
https://lib.uliege.be https://matheo.uliege.be

Dynamic vision interface for TurtleBot

Auteur : Courtoy, Boris

Promoteur(s) : Franci, Alessio; Sacré, Pierre

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/20445

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège - School of Engineering and
Computer Science

Dynamic vision interface for
TurtleBot

Master’s thesis completed in order to obtain the degree of Master of
Science in Computer Science and Engineering

COURTOY Boris

Supervisors

FRANCI Alessio
SACRÉ Pierre

Academic year 2023-2024

I would like to sincerely thank my supervisors Alessio Franci and Pierre Sacré,
without whom this thesis would not have been possible. I enjoyed working with them
and truly appreciated their commitment and advice which have greatly contributed
to the success of this thesis.

I also want to express my gratitude to Sven Goffin for his assistance, his commitment
and his availability during my thesis, and to Hugo Blayes for his help regarding the
TurtleBot and the final tests.

Finally, my last thanks will go to my parents, my brother and my friends for their
invaluable support throughout the year.

Abstract

The goal of this master’s thesis is to develop a ROS2 driver able to re-
trieve and communicate the different data captured by the event-based
cameras from iniVation. The implementation includes a capture node
which reads the data from a camera and publishes them to their corre-
sponding topics, as well as two other nodes in charge of the visualization
of the data. To assess the quality of the driver, we performed a la-
tency analysis and ensured that it was able to transmit the data in a
few milliseconds. Following this, we designed as a proof of concept a
way to control a TurtleBot based on the output of the camera. Finally,
we completely integrated the camera with the TurtleBot. Facing latency
issues, we managed to show that the Raspberry Pi on which the Turtle-
Bot is built was not powerful enough to process all the events captured
by the cameras. We eventually managed to overcome these problems by
limiting the number of events processed by the Raspberry Pi.

2

Contents

1 Introduction 5

2 Event-based camera 7
2.1 Background . 7

2.1.1 Eye and retina . 7
2.1.2 Standard camera . 9
2.1.3 CCD sensor . 10
2.1.4 CMOS sensor . 11

2.2 Event-based vs frame-based camera 12
2.2.1 Motivations and main principles 12
2.2.2 Hardware architecture . 13
2.2.3 Output comparison . 16
2.2.4 Advantages . 17
2.2.5 Drawbacks . 17

2.3 Applications . 18

3 Interface implementation 19
3.1 Robot Operating System . 19

3.1.1 Nodes . 20
3.1.2 Topics . 20
3.1.3 Messages . 20

3.2 Dv-processing library . 21
3.3 ROS1 package . 21

3.3.1 C++ vs Python . 22
3.3.2 Package architecture . 23
3.3.3 Camera node . 24
3.3.4 Event visualizer . 27
3.3.5 Frame visualizer . 28

3.4 ROS2 package . 29
3.4.1 Distribution choice . 29
3.4.2 Porting from ROS1 to ROS2 29

4 Experimental setup 31
4.1 Computer and cameras . 31

3

CONTENTS 4

4.2 TurtleBot . 32
4.3 Simulation environment . 33
4.4 Physical environment . 36

5 Experiments 38
5.1 Latency analysis . 38

5.1.1 Motivations . 38
5.1.2 Results . 39

5.2 Event-based motion control . 45
5.2.1 Motivations . 45
5.2.2 Task definition . 46
5.2.3 Simulation results . 47
5.2.4 Physical results . 48

5.3 Integration with TurtleBot . 51
5.3.1 Motivations . 51
5.3.2 Results . 51

6 Conclusion 55
6.1 Contributions . 55
6.2 Limitations . 56
6.3 Further improvements . 56

Bibliography 58

A Event-based pixel full circuit 62

B Latency analysis with DVXplorer device 63

Chapter 1

Introduction

With autonomous and intelligent systems being a main engineering field of study
nowadays, the concern of having efficient and suitable sensors has never been more
relevant. Indeed, as most of those systems rely on sensors retrieving data from the
physical world and sending them to actuators in charge of modifying their behavior,
using sensors of better quality would result in a more accurate representation of the
world thus enhancing the accuracy and capabilities of the system.

In the context of this master’s thesis, we will work with event-based cameras. These
sensors represent a remarkable technological outcome of neuromorphic engineering,
which is the engineering field studying the human brain in order to take advantage
of its mechanisms to design brand new technologies relying on what is called brain-
inspired computing. In the specific case of the event-based camera, the main idea is
to reproduce the behavior of the human eye and in particular of the retina within
an image sensor. In practice, these modifications completely alter the output of the
camera replacing frames with events capturing a change in brightness in a particular
location. This brings several advantages such as a better temporal resolution or a
higher dynamic range.

Our objective with this thesis is to develop a robotic interface allowing the com-
munication between an event-based camera and a robot. To do this, we will use
the cameras from iniVation[1] in combination with a TurtleBot3[2]. We will imple-
ment this compatibility layer using the Robot Operating System (ROS)[3], which is
among the most popular frameworks used in robotics. It is widely used in both the
academic world for educational purposes and in the industry to develop professional
robotic projects. The framework relies on message passing through a node and topic
architecture. Each node manages a specific part of the robot, and the different nodes
are able to communicate together by publishing or subscribing to topics. IniVation
already developed a ROS1 package for their cameras, but as for now, nothing is
available in ROS2, which is the latest ROS version. To overcome the lack of an
iniVation ROS2 package, we decided to implement our own ROS2 driver to manage
the integration of their cameras in any ROS2 project. We believe that our driver

5

6

could be used on one hand for educational purposes within the neuromorphic engi-
neering laboratory of the university, and on the other hand by any developer willing
to integrate neuromorphic vision through the iniVation cameras within a project.
Doing so, we managed to create a driver establishing a reliable communication with
the TurtleBot, and which is able to communicate batches of thousands of events in
a few milliseconds.

The content will be organized in the following way. We will first present the event-
based technology in detail. We will start with a review of the human eye in order
to fully capture the biological inspirations behind those sensors, before presenting
their underlying principles and architecture.

Following this, we will explain the implementation of our driver, covering the dif-
ferent building blocks on which it relies on, as well as the different nodes and topics
composing it.

Afterward, we will go into more details concerning the material and setup used
during the implementation and the tests of the package.

Finally, we will present the different experiments performed to assess the quality of
our driver as well as the results obtained. We will start with a latency analysis to
be sure that the data are retrieved in a sufficiently low amount of time. We will
then develop as a proof of concept a small application allowing us to control the
TurtleBot depending on the events captured by the camera. To conclude, we will
try to completely integrate the camera with the robot by running the driver on its
Raspberry Pi.

Chapter 2

Event-based camera

In this chapter, we crawl in depth into the details of functioning of an event-based
camera. We will first provide background information in order to gather a better
understanding of the event-based principles. We will then introduce the technol-
ogy and compare it to a frame-based camera in order to highlight the advantages
such sensors can provide. We will then conclude by presenting a few examples of
applications in which event-based sensors can be of practical interest.

2.1 Background
Event-based cameras also called neuromorphic cameras are visual sensors trying
to mimic the human sight’s mechanisms. They first appeared under the name of
"Silicon retina"[4]. In particular, while being inspired from the human eye behavior,
these sensors are designed to specifically take advantage of dynamic vision.

The first step of this thesis is to introduce a sufficient biological background to fully
understand the inspirations and the principles of the event-based technology. This
will be done through a review of the human eye and retina mechanisms. In addition
to this, we will also provide background information concerning image sensors.

2.1.1 Eye and retina

The human eye is composed of several parts with each of them having their own
utility in the sight process[5]. A very simplified view can be observed in Fig.2.1.

Light is entering the eye through the cornea which is a transparent layer covering
the front of the eye. It is working first as a protection layer enclosing the eye and
keeping it safe from external factors, and secondly, thanks to its transparency, as a
refractive layer receiving light and making it converge into the pupil.

The pupil is a small hole in the eye controlling which quantity of light is allowed
to reach the retina. Its size is regulated by the iris, a thin membrane that can be

7

2.1. BACKGROUND 8

Figure 2.1: Simplified eye overview [5]

contracted or dilated.

Right after the pupil, light crosses the lens which is in charge of refracting it before
it is projected onto the retina on the back of the eye through the vitreous humour.

The retina is full of photosensitive cells converting the light beams striking them
into eletrical signals in a phenomenon called phototransduction[6]. These signals are
sent to the brain through the optic nerve which establishes the connection between
the eye and the brain.

We can mention different types of photoreceptors located into the back of the retina.
First, the rods reacting to dim light allowing us to see in darker environments,
and secondly, the cones managing higher light levels and taking care of our color
perception.

Once these photoreceptors receive light signals, they convert them into electrical
signals that are sent through a bunch of cells and synapses, eventually reaching
the ganglion cells on the front of the retina [6]. A summary of this communication
pipeline is shown in Fig.2.2 with the inner surface of the retina being on the left and
the outer surface on the right.

These ganglion cells take the processed signals as input and send them to the brain
through their axons forming the optic nerve. It has to be noted that the area of
the retina from which the axons of the ganglion cells converge is called the optic
disc and do not contain any photoreceptors, causing a blind spot in the human eye.
Based on the information it has received, the brain is able to reconstruct the final
image corresponding to what is actually seen.

2.1. BACKGROUND 9

Figure 2.2: Retinal cells communication [6]

There is one important point in the context of this thesis when it comes to human
sight mechanisms : the only cells firing action potentials are the ganglion cells. An
action potential can be very simplified as a spike of current triggered by a neuron
when it has reached its excitability threshold[7].

The interpretation we can give to such behavior is that since the travelling distance
of the signal from the photoreceptors to the ganglion cells is rather short, the infor-
mation goes from one side to the other in a continuous way in the form of an analog
signal. However, when the information has to cross the optic nerve, as the travelling
distance is way longer, a spiking signal is preferred.

Most importantly, since the action potential is fired when the ganglion cell input
reaches a certain intensity threshold, this means the information is being sent to
the brain only when the changes of light perceived by the photoreceptors are strong
enough. This makes the brain focused mostly on brightness variations instead of
absolute brightness. The ability to specifically target variations in an observed scene
is what we call dynamic vision.

2.1.2 Standard camera

Even while being different, a regular camera is still very similar to the eye. Indeed,
light is entering the camera through a lens sharing several properties with the ele-
ments in the front of the eye (diffraction, focus and light quantity regulation) before
crashing onto photoreceptors. These photoreceptors will once again convert the light
in electric signals that will be processed in order to generate an image. However, the
key difference compared to the human retina lies in the way these photoreceptors
are being triggered.

2.1. BACKGROUND 10

Biologically, the photoreceptors from the retina are being triggered independently
from each others and in an asynchronous way, in the sense that as soon as it is
activated, it forwards the electrical signal to the next bipolar cells. In the case of a
frame-based camera, photoreceptors are used to accumulate charges depending on
the intensity of light. These charges are being accumulated over a small period of
time, the integration time, which is directly responsible for the frame rate of the
camera.

The image sensors used to capture light are mainly of 2 types : CCD or CMOS.
[8][9][10][11]

2.1.3 CCD sensor

A CCD (Charged Couple Device) sensor is composed of an array of photosites (also
called pixels1) which are the components responsible for the conversion of light into
electrical charges and their storage. Charges generated are directly proportional to
the amount of light received. Once the integration time is over, the charges have to
be processed to generate an image, and the photosites have to be freed in order to
capture light from the next frame. To do so, CCD sensors rely on a shift register.

The idea is to use a dedicated storage area that will receive the different charges
before converting them into voltage. Charges are transferred from their row to the
adjacent one, and the ones on the edge of the array are transferred into the shift
register. This one is then sending each charge through a pipeline composed of a
charge-to-voltage converter node, an amplifier and an analog-to-digital converter.
The final signals are then processed to generate the corresponding image. The
whole mechanism is driven by a dedicated circuit. This shifting architecture can be
observed in Fig.2.3.

1Not to be confused with pixels indicating the resolution of a screen or an image

2.1. BACKGROUND 11

Figure 2.3: CCD architecture [11]

2.1.4 CMOS sensor

A CMOS (Complementary Metal Oxide Semiconductor) sensor is also composed of
an array of photosites, but is very different than a CCD one in the way charges
are processed. Indeed, this time there is no shift register, each pixel is an active
component as it also manages charge-to-voltage conversion and embeds an amplifier.
It is also provided with an addressing mechanism allowing a pixel-wise access. This
mechanism is composed of a row-addressing module used to retrieve voltages from a
selected row, and a column-adressing module composed of a multiplexer and switches
allowing to access the signal of a particular pixel in the row. This architecture avoids
managing charge transfers from one part of the sensor to the other, instead it is
directly working in voltage domain. In addition to this, pixels can be addressed in
a random-access manner instead of having to wait for all the previous rows to be
shifted. Such an architecture can be observed in Fig.2.4.

2.2. EVENT-BASED VS FRAME-BASED CAMERA 12

Figure 2.4: CMOS architecture [11]

Initially, CMOS sensors were more sensitive to noise than CCD due to the additional
circuitry needed to ensure the pixel-wise architecture, thus producing images of
lower quality. Nevertheless, it was showing better results in different aspects such
as processing speed or power consumption[12]. CCD sensors were thus preferred
in areas with a concern for image quality. However, recent improvements toward
CMOS sensors made them catch up with CCD sensors, winning popularity over
them for some applications.

2.2 Event-based vs frame-based camera

2.2.1 Motivations and main principles

Despite progress being made years after years in the image capture domain, visual
sensors still struggled when being compared to the human eye[13]. Indeed, per-
formance gaps were identified in different domains such as temporal resolution for
example. Recognizing this disparity, researchers and engineers have been inspired
to design new devices directly inspired from the human eye in the hope of reducing
the gaps[4].

Taking advantage of the mechanisms described in section 2.1.1, the main objectives
are to get rid of the frame rate by processing pixels independently from each others in

2.2. EVENT-BASED VS FRAME-BASED CAMERA 13

a continuous and asynchronous way in order to obtain a better temporal resolution,
and to avoid redundancy by focusing on variations in the observed scene. This
is done by replacing the frame-based architecture with an event-based one. Here,
instead of generating a new frame every short period of time by processing each
pixel, we are interested in events, which characterize a change of brightness in a
particular pixel[14].

Events are represented by a 4 elements tuple :

(x, y, t, p) (2.1)

• x and y are the coordinates of the pixel triggering the event

• t is the timestamp (often in microseconds) at which the event occurs

• p ∈ {−1, 1} is a boolean indicating the polarity of the event : +1 meaning
an increase in brightness, and -1 a decrease

An event is triggered in a pixel when its relative change in brightness is of suffi-
cient magnitude, which is the case when the variation exceeds a specific threshold.
Mathematically, brightness is defined as the log of the photocurrent generated by a
pixel.

L = log(I) (2.2)

Considering a threshold C, an event is thus generated if :

∆L(x, y, t) = pC (2.3)

With ∆L being the difference in brightness between the last triggered event and the
brightness at the current timestep.

∆L(x, t) = L(x, t)− L(x, t−∆t) (2.4)

At each time and in each pixel, a brightness comparison is performed and an event
is triggered if the variation exceeds the threshold. This way, there is no need to
generate the whole picture all the time and the only pixels processed are the ones
being subject to sufficient variations.

2.2.2 Hardware architecture

As event-based sensors heavily rely on pixel-wise access, they share similarities with
CMOS sensors. However, their pixel architecture is different as it is embedding
the threshold mechanism[15]. An abstract view of such a pixel can be observed in

2.2. EVENT-BASED VS FRAME-BASED CAMERA 14

Figure 2.5: Abstracted event based pixel architecture [15]

Fig.2.5. Detailing the exact pixel circuit at a transistor level is outside the scope of
this thesis, but the complete schema is left to the reader in appendix A.

The first part of the pixel is very similar to what can be found in a regular CMOS
pixel as it is composed of a photoreceptor followed by an amplifier. However, this
amplifier is inverted and it performs a logarithmic conversion of the photocurrent
generated. With Vs being the initial voltage and Vp the output of the photoreceptor
part of the pixel, we have :

Vp = −AVs (2.5)

The differencing circuit is used to amplify changes in voltage with high precision.
With Vdiff being its output current, we obtain through the conservation of electrical
charges :

C1
d

dt
(Vp +

Vdiff

A
) = C2(

Vdiff

A
− Vdiff) (2.6)

As the amplifier factor A is very high, we have :

C1
d

dt
(Vp +

Vdiff

A
) ≈ C1

d

dt
Vp (2.7)

C2(
Vdiff

A
− Vdiff) ≈ −C2Vdiff (2.8)

And thus :

2.2. EVENT-BASED VS FRAME-BASED CAMERA 15

C1
dVp

dt
= −C2

dVdif

dt
(2.9)

Which brings over a period of time :

∆Vdiff = −C1

C2

∆Vp (2.10)

It is also provided with a reset mechanism in charge of forcing Vdiff to a reference
voltage after the generation of an event.

The last part takes as input the amplified signal and compares it with respect to
the global thresholds which are offsets from the reset voltage. If the input signal
exceeds a threshold, the corresponding event is being triggered.

A typical scenario is described in Fig.2.6.

Figure 2.6: Event generation scenario [15]

The upper graph represents the evolution of the output voltage of the photoreceptor
Vp while the lower one is about the output voltage of the integrating circuit Vdiff .
Vp is directly proportional to the amount of light perceived by the photoreceptor,
and the variations in Vdiff are inversely proportional to the variations in Vp thanks
to 2.10.

During the whole process, Vdiff is compared to the ON and OFF thresholds. As soon
as it exceeds one of these thresholds, which is the result of a brightness variation
of sufficient magnitude, an event is generated. Afterward, the reset mechanism is
triggered and Vdiff is set to its reference value.

2.2. EVENT-BASED VS FRAME-BASED CAMERA 16

In the end, Vp will rise and fall depending on the ongoing brightness of the pixel,
while for the differencing circuit we have

Vdiff ∈ [R− CON , R + COFF] (2.11)

because of the reset mechanism activated after each event, with R being the reset
voltage and CON,OFF the threshold values.

2.2.3 Output comparison

Event-based cameras are data-driven sensors, in the sense that their output depends
on the variations observed. Indeed, considering a perfectly noise-free scenario, a
scene without any changes would not trigger any event. In opposition, filming a
high movement scene would result in a huge amount of events generated.

In the case of a standard camera, none of this matters. It will always generate a
certain number of frames per second depending on the frame rate. In the end, the
same number of pixels, which depends on the resolution of the camera, is being
processed by the camera.

Comparing the outputs of those 2 sensors, we have on one hand for the event-based
sensor a stream of events (x, y, t, p) arriving at a high dynamic rate depending on the
movements and changes of brightness in the scene. On the other hand for the frame-
based sensor, images of dimension h ∗ w ∗ c are captured synchronously depending
on the integration time. Such a comparison can be observed in Fig.2.7.

Figure 2.7: Event and frame comparison [16]

This figure illustrates the main differences in terms of output, it showcases a black
dot rotating on a circle. Here, the standard camera is capturing a lot of redundancy,
as the interesting part is the movement of the dot. It is also completely blind to
what is happening between the captured frames. In comparison, the event-based
camera is able to track the whole movement of the dot thanks to its better temporal
resolution while completely neglecting the outer disk.

2.2. EVENT-BASED VS FRAME-BASED CAMERA 17

2.2.4 Advantages

Event-based sensors show a lot of advantages when compared with standard cameras
[14]. First of all, we can mention the ones illustrated in the previous section. Indeed,
event-based sensors are completely outperforming standard cameras in terms of
temporal resolution, allowing them to capture very fast variations, including high
speed movement which would not be fully captured if limited by a frame-based
device. Typically, events are computed in microseconds, which would correspond to
a camera capturing thousands of images per second.

In addition to this, they are also way more data efficient in the sense that the camera
is only focused on the variations in the scene. It is thus getting rid of redundant
information. As the output rate of the camera depends on the variations and not on
an integration time, and since pixels are independent from each others, the amount
of data processed will be considerably reduced in a low variation scenario, while it
will also provide high precision with high level variations.

Another advantage is related to the dynamic range which is the ratio between the
highest and the lowest brightness value a camera is able to detect. Indeed, because
of their particular architecture, event-based pixels are showing a significantly higher
dynamic range, allowing them to capture relevant information in extremely dark
or overly bright scenes. In comparison the dynamic range of high quality frame-
based sensors is around 60dB, while event-based cameras can reach dynamic ranges
exceeding 120dB.

In conclusion, by processing pixels independently and focusing on brightness changes
event-based cameras are able to produce a higher temporal resolution allowing to
capture scenes in a more detailed way, particularly in the case of high variations
such as high speed movements. They are able to do this in a data efficient manner
while still being efficient in brightness saturated environments.

2.2.5 Drawbacks

Even if this technology brings a lot of benefits, it also comes with two major issues.
The first one is related to its price. Indeed, event-based cameras are way more
expensive than standard frame-based cameras. Not only this makes them harder to
obtain, but this price difference is also translated in their resolution, as event-based
camera typically have smaller resolutions than frame-based sensors[1][17].

The second counterpart that must be mentioned directly concerns the output. Events
and frames being two fundamentally different kinds of data, event-based sensors
bring with them brand new processing problems. More specifically, one significant
challenge posed by event-based cameras is their incompatibility with traditional
image processing algorithms. Indeed, conventional techniques usually manipulate
frames and are unable to deal with events. It is thus necessary to develop new algo-
rithms able to extract and exploit all the information contained in an event stream.
One could argue that it would be possible to gather the events retrieved in order

2.3. APPLICATIONS 18

to regenerate a frame using an accumulation mechanism and to apply conventional
techniques. However, doing this would have little to no interest as it would cancel
most of the interesting properties of the events and would certainly not be data
efficient.

2.3 Applications
Event-based cameras can be a game changer technology for fundamental computer
vision tasks[14] such as feature detection or tracking, allowing to capture scenes in
between regular frames. Initially, objects were considered as blobs of events appear-
ing in the same neighborhood and new events were associated to their nearest blob.
This first model was however struggling to capture more complex shapes. Other
methods such as iterative techniques or kernel-based strategies were thus developed
to overcome these problems. For these kinds of problems, event-based sensor are
particularly interesting in high speed movements scenarios or in situations during
which background variations are not likely to happen, such as video surveillance[18]
for example.

These sensors could also be attractive in more targeted applications. We could
mention optical flow estimation which is about computing the velocity of different
objects, as they could measure very high speed flows taking advantage of their
asynchronous and temporal properties.

Neuromorphic cameras have also been used in medical applications. Not only they
provide convenient properties that can be used for example in high-speed particle
tracking[19], they also have been integrated into medical devices taking advantage
of their bio-inspired properties[20].

As being high quality sensors, robotics is also one of their main field of application.
The low latency provided can be very efficient in SLAM for example, in order to
have very frequent update concerning the state of the world. Overall, the temporal
resolution as well as the lower power consumption and the high dynamic provided
by those sensors could drastically improve the quality of different applications, es-
pecially when having to deal with high speed behaviors. For example, self-driving
cars would be an example of autonomous systems taking advantage of all those
properties.

Now that we have introduced the event-based technology, the following chapters will
be focused on the implementation of our driver and the results we obtained.

Chapter 3

Interface implementation

This chapter will be focused on the driver we have developed for the iniVation
cameras. In particular, we will first present the main building blocks of our driver,
being the Robot Operating System and the dv-processing library from iniVation.
The former is used to create a package applied in robotics, while the latter is there
to manipulate the camera.

Once we have introduced these libraries, we will detail our implementation, starting
from ROS1 and moving to ROS2[21].

3.1 Robot Operating System
The Robot Operating System (ROS)[3] is "a set of software libraries and tools that
help you build robot applications" [22]. In other words, it is an open source C++
and python library providing tools allowing the design and the implementation of
robotic applications.

We decided to work with ROS as it is the most popular framework when it comes to
robotics. Being fairly used in both the robotics industry and as an academic tool,
it provides a standardized communication interface for robotic projects. In addition
to this, it is already integrated within different software, and a lot of robots are
provided with their own ROS support. In our case, ROS packages are available for
TurtleBots, and we will use Gazebo as simulation software which enables a ROS
interface.

In practice, ROS works using a message passing system. A ROS package is typically
made of a set of nodes, topics and messages. Everything is provided by the library
to create, manipulate and combine these concepts.

19

3.1. ROBOT OPERATING SYSTEM 20

3.1.1 Nodes

Nodes in a ROS package correspond to an active piece of software taking care of one
particular job in a robotic application. They are able to communicate together by
sending messages through topics. For example, one sensor is managed by a node,
which will send its collected data to another node managing a robot component
which will take a decision depending on what it has received.

This architecture brings several advantages. First of all, from a modularity point
of view. Indeed, as each node corresponds to a process managing one part of the
robot, it is thus possible to break the whole robot behavior into smaller components.
Each of them taking care of one particular task, this makes it easier to modify a
specific part of the robot without modifying the others. In addition to this, nodes
are portable and can be moved from one pipeline to another very easily in order to
share components between different robots.

Following the same idea, it also offers the possibility to make the different nodes
perform their task concurrently. The different computations can be managed asyn-
chronously by running nodes in parallel, allowing fast and efficient processing within
the pipeline.

3.1.2 Topics

A topic acts as a mailbox connecting several nodes with a FIFO queue of defined
length. Each topic is bound to a specific message type it is able to manage. A node
can either publish or subscribe to a topic. In the case where a topic is full and still
receives messages, it will drop the older messages to leave a slot for the newer ones.
A topic can have multiple publishers and subscribers. When several nodes subscribe
to the same topic, each subscriber receives every message sent to that topic.

In practice, topics also work as an abstraction layer. Indeed, all nodes are publish-
ing/subscribing to topics, while having no idea about which nodes they are commu-
nicating with.

3.1.3 Messages

Messages are particular data structures containing the different fields needed to
represent the information transmitted between different nodes. They are defined by
.msg files, and ROS is taking care of translating those files into source code allowing
the manipulation of such messages.

Fields can be composed of standard built-in type such as int or float for example,
but they can also contain more complex data such as arrays or even other messages.

3.2. DV-PROCESSING LIBRARY 21

3.2 Dv-processing library
The second building block of our driver is the dv-processing library[23] from iniVa-
tion. It offers a C++ or Python API with convenient data structures and algorithms
for the manipulation of the cameras. We will use it mainly to retrieve and store the
data from the camera relying on 2 data structures : the CameraCapture and the
EventStore.

A CameraCapture is a class that can be used to manage the camera. We can use
it to find any iniVation camera plugged in, modify its characteristics and read its
collected data.

An EventStore is another class which is used this time as a way to store the events re-
trieved from the camera. Each EventStore contains a set of several events. Similarly
to the event definition, we can find among its fields :

• A one dimensional array representing the timestamps of the events, computed
as integers

• A 2xN array representing the coordinates x and y of the N events stored

• A one dimensional array representing the polarities of the events

It is subject to one main constraint, being that all the events must be stored mono-
tonically with respect to their timestamps in the same EventStore, in order to cap-
ture the chronology of the scene. In addition to this, it is also provided with a set
of methods used to manage and modify its content.

3.3 ROS1 package
Even if our goal is to develop a ROS2 driver for the cameras, we first decided to
work with ROS1 using the Noetic distribution[24] for 2 main reasons. The first one is
that since ROS2 is significantly more recent than its predecessor, it is occasionally
perceived as less stable and also lacks the extensive documentation available for
ROS1.

The second reason is that even if iniVation lacks a ROS2 package for their cameras,
they however developed a ROS1 package allowing the integration of their cameras
within ROS1 projects. These packages are available on their gitlab repository[25].

Our methodology for the implementation was the following. We initially developped
our driver under ROS1 Noetic in order to first get a better grasp with both ROS
and the dv-processing library, while trying to reproduce results of the same quality
as what iniVation provided in their package. Once we developed a fully functional
ROS1 driver, our goal was to port it to ROS2 and to assess its quality.

3.3. ROS1 PACKAGE 22

3.3.1 C++ vs Python

Before diving into the implementation, there is a few words to say regarding the
choice of the programming language. Indeed, as both ROS and the dv-processing
offer a C++ and a Python interface, we had to choose between them. We initially
went for a Python implementation. While there was no problem collecting the events
and visualizing them in the same node, we faced some serious performance issues
when sending data from one node to another.

To send the events from one node to another, we need to convert them into ROS
messages by looping over all of them. As millions of events can be generated per
second, relying on Python becomes very quickly inefficient and leads to important
latency.

In order to llustrate the latency problems, we studied the evolution of the time
elapsed between the capture of an EventStore in a first node, and its reception in a
second node over 2 scenarios of a one minute duration. The first scenario is a static
scenario with as little events generated as possible, while the second is a regular
one with more variations. The graphs corresponding to those scenario are accessible
respectively in Fig.3.1 and Fig.3.2. Even if the number of batches is similar, they
completely differ in terms of size as the motion captured generated way more events
than the static scenario.

Figure 3.1: Static scenario processing latency using Python

3.3. ROS1 PACKAGE 23

Figure 3.2: Regular scenario processing latency using Python

In the first graph, we can see that even if a few spikes are sometimes generated,
mainly because of electrical noise or intern ROS/camera factors, the overall latency
remains very low. However, in the second situation, we can see that spikes of
bigger magnitude appear way more frequently. Each spike is this time generated
by an object moving in front of the camera. As the number of events triggered
directly depends on the variations in the scene, the processing time is being increased
accordingly. In the end, we obtain a very low latency of a few milliseconds in a
static scenario, but this value can be increased up to several seconds depending on
the quantity of events captured. This would make the driver completely unusable
in a real case scenario as the information would be outdated.

In order to reduce that latency, we switched from Python to C++, as the latter is
well known for outperforming the former in terms of execution speed. By doing so,
we fixed the latency problem and managed to communicate up-to-date data between
nodes. In the end, C++ was much more suitable when dealing with high data rate
sensors as we need the highest processing speed possible to manage the events.

3.3.2 Package architecture

We first have to define what we expect from our driver. From a ROS perspective,
we want to be able to retrieve the data from the camera in one node, and to send
them to another node which will manage their processing. In addition to this, we
also want to display those data so that any user would be able to visually interpret
them.

In practice, cameras from iniVation have 4 different output data streams :

3.3. ROS1 PACKAGE 24

• An event stream managing the events perceived by the camera

• A frame stream, as one of their model is able to capture both frames and
events

• An IMU stream, as their cameras are provided with an inertial measurement
unit

• A trigger stream which can be used as a synchronization mechanism with
external devices

What we want is first of all a node able to retrieve data from those streams and
to publish them into corresponding topics, and secondly, nodes subscribing to these
topics and processing a visual representation of the data.

As the trigger and IMU streams do not need any visualization, we will only im-
plement visualization nodes for frames and events. Finally, the architecture of the
driver can be observed in Fig.3.3. Nodes are represented by ellipses while topics
are represented with rectangles. We managed to obtain very good results using this
architecture in ROS Noetic.

Figure 3.3: Driver ROS architecture

3.3.3 Camera node

The first node is the one managing the camera. Everything needed for the instanci-
ation of a node is provided by ROS through a NodeHandle object. Once the node is
initiated, we use it to listen to and discover any iniVation camera plugged into the
computer and create its corresponding CameraCapture object.

Following this, we initiate the publishers that will be used to write data to topics.
Each publisher needs 3 parameters to be initialized : a message type indicating
which data structure it will be in charge of, an integer indicating the size of its

3.3. ROS1 PACKAGE 25

queue and a string representing the name of the topic. We have defined the queue
size to 1000 to ensure no data are being lost in the pipeline.

Once everything is initialized properly, we have to implement the behavior of the
node. In ROS1, this behavior will be contained within a specific loop, that will be
running over and over as the node is spinning. ROS has mechanisms allowing us to
select and tune the loop rate, defining the number of iterations per second. In the
case of a node subscribing to a topic, the behavior is relying on a callback mechanism.
The behavior is contained within a function named the "callback function" which
will be called every time the node receives a message from the topic.

We decided to choose a loop rate of 100 which is equal to one iteration every 10ms.
The reason behind this value is purely empirical, as this is the highest rate at which
event batches were retrieved.

As long as the node is spinning and the camera is still plugged in, the node retrieves
data from the available streams. It will then convert them into convenient ROS
messages before publishing them to the corresponding topics.

The first stream being managed is the event stream. At each iteration of the loop,
we retrieve the last events captured by the camera. In the implementation, events
are recovered as batches in the form of EventStores. As the camera is capturing
events, they are stored within the device until being read. As soon as it is done, we
retrieve the batch containing the events, and the camera is being flushed. The next
time we read data from this camera, we will retrieve the events generated starting
from the previous reading time.

Now that we are able to recover the events of the camera, we have to publish them
to the corresponding topic. To do so, we have to convert them into ROS messages.
There exists a lot of built-in ROS messages, however, none of them was perfectly
suitable to manage events. We thus designed a tailored message named EventBatch
used to store the events read. It contains 6 different fields :

• ts : An array containing the timestamp of each event in the batch

• x : An array containing the position on the x axis of each event in the batch

• y : An array containing the position on the y axis of each event in the batch

• polarity : An array containing the polarity of each event in the batch

• size : An integer indicating the number of events in the batch

• resolution : A 2 elements array representing the resolution of the camera
capturing the events

Each EventStore recovered from the camera is thus being converted into an Event-
Batch ROS message, which is then being published to the "events" topic.

We initially planned to design a message representing a single event, but we even-
tually kept the batch architecture for 2 main reasons. The first reason was to avoid

3.3. ROS1 PACKAGE 26

flooding the message traffic. Indeed, as EventBatches are typically composed of
thousands or several thousands of events, clustering the events as batches would
considerably reduce the number of messages created and published to the topic.
The second reason is because it preserves the original architecture of the EventStore
obtained when reading data from the camera.

The second stream this node is taking care of is the IMU stream. An Inertial
Measurement Unit is defined as "an electronic device that measures and reports ac-
celeration, orientation, angular rates, and other gravitational forces. It is composed
of 3 accelerometers, 3 gyroscopes, and depending on the heading requirement, 3 mag-
netometers." [26]. It is mainly used to keep track of the orientation and position of
the device.

Data from the IMU are represented as an IMU object with fields containing the
linear accelerations and the angular velocities. Similarly to the event stream, IMU
are retrieved as batches. However, we will not rely on a custom message sending
them by batch, as we will use the IMU message from the sensor_msgs library[27].
We assumed that relying on existing messages from popular ROS packages instead
of defining custom ones would make our package more easily portable toward other
projects. The IMU message contains the following data :

• The orientation represented by a quaternion message from the geometry_msgs
library[28] and its corresponding covariance matrix

• The angular velocities as a 3 elements vector and the corresponding covariance
matrix

• The linear accelerations as a 3 elements vector and the corresponding covari-
ance matrix

However, the IMUs from the iniVation cameras are only able to collect angular
velocities and linear accelerations. At each loop iteration, the corresponding fields
of the IMU messages are being completed with IMU data from the camera, while
the other fields are being filled with 0 or -1. Afterward, the message is published to
the "Imu_camera" topic.

The trigger stream is used to retrieve batches of Trigger objects containing the
timestamp and the type of trigger captured in the form of an integer. We defined
a custom message representing a batch of triggers containing 2 fields : a timestamp
array indicating the timer at which triggers have occurred and an integer array
containing the trigger types.

The last data stream being managed is the frame stream. Depending on the frame
rate of the camera, each time a frame is available, it is retrieved as a Frame object
from the dv-processing library, which contains the image as an opencv matrix. We
then convert this matrix into an Image message from the sensor_msgs library, using
the cv_bridge library[29] which offers efficient and convenient conversion mecha-
nisms between ROS and opencv. This message is then published to the "frame"

3.3. ROS1 PACKAGE 27

topic.

3.3.4 Event visualizer

As mentioned earlier, the following nodes will rely on a callback mechanism. Every
time a message is available in the topic the node is subscribing to, it will be read
and processed by the node.

In the case of our event visualizer node, the EventBatches are being retrieved from
the event topic and reprocessed into EventStores. The visualization is done through
a slicing and accumulation mechanism. Indeed, as events represent the variations of
brightness in the scene in the form of tuples, we have to process them in order to
obtain a visual representation that can be interpreted by anyone.

The main idea here is to generate a frame representing a subset of events. To do
so, pixels where events are being triggered are colored depending on the polarity of
the event. In order to have a sufficient number of events to generate a meaningful
frame, we perform what is called a slicing. Events retrieved are clustered into smaller
groups, and each groups is used to generate a frame.

Slicing can either be performed on a temporal basis, considering the events generated
over a defined time window, or considering a fixed number of events. Both slicing
mechanisms are represented in Fig.3.4 and Fig.3.5. The dv-processing library offers
convenient slicing and visualization mechanisms. We decided to go for a temporal
slicing since it provides a better visualization over time, and we used a time window
of 33ms as it is the default parameter and provides good results.

Figure 3.4: Time-based slicing [23]

3.3. ROS1 PACKAGE 28

Figure 3.5: Number-based slicing [23]

Once the subset is defined, the frame is generated with respect to the polarities of
the events. The polarities of the events are summed with respect to the position
at wich they occur. In the end, a color is attributed to the pixel depending on the
result. The color of the background is initially set to white. If the sum is positive,
this means that brightness at this location has increased, and the color blue is given
to that pixel. In opposition, if the sum is negative, this means the brightness has
decreased and the color grey is attributed to the pixel. An example of generated
frame can be observed in Fig.3.6.

Figure 3.6: Events visualization

3.3.5 Frame visualizer

There is not much to say regarding the last node. Here again, when an Image
message is available in the frame topic, we read it and process it within the callback

3.4. ROS2 PACKAGE 29

function. We rely on the cv_bridge library to convert the Image message back to
an opencv image which is finally displayed.

3.4 ROS2 package

3.4.1 Distribution choice

The first thing we had to do while porting our driver to ROS2 was to choose the
distribution we were going to work with. We initially planned to work with ROS2
Foxy Fitzroy[30]. Even if it is has reached its end-of-life, we wanted to use it since
some TurtleBot3 support is provided with this distribution, and because it is the
distribution installed on the TurtleBots of the university.

However, this choice of distribution made us face compilation issues. Indeed, the
dv-processing heavily relies on C++20 features, making it impossible to compile
with lower versions. In opposition to this, the implementation of ROS2 Foxy makes
use of std::allocator::rebind which is deprecated in C++17 and completely removed
in C++20. The combination of those 2 implementation choices results in an incom-
patibility between both libraries and brings compilation errors. We initially tried
to modify the implementation of the distribution in order to replace rebind appear-
ances with compatible code, but the amount of modifications was way too high and
led to inconsistencies.

The solution we found to this problem was to change the distribution and use ROS2
Galactic Geochelone[31] instead. Without any modifications, this distribution still
makes use of rebind. However, it is only used once in the whole implementation.
Following a github issue[32], we only had to modify the line containing rebind in
order to obtain a C++20 friendly ROS2 distribution. This way we managed to
compile a ROS2 package using the dv-processing library.

We could also have used ROS2 humble[33], being the latest long term support dis-
tribution, as it is C++20 compatible without any modifications. However, ROS2
Humble relies on Ubuntu 22.04 while ROS2 Galactic relies on Ubuntu 20.04. Since
the TurtleBots from the university are installed using an Ubuntu 20.04 server, we
decided to go for ROS2 Galactic and to stick with Ubuntu 20.04 instead of modifying
the Ubuntu server.

3.4.2 Porting from ROS1 to ROS2

From an algorithm point of view, things are very similar in ROS1 and ROS2. Indeed,
everything related to the data acquisition, its processing and the different messages
used to transmit the information remains the same. The main differences lie in the
code architecture, especially at a ROS level.

Using ROS1, there was no conventional way of implementing nodes. Any C++ code
using the ROS library could initiate a node thanks to the init function and manage it

3.4. ROS2 PACKAGE 30

through a NodeHandle object. The different topics are then being declared afterward
so that the node is able to communicate its messages.

In ROS2, things are slightly different. The implementation of a ROS node now
heavily relies on object oriented programming. In order to create a new node, we
have to define a brand new class inheriting from the Node class of the rclcpp library
(the equivalent of ros.h for ROS2). In addition to the fields used for the behavior
of the node, this class should also contain all the publisher and subscriber objects
needed for its communication mechanisms.

Another difference in ROS2 is that every node, even the ones not subscribing to any
topics, now rely on a callback function which is also defined as a private field. In the
end, the main function of a file is just used to create the node and to make it spin.
In ROS2, our implementation is thus relying on 3 objects managing the different
nodes. In particular, our Camera class is composed of the following fields:

• A timer callback function retrieving, processing and publishing data

• A CameraCapture object from the dv-processing library

• 2 integers x and y representing the resolution of the camera

• A publisher managing EventBatch messages

• A publisher managing IMU messages

• A publisher managing Image messages

• A publisher managing Trigger messages

• A TimerBase object defining the loop rate of the callback function

In practice, the implementation of the callback function is very similar to the spin-
ning loop in our ROS1 package. We do not detail the event and frame visualizers
classes here as they mainly contain Subscription objects retrieving data from their
corresponding topics.

Now that we have implemented a functional driver, the next step will be to assess
its quality and to use it within a complete ROS2 pipeline.

Chapter 4

Experimental setup

In this chapter, we will cover the complete setup in which we experimented our
package. More precisely, we will present our computing capabilities, the different
cameras at our disposal and we will detail the characteristics of the TurtleBot used.

Following this, we will also discuss the different test environments we used, as we
first manipulated the robot in simulation before moving to physical tests.

4.1 Computer and cameras
As the driver has been developed and tested in a first time completely independently
from the TurtleBot, we believed that it was important to mention the hardware on
which we tested our implementation as it would provide a better interpretation of
the results obtained. This being said, the driver has been implemented and tested on
an ASUS ZenBook with 8gb DDR4 RAM and an Intel® Core™ I5-825OU 1.60GHz
CPU, under Ubuntu 20.04.6 LTS (Focal Fossa).

Since the implementation of our package is general enough to be used with any
iniVation camera, we also take advantage of this section to introduce the different
devices with which we evaluated our driver. We used 3 different models of camera :
The DVXplorer[15][34], the DAVIS346[35][34] and the DVXplorer mini[36].

The DVXplorer camera is an event-based only device. It is able to transmit up to
165 millions of events per second at a resolution of 640x480 pixels. Its temporal
resolution is about 65-200µs being the minimum time between two timestamps and
its dynamic range reaches 110dB.

The DAVIS346 device is able to output frames and events with a resolution of
346x260 pixels. Its event rate is reaching up to 12 millions of events per second with
a temporal resolution of 1µs and a dynamic range of 120dB. The lower temporal
resolution of the DVXplorer device can be explained here[37], but the reason is
mainly that the gain obtained using a timestamp unit of 1µs instead of 65-200µs

31

4.2. TURTLEBOT 32

was very little. Concerning frames, the device is able to produce up to 40 frames
per second with a dynamic range of 55dB.

The DVXplorer mini is very similar to the DVXplorer, as both models share the
same spatial and temporal resolutions, respectively of 640x480 and 200µs. The main
differences lie first in the event rate, as the DVXplorer mini is able to capture up to
450 millions of events per second, and secondly, in their physical characteristics as
the mini device is about 65% smaller while being way lighter than the DVXplorer.

4.2 TurtleBot
The robot with which we plan to combine the camera to is a TurtleBot3 by Open
robotics and Robotis. It is described as "a small, affordable, programmable, ROS-
based mobile robot for use in education, research, hobby, and product prototyping" [2].
In other words, this makes it one of the go-to model when it comes to teaching
robotics. The reason we are relying on this robot is because it is the model used
in different courses of the university, and in the context of these courses, having a
neuromorphic vision interface might open the gates to new opportunities.

There are two models of TurtleBot3, the "burger" one and the "waffle" one. The
main differences between them concern their physical properties (size, velocity,
weight, battery ...)[38]. We will work with the burger model as this is the one
we have at our disposal. It has the following physical dimensions 138x178x192mm
(L,W,H) and weighs 1kg. It is expressing 2 degrees of freedom, as it is able to
move forward/backward at a maximum linear velocity of 0.22m/s and to rotate at
a maximum angular velocity of 2.84 rad/s. It is provided with a 360° lidar that can
be used for navigation and is programmed through a Raspberry Pi 4 model B rev
1.5. The TurtleBot can be observed in Fig.4.1.

One significant advantage of the TurtleBot is its built-in ROS nodes. Indeed, Robotis
provides a set of open source ROS packages that can be used to manipulate the
robot. Combined with its simplicity, this makes the TurtleBot a very convenient
testing robot. The packages are available in different ROS1 and ROS2 distributions,
including Galactic, and can be accessed here[39]. Not only these packages provide
sufficient ROS support to control and update the state of the robot, they also provide
algorithms for different tasks, such as SLAM or navigation, and even the modeling
mechanisms needed to represent the robot in simulation.

4.3. SIMULATION ENVIRONMENT 33

Figure 4.1: TurtleBot3 burger [38]

4.3 Simulation environment
Before testing the communication between the cameras and the robot physically, we
first worked in a simulation environment. Indeed, it is of good practice in robotic
projects to first deploy the whole pipeline in simulation before evaluating it directly
on the real robot. This makes us free of the physical setup and constraints as
everything would be materialized in software, but most importantly, it keeps us safe
from damaging the material during the development period.

In order to simulate the behavior of the robot, we are going to rely on Gazebo[40],
which is one of the most popular simulation frameworks in robotics. It is an open
source software which allows the creation and simulation of robotic systems in a
virtual environment. It provides necessary support to create a scene containing
different objects and to simulate a robot able to interact with them while reproducing
their physical properties.

In Gazebo, a robot is defined by its description contained in a URDF file (Unified
Robot Description Format) containing a set of links interconnected by joints. A link
corresponds to a specific individual part of the robot, in order to break its model
into several smaller pieces. Each link is described by its physical properties (shape,
mass, center of mass, position...). A joint represents the relation between 2 links. It
indicates the initial distance between them as well as the motion restriction induced
by their connection.

In addition to this, Gazebo is directly compatible with ROS. Indeed, it offers a
complete ROS interface allowing to directly interact with the simulated environment,
through the use of dedicated nodes. Using the package from Robotis, it becomes
very easy to instanciate a Turtlebot and to control it in Gazebo. Relying on their

4.3. SIMULATION ENVIRONMENT 34

launchfile, we obtained the ROS architecture observable in Fig.4.2 to manipulate
the robot in simulation.

The corresponding ROS nodes work in the following way : turtlebot3_imu and
turtlebot3_laserscan collect the information respectively from the imu and the li-
dar of the robot and publish them to the corresponding topics. The node turtle-
bot3_diff_drive is reading the velocity data from the cmd_vel topic and is in charge
of translating it into motor controls updating the velocity of the wheels appropri-
ately. Joint nodes are used to keep consistency between the different joints of the
robot. It is writing with the diff drive node on the tf topic. Typically, a robot
usually needs several reference frames which are moving over time (sensors, hands,
..), and tf is there to keep a track of them[41]. The node Gazebo and the topic
performance_metrics are used to evaluate the performance of some sensors.

4.3. SIMULATION ENVIRONMENT 35

Figure 4.2: TurtleBot ROS architecture within Gazebo

4.4. PHYSICAL ENVIRONMENT 36

4.4 Physical environment
After checking and testing everything in Gazebo, we wanted to establish a com-
munication between the computer and one of our TurtleBot in order to observe
the results with the physical TurtleBot. The connection between the Ubuntu 20.04
server running on the Raspberry Pi and the computer was established through SSH.
However, we had a few things to setup before starting the SSH connection.

Indeed, in order to communicate with the computer and share its different ROS
topics, the TurtleBot relies on multi-cast communication. However, multi-cast is
completely disabled in the university network, making it impossible for the TurtleBot
to communicate. In practice, we used a third party computer connected to the
university network as an access point to obtain a dedicated network on which we
connected the TurtleBot and our computer. This way, the robot had access to
multi-cast communication.

Once the connection was established, we had to run a bringup launchfile from the
TurtleBot ROS package directly on the Raspberry Pi. This launchfile initializes all
the different nodes and topics used to manipulate the robot. The complete ROS
pipeline is available in Fig.4.3.

The architecture obtained is very similar to what we have seen in Gazebo, with the
most important difference being that the data from the Turtlebot are retrieved by
one single main node turtlebot3_node instead of several.

Finally, to establish the communication between ROS nodes runnning on the Turtle-
Bot and on the computer, the last step was to synchronize their respective ROS
domain id.

4.4. PHYSICAL ENVIRONMENT 37

Figure 4.3: TurtleBot ROS architecture

Chapter 5

Experiments

In this section, we describe the different experiments performed in order to assess
the quality of our driver. In a first time, we will evaluate the ROS package on its
own by running it on a computer and observing the speed at which events are being
retrieved and sent from one node to another.

In a second time, we will connect our driver to the ROS architecture of the TurtleBot
and will control it based on the events captured by the camera.

Finally, in order to completely integrate the camera as a dedicated sensor, we will
plug it into the TurtleBot and run our ROS package directly on the Raspberry Pi.

5.1 Latency analysis

5.1.1 Motivations

The first step in our performance assessment methodology is to evaluate the latency
that can be found within our ROS package. Indeed, as retrieving data from the cam-
era in a ROS node is what we try to achieve, the implementation becomes completely
unusable if the data received by a second node is outdated considering the high data
rate and temporal resolution of those cameras. We initially analyzed the latency in
a qualitative way, by not only visualizing the events in the event_visualizer node,
but also in the camera node. This way, we could visually observe the latency from
one node to another.

From a qualitative perspective, the results obtained were pretty convincing, as we
could not differentiate the frames displayed in the capture node from the frames
displayed in the visualizer. However, this analysis alone was far from being sufficient
as it did not provide any metric concerning the latency and could not be used to
evaluate in details the different parameters that are influencing it.

To tackle this problem, we conducted a quantitative analysis providing temporal
values describing the latency. To do so, we identified different causes that could

38

5.1. LATENCY ANALYSIS 39

explain the time needed between the capture of an event batch in the camera node
and its visualization in the second node, and we studied their impact. The first one
is obviously the processing latency. Since there is quite a lot of computation time
needed to generate and publish the different ROS messages in the camera node, we
have to make sure that our package is able to forward those messages in a reasonable
amount of time. The second one is related to the network latency. As ROS relies
on message passing mechanisms between nodes, the travelling time of the different
messages might heavily influence the overall latency.

5.1.2 Results

For this analysis, we studied the evolution of the processing time of the callback
function within the camera node, and the evolution of the travelling time between
the camera node and the event_visualizer node. For the sake of interpretability, we
did not display the generated frame in a dedicated window in the visualizer as it
was producing a huge latency spike at its creation that made the variations in the
latency graphs almost impossible to observe. The results described in this section
have been generated with the Davis camera.

As the quantity of data processed directly depends on the number of events gener-
ated, we benchmarked our driver over 3 scenarios with different amount of events
generated. The first one is a completely motionless scenario of 1 minute used to
evaluate the lowest amount of latency we can expect running the driver. The size
of each batch retrieved during the record is displayed in Fig.5.1. On the following
graph, you can observe the different batches on the x axis and their corresponding
size on the y axis.

Figure 5.1: Evolution of the batch size over 1 minute in a motionless
scenario

5.1. LATENCY ANALYSIS 40

In this experiment, since we tried to generate as little events as possible, the aver-
age batch size is pretty low as it is of 6209.58 events. The latency related to the
processing of these events can be observed in Fig.5.2 while the network latency can
be observed in Fig.5.3.

Figure 5.2: Evolution of the processing latency over 1 minute in a mo-
tionless scenario

Figure 5.3: Evolution of the network latency over 1 minute in a motionless
scenario

5.1. LATENCY ANALYSIS 41

On the former, the callback function iterations are available on the x axis, and their
respective execution time is available on the y axis. On the latter, you can observe
all the batches generated on the x axis, and their corresponding travelling time to
go from one node to the other on the y axis.

As we can see, the results obtained in this situation are pretty good as the network
latency is on average under 1ms, while the processing latency remains most of the
time between 3 and 3.5ms, which is what should be expected in a static situation.

The second scenario is a more generic one of a 2 minutes duration. This time, the
events captured represent the movement of a person in the background. In addition
to this and to observe the impact of a sudden burst of events, we decided to shake
the camera after the first half of the record. The different batches as well as their
corresponding size can be observed in Fig.5.4.

Figure 5.4: Evolution of the batch size over 2 minutes in a regular scenario

In this case, we can see that the number of events generated has drastically increased
as every single batch now contains more than 10 000 events, while the biggest batch
retrieved in the previous situation contains 8418 events. The spikes generated after
6000 batches correspond to the burst of events generated by shaking the camera. In
this situation, batches contain up to 85586 events. The latency graphs corresponding
to this experiment are available in Fig.5.5 and Fig.5.6.

5.1. LATENCY ANALYSIS 42

Figure 5.5: Evolution of the processing latency over 2 minutes in a regular
scenario

Figure 5.6: Evolution of the network latency over 2 minutes in a regular
scenario

Looking at those graphs, we can directly see the impact of the batch size on both
the processing time and the travelling time as they share the same kind of shape.
However, it has to be noted that the processing latency is more than twice the value
of the network latency during the whole experiment as the former mainly remains
around 5ms while the later stays around 1ms. For both of them, the latency observed

5.1. LATENCY ANALYSIS 43

is rather small in a first time, and increases after 6000 batches in reaction to the
burst of events. Nevertheless, the amount of latency generated at this moment still
remains acceptable, and most importantly, the data communicated by the driver are
still up-to-date.

Finally, our last experiment consists in a worst case scenario in which we decided to
shake the camera for a complete minute in order to have a huge amount of events
generated during a longer period of time. The different graphs corresponding to this
experiment are available in Fig.5.7, Fig5.8 and Fig.5.9.

Figure 5.7: Evolution of the batch size over 1 minute in a worst case
scenario

5.1. LATENCY ANALYSIS 44

Figure 5.8: Evolution of the processing latency over 1 minute in a worst
case scenario

Figure 5.9: Evolution of the network latency over 1 minute in a worst
case scenario

In this situation, the batch size is in average way higher than what we have experi-
enced before. The network latency remains most of the time under 5ms with a few
spikes over 10ms. Concerning the processing latency, it is on average way higher
than what we have seen so far, but still remains low enough as only one iteration
exceeds the 10ms threshold. Overall, even in a worst case scenario, our driver is still

5.2. EVENT-BASED MOTION CONTROL 45

able to communicate the events in a sufficiently short amount of time. This worst
case scenario also makes us consider the 2 spikes over 20ms in Fig.5.4 as outliers
generated by internal ROS, camera or computer factors as we never met such values
again even in this situation.

We can notice that over our 3 scenarios, the processing latency is almost all the time
higher than the network latency. The first reason for this is that the processing done
by the callback function manages all the data streams and not only the event one,
while the network latency was computed as the time elapsed between the moment
when the EventBatch ROS message was send on the corresponding topic in the
camera node and the moment where it was read by the visualizer. The second
reason is that since we are running both nodes on the same device, the connection
between them is done through the internal network of the computer. We assume the
network latency component to be heavier in a multi-device communication scenario.

A summary of the results obtained with these 3 scenarios is available in Table5.1.

Min
size

Max
size

Average
size

Average process
latency

Average network
latency

Motionless 4938 8418 6209.58 3225.11µs 686.22µs
Regular 10250 85586 18702.78 3995.26µs 1120.26µs
Worst case 16839 86678 57018.24 4857.45µs 1960.1µs

Table 5.1: Latency analysis results

We also performed the same analysis with the DVXplorer camera considering the
differences between the 2 devices. The corresponding results are available in ap-
pendix B. The main distinctions are that the DVXplorer is less sensitive to noise
compared to the Davis camera thus capturing less events in regular or low variation
scenarios, but since its event rate is way higher, it is able to capture almost twice
the amount of events captured by the Davis device. In addition to this, despite the
bigger amount of events generated in the worst case scenario or during the burst
phase of the regular one, the DVXplorer device led to less latency, both from a
processing or a networking point of view. We asssumed that this difference was
mainly caused by the frame stream of the Davis device. As the Davis camera has
to manage regular frames as well, we assumed that it was faster to read data from
the DVXplorer which only produces one of those streams. The driver also does not
have to manage the frame to ROS message conversion.

5.2 Event-based motion control

5.2.1 Motivations

Now that we have studied the latency of our package and showed that the data
could be communicated in a reasonable amount of time, we wanted to use it in

5.2. EVENT-BASED MOTION CONTROL 46

combination with our TurtleBot. Our objective was to establish a communication
between the camera plugged in a computer and the robot, first in simulation then
with the physical robot, and to integrate the data streams from the camera within
the decision process of the TurtleBot. Doing so, we believe to show that first of all,
our driver can be manipulated in a plug and play manner from a ROS perspective
by integrating it in an already existing ROS2 pipeline, and secondly, to show that
it could be reliable when being paired with our TurtleBot in a real time scenario.
As a mean to illustrate these results, we implemented a way to control the robot
through the events captured by the camera.

5.2.2 Task definition

The driving mechanism we have designed is rather simple, but heavily takes advan-
tage of the event-based nature of the output. To control the TurtleBot, we divided
the resolution of the camera into 9 different bins in the same way as in Fig.5.10.

1 2 3

4 5 6

7 8 9

Figure 5.10: Event bins division

Whenever a batch is received, we compute the number of events generated in each
bin. Afterward, a movement decision is triggered depending on which bin contains
the biggest amount of events. As the TurtleBot is able to move forward/backward
and to rotate left or right, our goal was to make it move forward/backward if events
were triggered on the top/bottom of the sensor, and to make it turn left or right if
they were triggered on the sides. More specifically, we used the following movement
orders :

1. Move forward and turn left

2. Move forward

5.2. EVENT-BASED MOTION CONTROL 47

3. Move forward and turn right

4. Turn left

5. Stay in place

6. Turn right

7. Move backward and turn left

8. Move backward

9. Move backward and turn right

We implemented this control interface through another node called "control" reading
data from the events topic and publishing to the cmd_vel topic. The velocity is
being defined as a Twist message from the geometry_msgs library[28] which contains
2 vectors of 3 elements : the linear and angular velocities over each dimension. Being
limited by the 2 degrees of freedom of the TurtleBot, we will only modify the linear
velocity over its x axis, and its angular velocity around its z axis.

5.2.3 Simulation results

The ROS pipeline obtained with this experiment can be observed in Fig.5.11 with
each node running on the computer. In Gazebo, we managed to successfuly drive
the TurtleBot, but we initially faced 2 issues.

The first problem encountered was related to the amount of "unwanted" events
generated by the camera. Indeed, event-based cameras are often prone to noise,
either due to electrical perturbations within the device, or because of tiny brightness
variations that we did not want to consider caused by light’s instability for example.
The combination of both of these reasons were creating a bias toward the bin in the
top left corner.

In order to fix this problem, we tried to reduce the number of unwanted events by
running the experiment in a more stable light environment, but we also added a
threshold concerning the number of events needed in a bin to trigger an action. In
the case were the number of events in each bin was too low, we triggered the action
corresponding to the 5th bin to stop the movement of the robot. The threshold
value was chosen empirically, based on the noise level observed during the motionless
scenario performed in the previous section.

The second problem was caused by a lack of processing power. While running our
package and Gazebo at the same time, we noticed very small processing difficulties
introducing a tiny amount amount of latency both in the events retrieved and in
the update of the state of the robot. We assumed the problem was being caused by
a CPU overload, as it had to manage both the event processing and the simulation
environment, with Gazebo requiring more than 80% of the CPU work time. In the
end, we still managed to control the robot very accurately despite the latency, and

5.2. EVENT-BASED MOTION CONTROL 48

we managed to completely fix the latency problem by running the driver without
the visualizer. However, we expect the results to be latency free with the physical
TurtleBot under the assumption of a sufficiently good network as the ROS nodes
would be spread over the computer and the Raspberry Pi, while not having to
manage the simulation mechanisms.

5.2.4 Physical results

Trying to control the physical robot, we obtained the ROS pipeline available in
Fig.5.12. As our application do not rely on the lidar, we decided to remove it during
our tests. It has to be noted that the camera, control and event_visualizers nodes
from our package have been launched on the computer, while the rest of the nodes
which are the ones managing the TurtleBot are running on the Raspberry Pi.

As expected from our simulation tests, we managed to control the robot without any
latency. Even if getting rid of Gazebo and moving to the physical robot should have
increased the message travelling time as the nodes are now communicating in Wi-Fi
instead of communicating within the same device, the velocity messages were still
received in time and the robot was able to move in a latency free manner. We thus
managed to have a reliable communication between the camera and the TurtleBot.

5.2. EVENT-BASED MOTION CONTROL 49

Figure 5.11: Event-based motion control ROS architecture in Gazebo

5.2. EVENT-BASED MOTION CONTROL 50

Figure 5.12: Event-based motion control ROS architecture

5.3. INTEGRATION WITH TURTLEBOT 51

5.3 Integration with TurtleBot

5.3.1 Motivations

As a final test and in order to fully integrate the camera, we tried to plug it directly
in the robot and to run the different nodes on the Raspbery Pi. This way, the robot
would be able to use the camera as one of its sensors. However, taking into account
the limited power of the Raspberry Pi, we pushed as much processing as possible
away from the robot. To do so, we launched the camera node on the TurtleBot,
while receiving the data and visualizing frames and events on a computer.

5.3.2 Results

In practice, the TurtleBot manages to retrieve the different streams from the camera
and to publish their content on the corresponding topics successfully. We are also
able to read those topics and to recover the data on the computer side.

We did not have any problems with frames and were able to visualize them in real
time, but we faced some serious latency issues when dealing with events making
them not really usable in practice. Similarly as in our latency analysis, we assumed
that the latency observed could be caused either by the communication between the
TurtleBot and the computer, or due to the relatively low processing power of the
Raspberry Pi.

We first tried to run a simple C++ script retrieving and visualizing the events on
the Raspberry Pi to have an idea of what we could expect without ROS. Even in
this situation, the results obtained were not very satisfying as we could observe a
bit of latency and a lack of fluidity. We assumed that if we moved the visualizer out
of the robot, we could probably gain in fluidity, depending on the overhead caused
by the ROS interface.

We evaluated the processing time required by the driver on the TurtleBot to illus-
trate the impact induced by the hardware differences between the computer and
the Raspberry Pi. The results of this analysis are available in Fig.5.13. For this
analysis, we tried to increase the number of events generated over time. Initially,
we were capturing the movement of a person in the background. After 15 seconds,
that person got closer to the camera to generate more events. After 30 seconds, we
decided to shake the camera to generate a burst of events.

5.3. INTEGRATION WITH TURTLEBOT 52

Figure 5.13: Evolution of the processing latency on the Rasbperry Pi

The first thing we can observe is that the processing time on the Raspberry Pi
is way higher than on the computer. Indeed, the Raspberry Pi dealing with a
low amount of events remains slower than the computer dealing with a worst-case
scenario in Fig.5.8. In the case of a large number of events, the latency produced
by the Raspberry Pi reaches more than 0.1s, completely delaying the next batches.
The events sent afterward are then directly outdated. In addition, as those batches
are not very likely to be lonely, in the sense that an important movement will be
captured by several high data batches, the latency will be accumulated reaching
several seconds in practice. Considering the time needed to process such batches,
the driver struggles to recover from that latency.

Concerning the network latency, we initially thought that the Wi-Fi setup managing
the data transfer could be too weak to manage the event stream, as the connection it-
self was not responding very well during the communication, maybe due to a network
overload (going from less then 1ms to several hundreds). As a first improvement, we
completely changed the setup to establish a wired connection between the robot and
the computer with an Ethernet cable. Doing so, we considerably reduced the latency
and improved the fluidity. We still performed a network latency analysis to evaluate
the impact of the communication between the robot and the computer. Because of
time synchronization issues between the 2 devices, we computed an approximation
of this latency. For the sake of interpretability, we also removed the first batches of
the graph as they were generating a huge spike due to the creation of the window
displaying the events. The results of this analysis can be observed in Fig.5.14. We
followed a similar scenario to what we did for the processing latency analysis. The
first 1000 batches represent the movement of a person in the background. Between
1000 and 4500 batches, the person got closer to the camera to generate more events.

5.3. INTEGRATION WITH TURTLEBOT 53

After 5000 batches, we shook the camera to generate a burst of events.

Figure 5.14: Evolution of the approximated network latency between the
TurtleBot and a computer

This analysis provided 2 interesting results. The first one is that as expected, the
network latency observed in this situation is higher than what we have observed in
Fig.5.9 thus illustrating the impact of the multi-device communication setup. The
second one is that even if we can see that this latency depends on the size of the
batches sent, it always remains in the order of several milliseconds, and does not
explode when dealing with huge batches. We still tried to reduce it by splitting those
batches into several ROS messages, however this did not bring any improvement.
We arrived to the conclusion that the latency appearing when trying to integrate
the camera with the TurtleBot was caused by a combination of the high data rate
of the cameras combined with the lower computing power of the Raspberry Pi.
We finally managed to obtain satisfying results by only considering a subset of the
events captured by the camera. For each batch, we only considered the 5000 first
events. This considerably reduced the processing latency, as it made the generation
of the ROS messages way faster while still keeping an accurate representation of
the world. Doing so, we were able to capture and transmit up-to-date information
from the TurtleBot while controlling it with a teleop node. The corresponding ROS
pipeline can be observed in Fig.5.15. We believe that under the assumption of a low
speed scenario, which is the case with a TurtleBot, that number could be increased
to 10 000 or even 20 000 events.

In the end, even if we think that most of the latency is caused by the amount of
data and the Raspberry Pi, we identified different things that could be improved in
our driver regarding that latency. This will be discussed in the next chapter.

5.3. INTEGRATION WITH TURTLEBOT 54

Figure 5.15: Camera integration with teleop ROS architecture

Chapter 6

Conclusion

6.1 Contributions
During this master’s thesis, our goal was to design a driver acting as a compatibility
layer between the event-based cameras from iniVation and a TurtleBot, in order to
provide a dynamic vision interface to the robot. We first investigated the event-based
sensors in details, starting from their biological inspirations to their architecture
and inner principles. Doing so, we hope to have provided sufficient background to
understand the challenges surrounding these types of sensors.

Following this, and to address the lack of a ROS2 package for the iniVation cameras,
we implemented our own driver relying on the dv-processing library. This driver is
composed of 3 nodes : the first one is able to collect the data from the 4 different
streams of the camera, and the two others are respectively responsible for the vi-
sualization of the frames and the events. We believe that this driver could interest
any developer willing to integrate the event-based cameras from iniVation within a
ROS2 project.

Finally, we performed different experiments in order to assess the quality of our
driver. We started with a latency analysis to evaluate its efficiency. By doing so,
we managed to show that our driver was able to retrieve and communicate the data
from the camera in a few milliseconds when being launched on a computer. In a
second time, we designed as a proof of concept a small application allowing us to
control the TurtleBot using the events captured by the cameras to show that our
driver could be efficiently integrated in a ROS2 architecture. As a last experiment,
we tried to fully integrate the cameras with the TurtleBot by running the driver
on the Raspberry Pi. Facing some latency issues, we showed that the bottleneck of
the setup was the Raspberry Pi, as it struggled dealing with the high data rate of
the cameras. In the end, we still managed to obtain convincing results by reducing
the number of events being processed by the Raspberry Pi. We believe that the
objectives fixed at the beginning of this thesis have been achieved, as we are now
able to succesfully integrate the cameras in a ROS2 application.

55

6.2. LIMITATIONS 56

6.2 Limitations
We have identified several limitations regarding our implementation. First of all,
our ROS2 driver is limited to the cameras from iniVation, as it relies on the dv-
processing library. It is thus not possible to use it to manage sensors from any other
manufacturer. Also, we have developed our driver using the Galactic Geochelone
distribution of ROS2. Even if the core functionalities should not really differ from
one ROS2 distribution to another, we do not know if the driver will be working
without any modifications in a more recent distribution since we did not try.

The biggest limitation we have encountered is related to the computing power of
the Raspberry Pi. Indeed, we did not manage to process 100% of the data retrieved
by the camera in a reasonable amount of time and were thus forced to drop a lot of
events generated when running the driver on the robot. This results in a trade-off
between the quantity of data we want to consider and the latency we can tolerate
while using the camera as one of the robot’s sensors. We believe that this trade-off
should be considered very carefully to avoid providing an incorrect representation
of the world to the robot.

6.3 Further improvements
To conclude this thesis, we will mention different points still leaving room for im-
provement, either in the implementation or regarding topics going beyond the scope
of this thesis. To begin with, there are a few quality of life features which do
not impact the results obtained that could be implemented, for example a launch-
file initializing the different nodes. To continue with the implementation, even if
the network latency is not a problem, we believe that we could still reduce it by
modifying the architecture of the EventBatch message to reduce its size, especially
regarding the timestamps. Doing so, the number of bytes sent from one node to
another would be reduced, which would ultimately lower the latency. Finally, we
also believe that it should be possible to take advantage of parallel programming
mechanisms to enhance the efficiency of the driver, even if our attempts to do so did
not bring any improvement. This could be done either by splitting the processing
loop in the callback function over the different cores, or by running several instances
of the callback function in different threads.

As we have been limited by the capacity of the Raspberry Pi when running the
driver on the robot, replacing it for a more powerful one might be a very direct way
to enhance the performance. In the case were it would not be possible, we think that
we could improve the event selection process in order to provide the most accurate
world representation to the robot. This can be done with different event filtering
algorithms. In the context of this thesis, as our goal was to implement the interface
of the robot, we did not talk about any filtering methodology at all, but this is
a crucial step in any event-based related task, as it can enhance the performance
by selecting the most meaningful events while removing the others. However, in

6.3. FURTHER IMPROVEMENTS 57

the case of our TurtleBot integration, this would add even more processing on the
Raspberry Pi, which is already struggling when retrieving all the events. In the
end, the biggest improvement would be to enhance the computing power of the
TurtleBot.

Finally, to go even further, it could be interesting to experiment our driver with the
latest ROS2 distribution, as Galactic has already reached its end-of-life.

Bibliography

[1] Inivation AG, “Inivation.” https://inivation.com/. Accessed: 2024-03-20.

[2] Open Source Robotics Foundation, “Turtlebot.” https://www.turtlebot.co
m/turtlebot3/. Accessed: 2024-03-20.

[3] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,” in
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, (Kobe, Japan), May 2009.

[4] M. A. Mahowald and C. Mead, “The silicon retina,” Sci Am, vol. 264, pp. 76–82,
May 1991.

[5] L. Cianci, Colour Theory: Understanding and Working with Colour,
ch. Anatomy of the human eye. RMIT university, 2023. https://rmit.p
ressbooks.pub/colourtheory1/chapter/biology-of-the-human-eye/.

[6] C. Henley, Foundations of Neuroscience, ch. 21. Vision : The Retina. Michigan
State University, 2021. https://openbooks.lib.msu.edu/neuroscience/c
hapter/vision-the-retina/.

[7] E. M. IZHIKEVICH, Dynamical Systems in neuroscience: The geometry of
excitability and bursting. MIT Press, 2007.

[8] D. NAVARRO, Architecture et Conception de Rétines Silicium CMOS:
Application à la mesure du flot optique. PhD thesis, ACADEMIE DE MONT-
PELLIER UNIVERSITE MONTPELLIER II, 2003.

[9] Canon Europe, “Image sensors explained.” https://www.canon-europe.com/
pro/infobank/image-sensors-explained/. Accessed: 2024-04-10.

[10] Edge AI Vision, “Cmos vs ccd: Why cmos sensors are ruling the world of
embedded vision.” https://www.edge-ai-vision.com/2023/04/cmos-vs-c
cd-why-cmos-sensors-are-ruling-the-world-of-embedded-vision/.
Accessed: 2024-04-10.

[11] P. Magnan, “Detection of visible photons in ccd and cmos: A comparative view,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

58

https://inivation.com/
https://www.turtlebot.com/turtlebot3/
https://www.turtlebot.com/turtlebot3/
https://rmit.pressbooks.pub/colourtheory1/chapter/biology-of-the-human-eye/
https://rmit.pressbooks.pub/colourtheory1/chapter/biology-of-the-human-eye/
https://openbooks.lib.msu.edu/neuroscience/chapter/vision-the-retina/
https://openbooks.lib.msu.edu/neuroscience/chapter/vision-the-retina/
https://www.canon-europe.com/pro/infobank/image-sensors-explained/
https://www.canon-europe.com/pro/infobank/image-sensors-explained/
https://www.edge-ai-vision.com/2023/04/cmos-vs-ccd-why-cmos-sensors-are-ruling-the-world-of-embedded-vision/
https://www.edge-ai-vision.com/2023/04/cmos-vs-ccd-why-cmos-sensors-are-ruling-the-world-of-embedded-vision/

BIBLIOGRAPHY 59

Spectrometers, Detectors and Associated Equipment, vol. 504, no. 1-3, pp. 199–
212, 2003.

[12] D. Litwiller, “Ccd vs. cmos,” Photonics spectra, vol. 35, no. 1, pp. 154–158,
2001.

[13] O. Skorka and D. Joseph, “Toward a digital camera to rival the human eye,”
Journal of Electronic Imaging, vol. 20, no. 3, pp. 033009–033009, 2011.

[14] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza,
“Event-based vision: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 1, pp. 154–180, 2022.

[15] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15 µs latency
asynchronous temporal contrast vision sensor,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[16] D. Gehrig, H. Rebecq, G. Gallego, and D. Scaramuzza, Asynchronous,
Photometric Feature Tracking Using Events and Frames: 15th European
Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part XII,
pp. 766–781. 09 2018.

[17] Prophesee, “Prophesee metavision technologies.” https://www.prophesee.ai
/. Accessed: 2024-04-20.

[18] Y.-l. Tian, L. Brown, A. Hampapur, M. Lu, A. Senior, and C.-f. Shu, “Ibm
smart surveillance system (s3): event based video surveillance system with an
open and extensible framework,” Machine Vision and Applications, vol. 19,
pp. 315–327, 2008.

[19] J. Howell, T. C. Hammarton, Y. Altmann, and M. Jimenez, “High-speed particle
detection and tracking in microfluidic devices using event-based sensing,” Lab
on a Chip, vol. 20, no. 16, pp. 3024–3035, 2020.

[20] J.-A. Sahel, E. Boulanger-Scemama, C. Pagot, A. Arleo, F. Galluppi, J. N.
Martel, S. D. Esposti, A. Delaux, J.-B. de Saint Aubert, C. de Montleau, et al.,
“Partial recovery of visual function in a blind patient after optogenetic therapy,”
Nature medicine, vol. 27, no. 7, pp. 1223–1229, 2021.

[21] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot op-
erating system 2: Design, architecture, and uses in the wild,” Science Robotics,
vol. 7, no. 66, p. eabm6074, 2022.

[22] Open Robotics, “Ros - robot operating system.” https://www.ros.org/.
Accessed: 2024-04-27.

[23] Inivation, “Dv-processing.” https://dv-processing.inivation.com/rel_1_
7/index.html. Accessed: 2024-04-27.

https://www.prophesee.ai/
https://www.prophesee.ai/
https://www.ros.org/
https://dv-processing.inivation.com/rel_1_7/index.html
https://dv-processing.inivation.com/rel_1_7/index.html

BIBLIOGRAPHY 60

[24] Open Robotics, “Ros noetic ninjemys.” http://wiki.ros.org/noetic/. Ac-
cessed: 2024-04-28.

[25] Luca Longinotti, “dv-ros.” https://gitlab.com/inivation/dv/dv-ros, 2022.
Accessed: 2024-04-28.

[26] SBG systems, “Imu - inertial measurement unit.” https://www.sbg-systems
.com/inertial-measurement-unit-imu-sensor/. Accessed: 2024-04-29.

[27] Open Robotics, “sensor_msgs.” http://wiki.ros.org/sensor_msgs. Ac-
cessed: 2024-04-29.

[28] Open Robotics, “geometry_msgs.” http://wiki.ros.org/geometry_msgs.
Accessed: 2024-04-29.

[29] Open Robotics, “cv_bridge.” http://wiki.ros.org/cv_bridge. Accessed:
2024-04-29.

[30] Open Robotics, “Ros2 documentation : foxy.” https://docs.ros.org/en/fo
xy/index.html. Accessed: 2024-05-01.

[31] Open Robotics, “Ros2 documentation : galactic.” https://docs.ros.org/en/
galactic/index.html. Accessed: 2024-05-01.

[32] Petter Nilsson, “Remove deprecated (in c++17 and newer) use of
std::allocator<>::rebind.” https://github.com/ros2/rclcpp/pull/1678.
Accessed: 2024-05-01.

[33] Open Robotics, “Ros2 documentation : humble.” https://docs.ros.org/en/
humble/index.html. Accessed: 2024-05-01.

[34] iniVation, “Specifications – current models.” https://inivation.com/wp-con
tent/uploads/2023/11/2023-11-iniVation-devices-Specifications.pd
f. Accessed: 2024-05-03.

[35] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240 × 180 130
db 3 µs latency global shutter spatiotemporal vision sensor,” IEEE Journal of
Solid-State Circuits, vol. 49, no. 10, pp. 2333–2341, 2014.

[36] iniVation, “Dvxplorer mini.” https://inivation.com/wp-content/uploads
/2023/03/DVXplorer-Mini.pdf. Accessed: 2024-05-03.

[37] iniVation, “Understanding the performance of neuromorphic event-based vision
sensors.” https://inivation.com/wp-content/uploads/2020/05/White-P
aper-May-2020.pdf. Accessed: 2024-05-03.

[38] Robotis, “Turtlebot3.” https://www.robotis.us/turtlebot-3/. Accessed:
2024-05-05.

[39] Robotis, “Robotis-git : Turtlebot3.” https://github.com/ROBOTIS-GIT/tur
tlebot3. Accessed: 2024-05-05.

http://wiki.ros.org/noetic/
https://gitlab.com/inivation/dv/dv-ros
https://www.sbg-systems.com/inertial-measurement-unit-imu-sensor/
https://www.sbg-systems.com/inertial-measurement-unit-imu-sensor/
http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/geometry_msgs
http://wiki.ros.org/cv_bridge
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/galactic/index.html
https://docs.ros.org/en/galactic/index.html
https://github.com/ros2/rclcpp/pull/1678
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://inivation.com/wp-content/uploads/2023/11/2023-11-iniVation-devices-Specifications.pdf
https://inivation.com/wp-content/uploads/2023/11/2023-11-iniVation-devices-Specifications.pdf
https://inivation.com/wp-content/uploads/2023/11/2023-11-iniVation-devices-Specifications.pdf
https://inivation.com/wp-content/uploads/2023/03/DVXplorer-Mini.pdf
https://inivation.com/wp-content/uploads/2023/03/DVXplorer-Mini.pdf
https://inivation.com/wp-content/uploads/2020/05/White-Paper-May-2020.pdf
https://inivation.com/wp-content/uploads/2020/05/White-Paper-May-2020.pdf
https://www.robotis.us/turtlebot-3/
https://github.com/ROBOTIS-GIT/turtlebot3
https://github.com/ROBOTIS-GIT/turtlebot3

BIBLIOGRAPHY 61

[40] Open Robotics, “Gazebo.” https://gazebosim.org/home. Accessed: 2024-05-
07.

[41] Open Robotics, “tf - ros.” http://wiki.ros.org/tf. Accessed: 2024-05-07.

https://gazebosim.org/home
http://wiki.ros.org/tf

Appendix A

Event-based pixel full circuit

Figure A.1: Transistor-level event-based pixel [15]

62

Appendix B

Latency analysis with DVXplorer
device

Min
size

Max
size

Average
size

Average process
latency

Average network
latency

Motionless 1516 8182 2093.98 616µs 532.47µs
Regular 845 165569 13460.56 1089.94µs 776.19µs
Worst case 5984.0 151844.0 67085.62 2200.39µs 1479.08µs

Table B.1: Latency analysis results with the DVXplorer camera

Figure B.1: Evolution of the batch size over 1 minute in a motionless
scenario

63

64

Figure B.2: Evolution of the processing latency over 1 minute in motion-
less scenario

Figure B.3: Evolution of the network latency over 1 minute in a motion-
less scenario

Figure B.4: Evolution of the batch size over 2 minutes in a regular sce-
nario

65

Figure B.5: Evolution of the processing latency over 2 minutes in regular
scenario

Figure B.6: Evolution of the network latency over 2 minute in a regular
scenario

Figure B.7: Evolution of the batch size over 1 minute in a worst case
scenario

66

Figure B.8: Evolution of the processing latency over 1 minute in a worst
case scenario

Figure B.9: Evolution of the network latency over 1 minute in a worst
case scenario

