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Abstract

Background subtraction is the initial step in many computer vision applications. As such,
choosing the most appropriate algorithm for a given task is crucial as it can significantly
impact the performance of the entire system. However, the selection process is often
challenging due to the large amount of available algorithms, and the lack of standardised
benchmarks. Traditionally, researchers and industry professionals have relied on paper
surveys and tools like ChangeDetection.net (CDNet) to identify potential algorithms.
This thesis attempts at addressing these limitations by proposing a novel Background
Subtraction Recommender Platform, a scalable, extendable, and modular web-based
system that adapts to the user’s input to recommend the most suitable algorithms for his
needs, abstracting away the complexity of the selection process. The main goal of the
application is to provide a contextualised ranking of the algorithms, and to streamline
the algorithm development process by allowing the submission and execution of new
algorithms while providing insights on their performances. To do so, this solution leverages
state-of-the-art algorithm evaluation procedures. Additionally, contextualisation of the
recommendation process is guided by semantic segmentation algorithms to put emphasis
on the content of the video sequences. The ranking system is evaluated for a set of
algorithms obtained from the BGSLibrary on real-world data built upon the well-known
CDNet dataset, demonstrating its ability to provide meaningful recommendations to the
user.
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Chapter 1

Introduction

The choice of an algorithm is a crucial step in the development of a computer vision,
as it can have a significant impact on the application’s performances. However, choosing
the algorithm that is best suited for a situation is no easy task. In fact, the performance
of an algorithm can greatly vary depending on factors such as data (i.e. the nature of
data, size of the dataset, etc.), the task at hand, but also on the evaluation process being
used. This process typically involves the computation of numerous scores that will be
used to compare a set of algorithms on a dataset. Nevertheless, the choice of scores, and
their interpretation will vary depending on the specific applications that are targeted. For
example, an algorithm designed for surveillance cameras that detect all moving objects will
likely be preferred over one that misses intrusions, even if it means producing false alarms.
The nature of the dataset is also a key factor for the recommendation, especially for
machine learning based algorithms, as some algorithms perform better in certain scenarios
than others.

Figure 1.1. The four main areas of computer vision.

Computer vision is a field that is in constant evolution that can be defined by four main
interconnected areas (see Figure 1.1):

• Acquisition: this area focuses on the way the data is captured (i.e. cameras, sensors,
etc.),

• Processing: relates to the way the data is processed (i.e. filtering, morphological
operators, etc.),

• Algorithm: the algorithm that is used to extract information from the data. This
can be achieved through classical image processing techniques (edge detection,
watershed, etc.), or via data-driven methods (machine learning, deep learning, etc.),
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• Application: the way the information is used. This corresponds to the specific task
at hand (i.e. object detection, tracking, recognition, etc.). It also incorporates the
evaluation dimension.

As a result algorithms are regularly being introduced, which makes it difficult for
researchers and industry professionals to keep track of the latest advances. Moreover,
the evaluation of algorithms is a time-consuming task that requires a good amount of
quality data. This is especially true for tasks like semantic segmentation, or background
subtraction (BGS) that requires pixel-wise masks in order to be accurate. In that effort, a
few video datasets have been introduced in the past years. Notable benchmarks include
DAVIS challenges for video object segmentation [1, 2], the MOT challenges for multiple
object tracking [3–5], and the ChangeDetection.net (CDNet) benchmark for background
subtraction [6, 7].

Figure 1.2. Example of a foreground extraction. The top image is the original frame, the
bottom image is the foreground mask. The white pixels represent the foreground, and the
black pixels represent the background. Source: [6].

Background subtraction (also known as foreground detection) is a fundamental task
in the computer vision field. The background subtraction (BGS) is a key step in many
applications such as surveillance, traffic monitoring, gesture recognition, and more. It
consists in detecting changes in video sequences, specifically separating moving objects
(called foreground) from the static background. Although the concept is simple, the
definition of what constitutes the foreground can be fuzzy, and can vary depending on
the specific application. For instance, waving leaves on a tree might not be desired in the
foreground for a surveillance application. The setting of the videos can present challenging
situations such as jitter, moving camera, noise, shadows, illumination changes, occlusions,
camouflage, etc.

Consequently, it makes it difficult (if not impossible) to design an algorithm that works
perfectly in all possible scenarios. Most algorithms are usually strong in some settings
but weak in others. Therefore, it is necessary to try different methods and compare
them in order to find the best fit for a given situation. Traditionally, this has been made
possible through the use of benchmarks. In the case of BGS, CDNet is a good example,
it provides a substantial amount of videos captured under various conditions, each of
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Figure 1.3. Timeline of the different datasets that were introduced in the past years.

them accompanied with ground truth masks that for the evaluation of the performance
of algorithms. Moreover, it also provides a ranking system that compares the results of
the submitted algorithms across several metrics and categories. This benchmark and its
content will be further detailed in chapter 4.

This work is part of the ongoing effort to provide a better way to recommend algorithms
for background subtraction. The thesis focuses on the application and algorithms parts of
the computer vision process, its focus is to propose a new way to recommend algorithms
for background subtraction that is not oriented towards sole performance metrics. Instead,
the recommendation is made such that it can be understood by a non-expert user. In
summary, the aim is to provide a flexible system that:

1. Provides a recommendation for an algorithm based on several factors (i.e. the content
of the video, the challenges that are present, preferred output, hardware specification,
. . . ),

2. Allows researcher to upload their algorithms to see how they perform on the dataset,

3. Provide insight into how the algorithm would have been recommended to users based
on a history of requests,

4. Can be gradually extended by adding new data (videos, categories, algorithms, . . . ).

As a first building stone, this master thesis provides a prototype that uses the CDNet
dataset[6, 7] and a selection of well known BGS algorithm in an effort to demonstrate the
feasibility of such a recommendation system.

The present work is organised as follows. The next chapter describes the different
concepts that are key to the understanding of this work. It covers concepts related to the
background subtraction, recommendation systems (and more specifically algorithm recom-
mendation), existing benchmarks, and techniques that were used in the implementation of
the different modules of the platform. The third chapter presents the methodology that
was followed in the realisation of this work, and a detailed description of the objectives
of the thesis. The fourth chapter presents the realisation that were made for this master
thesis. It contains a description of the dataset, the algorithms that were used for the
evaluation, and a complete explanation of the platform that was developed. The fifth
chapter describes the results obtained with the platform. Those are specifically geared
towards the ranking system, and the use of semantic labels in the recommendation process.
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The sixth chapter is a discussion of the results as well as the limitations, and possible
improvements. Finally, the last chapter concludes the work and presents some perspectives
for future work.
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Chapter 2

Background

The present chapter is used in order to clarify a variety of key concepts of this report.
This part talks about the concept of background subtraction, its challenges, applications,
but also a brief overview of the basic algorithms of this technique.

2.1 Recommendation Systems
Recommendation systems (RS) can be viewed as a particular case of information

filtering systems (IFS). An information filtering system is defined as a system that removes
information before presenting it to a human user. Hence, preventing the user from
being overloaded with irrelevant information. In order to perform this filtering, a set of
information about the user is compared to a set of reference features.

The recommendation systems are mostly involved in decision-making processes where
the user does not have a clear idea of what he/she wants. They are primarily directed at
individuals who lack the experience or competence to make a decision about a potentially
large number of items. Therefore, such systems must predict items that are worth
recommending to the user.

2.1.1 Types of Recommendation Systems
In order to determine the utility of an item for the user, RS can be regrouped into

several categories. Hereafter are listed a few examples of the most common types of
recommendation techniques:

• Collaborative Filtering: This technique consists in the recommendation of an
item to the user based on other recommendations made to user that have similar
profiles.

• Content-Based: This technique relies solely on the user’s profile in order to make a
recommendation. The utility is determined by comparing the features of the items to
the preferences of the user. This way, if the user has positively rated an item in the
past, he’ll be most likely to be recommended items of that have similar attributes.

• Hybrid Systems: This technique consists as a combination of other technique that
aims at using the advantages of each techniques to mitigate their drawbacks.
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2.1.2 Algorithm Recommendation
The recommendation of an algorithm can be assimilated to a type of content-based

recommendation technique. Indeed, when looking for an algorithm to solve a task, one
will look at its characteristics. It can be technical requirements such as memory usage
(spatial complexity), speed of the algorithm (temporal complexity). However, the primary
characteristic one seeks tends to be the performance it can provide regarding the problem
to solve. The determination of those performances strongly depends on the type of problem
the algorithm is trying to solve. For instance, for background subtraction the accent is
put on the ability for the algorithm to correctly classify each pixel of the image [8].

2.2 Background Subtraction
Employed in the context of the foreground detection task, the term background

subtraction refers to techniques that are commonly used to detect and isolate moving
object from a video sequence. These techniques aim at generating foreground masks for a
video. The masks are obtained using algorithms that take as input a background model and
the current frame in order to produce a binary image as output. The produced image only
contain pixel values of 0 (black) and 255 (white) where black represents the background
(static objects), and white is the foreground (objects in motion). This can be assimilated
to a classification tasks where each pixel of the image is labelled as either background or
foreground. The main challenge of the algorithms is to be able to obtain (and maintain) an
accurate background model that can be used to accurately detect foreground objects.

Classification The task of classification is the process of assigning a category or class
to a new observation, given a set of training data that contains observations for which the
category is known.

Figure 2.1. Steps of a typical background algorithm. In this diagram, N is the number
of frames used in the initialisation of the background model. B(t) and I(t) represent the
background and the current frame at time t respectively. Source: [9, Bouwmans]

.

When designing a BGS algorithm, one must consider a few aspects. As shown by Fig.
2.1, a typical BGS method is composed of three main steps: (1) the initialisation of the
background model, (2) the detection of the foreground, and finally (3) the maintenance of
the background model. The choice of model is therefore crucial in the performance of the
algorithm as it will determine the complexity of the representation for the background.
A typical choice is to use a Gaussian Mixture Model (GMM) [10] which allows for the
representation of a multi-modal background.
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Background initialisation The initialisation of the background model refers to the
process of building a reference frame (or statistical model) that will be compared to the
other frames of the sequence. The main challenge of the initialisation is to obtain a "clean"
background model. That is, a model that is free of any object that does not belong to
the background. This is often done by considering a few frames at the beginning of the
sequence in order to construct the model. However, in real-world scenarios, it is rare to
have access to a set of training frames that are completely free of moving objects.

Foreground detection Foreground detection is the process of comparing the current
frame to the background model in order to retrieve a mask that represents the changes.
As mentioned above, this amounts to a classification task where each pixel is labelled as
either background or foreground.

Background maintenance The background model must be updated over time in order
to adapt to changes in the scenes. Indeed, as mentioned previously, the video sequence
can present changes in the background under some conditions. Making it required for the
model to adapt to these variations in order to maintain an accurate representation of the
background. Several strategies are used to update the model. The most common is to
perform a blind update of the model regardless of the segmentation result. This is done by
performing a moving average of the pixel values of the frame as shown in Eq. 2.1.

B(t) = (1 − α) · B(t − 1) + α · I(t) (2.1)

where α represents the learning rate. Another strategy is to update the model using the
information obtained from the segmentation. This approach uses different learning rates
for background and foreground pixels. However, this strategy may lead to inaccuracies
in the background model in case of false detections. It is also possible to use a fuzzy
update strategy where the update takes into account the confidence of the segmentation
result.

As mentioned in the introduction, even though the definition itself is relatively simple,
the definition of what constitutes the foreground objects (and the background respectively)
tends to be blurry. Videos can present elements that are in motion but should not be
considered as foreground (i.e. weaving trees). These scenarios can lead to false detection
by the algorithms.

2.2.1 Challenges
According to Bouwmans (2014)[9], the good functioning of a BGS algorithm is dependent

on three main factors: the movement of the camera, the illumination of the scene, and
the movement of the background. In an ideal scenario the camera would be fixed, the
illumination constant, and the background static. However, in reality, these conditions
are rarely met. Datasets used to evaluate BGS algorithms are much likely to bring
challenging situations that can severely impact the performance of the algorithms. Figure
2.2 shows examples of typical challenging scenarios. These situations can be related to the
background, the foreground, or the camera itself.
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Figure 2.2. Summary of challenges encountered in the context of background subtraction.
The challenges are regrouped in three categories: background, foreground, and camera.
Source: Kalsotra and Arora (2019) [11]

.

Illumination Changes The illumination of a scene can vary over time. In outdoor
scenes, it can be caused by the fast variations of the natural light caused by the sun being
occulted by clouds (or the opposite), or simply by the gradual change in lighting condition
due to the time of day. In indoor scenes, these illumination change can be caused by the
switching on/off lights. These changes affect pixel colour intensities of the frames leading
to false detections of foreground objects, and therefore to inaccuracies in the background
model.

Shadows Shadows that are cast by objects in the scenes can be a source of confusion
for the algorithms. Indeed, they can be misinterpreted as a moving object which causing
false detections. This is especially true with hard shadows that have a high contrast with
the background (i.e. shadows during in a bright sunny day).

Intermittent Object Motion Objects of the foreground can remain static for a short
period of time. During that period, they are slowly integrated in the background model.
This leads to ghosting artefacts when the object starts moving again.

Weather Conditions The weather conditions can have a significant impact on the
detection of foreground objects. Poor weather conditions such as heavy rain, snow, or fog
can lead to misclassifications of the pixels, increasing the number of false positives.

Camera Jitter Camera jitter refers to the small vibrations of the camera that can
be caused by wind, or the camera being mounted on a moving object. Those vibrations
introduce motion in the sequence which can lead to false detections without a robust
maintenance mechanism [9].

Moving Camera The movement of the camera (i.e. sequences captured with embedded
cameras, ptz camera, . . . ) present a significantly greater challenge than static cameras. This
is because the movement of the camera itself introduces motion in the entire background.
The BGS algorithm struggles to distinguish this background motion from the actual
foreground objects, making it difficult to maintain an accurate background model.
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Dynamic Background The background of the scenes itself can be dynamic, containing
elements that move and cause variation in pixel values (i.e. weaving trees, rippling water,
etc.). These variations can be misinterpreted by the algorithm, causing it to misclassify
background elements as foreground.

Camouflage Objects in the scenes can have similar colours to the ones of the background.
This can lead to problems in the detection as the algorithms may not be able to distinguish
the foreground from the background.

Noise Video sequences may have poor quality images. This can be caused by the camera
itself, or by the compression of the video. This can lead to the presence of faulty pixels,
introducing artifacts that can be misinterpreted by the algorithms.

Bootstrapping Initialising the background model can be a challenge. In some situations
it is impossible to obtain a background image that is representative of the scene. This can
be caused by the presence of moving object during the initialisation phase. As a result,
the generated background model is not accurate and lead to issues throughout the video
sequence.

2.3 Evaluation
According to Sanches et al.[12] the evaluation of a BGS algorithm depends on three key

factors: the dataset used which contains a collection of videos on which the algorithm will
be executed; the metrics (or scores) that will be used to evaluate the performances of the
algorithms; and a set of state-of-the-art (SOTA) algorithms that will be used as reference
to compare the effectiveness of the new algorithms.

As previously mentioned, a "good" background subtraction algorithm is one that is
able to accurately maintain a representation of the background model such that it is able
to correctly classify each pixel of the image. The evaluation of the performance of the
algorithms is crucial, and can be either subjective or objective.

• Subjective Evaluation: This type of evaluation is based on the visual inspection
of the results by human viewers, taking the user’s experience and perception into
account. However, this type of evaluation is time-consuming and provides scores
that depends on the setup of the experiment,

• Objective Evaluation: This type of evaluation is based on measurements that are
made on the results of the algorithms. These measurements involve the computation
of several metrics/scores that will then be objectively compared in order to assess
the performance of the methods.

BGS can be defined as a binary classification task, where each pixel of the video is
classified as either foreground or background. This makes the evaluation of BGS algorithms
identical to the one of classifiers. Formally, classification is defined by a ground truth class
y ∈ {c−, c+} which corresponds to the true category of the objects and a predicted class
ŷ ∈ {c−, c+} which is the prediction made by the algorithm.

9



From this definition can be derived the confusion matrix, a nc × nc (nc is the number
of categories, in this case 2) contingency table that summarises the performance of an
algorithm based on four elements: the True Positives (TP) which are objects correctly
predicted as positive, the True Negatives (TN) which are objects correctly predicted as
negative, the False Positives (FP) which are objects incorrectly predicted as positive, and
False Negatives (FN) which are objects incorrectly predicted as negative.

From the confusion matrix, several scores can be computed in order to evaluate the
performance of the algorithms. Each of which provides a different aspect of the performance
of the algorithms. The most common scores are the following:

• Accuracy: The accuracy is the ratio between the amount of correctly classified
objects (TP, TN), and the total number of predictions.

Accuracy = TP + TN

TP + TN + FP + FN
(2.2)

• Precision: The precision, also called Positive Predictive Value (PPV), is the ratio
between the number of correctly classified positive objects (TP), and the total number
of positive predictions (TP + FP).

PPV = TP

TP + FP
(2.3)

• Recall: The recall, also called True Positive Rate (TPR), is the ratio of the number
of correctly classified positive objects (TP), and the total number of positive objects
(TP + FN). This score will be high when the algorithm does not incorrectly label
objects as negative.

TPR = TP

TP + FN
(2.4)

• Specificity: The specificity, also called True Negative Rate (TNR), is the ratio
between the amount of correctly classified negative examples (TN), and the total
number of negative examples (TN + FP). This score will be higher when the
algorithm does not incorrectly label objects as positive.

TNR = TN

TN + FP
(2.5)

• Negative Predictive Value: The Negative Predictive Value (NPV) is the ratio
between the number of correctly classified negatives, and the total amount of negative
predictions. It will be higher when the algorithm does not incorrectly label objects
as negative.

NPV = TN

TN + FN
(2.6)

• F1-Score: The F1-Score is the harmonic mean of the precision and the recall. It is
a balanced score which will be high when both precision and recall are high.

F1-Score = 2 · PPV · TPR
PPV + TPR (2.7)
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2.3.1 Summarization Procedure
The evaluation procedure proposed by benchmarks like LASIESTA [13], or CDNet [6,

7] typically involve a computation of the performance indicators (PI) for each videos. For
the CDNet benchmarks, the PIs are first averaged within a video category, and then the
resulting indicators are averaged between categories. This technique has the drawback of
making the resulting indicators not interpretable, and to break the intrinsic relationships
between the PIs.

To address this issue, Piérard and Van Droogenbroeck (2020) [14] proposed a sum-
marisation procedure that defines a probabilistic framework which has the advantage of
preserving the relationships between the PIs. The summarised indicator is presented as
the weighted arithmetic mean of the indicators of each video {IA|B(v)|v ∈ V}, where the
weights correspond to the normalised product between the importance given to the video
v (P (V = v)), and the corresponding indicator IB(v). Formally, a probabilistic indicator
can be defined as:

IA|B(v) = P (∆ ∈ A|∆ ∈ B), with ∅ ⊊ A ⊊ B ⊆ {TN, FP, FN, TP}

, which represents the conditional probability of the outcome ∆ to belong to the set A given
it belongs to set B for a specific video v. Confusion matrix quantities can be expressed using
unconditional PIs which are the proportion of each quantity in the confusion matrix.

For an algorithm, a score (i.e. Recall) can be obtained by computing the unconditional
PIs for the whole dataset. These quantities are then plugged directly into the formulas to
obtain the summarized indicator of a score.

2.4 Ranking Tile
The Ranking Tile is a crucial concept for the understanding of this work. Indeed, it

is extensively used in the recommendation process of the algorithms. This concept was
initially proposed by Piérard et al. in a work which is still unpublished at the time of
writing this thesis. In this paper, they introduced a probabilistic framework that defines
the notion of performance. From this framework, they derived an infinite, and parametric
family of ranking scores that can be used to rank algorithms. The ranking tile itself is a
graphical representation of the ranking scores. The computation of those scores is based
on notions of Satisfaction (S), and Importance (I).

Satisfaction The satisfaction is defined as a random variable S : Ω → R that, in the
context of two-class classification, takes its value in {0, 1}. Specifically, considering Ω as
the set of possible outcomes of the classification, Ω = {TP, TN, FP, FN} in the context
of binary classification. The satisfaction values are defined as follows:

S(o) =

1, if o ∈ {TP, TN}
0, if o ∈ {FP, FN}

(2.8)

, where o ∈ Ω is the outcome of the classification.
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Figure 2.3. Graphical representation of the ranking tile.

Importance The importance value is defined as a non-negative random variable I ̸= 0
that is used to parametrise the ranking score. Within the framework of BGS, the importance
values are determined by two real values α, β ∈ [0, 1] as follows:

Iα,β(o) =


1 − α, if o = TP,

α, if o = TN,

1 − β, if o = FN,

β, if o = FP

(2.9)

Using Eq. 2.8 and Eq. 2.9, the ranking score can be defined as:

RI = EP [IS]
EP [I] =

∑
o∈Ω I(o)S(o)P ({o})∑

o∈Ω I(o)P ({o}) (2.10)

, where P is the probability distribution of the outcomes of the classification.For binary
classificaiton, the equation can be simplified to:

RI(P ) = I(TN)P ({TN}) + I(TP )P ({TP})
I(TN)P ({TN}) + I(TP )P ({TP}) + I(FN)P ({FN}) + I(FP )P ({FP})

(2.11)
, which represents the ranking score of the algorithm given the probability distribution
of its outcomes. From this formula, it is easy to derive the classical scores such as the
accuracy, precision, recall, etc. For instance, the accuracy score can be obtained by setting
the values of α and β to 0.5. Figure 2.3 shows the graphical representation of the tile with
the "classical" scores.

2.5 Previous Work
The field of background subtraction has been the subject of numerous studies. When it

comes to background subtraction algorithm recommendation, the current state-of-the-art
lies in surveys that compares the performances of the algorithms on a set of datasets.
These surveys are often based on the computation of the scores mentioned above. The
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works of Bouwmans (2014) [9], and Sanches et al. (2020) [12] are examples of such surveys.
These works provide a comprehensive overview of the state-of-the-art algorithms and their
performances on a few datasets. However, there is currently no platform that allows a
user to obtain a recommendation that is not only based on metrics, but also on his needs.
Specifically, that allows a fine-tuning of the ranking of the algorithms using parameters such
as the context of the video, the hardware used, or the constraints of the application.

Even if no such platform currently exists, the scientific community has been working
on the development of benchmarks that allow the comparison of algorithm. Some of
them allowing the researcher to upload the results of their algorithm in order to compare
them to the SOTA algorithms. These benchmarks provide a set of videos that are often
annotated with ground truth masks which is a key element in the evaluation of BGS
methods. Here is a non-exhaustive list of the most well-known benchmarks and datasets
regarding background subtraction:

• Toyoma et al. [15] One of the first dataset that was used to assert the performances
of BGS algorithms. It is composed of 7 sequences, each of which representing a
different challenge. The dataset was also provided with one ground truth frame per
sequence.

• Goyette et al. [6] The first version of the Change Detection dataset. It contains
31 video sequences that are spanned across 6 categories. Each video is annotated
with ground truth masks. The benchmark also showcases the performances of the
BGS methods using a set of metrics. The ranking is made in the general setting
(all categories), and in each category separately. It is also possible to download the
masks produced by the submitted algorithms.

• Vacant et al. [16] The BMC (Background Models Challenges) dataset has the
particularity to contain synthetic videos with full ground truth annotations. It also
provides videos long real sequences which are only partially labelled.

• Bloisi et al. [17] introduced the Maritime Detection, Classification, and Tracking
dataset which is designed for multiple tasks including background subtraction. The
dataset showcases video sequences that were taken from a maritime environment,
some of them provided with a partial ground truth.

• Wang et al. [7] The second version of the Change Detection dataset. This version
contains 53 video sequences that includes the 31 from the 2012 dataset and introduces
5 new categories while retaining the same set of features.

• Cuevas et al. [13] The LASIESTA (Labeled and Annotated Sequences for Integral
Evaluation of SegmenTation Algorithms) was proposed in 2016. It contains 48 fully
annotated video sequences that are divided into 14 categories. The work associated
with the dataset also provides a benchmark of a few BGS algorithms.

• Jodoin et al. [18] The SBMNet benchmark is a dataset that was specifically designed
for the task of background initialisation. It is composed of a set of videos that were
taken from other datasets (CDNet, LASIESTA, LIMU, . . . ). It is provided with
a website identical to the one of the CDNet benchmark, which also comes with a
ranking system.

• Introduced more recently by Zhang et al. (2022) [19], the Airport Ground Video
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Surveillance (AGVS) dataset contains 25 long videos that were taken from an airport,
each of them being annotated with pixel-wise segmentation masks. The dataset
is specifically targetted to the detection of aircraft on the ground, and contains
challenging situations such as camouflage, illumination changes, shadows, and more.

• Etc.
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Chapter 3

Methodology

This chapter will detail the methodology followed in the creation of the ranking platform.
In particular, it will detail the objectives of the project, as well as a detail about the
milestones of the work.

3.1 Thesis objectives
The main objective of this thesis is to create a platform allowing a user to obtain

recommendations for background subtraction algorithms. These recommendations are
based on a wide range of videos, which are described using relevant tags (categories) that
represent the content or the context of the videos. This web application would set itself
apart from existing benchmark by providing a flexible recommendation/ranking system
usable for non-expert users. Allowing them to obtain advices about algorithms that are
best suited for their needs.

Firstly, the platform must be able to provide a multivariate recommendation for an
algorithm that takes into account (1) the importance made on the specific outputs of the
algorithms (i.e. the amount of true positives, false negatives, etc.), (2) the context of the
videos used to determine the ranking, meaning recommending the algorithms that perform
better in certain conditions, and finally the technical aspects of the algorithms, filtering
out the ones that do not meet the specific criteria.

To allow researchers to compare their algorithms to the state-of-the-art, the tool must
provide a way to submit new algorithms, and execute them on-demand in order to compute
their performance against the video dataset, therefore inserting them into the ranking in
place.

Building up upon the two previous objectives, the platform also needs to provide a way
for the researchers to improve their algorithms. For that purpose, the application aims at
providing an insight about past recommendations by keeping an history of the requests,
giving the researcher information about how his algorithm would have been recommended
for specific requests.
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Lastly, the platform needs to be expandable. Along with algorithms, it must allow
the augmentation of its pool of videos, and categories such that it stays up to date with
the future developments in the field of background subtraction, and more broadly with
computer vision.

3.2 Methodology details
The methodology that was followed in the creation of a prototype for the ranking

platform can be compared to the agile framework. Indeed, although the project was not
explicitly divided into sprints, it involved a series of iterations, each of which was focused
on a specific aspect of the project. Moreover, the project was guided by feedbacks from
the supervisor, avoiding the waterfall model. This allowed for a more flexible approach,
which was particularly useful in refining the platform. The following steps are the broad
milestones that guided this master thesis:

• Bibliography research and survey of the existing benchmarks: Conducting a
literature review to understand the current state of the art in background subtraction
and benchmarking.

• Selection of the dataset to be used: Choosing a suitable dataset for the
implementation, the testing, and evaluation of the ranking platform.

• Assignation of tags to the videos: Defining the categories that would be best
suited for each video and relevant to the ranking.

• Automation of the ground truth production: Implementing a system to
automatically create segmentation masks for the videos that lack proper ground
truth. Allowing for a broader range of videos to be used in the platform.

• Context design for testing (split between train/tests/validation): Designing
a test framework that would allow for the evaluation of the ranking process in a
meaningful way.

• Implementation of background subtraction baseline to be run on videos:
Implementing a basic BGS algorithm for the comparison with the other algorithms.

• Implementation of a platform for algorithm ranking: Setting up the platform
that would allow the user to obtain a recommendation on the best algorithm for his
needs.

These steps were not strictly followed in the order presented above, they were taken as
guidelines to ensure the project was moving in the right direction. Some steps, such as
the selection of the dataset and the definition of tags, were intertwined to optimise the
workflow. The steps will be detailed in upcoming chapters of the thesis.

16



Chapter 4

Implementation Details

In this chapter are presented the details of the implementation of the Background
Subtraction Recommender Platform. It explores the details of the architecture, providing
insights about its main components. The chapter also highlights the core features of the
prototype. Finally, a discussion about the choices made during the development, offering
insights about the technical considerations that shaped the design of the application.
The source code of all the implemented features is publicly available on Github: https:
//github.com/pierard/BGS-Recommender-Platform.

4.1 Dataset
In the context of algorithm evaluation, and by extension of algorithm ranking, the

selection of an appropriate dataset crucial as it allows to have a common ground for the
comparison. Ideally, a "good" dataset should cover the whole distribution of the data that
the algorithms are likely to encounter. However, in practice it is impossible to obtain.
When deciding on which dataset to use, a few criteria can be considered such as the
size of the dataset, the diversity of the data, the presence of ground truth, etc. For this
master thesis, the deciding factor has been the presence of labelled frames. Having a
pre-existing ground truth alleviated the need for manual production and allowed to focus
on the ranking process.

4.1.1 ChangeDetection 2014
The BGS Recommender platform uses the ChangeDetection 2014 dataset [7] as its

main (and currently only) source of data. CDNet 2014 is a well known dataset, and a
benchmark that is used to evaluate background subtraction algorithms. It is composed of
53 video sequences that are spanned across 11 categories (figure 4.1). Each video sequence
is provided with partial, manually annotated ground truth. Notably, all videos within
CDNet are camera-captured, and do not contain any synthetically generated data.

Categories

• Baseline: The videos in this category contain a mixture of challenges that are present
in the other categories. These sequences are considered as less challenging.
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Figure 4.1. Image showing one frame of each video category of the CDNet 2014 dataset
along with its corresponding ground truth. Source: Wang et al. [7]

• Camera Jitter: This category includes indoor and outdoor videos that have been
captured with an unstable camera.

• Challenging Weather: Contains videos that have been filmed in challenging winter
conditions such as snow storms, fog, etc.

• Dynamic Background: This category regroups scenes that include heavy parasitic
background motion. This can be due to weaving trees, shimmering water, etc.

• Intermittent Object Motion: Sequences in this category contain objects that are
moving intermittently. For instance, object that are in motion, stop for a while, and
then start moving again.

• Low Framerate: The videos in this category have been captured with a low framerate.
This can be challenging for the algorithms as it may cause sudden changes in the
background.

• Night Videos: The sequences in this category have been captured during the night
and contain primarily traffic scenes.

• PTZ: The videos in this category have been captured by Pan-Tilt-Zoom camera in
slow continuous pan mode, intermittent pan mode, and 2-position patrol-mode PTZ,
or in/out zoom.

• Shadow: Contains videos that feature strong shadows. Some of them are due to a
bright sunny day, casting shadows of pedestrians, trees, etc.

• Thermal: This category contains videos that have been captured by infrared cameras.

• Turbulence: The sequences in this category include outdoor scenes that showcase air
turbulence caused by rising heat.
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Figure 4.2. Image showing the ground truth of the "backdoor" video sequence of the
CDNet 2014 dataset

Ground Truth

As previously mentioned, the CDNet dataset comes with accurate pixel-wise ground
truth for each of the video sequences. The ground truth is provided in the form of binary
masks and cover a subset of the frames of each video. Regarding the videos that were
included by the 2014 dataset, the authors only provide the first half the annotations in
order to avoid overtuning of algorithms parameters. Each video is provided with three
additional files: ROI.bmp, ROI.jpg, and temporalROI.txt. The first two files are used to
define the Region Of Interest of the video (the regions that have been annotated). The
temporalROI.txt file is used to define the interval of frames that have been annotated. As
for the ground truth itself, it is contains five different labels, which are defined as greyscale
values, mapped as follows:

• 0: Static objects

• 50: Hard shadows

• 85: Outside the region of interest. The first few hundred frames of each video are
labelled as outside of the ROI to avoid potential errors during the initialisation phase
of algorithms.

• 170: Unknown motion (part that cannot be accurately labelled, due to semi-
transparency and motion blur)

• 255: Motion

4.2 Technologies and Tools
The next few paragraphs of this section are aimed at describing the tools and technologies

that have been used to make the development of the platform possible. Each of the items
listed below are accompanied by a brief description that includes the reasons why they have
been chosen as well as the role they play in the platform. The list itself does only include
elements that are crucial for the functioning of the project. That is, the technologies
that are essential in the understanding of the systems that will be explained later in this
chapter.
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Python Python is a high-level programming language that is widely used in the field of
machine learning and computer vision. As such, it contains a vast number of libraries that
are used in the field (i.e. PyTorch, Numpy, Scikit Learn, etc.). The language is at the core
of the project as it is used in every backend component of the platform, except for the
database (DB) and the Redis server. The choice of Python as the main language has been
driven by API library used in the project (FastAPI). The main reason for this is that the
platform will be maintained by a team of researchers that already have a good knowledge
of the language, and will therefore be able to easily understand the code and improve the
project. Another reason for choosing this language lies in a core feature of the platform
which is the ability to execute algorithms that are likely to be written in Python.

Figure 4.3. FastAPI logo. Source: https://fastapi.tiangolo.com/

FastAPI FastAPI1 is a modern Python web framework used to build RESTful APIs.
It is based on standard Python type hints, and is built upon the Starlette2 framework.
FastAPI makes use of Pydantic in order to validate the data that is sent to the API. As
mentioned above, the choice of FastAPI as the backend framework has mainly been main
for maintenance purposes. Another guideline that has been involved in the choice of the
framework is that it is lightweight and doesn’t ship with many dependencies out of the
box allowing for a more controlled environment.

Figure 4.4. Logo of the Celery library. Source: https://en.wikipedia.org/wiki/

Celery Celery3 is a Python library that is used to manage distributed tasks. As defined
by the documentation, Celery is a task queue that focuses on real-time processing. It is
used in combination with a backend (in this case Redis) which serves as storage for the
tasks that are to be executed. It also allows to store their results. The choice of Celery
has been made relatively early in the development of the platform, and especially of the
API. One of the main reason being that the standard background tasks are limited when

1FastAPI website: https://fastapi.tiangolo.com/
2Starlette website: https://www.starlette.io/
3Celery documentation: https://docs.celeryq.dev/en/stable/index.html
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it comes to complex queuing systems in FastAPI. As for the choice of the library itself, it
was one of the recommended choices from the documentation of FastAPI. Furthermore,
having a distributed queue system is in line with the scalability of the project. Indeed,
it would be possible to have celery apps deployed on different servers which could still
communicate via Celery and Redis. The library was used both in the API and worker
(generic and segmentation) modules.

Redis Redis4 is a system that makes use of in-memory databases and key-value stores.
Similar to other technologies such as RabbitMQ, Redis is used as a message broker by
Celery. As such it constitutes a central piece in the communication with the workers. For
this work, the choice of Redis over RabbitMQ has been made for its simplicity. Specifically
because the tasks themselves are simple and thus do not require the advanced features
of RabbitMQ. Furthermore, Redis is known for its speed due to the in-memory storage.
In the application, it is used both as message broker, and result backend for the Celery
workers.

PostgreSQL As an object-relational database management system, PostgreSQL5 is used
to store the meta-data of the platform, providing an efficient way to store and retrieve
data. The choice of Postgres, and more broadly of a database system has been made
after a few iterations of the project. The reason behind it being mostly because, as the
complexity of the data model grew, it felt necessary to opt for a solution that allows to
take advantage of the relations between entities. While using a simple file-based storage
system (which was the originally used to manage data in the API), or even a No-SQL
database like MongoDB would have been possible, it would have required adaptation to
handle interconnections between objects. Regarding Postgres specifically, it provides a
reliable production-ready, and scalable solution which supports a wide range of data types
like arrays, JSON, etc. This is particularly useful for some models of the platform that
require the storage of array-like data.

SQLAlchemy Used in the API module, SQLAlchemy6 is an ORM7 (Object-Relational
Mapping) library that is used to interact with the database. The library itself is used
to programmatically manage the database, it allows to manage the DB tables and their
content without requiring explicit SQL queries. SQLAlchemy was the recommended choice
for FastAPI as it is easily integrated with other elements like Pydantic. The main reason
for which one would want to use an ORM is to abstract the SQL query logic, and to allow
for a more maintainable codebase.

Alembic Less involved in features per se, Alembic8 library is worth mentioning. Used in
combination with SQLAlchemy, it provides a handy tool to handle the migrations of the
database. Specifically, it allows to change the database schema easily using Python. It
was straightforwardly chosen as a complement of SQLAlchemy and is used to define, and
update the DB entities that are required by data models of the platform.

4Redis website: https://redis.io
5PostgreSQL website: https://www.postgresql.org/
6SQLAlchemy documentationhttps://www.sqlalchemy.org/
7ORM: mapping between classes in a programming language and database entities
8Alembic documentation: https://alembic.sqlalchemy.org/en/latest/
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Algorithm Author(s)
AdaptiveBackgroundLearning -
AdaptiveSelectiveBackgroundLearning -
CodeBook Kim et al. [20]
FrameDifference -
KNN Zivokic and Van der Heijden [21]
LOBSTER St-Charles et al. [22]
MixtureOfGaussianV2 Zivokic [23]
PAWCS St-Charles et al. [24]
PixelBasedAdaptiveSegmenter -
SigmaDelta Manzanera and Richefeu [25]
StaticFrameDifference -
SuBSENSE St-Charles et al. [26]
TwoPoints -
ViBe Barnich and Van Droogenbroeck [27]
WeightedMovingMean -
WeightedMovingVariance -

Table 4.1. List of the algorithms of the BGSLibrary that are used in the BGS Recommender
platform

BGSLibrary A module that implements a wide range of background subtraction algo-
rithms. The BGSLibrary [28] is a C++ library that allows to easily execute BGS method
by providing a common interface for all the algorithms. The library makes it easy to
tweak the parameters of each algorithm by modifying their configuration. Although the
BGSLibrary is written in another language, it is provided with a Python wrapper that can
be installed using the pip package manager, which allowed for a seamlessly integration
within the workers of the platform. Table 4.1 shows a summary of the algorithms that
have been used in the platform to provide recommendations.

MMSegmentation MMSegmentation [29] is a framework that allows the implementa-
tion and evaluation of semantic segmentation methods. It contains a selection of popular
algorithms that have been pre-trained on various datasets (i.e. ADE20K, COCO Stuff,
PASCALVOC, etc.). The library is written in Python and based on PyTorch, a famous
deep learning library. Within the platform, it is used by the segmentation workers to create
semantic masks in order to provide a visual cue that can help selection tags of interest for
the recommendation process. Its usage was decided based on the paper written by Piérard
et al., which introduced the importance tile by comparing the results of segmentation
methods.

Figure 4.5. Docker logo. Source: https://en.wikipedia.org/wiki/
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Docker Docker9 is the cornerstone of the whole project. It is a platform that allows
to build, share, and run application in containerised environments. Having the platform
modules running in isolated containers was a key requirement of this work. Firstly,
it provides a secure environment for the execution of the algorithms, mitigating risks
associated with potentially malicious code. Secondly, it allows to have a fine control over
the dependencies of the modules that is agnostic of the host system. Finally, it is also a
way to ensure scalability of the application. For all those reasons, Docker has been an
obvious choice for this work. In addition to the basic use of Docker, the Docker Compose
tool was used to simplify the deployment and management of the containers. This tool is
used to define the services with a YAML configuration file and to start/stop/build the
module with a single command.

NGINX NGINX10 is employed both as a web server that serves the frontend service, and
as a reverse proxy that gives access to the API and the file server. Still in the perspective
of scaling the application, NGINX was chosen for its performance and its ability to handle
a large amount of concurrent requests. Moreover, it allows to hide the internal structure
of the network by acting as a gateway that redirects the requests to the appropriate
services.

Svelte Lastly, Svelte11 is a JavaScript library used in the frontend module. It is a reactive
framework that allows to build web applications. For the purpose of the prototype, Svelte
was an ideal choice as it is lightweight, easy to understand, and facilitate the creation of
dynamic user interfaces. Moreover, Svelte components are regrouped under single files that
contain the HTML, CSS, and JavaScript code, allowing developers to quickly understand
a component’s functionality. This focus on maintainability is in line with the project to
produce a future-proof application.Also, the framework ships with a few features that
eliminates the need for external libraries. For example, it has a built-in store that allows
to manage the state of the application.

4.3 Use Cases and Features
From figure 4.6 we can see the use cases of the platform. It regroups the main features

that have been identified for the platform at the beginning of the project. At first
glance, it can be noticed that these use cases are split across three main actors: the
industrial user, the researcher, and the administrator, each inheriting the use cases of the
previous actor. This means that the administrator is able to perform all the actions of
the researcher and the industrial user. Similarly, the researchers can perform all actions
available to industrial users, while also having additional capabilities. Each of the use case
is accompanied with a symbol that represents its current implementation status (✓: the
feature is fully implemented, ∼: the feature is partially implemented, and • the feature is
not implemented).

9Docker website: https://www.docker.com/
10NGINX website: https://www.nginx.com/
11Svelte website: https://svelte.dev/
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Figure 4.6. Diagram of the use cases of the platform.

4.3.1 Industrial User
The industrial user (IU) could be compared to the anonymous user. It is the typical

user that has access to features (e.g. the recommendation) that do not require any
authentication. The IU is typically an anonymous user looking for a recommendation for
a BGS algorithm. However, he may not have the technical knowledge about classification
algorithms, and more specifically about background subtraction. For that reason, the
recommendation process is tailored to a contextualisation of the user’s needs.

Obtain Recommendation ✓ As mentioned above, the industrial user can obtain a
background subtraction algorithm recommendation. This is done by specifying context
information such as the type of videos he is working with. As shown on figure 4.6, the
recommendation process itself is composed of several other features.

Specify technical requirements • One of the core features of the recommendation
process is the ability to specify the technical requirements of the user. Indeed, some context
might require specific algorithm features. For example, the user might want algorithms
that are can work on embedded systems which have limited resources. In such cases, the
best algorithm would be the one that can run on the user’s system, which may not be the
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state-of-the-art.

Specify similar videos ∼ Another feature of the recommendation process is the ability
for the user to define videos that are similar to the ones he is working with. In this context,
he would be presented with examples of videos/frames from the dataset of the platform.
From these examples, the user could select the ones that are most interesting to him,
allowing the recommendation to focus on the algorithms that work best on these types of
videos.

Specify semantic labels ✓ Similar to the previous feature. This time, the user is
presented with examples of images from the dataset that have been annotated with
semantic labels. The user can then select the labels that are most relevant to his context.
This feature is used in parallel with the previous one, and allow the IU to have a finer
control over the included context.

Specify importance ✓ This feature relates to the ranking tile defined in the background
chapter. Using the tile, the user is able to define the importance to be given to the
components of the confusion matrix. For example, he could specify that he wants to
minimise the amount of false negatives by setting the β coefficient to 1 (and 0 for false
positives). This would ensure that the resulting ranking would place those algorithms that
produce the least amount of false negatives at the top.

Obtain ranking ✓ The last feature of the recommendation process is obviously the
ranking. Quite straightforwardly, after specifying all the required information, the industrial
user is presented with a list of the algorithms that might fit his context. The resulting list
is sorted in decreasing order of the ranking scores (the scores obtained using the ranking
coefficients).

Obtain explanation ✓ Linked to the ranking, the user can also obtain a human-readable
explanation of the recommendation he has obtained. The purpose of this explanation is to
summarize all the information that has been given and provide insight about the effects of
the query parameters on resulting recommendation.

4.3.2 Researcher
The researcher is a user who has access to a few more features than the industrial user.

The main difference is that the researcher has needs for features that require authentication
to the platform. His main characteristic is the ability to upload and execute his algorithms.
This allows him to obtain insights about their behaviour against the dataset, and also to
compare them with the other algorithms.

Submit an algorithm ✓ The feature that characterises the researcher actor is his
ability to upload his own algorithms to the platform. It is achieved by submitting an
archive file containing the source code and optional configuration files. The platform then
takes care of the execution of the algorithm on the data.
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Obtain insights • During the execution of the algorithm, the researcher is able to
obtain insights about the present run. This includes metrics such as the estimated runtime,
the memory usage, the number of pixels processed per second, a preliminary ranking of
the algorithm, etc. Also, this feature allows the researcher to be informed in case of an
error, such that he can correct it and resubmit the algorithm.

Get status notification • A feature that is linked to the insights is the status notifica-
tion, it allows the researcher to be notified when the algorithm has finished its execution
but also in case of errors.

Select a worker • When submitting his algorithm, the researcher is able to select the
configuration of the worker that will execute it. Its main purpose is to be able to adapt
to the requirements of the algorithms such as the language used, the libraries required,
etc.

Obtain History ∼ This use case is related to the recommendation process. It corre-
sponds to a history of the requests made by industrial users to obtain recommendations.
When a submitted algorithm has been run on the dataset, the researcher is able to see
how it would have been ranked in past requests.

4.3.3 Administrator
The administrator is the user that has access to all the features of the platform. He is

able to manage the users, but also every aspect of the recommendation system (i.e. the
videos, the algorithms submitted, the tags, etc.). The "management" feature relates to
Create, Read, Update, and Delete (CRUD) operations on the platform’s data

Manage users • The administrator is able to manage the users of the platform. Basically,
he is able to accept or reject the registration of a user. He is also able to revoke a user the
access to the platform if needs be.

Manage videos ✓ The administrator is able to manage the videos stored on the
platform. He can upload new videos, delete existing ones, update their metadata (or
replace the files), and view the videos that are stored.

Manage algorithms ✓ Similarly to the videos, the administrator is able to manage
the algorithms. He can perform all CRUD operations even on the algorithms that have
been submitted by the researchers.

Manage tags ✓ The administrator is able to manage the tags of the platform (CRUD
operations). The tags are used to characterise the videos of the dataset. Furthermore,
they are used in the recommendation process to filter out irrelevant algorithms.

Assign tags to videos ✓ This feature is related to the previous one. It allows the
administrator to categorise a video by assigning tags to it.
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Figure 4.7. Architecture diagram of the platform.

4.4 Architecture
The architecture of the platform is depicted in figure 4.7, it is composed of several

components that interact. The main components are the frontend, the backend, the
database, the storage, and the workers. This section will describe in detail the role of each
part, the protocols that are used, as well as the interactions between them. Firstly, it is
important to note that all the services are containerised using Docker. It should also be
noted that although the modules are designed to be deployable on different hosts, the
platform can currently only be hosted on a single server (as depicted by the :DockerHost
module).

4.4.1 Frontend
The frontend is the component that is responsible for the user interface (UI) of the

platform. It is the part that the user interacts with in order to use the features of the
application. Its interactions are restricted to the REST service of the :ApplicationServer
(API) module via the HTTP protocol.

4.4.2 Database
The :DatabaseServer module is the element that has the responsibility to store all the

"meta-data" of the platform. The meta-data is the information that allows to describe the
various elements such as the videos, the algorithms, the tags, etc. The database is using a
PostGreSQL data management system and only communicates with the :ApplicationServer
module via the PostGreSQL protocol.
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4.4.3 File Server
The :FileServer is the platform’s file storage service, it is responsible for storing (and

retrieving) files such as videos and the algorithms on the server using the HTTP protocol.
Similarly to the database, the file server is never accessed directly from services other
than the :ApplicationServer. The module can be accessed using regular endpoints using
HTTP.

4.4.4 Redis Server
The :RedisServer is used as a message broker in the communications between the API

and the workers. The API sends tasks to the Redis database through the Redis protocol,
the workers are then able to retrieve, and treat them from the service. Additionally, the
Redis server is also used as cache for storing the results of the segmentation tasks, such
that they can be accessed directly upon completion.

4.4.5 Workers
"Classic" Workers The classic workers, represented by the :WorkerContainer modules,
are the services responsible for the execution of background subtraction algorithms. For
that purpose, they communicate with the :RedisServer (via Redis protocol) to retrieve
the tasks that have been sent by the :ApplicationServer. The workers then execute the
algorithms on the videos after retrieving relevant information from the :ApplicationServer,
and the files from the :FileServer. Finally, the results are sent back to the API which
handles the communication with the database and the file server.

Semantic Workers The segmentation workers are similar to the classic workers. How-
ever, their sole purpose is the execution of semantic segmentation algorithms. They are
used to annotate frames of videos with semantic labels. Their behaviour is similar to their
generic counterpart: they communicate with the :RedisServer to retrieve the tasks and to
store the results which can then be accessed directly by the API. The masks produced are
then stored on the file server for later access by the UI.

4.4.6 Application Server
The :ApplicationServer or "API" is the core of the platform, it contains most of the

business logic of the application. The responsibilities of the API are to link the "outside
world" with the internal components of the platform. This central role is reflected by
the ability for the :ApplicationServer to communicate with all of the other services, using
mostly HTTP (as illustrated by Figure 4.7). It is important to note that the API does not
communicate directly with the worker but with the Redis database. The workers, however,
know the API and use it to retrieve the data they need to execute the algorithms.

4.5 Backend Services
As it was previewed in the architecture section, the application is divided in several

services. Each of which has a specific role in the platform. This part of the report delves
into the details of each service, their implementations, and the interactions between their

28



components. In this section is also described the main guidelines that were followed in the
design of the modules.

From the early drafts of the project, a particular attention was put in the structure
of the services. The main goal was to have a clear separation of concerns between the
different modules. In order to achieve that goal, each module is broken down into "feature"
submodules. Moreover, the services were designed as to respect the SOLID principles as
much as possible. Those principles are a set of rules that are used to produce maintainable
and scalable software. They are the following:

• Single Responsibility Principle: A class should have only one reason to change.
This means that it should have only one well-defined responsibility. Thus avoiding
"swiss-army knife" classes that are hard to maintain.

• Open/Closed Principle: A class should be open for extension and closed for
modification. This means that the classes should not be modified to add new features.
Rather, they should be extended by sub-classes.

• Liskov Substitution Principle: Objects of a sub-class should be able to replace
objects of the parent class without breaking the program.

• Interface Segregation Principle: A class should not be forced to implement
interfaces that it doesn’t use, hinting at the fact that the interfaces should be as
small as possible allowing for more modular code.

• Dependency Inversion Principle: High-level modules should not depend on
low-level modules. Both should depend on abstractions. The idea behind this
principle is to avoid tight coupling between modules by making them depend on
interfaces and abstract classes rather than concrete implementations.

4.5.1 API
The API serves as the central coordinator of the entire system, integrating and managing

all other services. It is the most important part of the platform. The API is the only
service that has a direct access to both the file server and the database containing the
metadata. Consequently, its main responsibilities are to provide an interface that allows
to manage the resources, and to ensure the communication between services. Ultimately,
its role is to act as a façade for the outside world to interact with the application.

Architecture Design

The service is structured into modules that each correspond to a specific set of features
related to a resource (e.g. algorithms, videos, performances, etc.). All of these modules
are following a similar structure and implement the repository pattern. Within this
context, three main components are defined: the routers (or controllers), services, and
repositories.

• Routers: the routers are the entry points of the API. They define the endpoints12 of
the service. Each of these routers is bound to a resource, and contain methods that
interact with services to process the requests. These methods ensure that requests

12An endpoint is a reachable URL bound to a HTTP verb
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Figure 4.8. Diagram of the packages of the API service.

are appropriately routed to the services responsible for handling the business logic,
which may involve contacting multiple services in the process.

• Services: the services represent the part of the API which handles the business logic.
They process the information provided by the routers to perform potentially complex
operation involving the data. Their main role is to ensure the communication with
the data access layer by adapting the input information in a comprehensible format.

• Repositories: the repositories represent the data access layer, acting as the last
element of the chain. Their responsibility is to persist, and retrieve the application’s
data. They are in charge of performing Create, Read, Update, and Delete operations
on the data. The repositories are an abstraction layer between the business logic,
and the storage medium.

Figure 4.8 presents an overview the structure of the API. It consists in all the main
modules of the resources, and the common module which contains shared components
related to the configuration of the api service (i.e. database parameters, settings, . . . ). The
diagram illustrates the interactions between the modules, and it can be noticed that almost
all packages rely on others. This is a direct consequence of the separation of concerns, with
resource management scattered across all modules. As a result, when a feature involves
multiple resources, it uses the appropriate modules. For instance, the algorithm module
relies on the video module in order to schedule executions of algorithms.

The API makes heavy use of dependencies injections in order to decouple classes as
much as possible. To make it possible, the service relies on the special function Depends()
provided by FastAPI. This function is a way to provide shared logic (such as a class or a
function) to a module without the need for manual instantiation or code repetition. When
combined with Python abstract classes from the abc module, this approach allows for
the easy implementation of the Dependency Inversion Principle. The abstract classes are
modules that can define methods that can later be implemented, hence defining a common
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interface that the children must follow. Concrete implementations of those classes can
then be injected into the modules that requiring them. This has the major advantage of
enabling easy implementation switches without having to heavily modify the dependent
modules. This technique is typically used in the routers methods to obtain the necessary
services.

Information Flow

Figure 4.9. Diagram showing the flow of information in the API.

When performing a request to the API, the information flows through the different
components of the service. It typically goes from the controller to the database and back.
During this process, the data is transformed several times in order to be in the format
required by the different modules. There are three types of data class that are used in the
API. Figure 4.9 show the information flow of the API, it describes the exchanges between
the components, as well as the conversion performed. In the API, three main data classes
are used. They are the following:

• Data-Transfer Object (DTO): The DTO is a type of class that is used to
communicate with the controllers, and the services. This object typically defines the
content of the request made to the router, it contains all the information needed
for the request to be treated. When used in responses to the client it can be a
modification of the original data schema that can provide more information or
hide sensitive data. For instance, a data class like UserDto might only include the
username and the email of a user, hiding the password. In the API, the data classes
are defined using Pydantic which enables validation of the data when received by
the controller. The DTOs are sent from the controllers to the services, where they
are converted into the actual schema classes,

• Schema: The schema is a class that is used to define the structure of the data,
facilitating its use by the services. It defines a direct mapping of the model used
by the ORM to communicate with the database. The schema classes are typically
employed by the services in their operations. They are used in the communication
between the services and the repositories. Those classes are converted into DTOs
when they are sent back to the controllers, and in Models when they are sent to the
repositories,

• Model: The last type of data class is the Model, which defines an object-oriented
representation of database entities, specifying the structure of the data, the rela-
tionships between the database tables, and the constraints applied to the data. The
models provide a convenient way to perform database operations, abstracting away
the underlying SQL queries. They are used in the repositories to manipulate the
database tables using the SQLAlchemy ORM.
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Communication

HTTP The main way of communication with the API is through the Hyper Text
Transfer Protocol (HTTP). As aforementioned, each router exposes endpoints, which are
typically reached through HTTP requests. A typical request is defined by three elements:
the request line, the header, and the body. The request line contains the method, the
URI (endpoint), and the version of the protocol. Depending on the method, the request
line can also contain data. The headers are meta informations about the request such as
cookies, authorisation tokens, the type of data accepted/expected, etc. Lastly, the body is
the part that contains the payload that will be received by the client/server.

Although not enforced by the protocol, the method passed with each request has a
semantic meaning. Depending on the method, the request will vary in the way information
is carried. In the API, each router makes use of the semantic meaning as follows:

• GET: this method defines a simple retrieval request, which will typically expect a
resource to be returned in the response body. For these types of request, data can
be passed as a query string in the uri (i.e. /users?name=john).

• POST: used when creating a resource on the server, or when the data that needs
to be passed is too complex for the simple GET endpoints. These types of request
receives their data in the body, and can also receive data in the response body.

• PUT/PATCH: similar to the POST requests, these methods are used to update an
existing resource on the server. As such, they also ship with the identifier of the
resource to modify. The key difference between the two methods is that PUT means
that the resource will be completely replaced, while the PATCH is only a partial
update. The API module mostly use PATCH methods instead of PUT as it performs
partial updates.

• DELETE: the last method type is the DELETE. It is used when deleting a resource
on the platform, and only needs the id of the resource which is passed in the URI.

In order to handle client-server requests/responses, the API server will rely on three
data types: JavaScript Object Notation (JSON), multi-part form data, and event-streams.
The JSON format is used in most requests as it is easier to work with both in the API, and
in the client side which natively supports it. The multi-part form data is used to handle
specific requests in the video, and algorithms routers. It has the particularity of enabling
multiple types of data to be shipped with the request. For example, combining meta-data
of the resource with a file. This is particularly useful in the POST/PATCH requests that
require the upload of data and file for the algorithms and videos, removing the need of
multiple requests. The last type which is used is the event-stream. Its sole purpose is to
send server events to the client. This data type is typically used in notification processes
in a one-way communication. The REST service uses these event to signify to the frontend
that the segmentation workers have finished the computation of masks.

Redis The second communication protocol used by the API is the Redis protocol that is
used by the Celery library to create and publish tasks in the in-memory database managed
by Redis for later retrieval by the workers. This behaviour is used by services the API to
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schedule computational heavy tasks such as algorithm execution, therefore avoiding to
freeze the service for a potentially long period of time.

Features

The present section describes the features provided by the API service. Each of the sub-
sequent sections are grouped by module, and give an insight about the main classes of each
module with detailed explanation about the implementation of the functionalities.

Algorithms

The algorithm module has two main responsibilities that includes the management of the
metadata of the algorithms through CRUD operations, and the scheduling of their execution.
Figure 4.10 displays the main classes of the module and their dependencies. This diagram
clearly showcases the DI principle as the AlgorithmController (the router), and the
AlgorithmsService only depend on abstract classes, ensuring they are not tightly coupled
to concrete implementations. Moreover, the figure also shows dependencies of the controller
to services of other modules. Namely the VideosService and PerformancesService,
which are used by the controller to retrieve videos, and performances respectively.

Figure 4.10. Diagram showcasing the structure of the controller-service-repository classes
of the algorithms package.

The BaseAlgorithmsService is the interface that contains the definition of the busi-
ness logic of the algorithms. It exposes the resource management features through
the get, create, update, and delete methods. These methods have a direct map-
ping in the BaseAlgorithmsRepository. The service is also responsible for the ex-
ecution of algorithms, which is done through the executeAlgorithm() method. Its
concrete implementation AlgorithmsService contains two additional "private" methods
_send_execution_tasks(), and _send_file_to_server(). These methods are used to
schedule the actual Celery tasks, and to send algorithms files to the File Server respec-
tively.

Execution Scheduling The router will schedule the execution of algorithms upon
receiving a request through its execute_algorithm(UUID) endpoint, or when a new
algorithm is created with the execution flag set to True. In order to perform the scheduling
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operation, the controller retrieves all the videos via the VideosService, it then proceeds
to hand the information to the execution method of the AlgorithmsService. The service
will then check if the algorithm exists before creating the tasks. If it exists, it creates the
tasks on the Redis service using Celery. Otherwise, a AlgorithmNotFoundException is
raised to notify the user that the algorithm he is trying to run doesn’t exist.

In order to handle the communication with other services and to define the content of
the requests/responses to the endpoints of the algorithm router, the module exposes the
following DTO classes:

• AlgorithmPerformances: This class is a simple combination of the algorithm’s
attributes with a list of performances.

• AlgorithmQuery: DTO used when a more complex query is needed rather than the
simple retrieval. It contains only optional fields (id, and name), which are used to
filter algorithms with matching fields.

• AlgorithmScore: This DTO is used by the ranking feature. It contains most of
the AlgorithmSchema fields (except the path which is useless in this case), the
importance score of the algorithm, and a few other classical scores (i.e. F1 score,
precision, recall, . . . ) that are used for comparison.

• CreateAlgorithmDto: This class contains information related to the creation of
algorithms. It exposes a name field, a file, and a boolean flag execute which is used
to decide the execution of the algorithm after creation.

• UpdateAlgorithmDto: Similar to the previous DTO except that it contains the id
of the algorithm to update, and doesn’t expose the execution flag.

• RankingQuery: This DTO contains the required information to obtain a ranking.
Specifically, the ranking tile weights, the ids of the algorithms of interest, and query
objects for the videos and tags.

Figure 4.11. Diagram showcasing the structure of the videos package.

Videos
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The video module contains the logic used to manage the videos of the platform. This
module is rather simple as its sole responsibility is to manage the videos. Its operations
therefore do not require the use of other services, hence the absence of dependencies on the
diagram (fig. 4.11). Being very lightweight, it only defines a few Data Transfer Objects
for its operations:

• CreateVideoDto: This DTO is a class that groups the fields that are required to
create a new video. It contains two required fields: the title of the video, and the
files that are linked to it. These files may include the frames (or video file), the
ground truth, a mask for the ROI, and a temporalROI.

• UpdateVideoDto: Very similar to the previous DTO, it contains the same fields to
which are added the id of the video that is to be updated, a boolean that indicates
if the video is in the video is stored as a sequence of images or as a video file, and a
list of tags that are assigned to the video.

• WeightedVideoQuery: The class defines relevant fields for querying videos in the
context of the ranking. It contains the id of the video and a weight. This is used to
give more importance to the video when obtaining the ranking score.

Similarly to the algorithm module, the video module contains an abstract class called
BaseVideosService that contains mainly CRUD operations. The interface also pro-
vides two notable methods: get_videos_for_tags() which is used by the tag router
to retrieve a set of unique videos representing all the tags provided as argument, and
get_weighted_videos() which returns a list of videos that have been weighted according
to tags of interest.

Video Weighting The video weighting process constitutes an integral part of the
recommendation/ranking procedures. Indeed, each of them will require a weighted version
of the videos in order to obtain the summarised ranking score. For that purpose, the
VideosService uses the get_weighted_videos() method to obtain those weights. The
weights are obtained by multiplying the initial weight of each video by the weighted average
of its tags. Formally, this quantity is defined by eq. 4.1 where wt, wv ∈ [0, 1] represent
the initial weights of the tags and videos respectively, Iv : R → {0, 1} is a function that
outputs 1 when the tag belongs to the video, and 0 otherwise.

Wv = wv

∑
t∈T wtIv∑

t∈T wt

(4.1)

Figure 4.12. Diagram showcasing the structure of the tags package.

Tags
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The tags module is also relatively simple. It has the management responsibilities as well,
and is capable of scheduling semantic segmentation tasks for the segmentation worker.
The router has the particularity to expose a SSE13 endpoint with the segment_tag()
method. This route returns text/event-stream instead of JSON, this allows the frontend to
receive periodic updates about the status of the segmentation tasks.

Segmentation Scheduling When receiving a request on the /segmentation endpoint,
the router will call the VideosService in order to retrieve a set of videos that represent
all the tags stored in database. The schedule_segmentation(UUID) of the TagsService
is then called for each video. This method will create Celery tasks for the segmentation
worker.

Regarding the DTOs, the tags package contains three classes. The first one is the
CreateTagDto which is used to create a new tag. It only contains the label of the tag.
The second one is the TagQuery class which is used in the recommendation process to put
the emphasis on specific categories of videos. Its attributes are identical to the original
TagSchema class except that it also contains a weight field that is used to define the
importance of the tag in the recommendation process. Finally, there is the UpdateTagDto
which is similar to the create DTO except it contains the id of the tag to update.

Figure 4.13. Diagram showcasing the structure of the performances package.

Performances

The performance module is the most important of the API, it contains the logic that
produces the ranking (and therefore recommendation) of the algorithms. Its main features
are (1) the management of the performance data, (2) the scheduling of the performance
computation, and (3) the computation of the ranking. The performance package only
contain on two DTOs:

• UploadPerformanceDto: This DTO is used to upload a new performance, it contains
the id of the algorithm, the id of the video, and the file containing the output produced
by the algorithm,

13SSE: Server-Sent Events are events messages that the server sends that can be listened to
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• UpdatePerformanceDto: This class, unlike the previous one, does not contain the
files. It is used to update the confusion matrix of a performance when the workers
have completed its computation. It contains all the fields of the database model.

The BasePerformanceService exposes the methods used to handle the CRUD operation.
It also contains the get_ranking() method that computes the algorithm ranking, and
the schedule_performance_computation() which uses Celery to create the task for the
computation of the CMs of the algorithms by the workers. The service is implemented
by the concrete PerformancesService class which also has a few private utility methods
that are used in the ranking and evaluation processes.

Ranking Computation The computation of the ranking is enabled by the algorithm
router’s get_ranking() method which provides the PerformancesService with the al-
ready weighted videos, a list containing the ids of the algorithms, and a tuple containing
the ranking tile coefficients. Using these elements, and the list of all the performances, the
service will compute the ranking as follows:

1. The service will first obtain a summarised version of the CMs of the algorithms by
performing a weighted average of the CMs using the weights of the videos,

2. The summarised CMs are then weighted using the importance coefficients α and β
in order to compute their ranking score,

3. The resulting algorithm list is then sorted by decreasing order of their score and
returned back to the router.

Figure 4.14. Diagram showcasing the structure of the recommendations package.

Recommendations

The recommendation package is a rather lightweight module, its main classes only
contain a few methods. This module has two main roles: the first one is to process the user
query defined in the RecommendationQuery (and to return an appropriate response as a
RecommendationResult), the second one is to provide a list of the rankings obtained by
an algorithm based on the history of queries. The implementation of these features require
the router to depend on the modules of the videos, tags, and performances services.
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Figure 4.15. Diagram of the RecommendationQuery class.

The RecommendationQuery class is a Pydantic model that is used to define the a request
for recommendation formulated by the user. As shown by figure 4.15, this query defines
four fields: its id, a list of TagQuery objects, the ranking coefficients, and a creation
date. Among these fields, only the tags, and importance are effectively used in the
recommendation process.

Obtaining a recommendation Upon receiving a request on its get_recommendation()
endpoint, the recommendation controller first proceeds to retrieve the weighted videos
from the VideoService using the tag queries of the request. It then proceeds to call the
RecommendationsService to store the query. When the storage is complete, retrieves the
ranking of the algorithms by sending the weighted videos, and the ranking coefficients
to the PerformanceService. Finally, it returns a RecommendationResults object that
contains the ranking, and the content of the initial query.

Obtaining the history of rankings The router also expose a /history endpoint
which take the id of an algorithm in the query string. When receiving a request, the router
will first retrieve the history of the queries sorted in descending order of their creation
date (newer first) by calling the get_all() method of the AlgorithmService. For each
queries, the router will:

1. Obtain the ranking from the PerformancesService,

2. Find the rank of the algorithm with the id specified in the query string,

3. Create a AlgorithmHistory object that contains the rank of the algorithm, its name,
the ranking coefficients (α and β), and a list of TagQuery that were associated with
the recommendation.

Error Management

When working with data, errors are bound to happen, especially when it involves a
user in the process. In that regards the BGS platform makes no exception. In order to
handle these errors, the API implements a few mechanisms that help the user correcting
his inputs. These mechanisms take advantage of the HTTP protocol once again by sending
appropriate status code, and message when an error occurs. To do so, it makes use of the
HTTPException class of FastAPI. When thrown, if not caught, this exception class has the
particularity to return a HTTP error. The services of the application take advantage of
this behaviour be inheriting the base HTTPException to return custom errors. In the API,
three types of errors can be identified, each of which corresponding to a HTTP status
code:
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• The resource was not found: the typical 404 error, this error happens when the user
tries to access a resource or an endpoint that does not exist. The API module send
this messages whenever it has to search for data in its operations.

• The resource already exists: this error happens when adding a new resource (e.g. a
video, and algorithm, etc.) which already exists. It is linked to the 409 (Conflict)
status code.

• The request body couldn’t be processed: attached to the 422 code (UnprocessableEn-
tity), this message is received when the user sends data which is wrongly formatted.
This type of error is mostly sent by Pydantic models when the body of the request
doesn’t conform to the declared Schema (e.g. when required fields are missing, or
have incorrect types).

• An error occurred when treating the request: the most generic type of the three, this
corresponds to the status 400 (BadRequest). This particular error is sent when no
more precise types can be sent.

4.5.2 File Server
The File Server(FS) is a simple service, it is composed of a single module responsible for

the management of the files of the platform. Similarly to the API, the FS uses the FastAPI
library which constitutes its only dependency. The library is used to run the server and
exposes the endpoints that allows the storage and deletion of files, it also statically serves
files for easy retrieval. Currently, the FS only manages files associated with three types of
resources: algorithm, video, and performance.

Endpoints

Being such a simple service, the FS doesn’t ship with a complex structure. In fact,
almost all of its logic is defined in the main file which contains 7 endpoints, including
the serving of the /data directory. Among the endpoints, three of them are dedicated to
the storage of resources and are associated with HTTP PUT methods. The other half is
dedicated to the deletion of resources and are therefore associated whith the DELETE
method. Finally, the FS gives direct access to it data folder which contains the files that
are stored by the PUT requests.

4.5.3 Workers
Worker services are responsible for the execution of potentially computation heavy tasks.

Their primary objective is to be able to execute Python algorithms regardless of their
dependencies. These modules make heavy use of the Celery Python library to retrieve and
execute tasks. They are declined in two flavours:

• the "generic" workers (GW) which are taking care of two type of tasks: the execution
of the background subtraction algorithms, and the computation of confusion matrices.

• the segmentation workers (SW) which are only assigned tasks linked to the execution
of semantic segmentation algorithms.
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Figure 4.16. Diagram of the flow of the tasks in the application.

The key difference between these two types is that the generic version is highly versatile
and can essentially be used to execute any Python code. While segmentation version is
completely geared towards semantic segmentation tasks.

Tasks Flow

Figure 4.16 shows the flow of the tasks in the application. This flow typically starts
with a request from the UI (or any other HTTP client), the API then publishes the task
on the queue in the Redis database. Using Celery, workers are then able to pop the task
from the queue to execute it. When done, if needs be, the result is put back on the Redis
storage for the API to retrieve it.

Generic Workers

Figure 4.17. Diagram of the main classes of the worker stack.
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To a certain extent, the generic workers follow a similar structure to the one of the
API. Specifically, they are subdivided into three main modules: algorithms, videos, and
performance. These modules themselves contain a service, a repository, and a few other
classes that are used to handle data. In this context, the services are responsible for the
execution of the tasks, and the repositories still are used to interact with the other service,
therefore acting as the data access layer. Furthermore, the workers contain definitions for
the tasks they can handle. These tasks can be viewed as their endpoints as they act as
the entry point in which they receive their work. Upon receiving a task, the worker will
contact the appropriate services to complete the task. The generic workers are defined to
handle two types of tasks: the execution of an algorithm on a video, and the computation
of the confusion matrix of an algorithm for a video.

The internal structure of the service is shown in figure 4.17. From the diagram, it is
immediately visible that the type of structure is identical to the one of the API except
for the routers. This structure is used to ensure the modularity of the workers such
that they can easily be augmented with new tasks. Each feature module implements the
communication with the other platform components, and their services also define the logic
that is used to accomplish the task. An exception is made for the VideosService which
is not directly linked to a task dedicated to the videos. Similar to the API, each class
inherits from an abstract class that defines the interface. However, since the workers do
not use FastAPI, the dependencies injection is done manually in the main module.

Tasks

Algorithm execution This task is responsible for the execution of a BGS algorithm
on a particular video. To do so, the worker will use the ids of the video, and of the
algorithm it receives in argument to retrieve the files using information about their storage
location obtained from the API. After downloading the files, the algorithm is run on the
video, the result stored, and then sent back to the API. As for the task, it is defined as
run_algorithm_on_video(video_id, algorithm_id) and is composed of the following
steps:

1. First, the worker will create a virtual environment (using pip) in which the algorithm
will run.

2. It will then install some generic dependencies in the environment (i.e. numpy, opencv,
. . . ), and the specific dependencies of the algorithm using the requirements.txt file if
provided,

3. When the dependencies are installed, it executes the algorithm in a subprocess using
the command line interface (CLI) of the algorithm. To the CLI, the worker inputs
the path of the video, and the path where the output should be stored,

4. Upon completion of the algorithm execution, the worker proceeds delete the environ-
ment, and to send the output to the API. The output is sent as a multi-part form
data containing a zip file of the masks produced by the background subtraction, and
some meta-data.

Confusion matrix computation The second task of the worker is the computation of
confusion matrices. Similarly to the previous task, the worker receives the ids of the video,
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and of the performance object. It then retrieves the files, and computes the confusion
matrix using the output of the algorithm, and the ground truth of the video.

Segmentation Workers

The segmentation workers are very similar to their generic counterpart. Their main
difference is in the structure of the module. Indeed, being simpler, they only contain a few
files. Their only responsibility is to execute semantic segmentation algorithms. To do so
they make use of the MMSegementation library which contains a set of pre-trained models.
The main reason why the segmentation workers are separated from the generic ones is
because they have a different purpose. While the GW are focused towards the execution
of BGS algorithms, and computation of performances, the SWs are used to compute
segmentation masks that will directly visible by the user during the recommendation
process. Furthermore, the set of dependencies they require to run is different, it also
allows to scale them separately. However, having the workers separated means that they
cannot share the same database bucket to store their tasks and results. This is a direct
consequence of the separation of the tasks, the GWs aren’t aware of the tasks intended for
segmentation workers, and vice-versa.

Segmentation Model The segmentation workers are using a pre-trained neural network
called Mask2Former[30] to segment the video. This model was chosen for two reason, the
first one being that it was trained on the ADE20K dataset which contains images that
are similar to the videos present in CDNet. The second reason was because the results
obtained by Piérard et al. in their work on the ranking tile showed that it was ranked first
for a significant portion of the tile.

Frame segmentation The only task of the SWs is the segmentation of a video frame
using a pre-trained model. The task is defined as compute_semantic_masks(video_id)
and only requires the id of the video to segment. The segmentation process is the
following:

1. When the workers receives a task, it will first contact the API to obtain information
about the video it is asked to segment.

2. After retrieving the metadata of the video, it uses the path attribute to retrieve the
files of the video, and then proceeds to extract the archive.

3. The worker then selects one of the frame of the video at random, and executes the
model in inference mode on it.

4. The model then produces an output defined as a colour mask that contains the
identified semantic labels.

5. The worker then sends the output mask to the file server for temporary storage, and
returns the path of the mask along with its labels. The returned data is stored in
the Redis database for the API to retrieve.
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4.6 User Interface
Along with the backend services, the user interface (UI) is a key component of the

platform, providing the users with visual feedback on their actions. The UI is a web
interface that is built using the Svelte framework and is therefore accessible in any browser.
This application is primarily structured as a dashboard, a layout chosen to meet the
requirements. Since the platform is mostly used for data management operations, having
a global view of the data is essential. Dashboard layouts are particularly well suited for
information presentation, making them a natural choice for the platform.

The frontend (FE) application was built using as to rely on a minimal set of dependencies.
This decision was motivated by several reasons, the main one being the ease of maintenance.
Fewer dependencies make the codebase easier to understand for future maintainers of the
platform. Additionally, this approach also bring more stability to the program, making
it less prone to breaking upon dependencies updates. The following non-exhaustive list
contains the core dependencies of the frontend service:

• Svelte: The JavaScript framework used to build the UI,

• svelte-routing: A routing library that is used to manage the different pages of the
application,

• axios: A library that is used to simplify the use of HTTP requests by providing an
easy configuration of the requests,

• typescript: The language in which the components code are written. It provides
type-checking, and better code completion than plain JavaScript,

• vite: The packager used to bundle the application.

4.6.1 Structure
The frontend service is designed in a feature-oriented way, grouping the components

linked to a specific feature together. Still in a future-proofing perspective, the components
are separated in such a way that it is easy to implement new functionality and to build
upon existing ones. The FE service is divided into three main parts:

• Common Components: The common components are the building blocks of the
frontend service. They are the smallest unit of the UI, and are combined to create
more and more complex components. These components are agnostic of any features,
meaning that they can be reused in any part of the application. Therefore avoiding
code repetition. Furthermore, they could even be reused in other applications if
needed. Typical components include buttons, inputs, navigation bars, . . .

• Feature Components: These type of components are tightly linked to the applica-
tion they are used in and/or to a particular state management system (i.e. React
Redux). They are usually formed by an aggregation of generic components, and
augmented with data related to the feature. For instance, the recommendation form
is a feature component, it is composed of buttons, inputs, and other components
that are combined to create a form. It is also responsible for the requests that are
sent to the API to obtain the recommendation.
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Figure 4.18. Diagram of the main form components of the UI.

• Pages: Pages are the highest level of components, they define the different views
of the UI, which also make them tied to the features of the application. The pages
define the layout of the platform, and are a combination of feature and common
components.

4.6.2 Design
Although no particular design guidelines were imposed, the UI was designed to be as

user-friendly as possible. Its look is heavily inspired by the Carbon Design System14.
The reason for this choice is that the look and feel of the design system is in line with
the desired look of the platform. However, the FE application isn’t using pre-made
components. Instead, its styles were built from the ground up, only using the design
system as guideline.

Responsiveness The UI is designed to be as responsive as possible. This means that it
can be used on any devices, and will adapt to the screen size. To make it possible, the
layouts were carefully designed through extensive use of media queries and Flexbox to
ensure that the components are displayed correctly on smaller screens.

4.6.3 Components
In order to build the FE, a set of components had to be created, most of which can be

categorised as "form" components due to their link to data input. Indeed, a significant
part of the platform’s features is to be able to manage data (i.e. algorithm upload, video
upload, etc.) as such the frontend must provide components that allow to input, and
display data. Also, the components are designed to be as reusable as possible. This is
achieved by the use of attributes (called props) that allow to pass data to the component.
They are also self-contained, meaning that all the logic that is required to make them work
(the TypeScript code, the HTML, and the style) is comprised in the same file, making it
easier to maintain them.

14Carbon Design System: https://www.carbondesignsystem.com/
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Form components These components are used to provide data from the user to the
application. They are composed of a set of inputs that can hold different types of data,
and/or present the data in the most convenient way depending on its type (i.e. use
a slider for numbers, radio button for choices, . . . ). For the needs of this work a few
form components were created. Figure 4.18 shows the main components along with their
respective props. The first thing that can be noticed from the diagram is that they all
share a few properties: id, name, label, value, and disabled. Those properties are indeed
standard HTML input properties which needs to be present on all form inputs. However,
the components themselves also have distinct attributes which are related to the type of
content they can hold. For example, the FileInput has a accept property that defines
the type of files that can be uploaded. The Select is the only component that makes use
of another form component (the Input) to define a search field that allows to filter the
options of the select.

Figure 4.19. Diagram of the properties of the multistep form component.

MultiStepForm Used by the recommendation process, the multi-step form (see figure
4.19) is a component that allows to combine the outputs of multiple form. This has the
advantage of splitting the whole data collecting process into smaller, more manageable
parts. The component has a single property called "steps". A step is itself an object that is
defined by a title, a description, and a component. The component is the actual form that
is displayed to the user. The title and description props are used to give the context of
each step to the user. The multi-step form is also responsible for the navigation between
the steps. It works by using the submit event sent by the forms to switch to the next step,
and combine the data. An example of its usage can be seen in the features’ section under
the recommendation form.

Tile The tile component, usually used in combination with sliders, is used to display the
importance values in a graphical way. In its simplest form, the tile is simply a 2D square
that contains a dot representing the coordinate of the sliders. It is used in two area of the
platform: the recommendation form, and the filters of the ranking page. This component
has a limited set of properties which are the (X, Y) coordinates of the point. The tile
itself is fully interactive, it can be clicked on to change the coordinates of the point.

Figure 4.20. Properties of the table component

Table The table (figure 4.20) component is used to display data in a tabular form. It is
used by the ranking, the videos, and the algorithms pages. The component makes use of
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Typescript generics to define the type of data that is displayed. This allows to have a more
flexible table which can adapt to any type of data. As such, it contains four properties:
the data which is a generic type, the cellFormat which is an object used to formats the
data, the columns that should be displayed, and a boolean value that indicates if the table
elements can be selected.

4.6.4 Features
The purpose of the UI is to provide an easy way to interact with the platform, allowing

the user to obtain recommendations, upload algorithms, view the dataset, etc. It can
be divided into three main parts: the recommendation form, the ranking page, and the
resources management part. From the initial use cases of the platform, a few of them
couldn’t be implemented in the time frame of this work as efforts were put on the creation
of a robust functional platform. Still, the core features that were identified at the beginning
of the project are implemented. For this prototype, no user management was implemented
as it wasn’t a priority for the project.

Recommendation

Figure 4.21. Diagram showing the components that are used in the recommendation pages

The recommendation form is the part of the UI that corresponds to the industrial user use
case. The whole recommendation feature is implemented by the combination of three com-
ponents: the MultiStepForm which groupes the ForegroundForm and ImportanceForm
components together in a single form, and the RecommendationResults.

The ForegroundForm component is used to define the tags that are important to the
user. These include information about the content, and/or the context of the video
sequences that will be used in the ranking. As shown by figure 4.22, the user is presented
with a video frame that has been segmented using a semantic segmentation algorithm.
The segmented image is presented along with a list of tags present in the video associated
with the proper colours.

The ImporanceForm is used to obtain the α and β coefficients used to weigh the
components of the confusion matrix. In this part of the form, the user is presented with the
ranking tile, accompanied by two sliders that allow to have a finer control over the values.
The main components used in this section are the Tile, and the Slider components.
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Figure 4.22. Screenshot of the first step (the context step) of the recommendation form.

Figure 4.23. Screenshot of the second step (the importance step) of the recommendation
form.

Figure 4.24. Image showing the page obtained when completing the recommendation
forms
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Lastly, when the user has encoded his preference, he is presented with the last part
of the recommendation process which is the RecommendationResults page. This page
displays a simplified version of the ranking that obtained by the query. It also provides the
user with a summary of the query that was just performed, along with human-readable
explanation of the recommendation. The results page is designed to be printable, removing
irrelevant elements such as the navigation bar to improve the clarity of the print.

Ranking

Figure 4.25. Diagram showing the components used in the ranking page

Figure 4.26. Image showing the ranking page of the platform.

The ranking page displays the algorithms in descending order of their ranking score,
using the Table component. The table entries are defined by the AlgorithmScoreDto
object which contains the algorithm’s name along with its ranking score, and other classical
metrics (e.g. F1 score) used for comparison. The table is accompanied by four dropdown
menus used to refine the ranking. These menus, in order, are dedicated to the ranking
coefficients, the filtering of algorithms, the weighting of videos, and weighting of tags. The
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(a) Image showing the dropdown con-
taining the ranking tile.

(b) Image showing the dropdown used
to filter algorithms in the ranking

Figure 4.27. Example of filters used in the ranking page.

filters will affect the order of the ranking by changing the weights used in the ranking
computation, except for the algorithm filter which simply selects the algorithms to display
in the ranking.

Figure 4.28. Image showing the mobile version of the ranking page.

The mobile version of the ranking page (figure 4.28) is very similar to the desktop
version. The main difference is that the filters are collapsed in a button which opens a
modal15 containing the filters. The table is also displayed in a list form. The dropdown
containing the importance tile is displayed along with the other filters in the modal.

Resources Management

The last feature implemented on the platform is the resource management. This regroups
the management of algorithms, videos, and tags of the platform. The pages related to
resources are built using the same set of components: a Table that displays the information
about the resource, a set of Modals that are triggered by clicking on the action buttons

15Modal: a modal is a dialog view that overlays the content of a screen until the action it requires is
completed or aborted
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Figure 4.29. Diagram showing the dependencies of a page dedicated to resource man-
agement. The T type represent a generic type which is to be replaced with the type of
resource being handled (i.e. video).

present in each entry of the table, and an add button that is present on top of the table
and allow to create a new resource.

Resource deletion When performing delete operations, the user is always prompted
with a confirmation dialog (see fig. 4.32c and 4.31d). This is made to avoid accidental
deletion of important resources, as recovery of removed data isn’t possible.

Figure 4.30. Image showing the desktop version of the algorithms page of the platform.

Algorithms

All logic related to the management of algorithms can be accessed from the algorithms
page (figure 4.30). This page contains a very simple table view that shows all the algorithms
that have been added to the platform. The table lines contain the name of the algorithm,
its status, and action buttons. The actions that can be performed on an algorithms are
the execution of the algorithm (on all videos), the edition of its information, its deletion,
and the downloading of its files. When creating or editing an algorithm, the user has
to fill in its name, and provide a file for the algorithm. The creation form also requires
the user to decide whether or not the algorithm should be scheduled immediately upon
creation.

Figure 4.31 shows four screenshots of the mobile version of the algorithm view. On
these images a few differences can be noticed. Firstly, the navigation has been collapsed
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(a) Image showing
the mobile version
of the table con-
tainting the algo-
rithms.

(b) Image showing
the mobile version
of the modal used
to create a new al-
gorithm.

(c) Image showing
the mobile version
of the modal used
to edit an algo-
rithm.

(d) Image showing
the mobile version
of the confirmation
shown when delet-
ing an algorithm

Figure 4.31. Mobile views of the algorithms page and modals.

in a hamburger menu, which is a common pattern used to avoid clutter in the navigation
header. Secondly, the modals are anchored to the bottom of the view, and take the full
width of the screen. Beyond these adaptations, the mobile interface incorporates font sizes
modification, making the text more readable, and adapts the size of the buttons for an
enhanced usability on touchscreens.

(a) Image showing the modal
used to upload a new video.

(b) Image showing the modal
used to edit a video.

(c) Image showing the confir-
mation modal that appears
when deleting a video.

Figure 4.32. Images showing the modals used to create, and edit a video.

Video

Similarly to the algorithms, the video table allows the user to access the creation, edition,
and deletion modals (figure 4.32). The creation form includes a field to input the title,
and a file input to upload the video. On the editing form, the user can also change the
title of the video, and he is also able to assign tags to it. These modals are toggled using
the "Add Video" button, and the edit button of the videos table respectively.

Tags

The tag management part is exactly similar to the algorithm and video parts. The only
difference lies in the actions that can be performed on a tag. Namely, a tag can only be
added, edited, or deleted.
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4.7 Data Management
From the beginning of the project, the data management was a key aspect of the

platform. The data is the cornerstone of the application, making the choice of storage
system crucial. Indeed, having a poorly chosen data storage medium can have a significant
impact on all the services of the application. At first, the choice of the storage type was
to use a file-based system in the form of a csv16 file storage. However, as the system grew
in complexity, it became clear that a relational database would be a better fit for the use
case of the platform. A few reasons motivated this choice:

• Firstly, the use of a database alleviates the need for manual management of concurrent
data access. This responsibility is delegated to the DataBase Management System
(DBMS). In the context of the BGS Recommender Platform, the data is very likely
to be accessed by multiple services simultaneously (notably by the workers). Using
a database avoids the implementation a manual locking mechanism to ensure data
consistency, due to the ACID17 properties of databases,

• Secondly, a relational database allows to benefit from the relations between entities.
For the platform, this means that the data models can easily be linked together.
Once again, this is a feature that prevents from having to implement manually a
relationship system for a potentially complex data model.

4.7.1 Data Model
The data model of the platform is relatively simple. It is composed of four main entities:

the algorithms, the videos, the performances, and the tags (figure 4.33). The first element
that can be noticed from this diagram is that it is relatively simple, and has "only" a few
entities. Notably, it contains four schemas that are linked together as follows:

• PerformanceSchema: A performance is linked to a single video, and a single algo-
rithm. It is used to represent the result of the execution of an algorithm on a video.
This result is stored as a mask (represented by the "path" field). It also contains a
confusion matrix that is computed from the mask,

• VideoSchema: A video is linked to multiple performances as it will be used to store
the results of the execution of multiple algorithms. This link is however implicit as
the video has no information about the performances it is linked to. The video also
contains a list of tags that are associated with it,

• AlgorithmSchema: Similarly to the video, an algorithm is implicitly linked to
multiple performance. The algorithm is used to represent the BGS algorithm that is
used to segment the video. It only contains an id, name, and a path to the file that
contains the algorithm,

• TagSchema: A tag is implicitly linked to multiple videos. As already mentioned, it is
used to define the context, and content of the video. It contains an id, and a label,

• RecommendationSchema: The recommendation made to the user is linked to several
tags that were specified in the query. In the diagram they are defined as TagQuery

16CSV: Comma Separated Value
17ACID: Atomicity, Consistency, Isolation, and Durability. Properties of DBMS transaction that ensure

the reliability, and accuracy of operations.
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objects which are a modified version of the TagSchema that is associated with a
weight.

Figure 4.33. Diagram of the data model of the platform.

The schemas all share common properties. They all include a universally unique identifier
(UUID) used to identify the object. A few of them also contain a "path" field which is
defined as a string, and contains the path to a file which is bound to the resource (i.e.
the frames of the videos, the code of the algorithm, etc.). The file itself is defined by a
relative path and is potentially not stored locally on the file server. Using relative paths
offer a few advantages compared to absolute paths: it facilitates seamless file relocation,
and ensures that the services are using these files remain agnostic of their actual location.
In the case of the platform, it is the file server who has the responsibility to store, and
resolve the paths of the files. This allows for a greater flexibility in the storage.

4.8 Algorithms
To ensure the good functioning of the ranking/recommendation process, and of the

algorithm execution, several algorithms needed to be added to the platform. For this
purpose, the bgslibrary package was used. This package contains a plethora of BGS
algorithms that can be used out-of-the-box, and can easily be parametrised. Specifically,
16 of its algorithms have been adapted and integrated into the platform’s data. Additionally,
a baseline was implemented for comparison purposes.

BGSLibrary For the library to be usable by the workers, its algorithms have been
divided into atomic chunks, each of which containing its own algorithm. A chunk is a
Python module that contains the minimal set of files required to run the algorithm. These
files are the configuration file required by the bgslibrary to set the algorithms’ parameters,
the actual Python program that is executed, and a file containing the dependencies to be
installed before running the algorithm.

4.8.1 Baseline
Having a baseline is a requirement for any algorithm benchmark as it allows for new

algorithms to be compared against, and assert their performance. The baseline constitutes
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a minimum standard for the algorithms to be considered usable. As such, it needs to be
a simple algorithm. For this thesis, the algorithm that was implemented is the Static
Frame Differencing. Its principle is very simple, the algorithm keeps a reference frame
from the video sequence, and performs a subtraction with the current frame. Pixels are
then classified based on a threshold that determines the minimal change required for a
pixel to be considered in motion. Formally, this algorithm is expressed as follows:

|It − B| > Threshold (4.2)

, where It is the value for a pixel at time t, and B the value of the pixel from the reference
frame. The implementation made for this work uses an arbitrary threshold value of 35,
and uses the first frame of each video as reference for the background.
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Chapter 5

Results

In order to assess the quality of the recommendation and ranking system, an evaluation
protocol had to be implemented. This protocol was integrated into the API along with
the other features. This section describes the evaluation method that was set up for the
project. It also discusses the results obtained from the experiments.

For these experiment, the entire CDNet2014[7] was used. The dataset was curated,
and the categories were replaced by the newly built tag system. Each of its videos were
reassigned categories which are a combination of contextual categories (BGS challenges,
sequence setup, etc.), and semantic labels extracted from the ADE20K dataset that
relate to the content of the videos. The following tags were defined and used in the
experiments:

• Context: dynamic_camera, static_camera, indoor, outdoor, and shadows.

• Content: car, person, road, boat, tree, and water.

Regarding the algorithms, the experiments are based on a set of 17 methods, 16 of which
were obtained from the bgslibrary Python package, the remaining one being the baseline
described in chapter 4. The number of algorithms from the library was deliberately
restricted due to technical limitations which prevented the use of the complete pool
provided by the BGSLibrary, reducing it to the following list:

• Adaptive Background Learning

• Adaptive Selective Background Learning

• Baseline

• CodeBook

• Frame Difference

• KNN

• LOBSTER

• Mixture Of Gaussians V2

• PAWCS
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• Pixel Based Adaptive Segmenter

• Sigma Delta

• Static Frame Difference

• SuBSENSE

• Two Points

• ViBe

• Weighted Moving Mean

• Weighted Moving Variance

The experiment was conducted across a discretized version of the ranking tile. Specifically,
the α and β coefficient were considered on the interval [0, 1] with a step size of 0.01,
computing the ranking for each point.

5.1 Ranking Stability
The objective of this experiment was to show the stability of the ranking process over

the whole dataset (and potentially over unseen data). This was achieved by comparing
the ranking obtained from the whole dataset to a ranking obtained by cross validating
the scores achieved on subsets of the entire data (folds). In that effort, three types of
rankings were computed: complete, cross-validation (CV) with ten folds, and leave-one-
out-cross-validation (LOO) where each fold corresponds to one video. All of the rankings
were evaluated for the entire tile.

(a) Ranking tile for algo-
rithms of rank 1 obtained
from the full dataset

(b) Ranking tile of algorithms
of rank 1 obtained from 4 fold
cross-validation

(c) Ranking tile of algorithms
of rank 1 obtained from LOO
cross-validation

Figure 5.1. Ranking tiles of algorithms of rank ones for full, CV, and LOO

Figure 5.1 shows the ranking tile of the top-ranked algorithms for various values of
α and β. The plot displays consistent rankings across full dataset, cross-validated, and
LOO approaches. Exception made for PAWCS algorithm which is only absent from the
LOO tile. Overall, confirming the stability of the ranking for the first rank. A similar
comparison can also be observed for the last ranks.

Although some small instabilities can be observed, the ranking of the intermediate
ranks remain relatively stable. This is particularly visible from fig. 5.2 where KNN is
a lot more present in the CV and LOO tiles. Those instabilities are most likely due to
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(a) Ranking tile for algo-
rithms of rank 5 obtained
from the full dataset

(b) Ranking tile of algorithms
of rank 5 obtained from 10
fold cross-validation

(c) Ranking tile of algorithms
of rank 5 obtained from LOO
cross-validation

Figure 5.2. Ranking tiles of algorithms of rank 5 for full, CV, and LOO

the cross-validation process in which the videos are grouped into folds. Depending on
the ordering split, some categories might be more prominent in some folds, ultimately
introducing a bias towards algorithms that perform well in those categories that would
affect the final ranking.

5.2 Semantic Classes Utility
The second experiment that was conducted had the goal to prove the utility of the use

of semantic labels in the recommendation process. For that purpose, semantic classes were
added to the tags of the platform (see experimental setup at the beginning of this section).
This experiment was achieved by comparing the rankings obtained without specifying any
class, to rankings obtained by specifying the labels. All of the labels were weighted equally
with a value of 1.

(a) Ranking tile of the algo-
rithm of rank 1 for the person
category

(b) Ranking tile of the algo-
rithm of rank 1 for the water
category

(c) Ranking tile of the algo-
rithm of rank 1 for the tree
category

Figure 5.3. Ranking tiles of the algorithms of rank 1 for semantic labels person, tree, and
water.

As shown by figure 5.3, the first rank obtained for each semantic label roughly stays
similar to the ranking of the full dataset, with some algorithms such PAWCS taking more
space on the tile in most categories, especially for the "tree" label where it covers the
majority of the tile (as opposed to SuBSENSE for the other cases). Some categories
displays others algorithms being ranked first as well for specific categories (i.e. Pixel-
BasedAdaptiveSegmenter for water label). This behaviour hints at the utility of using
semantic labels to further fine-tune the recommendation process.

Similar to the stability experiment, the intermediate ranks for the semantic classes are
shown to significantly differ from the ranks of the full dataset. These differences ranges
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(a) Ranking tile of the algo-
rithm of rank 5 for the person
category

(b) Ranking tile of the algo-
rithm of rank 5 for the water
category

(c) Ranking tile of the algo-
rithm of rank 5 for the tree
category

Figure 5.4. Ranking tiles of the algorithms of rank 5 for semantic labels person, tree, and
water.

from simple area modification, to complete order change. However, those results once
again have to be carefully considered as the experiments only featured a restricted amount
of semantic classes, which lead to significant reduction of the amount of videos considered
in some cases.
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Chapter 6

Discussion

This part of the report is dedicated to performing a retrospective analysis of the project.
In particular, it will provide insights into the project strengths, and potential pitfalls of
the implementation. The chapter will also include a brief discussion of improvements that
could be made to the current platform.

6.1 Retrospective Analysis
The project was initiated with the goal of providing a novel way to recommend back-

ground subtraction algorithms. The idea was to provide a recommendation tool that is
capable of using user input to fine-tune the ranking of algorithms, guiding him through the
selection process. Additionally, the platform was also designed to be extendble by allowing
the addition and execution of new algorithms while providing insight on their performance
against past requests. It also allows the dataset to be extended by the addition of new
videos, and categories. Feature-wise, the implemented platform fulfils all of the initial
requirements with some caveats.

Firstly, it is able to provide a recommendation that is based on a score that is function
of the user input. Specifically, the user is able to mark his preference for the output of
the algorithms (that is the components of the confusion matrix) by using the ranking tile.
Moreover, he also has the possibility to specify the contextual, and semantic labels that are
of interest to him. However, the recommendation process still has some flaws. For instance,
from the UI, it is not possible to provide specific weights for the categories. Currently, the
recommendation process doesn’t provide a way for the user to specify technical constraints
on the algorithms (i.e. memory usage, pixels treated per second, etc.).

Secondly, the platform can be augmented with new data. It allows the addition,
modification, and deletion of videos, algorithms, and categories. But, no user management
system was implemented in the context of the work, meaning that the platform doesn’t
provide a permission system that would prevent unauthorized users from modifying the data.
From the definition of the use cases in the implementation details, it is clear that, apart
from the administrator, the users should only have control over the resources they have
created. Since this work’s objectives were to prove the feasibility of the recommendation
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system, the user management system was left out of the scope of the project. Nevertheless,
this feature would be crucial to achieve a production-ready system.

Thirdly, the platform allows the autonomous execution of algorithms. It is made possible
by the use of a complex task management system that works in conjunction with Docker
to provide a secure, and isolated environment for the execution. The whole platform relies
on Docker Compose to manage the services. This has the advantage of being simple to
deploy, and to scale, but this also enlightens some limitations of the application. Namely,
the services responsible for the processing of BGS algorithms tasks must be running at
all time. Meaning that it is currently impossible to start workers on the fly. Moreover,
workers all need to share the same Docker configuration. In the present implementation,
the workers are all built upon a specific version of Python. This could be limiting for
algorithms using libraries that are not compatible with the version of Python used in the
worker.

Finally, the application is able to provide insights on the potential ranking of an
algorithm based on the request history. The user requests are stored and reused to obtain
the history of the ranking of an algorithm based on those queries. However, this feature is
only implemented on the API side and does not yet have a visual representation.

On a separate note, although promising results were obtained regarding the ranking
stability and the utility of semantic labels, it’s important to consider limitations. The
experiments were conducted on the CDNet dataset which exhibits a plethora of categories.
However, the dataset remain limited by its size and doesn’t cover all possible types of
real-world videos. Overall, extensive experimentations should be conducted to obtain
complete and more comprehensive results.

6.2 Improvements
Building upon the shortcomings identified by the previous section, the platform could be

improved by addressing the aforementioned issues. Following are some enhancements that
could be made. These improvements cover the current infrastructure, as well as potential
new features that could complement the current work.

• Cluster management system: The use of a cluster management system such as
Docker Swarm, Kubernetes, or Openshift would provide a more robust, and scalable
architecture. This would make the platform more resilient to failures, and allow the
workers to be started on the fly, preventing the waste of resources when the platform
is not in use. This solution would also be suitable for further customisation of the
workers’ environment.

• Pseudo ground truth production: In its current state, the platform relies on
manually labelled data to provide a recommendation. As previously mentioned,
obtaining ground truth for video sequences is a time-consuming task. A potential
improvement would be to use a semi-supervised learning approach to generate an
empirical ground truth for the data. Allowing the use of non BGS specific datasets.
Similarly, the task of assigning tags to the videos could be helped by using the
semantic worker.

60



• Permission system: The platform should be equipped with a robust permission
system that would prevent the modification of the data by unauthorised users, and
would allow users to contribute to the platform while keeping control over their
resources.

• Logging: The platform should feature a centralised logging system that would allow
the administrators to monitor the activity of the services. Easing the detection of
potential issues, and providing insights on the usage of the platform.

• Natural Language Processing: The recommendation system could be further
enhanced by the use of Large Language Models (LLM). These models could be used
to provide a text-based way of specifying the user preferences, rather than using a
predefined form. Moreover, this process could also be used in the explanation given
to the user at the end of the recommendation process.

• Generic recommendation system: The current recommendation process could
be extended other domains. For instance, the system could be used to recommend
algorithms related to semantic segmentation, or object detection. This would require
slight changes in the handling of tasks, and possibly the definition of new types of
workers.

• Proxy file server: File storage is a crucial part of the project. Currently, it is
completely local, and handled by a FastAPI service. This could be further improved
by allowing multiple storage locations (e.g. S3 bucket, Azure Blob Storage, etc.).
Using the file server as a proxy in charge of retrieving the files from the storage
location to make it available to the services.

• Advanced Network Management: The workers have one significant limitation
which lies in the current architecture that doesn’t prevent one to make HTTP
requests to the outside of the platform. This means that a user could upload an
algorithm that could retrieve the masks from a distant server instead of executing
an actual BGS method. Consequently, leading to potentially skewed ranking for
such algorithms. To address that issue, the idea of using a local Docker network was
considered. However, since the workers should be able to install packages on the
fly, simply blocking all outgoing requests wasn’t a viable option. A more suitable
solution could be to set up a firewall that would only allow specific requests to go
through, therefore ensuring that the results would be accurate.

• . . .
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Chapter 7

Conclusion

This thesis has presented a novel approach to the problem of background subtraction
algorithm recommendation. Building upon the work of Piérard et al. on the ranking
tile, and taking inspiration on well known benchmarks such as ChangeDetection, this
work proposes the Background Subtraction Recommender Platform. This scalable and
modular platform serves as an initial step towards a comprehensive user-focused background
subtraction benchmarking system.

The key contributions of this work include the development of flexible recommendation
tool that can adapt to various user inputs, the creation of an extendable platform capable
of integrating new algorithms, videos, and categories, and the implementation of a web-
based interface that allows to interact with the system in a user-friendly manner. By
addressing the needs of non-expert users, the platform aims to simplify the BGS algorithms
selection process, and therefore to foster the development of more advanced computer
vision applications.

The implications of this thesis are significant, and do not limit to background subtraction.
The BGS Recommender Platform offers a versatile tool that is not only focused towards
research, but also towards the industry. For researchers, the system provides a versatile
tool that facilitates the testing and comparison of algorithms by researchers. For industry
professionals, it offers a solution for the selection of the most appropriate BGS algorithm
for their specific application.

In conclusion, while many areas are still to explore, this work lays foundations for future
developments in the field of background subtraction, and will hopefully contribute to the
development of more robust and reliable algorithms. This thesis aspires at fostering future
research and innovation in the field ultimately leading to significant advancements in the
computer vision.
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