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Abstract

This thesis aims at leveraging advances in deep learning, particularly simulation-based
inference, to enhance the orbital parameter characterization of exoplanets. The current
methods, like MCMC, are computationally expensive and slow to converge. Using Nor-
malizing Flows and the expected forward Kullback-Leibler divergence as a loss function to
train the model, we reproduced the results of the state-of-the-art method, α-DPI.

However, the non-amortized nature of this approach limited its generalizability, neces-
sitating retraining for new datasets or additional observations of the exoplanet β-Pic b.
To address these limitations, a generic model for exoplanet astrometry was developed
using a ResMLP as an embedding network. Using different experiments, we showed that
this generic model was able to infer the posterior of the orbital parameters of all four
planets of the HR 8799 system, significantly reducing the computational effort compared
to MCMC.

Despite these advancements, challenges remain, particularly in generalizing the model
across exoplanets from different systems, as this generic model could not infer the posterior
of the orbital parameters of β-Pic b.
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Chapter 1

Introduction

The detection and characterization of exoplanets through direct imaging are among the
most exciting advancements in modern astronomy. By capturing a series of images of
an exoplanet over time, astronomers can gain critical insights into the properties and
dynamics of its planetary system. Analyzing an exoplanet’s astrometric data enables us
to understand its formation and evolution.

An exoplanet’s orbit is defined by six Keplerian elements: semi-major axis, eccentricity,
inclination angle, argument of periastron of the secondary’s orbit, longitude of ascending
node, and epoch of periastron passage. Additionally, parameters such as parallax and the
total system mass are essential for fully characterizing the orbit.

The challenge in orbit fitting lies in estimating the posterior distribution of these parameters
based on astrometric data of the exoplanet relative to its host star, derived from telescope
images. This task is computationally intensive due to the high dimensionality of the
parameters and the potential multi-modality of the posterior distributions. Traditional
sampling-based approaches, such as Markov Chain Monte Carlo (MCMC) methods, are
widely used for such inference problems. However, these methods can be prohibitively slow
to converge without an optimal proposal distribution or a good random initialization.

Recent advances in deep learning, particularly using techniques like normalizing flows,
offer promising alternatives to traditional methods. These approaches can significantly
speed up the recovery of orbital parameters.

1.1 Problem Statement
This work aims to develop a novel approach for recovering the full posterior distribution
of orbital parameters using the latest advancements in simulation-based inference. By
leveraging modern techniques like normalizing flows, we seek to enhance the efficiency and
accuracy of inferring these parameters from exoplanet imaging datasets.

The first part of this thesis focuses on reproducing the results of Sun et al. (2022) [1].

The second part aims to develop a more general and efficient model for exoplanet astrometry
data. The goal is to create a model that can infer the full posterior distribution for any
exoplanet, rather than requiring a separate model for each individual exoplanet. This
involves designing and testing different neural network architectures, such as ResMLP[2]
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and Deep Set[3] networks, to find an optimal solution for handling astrometric observations
and inferring orbital parameters.

By achieving these objectives, this work contributes to the development of more practical
and scalable tools for the astronomical community, potentially allowing for faster and
more accurate characterization of exoplanets’ orbital parameters.
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Chapter 2

Exoplanet astrometry

The last thirty years have seen a revolution in the field of exoplanet detection. Since the
first unambiguous detection of an exoplanet, 51 Pegasi b, discovered in 1995 [4], more
than 5000 exoplanets have been discovered and confirmed. This number will continue to
increase as new methods are developed and new telescopes are launched.

Several methods exist to detect exoplanets, with the most common being the radial velocity
method, the transit method, the microlensing method, and the direct imaging method. All
the exoplanets discovered have provided us with a better understanding of how common
planetary systems like our own are and how they fit into the grand scheme of the universe.
A wide diversity of exoplanetary systems has been found, exhibiting a range of masses,
sizes, and orbits.

No single observational method can probe all of them. The radial velocity and transit
methods are better suited to study close-in planets around mature stars, while the direct
imaging method is more effective for studying planets in wide orbits around young stars.
This is depicted in Figure 2.1, where exoplanets discovered by direct imaging are shown in
the upper right corner of the plot, a region not well-probed by other methods.

Direct imaging stands out for its ability to capture actual photographs of exoplanets,
allowing for direct measurement of their light and spectra. This method is used to
study planets located far from their young host stars, and emits bright light in infrared
wavelengths.

The characterization of exoplanet orbits is crucial for understanding their formation and
evolutionary histories. By analyzing the orbits, scientists can infer the processes that
shaped these planetary systems. The adaptative optics system and coronagraphic facility
at the Very Large Telescope (VLT/SPHERE) [5] and the Roman mission that will be
launched in 20271 are expected to revolutionize this field by providing more data using
direct imaging. The GAIA mission2 will also provide a long list of potential planets that
will then need to be confirmed by direct imaging with ground-based telescopes. This will
lead to a flood of high-quality data, necessitating the development of new methods to
analyze this data quickly and efficiently.

1Roman website
2GAIA mission website
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Figure 2.1. Scatter plot of exoplanets discovered with the different methods of detection.
The x-axis represents the semi-major axis of the exoplanet’s orbit and the y-axis represents
the size of the exoplanet. The color of the points represents the method of detection. Plot
adapted from Bowler et al. (2016) [6]. Source : NASA Exoplanet Archive

This thesis focuses on enhancing the methods for characterizing exoplanet orbits, par-
ticularly through direct imaging. With the anticipated influx of high-quality data from
forthcoming missions, there is a pressing need to develop efficient analytical techniques.
Traditional methods like Monte Carlo Markov Chain (MCMC) and Orbits for the Im-
patient (OFTI)[7] provide robust frameworks but often struggle with high-dimensional
parameter spaces and multi-modal distributions or are computationally expensive. The
newly proposed α-Deep Probabilistic Inference[1] aims to address these challenges by
combining the strengths of variational inference and normalizing flows, offering a promising
alternative for rapid and accurate orbit characterization. This approach leverages advanced
computational techniques to streamline the analysis process, ensuring that we can keep
pace with the ever-growing flood of exoplanetary data.

This chapter provides an overview of exoplanet astrometry, the current methods used to
characterize exoplanet orbits and their limitations.
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2.1 Direct Imaging

Figure 2.2. An example of direct imaging of an exoplanet. This image represents the
stellar system β-Pictoris in near-infrared light. It is the composition of two images, both
obtained by removing a large part of the halo of the star. The outer part of the image
shows the reflected light on the dust disc, and in the inner part of the image, the infrared
light of the exoplanet β-Pictoris b is visible. credit : ESO/A.-M. Lagrange et al.

Exoplanets reflect extremely little light from their host stars, making detection challenging
due to the overwhelming brightness of the star’s halo. The principle of direct imaging is
to separate this halo from the exoplanet’s light.

However, the actual light reflected by an Earth-like or even a Jupyter-like exoplanet is
too faint to be detected directly even with the most advanced telescopes, ground-based or
space-based.

Fortunately, young Jovian exoplanets radiate a significant amount of infrared light due to
their high temperatures and large sizes. The infrared light emitted by the exoplanet is still
faint, but much brighter than their reflected light. By using a coronagraph it is possible
to suppress the light of the star and detect the infrared light of the exoplanet.

It works as follows, as the light of the star is detected by the telescope, small deformations
are picked up as the light reflects off small imperfections in the telescope’s mirror. A
coronagraph is then used to block most of the light of the star. A lyot stop is then used to
block the rest of the diffracted light of the star.

As the exoplanet is slightly offset from the star, the light of the exoplanet is not blocked
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by the coronagraph which is centered on the star. However, even with all of that, the
imperfections in the telescope’s mirror still create a halo. This halo is then removed by
using a deformable mirror that corrects the deformations of the telescope’s mirror and
the turbulence of the atmosphere picked up by the light of the star. After all of these
steps and some post-processing, images like the one on the inner part of Figure 2.2 are
produced.

This technique works thus better with space-based telescopes as there is no atmosphere to
create turbulence. It also works better when the star is relatively close to the Sun, the
exoplanet is large, hot and far enough from the star. [8]

The first generation of high-contrast imaging instruments did not provide sufficiently
precise relative astrometry to derive accurate measurements. However, new instruments
specifically designed for exoplanet imaging have been developed and now offer precise
relative astrometry. As explained in the paper Bowler et al. [6] and illustrated in Figure
2.1, exoplanets detected by direct imaging typically have larger semi-major axes and longer
periods compared to those detected by other methods. [9]

From these snapshots, we can derive the astrometry of the exoplanet, which is the position
of the exoplanet in the sky.

One of the other advantages of direct imaging is that by passing the light through a prism,
we can obtain the spectrum of the exoplanet and determine its composition.

2.2 Astrometry data
The astrometric data of the exoplanet can be expressed in two ways, the separation (SEP)
and position angle (PA) or the right ascension (∆RA) and declination (∆DEC).

1. The separation and position angle are the distance in the sky between the exoplanet
and its host star and the angle between the north and the exoplanet going towards
the east, respectively. They are expressed in milliarcseconds (mas) and in degrees
(°).

2. The right ascension and declination are the coordinates of the exoplanet in the
sky relative to the star. It is expressed in milliarcseconds (mas) and this is the
representation that is used in this thesis.

The ∆RA/∆DEC data could be seen as cartesian coordinates and the SEP/PA data
could be seen as polar coordinates. These representations are interchangeable and can be
converted from one to the other using the following equations [10]:

∆RA = SEP× sin(PA), (2.1)
∆DEC = SEP× cos(PA). (2.2)

This conversion is useful when working with datasets that may have astrometric data
represented in different formats from various sources.

The time used in the astrometric data is the Modified Julian Date (MJD) which is the
number of days since the 17th of November 1858 at midnight. [11]
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A typical dataset will contain the astrometric data of the exoplanet at different times and
the uncertainties of the measurements. An example of such a dataset is shown in Annex
A and Annex B for the exoplanet β-Pictoris b and HR 8799 bcde respectively.

2.3 Keplerian Elements
An orbit is parameterized by six Keplerian elements: the semi-major axis, the eccentricity,
the inclination angle, the argument of periastron, the longitude of ascending node and
the true anomaly at a certain time of observation. In addition to these six elements, we
add the parallax and the total mass of the system as they influence the astrometric data
we derived from the direct imaging, for example, a bigger mass of the system, which is
mainly the mass of the star, will make the period of the orbit shorter. A schema of the
keplerian elements is shown in Figure 2.3.

Figure 2.3. Keplerian elements of the orbit of an exoplanet around a star. The orbit is an
ellipse characterized by the semi-major axis (a) and semi-minor axis (b). The eccentricity
determines the shape of the ellipse, it depends on both the semi-major and semi-minor
axes. The true anomaly (ν) is the angle between the periapsis (closest point of the orbit
to the star) and the current position of the exoplanet at a given time. The ascending
node is the point where the exoplanet crosses the reference plane from the south to the
north. The argument of periapsis (ω), inclination (i), and the longitude of the ascending
node (Ω) define the orientation of the orbit in space relative to the reference plane. This
reference plane is the plane that is perpendicular to the line of sight from us to the star.
The schema was taken from Sun et al. (2022) [1]

When looking at a frame centered on one of the two bodies, in this case, the star, the
trajectory of the other body, the exoplanet, can be described by the eight orbital elements
defined in Table 2.1.
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Table 2.1. Explanation of the orbital elements of an exoplanet. [1, 7, 10, 12, 13]

Parameter Explanation
Semi-major axis (a) The sum of the periapsis, the maximum distance

between the bodies, and apoapsis, the minimum
distance between the bodies, distances divided by two.
It is described in Astronomical Units (au), with 1 au
being the distance between the Earth and the Sun.

Eccentricity (e) Gives the shape of the ellipse, describing how much it
is elongated compared to a circle with e = 0 being a
circular orbit, e < 1 an elliptical orbit and e = 1
a parabolic trajectory. It depends on the semi-major
axis and the semi-minor axis e =

√
1− b2

a2

Inclination angle (i) Vertical tilt of the ellipse with respect to the
reference plane. It is described in degrees. An
inclination of 0° would mean that the orbit plane is
perpendicular to the line of sight and a 90°
inclination would mean that the orbit plane
is parallel to the line of sight.

Argument of periastron (ω) The orientation of the ellipse in the orbital plane, as
an angle measured from the ascending node, the point
where the exoplanet crosses the reference plane from
the south to the north, to the periapsis.
It is described in degrees.

Longitude of ascending node (Ω) The angle between the reference direction, the line of
sight from us to the star, and the ascending node. It
is described in degrees.

Epoch of periastron passage (τ) Fraction of the orbital period past a reference epoch,
bounded between 0 and 1. τ = tp−tref

P
mod 1,

where tp is the epoch of periastron, tref

is the reference epoch, and P is the orbital period.
In this work tref is set to 50.000 MJD, which
corresponds to 10-10-1995. A value of 0 corresponds
to the reference epoch, while 1 corresponds to the
same position in the orbit as the reference epoch but
one period later. This method of describing the epoch
is useful since tp can be difficult to constrain directly.

parallax (Π) The apparent shift in the position of a star when
observed from two different vantage points. This
shift provides information about the distance of
the star from an observer on Earth. It is described
in milliarcseconds (mas).

Total mass (MT ) The total mass of the system. It is the sum of the mass
of the star and the exoplanet, and is described in solar
masses M⊙
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2.4 Keplerian Orbits
With these parameters, we can describe the trajectory of the exoplanet using the Kepler
equations3, giving us [10, 14]

∆RA = Πa(1− e cos E)[cos2 i

2 sin(ν + ω + Ω)− sin2 i

2 sin(ν + ω − Ω)], (2.3)

∆DEC = Πa(1− e cos E)[cos2 i

2 cos(ν + ω + Ω) + sin2 i

2 cos(ν + ω − Ω)], (2.4)

with ν the true anomaly and E the eccentric anomaly:

E − e sin E = 2π( t

P
− (τ − τref )), (2.5)

( P

yr
)2 = ( a

au
)3( M⊙

Mtot

), (2.6)

ν = 2 tan−1[
√

1 + e

1− e
tan E

2 ]. (2.7)

In Equation 2.5 the eccentric anomaly E is not retrievable analytically, so we need to
use numerical methods to solve it. In this work, I will use the solver implemented in the
Orbitize! library [10] which is actually two solvers, one for low eccentricity orbits and
one for high eccentricity orbits. For eccentricities below 0.95, they use Newton’s method
with a tolerance of 10−9. They explain that for eccentricities above 0.95, the number of
iterations needed to converge increases significantly. They thus use the Mikkola solver
[15].

2.5 Bayesian Inference
Astronomers have long been interested in characterizing the orbits of exoplanets. Accurate
orbital parameters are crucial for several reasons: they help constrain the future posi-
tions of exoplanets, calculate the probability of transits, and could assess the climates
and habitability of exo-planets that resemble Earth from future space imaging missions.
[10]

Early methods focused on the orbital analyses of binary stars, which laid the groundwork
for current exoplanet studies. [16] Some of these initial approaches involved grid searches
over a limited number of parameters combined with linear least-squares fitting of the
remaining parameters to map out χ2 surfaces like in Hartkopf et al. (1989) [17] or used
non-linear least-squares fitting to adjust all parameters simultaneously like in Forveille et
al. (1999) [18]

Point estimates of orbital parameters are insufficient because they do not account for
uncertainties or the full range of possible orbits. A more robust approach is to use Bayesian
inference to estimate the posterior distribution of the orbital parameters.

3These equations to retrieve the relative Right Ascension and relative Declination come from the
Orbitize! documentation
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The goal of Bayesian inference is to update initial prior beliefs about the parameters θ
given some observations x with the Bayes’ theorem :

p(θ|x) = p(x|θ)p(θ)
p(x) , (2.8)

where p(θ) is the prior distribution of parameters, p(x|θ) is the likelihood of the observed
data given the parameters, p(x), called the evidence, the distribution of the observed data
marginalized over the parameters and p(θ|x) is the posterior distribution of the parameters
given the observed data, which is the target distribution.

In the context of this work on exoplanet astrometry, the parameters θ are the Keplerian
elements of the orbit of the exoplanet and the observations x are the astrometry data of
the exoplanet relative to the star expressed in the right ascension and declination.

One of the major challenges in Bayesian inference is to compute the evidence p(x) which
is often intractable as it requires the integration over all the parameter space

p(x) =
ˆ

p(x|θ)p(θ)dθ. (2.9)

However, as this work is focused on parameter estimation, the evidence can be ignored
since it is independent of the parameters. Bayes’ theorem can then be rewritten as

p(θ|x) ∝ p(x|θ)p(θ). (2.10)

But even with this simplification, getting the posterior distribution remains a challenge
when the likelihood is intractable.

To address this, statisticians and astronomers have developed methods to estimate the
posterior distribution of these parameters, ensuring all potential scientific interpretations
are considered and the uncertainty in the inference is properly quantified.[1]

The most common method used to estimate the posterior distribution of the orbital
parameters is the Monte Carlo Markov Chain (MCMC) method.

2.6 State of The Art
2.6.1 Monte Carlo Markov Chain
The Monte Carlo Markov Chain (MCMC) method is used when direct sampling from the
posterior distribution is not feasible. Instead, we sample from a Markov Chain whose
stationary distribution approximates the target posterior distribution. This technique
combines two fundamental concepts:

• The Markov Chain : A sequence of random variables where the probability of the
next value depends only on the current value.

• Monte Carlo Methods : A group of algorithms that rely on repeated random sam-
pling to estimate numerical results, particularly useful when deterministic solutions
are too complex or time-consuming.
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One of the simplest and most commonly used MCMC algorithms is the Metropolis-Hastings
algorithm. The steps are as follows:

• let f(θ) be the target density function. In this case, it is the posterior distribution of
the orbital parameters θ given the observed data x. With Bayes’ theorem we have

f(θ) = p(θ|x) = p(x|θ)p(θ)
p(x) .

• let q(θ′ |θ) be the proposed function used to generate θ
′ when we are in θ. It needs to

be easy to generate data from. It could be a Gaussian distribution centered around
θ for example.

• let a(θ′|θ) be the acceptation function. It is the probability of accepting the next
point θ

′ and is defined as such

a(θ′|θ) = min(1,
f(θ′)
f(θ)

q(θ|θ′)
q(θ′|θ)) (2.11)

= min(1,
p(x|θ′)p(θ′)
p(x|θ)p(θ)

q(θ|θ′)
q(θ′|θ)). (2.12)

In the case of exoplanet orbital characterization, the likelihood log p(x|θ) is chosen to be a
Gaussian likelihood like in Orbitize![10]:

log p(x|θ) = −1
2

N∑
i

(αθ(ti)− αo(ti))2

σ2
αo(ti)

− 1
2

N∑
i

(δθ(ti)− δo(ti))2

σ2
δo(ti)

, (2.13)

with α and δ being the offset in right ascension and declination of the exoplanet, N the
number of observations, ·θ(ti) the model prediction at time ti, ·o(ti) the observed data at
time ti and σ·o the observational uncertainty of the observed data. αθ and δθ are computed
by solving the Kepler equations for the given parameters θ and the time ti. This is done
by solving Equations 2.3 and 2.4 using the solver from Orbitize! [10].

The algorithm then works as described in Algorithm 1.

I used the Orbitize! library, which implements MCMC using the emcee [19] and ptemcee

[20] libraries. These libraries use variants of the Metropolis-Hastings algorithm that run
multiple chains simultaneously, known as walkers. The proposal distribution q(θ′|θ) of one
chain depends on the current position of all other chains, increasing efficiency compared
to the original Metropolis-Hastings algorithm. Convergence is determined by examining
the autocorrelation time [19] and trace plots of the chains. If those chains are in different
parts of the parameter space, it means that they did not converge.

A major drawback of MCMC is its slow convergence, especially when the posterior
distribution is multi-modal, which is common in exoplanet orbital characterization. This
challenge has prompted the development of new methods.

2.6.2 Orbit for the impatient
One of these new methods is the Orbit For The Impatient (OFTI) [7]. It is an Approximate
Bayesian Computation (ABC) method as described in Cranmer et al. (2020) [21] and as
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Algorithm 1 The Metropolis-Hastings algorithm

1 xobs : the observed data
2 for i = 1, ..., T do
3 Draw a proposal for step t : θ

′
t ∼ q(θ′

t|θt−1)
4 at ← min(1,

p(xobs|θ′
t)p(θ′

t)
p(xobs|θt−1)p(θ)

q(θt−1|θ′
t)

q(θ′
t|θt−1))

5 Draw rt : rt ∼ U [0, 1]
6 if rt < at then
7 θt ← θ

′
t

8 else
9 θt ← θt−1

10 Θ = {θT +1, ..., θT } Discard the first T samples to ensure the
Markov Chain has converged

11 return Θ

described in that paper there are some limitations to this method. Mainly, in our case,
two of them are that this method would not scale with a lot of data points, and with new
data points, the whole algorithm needs to be rerun which is not efficient.

So this method works well when the parameter space is relatively unconstrained, which is
typically the case when the observed data only cover a relatively small arc of the total
orbit. This makes sense as most exoplanets detected through direct imaging have larger
orbits [6] meaning that the observed data over the last twenty years only cover a small
fraction of the total orbit. But, for exoplanets where the measurements cover a larger
fraction of the orbit, the OFTI algorithm becomes less efficient and the MCMC algorithm
is more suited, which is once again highly time-consuming. This can be seen in Figure 6.
of the OFTI paper [7] where the OFTI algorithm is compared to the MCMC algorithm
with an increasing number of observations of β-Pictoris b.

The parameters are the orbital elements semi-major axis(a), eccentricity(e), inclination
angle(i), argument of periastron(ω), longitude of ascending node(Ω), the epoch of periastron
passage(τ) which are explained in Table 2.1.
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Figure 2.4. The first two steps of the OFTI algorithm. On the first subplot, 4 observations
can be seen in green. The black star at the origin represents the star of the system. The
second subplot shows the first step of the algorithm, the generation of a random orbit by
sampling the priors for each parameter. The red points correspond to the observations
at the same time as the green observations, the red and green arrows point to the first
observation which is taken as a reference point for the algorithm. The third subplot shows
how the semi-major axis is scaled and the fourth subplot shows the rotation of this orbit
so that the two observations at the chosen reference timestep are aligned. After that, the
chi-squared probability is calculated on the other observations to reject the orbits where
the probability is too low. This whole process is repeated until a certain number of orbits
are kept.

The OFTI algorithm works in three steps. Figure 2.4 shows the first two steps.

Monte Carlo Orbit Generation from Priors

The first step is to generate random samples of parameters from the prior distribution

θ ∼ p(θ) = p(a, e, i, ω, Ω, τ). (2.14)
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Even though the prior used in the paper was described as uniform for all parameters except
for the eccentricity and the inclination angle, which had respectively a linearly descending
prior and a sine prior, the implementation of the OFTI algorithm in Orbitize! permits
the user to choose the prior distribution of the parameters. An orbit is then generated
using these parameters.

Scale-and-Rotate

To restrict the wide parameter space of all possible orbits, the generated semi-major axis a
is scaled and the position angle of nodes is rotated so that the produced orbit goes through
a single astrometric data point. The choice of this astrometric data point is arbitrarily,
OFTI uses an initial round where they find the data point that will result in the highest
acceptance rate of orbits during the last phase.

They do not explain in the paper how they perform this initial round to choose the
astrometric data nor how they scale and rotate the generated orbit. However, by looking
at the source code, they choose the data point that corresponds to the smallest astrometric
error. They then scale the semi-major axis by multiplying it by the ratio of the generated
separation to the observed separation at the chosen data point and they rotate the position
angle of nodes by the difference between the observed position angle and the generated
position angle at the chosen data point.

Rejection sampling

Using the scaled and rotated parameters, the algorithm then calculates the other astrometric
data points for all the other epochs and calculates the chi-squared probability of the
predicted astrometry given the measured astrometry and uncertainties. The orbits where
this probability is larger than a number sampled from a uniform distribution are kept.
This process is repeated until a certain number of orbits are kept. This number is arbitrary
chosen.

2.6.3 Alpha-Deep Probabilistic Inference
In the paper of Sun et al. α-Deep Probabilistic Inference [1], the authors propose a
new method to estimate the posterior distribution of the parameters. They explain that
sampling methods such as MCMC and OFTI are slow for the context of exoplanet orbital
characterization because of the curse of dimensionality and they explain that variational
inference methods may not be well suited for this task as they may lack estimation accuracy.
They decide to use a method that tries to combine the best of both worlds.

The method is composed of two steps :

α-divergence Variational Inference with Normalizing flows

The goal of Variational Inference is to solve an optimization problem to estimate a posterior
distribution. We try to find the parameters ϕ∗ that best match the variational density
function to the target posterior distribution.

ϕ∗ = arg min
ϕ

D[qϕ(θ|x)||p(θ|x)], (2.15)
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where D is a divergence measure between the two density functions. The Kullback-Leibler
divergence [22] is often used but they claim that it may not be well suited for this task.
They explain that in theory, the KL-divergence should give a density function similar to
the target distribution, but in practice it often pushes the result too much towards certain
areas, ignoring the less likely ones. This is known as the mode-seeking effort of the reverse
KL-divergence [23]. To solve this problem they use the Renyi’s α-divergence instead [24]
:

ϕ∗ = arg min
ϕ

Dα[qϕ(θ)||p(θ|x)] (2.16)

= arg min
ϕ

1
α− 1 logEθ∼qϕ(θ){exp[(1− α)(log p(x|θ) + log p(θ)− log qϕ(θ))]}. (2.17)

When α → 1, it approaches the Kullback-Leibler divergence, and when α = 0 it corre-
sponds to the Maximum Likelihood Estimation (MLE) of the parameters ϕ. The MLE is
computationally efficient but may not capture the true posterior distribution accurately.
In contrast, the KL-divergence is more precise in capturing the posterior distribution
but at a higher computational cost. Therefore, they choose to tune α to find an optimal
balance between the two.

Like for OFTI and MCMC, the likelihood function is assumed to be a Gaussian likelihood
written in Equation 2.13.

For the prior, the paper is misleading as they claim to use uniform priors for all parameters
except on the semi-major axis where they use a log-uniform prior, and the parallax and
total mass where they use a Gaussian prior. Except for the parallax and total mass, the
interval of the prior distributions are huge and make it seem as if this method is able to
find the posterior distribution quickly in an hour on a GTX 1080 Ti. This appears to
be a mistake in the paper as the values they give for the parallax and total mass do not
correspond to the known values of the system they are studying, β-Pictoris. After looking
at the source code, the priors are much more constrained. These priors are explained later
in this work, in Table 4.1.

For q(θ) they use a normalizing flow. They decided to go with a Real-NVP network [25].
It uses simple affine transformations to transform a base normal distribution into a more
complex distribution. These transformations are simple and computationally efficient,
but they lack expressiveness and a lot of transformations need to be stacked to represent
multi-modal or discontinuous densities [26, 27]. For example, in the paper, they used 32
transformations, each composed of a neural network with 3 fully connected layers. Each
layer has a size of 128 neurons. Normalizing flows will be discussed more thoroughly in
Section 3.1

They also implemented an annealed version of the α-divergence to help the optimization
process. The log-likelihood and log prior in Equation 2.17 gives values that are a lot
higher than log qϕ(θ) at the beginning of the training process which makes the optimization
process difficult. They thus add a temperature parameter βi for epoch i that is decreased
over time. βi is given by :

βi = max(1, β0e
−i/τ ). (2.18)

15



They chose β0 = 104 and τ = 3000.

The annealed α-divergence at epoch i is then given by :

arg min
ϕ

1
α− 1 logEθ∼qϕ(θ){exp[(1− α)( 1

βi

log p(x|θ) + 1
βi

log p(θ)− log qϕ(θ))]}. (2.19)

Importance Sampling

This is used in Monte Carlo methods to estimate the expected value of a function. The idea
is to sample from a distribution that is easy to sample from, like a Gaussian distribution
:

θ ∼ k(θ), (2.20)
and then reweight the samples to approximate the distribution we are interested in. The
weights are the ratio of the target distribution to the proposal distribution.

wi = p(θi|x)
k(θi)

∝ p(x|θi)p(x)
k(θi)

. (2.21)

They explain that because a normalizing flow is a bijective function, to generate discon-
nected nodes in the posterior distribution they need to include low-probability regions
that interconnects the disconnected nodes.

By choosing k(θ) to be the trained normalizing flow qϕ, most of the weights would be
close to 1. They then remove the samples with the lowest weights. They claim that this
produces a cleaner posterior distribution.
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Chapter 3

Simulation-based Inference

Simulation-based inference is a class of algorithms that overcomes the challenges of
traditional inference methods by using simulators and deep neural networks to parameterize
density estimators to estimate the target posterior.

For example, one of these algorithms, called Neural Posterior Estimation, trains a condi-
tional density estimator qϕ(θ|x) to approximate the posterior distribution p(θ|x) by finding
the parameters ϕ∗ that minimizes the expected Kullback-Leibler divergence[22] over all
possible data points, meaning that the estimator matches the target posterior distribution
as much as possible:

ϕ∗ = arg min
ϕ

Ep(x)DKL[p(θ|x)||qϕ(θ|x)]. (3.1)

Note that we use the expected forward Kullback-Leibler divergence and not the reverse
Kullback-Leibler divergence like in the α-DPI algorithm (Equation 2.15). The paper
of Papamakarios et al. (2021) [28] explain how the two are equivalent. The forward
Kullback-Leibler divergence is more interesting in our case as it allows us to apply a simple
trick to rewrite the optimization problem in a more tractable form. [29]

Rewriting the Kullback-Leibler divergence, we get

ϕ∗ = arg min
ϕ

Ep(x)Ep(θ|x)[log p(θ|x)− log qϕ(θ|x)]. (3.2)

The double expectation over the data distribution and over the posterior distribution can
be rewritten as Ep(x,θ), the expectation over the joint distribution of the data and the
parameters. Because for any given data point x, there corresponds one specific value of θ
from the joint distribution, Equation 3.2 can then be rewritten as

ϕ∗ = arg min
ϕ

Ep(x,θ)[− log qϕ(θ|x)]. (3.3)

With Equation 3.3, the neural network that parameterizes the conditional density estimator
can be trained by minimizing the negative log-likelihood of the parameters given the
data.
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To model this conditional density estimator, the first approach could be to train a neural
network taking the data as input and outputting the parameters of a Gaussian distribution
or of a mixture of Gaussians. However, such a model may struggle to capture the complexity
of the true posterior distribution. The hypothesis space of the neural network choosing to
represent the posterior as a mixture of Gaussians may be too restrictive. Normalizing flows
are actually more suited for this task of approximating complex posterior distributions.
[28]

3.1 Normalizing Flows
The idea behind normalizing flows is to build complex probability distributions by modifying
a simple one sequentially.

This function f : Z → X maps a simple distribution z ∼ π(z), for example a multivariate
normal distribution z ∼ N (0, I), to a complex distribution q(x).

This f is composed of a total of K transformations f1, ..., fK that are all invertible and
differentiable functions. Each of these transformations fk are implemented as invertible
neural networks. The whole transformation is denoted as

x = f(z) = f1 ◦ ... ◦ fK(z), (3.4)

because a composition of invertible functions is also invertible, the inverse of the transfor-
mation can be computed as

z = f−1(x) = f−1
K ◦ ... ◦ f−1

1 (x). (3.5)

Using a change of variable formula, the probability density function of the complex
distribution can be expressed as

q(x) = π(f−1(x))| det(∂f−1(x)
∂x )|. (3.6)

The function f can be seen as compressing and expanding the density of the simple
distribution π(z) and the Jacobian determinant of the function ensures that the total
probability mass is conserved.

The Jacobian determinant of this inverse transformation is then

| det(∂f−1(x)
∂x )| =

K∏
k=1
| det(∂f−1

k (zk)
∂x )|, (3.7)

with zk = f−1
k (zk−1) and z0 = x.

Normalizing flows can also be used to estimate conditional densities by taking the data as
additional input, meaning we can use them to estimate the posterior distribution of the
parameters given the data and train the model minimizing Equation 3.3. [25–28]
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Coupling layer

There is a sequence of potentially high dimensional Jacobian determinants to be computed
which can be computationally expensive. One way to solve this issue is to ensure that this
Jacobian is lower triangular, as its determinant is then the product of its diagonal elements.
A coupling layer produces a lower triangular Jacobian by following these steps:

1. The input of the kth transformation zk is split into two parts zk = [zk
1:d−1, zk

d:D].

2. The first part zk
1:d−1 is used as input of a neural network.

It outputs the parameter(s) ϕ.

3. The second part zi
d:D is transformed by a function gi

ϕ depending
on the parameters ϕ.

4. Return the concatenation of the first part zk
1:d−1 that was unchanged and the

transformed second part gk
ϕ(zk

d:D)

The transformation is then :

zk+1
1:d−1 = zk

1:d−1, (3.8)
zk+1

d:D = gi
ϕ(zk

d:D). (3.9)

The Jacobian of this transformation is then

∂zk+1

∂zk
=

 Id−1 0
∂zk+1

d:D
∂zk

1:d−1

∂zk+1
d:D

∂zk
d:D

 . (3.10)

This needs to be a lower triangular matrix, ∂zk+1
d:D

∂zk
d:D

needs to also be lower triangular, which
is the case as zk+1

d:D is depending only on zk
1:d−1. At each transformation, the inputs are

permuted to ensure that all the dimensions are transformed at least once.

For example gk
ϕ could be an affine transformation :

gi
ϕ(x) = αx + β, (3.11)

where α and β are the output of the neural network taking zi
1:d−1 as input.

Such coupling layers are easy to invert but may not be expressive enough to model complex,
discontinuous, multi-modal distributions. [27]
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Neural Spline Flow

Figure 3.1. Example of a transformation of a normal distribution to a more complex
distribution using a Neural Spline Flow. In this example, there are 5 knots in total. The
first and last knots are always fixed at position [−B,−B] and [B, B], where B is 5, with a
derivative of 1. The positions of the other knots and their derivatives are given by the
neural network given the context. Outside of the interval [−B, B], the transformation is
the identity, meaning that the distribution will not be modified.

In the context of this work, it was decided to use Neural Spline Flow [27] as it is more
flexible while still being differentiable and easy to invert. They model gϕ as a monotonic
rational-quadratic spline on an interval and the identity function otherwise.

One transformation can be seen in Figure 3.1. The transformation is defined by a set of K
knots [ak, bk] and K − 2 derivatives . The first and last knots are always fixed at position
[−B,−B] and [B, B], with their derivative set to 1. To ensure that the transformation is
monotonic, the neural network produces the K − 1 widths and heights of bins. Those are
then passed through a softmax function and multiplied by 2×B to ensure that the bins
are in the interval [−B, B]. The cumulative sum of the widths and heights of the bins are
then the positions of the knots.

To sample from the complex distribution, it is enough to sample from the simple tractable
distribution, like the Gaussian depicted below the x-axis on Figure 3.1, see in which
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interval the sample falls and apply the corresponding spline transformation to it, giving a
sample from the complex distribution depicted to the left of the y-axis.

Because this transformation is invertible, going from the other way around is also possible
and this is how the training is done. By taking Equation 3.3, we know we want to
maximize the log-likelihood. What we maximize is the log-likelihood of the data points
from the complex distribution passing through the inverse transformation meaning the
neural network learns to transform the complex distribution into a normal distribution,
hence the name normalizing flow.

Multiple of these transformations can be stacked to build a more complex distribution,
where each output of one transformation is the input of the next one. [27]

3.2 Diagnosis
One of the challenges of Bayesian inference is diagnosing the quality of the posterior
distribution approximation. A useful method for this is the calibration test proposed by
Hermans et al. (2022) [30].

This calibration test is based on the idea of expected coverage. Let’s take a normalizing flow
that approximates the posterior distribution qϕ(θ|x). We generate N samples [θ1, ..., θN ]
and their corresponding data points [x1, ..., xN ].

As defined in Hermans et al. (2002), the expected coverage probability is

Ep(θ,x)[I(θ ∈ Θpϕ(θ|x))(1− α)], (3.12)

with I the indicator function that is equal to 1 if the condition is true and 0 otherwise,
and where the function Θpϕ(θ|x))(1−α) yields the 1−α highest posterior density region of
pϕ(θ|x).

If our estimation of the posterior distribution using the Neural Spline Flow is well-calibrated,
the parameters [θ1, ..., θN ] should lie within the 1− α credible region exactly 1− α% of
the time.

We can visualize this by plotting the corner plot of the posterior distribution of the
generated artificial data points, as shown in Figure 3.2. This plot is for one set of
parameters θ ∈ [θ1, ..., θN ] and its corresponding data point x∗. While the figure shows
only three credible regions, theoretically, there are infinitely many.
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Figure 3.2. Corner plot of the posterior distribution of the artificial data points. It shows
the 1D marginal distribution of each parameter on the diagonal and the 2D marginal
distribution of each pair of parameters on the off-diagonal. Three different credible regions
are shown, the 68.3%, 95.5%, and 99.7% credible regions. The true values of the parameters
are shown as the black lines.

For each of the N samples, we compute the credible region of the parameters. The true
parameters should fall within each of the 1− α credible regions 1− α% of the time. Thus,
if we plotted the corner plot for each of the N samples, the true parameter values would
appear in the 68.3% credible region 68.3% of the time if the model is well-calibrated. We
can plot the 1− α line and observe how the coverage of the credible regions evolves. If the
curve is below the 1 − α line, the model is overconfident, meaning the credible regions
are too narrow, excluding some true parameters. If the curve is above the 1− α line, the
model is underconfident, with overly wide credible regions. This is illustrated in Figure
3.3.
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Figure 3.3. Example of a calibration test. On the left side, the perfect calibration is
depicted by the black dotted line. The orange line represents an overdispersed posterior,
which is undesirable as it may wrongly reject plausible parameter values. The blue line
represents an underdispersed posterior, meaning it will be conservative in its estimation.
This issue is mitigated by the fact that the ground truth will still be present, although
with reduced precision. This phenomenon is illustrated in the plot on the right side.

It is important to note that this calibration test assesses the consistency of the approxima-
tion with the prior, not its accuracy. Therefore, while it cannot confirm the correctness of
our approximation, it can indicate if the approximation is flawed.
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Chapter 4

Orbital Characterization of β-pic b

The first part of this thesis was to reproduce the results of the α-DPI paper [1] on the
exoplanet β-pic b using simulation-based inference and comparing the different meth-
ods.

4.1 Prior
The first step is to define the prior of the parameters of the orbit of the exoplanet p(θ).
Table 4.1 shows the prior distribution used for the first part of this work. The parameters
are the same as the ones used in the work of the α-DPI paper to better compare the
results. Note that there is an error in the paper as the parallax and the total mass shown
are from the planet GJ 504 and the prior for the other parameters are also not the ones
they used in the implementation.1

Table 4.1. Prior distribution used for the different Keplerian parameters to characterize
the orbit of β-pic b.

Parameter Unit Prior Distribution
Semi-major axis (a) astronomical unit(au) logU(4, 40)

Eccentricity (e) - U(10−5, 0.99)
Inclination angle (i) degree (°) Sine(81, 99)

Argument of periastron (ω) degree (°) U(0, 360)
Longitude of ascending node (Ω) degree (°) U(25, 85)
Epoch of periastron passage (τ) - U(0, 1)

Parallax (π) milliarcsecond(mas) N (51.44, 0.12)
Total mass (MT ) solar mass(M⊙) N (1.75, 0.05)

A sine prior is used for the inclination angle because the inclination i and the longitude
of ascending node Ω correspond to the two angles in a spherical coordinate system. The
inclination is the polar angle and the longitude of the ascending node is the azimuthal

1The correct prior distribution used in the implementation of the α-DPI paper can be found in the
GitHub repository of the main author: https://github.com/HeSunPU/DPI/blob/main/DPItorch/DPIx_orbit.
py
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angle. Using two uniform priors for these two angles would result in a non-uniform prior
on the sphere where the poles would have a higher probability than the equator. Using a
sine prior for the inclination angle solves that and gives an isotropic uniform distribution.
This can be seen in Fig. 4.1.

Figure 4.1. Comparaison of the uniform and sine prior for the inclination angle. Each point
can be seen as an exoplanet at periastron with a fixed semi-major axis, fixed eccentricity,
and fixed argument of periapsis. We can see that using two uniform priors generates
clusters at the poles of the sphere. The sine prior gives a uniform isotropic distribution on
the sphere. This plot is an adaption of the one found in the orbitize! Documentation.
[10]

The choice of defining the time of the periastron passage τ between 0 and 1 explained
in Table 2.1 is now more clear. If we did not have any information on the time of the
periastron passage, we would have a uniform prior to the time, which is difficult to bound
as it could be infinite. With the way it is defined in Table 2.1, we can just have a uniform
prior between 0 and 1.

4.2 Simulator
The second step is to define the simulator that has to generate artificial data that has to
be as close as possible to the real data :

(x, θ) ∼ p(θ)p(x|θ)

To reproduce the results of the α-DPI paper, I designed a simulator that generates an
astrometric data point in relative Right Ascension (∆ RA) and relative Declination (∆
DEC) for each epoch with an observation of the exoplanet. These observations use sampled
parameters θ from the prior defined in Table 4.1.

I used the calc_orbit function from the orbitize! package [10], which takes the parame-
ters, epochs, and a reference epoch as input. It returns ∆ RA and ∆ DEC for each epoch
by solving Equations 2.3 and 2.4. The function also returns the radial velocity (RV), which
was not used in this work but could be incorporated in future work to enhance results. In
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the paper of Maire et al. (2023) [9] it is explained how using data from different sources is
actually the way to go to improve the results because each source can constrain different
parameters in their own ways.

To account for observational uncertainties, I added random noise to each generated data
point. This noise is sampled from a normal distribution with a standard deviation based
on the observational error, as provided in the β-pic b dataset in the orbitize! package.
Details of this dataset are available in Appendix A.

To ensure compatibility with the neural network, I standardized the data and parameters
to the range [−1, 1]. This standardization removes scale impact and improves neural
network convergence.

Figure 4.2. Right Ascension and Declination plot of the β-pic b exoplanet observations
and one simulated orbit with dots at each epochs where there was an observation of the
exoplanet. A dataset with 8 million of these simulated orbits was generated to train
the neural network. The black star represents the position of the star β-pic. These
observations are divided by a factor of 106 to be more suitable for neural network training.
The parameters sampled for this orbit are : a = 12.85, e = 0.46, i = 98.82, ω = 271.35,
Ω = 79.01, τ = 0.67, π = 51.29, MT = 1.75.

With this simulator, I generated a training set of size of 223 pairs of (x, θ) where x are the
simulated observations as can be seen in Figure 4.2. I also generated a validation set of
size 220 to monitor the loss during the training and detect overfitting.

4.3 Architecture
The Neural Posterior Estimator (NPE) is implemented as an autoregressive neural spline
flow. The concept is similar to the one presented in Section 3.1, but instead of using
coupling layers, autoregressive layers are employed. This means that instead of splitting
the input into two parts and transforming one based on the other, each parameter depends
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on the preceding ones [31]. This approach was also used in the Neural Spline Flows paper
[27], which demonstrates how both implementations can be used with the same overall
performance.

The NPE consists of a neural spline flow with three transformations. Each transformation is
a multi-layer perceptron (MLP) with 5 layers, each containing 512 neurons. The activation
functions between the layers are Exponential Linear Units (ELU) [32]. The splines have 9
knots, with the first and last knots fixed at [−5,−5] and [5, 5] respectively, each with a
derivative set to 1.

Each neural network outputs eight times the vector [w, h, d], corresponding to the eight
orbital parameters. The parameters w and h represent the width and height of the bins,
each of size 8, and d represents the derivative of the spline at the knots and has a size of 7
because the derivative at the last knot is fixed.

A schematic of this architecture is shown in Figure 4.3. This implementation was achieved
using the Lampe [33] and Zuko [34] libraries. The architectural choices were inspired by
the work of Vasist et al. (2023) [29], who also used a Neural Posterior Estimator to
retrieve the posterior distribution of exoplanet atmospheric parameters from spectroscopic
observations.

θ, xobs

θ SimulatorPrior

Figure 4.3. The architecture of the Neural Posterior estimation network used. At training
time, θ are sampled from the prior which are used through the simulator to generate
artificial observations xobs. Those are used with the corresponding θ as input to neural
networks which outputs the positions of the knots and the derivatives at each knot for each
transformation. There is one neural network for each transformation. The distribution
to the left is unknown and represents the posterior distribution of one parameter, the
whole network is trained to transform this distribution to a normal distribution, hence
the name Normalizing Flows. It does so by minimizing the negative log-likelihood of
the samples transformed to the normal distribution. At inference time, as explained the
transformation is invertible, we can sample from the normal distribution and go through
the inverse transformation to get a sample from the posterior distribution.
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4.4 Training
This flow is trained by minimizing the expected negative posterior log density from
Equation 3.3 over the training set. Each epoch of the training consists of taking 1024
samples of batch size 2048 from the training set and computing the loss. I also compute
the validation loss at each epoch by taking a slice of 256 samples of batch size 2048 from
the validation set and calculating the loss. To train I used a variant of stochastic gradient
descent, the AdamW optimizer[35] implemented in pytorch with a starting learning rate of
10−3. I used a factor scheduler to decay the learning rate by a factor of 0.5 if there is no
improvement in the validation loss for 32 epochs. The training is stopped if the learning
rate is under 10−6. Weight decay is also used and set to 10−2. The training is done on a
single NVIDIA GTX 1080 Ti GPU like in the paper of Sun et al. (2022) [1] to ensure a
legitimate comparison between the two methods. The idea behind this training procedure
also came from the paper of Vasist et al. (2023) [29].

4.5 Results
4.5.1 Reproducing the results of the α-DPI paper
The first part of this work aims to reproduce the results of Sun et al. (2022) [1] on the
exoplanet β-pic b. I used the same observations of β-pictoris b as they did to compare
the corner plot of the posterior distributions. Although Sun et al. did not mention
it explicitly, they used only 18 observations for their study. They employed 16 affine
transformations using the RealNVP architecture [25], where each transformation consists
of 2 fully connected layers with 64 units and leaky ReLU activation functions (negative
slope of 0.01). They trained the model for 24,000 epochs with a batch size of 8,192, using
the Adam optimizer [36] with a learning rate of 2× 10−3. They identified an optimal α
value of 0.6. The same priors described in Table 4.1 were used.

Training on a single NVIDIA GTX 1080 Ti GPU took approximately 1.5 hours. To match
this training time, I trained the NPE for 256 epochs.

As I only consider observations in the Right Ascension and Declination format in my
simulator and not in the Separation/Position Angle format, like Orbitize! did when
inferring the orbital parameters of real exoplanets that may have been observed in both
formats, I transformed those observations into RA/DEC using Equations 2.1 and 2.2. This
is the case for β-pic b.
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Loss plot

Figure 4.4. Loss plot showing the training and validation loss of the NPE and the training
loss for the α-DPI method. Note that the validation loss is not available for the α-DPI
method as it was not implemented. The two losses represent different metrics: the α-DPI
loss is the annealed α-divergence loss from Equation 2.19, while the NPE loss is described
in Equation 3.3, making direct comparison challenging. Despite the annealing of the α-DPI
method, its loss still diverges to infinite values in the early stages of training. The number
of steps is also different: for the NPE, one step corresponds to 1024 samples of batch size
2048, whereas for the α-DPI method, one step corresponds to 1 sample of batch size 8192.
For clarity, a smoothed version of the loss, which takes the mean of every 100 steps, is
also plotted on the right.

Plotting the loss is always a good way to diagnose the training of a neural network. In
Figure 4.4, I plotted the training and validation loss of the NPE and the training loss
of the α-DPI method, as they did not implement a validation loss. We can see that no
overfitting is observed, as the validation loss is not increasing while the training loss is
decreasing.

The higher variance in the validation loss of the NPE is due to the fact that the batch size
per step is smaller, 256 samples of batch size 2048 compared to the 1024 samples of batch
size 2048 for the train loss.

Overall, no overfitting is observed and the loss is decreasing, which shows that the model
is learning the underlying distribution of the data and we can expect that it will be able to
predict the posterior distribution of the parameters of β-pic b. One can also see that the
loss of the α-DPI is plateauing, while the loss of the NPE is still decreasing. I stopped the
training of the NPE at 256 epochs so that the overall training time would be comparable
to the α-DPI method but we could have continued the training. Results from a longer run
are available in the Appendix C, on Figure C.1 and C.2. No significant improvement is
observed in the longer run. It was able to restrict the posterior distribution of the mass,
the inclination, and the angle of the ascending node slightly more, but the overall shape of
the posterior distributions stayed the same.
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Corner plot

Figure 4.5. Corner plot of the posterior distribution of the parameters of β-pic b using the
α-DPI and NPE methods. The contours represent the 68.3%, 95.5%, and 99.7% confidence
intervals. The diagonal represents the marginal posterior distribution of each parameter
and the off-diagonal represents the 2D marginal posterior distribution of each pair of
parameters. In blue are the posterior predicted by the α-DPI method and in orange are
the posterior predicted by the NPE. The MCMC procedure from the paper could not be
exactly reproduced as the necessary details were not provided.

The corner plot in Figure 4.5 demonstrates that the NPE is capable of reproducing the
results of the α-DPI. The paper by Sun et al. (2022) [1] claimed that the Kullback-Leibler
divergence fails to capture disconnected modes in the posterior because it does not include
samples from low-probability regions.

However, with the technique explained in Equation 3.2 with the double expectation, the
KL-divergence can be used effectively without needing Renyi’s α-divergence. With this
providing the new loss function written in Equation 3.3, there is no need for the annealing
required for the α-DPI method. The low-density regions of ω and τ are well captured.

The NPE appears slighlty less confident than the α-DPI for the parameters semi-major
axis a and the eccentricity e and the total mass MT but more confident for the inclination
i, the argument of periastron ω, the longitude of the ascending node Ω and the time of
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periastron passage τ . However, there are also minor discrepancies in the inclination i and
Ω. Despite these differences, the posterior distributions are consistent with those obtained
using more observations, as shown in the corner plot in Figure 4.8.

Posterior Predictive Check

The posterior predictive check is a method used to validate the model by comparing the
observations to the predictions. In Figure 4.6, the 68.3% confidence interval of the orbit of
β-pic b is shown for both methods. The blue-shaded region represents the predictions from
the α-DPI method, while the orange-shaded region corresponds to the Neural Posterior
Estimator (NPE) predictions.

Figure 4.6. Right Ascension and Declination plot depending on the year of the observations
of β-pic b using the α-DPI method and NPE denoted as pϕ(θ|xβpic). In red are the
observations used for the training of both methods and in green are other observations of
β-pic b. This plot was made by sampling 1000 samples from the posterior distribution of
the parameters and to generate the corresponding orbit of β-pic b. The 68.3% confidence
interval was then plotted by taking the 15.85% and 84.15% quantiles of these samples.
The zoom on the upper plot shows how the NPE is more consistent with later observations
of the exoplanets that were not used to train the two models, as the 68.3% confidence
interval of the NPE encapsulates them.

We can observe several key points from this figure, first, the NPE produces a more realistic
orbit compared to the α-DPI method, particularly in alignment with later observations.
This suggests that the NPE model has effectively learned the underlying distribution of
the exoplanet’s orbital parameters. This could be due to the flexibility of the Neural
Spline Flows used in the NPE compared to the RealNVP architecture used in the α-DPI
method. This flexibility allows the NPE to capture more complex relationships between
the observations and the parameters, leading to more accurate predictions. The slightly
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wider confidence intervals of the NPE model also indicate a more cautious approach,
capturing the parameter variability better than the α-DPI method which has narrower
intervals.

Coverage plot

As explained in Section 3.2, the coverage plot evaluates the faithfulness of the Neural
Posterior Estimation by assessing the expected coverage. In Figure 4.7, the plot demon-
strates that the model’s coverage is almost calibrated, but it is slightly larger than the
credibility level 1− α. This indicates that the posterior is somewhat less confident than it
should be, which is preferable to being overly confident and potentially leading to incorrect
predictions.

Figure 4.7. Calibration test of the NPE. We can see that the model is almost calibrated
but still a bit conservative as the coverage is slightly larger than the credibility level 1− α.
1000 pairs of parameters/observations were used to generate this plot.

We can see that the model is almost calibrated but a slight conservatism is present, as
evidenced by the larger coverage compared to the credibility level (1-α). This conservatism
is beneficial as it reduces the risk of overconfident wrong predictions.

Generating a direct coverage plot for α-DPI is not feasible due to computational constraints.
Specifically, obtaining a plot comparable to Figure 4.7 would require running the method
1000 times. This necessity arises because α-DPI is not amortized, necessitating multiple
runs to account for the likelihood calculation.
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Even trying to infer its performance from the corner plot in Figure 4.5 is difficult as the
marginal posterior distributions are narrower for some parameters and broader for others.
If they were all broader, we could infer that the coverage would be above the credibility
level of the NPE and if they were all narrower, we could infer that the coverage would be
below the credibility level of the NPE. Here nothing can be inferred.

However, I did try to train a NPE with affine transformations instead of spline transfor-
mations to see if the results would be similar to the α-DPI method. I tried with the NICE
normalizing flow [37] but could not achieve similar results as with NSF or α-DPI. The
results can be found in the Appendix C on Figure C.3 and C.4.

The conservatism of the NPE could be attributed to the high errors in the observational
data of β-pic b, especially prior to 2014. These high errors lead to broader posterior
distributions, reflecting the increased uncertainty in the parameter estimates. This caution
in the model’s predictions ensures that it does not make overly precise claims that are not
supported by the data quality.

4.5.2 Comparaison with MCMC using all the observations
To further evaluate the performance of the NPE, I decided to train it using all the available
observations of β-pic b. The goal was to determine if the NPE could match the accuracy
of MCMC while offering a computationally efficient alternative. The OFTI method was
excluded as it cannot handle such a large dataset effectively.

I also ran the α-DPI method using the full set of observations to facilitate a comprehensive
comparison among the three methods. Consistent priors, detailed in Table 4.1, were
applied across all methods to ensure a fair comparison. The dataset creation and NPE
training required approximately 1.5 hours, encompassing 512 epochs using the same
training procedure as previously described. Similarly, α-DPI training also took around
1.5 hours. For the MCMC, 45.000 iterations were run across 1,000 chains with a burn-in
of 40,000, resulting in a total runtime of 51:03:19 on 10 CPUs. This setup is the same
procedure used in the original α-DPI paper. The converged MCMC chains can be found
in the Appendix C on Figure C.7.
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Corner plot

Figure 4.8. Corner plot of the posterior distribution of the parameters of β-pic b using the
α-DPI method, NPE, and MCMC. The contours represent the 68.3%, 95.5%, and 99.7%
confidence intervals. We can see that the NPE method, in orange, is able to reproduce the
results of MCMC, in green, better than α-DPI, in blue.

The corner plot in Figure 4.8 provides a comparative visualization of the posterior dis-
tributions obtained from the three methods. It is evident that the marginal posterior
distributions derived from the NPE resemble more those produced by MCMC, whereas the
α-DPI method shows discrepancies, especially for the semi-major axis a, the eccentricity e,
the argument of periastron ω and the time of periastron passage τ . The posterior of the
parallax is also more spread out in the α-DPI method. This similarity in the NPE and
MCMC results is particularly notable given the significant difference in computational
efficiency. The NPE required an order of magnitude less time to compute compared
to MCMC, making it a highly efficient alternative while maintaining a reasonable level
of accuracy, although the posterior distributions produced by NPE are generally more
dispersed compared to those obtained through MCMC.

Posterior Predictive Check

As with the previous analysis, I did a posterior predictive check to assess the NPE’s ability
to encapsulate the observed data. This is illustrated in Figure 4.6 where it shows the
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68.3% confidence intervals for the Right Ascension (RA) and Declination (Dec) of β-pic b
over time for the NPE, MCMC, and α-DPI methods.

Figure 4.9. Right Ascension and Declination plot depending on the year of the observations
of β-pic b using the α-DPI method and NPE denoted as pϕ(θ|xβpic). All three methods
are consistent with the observations, but the NPE exhibits a broader confidence interval
compared to the two other methods. 1000 samples were used for each method and the
15.85% and 84.15% quantiles were used to plot these confidence intervals.

All three methods are consistent with the observations, but the NPE exhibits a broader
confidence interval compared to the two other methods. Notably, the NPE’s confidence
interval encapsulates the intervals predicted by the other two methods, particularly before
2002 and after 2020.

α-DPI displays noticeable discrepancies with MCMC both before 2002 and after 2020.
This inconsistency arises from the α-DPI’s misestimation of the semi-major axis (a) and
eccentricity (e) parameters. Specifically, α-DPI predicts smaller values for both a and e
compared to MCMC and NPE, leading to deviations in the predicted orbital paths.

The broader confidence intervals observed in the NPE predictions could reflect its flexibility
and robustness in capturing the underlying uncertainties in the orbital parameters. This
attribute is particularly valuable for ensuring that the predicted orbital paths remain
reliable over a wide range of observations, even though it may result in less precise but more
inclusive predictions. This can be confirmed by the coverage plot in the next section.
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Coverage plot

Figure 4.10. Calibration test of the NPE. We can see it is perfectly calibrated as the
coverage is equal to the credibility level 1− α. 1000 pairs of parameters/observations were
used to generate this plot. Once again, the α-DPI method could not be tested due to
computational constraints, as it would require running the method 1000 times. The same
is true for the MCMC method.

The coverage plot in Figure 4.10 demonstrates that the NPE is well calibrated, with
the coverage closely matching the credibility level 1− α. This means that the predicted
posterior marginal distribution from Figure 4.8 and the credibility intervals accurately
reflect the true uncertainty in the model’s predictions.

A possible explanation for the improved calibration compared to Figure 4.7 is that the newer
observations had significantly lower error margins due to advancements in telescope preci-
sion. This reduction in observational error constrains the posterior distribution to a smaller
region of the parameter space, leading to more precise and accurate predictions.

Conducting such a coverage diagnosis with α-DPI and MCMC is not feasible due to the
high computational costs involved. However, by comparing the results of the NPE on the
corner plot with those from MCMC and α-DPI, we can infer the likely performance of
MCMC. It is reasonable to assume that MCMC would exhibit slightly lower coverage than
the credibility level as it tends to be more confident in its predictions. while for α-DPI it
is difficult to infer its performance as posterior distributions are sometimes narrower like
for the eccentricity and sometimes broader like for the parallax.

The good calibration of the NPE is further illustrated by the posterior predictive check on a
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generated observation from the test set, shown in Figure 4.11. In this figure, the confidence
intervals effectively encapsulate the true orbit given the observations, demonstrating the
NPE’s ability to accurately predict the orbital parameters within the expected uncertainty
ranges. Also, the amortization of the NPE allowed us to generate the results for this figure
almost instantaneously. It just needed a single forward pass through the network. If I
wanted to generate the same results with MCMC, it would have taken 50 hours, like for
the original data of β-pic b.

Figure 4.11. Posterior predictive check of the NPE on one of the samples from the test set.
The 68.3%, 95.5% and 99.7% confidence intervals are shown along the true orbit

4.5.3 Conclusion
In this section, I demonstrated the ability to reproduce the results of the α-DPI method for
the exoplanet β-pic b using NPE. While this method offers significant speed advantages,
generating results almost instantaneously, it is important to note that this efficiency
is constrained by certain conditions. Specifically, the model can only generate results
for exoplanets with the same number of observations as β-pic b, taken at the same
times. Additionally, if new observations of β-pic b were to be made, retraining the model
would be necessary, meaning that the NPE is not yet capable of generating amortized
results. Nonetheless, even with these constraints, the NPE remains an order of magnitude
faster than traditional MCMC methods, though it does not fully exploit the potential of
Simulation-Based Inference.

The true strength of SBI lies in its flexibility and scalability. With the appropriate simulator
and model architecture, it is conceivable to develop an NPE capable of producing results
comparable to MCMC, but almost instantaneously, for any exoplanet, following a single
training phase. This would represent a major advancement in the field of exoplanet
astrometry, providing researchers with a powerful tool for rapid and accurate orbital
characterization.

The development of such a versatile and efficient network is the focus of the next part of
this work. In the following chapter, we will explore the design and implementation of a
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more general NPE model, capable of handling a diverse range of observational data and
delivering high-fidelity results across various exoplanetary systems.
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Chapter 5

Orbital Characterization of any
Exoplanet

In this chapter, I present the development of a generic model capable of instantaneously
characterizing the orbit of any exoplanet given a set of astrometric observations.

5.1 Prior
The priors used in Chapter 4 were used specifically to β-pic b and are not suitable for
a more general model. To address this, the priors need to be wider to encapsulate the
diversity of orbital parameters across different exoplanets. The following priors were
selected:

Table 5.1. Prior distribution used for the different Keplerian parameters for a generic
exoplanet.

Parameter Unit Prior Distribution
Semi-major axis (a) astronomical unit(au) logU(4, 100)

Eccentricity (e) - U(10−5, 0.99)
Inclination angle (i) degree (°) Sine(0, 180)

Argument of periastron (ω) degree (°) U(0, 360)
Longitude of ascending node (Ω) degree (°) U(0, 360)
Epoch of periastron passage (τ) - U(0, 1)

parallax (π) milliarcsecond(mas) Not used
Total mass (MT ) solar mass(M⊙) U(0.2, 3)

To reduce the parameter space and provide a proof of concept, I limited the upper bound
of the semi-major axis to 100 au. If the model successfully represents accurate posterior
distributions for known planets within this range, such as β-pic b or the four planets of
HR 8779 [38], this bound could be extended, with additional training of the normalizing
flow.

The total mass prior ranges from 0.2 to 3 solar masses, encompassing spectral types from
approximately M5V to A0V. This range represents the types of stars around which planets
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have been directly imaged.

The parallax parameter is not used directly in the model thanks to the precise parallax
measurements provided systematically by the Gaia1 mission for all stars in the galactic
neighborhood. This precision encompasses all stars suitable for direct imaging of exoplanets,
offering significantly better accuracy than what can be deduced from planetary orbit
adjustments alone. Including it would unnecessarily widen the parameter space. In
comparison to the prior used in Chapter 4, where the prior of the parallax was taken as
a normal distribution, a more general prior would be too wide and would need longer
training time for the normalizing flow to really understand the underlying link between
the different parameters. Instead, parallax is treated as a scaling factor (see Equations 2.3
and 2.4), fixed to an arbitrary value (e.g., 100 mas) during model inference, and rescaled
to the known parallax of the star afterward.

Figure 5.1. Effect on rescaling the parallax. The blue line represents an orbit generated
by sampling orbital parameters from the prior distribution and calculating the 1000
astrometric observations over a certain amount of time. The orange line represents the
orbit generated by the same parameters but with the parallax set to 100 mas, also by
calculating the 1000 astrometric observations. The red dotted line is this orange orbit
times the actual parallax of the star divided by 100. This demonstrates how the parallax
can be put to the side during inference and rescaled afterward.

Figure 5.1 illustrates the effect of rescaling the parallax. During inference, the astrometric
observations are adjusted to correspond to a parallax of 100 mas. The results are then
scaled back to reflect the actual parallax of the star.

5.2 Simulator
With the appropriate priors in place, the simulator must be capable of generating data
in a form that is invariant to the number of observations. The initial approach involved

1Gaia mission website
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generating n observations over a span of twenty years, from 01/01/2002 to 01/01/2022, as
most direct imaging observations of exoplanets fall within this period. (A list of examples
of observations using direct imaging can be found in the paper of Do Ó et al. 2023
[39]).

Noise is added to the observations to simulate observational error. The noise is sampled
from a normal distribution with a standard deviation of σerr, which is chosen based
on typical error values in different astrometric datasets. This error model reflects the
uncertainties present in real observational data.

ϵ = N (0, σerr)

To handle varying numbers of observations, a mask is applied to the n values to randomly
select between three and thirty observations. Three observations are necessary because
any three distinct points on an ellipse define the ellipse’s orbital plane. Thirty is chosen as
the upper limit based on the maximum typical number of directly imaged observations of
exoplanets.

This simulator design ensures that the generated dataset is diverse and representative of
different observation scenarios, providing a robust basis for training the normalizing flow
model. The next steps will involve refining the simulator to better match observational
conditions and further tuning the model to improve its accuracy and efficiency.

5.3 Validation
To validate the model, I decided to apply it to all four planets orbiting the star HR 8799.
Typically, astronomers would run separate MCMC simulations for each planet, a process
that can be very time-consuming [40]. For this validation, I specifically chose to focus on
HR 8799e.

The observations of all four planets are available in the Annex B. They were taken from
Zurlo et al. [41].

For HR 8799e, I conducted an MCMC run lasting 14:21:32 hours on 10 CPUs using 1000
chains with 10000 iterations each. The converged chains, which are presented in the Annex
C in Figure C.8, will serve as a benchmark for comparing the results produced by the
normalizing flow model.

5.4 Residual Multi-layer Perceptron
For the first part of this work explained in Chapter 4, it was easier to define the dataset as
we just had to produce one observation for each epoch. Here, the dataset is more complex
as we have to produce a variable number of observations and at different epochs.

The first idea was to use a Residual Multi-layer Perceptron (ResMLP) [2] using the idea
of zero padding. The first step is to divide the span of eighteen years into n intervals of
the same length. In each of those intervals, a timestep is randomly chosen. The simulator
would then produce observations at these timesteps given parameters sampled from the
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prior. Observations would randomly be removed and changed to zero, meaning that there
was no observation in this interval of time.
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Figure 5.2. Architecture of the generic model using a ResMLP as an embedding network.
Orbital parameters are drawn from the prior and used by the simulator to produce the
observations, in this case, 4 observations are produced and are shown as dots on the ∆
RA and ∆ DEC plots. The two lines on which the dots are placed represent the orbit of
the exoplanet. The time is discretized into 10 intervals of the same length, represented
by the vertical dotted lines. The vector that is send to the ResMLP is of size 2× the
discretization. Each even index represents the ∆ RA and each odd index represents the
∆ DEC. When there is no observation for a given interval, the value is set to zero. The
embedding vector produced by the ResMLP is then used to train the Neural Posterior
Estimator as in the previous chapter.

The ResMLP would then take this input and produce an embedding vector of a fixed size
that would be used by the normalizing flow. This embedding network should be able to
learn the underlying features of the data. The overall architecture is depicted in Figure
5.2. There is not much change in the NPE architecture, it is the same as the one used in
Chapter 4 and shown in Figure 4.3.

The ResMLP architecture was the same as in the paper of Vasist et al. 2022 [29], meaning
it is composed of 10 residual blocks, the first two of size 512, the next 3 of size 256, and
the last 5 of size 128.
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5.4.1 Effect of the discretization and the error

Figure 5.3. Processing the astrometric data of the exoplanet HR 8799e with different.
The discretization, here set to 30 intervals of equal length between 2002 and 2020, are
shown as vertical dotted lines. The first plot shows the observations of the exoplanet with
their error bars. The second plot is after taking one observation per interval. If there are
multiple observations in the same interval, the observation with the smallest error is taken.
The two last plots are the observations that are left after the error threshold is applied.
This threshold depends on the error that was applied in the training set. A trade-off can
be seen, taking more accurate observations means less data is available, and taking less
accurate observations means making the error on observations with a small error larger as
the same error is applied to all observations in the training set.

The discretization of the time is an important parameter to set, as it adds a uniform error
on the time of the observations in addition to the normal error on the observations. Setting
it too high would mean having input vectors that are really large and sparse which will
make the training of the ResMLP a lot harder as the weights of the network will not be
updated often. Setting it too low will make the error on the time of the observations too
high and the network will not be able to learn the underlying features of the data.

The error in the observations is also an important parameter to set. It is used to add
observational noise to the data. If I choose a too-small error, it would be able to only take
data with low noise, reducing the amount of data usable at inference time. If I choose a
too-large error, observations that are known to be accurate will be made less accurate,
this will increase the uncertainty on the observations and thus the uncertainty on the
predictions.

Both the effect of the discretization and the error on the processing of real astrometric
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data are shown in Figure 5.3.

To test the effect of the discretization, three different discretizations were tested, 30, 180,
and 1800 intervals. The error in the observations was set to 2 mas.

The time for generating the dataset was about 1 hour for all three methods and the training
took 6h 27m 11s for the discretization in 30 intervals, 7h 28m 42s for the discretization in
180 intervals and 16h 3m 38s for the discretization in 1800 intervals.

Corner plot

Figure 5.4. Corner plot of the posterior distribution of the orbital parameters of the
exoplanet HR 8799e with the effect of discretisation

The three different discretization levels (30, 180, 1800) are compared against the MCMC
results. Interestingly, the results shown in the corner plot in Figure 5.4 are all very close to
each other. The marginal distributions for the discretization level of 30 seem to align more
closely with the MCMC results for parameters such as the semi-major axis, eccentricity,
and inclination. However, it is challenging to definitively determine which discretization
level is the best, as all three levels seem to have high levels of inaccuracies.

One notable observation is that all methods struggle to accurately estimate the total mass
of the system. This could be because, over the short fraction of the orbit observed, the
effect of the system’s mass on the astrometric data is not readily noticeable. While the
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mass is an important parameter for characterizing the entire orbit, its influence may not
be significant in the limited time span of our observations, making it a difficult parameter
to constrain accurately. This parameter is still included because it becomes more relevant
when considering longer observational periods or when combined with other data.

Posterior predictive check

Figure 5.5. Posterior predictive check of the exoplanet HR 8799e with the effect of
discretization. To make the plot more readable, only the two extremes of the discretization
are shown. For the sack of clarity, only the two extremes are shown, the 30 and 1800
intervals discretization. The two methods seem to not get the general trend of the Right
Ascension of the orbit. The 30 intervals discretization seems to be off while the 1800
intervals discretization seems to be more centered on the actual observations.

In Figure 5.5, we can see that both methods shown are not able to correctly predict
the observations. The effect of the discretization is visible on the ∆ DEC plot with the
discretization in 30 intervals. The discretization sets a bias in the 68.3 % credible interval
which is not centered on the actual observations. The discretization in 1800 intervals seems
to be well centered on the actual observations for ∆ DEC but is a lot more uncertain than
MCMC while taking the same time to train.

For both discretization levels, the model fails to capture the overall shape of the orbit in
terms of ∆ RA. This indicates a fundamental limitation in the model’s ability to accurately
predict the Right Ascension component of the orbit, regardless of the discretization
level.
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Coverage plot

Figure 5.6. Coverage plot of the exoplanet HR 8799e with the effect of discretisation. The
1800 discretization is well calibrated while the 30 intervals discretization is underdispersed
and the 180 intervals discretization is a bit overdispersed.

The coverage plot in Figure 5.6 provides valuable insights into the model’s behavior across
different discretization levels, revealing the trade-offs between computational efficiency and
predictive accuracy. Firstly, at a low discretization level of 30 intervals, the plot indicates
overdispersion. This overconfidence is also evident in the posterior predictive check plot
(Figure 5.5) where the 68.3% credible interval is smaller but misaligned with the actual
data. Consequently, the low discretization level fails to capture the underlying features of
the data accurately, making the model unreliable.

Secondly, the coverage plot for 180 intervals shows a conservative approximation. The
model slightly overestimates the uncertainty, which, while better than overconfidence,
suggests that the model could be more precise. This level of discretization allows the
model to learn the shape of the orbit better, although it still results in higher uncertainty
due to the uniform error in the time of observations, leading to a conservative model.

In contrast, the highest level of discretization, 1800 intervals, shows well-calibrated results.
This level of detail reduces the error in the time, leading to more reliable predictions.
However, despite the improved accuracy, this discretization level comes with significant
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computational and memory costs, requiring around 120 GB of memory for the training
set.

5.4.2 Effect of the mass
As discussed in the previous section with the corner plot, the mass of the system is not
well constrained by either of the three models purely from the data. However, the mass
of the system is well known for stars in the solar neighborhood. While Gaia provides
precise parallax measurements, the masses of these stars are typically determined through
color measurements or spectroscopic observations by fitting stellar models to the data.
Generally, stellar masses in the solar neighborhood are known to approximately 10-20%
accuracy, depending on the spectral type considered. This means I may not have to use
uninformative priors. We can thus use the mass of the system as input to the model and
not as a parameter to be inferred. This would reduce the overall parameter space and
make the training of the model easier. The mass of the system is still sampled from the
prior for each data point, but it is used as input to the model by adding it to the input
vector and not as a parameter to be inferred. It is also standardized to the interval [−1, 1].
This still is a large approximation as there is still some uncertainty on the mass of the
system that is not kept into account and has to be kept in mind when interpreting the
results.
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Corner

Figure 5.7. Corner plot of the posterior distribution of the orbital parameters of the
exoplanet HR 8799e with Mtot fixed and as a parameter. A difference can be seen with the
epoch of periastron passage τ and the inclination i. However, for the other parameters, no
real difference can be seen.

The corner plot in Figure 5.7 shows the impact of taking the mass of the system as input
and not as a parameter on the posterior distributions of the orbital parameters. Notably,
this adjustment leads to the epoch of the periastron aligning more closely with the MCMC
results. This outcome was expected, as the mass of the system directly influences the
orbital period and, consequently, the epoch of the periastron. By fixing the mass, the
variability in the period is reduced, resulting in a more accurate prediction of the periastron
timing.

Additionally, the posterior distributions for the semi-major axis and eccentricity remain
consistent, showing no significant deviation from the results obtained without fixing the
mass. This consistency indicates that these parameters are less sensitive to the mass of
the system and more robustly estimated by the model.
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Posterior predictive check

Figure 5.8. Posterior predictive check of the exoplanet HR 8799e with Mtot fixed and used
as a parameter. The model is able to better predict the observations by fixing Mtot and
is closer to the baseline MCMC results. The uncertainty is also reduced. Note that the
observations are different from Figure 5.5 as in that Figure, the observations were changed
due to the discretization. Indeed, they were set at the beginning of each interval.

In Figure 5.8, the model demonstrates an improved ability to predict the observations
more accurately, centering closer to the MCMC orbit prediction. Fixing the mass leads
to predictions that better align with the observed data, reducing the uncertainty in the
predicted orbits.

This improvement is evident in the tighter credible intervals and the alignment of the
predicted path with the actual observational data. By removing the mass of the system as
a variable parameter and fixing it instead, the model gains a significant boost in predictive
accuracy and reliability. This result confirms that incorporating known quantities, such as
the total mass, enhances the model’s performance.
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Coverage plot

Figure 5.9. Coverage plot of the exoplanet HR 8799e with Mtot fixed

The coverage plot in Figure 5.9 shows that both methods exhibit good calibration, though
the model with the fixed mass appears to be slightly less conservative.

The reduction in the 68.3% credible interval, as seen in Figure 5.8, is thus not due to
overconfidence, but rather to a more accurate and constrained model. This outcome
strengthens the case for using fixed known parameters to enhance the precision and
reliability of exoplanet orbital predictions.

By validating the model on real data of HR 8799e and demonstrating improved predictive
performance with fixed mass, we can conclude that this approach is beneficial. This method
of fixing the total mass will be adopted in the next sections, ensuring that the model
remains robust and accurate across different datasets and observational scenarios.

5.4.3 Reduced time period
One of the main problems with the model is that generating data with lower errors means
using less available data at inference time. All data prior to 2014 were excluded due to
their high error margins. By focusing on the period from 2014 to 2020, we can create a
training set with an observational error of 2 milliarcseconds (mas), as this period coincides
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with the use of more precise telescopes. This approach is applicable to both the HR 8799
exoplanets and the β Pictoris b. As more data become available in the future, the time
period can be extended, such as from 2014 to 2024, but for this thesis, the focus remains
on the 2014 to 2020 period.

The discretization is set to 100 intervals of equal length.

Corner plot

Figure 5.10. Corner plot of the posterior distribution of the orbital parameters of the
exoplanet HR 8799e using MCMC and using a NPE trained on a training set with the
time period reduced to 2014-2020. We can see that the NPE is able to better match the
MCMC results than previously.

Figure 5.10 shows that the model can more closely predict the MCMC results than when
the time period was from 2002 to 2020. However, there are still small discrepancies in
the eccentricity, the inclination, and the epoch of the periastron compared to MCMC.
This could be due to the fact that MCMC utilized all available observations, whereas
my method relied on fewer data points based on specific assumptions. This comparison
highlights the strength of MCMC in fully leveraging all observations, whereas my method
demonstrates robustness with fewer data points. To ensure a fair comparison, MCMC
should indeed use all observations as it is designed to handle them, unlike my method
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which is constrained by its underlying assumptions. This allows MCMC to use a larger
fraction of the orbit thereby allowing it to better understand the underlying features of
the data.

I could not compare the results with OFTI as it is not able to handle the large amount
of data that is available for the exoplanet HR 8799e. The algorithm stops when it has
accepted a certain number of samples but with such a large amount of data, the percentage
of accepted samples is really low and would take a lot of time to get a good approximation
of the posterior distribution.

Posterior predictive check

Figure 5.11. Posterior predictive check of the exoplanet HR 8799e. The NPE model is
able to better predict the observations a lot better than previously. The uncertainty is
greatly reduced but still not as good as for MCMC.

As was expected from the corner plot, the model is able to better predict the observations
than when the time period was larger. This improvement is expected as the training set is
more similar to the real observational data used.

The amortization of the inference procedure of the neural posterior estimator makes it
possible to produce a posterior distribution of the orbital parameters of all the other
exoplanets of the HR 8799 system instantaneously. The posterior predictive check of the
4 exoplanets of HR 8799 is shown in Figure 5.12. As we saw that the NPE was able to
produce a good approximation of the orbit of HR 8799e, we can expect a similar result for
the other exoplanets.

By comparing the results with those in the paper of Sepulveda and Bowler (2022) [40],
the results are close to the ones they obtained by using MCMC for the other planets. The
plot is shown in the Annex C.4.

However, we can see in Figure 5.12 that there are still some impossible orbits that are
generated by the model.
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Figure 5.12. Posterior predictive check of the 4 exoplanets of HR 8799, 1000 orbits are
generated for each exoplanet. The NPE produces a good approximation of those orbits,
however, some impossible orbits are still generated like on HR8799b, HR8799c or HR8799e
where there are orbits that are not passing through the observations. The x-axis has been
inverted to make the plot comparable with the one in the paper of Sepulveda and Bowler
(2022) [40].

However, the model is not able to correctly predict all the orbital parameters of β Pictoris
b as can be seen in the Annex C.3 on Figure C.5.

This is because, by design, the idea of discretization reduces the amount of data available
and may not closely resemble the actual observations of exoplanets.

Coverage plot

The coverage plot is also showing that we can trust the model but that it is still conserva-
tive.

With all of this we can conclude that even if the model was able to predict the orbit of the
four exoplanets of HR 8799, it failed to predict the orbit of β Pictoris b. The problem may
not be the choice in the hyperparameters but the model itself. The way of discretizing the
time may not be the optimal way to make a generic model.

This is why I decided to try a different approach, the Deep Set network.
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Figure 5.13. Coverage plot of the exoplanet HR 8799e with the time period reduced to
2014-2020. The model is almost calibrated but still a bit conservative.
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5.5 Deep Set
The second architecture explored was the Deep Set network [3]. This network is designed
to handle sets of inputs. Each input in the set is independently processed by a feature
extractor network, and the resulting features are then aggregated to produce a single
output. In our implementation, the aggregation is performed using a summation operation.
This aggregated feature vector is subsequently passed to a second neural network, which
generates the embedding vector. The overall architecture is illustrated in Figure 5.14.

One significant advantage of this approach is that the time does not need to be discretized.
Instead, the timesteps are transformed into a vector of size 16 using the positional encoding
scheme inspired by the Transformer model [42]. This positional encoding is designed to
provide information about the relative positions of observations in time, utilizing sine and
cosine functions of different frequencies. This should enable the model to understand the
order of the input data.

The positional encoding is defined as follows:

PE(pos,2i) = sin
(

pos

100002i/d

)
(5.1)

PE(pos,2i+1) = cos
(

pos

100002i/d

)
(5.2)

where pos is the position of the time in the sequence. To determine pos, we set the first
element of the sequence to 52,275, which corresponds to January 1, 2002. For each time
input, we calculate the difference between the given time and 52,275, and use this as the
position. The dimension d of the embedding is set to 16 in this case.
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Figure 5.14. Architecture of the generic model using a Deepset as an embedding network.
The model takes a set of inputs, each being the RA and DEC position and the time of
the observation. Each of these inputs is embedded using the feature extractor network ϕ
producing the set of features η. A maximum of 30 observations are taken, if there are less,
the last embeddings are set to 0 to match the number of observations. For example if there
are 20 observations, the last 10 embeddings are set to 0. This set of aggregated features is
then aggregated using a sum operation. The aggregated features are then passed to the
regressor network ρ. The output is then used to train the normalizing flow. All of the
ti are vectors obtained using the positional encoding from the Attention is all you need
paper[42].
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5.5.1 Results
Different architectures were tested, varying the sizes and shapes of the two networks used
as the embedding network. We also experimented with different methods of encoding time.
Unfortunately, the best model, which utilized a feature extractor with layers of 16, 32, and
64 neurons, and a regressor with layers of 128, 256, 128, and 64 neurons, did not perform
as well as the previous ResMLP model. Deeper or wider layers resulted in significantly
longer training times compared to the ResMLP model, with only marginal improvements
in performance.

The results of the best model are shown in the corner plot in Figure 5.15. This model
was trained for 512 epochs using the same training procedure as described in Section
5.4. The corner plot reveals that the model fails to accurately predict the true values of
the parameters, particularly missing the posterior distributions of the eccentricity and
inclination, rendering the model ineffective.

This shortcoming may be attributed to the nature of the data, which is not inherently a set
but a sequence. Despite using a time vector, the model struggles to grasp the sequential
order of observations. In contrast, the ResMLP model retains sequence information, as
each position of the input vector corresponds to a distinct observation time, thereby
maintaining the temporal order.

Figure 5.15. Corner plot of the generic model using a Deep Set as the embedding network.
The model is not able to correctly predict the posterior distributions of the parameters.
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Chapter 6

Conclusion

The objective of this thesis was to explore and enhance the characterization of orbital pa-
rameters of exoplanets using advancements in deep learning, specifically through simulation-
based inference.

Characterizing the orbital parameters of exoplanets solely from astrometric data is a
challenging task but can provide valuable insights into the dynamics of exoplanetary
systems. Current methods, implemented in libraries such as orbitize! or Orvara, rely on
Markov Chain Monte Carlo (MCMC) methods or Approximate Bayesian Computation to
infer the posterior distributions of these parameters given the data. These methods are
computationally expensive and can be slow to converge.

The first part of this work involved reproducing the results of the state-of-the-art method,
the α-DPI, which employs variational inference and a normalizing flow, RealNVP. In this
thesis, Neural Spline Flows are used along with the expected forward Kullback-Leibler
divergence allowed us to avoid computing the likelihood of the data for the loss function
used to train the model.

The results are slightly more uncertain than those obtained with α-DPI and MCMC using
all available observations of the exoplanet β-Pic b. However, by examining the calibration
of our NPE, which is perfectly calibrated, we can infer that the results of MCMC are
actually slightly overconfident.

Like α-DPI, our NPE model was not fully amortized. Although inference is possible on
different datasets, the datasets need to have astrometric observations at exactly the same
times as the observations for β-Pic b because the model is designed this way. Additionally,
the priors chosen did not encompass a sufficiently large parameter space, which would
be necessary for a more general model. This lack of amortization implies that if new
observations of β-Pic b were added or if we wanted to use the model for another exoplanet,
a new model would have to be retrained from scratch. This is where the second part of this
thesis comes into play: designing an architecture that can be used for any exoplanet.

The first architecture developed for this second part used a ResMLP as the embedding
network, which takes the observations of the exoplanet and outputs a vector that is used
by the normalizing flow to infer the posterior of the orbital parameters. The input vector
of the embedding network is a period of time that is discretized into a certain number
of bins. If an observation falls into a bin, the value of the bin is set to the values of the
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observation; otherwise, it is set to zero.

Several experiments were conducted to enhance the model, such as testing the number of
bins, setting the mass of the exoplanet as an input to the embedding network instead of
as a parameter of the normalizing flow, and reducing the period of time to use only recent
observations from telescopes with better precision and thus better data.

The model was able to infer the posterior of the orbital parameters of all four planets of
the HR 8799 system, which would have required running MCMC for each planet separately.
However, the experiments may have been too tailored to the HR 8799 system and not
sufficiently general, as the model could not infer the posterior of the orbital parameters of
β-Pic b.

A second architecture was designed using a Deep Set network as the embedding network.
However, this architecture performed worse than the ResMLP. This could be due to the
fact that the observations are not independent of each other and cannot be treated as a
set.

In conclusion, it is possible to create a program that trains a model based on the observations
of an exoplanet and can infer the posterior of the orbital parameters, significantly reducing
the time required and enabling the use of large datasets, which OFTI cannot. Developing
a truly generic model is more complex, as many assumptions are made in the design of
the model, potentially rendering the results less reliable.

6.1 Future Work
Future research could focus on utilizing more advanced simulators, such as the one provided
by Orvara, to generate data more efficiently. The Orvara simulator is known for its high
precision and speed, which would enable the creation of more accurate training datasets
in a shorter amount of time. By improving the quality and quantity of the training data,
the performance of the models could be significantly enhanced. This would be particularly
beneficial for developing models that can generalize across a wide range of exoplanetary
systems.

Incorporating a physically motivated distribution for eccentricity could yield more realistic
results. The eccentricity distribution of exoplanets is known to follow a beta distribution,
as demonstrated by Kipping et al. (2013)[43] and verified for directly imaged planets by
Bowler et al. (2020)[44]. This could potentially improve the precision.

Revisiting the prior ranges for certain parameters could enhance model efficiency. Specif-
ically, the priors for the argument of periastron (ω) and the longitude of the ascending
node (Ω) are currently set between 0° and 360°. However, for reasons of symmetry, one of
these parameters could potentially be reduced to a range of 0° to 180°. Clarifying and
adjusting these priors could reduce computational overhead.

Another promising direction is to explore the transformer architecture as an embedding
network. The self-attention mechanism inherent in transformers could effectively capture
the dependencies between observations. Unlike traditional architectures that may struggle
with long-range dependencies, transformers can process all input data simultaneously,
considering the relationships between all pairs of observations. This capability is crucial for
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accurately modeling the sequential nature of astrometric data and could lead to substantial
improvements in the inference of orbital parameters.

Incorporating additional data points, such as radial velocity measurements, could also
enhance the model’s ability to constrain the parameter space. Radial velocity data provides
complementary information about the motion of exoplanets, offering insights into their
masses and orbital characteristics that are not captured by astrometric data alone. By
integrating both astrometric and radial velocity observations, the model could achieve a
more comprehensive understanding of the exoplanetary systems, leading to more accurate
and reliable parameter estimates. This multi-modal approach would leverage the strengths
of different types of observations to produce a more robust inference framework.
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Appendix A

β-pic observations

Table A.1: Observations of the separation and position angle of β-pic b relative to the
primary star β-pic

52953 413 22 34 4
54781 210 27 211.49 1.9
55129 299 14 211 3
55168 339 10 209.2 1.7
55168 323 10 209.3 1.8
55194 306 9 212.1 1.7
55296 346 7 209.9 1.2
55467 383 11 210.3 1.7
55516 387 8 212.4 1.4
55517 390 13 212 2
55555 407 5 212.8 1.4
55593 408 9 211.1 1.5
55646 426 13 210.1 1.8
55854 452 3 211.6 0.4
55854 455 5 211.9 0.6
56015 447 3 210.8 0.4
56015 448 5 211.8 0.6
56263 461 14 211.9 1.2
56265 470 10 212 1.2
56612 430.8 1.5 212.43 0.17

Epoch Sep. (mas) Sep. Error PA PA Error (°)

58440 164.5 1.8 28.64 0.7
Continued on next page
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Table A.1: Observations of the separation and position angle of β-pic b relative to the
primary star β-pic (Continued)

56612 429.1 1 212.58 0.15
56614 430.2 1 212.46 0.15
56636 425.5 1 212.51 0.15
56636 424.4 1 212.85 0.15
56637 425.3 1 212.47 0.16
56969 356.2 1 213.02 0.19
57046 335.5 0.9 212.88 0.2
57114 317.3 0.9 213.13 0.2
57332 250.5 1.5 214.14 0.34
57361 240.2 1.1 213.58 0.34
57378 234.5 1 213.81 0.3
57408 222.6 2.1 214.84 0.44
58382 141.9 5.3 28.16 1.82

Epoch Sep. (mas) Sep. Error PA PA Error (°)

58440 164.5 1.8 28.64 0.7
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Appendix B

HR 8799 Observations

Table B.1: Observations of the Right Ascension and Declination of HR8799 bcde relative
to the primary star HR8799 . The values are in mas and the error of each
observation is given in the next column. The observations comes from Zurlo et
al. (2022) [41]

51117 1411 9 986 9 - - - - - - - - - - - -

51117 1418 22 1004 20 -837 26 483 23 133 35 -533 34 - - - -

52472 1481 23 919 17 - - - - - - - - - - - -

53199 1471 6 884 6 -739 6 612 6 - - - - - - - -

53568 1496 5 856 5 -713 5 630 5 -87 10 -578 10 - - - -

54313 1504 3 837 3 -683 4 671 4 -179 5 -588 5 - - - -

54397 1500 7 836 7 -678 7 676 7 -175 10 -589 10 - - - -

54656 1527 4 799 4 -658 4 701 4 -208 4 -582 4 - - - -

54689 1527 2 801 2 -657 2 706 2 -216 2 -582 2 - - - -

54726 1516 4 818 4 -663 3 693 3 -202 4 -588 4 - - - -

54792 1532 20 796 20 -654 20 700 20 -217 20 -608 20 - - - -

54839 - - - - -612 30 665 30 - - - - - - - -

55044 1526 4 797 4 -639 4 712 4 -237 3 -577 3 -306 7 -211 7

55058 1536 10 785 10 - - - - - - - - - - - -

55088 1538 30 777 30 -634 30 697 30 -282 30 -590 30 - - - -

55109 1535 20 816 20 -636 40 692 40 -270 70 -600 70 - - - -

55113 1532 7 783 7 -627 7 716 7 -241 7 -586 7 -306 7 -217 7

55135 1524 10 795 10 -636 9 720 9 -251 7 -573 7 -310 9 -187 9

Planet b Planet c Planet d Planet e

Epoch ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err

59449 1626 1 578 2 -339 2 890 2 -563 2 -391 2 -287 4 272 2

Continued on next page
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Table B.1: Observations of the Right Ascension and Declination of HR8799 bcde relative
to the primary star HR8799 . The values are in mas and the error of each
observation is given in the next column. The observations comes from Zurlo et
al. (2022) [41] (Continued)

55139 1540 19 800 19 -630 13 720 13 -240 14 -580 14 -304 10 -196 10

55390 1532 5 783 5 -619 4 728 4 -265 4 -576 4 -323 6 -166 6

55398 1547 6 757 9 -606 6 725 6 -269 6 -580 6 -329 6 -178 6

55500 1535 15 766 15 -607 12 744 12 -296 13 -561 13 -341 16 -143 16

55763 1541 5 762 5 -595 4 747 4 -303 5 -562 5 -352 8 -130 8

55850 1579 11 734 11 -561 13 752 13 -299 13 -563 13 -326 13 -119 13

55876 1546 11 725 11 -578 13 767 13 -320 13 -549 13 -382 16 -127 16

56128 1545 5 747 5 -578 5 761 5 -339 5 -555 5 -373 8 -84 8

56227 1549 4 743 4 -572 3 768 3 -346 4 -548 4 -370 9 -76 9

56231 1558 6 729 9 -557 6 763 6 -343 6 -555 6 -371 6 -80 6

56581 1545 22 724 22 -542 22 784 22 -382 16 -522 16 -373 13 -17 13

56589 1562 8 713 13 -538 6 784 13 -377 7 -538 11 -394 11 -36 17

56614 - - - - -537 1 782 2 -370 1 -539 1 -381 2 -30 0

56851 - - - - - - - - -400 4 -512 4 -389 1 -22 2

56851 1570 3 704 3 -521 3 790 9 -391 2 -530 2 -387 2 -10 3

56855 1560 13 725 13 -540 13 799 13 -400 11 -534 11 -387 11 3 11

56884 - - - - - - - - -396 1 -524 2 -389 1 -17 2

56914 1569 4 707 2 -519 1 794 2 -397 1 -530 2 - - - -

56997 1575 2 702 4 -511 2 799 2 -400 2 -523 2 -385 3 12 2

56997 1574 3 701 2 -514 3 798 4 -399 4 -525 4 -389 8 11 4

56997 1574 4 701 3 -512 3 798 4 -400 4 -523 4 -390 7 12 4

56997 1573 3 701 3 -512 3 797 4 -403 4 -524 4 -383 8 11 4

57209 - - - - - - - - -424 4 -509 3 -391 1 33 2

57209 1579 1 694 1 -498 1 806 1 -417 1 -517 1 -383 9 33 5

57235 1580 5 689 3 -495 2 806 2 -419 2 -516 1 -386 1 36 1

57260 1569 11 666 7 -482 5 813 6 -436 11 -510 12 - - - -

57293 - - - - - - - - -420 4 -513 4 -392 1 39 3

57293 1580 1 688 1 -494 1 811 1 -426 1 -512 1 -382 9 50 5

57652 - - - - - - - - -466 1 821 2 -453 1 -376 2

57710 - - - - - - - - -464 1 -486 2 -382 2 94 6

Planet b Planet c Planet d Planet e

Epoch ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err

59449 1626 1 578 2 -339 2 890 2 -563 2 -391 2 -287 4 272 2

Continued on next page
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Table B.1: Observations of the Right Ascension and Declination of HR8799 bcde relative
to the primary star HR8799 . The values are in mas and the error of each
observation is given in the next column. The observations comes from Zurlo et
al. (2022) [41] (Continued)

57710 1589 2 666 1 -464 1 824 2 -454 2 -489 2 -378 4 90 2

57918 - - - - - - - - -473 2 -476 2 -377 1 115 3

57918 1591 1 653 1 -449 1 835 1 -472 2 -482 2 -373 3 118 2

58039 - - - - - - - - -480 2 -478 2 -372 1 129 2

58039 1595 1 647 1 -441 1 839 1 -480 1 -477 1 -369 1 128 1

58039 - - - - - - - - -492 5 -463 6 -370 2 135 3

58039 1595 1 647 1 -441 1 839 1 -480 1 -477 1 -371 2 128 2

58287 - - - - - - - - -495 1 -460 2 -360 2 162 2

58287 1601 1 635 1 -424 1 848 1 -497 2 -463 2 -358 2 156 2

58349 - - - - - - - - -509 2 -452 3 -361 2 166 2

58349 1601 2 632 3 -421 1 850 1 -502 1 -461 1 -357 1 162 2

58349 - - - - - - - - -503 2 -456 2 -359 1 167 2

58349 1600 1 632 1 -421 1 851 1 -502 2 -458 1 -358 2 163 1

58360 - - - - - - - - - - - - -358 0 163 0

58787 - - - - - - - - -527 3 -432 3 -337 3 210 3

58787 1606 2 615 2 -392 2 875 2 -532 3 -425 2 -338 2 215 2

58791 - - - - - - - - -528 1 -435 2 -337 2 208 2

58791 1611 1 611 1 -388 2 870 2 -530 2 -430 1 -335 1 210 1

59124 1620 1 591 3 -364 2 883 1 -551 1 -415 4 -315 3 242 5

59449 - - - - - - - - -569 1 -390 2 -292 2 276 2

Planet b Planet c Planet d Planet e

Epoch ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err ∆RA Err ∆DEC Err

59449 1626 1 578 2 -339 2 890 2 -563 2 -391 2 -287 4 272 2
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Appendix C

Additional plots

C.1 NPE with a longer training

Figure C.1. Loss plot of the NPE trained for 256 steps and 1024 steps maximum. We can
see that the loss is stopping around the 500th step, this is due to the fact that the learning
rate has decreased to less than 10−6, stopping the training. The total training time for
this longer training was around 4 hours. We also see that the variance on the validation
loss is decreasing, this is due to the decreased learning rate.
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Figure C.2. Corner plot of the posterior distribution of the parameters of β-pic b using
the NPE with a longer training. No significant difference can be seen between the corner
plot of the NPE with a longer training and the NPE with a shorter training except for the
total system mass, which is slightly more constrained and perfectly match the prediction
of α-DPI.
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C.2 Using NICE normalizing flows

Figure C.3. This loss plot shows the performance of the NPE trained with NICE normalizing
flows using different architecture sizes and a NSF normalizing flow. They were all
trained on the same dataset for the same number of steps except for the NSF. The latter
was trained for 1024 steps instead of 512 as it is faster to train due to having fewer
transforms. It also took less time to train even with the additional steps, 1 hour compared
to approximatively 1.5 hours for all the other architectures. We observe that the complexity
of the architecture significantly impacts the loss for the NICE architecture. Since NICE
uses affine transformations, it requires a large number of them to effectively model the data,
which slows down the training process. In contrast, the NSF architecture outperforms
NICE with almost ten times fewer transforms. This efficiency allows NSF transforms to
be larger and more complex without increasing training time. The plot also indicates that
all NICE losses are nearly converging, whereas the NSF loss is still decreasing, suggesting
that additional training could further improve its performance. The dotted lines represent
the training loss, and the solid lines represent the validation loss for each architecture.
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Figure C.4. Corner plot of the posterior distribution of the parameters of β-pic b, using
α-DPI, NPE with NSF normalizing flow, MCMC and NPE with NICE normalizing flow,
the one that achieved the lowest validation loss on Figure C.3. We can see the NICE
architecture is not able to constrain the parameters as well as the NSF architecture.
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C.3 β-pic b using the ResMLP model

Figure C.5. Corner plot of the posterior distribution of the parameters of β-pic b using
the ResMLP model. We can see that the model is not able to constrain the parameters as
well as the model described in Chapter 4.
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C.4 HR8799 bcde using MCMC

Figure C.6. Plot taken from the paper of Sepulveda et al. [40] showing the orbits of
HR8799 bcde obtained using MCMC.
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C.5 MCMC chains

Figure C.7. MCMC chains for the parameters of β-pic b. We can see that the chains have
converged.
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Figure C.8. MCMC chains for the parameters of HR8799 e. Here also the chains have
converged. The convergence was quicker as I started the chains from prior close to the
values computed by Sepulveda et al. [40]
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