
https://lib.uliege.be https://matheo.uliege.be

Development of the WeShre Platform for Enabling Real-Life Social Connections

Auteur : Altaha, Yaman

Promoteur(s) : Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/20443

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

MASTER THESIS

University of Liege - Faculty of Applied Sciences

Civil engineering - Master in computer science

Development of the WeShre Platform
for Enabling Real-Life Social

Connections

Thesis conducted for obtaining the Master’s degree in Computer
Science and Engineering by Yaman Altaha

Author: Yaman ALTAHA Supervisor: Prof. Laurent MATHY

Academic year 2023-2024

Acknowledgements

First and foremost, I would like to express my sincere gratitude to WeShre for
providing me with the invaluable opportunity to undertake this thesis.

I extend my sincere thanks to Mr. Simon, the CEO of WeShre, for his guidance
and direction throughout this project.

Special thanks to Mr. Nizeyimana, the CTO, for his insightful supervision and
constant presence throughout the entire development and completion of this thesis.

I am particularly grateful to Professor Mathy for agreeing to be my thesis advisor
and for his wise guidance and precise feedback.

Additionally, I would like to acknowledge the use of AI tools, in particular Chat-
GPT, which assisted with brainstorming, rephrasing, translation, and coding as-
pects of this project. These tools helped to improve the clarity and quality of my
work. However, all the content and final edits were reviewed and approved by me.

Finally, I would like to thank my family and friends for their encouragement and
support during the course of this thesis.

Abstract

Human communication is one of the most important factors influencing our daily lives
and determining the success of our relationships. With the development of digital de-
vices as well as social media, which have become dominant in the world, the importance
of face-to-face interaction has never been more critical. The WeShre app is a distinc-
tive platform designed to facilitate real human interaction and bridges the gap between
the virtual and the real-world experiences, encouraging real-life encounters and drives
interactions between individuals.

This master’s thesis project aims to develop and adapt the WeShre platform for both
web-based and mobile environments, with a specific focus on the participant side. The
application is designed to include a homepage that provides users with immediate access
to all events, news, and the ability to search for specific events. The profile page allows
users to view their personal details, events, and groups, while a dedicated login page
ensures secure access to the platform. The events page offers detailed information about
each event, providing a comprehensive overview of the event. Additionally, the calendar
page keeps users up-to-date by displaying event dates attractively for each month. The
group page provides users with information about the group and its members, as well as
details of any events organised by the group.

Table of Contents

1 Introduction 1

2 Context 2
2.1 Presentation of the company . 2
2.2 Problem statement and Objectives 2

3 Frontend Application architecture and used technologies 4
3.1 Unifying Mobile and Web Development through Expo 4
3.2 Workflow Optimisation with Expo 5
3.3 Using Expo Go for development and testing 7
3.4 File System Routing and Navigation with Expo Router 8
3.5 Optimising Styling and Build Processes with Metro 12
3.6 Leveraging Tamagui Library for Efficient and Scalable Design . . 13
3.7 Utilising Basic Tamagui Components and Providers 13
3.8 Custom Themes and Responsive Design Implementation with Tam-

agui . 15
3.9 Integrating Tamagui Design System with Babel for UI Enhancement 17

4 Backend System Architecture and Data Migration Process 19
4.1 Introducing Supabase for Efficient and Scalable Backend Solutions 19
4.2 Supabase Architecture and Core Components 20
4.3 Advanced Backend Configuration with Supabase 21
4.4 Evaluating Firebase and Supabase Before Migration process . . . 23
4.5 Detailed Steps in Database Migration from Firebase to Supabase . 24

5 Database Architecture and Schema 26
5.1 Overview of Database Architecture 26
5.2 Detailed Database Schema . 26

5.2.1 Table Descriptions . 26
5.2.2 Entity-Relationship Diagram (ERD) 28

6 Design and Implementation of User Interfaces in WeShre 30
6.1 System Overview with High-Level Architecture 30
6.2 Responsiveness and Platform Adaptability 30
6.3 Login Page Interface . 32

6.3.1 Page Overview . 32
6.3.2 Web and Mobile Implementation 32

6.4 Home Page Interface . 32
6.4.1 Page Overview . 32

1

6.4.2 Web and Mobile Implementation 34
6.5 Calendar Page Interface . 35

6.5.1 Page Overview . 35
6.5.2 Web and Mobile Implementation 35

6.6 Profile Page Interface . 38
6.6.1 Page Overview . 38
6.6.2 Web and Mobile Implementation 39

6.7 Event Page Interface . 39
6.7.1 Page Overview . 39
6.7.2 Web and Mobile Implementation 41

6.8 Group Page Interface . 43
6.8.1 Page Overview . 43
6.8.2 Web and Mobile Implementation 43

7 Testing 46
7.1 Testing with Cypress . 46
7.2 End-to-End Test Execution and Results 47
7.3 Interpreting Test Outcomes . 48

8 Deployment 50
8.1 Webmin Configuration and Virtualmin Setup 50
8.2 Project Deployment Process . 50
8.3 Verifying Deployment Success 51

9 Conclusion 52
9.1 Project Conclusion . 52
9.2 Limitations . 53

9.2.1 Migration challenge . 53
9.2.2 Tamagui Limitations . 53
9.2.3 Expo Compatibility Issues 54

9.3 Future work . 54
9.3.1 Future Interface Additions 54
9.3.2 Expanding Authentication Methods 55
9.3.3 Adding Notification System 55
9.3.4 Integrating Ratings and Comments 55

Appendix A Appendix 59
A.1 Responsive Web Interfaces on Mobile Devices 59

2

List of Figures

3.1 Expo Logo Medium . 4
3.2 React Native Compilation Flow Retool 5
3.3 Terminal commands to create and open the ’weshre-app’ project

using Expo. 5
3.4 Screenshot of Initial project setup with Expo project template . . . 6
3.5 Expo Go QR code in Visual Studio Code to run ’weshre-app’ for

mobile testing. 7
3.6 Project running in Expo Go app Retool 8
3.7 Expo Go Flow Retool . 8
3.8 Expo Go application interface for running WeShre app 9
3.9 Screenshot of the File System Routing in the project 10

4.1 Screenshot of Supabase Table View Interface 20
4.2 Supabase Architecture and Core Components 21

5.1 Entity-Relationship Diagram (ERD) for the WeShre database . . . 29

6.1 High-Level Architecture Diagram of the WeShre Platform 31
6.2 Mobile version of the login page. 33
6.3 Web version of the login page. 34
6.4 Web version of the home page with large event and blog cards. . . 35
6.5 Mobile version of the home page with a single card view and hor-

izontal scrolling. 36
6.6 Mobile calendar page with individual event cards and horizontal

scrolling. 37
6.7 Web calendar page with a wide view and multiple event cards. . . 38
6.8 Mobile profile page showing user info, activities, sports skills, and

more details. 39
6.9 Web profile page displaying user info, activities, sports skills, and

more details. 40
6.10 Mobile version of the event page displaying event details. 41
6.11 Web view of the event page displaying event details. 42
6.12 Mobile version of the group page displaying group information,

events, and members list. 43
6.13 Web group page displaying group information, events, and mem-

bers list. 45

7.1 Cypress Application . 47
7.2 Cypress Folder Structure in Project Directory 48

3

https://medium.com/@muhammad.zahran/explore-on-expo-82199e3c01ac
https://retool.com/blog/expo-cli-vs-react-native-cli
https://retool.com/blog/expo-cli-vs-react-native-cli
https://retool.com/blog/expo-cli-vs-react-native-cli
https://supabase.com/docs/guides/getting-started/architecture

University of Liege Yaman Altaha

7.3 Cypress Test Runner Output showing successful end-to-end test
execution from the testing project. 49

8.1 Webmin File Manager interface after uploading the project files
to the server. 51

A.1 Responsive Login page design for smaller screens. 60
A.2 Responsive design of the home page on smaller screens. 61
A.3 Responsive calendar page design for smaller screens. 62
A.4 Responsive design of the profile page for smaller screens. 62
A.5 Responsive event page design for smaller screens. 63
A.6 Responsive group page design for smaller screens. 63

4

List of Tables

4.1 Comparison of Firebase and Supabase Features. Adapted from
Flatirons Development and White Lotus Corporation 24

5.1 Detailed Summary of Database Tables and Key Fields in the WeShre
Platform . 28

5

https://flatirons.com/blog/firebase-vs-supabase/
https://www.whitelotuscorporation.com/firebase-vs-supabase/

List of Abbreviations

API Application Programming Interface.

UI User interface.

UX User Experience.

SDK Software Development Kit.

iOS Operating System for Apple’s mobile devices.

NPM Node Package Manager.

NPX Node Package Execute.

QR Quick Response Code.

LAN Local Area Network.

JSON JavaScript Object Notation.

API Application Programming Interface.

CLI Command-Line Tool.

TS Type Script.

CSS Cascading Style Sheets.

LAN Local Area Network.

ESN Erasmus Student Networks.

SSL Secure Sockets Layer.

DNS Domain Name System.

6

1 | Introduction

Face-to-face communication is crucial for building strong relationships and en-
hancing understanding. The fast-paced evolution of information and communica-
tion technologies facilitates on one hand the virtual interaction between people,
but on the other hand, it leads to weaker real-life interaction.

Gathering people in a well-organised event and in an optimised environment can
be tiresome for many. This is where the idea of WeShre app [59] came from. The
app serves as a powerful, advanced tool for those looking for meaningful expe-
riences and real encounters in the physical world. Through this app, users can
participate in parties, unique experiences, festivals, cultural events, and small pri-
vate sporting gatherings. These events are managed by the event organiser and
accessible to the app users, allowing them to easily meet new people, as well as
organising their own events and share them on the app. In addition, users can join
groups within the app to keep up to date with group-related events and members.

The objective of this thesis is to develop a unified cross-platform application for
the WeShre platform that facilitates real-life social interactions. Using the Expo
platform [13], the goal is to create a new version that enhances and extends the ca-
pabilities of the existing mobile application, providing seamless functionality on
web browsers, iOS, and Android devices. This will ensure a consistent user expe-
rience, regardless of whether the application is accessed through a web browser
or a mobile device.

Throughout this thesis, the development of a multi-platform application starting
from scratch will be presented. A later section will demonstrate in more detail
how the Expo platform facilitates this development.

This project shows how cutting-edge technologies like Expo, React [32], and Re-
act Native [30] can be used to create a comprehensive application that works
across different platforms simultaneously. These technologies were chosen to en-
sure that the application remains flexible, scalable, and easy to maintain. It is
important to note that all the technologies used in this thesis were chosen by the
company. This decision was made to align with the company’s strategic goals and
to build a robust foundation for future development.

1

2 | Context

2.1 Presentation of the company
WeShre is a Belgian startup offering an all-in-one platform designed to find, create
and manage various types of events. The platform also facilitates connections
among users within their community and beyond.

WeShre collaborates with universities, student associations, and student networks
across Belgium, Spain, the Netherlands, and Quebec. These partnerships allow
the company to provide tailored solutions that meet the specific needs of these
groups.

The company was co-founded by Hugo Simon and Bill Nizeyimana. Their vision
was to create a tool that brings people together and makes event management
easier.

2.2 Problem statement and Objectives
The WeShre platform has demonstrated success in facilitating real social connec-
tions by meeting users’ desires to either participate in or organise a variety of
events, including celebratory, sports, and also cultural gatherings.

The main challenge addressed in this thesis is the limitations imposed by the plat-
form’s exclusive availability on mobile devices, which restricts user accessibility
and participation.

This project aims to overcome these barriers by expanding the platform’s reach to
include not only mobile devices but also web browsers. This will provide a more
inclusive and accessible way for users to connect. Despite the successes of the
existing application, meeting the needs of the Erasmus Student Networks (ESN)
has been a major challenge. These users, who play a crucial role in organising and
participating in events specifically tailored for Erasmus students, have expressed
the importance and necessity of extending the current application to include web
access.

Although the existing mobile application functions well, extending access to a
web-based interface will increase convenience, speed and accessibility for Eras-
mus students wishing to participate in ESN events. Therefore, developing a re-
sponsive, efficient, and user-friendly version of the platform that operates on both
web and mobile devices has become essential. This approach will ensure that the

2

University of Liege Yaman Altaha

WeShre platform can effectively meet the diverse needs of all users. The afore-
mentioned developments lead to the following objectives:

• Improve accessibility: Create a web platform that is easy to navigate and
accessible from any device.

• Increase the number of users: Provide a web platform for users who have
limited storage space on their devices, offering an alternative to download-
ing the mobile app.

• Maintain consistency: Ensure that the web version mirrors the functional-
ity and user experience of the mobile application, so that the experience is
standardised and consistent across all platforms.

• Design for all users: Implement a responsive design for all platform users,
focusing on accessible and user-friendly interfaces that make it easier to
discover, attend, and organize events.

• Unified codebase: Create a joint codebase for both web and mobile plat-
forms, allowing WeShre to replace its current application, which cannot be
extended to the web. This unified codebase will facilitate the addition of
new features and improve the platform over time.

Ultimately, WeShre aims to become an integrated tool that meets the expectations
of all users, including the Erasmus community, who are frequent users of the
application. This expansion will not only improve the user experience but also
enhance the platform’s potential to strengthen social connections among different
user groups.

3

3 | Frontend Application architecture and used
technologies

3.1 Unifying Mobile and Web Development through
Expo

Expo [13] is an open free source toolset for building universal native apps on
iOS, Android and Web with a single React codebase. As Expo is a JavaScript
framework built on top of the React Native framework, it builds React Native
apps much faster and more efficient. Companies such as Facebook, Walmart and
Airbnb are already using Expo in production. Figure 3.1 shows the Expo logo,
which represents the technology we used to build the application.

Using Expo, there will be no specific folders for Android and iOS within the files
(missing iOS and Android directories), therefore Expo will handle all the config-
uration. Expo has developed a technique called Continuous Native Generation [6]
where native code is generated predictably from a set of inputs, such as applica-
tion settings, platform-specific configurations and so on, ensuring automatic code
generation for iOS and Android, that simplifying the development process.

As it is a set of tools and services for React Native, it has largely improved the
developer experience. It provides a list of native libraries [55] that can be used
without the need to install them. On top of that, it allows building an application
from start to finish that runs on any computer and phone in a reasonable time,
which is what most developers are looking for. Simply, Expo is easier to use,
faster to test, and produces neater code.

Figure 3.1: Expo Logo Medium

4

https://medium.com/@muhammad.zahran/explore-on-expo-82199e3c01ac

University of Liege Yaman Altaha

Figure 3.2: React Native Compilation Flow Retool

Figure 3.3: Terminal commands to create and open the ’weshre-app’ project
using Expo.

In general, React Native compiles JavaScript into two codebases: Swift, Objective-
C codebase and Kotlin, Java codebase. These two codebases are then natively
compiled into iOS and Android binaries, after which they become usable on
smartphones. Figure 3.2 illustrates this process.

React Native solves this issue by using a JavaScript bridge that allows React com-
ponents to represent native UI components, However, React Native apps can offer
a more native experience than traditional native apps because they tend to rely
less on web views. Moreover, one of the main reasons is the necessity to use
third-party libraries (which will be discussed in Section 3.3), since the core React
Native libraries are fairly limited in scope. This is where Expo comes in.

3.2 Workflow Optimisation with Expo
This thesis project was built from scratch. It was initially created using Expo’s
command-line, specifically the "npx create-expo-app my-app" command.
By running this command-line, it generates a basic project template and handles
all configuration to start writing code immediately. Figure 3.3 shows the com-
mands executed in the terminal to generate a basic project structure and open it in
Visual Studio Code for file and folder exploration.

5

https://retool.com/blog/expo-cli-vs-react-native-cli

University of Liege Yaman Altaha

Figure 3.4: Screenshot of Initial project setup with Expo project template

The default codebase created by Expo when the project is started from scratch is
shown in Figure 3.4.

Let’s take a look at some of the main initial files and folders that are created:

• assets [23]: This directory contains the application splash icon and static
assets related to the application icon.

• App.js: The initial point of entry for the Expo React Native application.

• app.json [12]: contains the configuration for the Expo build setup.

• babel.config.js: Babel configuration file for converting and packaging JavaScript
code. Its function and configuration in our project will be examined in Sec-
tion 3.9, where we will discuss its integration with the Tamagui library.

• package.json: Contains package information and scripts for run, test, and
build commands. The integration of the Tamagui library through dependen-
cies listed in this file will also be explored in Section 3.9.

By simply running npm start command it can instantly run the app on iOS,
Android and the web. On the code side, if any changes are made to the user
interface, the app will immediately reload to reflect the changes. Additionally, the
app can be tested in a sandbox environment through the use of tools such as Expo
Go, which will be explained in the following next section.

6

University of Liege Yaman Altaha

Figure 3.5: Expo Go QR code in Visual Studio Code to run ’weshre-app’ for
mobile testing.

3.3 Using Expo Go for development and testing
Expo Go [14] is an open-source application that is publicly available on the App
Store and Play Store. It is the ideal solution for testing apps, as it enables the
use of a scannable QR code, such as the one displayed in the Visual Studio Code
terminal as shown in Figure 3.5. This provides immediate access to the appli-
cation on a mobile device through Expo Go. The application is available on the
official mobile app store and includes all the core Expo SDK libraries that enable
common mobile functionality such as the camera, calendar, keyboard, contacts,
video, audio, etc. Furthermore, the underlying native libraries of these custom
SDK libraries are included in the Expo Go Configuration, thus ensuring their
compatibility and functionality with Expo Go. Through a QR code, the project
can be easily linked and accessed. In other words, the Expo Go application runs
an Expo project by importing a build over a local area network (LAN) or localhost
connection, as shown in Figure 3.6.

In general, after setting up the project, the application is typically run using npm
start. This will open Expo DevTools in the browser, where a QR code can
be observed, and by scanning this QR code using the Expo Go app, which is
downloaded on the physical device, the live app can be viewed directly on the
device.

7

University of Liege Yaman Altaha

Figure 3.6: Project running in Expo Go app Retool

Figure 3.7: Expo Go Flow Retool

However, the question remains as to how this process operates. In fact, after scan-
ning the QR code, Expo Go connects to the Expo dev server of the local develop-
ment machine and requests a manifest.json. Afterward, Expo Go downloads the
JavaScript bundle and any assets required to display the React Native application.
Figure 3.7 shows how this process works.

Once changes are saved on the local development device, the Expo Go app auto-
matically loads them via wireless technology. Figure 3.8 illustrates a screenshot
from the Expo Go application, which is an effective solution for running and test-
ing the application and provides a visual representation of the application interface
used during development.

3.4 File System Routing and Navigation with Expo
Router

The Expo code is unique in that it uses File System Routing, similar to Dynamic
Routes, as shown in Figure 3.9, which is very similar to the React Framework.
This allows us to create screens that are automatically deep linkable on mobile
devices, web applications, and we can easily navigate between them in the UI with
the link component. In Expo, the Router module [22] provides a straightforward

8

https://retool.com/blog/expo-cli-vs-react-native-cli
https://retool.com/blog/expo-cli-vs-react-native-cli

University of Liege Yaman Altaha

Figure 3.8: Expo Go application interface for running WeShre app

and intuitive way to control this behaviour.

However, Expo Router is a file-based router designed for React Native and web
applications. It allows the management of navigation between screens in the ap-
plication, so that users can move seamlessly between different parts of the appli-
cation’s user interface using the same components across multiple platforms, such
as Android, iOS, and web. The code snippet from our Expo Router is presented
in Listing 3.1.

1 const Router = () => {
2 const navigation = useNavigation();
3 const routes: RouteItem[] = [
4 { path: "index", screen: <Login {...{ navigation:

navigation }} /> },
5 { path: "event/[event]", screen: <Event /> },
6];
7 return (
8 <SafeAreaView style={{ height: "100%",

backgroundColor: "white" }}>
9 <Stack>

10 {routes?.map((item, key) => (

9

University of Liege Yaman Altaha

Figure 3.9: Screenshot of the File System Routing in the project

11 <Stack.Screen key={key} name={item?.path} />
12))}
13 </Stack>
14 </SafeAreaView>
15);
16 };
17 export default Router;

Listing 3.1: Expo Router Code Snippet

In addition, the Expo router can also use a layout route [1] to share the user inter-
face across multiple pages, as well as represent more advanced routing patterns.
Since the files are organised into folders and a layout route is created, which adds
shared UI elements such as stack bars and tab bars, and is built on top of Re-
act navigation [31], we can access all of the same powerful features, such as
shared element transitions or native stack navigators. Besides, the Root Layout
(app/_layout.js) can be used to add providers which can be accessed by any route
in the application. The implementation of this functionality is demonstrated in
Listing 3.2. The TamaguiProvider component, which is used in this layout,
will be discussed in Section 3.7.

1 export default function RootLayout() {
2

3 const [loaded] = useFonts({
4 Inter: require("@tamagui/font-inter/otf/Inter-

Medium.otf"),

10

University of Liege Yaman Altaha

5 InterBold: require("@tamagui/font-inter/otf/Inter-
Bold.otf"),

6 });
7

8 if (!loaded) return null;
9

10 return (
11 <Provider>
12 <TamaguiProvider config={config}>
13 <Main/>
14 </TamaguiProvider>
15 </Provider>
16);
17 }

Listing 3.2: Expo Router Layout Code

Expo Router offers more than just navigation. It is also highly beneficial for
TypeScript. While Expo CLI [11] already has exceptional TypeScript capabili-
ties, TypeScript files can be added at any stage during the development process.
Additionally, Expo CLI will automatically set up and install TypeScript depen-
dencies, configure the TS configuration, and augment the React native types so
that they are compatible with web.

To illustrate how Expo CLI effortlessly integrates TypeScript into our project, con-
sider the tsconfig.json file in Listing 3.3, which is taken from our project’s
code. This file is automatically generated and configured by Expo CLI when
TypeScript files are introduced.

1 {
2 "extends": "expo/tsconfig.base",
3 "compilerOptions": {
4 "strict": true
5 },
6 "include": [
7 "**/*.ts",
8 "**/*.tsx",
9 ".expo/types/**/*.ts",

10 "expo-env.d.ts",
11 "components/mobileMap/MobileMap.native.js",
12 "components/map/WebMap.web.js"
13]

11

University of Liege Yaman Altaha

14 }

Listing 3.3: Customised tsconfig.json with Expo CLI Defaults and Manual
Additions

3.5 Optimising Styling and Build Processes with Metro
In addition to TypeScript integration, Expo CLI also extends the styling capabili-
ties of our project. The key component in this process is the metro.config.js
file [15], which is automatically created by Expo. It configures the Metro bundler
[7], which is responsible for packaging the source code (including JavaScript,
TypeScript, JSON, and other files used by the application) and assets (such as
images and fonts) for the project.

Further, Metro is a JavaScript bundler specially designed for React Native appli-
cations, including those created with Expo. It can be considered as a tool that
organises all the necessary components into a single easily accessible package for
the application to understand and display.

The metro.config.js file we have in the project directory, shown in Listing
3.4, is specifically configured to enable CSS styling for web applications. This is
important since it allows us to use CSS directly in our Expo project. This feature
is not enabled by default; however, it can be enabled through the configuration
file, showing how Expo CLI makes the development experience more flexible and
web-friendly.

1 // Enables CSS support in Metro for web-specific
styling.

2 const { getDefaultConfig } = require("expo/metro-
config");

3

4 const config = getDefaultConfig(__dirname, {
5 isCSSEnabled: true, // Turns on CSS support.
6 });
7

8 module.exports = config;

Listing 3.4: Metro configuration enabling CSS support for web projects within
the Expo framework

By enabling CSS support (isCSSEnabled: true), this configuration allows
us to style our application using CSS, which is useful when creating or optimising
the application for web platforms.

12

University of Liege Yaman Altaha

3.6 Leveraging Tamagui Library for Efficient and
Scalable Design

Having explored and discussed the functionality of Expo and its important and
effective role in developing our cross-platform application, we still have an im-
portant aspect of our structure to focus on, which is user interaction and how to
make the application usable, allowing users to interact with it, ensuring that it
works well, and providing a robust user experience. This leads us to the incorpo-
ration of the Tamagi [47] library, which serves as a single codebase for creating
cohesive and responsive designs across both web and mobile platforms. Thus, in
order to create a scalable application, special attention and effort were given to
designing the UI and UX using the Tamagui library.

Tamagui is a user interface framework that offers a lightweight design system that
easily adapts to different screen sizes and devices. It also includes a collection of
optimised components, and a style library with a series of themes, media queries,
animations, responsive and typed inline styles, and other features.

The easiest way to install Tamagui is to use the following starter template:

npm create tamagui@latest

Furthermore, the optimising compiler in Tamagui flattens the component tree and
outputs minimal CSS. This library allows developers to write once and deploy
high quality designs everywhere, and integrates well with Expo’s cross-platform
features, ensuring that the app looks consistent overall.

Since the goal of our project is to provide users with an effective and seamless ex-
perience, regardless of the platform they are using. Therefore, using the Tamagui
library fits well with the requirements of our project. Using the library’s ability
to design themes and style props allows us to be able to maintain design consis-
tency and take advantage of library performance optimisations for faster rendering
times.

In the following sections, we will look in more detail at how Tamagui has been
used in our various application components, showing how it has influenced the
development process and overall user experience.

3.7 Utilising Basic Tamagui Components and Providers
Our application’s user interfaces were developed using the basic components that
Tamagui provided, which allowed us to modify them to meet the needs of our

13

University of Liege Yaman Altaha

project. Although Tamagui provides YStack and XStack for horizontal and
vertical alignment, the versatile View component was mostly employed during
the design phase, making it more compatible with React Native practices.

One of the advantages of this library is also its ability to simplify the code and
improve readability by offering concise shortcuts for props [50]. Some of the
shortcuts that were frequently used when building the application are as follows:

• f for flex, defines the layout flexibility of a component,

• jc for justifyContent, aligns within a container along the main axis,

• ai for alignItems, aligns along the cross axis,

• p for padding, to specify the padding within a container,

• m for margin, to set the space around components,

• maw for maxWidth, to control the maximum width of an element.

Additionally, all Tamagui components, such as paragraph, button, text, etc., aim
to provide a unified styling across platforms and render the appropriate native
components on both web and native platforms. On the other hand, one of the key
components in our application is the TamaguiProvider [50]. This component
wraps all the other components to effectively integrate the settings of the Tamagui
library. This is done by importing the TamaguiProvider and applying it as shown
in our RootLayout function in Listing 3.5. This ensures that our design system, in-
cluding the fonts and attributes defined in tamagui.confi.ts (which will be
explained in detail in the upcoming sections), is applied consistently throughout
the application. With this configuration, we can ensure that the entire application
has a uniform look and feel.

1 import { TamaguiProvider } from "tamagui";
2 ...
3 export default function RootLayout() {
4 ...
5 return (
6 <Provider>
7 <TamaguiProvider config={config}>
8 <Main/>
9 </TamaguiProvider>

10 </Provider>
11);
12 }

Listing 3.5: Integrating TamaguiProvider in RootLayout

14

University of Liege Yaman Altaha

3.8 Custom Themes and Responsive Design Imple-
mentation with Tamagui

To further improve the design of our application, we used Tamagui’s advanced
customisation features to improve the design. This included using the styled li-
brary [51] for component customisation . This approach was applied to all com-
ponents in the project.

For example, we customised a component to create a CardInfo layout, which
organises and displays information in a card layout. This customisation was
achieved using Tamagui’s styled library as shown in Listing 3.6.

1 const CardInfo = styled(Stack, {
2 display:’flex’,
3 flexDirection: ’column’,
4 justifyContent:’flex-start’,
5 marginLeft:10
6 })

Listing 3.6: Customising the CardInfo Component Using Tamagui Styled Library.

To ensure a consistent theme throughout the application, Tamagui offers a pre-
defined set of named Colour tokens [49] as part of its theme construction capa-
bilities, ensuring uniformity in the colour scheme. Besides, by customising the
default Tamagui configuration, we can also define our own custom colour tokens
to match our desired theme.

The Tamagui library requires a configuration file [50] in order to handle themes
and be flexible. Thus, the tamagui.config.ts file shown in Listing 3.7 sets
up the default behaviour for Tamagui and comes with many predefined values. It
also allows us to define the basic setup for Tamagui, providing the ability to spec-
ify the necessary default settings and customisations for the project requirements.

1 const config = createTamagui({
2 light: {
3 color: {
4 background: "gray",
5 text: "black",
6 },
7 },
8 defaultFont: "body",
9 animations,

10 shouldAddPrefersColorThemes: true,

15

University of Liege Yaman Altaha

11 themeClassNameOnRoot: true,
12 shorthands,
13 fonts: {
14 body: bodyFont,
15 heading: headingFont,
16 },
17 themes,
18 tokens,
19 media: createMedia({
20 xs: { maxWidth: 660 },
21 sm: { maxWidth: 800 },
22 ...
23 xl: { maxWidth: 1420 },
24 xxl: { maxWidth: 1600 },
25 ...
26 gtLg: { minWidth: 1280 + 1 },
27 short: { maxHeight: 820 },
28 ...
29 pointerCoarse: { pointer: "coarse" },
30 }),
31 });
32

33 export default config;

Listing 3.7: Setting Up Tamagui Configuration for Theme and Responsiveness.

Within this configuration file (tamagui.config.ts), Tamagui provides ex-
tensive customisation, including defining global font styles and animations, set-
ting up responsive breakpoints, and defining a light theme with predefined back-
ground and text colours. Following this, we can incorporate media queries into
the UI elements of our application. In fact, in our project, we extensively used
the useMedia [54] hook from Tamagui to apply responsive styles to our user el-
ements, this way we were able to dynamically adapting the design based on the
screen size of the device, ensuring an adaptable UI across different devices.

One example of using media queries in our project is shown in Listing 3.8

1 import { , useMedia } from ’tamagui’;
2

3 const media = useMedia();
4

5 const Card = styled(Stack, {
6 marginBottom: 20,

16

University of Liege Yaman Altaha

7 marginTop: media?.sm || Platform.OS !== ’web’ ? 20 :
10,

8 display: ’flex’,
9 flexDirection: ’row’,

10 justifyContent: ’flex-start’,
11 alignItems: ’flex-end’,
12 });

Listing 3.8: Using the useMedia Hook for Responsive Styles

This is only one of many examples where we used the useMedia hook to ensure
that our entire application has a responsive design.

3.9 Integrating Tamagui Design System with Babel
for UI Enhancement

In order to incorporate the design system properties defined in the tamagui.config.ts
file discussed earlier, the Babel plugin acts as a bridge through the babel.config.js
file shown in Listing 3.9, loading and applying the configurations and customisa-
tions defined for the UI components within our application.

1 module.exports = function (api) {
2 api.cache(true);
3 const plugins = [];
4

5 plugins.push([
6 "@tamagui/babel-plugin",
7 {
8 components: ["tamagui"],
9 config: "./tamagui.config.ts",

10 },
11]);
12

13 plugins.push("expo-router/babel");
14

15 return {
16 presets: ["babel-preset-expo"],
17 plugins,
18 };
19 };

Listing 3.9: Babel Configuration for Tamagui and Expo Router Integration

17

University of Liege Yaman Altaha

Within this configuration file babel.config.js, we can see that Tamagui’s
base components are included in the components array, which corresponds to the
architecture of our application that utilises the core UI elements provided by the
library. In addition, the babel.config.js file highlights the integration with
Expo to streamline development processes and improve application performance
across platforms.

However, as can be seen from the snippet of our package.json file shown in
Listing 3.10, the inclusion of certain packages in this file is necessary to integrate
this library and its tools into our project. These dependencies guarantee that our
project has access to the most recent features provided by the Tamagi library.

1 {
2 "name": "weshre-app",
3 "version": "1.0.0",
4 "scripts": {
5 "start": "expo start",
6 "android": "expo start --android",
7 "ios": "expo start --ios",
8 "web": "expo start --web"
9 },

10 "dependencies": {
11 "expo": "~49.0.11",
12 ...
13 "@tamagui/animations-react-native": "^1.79.2",
14 "@tamagui/avatar": "^1.79.13",
15 "@tamagui/font-inter": "1.74.8",
16 "tamagui": "^1.79.11",
17 ...
18 },
19 "devDependencies": {
20 "@babel/core": "^7.20.0",
21 "@tamagui/babel-plugin": "1.74.8",
22 ...
23 }
24 }

Listing 3.10: package.json - Essential Dependencies for Tamagui Integration and
Other Tools

18

4 | Backend System Architecture and Data Mi-
gration Process

4.1 Introducing Supabase for Efficient and Scalable
Backend Solutions

Supabase [33] is a complete backend for web and mobile applications based
entirely on free open-source software. In general, the biggest challenge when
building an application is designing a complete system that works effectively at
scale. Products like Firebase, for example, have addressed this barrier, but the
big issue is that they lock the user into proprietary technology on a specific cloud
platform.

Supabase was created in 2019 specifically as an open-source alternative to Fire-
base [16], providing users with an all-in-one backend. Supabase is known as a
backend-as-a-service, which means that it provides a full range of different back-
end services at a high level, such as:

• Database cloud functions authentication [37] for implementing granular
access to data.

• Edge functions [40] running in the cloud to implement custom server-side
functionality

• Database file storage [44] for efficient file storage and access, using an
extensive server network to ensure faster data retrieval and optimal media
handling.

• Realtime database updates [42] to enable real-time communication between
clients and servers, allowing clients to be updated instantly as database
changes occur.

• AI integration [34] for enabling advanced search and data handling capa-
bilities.

However, on the user interface side, we have client-side SDKs that can easily con-
nect this infrastructure to the front end of the user’s choice, such as JavaScript
frameworks, React Native, and many other platforms. These front-end applica-
tions can then simply connect to the back-end services we previously mentioned.
In other words, Supabase is responsible for the majority of the processing on the
back end. As a result, Supabase allows users to create a full-stack application with
a fully functional and scalable backend.

19

University of Liege Yaman Altaha

Figure 4.1: Screenshot of Supabase Table View Interface

4.2 Supabase Architecture and Core Components
Supabase uses an SQL database [38] with PostgreSQL [27], a robust database
system that allows complex queries to be made using SQL, which deals with rows
and columns rather than documents, unlike a NoSQL database such as the one
used by Firebase, and the functions provided by Supabase client library for inter-
acting with the database reflect SQL terminology. In addition, Supabase provides
an intuitive user interface for managing the database and generating REST [35]
and GraphQL [41] APIs. On the other hand, the PostgreSQL database can also
be managed through an easy-to-understand user interface that automatically gen-
erates REST and GraphQL APIs for use in our code.

Furthermore, Supabase uses only open source technologies and provides a user-
friendly dashboard that can be accessed without the need to download any other
applications or extensions. Through the user interface shown in Figure 4.1, tables
can be easily viewed, as well as quickly sort data and preview records. Hence,
allowing data resources to be easily created and scaled for applications.

Looking at Figure 4.2, which clearly shows the Supabase architecture [36], we can
see that Supabase is built around the PostgreSQL core, enhanced with a number of
additional tools to improve functionality and ease of use. The main components
are as follows:

• PostgreSQL [28]: Manages the relational database system, providing ro-
bust and scalable data storage.

• GoTrue [39]: Handles secure user authentication system.

20

University of Liege Yaman Altaha

Figure 4.2: Supabase Architecture and Core Components

• PostgREST [29]: Creates a web API that allows to interact with a Post-
greSQL database using standard HTTP requests.

• Realtime [42]: Enables real-time changes and receive updates instantly.

• Storage API [43]: Handle files, including managing file uploads and down-
loads.

• Deno (Edge Functions) [9] : Executes serverless functions closer to the
user, helping to reduce latency and improve performance.

• Supavisor [46]: Efficiently manages database connections, ensuring opti-
mal performance and resource utilisation.

This architecture provides a robust backend solution that is easy to use and built
on open-source technologies.

4.3 Advanced Backend Configuration with Supabase
One of the most important aspects of our backend configuration is setting up the
Supabase client in our application. This setup is important to enable secure in-
teractions between the frontend of our application and the Supabase backend. As
can be seen, the supabase.ts file in our project, shown in Listing 4.1, ini-
tialises the authentication mechanism and is also useful for how the application
handles session data across different platforms. Additionally, we can observe that
the environment variables for the Supabase URL and the anonymous key are used
to protect the authentication details, while "AsyncStorage" is used to securely

21

https://supabase.com/docs/guides/getting-started/architecture

University of Liege Yaman Altaha

manage the user session across devices and store data locally. In other words,
this configuration is an important part of integrating the front-end and back-end
capabilities of Supabase.

1 const supabaseUrl = process.env.
EXPO_PUBLIC_SUPABASE_URL as string;

2 const supabaseAnonKey = process.env.
EXPO_PUBLIC_SUPABASE_ANON_KEY as string;

3

4 export const supabase = createClient(supabaseUrl,
supabaseAnonKey,

5 {
6 auth: {
7 ...(Platform.OS !== ’web’ ? { storage:

AsyncStorage } : { }),
8 autoRefreshToken: true,
9 persistSession: true,

10 detectSessionInUrl: false,
11 },
12 }
13);

Listing 4.1: Initialising Supabase Client with Environment Variables and Session
Management

In terms of the actual code, as evidenced by Listing 4.2, which is derived from
our code, it is unnecessary to write raw SQL code for the database. Instead, we
can utilise SDK queries tailored to our database and use dot notation to grab the
data we require and then perform operations on it.

1 const { data: users, error } = await supabase
2 .from("users")
3 .select("displayName, photoURL, photo, id")
4 .in("id", ids)
5 .range(0, 5);

Listing 4.2: Supabase Query Example to Fetch User Data

Furthermore, as illustrated in Listing 4.3, it is possible to authenticate a user with
just a few lines of code, while returning an error as an object without having to
wrap it within a try-catch block in order to catch errors.

1 const { data, error } = await supabase.auth.
signInWithPassword({

22

University of Liege Yaman Altaha

2 email: ’example@email.com’,
3 password: ’example-password’,
4 })

Listing 4.3: Supabase Authentication example using Email and Password

In addition, a listener can be set up with Supabase to handle real-time authenti-
cation state changes, logging the event type and session information when a user
logs in and logs out, as shown in Listing 4.4.

1 const { data } = supabase.auth.onAuthStateChange((
event, session) => {

2 console.log(event, session)
3 })

Listing 4.4: Handling Authentication State Changes with Supabase

4.4 Evaluating Firebase and Supabase Before Mi-
gration process

In the context of application development, choosing the optimal backend can be
challenging. Especially for applications that need to be extensible and scalable, a
robust backend is essential to facilitate data storage, user management, and over-
all operational efficiency. In this regard, platforms such as Firebase [17] and Su-
pabase offer a large number of tools that handle these processes. Therefore, the
question arises as to which of these two options is more appropriate. In order
to answer this question, it is necessary to conduct a detailed analysis of the two
options presented, and take a closer look at these two backend platforms from
several perspectives:

• Authentication: Both platforms are intuitive. Supabase’s GoTrue-based
authentication integrates with PostgreSQL’s security features, while Fire-
base Authentication [18] is known for its ease of use with other Firebase
services.

• Database and Data Management: Firebase’s Firestore [19] is a NoSQL
database, wheraes Supabase uses PostgreSQL, a relational database with
powerful SQL queries. Generally, relational databases offer more advan-
tages than NoSQL databases.

• Real-time Capabilities: Each platform provide real-time features, enabling
applications to instantly update and synchronize data across devices.

23

University of Liege Yaman Altaha

• Cloud Functions: Both Firebase and Supabase offer serverless functions,
allowing custom code to run on the server without the need to manage the
servers.

For a concise overview of the differences and similarities between Firebase and
Supabase, Table 4.1 presents a comparison of their main features.

Features Supabase Firebase
Relational Database Offers SQL, real-time

updates
NoSQL, real-time up-
dates

Deployment Hosted on Amazon
Web Services

Hosted on Google
Cloud

Authentication Built-in, supports social
logins

Built-in, with social lo-
gin integrations

Custom Functions Full SQL support, more
customisable

Limited to Firebase
services (Cloud Func-
tions)

Community Growing rapidly, open-
source community, but
smaller compared to
Firebase

Established platform
with a larger and active
community

Scalability Scales with Post-
greSQL, suitable for
complex queries and
large datasets

Scales with Firestore,
optimised for real-time
data and simple queries

Table 4.1: Comparison of Firebase and Supabase Features. Adapted from
Flatirons Development and White Lotus Corporation

4.5 Detailed Steps in Database Migration from Fire-
base to Supabase

Database migration was part of the application development process. The com-
pany decided to move from Firebase to Supabase because Supabase is more flex-
ible and open source, which fits with the company’s long-term goals.

The migration process from Firestore to Supabase took place in two phases. The
first was transferring authentication data, and the second was migrating the database
content.

After following the steps outlined in the Supabase documentation for migrating

24

https://flatirons.com/blog/firebase-vs-supabase/
https://www.whitelotuscorporation.com/firebase-vs-supabase/

University of Liege Yaman Altaha

authentication data from Firebase [24] , the process was successfully completed,
and all authentication data was transferred to Supabase. This procedure is nec-
essary to ensure that existing user accounts, including their authentication states,
and user continuity are maintained.

In sum , the authentication migration involved several key actions:

• Exporting Users from Firebase: The following command was used to
extract users from Firestore and export them to a JSON file, with the option
of defining the output filename and the number of users per batch:

node firestoreusers2json.js [<filename.json>] [<batch_size>]

• Formatting the data: The command below formats exported data to match
Supabase authentication requirements, importing from a JSON file into Su-
pabase tables with an optional batch size for efficient processing:

node import_users.js <path_to_json_file> [<batch_size>]

As a consequence, the database content will be the main focus of the next phase.
By following the instructions provided in the Supabase documentation on how to
migrate the database from Firestore data [25], the Firebase NoSQL Firestore data
was converted to a relational format that was compatible with PostgreSQL.

In other words, the objective was to convert Firestore collections to PostgreSQL
tables and to ensure that the NoSQL documents were adapted to a relational
schema suitable for the Supabase environment. This phase is important in order
to ensure that the integrity and structure of the data is maintained.

The following steps detail the main procedures involved in the data migration
process:

• Extracting Firestore Data: Data were extracted from Firestore collections
and saved in JSON format for transition to a relational database structure.
The following command was used, with optional parameters for batch size
and document limit:

node firestore2json.js <collectionName> [<batchSize>] [<limit>]

• Importing Data into Supabase: The JSON data was imported into a Su-
pabase database using the command below with optional parameters for the
primary key strategy:

node json2supabase.js <path_to_json_file> [<primary_key_strategy>] [<primary_key_name>]

25

5 | Database Architecture and Schema

5.1 Overview of Database Architecture
This thesis initially considers the existing database architecture created by the
company. The original database, part of the back-end system, was designed to
support the operational needs of the WeShre platform.

While developing the backend for this project, it was necessary to ensure seamless
integration with the existing database architecture and to adapt the system in order
to support all functionalities.

Despite these efforts, the migration from Firebase to Supabase presented signifi-
cant challenges, which will be summarised in the limitations section. These chal-
lenges included the complexity of redefining unique identifiers and restructuring
relationships between data tables, which ultimately led to the company’s decision
to create a new database directly through Supabase. This new database was de-
signed to be fully compatible with the front-end components and to ensure proper
linkage and functionality.

In the next sections, we will explain the existing structures that were initially used
and review the final design of the database after the migration.

5.2 Detailed Database Schema

5.2.1 Table Descriptions
In this subsection, we will provide a detailed overview of all the tables in the
WeShre platform database that were used and that met our needs during the de-
velopment process. Due to the challenges encountered during the migration from
Firebase to Supabase, as previously mentioned, the current schema reflects the
new database structure designed for optimal compatibility.

To clearly present the information about these tables, we use a tabular format. Ta-
ble 5.1 lists all the names of these tables, along with their purpose, main functions,
and key fields associated with each table. This format provides a clear view of the
database structure and its role in supporting the functionality of the platform.

26

University of Liege Yaman Altaha

Table Name Description
users Contains basic information about each user registered on the

WeShre platform. It contains comprehensive profile information,
including fields such as displayName, photoURL, photo, id,
display_name, first_name, last_name, profile_image, gender,
about, ratings, rate, birthdate, email, school, languages, and
job. The table supports many functions, such as retrieving user
details for profile views, managing user connections by fetching
friends’ data, and supporting event-related features by providing
user details when creating or participating in events.

events Used to manage event data. It stores details about each event, in-
cluding fields such as id, creator, title, description, start_date,
image, end_date, type, languages, location, map, status. It also
includes relationships to other tables to provide more detail about
events. This table is used to retrieve full event information for in-
dividual event pages, to facilitate event discovery, and to provide
event summaries for user profiles.

groups Used to manage group data, including creator, name, descrip-
tion, photo, and uid fields. It also includes relationships to other
tables to manage memberships and associated events. It sup-
ports many features, such as retrieving group details for display
on group pages, linking groups to their creators, and providing
summaries of group activity for user profiles.

news Manages news blog posts on the platform. It stores information
about each news item, including fields such as id, image, and
title. These attributes are used to display news summaries in small
blog cards on the homepage.

sport_profiles Manages users’ sports-related information. It includes fields like
sport_id and rank, and references the sports table to display
users’ sports profiles, showing their activities and ranking.

sports Contains information about different sports, including fields such
as id, name, and icon. The table provides sport details to the
sport_profiles table, allowing sport names and icons to be
displayed in user profiles.

event_ticket Manages ticket information for events, including fields such as
id, event, price, and currency. It references the currencies table
for currency details. This table helps display ticket prices and
currency information on event pages.

27

University of Liege Yaman Altaha

currencies Stores currencies information used within the platform, including
id and symbol. It provides currency details to event_ticket
table, allowing ticket prices to be displayed accurately with the
appropriate currency symbols.

event_includes Manages details about what is included in events. Fields in this
table are event, id, type, and title. The table helps to display
additional information about each event’s offerings.

user_tickets Records the tickets that users buy for events. Key fields include
id, event. This table references users table for details like dis-
play_name and profile_image.

reviews Holdes reviews for events. Important fields are id, event, com-
ment, and rating. It links to the users table to include reviewer
details such as display_name, profile_image, ratings, and rate.

group_members Tracks group members. It has group and user fields, and refer-
ences the users table to get user information such as uid, dis-
play_name, and profile_image.

event_groups Links events to groups. It contains event and group fields, and
references the events table to provide event details such as id,
title, description, start_date, end_date, image, and type.

follows Manages user follow relationships using follower and followed
fields. This table tracks which users follow others in order to
display user connections on the platform.

Table 5.1: Detailed Summary of Database Tables and Key Fields in the WeShre
Platform

5.2.2 Entity-Relationship Diagram (ERD)
Having described each of the tables used in the WeShre database in the previous
section, it is important to comprehend the interrelationships between these tables
and how they interact within the overall database architecture. To illustrate this,
we will present an Entity Relationship Diagram (ERD) that shows the relation-
ships between these tables. This diagram clarifies the dependencies and connec-
tions between the tables, and helps to understand the WeShre database design.
The ERD in Figure 5.1 clearly shows the database architecture and highlights key
entities.

28

University of Liege Yaman Altaha

Figure 5.1: Entity-Relationship Diagram (ERD) for the WeShre database

29

6 | Design and Implementation of User Inter-
faces in WeShre

6.1 System Overview with High-Level Architecture
Before delving into the explanation of our application interfaces in the following
sections, it is best to provide a general and clear overview of the main features
offered by the application built during this thesis. In this section, we present a
high-level architecture diagram of the WeShre platform, through which we can il-
lustrate the interconnectivity and flows between different components and screens
of our system, facilitating a comprehensive understanding of the platform’s struc-
ture. Figure 6.1 provides a high-level overview of the core functionality imple-
mented throughout this thesis.

6.2 Responsiveness and Platform Adaptability
First of all, before explaining the interfaces that were designed and developed
during this project in the following sections, it is important to clarify that each in-
terface was carefully designed to ensure optimal performance and to meet all user
needs. In particular, each interface was crafted to maintain consistency across both
web and mobile platforms and across different screen sizes on various devices.

The web versions were designed to efficiently use the space available on large
screens, while maintaining a clean and organised appearance. Conversely, the
mobile versions were designed to be compact, easy to navigate, and suitable for
mobile device screens, ensuring that all elements are touch-friendly.

Furthermore, in order to demonstrate the versatility of the interfaces across dif-
ferent platforms, it is worth noting that the web platform interfaces are also re-
sponsive, ensuring full functionality when accessed from smaller screens, such as
smartphone browsers. Screenshots of the web versions of each interface adapted
for smaller screens are provided in the appendix of this thesis. This is intended to
ensure the effective user experience offered by the WeShre platform, regardless of
the device type.

Specific adaptations and design considerations for each page will be detailed in
the sections dedicated to each.

30

University of Liege Yaman Altaha

Figure 6.1: High-Level Architecture Diagram of the WeShre Platform

31

University of Liege Yaman Altaha

6.3 Login Page Interface

6.3.1 Page Overview
The Login page is the first page designed in this project, through which partic-
ipants can log in to the WeShre platform. This page was designed to be a wel-
coming and straightforward page to ensure that users can easily access the plat-
form. Users can log in using their email and password. It should be noted that
the Google, Apple ID, and phone number login options are outlined but not yet
operational. These are planned additions for future enhancements to improve ac-
cessibility.

6.3.2 Web and Mobile Implementation
The implementation of the login interface ensures consistency across web and
mobile platforms as follows:

• Mobile Design: The mobile version of the login page, as shown in Figure
6.2, has a user-friendly design optimised for smaller screen sizes.

• Web Design: The web version, shown in Figure 6.3, effectively utilises the
space available for larger screens while maintaining an attractive design.

When the login button is clicked, the system checks the associated Supabase
database to verify if the entered email is registered in the authentication data,
ensuring secure access to the platform.

Screenshots showing how the web interface adapts to smaller screens are provided
in the appendix (Figure A.1).

6.4 Home Page Interface

6.4.1 Page Overview
Following a successful authentication process on the login page, users are directed
to the home page. The homepage represents the main interface of the WeShre
platform. Through this interface, users can perform the following:

• Discover all available events and activities offered by the platform.

• Filter activities based on categories such as "Party," "Sports," or "Experience."

• Use the search capability to easily find specific events or activities.

32

University of Liege Yaman Altaha

Figure 6.2: Mobile version of the login page.

33

University of Liege Yaman Altaha

Figure 6.3: Web version of the login page.

• View attractive display of multiple event cards with scrolling and navigation
to explore all activities on the platform. Users can click on a card to access
event pages. Each card displays a summary of the event, including date,
time, and user ratings.

• View blog cards that summarise the latest news and updates on the platform.
Each card includes an image and title, allowing users to quickly show the
latest news.

6.4.2 Web and Mobile Implementation
In the web version, the home page uses a wide layout with large clickable event
cards, as shown in Figure 6.4. The design focuses on prominently displaying the
event cards, blog cards, and key features such as search bars, in order to ensure
they are clearly visible on large screens.

The mobile version of the homepage, as shown in Figure 6.5, is designed to adapt
to smaller screens while maintaining the functionality and aesthetics of the web
version. The mobile design shows a single blog or event card view within the
page, with the ability to easily scroll horizontally to get new cards. In addition,
the search bar is designed to be touch-friendly and adaptable. The layout supports
vertical scrolling, thus making it easy for users to explore content with simple
swipes and taps.

The appendix to the thesis includes screenshots of the web interface adapted for
smaller screens when accessed from mobile browsers are included (Figure A.2),
demonstrating the responsive capabilities of the platform.

34

University of Liege Yaman Altaha

Figure 6.4: Web version of the home page with large event and blog cards.

6.5 Calendar Page Interface

6.5.1 Page Overview
The purpose of the Calendar page is to show users upcoming events, both events
they are interested in and events they have committed to attend. It displays events
in a monthly calendar format, making it simple for users to keep track of upcoming
events for each month. Each event is marked with its own date, making it easy
for users to determine when an event is taking place. In addition, by clicking on a
date within the calendar, users can view a brief summary of each event scheduled
for that day.

6.5.2 Web and Mobile Implementation
• Mobile Design: The mobile version of the calendar page, shown in Figure

6.6, where we can see that the event cards are displayed as individual items
that users can scroll through horizontally by swiping left or right, or by
clicking on the circular arrow buttons. In addition to displaying the calendar
component in a compact and ideal way, which is the main goal of this page.

• Web Design: The web version, shown in Figure 6.7, offers a wider view
of the calendar component and displays more event cards at the same time,
taking advantage of the larger screen space.

Each event is indicated by a red dot within the calendar, indicating that these days
contain events. Clicking on these dates brings up a brief summary of the event,
providing the user with a quick overview of the activities on those days.

35

University of Liege Yaman Altaha

Figure 6.5: Mobile version of the home page with a single card view and horizon-
tal scrolling.

36

University of Liege Yaman Altaha

Figure 6.6: Mobile calendar page with individual event cards and horizontal
scrolling.

37

University of Liege Yaman Altaha

Figure 6.7: Web calendar page with a wide view and multiple event cards.

Furthermore, care has also been taken to ensure that the design of the calendar
web interface is optimised for smaller screen sizes when accessed from mobile
browsers. Screenshots are included in the appendix (Figure A.3), to highlight the
responsive design of the platform.

6.6 Profile Page Interface

6.6.1 Page Overview
The profile page is the main interface through which users can display and interact
with their personal details, activities, and groups on the WeShre platform. The
page consists of two main tabs: the Profile tab and the Sport tab.

The Profile tab displays the user’s personal information and activities, while the
Sport tab displays the user’s sporting interests and achievements.

In summary, the profile page has the following key elements:

• User Information: Displays the user’s name, profile picture, ratings, and
friends list.

• Activities and Groups Section: Provides a list of the user’s recent activities
and groups, allowing quick access to the user’s event and group pages.

• Sports Skills and Details: Displays icons for each sport the user partici-
pates in, their achievements, along with their respective skill indicators for
each sport (such as Beginner, Expert, etc.).

38

University of Liege Yaman Altaha

(a) (b) (c) (d)

Figure 6.8: Mobile profile page showing user info, activities, sports skills, and
more details.

6.6.2 Web and Mobile Implementation
• Mobile Interface: The mobile design of the profile page, shown in Figure

6.8, ensures that the page elements are properly sized and arranged for ease
of use on smaller screens. The interface allows users to scroll through their
information and access different functions easily.

• Web Interface: The web version of the profile page, shown in Figure 6.9,
utilises the available space to display information in a more readable format.

The web version of the profile page is also responsive. Screenshots showing how
the web interface adapts to smaller screens are included in the appendix (Figure
A.4).

6.7 Event Page Interface

6.7.1 Page Overview
The Event page shows details of specific events on the WeShre platform and can
be accessed by clicking on their respective event card. The page provides an
overview of the event, including the date, time, and price. It also includes an
’About’ section that provides a brief summary of the event and a section that

39

University of Liege Yaman Altaha

Figure 6.9: Web profile page displaying user info, activities, sports skills, and
more details.

40

University of Liege Yaman Altaha

(a) (b) (c)

Figure 6.10: Mobile version of the event page displaying event details.

identifies the event organiser. There is also a list of what the event includes (such
as food and drinks), an interactive map showing the location, and a section for
user comments and ratings.

6.7.2 Web and Mobile Implementation
We have ensured visual and functional consistency across both mobile and web
platforms by carefully adapting each component of this page as follows:

• Mobile Implementation: Figure 6.10 shows the layout of the event page
on a mobile device. The design uses vertical scrolling to make the best
use of the small space and to facilitate navigation, allowing users to easily
explore event details.

• Web Implementation: Figure 6.11 shows the event page layout on the web.
Here, we can clearly see that the event details are more widely distributed,
taking advantage of the additional screen space for a more detailed display.

Screenshots in the appendix (Figure A.5) are provided to demonstrate the respon-
siveness of the web interface, showing how the event page adapts to different
screen sizes when accessed via the web.

41

University of Liege Yaman Altaha

Figure 6.11: Web view of the event page displaying event details.

42

University of Liege Yaman Altaha

(a) (b) (c)

Figure 6.12: Mobile version of the group page displaying group information,
events, and members list.

6.8 Group Page Interface

6.8.1 Page Overview
The group page provides users with information about the group and its members,
as well as displaying group-related events. It has two main tabs: Group and
Events.

Key elements include:

• Group and Admin Information: Displays the group name, cover image,
description, and the group administrator.

• Events section: Lists upcoming events related to the group with names,
dates, and times.

• Members List: Displays the current members of the group.

6.8.2 Web and Mobile Implementation
• Mobile Design: The mobile version of the group page, shown in Figure

6.12, provides a compact and easy-to-touch interface, where users can easily
scroll through the information.

43

University of Liege Yaman Altaha

• Web Design: The web version of the group page, shown in Figure 6.13,
shows that the design makes effective use of the available screen space.

Screenshots in the appendix (Figure A.6) demonstrate how the web interface
adapts to accommodate the narrower screen width, showcasing the responsive
design of the platform.

44

University of Liege Yaman Altaha

Figure 6.13: Web group page displaying group information, events, and members
list.

45

7 | Testing

7.1 Testing with Cypress
The testing process is one of the most important processes in ensuring the success
and integrity of the project and verifying the accuracy of the functions imple-
mented during development.

After reviewing several testing methods and trying to find a suitable test for this
thesis project, Cypress [8] was selected as the primary tool for end-to-end testing.
Cypress is a JavaScript-based testing framework that allows testers to validate web
applications. It was chosen due to its ease of use and powerful features that align
with and simulate real user interactions in our project.

Cypress provides an open-source browser-based test runner that can simulate the
experience of an end-user browsing the website. This is achieved by simulating
the entire project execution, manually navigating the project from the login form
to the user’s home page and so on until all components of the project have been
navigated and tested. Each action performed during the simulation is automati-
cally recorded, and a snapshot is saved at each step, as we will see later when it is
applied to our project. Ultimately, this testing methodology allows us to examine
the end-user experience in detail and identify any areas where the code may be
failing.

The Cypress application [21] is available for use with the Cypress software, which
assists in the creation of tests. The application can be accessed by entering the
following command:

npx cypress open

There are two main testing options available: end-to-end testing [10] and compo-
nent testing [26] as shown in Figure 7.1. Cypress enables the implementation of
two different types. End-to-end testing is the process of loading the web applica-
tion in the browser and involves the simulation of an entire browser environment
using automated tools to ensure that the inputs, button presses, form filling, and
actions work correctly. This allows for an overall assessment of the application’s
functionality and performance. The testing procedures performed in this thesis
focused on end-to-end testing, as it provides the most comprehensive solution of-
fered by Cypress.

Cypress automatically generates a folder in the root of the project named "cypress"
which contains all of the testing code, as shown in Figure 7.2. The "fixtures"
directory is where the mock data is stored, while the "support" directory is for the

46

University of Liege Yaman Altaha

Figure 7.1: Cypress Application

global configuration.

The main functionality of Cypress is its ability to perform end-to-end testing using
an easy-to-understand syntax. A sample test file, such as spec.cy.ts, can be found
in the cypress integration directory. Each test suite starts with a ’describe’
block that defines the purpose of the suite. Listing 7.1 shows an example of the
main steps of the test case.

1 describe(’template spec’, () => {
2 it(’passes’, () => {
3 cy.visit(’http://localhost:8081’)
4 })
5 })

Listing 7.1: Cypress test script for checking the functionality of a local server.

7.2 End-to-End Test Execution and Results
The Cypress test was executed using the Cypress Test Runner. The test runner was
opened using the same command that is used to access the application. Next, the
test file spec.cy.ts, which was previously described, was selected and the test
was executed. The test navigated to http://localhost:8081 and verified
that the application loaded correctly. It also involved navigating through all the

47

University of Liege Yaman Altaha

Figure 7.2: Cypress Folder Structure in Project Directory

different sections of the application, including the profile page, calendar, home
page, individual event pages, and group page.

During the test, several network requests were made to fetch key data such as user
profiles, groups, events, and calendar entries. Each of these requests returned a
status of 200, indicating successful data retrieval. The details of these requests,
taken from our thesis project, are shown in the test runner output in Figure 7.3.

7.3 Interpreting Test Outcomes
After successfully implementing this test, Cypress indicated that the web applica-
tion was functioning correctly. In particular, the application was able to:

• Authenticate the user.

• Display home page information.

• Retrieve and display user profile information.

• Load group and event data.

• Navigate between different sections such as profile, calendar, home, indi-
vidual event pages, and group pages.

In summary, the results of this test confirm that the key functions of the web
application are working properly. Using Cypress proved to be an effective tool
for end-to-end testing and our test results proved that the core functionality of the
application works as expected.

48

University of Liege Yaman Altaha

Figure 7.3: Cypress Test Runner Output showing successful end-to-end test exe-
cution from the testing project.

49

8 | Deployment

8.1 Webmin Configuration and Virtualmin Setup
To manage the deployment of our website, we used Webmin [56], a web-based in-
terface for system administration. Webmin facilitates the management of various
system services such as web servers, databases, DNS, and user accounts. It offers
a user-friendly interface accessible from any modern web browser and supports
SSL encryption for secure connections, which ensures secure communications be-
tween the client and the server. Additionally, Webmin provides a file management
feature that was particularly beneficial for uploading our website.

After setting up Webmin and logging in, we used the Virtualmin [57] module,
which is an extension of Webmin, to create and manage virtual servers. Vir-
tualmin facilitates the process of setting up domains and managing web server
configurations by allowing the direct creation of virtual hosts. Webmin’s modu-
lar design allowed us to customise our server environment efficiently to meet our
specific needs through the use of Virtualmin.

We created a virtual server with the domain name rewarding.today. This
involved configuring the necessary settings to host our website, such as setting
the document root to the directory where the website files would be stored and
enabling SSL for secure communications.

8.2 Project Deployment Process
To deploy our web project, we first exported the project files using the following
command:

npx expo export --platform web

This command generated a dist folder containing the static files necessary for
our web project.

We then used the File Manager [58] module in Webmin to upload the contents
of the dist folder to the server, as shown in Figure 8.1. The File Manager in
Webmin allowed us to easily transfer the project files to the appropriate directory
on the server.

After uploading the project files, we properly configured the web server to serve
the website from the uploaded files. This configuration ensures that when rewarding.today
is accessed, the web server correctly serves the project files from the specified
document root.

50

University of Liege Yaman Altaha

Figure 8.1: Webmin File Manager interface after uploading the project files to the
server.

8.3 Verifying Deployment Success
The deployed project can be tested by navigating to the following link: https:
//rewarding.today To log in and test the functionality, the following cre-
dentials can be used:

• Email: yaman.th701@gmail.com

• Password: 123456

These credentials can be used to verify that the deployment is successful and that
the website is functioning as expected.

Deploying our project with Webmin was straightforward. Webmin simplifies
server management, while Virtualmin handles virtual hosts efficiently. By ex-
porting the project files, uploading them via the File Manager, and configuring the
web server, we successfully deployed our web project.

51

https://rewarding.today
https://rewarding.today

9 | Conclusion

9.1 Project Conclusion
In conclusion, during this thesis, we developed and extended the WeShre platform
to better meet the needs of its users. The overarching goal of this work was to
enhance the reach and utility of the platform, with a particular focus on ensuring
its unified and accessible operation across different environments.

We addressed several development tasks by leveraging advanced technologies.
The Expo framework was chosen for the front-end due to its simplicity of de-
ployment across iOS, Android, and web platforms. Additionally, React and React
Native were key components of the front-end. React was used for building web
interfaces, while React Native was used for mobile interfaces and their integra-
tion. Finally, the Tamagui library was employed to implement a consistent and
responsive cross-platform design system, simplifying the management of styles
and themes.

Regarding the backend, the transition from Firebase to Supabase was of paramount
importance. Supabase, an open-source alternative to Firebase, efficiently provides
all necessary backend services, including authentication, real-time databases, stor-
age, and other notable features.

This project successfully fulfilled the company’s objectives and addressed the lim-
itations of the previously used technologies, which prevented the existing appli-
cation from being expanded to include web functionality.

The project built during this thesis represents a strong and important starting point
for WeShre in achieving its goal of unifying its application across both web and
mobile environments. This unification will provide the opportunity to add future
features by developing on a single codebase that supports all platforms simultane-
ously.

Furthermore, the use of these company-chosen technologies provided valuable
learning experiences. Working with Expo, Supabase, and Tamagui allowed me
to gain new skills and insights into advanced development practices, thereby en-
hancing my experience in creating cross-platform applications. Learning these
new technologies was both challenging and rewarding at the same time, and it
greatly contributed to my professional growth.

52

University of Liege Yaman Altaha

9.2 Limitations
Throughout the development of this thesis project, I did my best to adhere closely
to the design specifications and operational requirements provided by the com-
pany at the beginning of the project. Interfaces were carefully designed, and func-
tionalities were developed to align as closely as possible with the company’s inter-
ests, adhering to and following the feedback and guidance provided by the com-
pany as the project progressed. This strong commitment was aimed at achieving
the desired requirements and vision of the project.

Despite my best efforts, I was unable to implement all the planned features and el-
ements due to time constraints. Important pages and features were prioritised, but
these constraints, along with other limitations, significantly impacted the scope of
the project, leading to the incompleteness of some planned pages and features.

The details of these unimplemented aspects are presented in the "Future Work"
section 9.3, which provides a clear roadmap for subsequent improvements and
future development of WeShre’s functionality.

9.2.1 Migration challenge
Migrating the database from Firebase to Supabase was a big challenge. Tran-
sitioning from a NoSQLB database to a PostgreSQL relational database intro-
duced complexities in redefining unique identifiers and restructuring relationships
between data tables. Adapting the database required substantial changes to the
original schemas, which posed challenges in maintaining data integrity and func-
tionality. This complexity made it difficult to connect all front-end components to
this data.

Ultimately, the decision was made by the company to create a new database di-
rectly through Supabase. This new database was structured to be compatible with
the front-end elements, ensuring proper linkage and functionality, and thereby ad-
dressing the migration challenges.

9.2.2 Tamagui Limitations
The use of the Tamagui library introduced several limitations. Despite its effec-
tiveness in developing responsive and cross-platform interfaces, we encountered
many constraints related to this library, especially when implementing interfaces
and adapting them to the desired design. This library lacks comprehensive docu-
mentation and many real-world examples compared to other libraries, which made
it difficult to solve issues encountered during the project’s implementation. In ad-

53

University of Liege Yaman Altaha

dition, this library is relatively new, still under development, and lacks stability
compared to other libraries.

Although Supabase provides real-time data capabilities, it was difficult to en-
sure that the components of this library interacted correctly with these real-time
changes and often resulted in performance delays. Lastly, due to the regular up-
dates released by Expo, it was difficult to keep up with these updates while inte-
grating Tamagui, and often required corresponding changes to the integration of
this library.

9.2.3 Expo Compatibility Issues
Despite the overall strength of the Expo platform, we encountered several chal-
lenges and limitations during this project. One of these challenges was managing
compatibility across different platforms and its inconsistent support for certain
components that do not have standardised cross-platform support. A notable ex-
ample from our project was the map component used on the event page. While
this component is supported on mobile devices, it lacks similar support on the web.
This led to the implementation of many different solutions for the same feature to
ensure it worked across all platforms, which was time-consuming. This discrep-
ancy is just one example of separate implementations required to get the same
feature to ensure functionality on both platforms, which subsequently increased
the development time for this project.

9.3 Future work
To conclude this thesis, we list below potential improvements and new features
that could be integrated into the existing system to enhance its overall capabilities.

9.3.1 Future Interface Additions
Sign Up Interface Create a sign-up interface to enable new user registrations. In

fact, this page was not implemented because the primary focus of this thesis
was designing interfaces for existing members (i.e. those who already have
accounts on the platform). Therefore, the creation of this page was not
considered a high priority in the context of this thesis.

Chat Interface Implement a chat interface to allow users to communicate within
the platform. Adding a chat feature in future updates will enable event
organisers and attendees to communicate directly thus facilitating event or-
ganisation and planning.

54

University of Liege Yaman Altaha

News Interface Create a simple news page that can be accessed by clicking on
the blog cards on the home page. This page will only display the full infor-
mation of the news items. Similar to the sign-up interface, the design of this
page was not prioritised during the thesis as the focus was on other main
interfaces.

9.3.2 Expanding Authentication Methods
Add Apple ID, phone number, and Google login capabilities in feature updates.
This will make the platform easier to access and provide users with a variety of
authentication options.

9.3.3 Adding Notification System
Develop a notification system to alert users to new events, chat messages, and
other activities, thereby enhancing the application’s capabilities and user experi-
ence.

9.3.4 Integrating Ratings and Comments
Implement additional features that allow users to rate and comment on events
directly from the interfaces, allowing the platform to become more integrated.

55

Bibliography

[1] Advanced configuration: Root layout in expo router, https://docs.
expo.dev/router/advanced/root-layout/.

[2] Balancing between platforms: Native and web app development with tam-
agui, https://www.themorrow.digital/blog/balancing-
between-platforms-native-and-web-app-development-
with-tamagui.

[3] O. Bilgili, Exploring expo in react native: A comprehensive guide to cross-
platform app development, https://omurbilgili.medium.com/
exploring-expo-in-react-native-a-comprehensive-
guide-to-cross-platform-app-development-45e6a3bfa111,
Dec 22, 2023.

[4] Chatgpt, https://chatgpt.com/.
[5] Comparison of firebase vs. supabase, https://www.whitelotuscorporation.

com/firebase-vs-supabase/.
[6] Continuous native generation, https://docs.expo.dev/workflow/

continuous-native-generation/.
[7] Customizing metro in expo projects, https://docs.expo.dev/

guides/customizing-metro/.
[8] Cypress: Web testing built for developers, https://www.cypress.

io/.
[9] Deno, https://deno.com/.

[10] End-to-end test with cypress, https://docs.cypress.io/guides/
end-to-end-testing/writing-your-first-end-to-end-
test.

[11] Expo cli documentation, https://docs.expo.dev/more/expo-
cli/.

[12] Expo configuration documentation, https : / / docs . expo . dev /
workflow/configuration/.

[13] Expo development platform, https://expo.dev/.
[14] Expo go: Quick access to expo tools and resources, https://expo.

dev/go.
[15] Expo metro configuration, https://docs.expo.dev/versions/

latest/config/metro/.
[16] Firebase, https://firebase.google.com/.
[17] Firebase, https://firebase.google.com/.
[18] Firebase authentication documentation, https://firebase.google.

com/docs/auth.
[19] Firebase firestore documentation, https://firebase.google.

com/docs/firestore.

56

https://docs.expo.dev/router/advanced/root-layout/
https://docs.expo.dev/router/advanced/root-layout/
https://www.themorrow.digital/blog/balancing-between-platforms-native-and-web-app-development-with-tamagui
https://www.themorrow.digital/blog/balancing-between-platforms-native-and-web-app-development-with-tamagui
https://www.themorrow.digital/blog/balancing-between-platforms-native-and-web-app-development-with-tamagui
https://omurbilgili.medium.com/exploring-expo-in-react-native-a-comprehensive-guide-to-cross-platform-app-development-45e6a3bfa111
https://omurbilgili.medium.com/exploring-expo-in-react-native-a-comprehensive-guide-to-cross-platform-app-development-45e6a3bfa111
https://omurbilgili.medium.com/exploring-expo-in-react-native-a-comprehensive-guide-to-cross-platform-app-development-45e6a3bfa111
https://chatgpt.com/
https://www.whitelotuscorporation.com/firebase-vs-supabase/
https://www.whitelotuscorporation.com/firebase-vs-supabase/
https://docs.expo.dev/workflow/continuous-native-generation/
https://docs.expo.dev/workflow/continuous-native-generation/
https://docs.expo.dev/guides/customizing-metro/
https://docs.expo.dev/guides/customizing-metro/
https://www.cypress.io/
https://www.cypress.io/
https://deno.com/
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.expo.dev/more/expo-cli/
https://docs.expo.dev/more/expo-cli/
https://docs.expo.dev/workflow/configuration/
https://docs.expo.dev/workflow/configuration/
https://expo.dev/
https://expo.dev/go
https://expo.dev/go
https://docs.expo.dev/versions/latest/config/metro/
https://docs.expo.dev/versions/latest/config/metro/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore

University of Liege Yaman Altaha

[20] Firebase vs. supabase: A detailed comparison, https://flatirons.
com/blog/firebase-vs-supabase/#:~:text=Firebase%
20takes%20a%20more%20abstracted,using%20PostgreSQL’
s%20PL/pgSQL%20language..

[21] Getting started with cypress: Opening the app, https://docs.cypress.
io/guides/getting-started/opening-the-app.

[22] Introduction to expo router, https://docs.expo.dev/router/
introduction/.

[23] Managing assets in expo, https://docs.expo.dev/guides/
assets/.

[24] Migrating to supabase: Firebase authentication, https://supabase.
com/docs/guides/resources/migrating-to-supabase/
firebase-auth.

[25] Migrating to supabase: Firestore data, https://supabase.com/
docs/guides/resources/migrating-to-supabase/firestore-
data.

[26] Overview of component testing with cypress, https://docs.cypress.
io/guides/component-testing/overview.

[27] Postgresql, https://www.postgresql.org/.
[28] Postgresql documentation, https://www.postgresql.org/docs/

current/index.html.
[29] Postgrest documentation, https://postgrest.org/en/v12/.
[30] React native: A framework for building native apps using react, https:

//reactnative.dev/.
[31] React navigation: Routing and navigation for react native apps, https:

//reactnavigation.org/.
[32] React: A javascript library for building user interfaces, https://react.

dev/.
[33] Supabase, https://supabase.com/.
[34] Supabase ai guide, https://supabase.com/docs/guides/ai.
[35] Supabase api guide, https://supabase.com/docs/guides/

api.
[36] Supabase architecture overview, https://supabase.com/docs/

guides/getting-started/architecture.
[37] Supabase authentication guide, https://supabase.com/docs/

guides/auth.
[38] Supabase database overview, https : / / supabase . com / docs /

guides/database/overview.
[39] Supabase documentation: Generates an email action link, https://

supabase.com/docs/reference/self- hosting- auth/
generates-an-email-action-link.

57

https://flatirons.com/blog/firebase-vs-supabase/##:~:text=Firebase%20takes%20a%20more%20abstracted,using%20PostgreSQL's%20PL/pgSQL%20language.
https://flatirons.com/blog/firebase-vs-supabase/##:~:text=Firebase%20takes%20a%20more%20abstracted,using%20PostgreSQL's%20PL/pgSQL%20language.
https://flatirons.com/blog/firebase-vs-supabase/##:~:text=Firebase%20takes%20a%20more%20abstracted,using%20PostgreSQL's%20PL/pgSQL%20language.
https://flatirons.com/blog/firebase-vs-supabase/##:~:text=Firebase%20takes%20a%20more%20abstracted,using%20PostgreSQL's%20PL/pgSQL%20language.
https://docs.cypress.io/guides/getting-started/opening-the-app
https://docs.cypress.io/guides/getting-started/opening-the-app
https://docs.expo.dev/router/introduction/
https://docs.expo.dev/router/introduction/
https://docs.expo.dev/guides/assets/
https://docs.expo.dev/guides/assets/
https://supabase.com/docs/guides/resources/migrating-to-supabase/firebase-auth
https://supabase.com/docs/guides/resources/migrating-to-supabase/firebase-auth
https://supabase.com/docs/guides/resources/migrating-to-supabase/firebase-auth
https://supabase.com/docs/guides/resources/migrating-to-supabase/firestore-data
https://supabase.com/docs/guides/resources/migrating-to-supabase/firestore-data
https://supabase.com/docs/guides/resources/migrating-to-supabase/firestore-data
https://docs.cypress.io/guides/component-testing/overview
https://docs.cypress.io/guides/component-testing/overview
https://www.postgresql.org/
https://www.postgresql.org/docs/current/index.html
https://www.postgresql.org/docs/current/index.html
https://postgrest.org/en/v12/
https://reactnative.dev/
https://reactnative.dev/
https://reactnavigation.org/
https://reactnavigation.org/
https://react.dev/
https://react.dev/
https://supabase.com/
https://supabase.com/docs/guides/ai
https://supabase.com/docs/guides/api
https://supabase.com/docs/guides/api
https://supabase.com/docs/guides/getting-started/architecture
https://supabase.com/docs/guides/getting-started/architecture
https://supabase.com/docs/guides/auth
https://supabase.com/docs/guides/auth
https://supabase.com/docs/guides/database/overview
https://supabase.com/docs/guides/database/overview
https://supabase.com/docs/reference/self-hosting-auth/generates-an-email-action-link
https://supabase.com/docs/reference/self-hosting-auth/generates-an-email-action-link
https://supabase.com/docs/reference/self-hosting-auth/generates-an-email-action-link

University of Liege Yaman Altaha

[40] Supabase functions guide, https://supabase.com/docs/guides/
functions.

[41] Supabase graphql guide, https://supabase.com/docs/guides/
graphql.

[42] Supabase realtime guide, https://supabase.com/docs/guides/
realtime.

[43] Supabase self-hosting storage: Getting started, https://supabase.
com/docs/reference/self-hosting-storage/start.

[44] Supabase storage guide, https://supabase.com/docs/guides/
storage.

[45] Supabase vs firebase: Comprehensive comparison, https://www.restack.
io/docs/supabase-knowledge-supabase-vs-firebase-
comparison.

[46] Supavisor documentation, https://supabase.github.io/supavisor/.
[47] Tamagui, https://tamagui.dev/.
[48] Tamagui and react native: Create faster design systems, https://blog.

logrocket.com/tamagui-react-native-create-faster-
design-systems/.

[49] Tamagui colour tokens, https://tamagui.dev/docs/intro/
colors.

[50] Tamagui documentation: Core configuration and shorthand properties, https:
//tamagui.dev/docs/core/configuration.

[51] Tamagui documentation: The core styled functionality, https://tamagui.
dev/docs/core/styled.

[52] Testing applications with cypress and xray, https://www.getxray.
app/blog/testing-applications-with-cypress-xray.

[53] M. J. Uddin, Building your first mobile app with react native and expo:
A comprehensive guide, https://medium.com/devsorigin/
building-your-first-mobile-app-with-react-native-
and-expo-a-comprehensive-guide-249d2a61a265, Dec 3,
2023.

[54] Usemedia, https://tamagui.dev/docs/core/use-media.
[55] Using libraries with expo, https://docs.expo.dev/workflow/

using-libraries/.
[56] Webmin, https://webmin.com/.
[57] Webmin, https://webmin.com/virtualmin/.
[58] Webmin, https://webmin.com/docs/modules/file-manager/.
[59] Weshre: A platform for real human interaction, https://www.weshre.

com/.

58

https://supabase.com/docs/guides/functions
https://supabase.com/docs/guides/functions
https://supabase.com/docs/guides/graphql
https://supabase.com/docs/guides/graphql
https://supabase.com/docs/guides/realtime
https://supabase.com/docs/guides/realtime
https://supabase.com/docs/reference/self-hosting-storage/start
https://supabase.com/docs/reference/self-hosting-storage/start
https://supabase.com/docs/guides/storage
https://supabase.com/docs/guides/storage
https://www.restack.io/docs/supabase-knowledge-supabase-vs-firebase-comparison
https://www.restack.io/docs/supabase-knowledge-supabase-vs-firebase-comparison
https://www.restack.io/docs/supabase-knowledge-supabase-vs-firebase-comparison
https://supabase.github.io/supavisor/
https://tamagui.dev/
https://blog.logrocket.com/tamagui-react-native-create-faster-design-systems/
https://blog.logrocket.com/tamagui-react-native-create-faster-design-systems/
https://blog.logrocket.com/tamagui-react-native-create-faster-design-systems/
https://tamagui.dev/docs/intro/colors
https://tamagui.dev/docs/intro/colors
https://tamagui.dev/docs/core/configuration
https://tamagui.dev/docs/core/configuration
https://tamagui.dev/docs/core/styled
https://tamagui.dev/docs/core/styled
https://www.getxray.app/blog/testing-applications-with-cypress-xray
https://www.getxray.app/blog/testing-applications-with-cypress-xray
https://medium.com/devsorigin/building-your-first-mobile-app-with-react-native-and-expo-a-comprehensive-guide-249d2a61a265
https://medium.com/devsorigin/building-your-first-mobile-app-with-react-native-and-expo-a-comprehensive-guide-249d2a61a265
https://medium.com/devsorigin/building-your-first-mobile-app-with-react-native-and-expo-a-comprehensive-guide-249d2a61a265
https://tamagui.dev/docs/core/use-media
https://docs.expo.dev/workflow/using-libraries/
https://docs.expo.dev/workflow/using-libraries/
https://webmin.com/
https://webmin.com/virtualmin/
https://webmin.com/docs/modules/file-manager/
https://www.weshre.com/
https://www.weshre.com/

A | Appendix

A.1 Responsive Web Interfaces on Mobile Devices

59

University of Liege Yaman Altaha

Figure A.1: Responsive Login page design for smaller screens.

60

University of Liege Yaman Altaha

Figure A.2: Responsive design of the home page on smaller screens.

61

University of Liege Yaman Altaha

Figure A.3: Responsive calendar page design for smaller screens.

Figure A.4: Responsive design of the profile page for smaller screens.

62

University of Liege Yaman Altaha

Figure A.5: Responsive event page design for smaller screens.

Figure A.6: Responsive group page design for smaller screens.

63

