)

Q )
2

e−2πiν(t−τ) (2.18)

We thus observe only a di�erence between the Q transform from equation (2.17) and the
wavelet transform of equation (2.18) in the time-shift of the complex exponential. They
both saturate the Gabor-Heisenberg uncertainty principle with,

σt =
Q

4πν
σν =

ν

Q
(2.19)

Here we see that the parameter Q helps to de�ne the time and frequency resolution. The
higher the Q, the �ner the frequency resolution and the wider the time resolution as a
consequence of the equation (2.4).
In general, to study a given frequency, ν is a constant over time when used in the Q
transform. We will here suppose that it might vary over time thus denoting it with ν(t) and
denote t− τ ≡ ∆t. The next step towards the Qp transform is to make a Taylor expansion
of the frequency around the time τ where the Q transform is evaluated,

ν(t) = ν(τ) +
∂ν

∂t

∣∣∣∣
t=τ

∆t (2.20)

One then chooses,

∂ν

∂t

∣∣∣∣
t=τ

=
(1 + p)ν(τ)− (1− p)ν(τ)

(τ + σt)− (τ − σt)
= 4πν2(τ)

p

Q
=

1

2π

(
2πν(τ)

Q

)2

2pQ (2.21)

With this choice, the p parameter determines the fractional frequency change with respect
to the central frequency over the [τ − σt, τ + σt] time interval. The resulting non-linear
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frequency change helps these wavelets in adapting to the CBC chirping gravitational wave
signals.
We see here that the frequencies will evolve with the frequency of the local wavelet at time
τ depending on the value of pQ. To �nd the new wavelet, we substitute only the oscillatory
term and not the amplitude so that,

e−2πiν∆t → e−2πiν(τ)∆te−(
2πν(τ)∆t

Q )
2
2ipQ (2.22)

With those changes, we �nd the following wavelet, where now ν is again a �xed value in the
transform and not depending on the time.

ψ∗(t, τ, ν, Q, p) =

(
8πν2

Q2

) 1
4

e
−
(
2πν∆t

√
1+2ipQ

Q

)2

e−2πiν∆t (2.23)

where here the time and frequency uncertainty does not saturate the Gabor-Heisenberg
principle,

σt =
Q

4πν
σν =

ν

Q

√
1 + (2pQ)2 (2.24)

For example, when p is positive, the Gaussian envelope will have increasing frequency over
time. This can be observed assuming Gaussian noise via the two-point correlation function
(⟨·⟩ denote an average over time),

⟨T ∗(τ0, ν0, Q, p)T (τ, ν,Q, p)⟩ (2.25)

An explicit derivation can be found in [1], we will here only illustrate what it looks like for
two cases when p = 0 and p > 0 in Figure 14. This Figure helps to understand why the Qp
transform is better suited for chirp signals as it supposes rising frequency for p > 0 and thus
takes into account the shape of the signal better. However, one should also pay attention to
the fact that for �xed p this technique is more biased than the Q transform. For example,
if one takes p = 0.1, all signals with decreasing frequency will be harder to recognise. To
avoid this, one often lets p free and tries to �nd the best parameter according to a given
criterion.
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Figure 14: The module of the expected value for the correlation between T ∗
nd(τ0, ν0, Q, p)

and Tnd(τ, ν,Q, p), i.e. |⟨T ∗
nd(τ0, ν0, Q, p)Tnd(τ, ν,Q, p)⟩|, evaluated as a function of τ and ν,

assuming Gaussian noise, from [1].

To implement this wavelet Qp-transform, the authors [1] followed the guidelines provided
by the GWpy [45] module qtransform.py. Their code is available with the following link,
https://zenodo.org/records/10649073.
You can see a Qp transform based on their algorithm in Figure 16 for the Livingston detector
(L1) for the �rst GW event GW150914. Comparing Figures 15 and 16, one notices that the
Qp transform helps to have a slightly better resolution and thus localise a chirp-like signal
in this case better.

As mentioned earlier, the Qp transform is a �rst order Taylor expansion of the frequency
around a given time. In Figure 14, we understand that it leads in a linear correlation
between two point in the time-frequency plane. As a �rst approximation, this seems to be
an interesting idea but maybe to limited. We think that developing a second order Taylor
expansion would also help to take into account the typical pattern of gravitational wave
frequency which looks like a parabola in the time frequency plane, in the same manner as
[46]. Higher order Taylor expansion could also be interesting if one thinks that more complex
pattern could be observed in spectrograms leading to a kind of polynomial transform.
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Figure 15: Q transform based on GWpy [1] for GW150914 in the L1 detector. Normalisation
of the pixel is made with the median of their values.

Figure 16: Qp transform based on GWpy [1] for GW150914 in the L1 detector. Normalisa-
tion of the pixel is made with the median of their values.
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3 Machine Learning

Machine learning is a branch of arti�cial intelligence that focuses on the development of
algorithms and statistical models that enable computers to learn and improve their perfor-
mance on a speci�c task without being explicitly programmed. The goal of machine learning
is to allow computers to discover patterns and relationships in data automatically, and use
these insights to make predictions or decisions. We usually �nd three main types of machine
learning.

The supervised learning where the algorithm learns from a labelled dataset, where each
example in the dataset is accompanied by a corresponding label or outcome. The algorithm
learns to map input data to the correct output based on the input-output pairs in the
training data. Common supervised learning tasks include classi�cation and regression.

The unsupervised learning where the algorithm learns from an unlabeled dataset, where
the examples do not have corresponding labels. The goal of unsupervised learning is to
discover the underlying structure or patterns in the data. Common unsupervised learning
tasks include clustering and dimensionality reduction.

The reinforcement learning where the algorithm learns by interacting with an environ-
ment and receiving feedback in the form of rewards or penalties. The algorithm learns to
take actions that maximise cumulative reward over time. Reinforcement learning is often
used in areas such as game playing and robotics.

The typical machine learning methodology consists of several steps,

1. Data Collection: Gathering the data that will be used to train and evaluate the model.

2. Data Preprocessing: Cleaning, transforming, and normalising the data to make it
suitable for training.

3. Model Selection: Choosing the appropriate machine learning algorithm and model
architecture for the task at hand.

4. Training: Optimising the model parameters using the training data to minimise a
prede�ned loss function.

5. Evaluation: Assessing the performance of the trained model on a separate validation
or test dataset.

6. Deployment: Integrating the trained model into a real-world application or system.

Machine learning is a powerful tool that has been applied to a wide range of domains,
including image recognition, natural language processing, and �nance.

To understand the working principle of LensID, the machine learning model we are go-
ing to use, we will present di�erent machine learning concepts.
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As a starting point, one can see in Figure 17 an example of a fully connected neural net-
work described mathematically by equation 3.1. In this case, we can thus view the machine
learning algorithm as non linear function applied to linear combination of input neurons.

a
(l+1)
i (o) = f (l+1)

(
w

(l)
i,0 +

sl∑
j=1

w
(l)
i,ja

(l)
j (o)

)
l ∈ [0,L− 1] (3.1)

More precisely, here, the neural networks is de�ned for an input object o with a list of
neurons a

(l)
i (o), where i de�ne the index of a neurons in a layer l which belong to [0, L] if

the network has L layers. The inputs a
(0)
i (o) passed through multiple layers of non linear

function f l where l again de�ne the layer of the function, the importance of an input or
neuron in the prediction of the algorithm is measured via the weight wli,j, where i,j de�ne
that the weight connects a value of a neuron i in a layer l+1 to a neuron j which is in layer
l. This kind of neural network where every neurons are connected are thus referred as fully
connected. In the end, one obtains outputs aLi (o) for a neural network of size L. Note that

each layer has sl neurons so that i and j are in [1,sl] and that we also add biases w
(l)
i,0 for

each layer that do not depend on an input value nor input neuron.

Figure 17: A neural network with 3 inputs(s0 = 3), 2 hidden layer with each 4 neurons
(s1 = s2 = 4) and 2 outputs(sL=3 = 2), from [47].

For example, non linear functions often used are the sigmoid f(x) = 1
1+exp (−x) and ReLu

f(x) = max(0, x). The advantage of those functions is their di�erentiability which enables
the use of gradient descent technique to obtain one optimal value for the wli,j.
One other important aspect of machine learning is the loss function used for the gradient
descent. The loss L usually compares the output of the network with true known output
y(o) (e.g. measurement, labelling made by hand). It takes the form L(aL(o), y(o)), and the
training of the neural network will then consist of minimising 1

N

∑
o L(aL(o), y(o)) for N

known outputs. Example of loss functions are the square error (aL(o)− y(o))2 and absolute
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error |aL(o)− y(o)|.
A better idea for classi�cation problems is to normalise the output with a softmax function,
for k classes,

pi(o) =
exp(aLi (o))∑
k exp(a

L
k (o))

(3.2)

Now the set of pi de�ne a probability and one can use the cross entropy loss, −
∑k

i=1 yi(o) log pi(o).
Especially, in the case of a binary classi�cation problem, one uses the binary cross entropy,
−[y log(p) + (1 − y) log(1 − p)] where we have used the fact that y ≡ y1 = 1 − y2 and
p ≡ p1 = 1− p2.

Afterwards, when one has a machine learning model and a loss function L, one needs to
optimise the weight w. Generally, to accomplish this, one represents the evolution of the loss
versus the number of epochs. An epoch is a measure of how many times an algorithm has
seen the whole training dataset. What we mean by training dataset is a dataset on which
the model learns information and tries to reduce its loss while there also exist validation
dataset on which one evaluates independently the quality of the model with data not present
in the model during the training.
More precisely, often, one observe the pattern in Figure 18 for the training and validation
loss. For example, if the model makes no error on the training data but always makes
mistakes on the validation one, we say that it over�ts the training data because it is good
only at predicting the data on which it has been trained. This is observed generally for high
number of epochs. While in the opposite case, with a low number of epochs, where it makes
bad prediction on both data sets, we say that the model under�ts, we want the model to
be in between both situation with low loss on both the training and validation data. The
region where this happens will determine when we stop training the algorithm.

Figure 18: Training and validation curve example versus the number of epochs, from [48].

Now we will detail the working principle of a Convolutional Neural Network (CNN), as
it is the basic idea behind LensID, the model we are going to use. In general, a CNN is used
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to analyse 2D images but they can be generalised to 1D, 3D and so on, we will focus on 2D
images. They are based on 3 concepts, fully connected layers (already presented in Figure
17), convolutional and pooling layers. The convolutional layer consists of a �xed number of
connections/weights between neurons, for example for an image decomposed in RGB colour
(1 image split into 3 colors), the convolutional layer might take a 5x5 grid for each RGB
colour and optimise its weight to recognise features of the images like edges or shape, see
Figure 19. The grid then slides onto the whole image to discern the features and get what
is sometimes called an activation map. The way the sliding is made consists in a weighted
sum of the input neurons along with a de�ned stride which tells what is the size of the pixel
steps between each slide [49], see Figure 20 for example.

Figure 19: 5x5x3 Convolutional layer applied on a 32x32 image split in a 32x32x3 RGB
image. Here the two resulting activation maps (output) are of size 28x28. There are two
activations maps if we use two di�erent grids which leads to two di�erent maps, from [47].

The other ingredient is the pooling layer, which consists again of a grid of �xed size
which will again slide onto the whole image. This time the main idea is not to use weight
which will connect many neurons but directly apply a function to the whole set of selected
neurons. For example, an average or the maximum value of the neurons. LensID uses an
average pooling layer [50].

Figure 20: 2x2 Maximum pooling layer applied on a 4x4 images. The resulting output is of
size 2x2 due to the stride = 2, from [47].

Finally, let us discuss how one can compare di�erent binary classi�ers such as those
coming from LensID architecture. First, the nomenclature used here is summed up in Table
1, where for example, True Positive will be shorten to TP.
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Predicted Class

Actual Class Positive Negative Total

Positive True Positive (TP) False Negative (FN) Positive (P)

Negative False Positive (FP) True Negative (TN) Negative (N)

Table 1: A confusion matrix.

A common but limited way to compare di�erent binary classi�ers is the so-called con-
tingency table or confusion matrix as de�ned in Table 1. Once it is de�ned, one can de�ne
several statistics to tell whether the classi�er is good or not such as,

Error rate =
FP + FN

P +N
Accuracy = 1− Error rate =

TP + TN

P +N
(3.3)

Sensitivity (recall) =
TP

P
Speci�city = 1− FP

N
=
TN

N
(3.4)

On the one hand, the error rate counts how many objects are wrongly classi�ed, while
the accuracy counts how many objects are well classi�ed. Those two measures are interesting
to have an idea of the performance of the model but do not show how the error is distributed
among the positive and negative cases. On the other hand, the sensitivity and the speci�city
give separately an idea of much positive and negative elements are well classi�ed.

Along with those two quantities, one can construct what is called the Receiver Oper-
ating Characteristic (ROC) curve. This ROC curve displays the True-Positive Rate (TPR)
(sensitivity) against the False-Positive Rate (FPR) (1 - speci�city) as can be seen in Figure
21.
In general, one wants the highest TPR with the lowest FPR so the classi�er D is the best one
can achieve. All weighted random classi�ers would lie on the dashed diagonal of Figure 21.
What we mean by weighted random classi�er is one that will predict a uniform probability
between [0,1] for each data point, which is then labelled true or false based on a chosen
threshold X between [0,1], predicting 100X% of the time true and 100(1−X)% false. For
example if X = 1, i.e. a random classi�er that predicts always true, the classi�er would be
in the upper right corner while the classi�er in the bottom left always predicts false. We
thus understand that Classi�er C tends to predict randomly about 60% as true and about
40% as false. One can say that all classi�ers above (below) the dashed diagonal are better
(worst) than a random classi�er. Depending on the speci�c need to be accurate on the true
or false prediction one might prefer classi�er A or B. Moreover, note that the classi�er E is
worse than random but might become better if we swap its true and false predictions.
As stated before, classi�er D is the best one can achieve. All classi�ers with TPR = 1 are
the best one can achieve for the di�erent FPRs. In general, models do not predict true or
false but rather a probability of being true or false. Accordingly, one usually then represents
the ROC curve and not just a point. To accomplish that, di�erent values of TPR versus
FPR by changing the threshold at which one predicts true or false. In consequence, if one
computes the area under the ROC curve, one will attempt to obtain 1. This area again
loses information about the repartition of the error but is a good measure of the quality
of a model. In general, LensID uses the ROC curve to compare the di�erent results of the
model.
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Figure 21: Example ROC plot, from [47]. A and B are good classi�ers, C acts as a random
classi�er, D is a perfect classi�er, E is worse than a random classi�er and the dashed diagonal
are all the possible random classi�er.

3.1 LensID : Spectrogram Analysis

Here we present general information about the machine learning model we are using, namely,
LensID [2] [51]. It consists of a machine learning algorithm able to solve a classi�cation
problem that determines if a pair of events is lensed or not. The main characteristic of
LensID is that it shows results comparable to previous methods which can take up to
several days, while taking much less time, about seconds or minutes.
LensID takes a superimposed Q transform spectrogram of two signals and sky maps as
inputs, see Figure 22 for the superimposed Q transform of two unlensed and two lensed
signals, each shade of colour associated with one signal. One sees easily with the white color
(green+pink) that the two signals overlap for lensed signal.
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Figure 22: Superimposed Q transform taken as input by LensID, an unlensed pair (top) and
an lensed one (bottom). Green represent one signal and pink the other one, overlapping
signals thus imply white pixel. Remark also the di�erence in the background, here the back-
ground of the lensed signals is relatively smaller than the signals and relatively important
for the unlensed pair. Axis represent image size with 128x128 pixels, all images have a y
axis representing frequencies in [15,1000]Hz and the x axis representing time around the
merging of the black holes, i.e. [tmerger−0.2,tmerger+0.1]s, normalisation of the pixel is made
with the median of the pixels value and color scale is omitted.

The sky map gives information about the spatial location of the signal while the Q trans-
form enables the machine learning model to compare the amplitude-frequency evolution of
the signal in time, each detector (LIGO Hanford, LIGO Livingston and Virgo) has an asso-
ciated machine learning network that is trained. We will not detail the sky map treatment
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as this thesis focuses on the spectrograms and did not take into account sky maps. Simply
note that LensID extracts features from the sky maps which are then passed through an
XGBoost algorithm (combination of several decision trees) to have the probability that two
events are lensed, see Figure 23 to understand the general structure better.

Figure 23: General structure of LensID, from [2].

At the end, the probability that an event is lensed is given by,

P (HL|{QT1, QT2}; {SM1, SM2}) = P (HL|QT1, QT2) · P (HL|SM1, SM2) (3.5)

where each HL, QT and SM denote respectively the hypothesis of lensed pair, Q transform
and sky map.
Part of the architecture of LensID copies the one of DenseNet201 [52]. DenseNet201 is part of
the supervised machine learning algorithms and more particularly part of the convolutional
network, see Figure 24 for an example of its composition. CNNs are often used in image
recognition which explains why this architecture was chosen. Especially, DenseNet201 helps
to mitigate part of their defaults [52]. In the interest of understanding what are those
defaults and how the model minimises them, let us describe its architecture.

Figure 24: A DenseNet with three dense blocks. The layers between two adjacent blocks
are referred to as transition layers consisting in convolution and pooling layer, from [52].

This model takes as inputs one image for each detector composed of a 3-dimensional
array made by 128×128×3 numbers, a square image of side 128 with RGB colours associated
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with each pixel. Another characteristic of a machine learning algorithm is the loss function,
commonly, for binary classi�cation problems, one uses the binary cross entropy,

LCE = −[y log(p) + (1− y) log(1− p)] (3.6)

Here, y labels the data (y = 1 for lensed data and y = 0 for unlensed ones) and p is the
predicted value by the algorithm.
The speci�city of this CNN is that each layer in a dense block is connected to the preceding
layers, leading for L layers to L(L+1)

2
connections. In general, it consists of dense blocks

connected via transition layers where inputs are denoted with xi, this can be seen in Figure
25. Each connection in a dense block is associated with a function H1 composed of a
normalisation (BN ) which simply normalise each data in a [0,1] interval, a ReLu function
(the activation function) and Conv which uses 3× 3 convolution layer. The transition layer
at the end of a dense block consists of normalisation, a 1× 1 convolution layer and a 2× 2
average pooling layer which have been described earlier in this Section. We thus understand
that one chooses a DenseNet because it encourages feature reuse and strengthens the feature
propagation through the network because of the connections between each layers [52].

Figure 25: A 5 layer dense block, from [52].

The initial DenseNet201 model has already been trained on the Imagenet dataset and we
load it via the Keras package [53]. Using a package already trained in this way is sometimes
referred to as transfer training, which helps reduce the dataset size required for training.
In addition, small modi�cations to the model are made to adapt it to our problem. The
top layer is removed and a dense layer of 256 neurons with the ReLu activation function is
added along with the �nal output layer of a single neuron with a sigmoid activation function
with an Adam optimiser [54].
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4 GW191105

4.1 Original Problem

Our search started with the gravitational event GW191105 which happened during the Sec-
ond part of the third observing run (O3b). This event has two main characteristics, it has
been studied as part of a pair of strongly lensed events with GW191103 [30] but its signi�-
cance was not high enough to talk about the detection of a lensed pair.
In particular, this signal has high signi�cance for both of the Bayesian inference method,
GOLUM [32] and HANABI, [34] but not for LensID. The �rst thought was directly that
there was an issue with the images associated with this event. Indeed, when one looks at
the spectrogram for the GW191105 in Figure 26, one sees a gap inside the typical chirping
pattern (e.g see Figure 15 with frequency increasing with time). We thus dived into the
signal processing technique to understand what was wrong. Our �rst thought was that
maybe something went wrong in the preprocessing of the LVK collaboration, we discuss
this in Section 4.2.1. The second thought was that the whitening procedure was not done
properly, see Section 4.2.2 but this was not the case.

Figure 26: Image associated with the Q transform of GW191105, from [30].

Another idea was to look at the way spectrograms are made, meaning which transform
one uses to create the images used as input by LensID. We observed that the typical trans-
form used, the Q transform, was not the most suited one for chirping signals. In fact, the Qp
transform seems to take into account the rising pattern of the frequency over time better,
this will be discussed further in Section 4.2.3. For completeness, we present the parameter
estimation of GW191103 and GW191105 [55] in Table 2. Note by comparing each side
that both signals have overlapping parameters, this is roughly the way GOLUM [32] and
HANABI [34] work to tell if signals are lensed.
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Parameter Value Upper Error Lower Error Value Upper Error Lower Error

Mass 1 source (M⊙) 11.8 +6.2 −2.2 10.7 +3.7 −1.6

Mass 2 source (M⊙) 7.9 +1.7 −2.4 7.7 +1.4 −1.9

Final mass source (M⊙) 19.0 +3.8 −1.7 17.6 +2.1 −1.2

Final spin 0.75 +0.06 −0.05 0.67 +0.04 −0.05

Luminosity distance (Mpc) 990 +500 −470 1150 +430 −480

Network matched �lter snr 8.9 +0.3 −0.5 9.7 +0.3 −0.5

Redshift 0.20 +0.09 −0.09 0.23 +0.07 −0.09

Sky area (deg2) 2500 640

Total mass source (M⊙) 20.0 +3.7 −1.8 18.5 +2.1 −1.3

Table 2: Parameter estimation for GW191103 (left side) and GW191105 (right side), taken
from [55] (access date : 23 April 2023).

4.2 Towards an Origin for the Gap

4.2.1 Preprocessing Origin

As gravitational wave data are commonly given with quality quali�ed as C01 on websites
such as Gravitational-Wave Open-Science Center (GWOSC) [55] under the format of GWF,
HDF and TXT �les with either 4 or 16 kHz sampling rates, we can use these �les to observe
the strain of a signal such as the one observed in Figure 27 for GW191105.

Figure 27: Example strain of GW191105 during 32 s at 4096Hz.

Another level of data exists, the C00 one, consisting of raw data before the collaboration
team performed noise subtraction [56], while data after noise subtraction are C01.
As the way to get those data is not trivial, we decided to detail it in Appendix A. Afterwards,
to understand if this noise removal was at the origin of the gap, we bandpass the signals
in [35Hz, 400Hz], the typical band where the signal extends. We then compute their
Q transform, which is shown in Figure 28. We observe no major di�erence, except for
the presence of an oscillating signal at about 60Hz which is associated with a power line
(frequency of the alternating current in the United States of America, where the Livingston
detector is located is at 60Hz). We thus conclude that the gap does not come from the
preprocessing applied by the collaboration. As a side note, we could have normalised the
spectrograms with the median value of the amplitude to obtain spectrograms similar in
amplitude as the one of the following section, we did not because it made disappear the
power line.
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Figure 28: Q Transform of the two data type (C00 on the top and C01 on the bottom). We
bandpass both signals in [35Hz,400Hz], where the signal resides.

4.2.2 Whitening Origin

Another hypothesis for the gap origin is the whitening of the signal. As described in Section
2.2, whitening consists in �attening the noise in which the signal lies and helps in the
recognition of the typical chirp pattern. We have thus inspected various parameters in
the whitening procedure via the GWpy module in python [45] and obtained at best the
spectrograms of Figure 29. As this solution is not able to solve our issue with the gap, we
will not detail it more.
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Figure 29: Normalised and whitened Q transform of GW191105 in L1. Normalisation is
made with the median of the pixels value.

4.2.3 Transform Origin

Our last and best idea to treat the gap inside the GW191105 was to change the way the
images are generated. Usually, one transforms the strain into spectrograms with the Fast
Fourier Transform (FFT) or with the Q transform.
Our choice was to focus on another transform, the Qp transform introduced in Section 2.5
which is an extension of the Q transform taking into account the typical rising pattern
observed for the evolution of the frequency with time, the typical chirp. Along with the
use of this Qp transform, one needs to select values for Q and p. Those parameters are
found by computing many Qp transforms for di�erent values of Q and p and then taking
the spectrograms with the highest amplitude above a certain threshold.
We searched for Q and p parameters in the ranges [0,100] and [0,10] respectively during
a million iterations which gave us the parameter Q = 46.11 and p = 0.085. To have the
�nest parameters, we made another search in the range [40,50] and [0.05,0.10] again during
a million iterations and found Q = 44.64 and p = 0.086. Once we know the optimal Qp
parameters for our signal, we can evaluate it for the GW191105 and see the gap being �lled
in Figure 30 in such a way that we recover the chirping pattern. We underline that the Qp
transform supposes a chirping pattern in the data as discussed in Section 2.5 and one should
be careful when one �nds a chirping pattern in the spectrograms. In our case, the chirping
pattern observed for a gravitational wave signal is supported by other pieces of evidence,
e.g. the GWOSC [55] page for GW191105.
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Figure 30: Normalise and whiten Qp transform of GW191105 in L1 detector. Normalisation
is made with the median of the pixels value. The y axis is logarithmic and represents
frequency in [20,1000]Hz and the x axis represents time around the merging of the black
holes, i.e. [tmerger − 0.2,tmerger + 0.1]s.
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5 LensID with Qp Transforms

Once we had �nd the Qp transform and its ability to discern gravitational wave signals, we
had the will to evaluate it in a more concrete context, studying lensed gravitational waves
seems promising and thus LensID becomes part of this thesis.
To train and evaluate the machine learning model, we have generated in total 6866 images
with both Q transform and Qp transform. More information about the generation of those
images can be found in Section 5.2. The machine learning model only observes images, so
we decided not to include axes in the �gures in this section. Simply note that all images
sparse in a time-frequency interval of [tmerger−0.2,tmerger+0.1]s by [20,1000]Hz where tmerger

is the time where the black holes merge in the same way as Figure 30.

5.1 Injected Lensed Signals: Comparison between Transform

Once all the images have been generated, we inspected them, a thousand of them to be
precise, to see whether the Qp transform performs better than the usual Q transform. We
�rst notice that there exist two kinds of Q transform that have been developed, the one of
PyCBC [44] and the one of GWpy [45]. Even though both transforms use the same formula,
they di�er in their implementation, thus also in the generated images and this is what we
are going to focus on in Section 5.1.1.
Afterwards, in Section 5.1.2, we will discuss some interesting �ndings when comparing Q
and Qp transform.
One important aspect in our analysis that we have not developed so far is the optimal
matched �lter Signal to Noise Ratio (SNR) [57], it is de�ned for a single detector via:

SNRdet =

� ∞

−∞

s̃(f)h̃∗(f)

Pdet(f)
df (5.1)

where s is the signal in the detector, h the waveform supposed to match the gravitational
wave signal and Pdet(f) the noise PSD of the detector.
The SNR is thus a way to compare an e�ective gravitational wave waveform with the strain
of data, containing both the signal and the noise. One often requires the network SNR√∑

det(SNRdet)2 to be above 8 for 2 or 3 detectors to talk about a gravitational wave
candidate. In this way, SNR in each detector should be equal to 8√

3
≈ 4.62 if all three

detectors have the same sensitivity
The techniques associated with this matched �lter perform in general better because they
directly compare the strain with a template but they also take more time than machine
learning models. The matched �ltering technique takes more time because one has to
search in a high hypothesis space for the parameters of the waveform associated with a
gravitational event, while machine learning can simply have a look at the spectrogram and
try to �nd the chirping pattern on which it has been trained. For example, in Figure 31, we
represent a signal with SNR greater than 8 which is not distinguished in the image given to
LensID. We also show the same injected signal but with a distance to the object divided by
a factor of one hundred, which thus looks a hundred times more powerful in strain because
h ≃ 1/distance, see equation (1.42).
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Figure 31: Spectrograms of two signals with SNR > 8 (detected via matched �ltering). On
the left, the one used for LensID with typical distances, on the right, the distance divided
by a hundred to give an idea of its shape. Axis are removed to represent what the machine
learning model sees, see Figure 30 for ranges.

5.1.1 Comparison between GWpy and PyCBC

We have discussed in Section 2.4 that two di�erent implementations of the Q transform
exist, the one of PyCBC [44] and the one of GWpy [45]. In our inspection, we noted that
both perform as well, for example in Figure 32.

Figure 32: Comparison between PyCBC [44] and GWpy [45], here we see comparable repre-
sentation. Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Nonetheless, there still exist certain signals where one transform helps to distinguish the
signals better in comparison to the other one. For example in Figure 33, PyCBC represents
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the chirping pattern better while in Figure 34, it is GWpy, for more comparison between
PyCBC and GWpy see Appendix B.

Figure 33: Comparison between PyCBC [44] and GWpy [45], here PyCBC represent the
chirp better. Axis are removed to represent what the machine learning model sees, see
Figure 30 for ranges.

Figure 34: Comparison between PyCBC [44] and GWpy [45], here GWpy represent the chirp
better. Axis are removed to represent what the machine learning model sees, see Figure 30
for ranges.
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We tried to �nd some explanation for those di�erences in the implementation of the
two transforms but did not manage to observe one. Nevertheless, it appears evident when
looking at the images that the di�erence resides in the selection of the Q parameter. This
hypothesis is supported for example by the Figure 33 where the Q parameter of GWpy
is associated with a higher frequency extent. We can see that the signal is more spread
out in the vertical orientation when compared to PyCBC. We thus understand that the
representation is associated with a lower Q than the one of PyCBC because equation (2.19)
gives σν ≈ 1

Q
. The same kind of behaviour can be observed in Figure 34, where again

PyCBC seems to have a lower frequency extent than GWpy. The same behaviour can be
observed in many other examples in Appendix B but no obvious di�erence between the two
implementations has been observed.
We here simply describe the working principle of the Q transform implementation. Both
algorithms compute a windowed time Fourier transform which corresponds to the equation
(2.16), they generally speak about the energy for the result of this transform. To accomplish
the transform, they divide the time-frequency plane with a tile pattern, in this way, they get
a list of energy for di�erent time-frequency rectangles. Note also that both transforms do
not use a Gaussian window but simply an approximation, the Bi-square windows ((1− x2)2

for |x| < 1, else 0) for computational reasons. Afterwards, one gets a list of spectrograms
for di�erent Q-values, the algorithm then selects the Q with the highest energy among all
spectrograms.

5.1.2 Others Findings: Q and Qp Transform

Aside from the distinction between PyCBC and GWpy, we noticed some advantages in the
use of Qp transform over the usual Q transform and we present them in this section. We
introduce the notion of pmax, it is de�ned via p ∈ [0,pmax]. Remember we choose p > 0
because our signals have increasing frequency over time, p < 0 would imply decreasing
frequency. We will always display four images, the Q transform of PyCBC, the Qp transform
with pmax = 0.01, pmax = 0.1 which search for (Q,p) value during 1000 iteration and also Qp
transform with pmax = 0.1 searching during 1 million iteration, which we denote with long
search.
First, we noticed that the value of p should not be too small, for example, when we have
pmax = 0.01 we see in Figure 35 that the signal is not clean because we are close to the
usual Q transform of GWpy. Indeed, the Qp transform is based upon the algorithm of
GWpy, which might sometimes be worse than the one of PyCBC as discussed in Section
5.1.1. While for pmax = 0.1, we see a �ner signal with better time-frequency resolution than
the usual Q transform.

46



PERSONAL CONTRIBUTION

Figure 35: Comparison between transforms, this �gure highlight that small pmax could result
in poorer signal representation. Axis are removed to represent what the machine learning
model sees, see Figure 30 for ranges.

Second, we said that the Qp transform gives better resolution in time and frequency,
this can also be observed in Figure 36. We also see that sometimes, using the long search
makes the chirping pattern disappear which is a really strange behaviour.

Figure 36: Comparison between transforms, this �gure highlights that Qp long search could
result in poorer signal representation. Axis are removed to represent what the machine
learning model sees, see Figure 30 for ranges.
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Third, the heart of Section 4 was to �nd a way to �ll the gap inside the spectrogram
of the event GW191105. During our inspection, we noticed other examples where the Qp
transform helps to �ll gaps within the spectrogram, we present one example in Figure 37.

Fourth, even though in Figure 35 we see that long searches might sometimes give worse
results than shorter ones. We present an example in Figure 38 where it helps to recover
a �ner chirping pattern. In general, we think that long search should give better time-
frequency resolution because it has more time to �nd the optimal parameters.

Afterwards, one interesting point among these transforms is the fact that the choice of
the Q or p parameter is made for the whole image. An interesting idea may be to develop
a transform which selects the parameters for some slice in the image, a local Qp transform
following the same idea of the variable Q transform used in [58]. Our idea would be to slice
either in time or frequency to obtain a �ner choice of parameter. For example, in Figure
39, we see that a mixture between Qp transform with pmax = 0.01 at the beginning and
pmax = 0.1 at the end would help to take the lower and higher frequency content both with
highest resolution.

Figure 37: Comparison between transforms, this �gure highlights that Qp helps to remove
gap in signal representation. Axis are removed to represent what the machine learning
model sees, see Figure 30 for ranges.
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Figure 38: Comparison between transforms, this �gure highlights that Qp long search could
result in better signal representation. Axis are removed to represent what the machine
learning model sees, see Figure 30 for ranges.

Figure 39: Comparison between transforms, this �gure highlights that a mixture between
local Qp transform could result in better signal representation. For example, by taking
pmax = 0.01 for the �rst half time and pmax = 0.1 for the remaining time. Axis are removed
to represent what the machine learning model sees, see Figure 30 for ranges.

49



PERSONAL CONTRIBUTION

More examples of the aspect presented in this section can be observed in Appendix C.

5.2 Training and Evaluation

In Section 5.1.2, we observe that the Qp transform seems to perform at the same level or
even better in certain circumstances to represent the chirping patterns.
We will now discuss how we have generated the images used to train LensID. We emphasise
once again that our focus is on the portion of LensID which searches within the spectro-
grams, we do not compare the sky maps associated with gravitational wave events to simplify
the analysis.
The main principle behind this part of LensID is to compare two images and give a prob-
ability that both images come from the same event. In the case where they come from the
same event, we will say we have a lensed pair, in the other case, an unlensed pair.
In all the 6866 images we have generated, we �nd 1000 unlensed images and 2933 lensed
pairs, thus 2 times 2933 images. To make unlensed pairs, from n unlensed images we can
associate them to get a maximum of n(n-1)/2 pairs because the solution of this problem can
be mapped to

∑n−1
i=1 i. We thus separated our 1000 unlensed images into two groups of 500

images and were able to form 2 groups of 124,750 lensed pairs.
We follow [59] to generate a set of strongly lensed pairs of GW events. The way we generated
all these images was to use the PyCBC module in Python [44]. First to generate gravita-
tional wave signals we used get_td_waveform with the approximant IMRPhenomXPHM along
with a set of parameters such as mass and distance. Second, we needed to generate noise
in which the signals would lie. We thus picked a sample of detector data, coming from 15
October 2023, where we think there are no gravitational wave signals and evaluate its PSD.
We then used this PSD to generate Gaussian noise using the function noise_from_psd

of PyCBC [44]. At the end, the noise is added to our gravitational wave signal to form
the strain of data which mimics a gravitational wave signal in a detector. Note that this
Gaussian noise generation is based on a stochastic process thus when comparing di�erent
transforms (Q and Qp for example), one should keep track of the noise with a seed to gen-
erate the noise.
Once we had all those images, we distributed them in a training, validation and test set.
The validation set is here used to determine whether the model has a good capability of
generalisation. Afterwards, we choose to test the obtained model on completely di�erent
data, a test set, to obtain statistics about our model.
We thus need to choose the size of the training, validation and test set to evaluate our
method. Here we choose to use 8000 unlensed and 1933 lensed pairs for the training and
validation with 80 percent of this dataset for the training and the remaining for the valida-
tion. We used a batch of 124,750 unlensed pairs along with the remaining 1000 lensed pairs
to test the performance once the model is trained.
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Figure 40: Loss from Q transform (top) and Qpmax=0.1 transform (bottom).

We present in Figure 40, an example of a training and validation curve for the Q trans-
form and Qp transform with pmax = 0.1, they represent the evolution of the loss, here
the binary cross-entropy as described in Section 3.1. Usually, LensID is trained during 25
epochs, which means that the algorithm sees 25 times the training data set. We see in our
case that the loss does not increase after 25 epochs but is quite constant meaning that the
models could be trained more to obtain better results.

One other way to check if the model could be trained more is via the accuracy of the
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model over di�erent epochs, it describes how many pairs are classi�ed in the right categories,
we represent this curve in Figure 41. We again see that the model needs more than 25
epochs to be at maximum e�ciency, we would recommend training the model between 40
and 60 epochs to have a stable solution in this case. In our case, as we needed to train
several models, Q transform, Qp transform with di�erent values of pmax, we choose to keep
a hundred epochs for all models and simply check whether the loss seems to increase or the
accuracy seems to decrease. For all models, a hundred epochs work �ne and we thus kept
the �nal model to evaluate the ROC plot. All the associated plots can be found in Appendix
D if one wants to check our �ndings.

Figure 41: Accuracy from Q transform (top) and Qpmax=0.1 transform (bottom).
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As a side note, we want to underline the peculiar behaviour observed in Figure 40 and
41 for the Qp Transform with pmax = 0.1. We can observe a local increase of the loss and
decrease of the e�ciency of the model between epochs 10 and 25, where usually we only
observe monotonic behaviour. We hypothesise that the models momentarily forget certain
features learned from the ImageNet database on which it was pre-trained and start to learn
the one of chirping pattern.

5.3 Result

After the training of our models during one hundred epochs, we obtained several models
depending on the transform used. We will here discuss which models outperform others and
how we think they manage to reach such sensitivity.
As discussed in Section 3.1, LensID consist in a fast recognition algorithm of lensed signals.
In this objective, LensID �xes a threshold under which a couple of signals is said to be
potentially lensed and then passed to the other algorithm (GOLUM [32] and HANABI
[34]), this threshold is generally taken at a FPR of 10−2. With this in mind, we are going
to evaluate the performance of our models by comparing the ROC curve with FPR between
[10−5,10−2].
First, let us compare how the Q transform of PyCBC performs in comparison to the one of
GWpy (computed via the Qp transform with p=0). We see in Figure 42, that GWpy seems
to perform way better than PyCBC while both are way better than random models as they
are above the dashed diagonal.

Figure 42: Comparison between di�erent ROC curve for the Q transform of PyCBC and
GWpy.
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Next, we wanted to compare how the Qp transform performs in comparison to the Q
transform of GWpy, we tried to compare the Q transform and the Qp transform with pmax

equal to 0.01 and 0.05 during 103 iterations to �nd the optimal Q and p parameter, see
Figure 43 for their ROC curve. Here we see that below a FPR of 10−2, both Qp transform
perform better than the Q transform.

Figure 43: Comparison between di�erent ROC curve for the Q transform and the Qp
transform with pmax = 0.01 and 0.05 during 103 iterations.

These results make sense as the Qp transform helps to recognise the shape of the chirp
pattern observed for gravitational waves better.
Choosing a pmax seems to be a real challenge to take the form of the chirp into account,
this is why we think that extension of the Qp transform either at second order or making
it a local transform should be an interesting point to make this task less arduous as they
would take the shape of chirp into account better. In addition, improving the optimisation
algorithm which selects the Q and p value is of great importance to enhance the rate of image
analysed in a given time. This could be done by studying a large sample of gravitational
wave signal and then evaluating the Q and p parameter distribution obtained in order to
reduce the hypothesis space. Other models are present in Appendix E.
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6 Conclusion

In our search, we studies the Qp transform [1] in various cases. First, in Section 4, the
consideration of the Qp transform was made due to the need to �ll a gap in the spectrogram
representation of the event GW191105, in this manner we hoped that the recognition of
lensed gravitational wave could be more e�cient. This idea emerged because LensID [51],
a machine learning algorithm partially consists in a comparison between spectrograms to
tell whether two gravitational wave events come from the same object. The main problem
came from GW191105 which did not match the standard representation of a gravitational
wave signal with the usual Q transform while it does with the Qp transform. Second, our
objective was to check if the Qp transform increases LensID sensitivity. We thus dived into
the generation of spectrograms in Section 5.1, where we observed that the Qp transform
helps to improve the spectrogram representation of the gravitational wave signal. During
this inspection, we also found that two implementations, PyCBC [44] and GWpy [45], of
the well-known Q transform used in gravitational wave astronomy did not lead to the same
spectrograms representation because of the Q-parameter selection. Third, we trained the
spectrogram analysis of LensID with the di�erent transforms where we indeed observed
that the Qp transform, when limiting the hypothesis space of the p parameter, performs
better than the usual Q transform. During the training of the di�erent algorithms, we also
observed that the usual training made during about 25 epochs was not su�cient to reach
the maximal sensitivity but rather needed about 40 epochs.

During this thesis, several ideas came to our mind to enhance gravitational wave rep-
resentation with spectrograms. As discussed in Section 2.5, the Qp transform consists in a
�rst-order Taylor expansion in the frequency of the Q transform around a given time leading
to a supposed linear shape for signal in spectrograms. We think it might be interesting to
go up to second order to take into account the gravitational wave pattern in spectrograms
which looks like parabolas, in the same manner as [46]. A generalisation of this idea would
be to make some kind of polynomial expansion of the Q transform for more complicated
patterns observed in spectrograms. Later on, in Section 5.1.2, we have considered the idea
of making a local transform to enhance the spectrogram representation, this transform could
look like the variable-Q transform introduced in [58] while the current Q and Qp transform
used in gravitational wave physics choose their parameter Q and p based on the amplitude
of the whole spectrogram, see also Section 5.1.1 for more detail. Our idea would be to
choose di�erent parameters for di�erent slices in the spectrograms, slices which could be
along time or frequency bands. This idea, in a di�erent manner than the polynomial trans-
form would help to represent signals in spectrograms because it would help to represent
with an increased resolution di�erent parts of the spectrograms. We want to highlight the
fact that mixing those ideas might be also interesting, with for example a local second order
Q transform aiming with the local aspect in a high precision of representation and with
the second order with a suited parabola shape which represents �nely a gravitational wave
signal. Other interesting questions were highlighted such as the fact that we do not know
the Q and p parameter distribution for di�erent gravitational wave signals in Section 5.3 or
the increase in the loss while training LensID observed in Section 5.2.
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Finally, let us mention other areas of research where spectrograms also contribute to
understanding our world better such automatic detection of whistle made by dolphin [60]
or more generally all areas where frequency needs to be extracted while keeping time infor-
mation. As a consequence, all the observations and questions highlighted in this thesis do
not only take part in the gravitational wave analysis but also more generally in the �elds of
signal processing and machine learning methods.
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A Access to C00 data

In order to access C00 data, one needs access to the server of the LIGO collaboration with
LIGO credentials via SSH connexion, it will grant you access to the needed C00 data. Then
one should use the following lines of code :

#set server for token

export HTGETTOKENOPTS="--vault server vault.ligo.org --issuer igwn"

#use token to read data

htgettoken -a vault.ligo.org --audience ANY --scopes gwdatafind.read

#then login on the web page shared in Powershell with the Ligo email adress

#look for data in a specific detector & time (here L1 around GW191105) in OSDF

python3 -m gwdatafind -r datafind.igwn.org -o L -t L1_HOFT_C00 -s 1256999700 -e

1256999800 -u osdf

#Then one gets the name of the file one is looking for such as

osdf:///igwn/ligo/frames/O3/hoft/L1/L-L1_HOFT_C00-12569/

L-L1_HOFT_C00-1256996864-4096.gwf

#get a token to read

htgettoken -a vault.ligo.org --audience ANY --scopes read:/ligo

#download the data

stashcp osdf:///user/ligo/frames/ER8/hoft/L1/L-L1_HOFT_C00-11262/

L-L1_HOFT_C00-1126256640-4096.gwf ./

#Often one needs to get the channel to load data and use it, use

FrChannels L-L1_HOFT_C00-1126256640-4096.gwf

#First output string is the channel name and the second is the sampling rate

#Then use common technique to read a gwf file
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B PyCBC vs GWpy

We present here images which help to compare PyCBC [44] and GWpy [45], two di�erent
implementations of the Q transform. Two columns are shown each containing on the left,
PyCBC and on the right, GWpy implementation.

Figure 44: Two columns are shown each containing on the left, PyCBC and on the right,
GWpy implementation. Axis are removed to represent what the machine learning model
sees, see Figure 30 for ranges.

58



APPENDIX

Figure 45: Two columns are shown each containing on the left, PyCBC and on the right,
GWpy implementation. Axis are removed to represent what the machine learning model
sees, see Figure 30 for ranges.
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Figure 46: Two columns are shown each containing on the left, PyCBC and on the right,
GWpy implementation. Axis are removed to represent what the machine learning model
sees, see Figure 30 for ranges.
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C Q and Qp Transform

The objective of this Appendix is to show more comparison of Q and Qp transform to
mark the di�erences. We remind the notion of pmax which is de�ned via p ∈ [0,pmax]. We
will always display four images, Q transform of PyCBC, Qp transform with pmax = 0.01,
pmax = 0.1 which search for (Q,p) value during 1000 iteration and also Qp transform with
pmax = 0.1 searching during 1 million iteration, which we denote with long search.

First, other examples of images which shows that pmax should not be too small in some
cases because the chirping pattern is harder to distinguish. We also observe that the Qp
transform helps to have better resolution.

Figure 47: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.
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Figure 48: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Figure 49: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Second, other examples of images where Qp transform helps to �ll gaps inside the
spectrograms.

62



APPENDIX

Figure 50: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Figure 51: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.
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Figure 52: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Figure 53: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges.

Third, another example of images indicating that developing a local Qp transform might
be interesting to make mixture of increased resolution for both low and high frequency.

64



APPENDIX

Figure 54: Axis are removed to represent what the machine learning model sees, see Figure
30 for ranges. Low frequency is well represented by Q transform and high frequency by Qp
transform with pmax = 0.1.
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D Training : Loss and accuracy

We present here the other losses of our machine learning model. For discussion, see Section
5.2.

Figure 55: Loss and accuracy from Qpmax=0.01 transform.

Figure 56: Loss and accuracy from Qpmax=0.05 transform.

Figure 57: Loss and accuracy from Qp long search transform.
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Figure 58: Loss and accuracy from Qp=0 transform.
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E Other models : LensID with Qp transform

Here, we wanted again to compare how the Qp transform performs in comparison to the
Q transform of GWpy, but now for the Qp transform with pmax = 0.1 during 103 and 106

iterations (long search) to �nd the optimal Q and p parameter, we present the ROC curve
in Figure 59. In this case, we observe that the Q transform outperforms the Qp transform
at FPR below 10−3.

Figure 59: Comparison between di�erent ROC curve for the Q transform and the Qp
transform with pmax = 0.1 during 103 and 106 iterations.

Moreover, in Figure 60, we compare the result of the di�erent Qp transform. At the
lowest FPR, it is clear that Qp transform with pmax = 0.01 performs the best but it is also
important to note that above 10−2, all algorithm have nearly the same TPR.
This result is surprising because one should expect that taking a value of pmax = 0.1 with
a high number of iterations to �nd the optimal Q and p would help to �nd the optimal
parameter and thus long search pmax = 0.1 should be better than pmax = 0.01 which is
clearly not the case here. This was discovered at the end of our search, we decided to
present it here for future investigation.
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Figure 60: Comparison between di�erent ROC curve for the Q transform and the Qp
transform with pmax = 0.01, 0.05 during 103 iterations and for 0.1 during 103 and 106

iterations.
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